btree.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "writeback.h"
  26. #include <linux/slab.h>
  27. #include <linux/bitops.h>
  28. #include <linux/freezer.h>
  29. #include <linux/hash.h>
  30. #include <linux/kthread.h>
  31. #include <linux/prefetch.h>
  32. #include <linux/random.h>
  33. #include <linux/rcupdate.h>
  34. #include <trace/events/bcache.h>
  35. /*
  36. * Todo:
  37. * register_bcache: Return errors out to userspace correctly
  38. *
  39. * Writeback: don't undirty key until after a cache flush
  40. *
  41. * Create an iterator for key pointers
  42. *
  43. * On btree write error, mark bucket such that it won't be freed from the cache
  44. *
  45. * Journalling:
  46. * Check for bad keys in replay
  47. * Propagate barriers
  48. * Refcount journal entries in journal_replay
  49. *
  50. * Garbage collection:
  51. * Finish incremental gc
  52. * Gc should free old UUIDs, data for invalid UUIDs
  53. *
  54. * Provide a way to list backing device UUIDs we have data cached for, and
  55. * probably how long it's been since we've seen them, and a way to invalidate
  56. * dirty data for devices that will never be attached again
  57. *
  58. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  59. * that based on that and how much dirty data we have we can keep writeback
  60. * from being starved
  61. *
  62. * Add a tracepoint or somesuch to watch for writeback starvation
  63. *
  64. * When btree depth > 1 and splitting an interior node, we have to make sure
  65. * alloc_bucket() cannot fail. This should be true but is not completely
  66. * obvious.
  67. *
  68. * Make sure all allocations get charged to the root cgroup
  69. *
  70. * Plugging?
  71. *
  72. * If data write is less than hard sector size of ssd, round up offset in open
  73. * bucket to the next whole sector
  74. *
  75. * Also lookup by cgroup in get_open_bucket()
  76. *
  77. * Superblock needs to be fleshed out for multiple cache devices
  78. *
  79. * Add a sysfs tunable for the number of writeback IOs in flight
  80. *
  81. * Add a sysfs tunable for the number of open data buckets
  82. *
  83. * IO tracking: Can we track when one process is doing io on behalf of another?
  84. * IO tracking: Don't use just an average, weigh more recent stuff higher
  85. *
  86. * Test module load/unload
  87. */
  88. static const char * const op_types[] = {
  89. "insert", "replace"
  90. };
  91. static const char *op_type(struct btree_op *op)
  92. {
  93. return op_types[op->type];
  94. }
  95. enum {
  96. BTREE_INSERT_STATUS_INSERT,
  97. BTREE_INSERT_STATUS_BACK_MERGE,
  98. BTREE_INSERT_STATUS_OVERWROTE,
  99. BTREE_INSERT_STATUS_FRONT_MERGE,
  100. };
  101. #define MAX_NEED_GC 64
  102. #define MAX_SAVE_PRIO 72
  103. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  104. #define PTR_HASH(c, k) \
  105. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  106. static struct workqueue_struct *btree_io_wq;
  107. static inline bool should_split(struct btree *b)
  108. {
  109. struct bset *i = write_block(b);
  110. return b->written >= btree_blocks(b) ||
  111. (b->written + __set_blocks(i, i->keys + 15, b->c)
  112. > btree_blocks(b));
  113. }
  114. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  115. /*
  116. * These macros are for recursing down the btree - they handle the details of
  117. * locking and looking up nodes in the cache for you. They're best treated as
  118. * mere syntax when reading code that uses them.
  119. *
  120. * op->lock determines whether we take a read or a write lock at a given depth.
  121. * If you've got a read lock and find that you need a write lock (i.e. you're
  122. * going to have to split), set op->lock and return -EINTR; btree_root() will
  123. * call you again and you'll have the correct lock.
  124. */
  125. /**
  126. * btree - recurse down the btree on a specified key
  127. * @fn: function to call, which will be passed the child node
  128. * @key: key to recurse on
  129. * @b: parent btree node
  130. * @op: pointer to struct btree_op
  131. */
  132. #define btree(fn, key, b, op, ...) \
  133. ({ \
  134. int _r, l = (b)->level - 1; \
  135. bool _w = l <= (op)->lock; \
  136. struct btree *_child = bch_btree_node_get((b)->c, key, l, _w); \
  137. if (!IS_ERR(_child)) { \
  138. _child->parent = (b); \
  139. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  140. rw_unlock(_w, _child); \
  141. } else \
  142. _r = PTR_ERR(_child); \
  143. _r; \
  144. })
  145. /**
  146. * btree_root - call a function on the root of the btree
  147. * @fn: function to call, which will be passed the child node
  148. * @c: cache set
  149. * @op: pointer to struct btree_op
  150. */
  151. #define btree_root(fn, c, op, ...) \
  152. ({ \
  153. int _r = -EINTR; \
  154. do { \
  155. struct btree *_b = (c)->root; \
  156. bool _w = insert_lock(op, _b); \
  157. rw_lock(_w, _b, _b->level); \
  158. if (_b == (c)->root && \
  159. _w == insert_lock(op, _b)) { \
  160. _b->parent = NULL; \
  161. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  162. } \
  163. rw_unlock(_w, _b); \
  164. bch_cannibalize_unlock(c); \
  165. if (_r == -ENOSPC) { \
  166. wait_event((c)->try_wait, \
  167. !(c)->try_harder); \
  168. _r = -EINTR; \
  169. } \
  170. } while (_r == -EINTR); \
  171. \
  172. _r; \
  173. })
  174. /* Btree key manipulation */
  175. void __bkey_put(struct cache_set *c, struct bkey *k)
  176. {
  177. unsigned i;
  178. for (i = 0; i < KEY_PTRS(k); i++)
  179. if (ptr_available(c, k, i))
  180. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  181. }
  182. static void bkey_put(struct cache_set *c, struct bkey *k, int level)
  183. {
  184. if ((level && KEY_OFFSET(k)) || !level)
  185. __bkey_put(c, k);
  186. }
  187. /* Btree IO */
  188. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  189. {
  190. uint64_t crc = b->key.ptr[0];
  191. void *data = (void *) i + 8, *end = end(i);
  192. crc = bch_crc64_update(crc, data, end - data);
  193. return crc ^ 0xffffffffffffffffULL;
  194. }
  195. static void bch_btree_node_read_done(struct btree *b)
  196. {
  197. const char *err = "bad btree header";
  198. struct bset *i = b->sets[0].data;
  199. struct btree_iter *iter;
  200. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  201. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  202. iter->used = 0;
  203. if (!i->seq)
  204. goto err;
  205. for (;
  206. b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
  207. i = write_block(b)) {
  208. err = "unsupported bset version";
  209. if (i->version > BCACHE_BSET_VERSION)
  210. goto err;
  211. err = "bad btree header";
  212. if (b->written + set_blocks(i, b->c) > btree_blocks(b))
  213. goto err;
  214. err = "bad magic";
  215. if (i->magic != bset_magic(b->c))
  216. goto err;
  217. err = "bad checksum";
  218. switch (i->version) {
  219. case 0:
  220. if (i->csum != csum_set(i))
  221. goto err;
  222. break;
  223. case BCACHE_BSET_VERSION:
  224. if (i->csum != btree_csum_set(b, i))
  225. goto err;
  226. break;
  227. }
  228. err = "empty set";
  229. if (i != b->sets[0].data && !i->keys)
  230. goto err;
  231. bch_btree_iter_push(iter, i->start, end(i));
  232. b->written += set_blocks(i, b->c);
  233. }
  234. err = "corrupted btree";
  235. for (i = write_block(b);
  236. index(i, b) < btree_blocks(b);
  237. i = ((void *) i) + block_bytes(b->c))
  238. if (i->seq == b->sets[0].data->seq)
  239. goto err;
  240. bch_btree_sort_and_fix_extents(b, iter);
  241. i = b->sets[0].data;
  242. err = "short btree key";
  243. if (b->sets[0].size &&
  244. bkey_cmp(&b->key, &b->sets[0].end) < 0)
  245. goto err;
  246. if (b->written < btree_blocks(b))
  247. bch_bset_init_next(b);
  248. out:
  249. mempool_free(iter, b->c->fill_iter);
  250. return;
  251. err:
  252. set_btree_node_io_error(b);
  253. bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
  254. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  255. index(i, b), i->keys);
  256. goto out;
  257. }
  258. static void btree_node_read_endio(struct bio *bio, int error)
  259. {
  260. struct closure *cl = bio->bi_private;
  261. closure_put(cl);
  262. }
  263. void bch_btree_node_read(struct btree *b)
  264. {
  265. uint64_t start_time = local_clock();
  266. struct closure cl;
  267. struct bio *bio;
  268. trace_bcache_btree_read(b);
  269. closure_init_stack(&cl);
  270. bio = bch_bbio_alloc(b->c);
  271. bio->bi_rw = REQ_META|READ_SYNC;
  272. bio->bi_size = KEY_SIZE(&b->key) << 9;
  273. bio->bi_end_io = btree_node_read_endio;
  274. bio->bi_private = &cl;
  275. bch_bio_map(bio, b->sets[0].data);
  276. bch_submit_bbio(bio, b->c, &b->key, 0);
  277. closure_sync(&cl);
  278. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  279. set_btree_node_io_error(b);
  280. bch_bbio_free(bio, b->c);
  281. if (btree_node_io_error(b))
  282. goto err;
  283. bch_btree_node_read_done(b);
  284. spin_lock(&b->c->btree_read_time_lock);
  285. bch_time_stats_update(&b->c->btree_read_time, start_time);
  286. spin_unlock(&b->c->btree_read_time_lock);
  287. return;
  288. err:
  289. bch_cache_set_error(b->c, "io error reading bucket %zu",
  290. PTR_BUCKET_NR(b->c, &b->key, 0));
  291. }
  292. static void btree_complete_write(struct btree *b, struct btree_write *w)
  293. {
  294. if (w->prio_blocked &&
  295. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  296. wake_up_allocators(b->c);
  297. if (w->journal) {
  298. atomic_dec_bug(w->journal);
  299. __closure_wake_up(&b->c->journal.wait);
  300. }
  301. w->prio_blocked = 0;
  302. w->journal = NULL;
  303. }
  304. static void __btree_node_write_done(struct closure *cl)
  305. {
  306. struct btree *b = container_of(cl, struct btree, io.cl);
  307. struct btree_write *w = btree_prev_write(b);
  308. bch_bbio_free(b->bio, b->c);
  309. b->bio = NULL;
  310. btree_complete_write(b, w);
  311. if (btree_node_dirty(b))
  312. queue_delayed_work(btree_io_wq, &b->work,
  313. msecs_to_jiffies(30000));
  314. closure_return(cl);
  315. }
  316. static void btree_node_write_done(struct closure *cl)
  317. {
  318. struct btree *b = container_of(cl, struct btree, io.cl);
  319. struct bio_vec *bv;
  320. int n;
  321. __bio_for_each_segment(bv, b->bio, n, 0)
  322. __free_page(bv->bv_page);
  323. __btree_node_write_done(cl);
  324. }
  325. static void btree_node_write_endio(struct bio *bio, int error)
  326. {
  327. struct closure *cl = bio->bi_private;
  328. struct btree *b = container_of(cl, struct btree, io.cl);
  329. if (error)
  330. set_btree_node_io_error(b);
  331. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  332. closure_put(cl);
  333. }
  334. static void do_btree_node_write(struct btree *b)
  335. {
  336. struct closure *cl = &b->io.cl;
  337. struct bset *i = b->sets[b->nsets].data;
  338. BKEY_PADDED(key) k;
  339. i->version = BCACHE_BSET_VERSION;
  340. i->csum = btree_csum_set(b, i);
  341. BUG_ON(b->bio);
  342. b->bio = bch_bbio_alloc(b->c);
  343. b->bio->bi_end_io = btree_node_write_endio;
  344. b->bio->bi_private = &b->io.cl;
  345. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  346. b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
  347. bch_bio_map(b->bio, i);
  348. /*
  349. * If we're appending to a leaf node, we don't technically need FUA -
  350. * this write just needs to be persisted before the next journal write,
  351. * which will be marked FLUSH|FUA.
  352. *
  353. * Similarly if we're writing a new btree root - the pointer is going to
  354. * be in the next journal entry.
  355. *
  356. * But if we're writing a new btree node (that isn't a root) or
  357. * appending to a non leaf btree node, we need either FUA or a flush
  358. * when we write the parent with the new pointer. FUA is cheaper than a
  359. * flush, and writes appending to leaf nodes aren't blocking anything so
  360. * just make all btree node writes FUA to keep things sane.
  361. */
  362. bkey_copy(&k.key, &b->key);
  363. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
  364. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  365. int j;
  366. struct bio_vec *bv;
  367. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  368. bio_for_each_segment(bv, b->bio, j)
  369. memcpy(page_address(bv->bv_page),
  370. base + j * PAGE_SIZE, PAGE_SIZE);
  371. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  372. continue_at(cl, btree_node_write_done, NULL);
  373. } else {
  374. b->bio->bi_vcnt = 0;
  375. bch_bio_map(b->bio, i);
  376. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  377. closure_sync(cl);
  378. __btree_node_write_done(cl);
  379. }
  380. }
  381. void bch_btree_node_write(struct btree *b, struct closure *parent)
  382. {
  383. struct bset *i = b->sets[b->nsets].data;
  384. trace_bcache_btree_write(b);
  385. BUG_ON(current->bio_list);
  386. BUG_ON(b->written >= btree_blocks(b));
  387. BUG_ON(b->written && !i->keys);
  388. BUG_ON(b->sets->data->seq != i->seq);
  389. bch_check_key_order(b, i);
  390. cancel_delayed_work(&b->work);
  391. /* If caller isn't waiting for write, parent refcount is cache set */
  392. closure_lock(&b->io, parent ?: &b->c->cl);
  393. clear_bit(BTREE_NODE_dirty, &b->flags);
  394. change_bit(BTREE_NODE_write_idx, &b->flags);
  395. do_btree_node_write(b);
  396. b->written += set_blocks(i, b->c);
  397. atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
  398. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  399. bch_btree_sort_lazy(b);
  400. if (b->written < btree_blocks(b))
  401. bch_bset_init_next(b);
  402. }
  403. static void btree_node_write_work(struct work_struct *w)
  404. {
  405. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  406. rw_lock(true, b, b->level);
  407. if (btree_node_dirty(b))
  408. bch_btree_node_write(b, NULL);
  409. rw_unlock(true, b);
  410. }
  411. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  412. {
  413. struct bset *i = b->sets[b->nsets].data;
  414. struct btree_write *w = btree_current_write(b);
  415. BUG_ON(!b->written);
  416. BUG_ON(!i->keys);
  417. if (!btree_node_dirty(b))
  418. queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
  419. set_btree_node_dirty(b);
  420. if (journal_ref) {
  421. if (w->journal &&
  422. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  423. atomic_dec_bug(w->journal);
  424. w->journal = NULL;
  425. }
  426. if (!w->journal) {
  427. w->journal = journal_ref;
  428. atomic_inc(w->journal);
  429. }
  430. }
  431. /* Force write if set is too big */
  432. if (set_bytes(i) > PAGE_SIZE - 48 &&
  433. !current->bio_list)
  434. bch_btree_node_write(b, NULL);
  435. }
  436. /*
  437. * Btree in memory cache - allocation/freeing
  438. * mca -> memory cache
  439. */
  440. static void mca_reinit(struct btree *b)
  441. {
  442. unsigned i;
  443. b->flags = 0;
  444. b->written = 0;
  445. b->nsets = 0;
  446. for (i = 0; i < MAX_BSETS; i++)
  447. b->sets[i].size = 0;
  448. /*
  449. * Second loop starts at 1 because b->sets[0]->data is the memory we
  450. * allocated
  451. */
  452. for (i = 1; i < MAX_BSETS; i++)
  453. b->sets[i].data = NULL;
  454. }
  455. #define mca_reserve(c) (((c->root && c->root->level) \
  456. ? c->root->level : 1) * 8 + 16)
  457. #define mca_can_free(c) \
  458. max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
  459. static void mca_data_free(struct btree *b)
  460. {
  461. struct bset_tree *t = b->sets;
  462. BUG_ON(!closure_is_unlocked(&b->io.cl));
  463. if (bset_prev_bytes(b) < PAGE_SIZE)
  464. kfree(t->prev);
  465. else
  466. free_pages((unsigned long) t->prev,
  467. get_order(bset_prev_bytes(b)));
  468. if (bset_tree_bytes(b) < PAGE_SIZE)
  469. kfree(t->tree);
  470. else
  471. free_pages((unsigned long) t->tree,
  472. get_order(bset_tree_bytes(b)));
  473. free_pages((unsigned long) t->data, b->page_order);
  474. t->prev = NULL;
  475. t->tree = NULL;
  476. t->data = NULL;
  477. list_move(&b->list, &b->c->btree_cache_freed);
  478. b->c->bucket_cache_used--;
  479. }
  480. static void mca_bucket_free(struct btree *b)
  481. {
  482. BUG_ON(btree_node_dirty(b));
  483. b->key.ptr[0] = 0;
  484. hlist_del_init_rcu(&b->hash);
  485. list_move(&b->list, &b->c->btree_cache_freeable);
  486. }
  487. static unsigned btree_order(struct bkey *k)
  488. {
  489. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  490. }
  491. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  492. {
  493. struct bset_tree *t = b->sets;
  494. BUG_ON(t->data);
  495. b->page_order = max_t(unsigned,
  496. ilog2(b->c->btree_pages),
  497. btree_order(k));
  498. t->data = (void *) __get_free_pages(gfp, b->page_order);
  499. if (!t->data)
  500. goto err;
  501. t->tree = bset_tree_bytes(b) < PAGE_SIZE
  502. ? kmalloc(bset_tree_bytes(b), gfp)
  503. : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
  504. if (!t->tree)
  505. goto err;
  506. t->prev = bset_prev_bytes(b) < PAGE_SIZE
  507. ? kmalloc(bset_prev_bytes(b), gfp)
  508. : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
  509. if (!t->prev)
  510. goto err;
  511. list_move(&b->list, &b->c->btree_cache);
  512. b->c->bucket_cache_used++;
  513. return;
  514. err:
  515. mca_data_free(b);
  516. }
  517. static struct btree *mca_bucket_alloc(struct cache_set *c,
  518. struct bkey *k, gfp_t gfp)
  519. {
  520. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  521. if (!b)
  522. return NULL;
  523. init_rwsem(&b->lock);
  524. lockdep_set_novalidate_class(&b->lock);
  525. INIT_LIST_HEAD(&b->list);
  526. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  527. b->c = c;
  528. closure_init_unlocked(&b->io);
  529. mca_data_alloc(b, k, gfp);
  530. return b;
  531. }
  532. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  533. {
  534. struct closure cl;
  535. closure_init_stack(&cl);
  536. lockdep_assert_held(&b->c->bucket_lock);
  537. if (!down_write_trylock(&b->lock))
  538. return -ENOMEM;
  539. BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
  540. if (b->page_order < min_order ||
  541. (!flush &&
  542. (btree_node_dirty(b) ||
  543. atomic_read(&b->io.cl.remaining) != -1))) {
  544. rw_unlock(true, b);
  545. return -ENOMEM;
  546. }
  547. if (btree_node_dirty(b)) {
  548. bch_btree_node_write(b, &cl);
  549. closure_sync(&cl);
  550. }
  551. /* wait for any in flight btree write */
  552. closure_wait_event_sync(&b->io.wait, &cl,
  553. atomic_read(&b->io.cl.remaining) == -1);
  554. return 0;
  555. }
  556. static unsigned long bch_mca_scan(struct shrinker *shrink,
  557. struct shrink_control *sc)
  558. {
  559. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  560. struct btree *b, *t;
  561. unsigned long i, nr = sc->nr_to_scan;
  562. unsigned long freed = 0;
  563. if (c->shrinker_disabled)
  564. return SHRINK_STOP;
  565. if (c->try_harder)
  566. return SHRINK_STOP;
  567. /* Return -1 if we can't do anything right now */
  568. if (sc->gfp_mask & __GFP_IO)
  569. mutex_lock(&c->bucket_lock);
  570. else if (!mutex_trylock(&c->bucket_lock))
  571. return -1;
  572. /*
  573. * It's _really_ critical that we don't free too many btree nodes - we
  574. * have to always leave ourselves a reserve. The reserve is how we
  575. * guarantee that allocating memory for a new btree node can always
  576. * succeed, so that inserting keys into the btree can always succeed and
  577. * IO can always make forward progress:
  578. */
  579. nr /= c->btree_pages;
  580. nr = min_t(unsigned long, nr, mca_can_free(c));
  581. i = 0;
  582. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  583. if (freed >= nr)
  584. break;
  585. if (++i > 3 &&
  586. !mca_reap(b, 0, false)) {
  587. mca_data_free(b);
  588. rw_unlock(true, b);
  589. freed++;
  590. }
  591. }
  592. /*
  593. * Can happen right when we first start up, before we've read in any
  594. * btree nodes
  595. */
  596. if (list_empty(&c->btree_cache))
  597. goto out;
  598. for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
  599. b = list_first_entry(&c->btree_cache, struct btree, list);
  600. list_rotate_left(&c->btree_cache);
  601. if (!b->accessed &&
  602. !mca_reap(b, 0, false)) {
  603. mca_bucket_free(b);
  604. mca_data_free(b);
  605. rw_unlock(true, b);
  606. freed++;
  607. } else
  608. b->accessed = 0;
  609. }
  610. out:
  611. mutex_unlock(&c->bucket_lock);
  612. return freed;
  613. }
  614. static unsigned long bch_mca_count(struct shrinker *shrink,
  615. struct shrink_control *sc)
  616. {
  617. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  618. if (c->shrinker_disabled)
  619. return 0;
  620. if (c->try_harder)
  621. return 0;
  622. return mca_can_free(c) * c->btree_pages;
  623. }
  624. void bch_btree_cache_free(struct cache_set *c)
  625. {
  626. struct btree *b;
  627. struct closure cl;
  628. closure_init_stack(&cl);
  629. if (c->shrink.list.next)
  630. unregister_shrinker(&c->shrink);
  631. mutex_lock(&c->bucket_lock);
  632. #ifdef CONFIG_BCACHE_DEBUG
  633. if (c->verify_data)
  634. list_move(&c->verify_data->list, &c->btree_cache);
  635. #endif
  636. list_splice(&c->btree_cache_freeable,
  637. &c->btree_cache);
  638. while (!list_empty(&c->btree_cache)) {
  639. b = list_first_entry(&c->btree_cache, struct btree, list);
  640. if (btree_node_dirty(b))
  641. btree_complete_write(b, btree_current_write(b));
  642. clear_bit(BTREE_NODE_dirty, &b->flags);
  643. mca_data_free(b);
  644. }
  645. while (!list_empty(&c->btree_cache_freed)) {
  646. b = list_first_entry(&c->btree_cache_freed,
  647. struct btree, list);
  648. list_del(&b->list);
  649. cancel_delayed_work_sync(&b->work);
  650. kfree(b);
  651. }
  652. mutex_unlock(&c->bucket_lock);
  653. }
  654. int bch_btree_cache_alloc(struct cache_set *c)
  655. {
  656. unsigned i;
  657. for (i = 0; i < mca_reserve(c); i++)
  658. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  659. return -ENOMEM;
  660. list_splice_init(&c->btree_cache,
  661. &c->btree_cache_freeable);
  662. #ifdef CONFIG_BCACHE_DEBUG
  663. mutex_init(&c->verify_lock);
  664. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  665. if (c->verify_data &&
  666. c->verify_data->sets[0].data)
  667. list_del_init(&c->verify_data->list);
  668. else
  669. c->verify_data = NULL;
  670. #endif
  671. c->shrink.count_objects = bch_mca_count;
  672. c->shrink.scan_objects = bch_mca_scan;
  673. c->shrink.seeks = 4;
  674. c->shrink.batch = c->btree_pages * 2;
  675. register_shrinker(&c->shrink);
  676. return 0;
  677. }
  678. /* Btree in memory cache - hash table */
  679. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  680. {
  681. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  682. }
  683. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  684. {
  685. struct btree *b;
  686. rcu_read_lock();
  687. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  688. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  689. goto out;
  690. b = NULL;
  691. out:
  692. rcu_read_unlock();
  693. return b;
  694. }
  695. static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
  696. {
  697. struct btree *b;
  698. trace_bcache_btree_cache_cannibalize(c);
  699. if (!c->try_harder) {
  700. c->try_harder = current;
  701. c->try_harder_start = local_clock();
  702. } else if (c->try_harder != current)
  703. return ERR_PTR(-ENOSPC);
  704. list_for_each_entry_reverse(b, &c->btree_cache, list)
  705. if (!mca_reap(b, btree_order(k), false))
  706. return b;
  707. list_for_each_entry_reverse(b, &c->btree_cache, list)
  708. if (!mca_reap(b, btree_order(k), true))
  709. return b;
  710. return ERR_PTR(-ENOMEM);
  711. }
  712. /*
  713. * We can only have one thread cannibalizing other cached btree nodes at a time,
  714. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  715. * cannibalize_bucket() will take. This means every time we unlock the root of
  716. * the btree, we need to release this lock if we have it held.
  717. */
  718. static void bch_cannibalize_unlock(struct cache_set *c)
  719. {
  720. if (c->try_harder == current) {
  721. bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
  722. c->try_harder = NULL;
  723. wake_up(&c->try_wait);
  724. }
  725. }
  726. static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
  727. {
  728. struct btree *b;
  729. BUG_ON(current->bio_list);
  730. lockdep_assert_held(&c->bucket_lock);
  731. if (mca_find(c, k))
  732. return NULL;
  733. /* btree_free() doesn't free memory; it sticks the node on the end of
  734. * the list. Check if there's any freed nodes there:
  735. */
  736. list_for_each_entry(b, &c->btree_cache_freeable, list)
  737. if (!mca_reap(b, btree_order(k), false))
  738. goto out;
  739. /* We never free struct btree itself, just the memory that holds the on
  740. * disk node. Check the freed list before allocating a new one:
  741. */
  742. list_for_each_entry(b, &c->btree_cache_freed, list)
  743. if (!mca_reap(b, 0, false)) {
  744. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  745. if (!b->sets[0].data)
  746. goto err;
  747. else
  748. goto out;
  749. }
  750. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  751. if (!b)
  752. goto err;
  753. BUG_ON(!down_write_trylock(&b->lock));
  754. if (!b->sets->data)
  755. goto err;
  756. out:
  757. BUG_ON(!closure_is_unlocked(&b->io.cl));
  758. bkey_copy(&b->key, k);
  759. list_move(&b->list, &c->btree_cache);
  760. hlist_del_init_rcu(&b->hash);
  761. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  762. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  763. b->level = level;
  764. b->parent = (void *) ~0UL;
  765. mca_reinit(b);
  766. return b;
  767. err:
  768. if (b)
  769. rw_unlock(true, b);
  770. b = mca_cannibalize(c, k);
  771. if (!IS_ERR(b))
  772. goto out;
  773. return b;
  774. }
  775. /**
  776. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  777. * in from disk if necessary.
  778. *
  779. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  780. *
  781. * The btree node will have either a read or a write lock held, depending on
  782. * level and op->lock.
  783. */
  784. struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
  785. int level, bool write)
  786. {
  787. int i = 0;
  788. struct btree *b;
  789. BUG_ON(level < 0);
  790. retry:
  791. b = mca_find(c, k);
  792. if (!b) {
  793. if (current->bio_list)
  794. return ERR_PTR(-EAGAIN);
  795. mutex_lock(&c->bucket_lock);
  796. b = mca_alloc(c, k, level);
  797. mutex_unlock(&c->bucket_lock);
  798. if (!b)
  799. goto retry;
  800. if (IS_ERR(b))
  801. return b;
  802. bch_btree_node_read(b);
  803. if (!write)
  804. downgrade_write(&b->lock);
  805. } else {
  806. rw_lock(write, b, level);
  807. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  808. rw_unlock(write, b);
  809. goto retry;
  810. }
  811. BUG_ON(b->level != level);
  812. }
  813. b->accessed = 1;
  814. for (; i <= b->nsets && b->sets[i].size; i++) {
  815. prefetch(b->sets[i].tree);
  816. prefetch(b->sets[i].data);
  817. }
  818. for (; i <= b->nsets; i++)
  819. prefetch(b->sets[i].data);
  820. if (btree_node_io_error(b)) {
  821. rw_unlock(write, b);
  822. return ERR_PTR(-EIO);
  823. }
  824. BUG_ON(!b->written);
  825. return b;
  826. }
  827. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  828. {
  829. struct btree *b;
  830. mutex_lock(&c->bucket_lock);
  831. b = mca_alloc(c, k, level);
  832. mutex_unlock(&c->bucket_lock);
  833. if (!IS_ERR_OR_NULL(b)) {
  834. bch_btree_node_read(b);
  835. rw_unlock(true, b);
  836. }
  837. }
  838. /* Btree alloc */
  839. static void btree_node_free(struct btree *b)
  840. {
  841. unsigned i;
  842. trace_bcache_btree_node_free(b);
  843. BUG_ON(b == b->c->root);
  844. if (btree_node_dirty(b))
  845. btree_complete_write(b, btree_current_write(b));
  846. clear_bit(BTREE_NODE_dirty, &b->flags);
  847. cancel_delayed_work(&b->work);
  848. mutex_lock(&b->c->bucket_lock);
  849. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  850. BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
  851. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  852. PTR_BUCKET(b->c, &b->key, i));
  853. }
  854. bch_bucket_free(b->c, &b->key);
  855. mca_bucket_free(b);
  856. mutex_unlock(&b->c->bucket_lock);
  857. }
  858. struct btree *bch_btree_node_alloc(struct cache_set *c, int level)
  859. {
  860. BKEY_PADDED(key) k;
  861. struct btree *b = ERR_PTR(-EAGAIN);
  862. mutex_lock(&c->bucket_lock);
  863. retry:
  864. if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true))
  865. goto err;
  866. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  867. b = mca_alloc(c, &k.key, level);
  868. if (IS_ERR(b))
  869. goto err_free;
  870. if (!b) {
  871. cache_bug(c,
  872. "Tried to allocate bucket that was in btree cache");
  873. __bkey_put(c, &k.key);
  874. goto retry;
  875. }
  876. b->accessed = 1;
  877. bch_bset_init_next(b);
  878. mutex_unlock(&c->bucket_lock);
  879. trace_bcache_btree_node_alloc(b);
  880. return b;
  881. err_free:
  882. bch_bucket_free(c, &k.key);
  883. __bkey_put(c, &k.key);
  884. err:
  885. mutex_unlock(&c->bucket_lock);
  886. trace_bcache_btree_node_alloc_fail(b);
  887. return b;
  888. }
  889. static struct btree *btree_node_alloc_replacement(struct btree *b)
  890. {
  891. struct btree *n = bch_btree_node_alloc(b->c, b->level);
  892. if (!IS_ERR_OR_NULL(n))
  893. bch_btree_sort_into(b, n);
  894. return n;
  895. }
  896. /* Garbage collection */
  897. uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
  898. {
  899. uint8_t stale = 0;
  900. unsigned i;
  901. struct bucket *g;
  902. /*
  903. * ptr_invalid() can't return true for the keys that mark btree nodes as
  904. * freed, but since ptr_bad() returns true we'll never actually use them
  905. * for anything and thus we don't want mark their pointers here
  906. */
  907. if (!bkey_cmp(k, &ZERO_KEY))
  908. return stale;
  909. for (i = 0; i < KEY_PTRS(k); i++) {
  910. if (!ptr_available(c, k, i))
  911. continue;
  912. g = PTR_BUCKET(c, k, i);
  913. if (gen_after(g->gc_gen, PTR_GEN(k, i)))
  914. g->gc_gen = PTR_GEN(k, i);
  915. if (ptr_stale(c, k, i)) {
  916. stale = max(stale, ptr_stale(c, k, i));
  917. continue;
  918. }
  919. cache_bug_on(GC_MARK(g) &&
  920. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  921. c, "inconsistent ptrs: mark = %llu, level = %i",
  922. GC_MARK(g), level);
  923. if (level)
  924. SET_GC_MARK(g, GC_MARK_METADATA);
  925. else if (KEY_DIRTY(k))
  926. SET_GC_MARK(g, GC_MARK_DIRTY);
  927. /* guard against overflow */
  928. SET_GC_SECTORS_USED(g, min_t(unsigned,
  929. GC_SECTORS_USED(g) + KEY_SIZE(k),
  930. (1 << 14) - 1));
  931. BUG_ON(!GC_SECTORS_USED(g));
  932. }
  933. return stale;
  934. }
  935. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  936. static int btree_gc_mark_node(struct btree *b, unsigned *keys,
  937. struct gc_stat *gc)
  938. {
  939. uint8_t stale = 0;
  940. unsigned last_dev = -1;
  941. struct bcache_device *d = NULL;
  942. struct bkey *k;
  943. struct btree_iter iter;
  944. struct bset_tree *t;
  945. gc->nodes++;
  946. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  947. if (last_dev != KEY_INODE(k)) {
  948. last_dev = KEY_INODE(k);
  949. d = KEY_INODE(k) < b->c->nr_uuids
  950. ? b->c->devices[last_dev]
  951. : NULL;
  952. }
  953. stale = max(stale, btree_mark_key(b, k));
  954. if (bch_ptr_bad(b, k))
  955. continue;
  956. *keys += bkey_u64s(k);
  957. gc->key_bytes += bkey_u64s(k);
  958. gc->nkeys++;
  959. gc->data += KEY_SIZE(k);
  960. if (KEY_DIRTY(k))
  961. gc->dirty += KEY_SIZE(k);
  962. }
  963. for (t = b->sets; t <= &b->sets[b->nsets]; t++)
  964. btree_bug_on(t->size &&
  965. bset_written(b, t) &&
  966. bkey_cmp(&b->key, &t->end) < 0,
  967. b, "found short btree key in gc");
  968. return stale;
  969. }
  970. static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k)
  971. {
  972. /*
  973. * We block priorities from being written for the duration of garbage
  974. * collection, so we can't sleep in btree_alloc() ->
  975. * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
  976. * our closure.
  977. */
  978. struct btree *n = btree_node_alloc_replacement(b);
  979. if (!IS_ERR_OR_NULL(n)) {
  980. swap(b, n);
  981. __bkey_put(b->c, &b->key);
  982. memcpy(k->ptr, b->key.ptr,
  983. sizeof(uint64_t) * KEY_PTRS(&b->key));
  984. btree_node_free(n);
  985. up_write(&n->lock);
  986. }
  987. return b;
  988. }
  989. /*
  990. * Leaving this at 2 until we've got incremental garbage collection done; it
  991. * could be higher (and has been tested with 4) except that garbage collection
  992. * could take much longer, adversely affecting latency.
  993. */
  994. #define GC_MERGE_NODES 2U
  995. struct gc_merge_info {
  996. struct btree *b;
  997. struct bkey *k;
  998. unsigned keys;
  999. };
  1000. static void btree_gc_coalesce(struct btree *b, struct gc_stat *gc,
  1001. struct gc_merge_info *r)
  1002. {
  1003. unsigned nodes = 0, keys = 0, blocks;
  1004. int i;
  1005. struct closure cl;
  1006. closure_init_stack(&cl);
  1007. while (nodes < GC_MERGE_NODES && r[nodes].b)
  1008. keys += r[nodes++].keys;
  1009. blocks = btree_default_blocks(b->c) * 2 / 3;
  1010. if (nodes < 2 ||
  1011. __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
  1012. return;
  1013. for (i = nodes - 1; i >= 0; --i) {
  1014. if (r[i].b->written)
  1015. r[i].b = btree_gc_alloc(r[i].b, r[i].k);
  1016. if (r[i].b->written)
  1017. return;
  1018. }
  1019. for (i = nodes - 1; i > 0; --i) {
  1020. struct bset *n1 = r[i].b->sets->data;
  1021. struct bset *n2 = r[i - 1].b->sets->data;
  1022. struct bkey *k, *last = NULL;
  1023. keys = 0;
  1024. if (i == 1) {
  1025. /*
  1026. * Last node we're not getting rid of - we're getting
  1027. * rid of the node at r[0]. Have to try and fit all of
  1028. * the remaining keys into this node; we can't ensure
  1029. * they will always fit due to rounding and variable
  1030. * length keys (shouldn't be possible in practice,
  1031. * though)
  1032. */
  1033. if (__set_blocks(n1, n1->keys + r->keys,
  1034. b->c) > btree_blocks(r[i].b))
  1035. return;
  1036. keys = n2->keys;
  1037. last = &r->b->key;
  1038. } else
  1039. for (k = n2->start;
  1040. k < end(n2);
  1041. k = bkey_next(k)) {
  1042. if (__set_blocks(n1, n1->keys + keys +
  1043. bkey_u64s(k), b->c) > blocks)
  1044. break;
  1045. last = k;
  1046. keys += bkey_u64s(k);
  1047. }
  1048. BUG_ON(__set_blocks(n1, n1->keys + keys,
  1049. b->c) > btree_blocks(r[i].b));
  1050. if (last) {
  1051. bkey_copy_key(&r[i].b->key, last);
  1052. bkey_copy_key(r[i].k, last);
  1053. }
  1054. memcpy(end(n1),
  1055. n2->start,
  1056. (void *) node(n2, keys) - (void *) n2->start);
  1057. n1->keys += keys;
  1058. memmove(n2->start,
  1059. node(n2, keys),
  1060. (void *) end(n2) - (void *) node(n2, keys));
  1061. n2->keys -= keys;
  1062. r[i].keys = n1->keys;
  1063. r[i - 1].keys = n2->keys;
  1064. }
  1065. btree_node_free(r->b);
  1066. up_write(&r->b->lock);
  1067. trace_bcache_btree_gc_coalesce(nodes);
  1068. gc->nodes--;
  1069. nodes--;
  1070. memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
  1071. memset(&r[nodes], 0, sizeof(struct gc_merge_info));
  1072. }
  1073. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1074. struct closure *writes, struct gc_stat *gc)
  1075. {
  1076. void write(struct btree *r)
  1077. {
  1078. if (!r->written || btree_node_dirty(r))
  1079. bch_btree_node_write(r, writes);
  1080. up_write(&r->lock);
  1081. }
  1082. int ret = 0, stale;
  1083. unsigned i;
  1084. struct gc_merge_info r[GC_MERGE_NODES];
  1085. memset(r, 0, sizeof(r));
  1086. while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
  1087. r->b = bch_btree_node_get(b->c, r->k, b->level - 1, true);
  1088. if (IS_ERR(r->b)) {
  1089. ret = PTR_ERR(r->b);
  1090. break;
  1091. }
  1092. r->keys = 0;
  1093. stale = btree_gc_mark_node(r->b, &r->keys, gc);
  1094. if (!b->written &&
  1095. (r->b->level || stale > 10 ||
  1096. b->c->gc_always_rewrite))
  1097. r->b = btree_gc_alloc(r->b, r->k);
  1098. if (r->b->level)
  1099. ret = btree_gc_recurse(r->b, op, writes, gc);
  1100. if (ret) {
  1101. write(r->b);
  1102. break;
  1103. }
  1104. bkey_copy_key(&b->c->gc_done, r->k);
  1105. if (!b->written)
  1106. btree_gc_coalesce(b, gc, r);
  1107. if (r[GC_MERGE_NODES - 1].b)
  1108. write(r[GC_MERGE_NODES - 1].b);
  1109. memmove(&r[1], &r[0],
  1110. sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
  1111. /* When we've got incremental GC working, we'll want to do
  1112. * if (should_resched())
  1113. * return -EAGAIN;
  1114. */
  1115. cond_resched();
  1116. #if 0
  1117. if (need_resched()) {
  1118. ret = -EAGAIN;
  1119. break;
  1120. }
  1121. #endif
  1122. }
  1123. for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
  1124. write(r[i].b);
  1125. /* Might have freed some children, must remove their keys */
  1126. if (!b->written)
  1127. bch_btree_sort(b);
  1128. return ret;
  1129. }
  1130. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1131. struct closure *writes, struct gc_stat *gc)
  1132. {
  1133. struct btree *n = NULL;
  1134. unsigned keys = 0;
  1135. int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
  1136. struct closure cl;
  1137. closure_init_stack(&cl);
  1138. if (b->level || stale > 10)
  1139. n = btree_node_alloc_replacement(b);
  1140. if (!IS_ERR_OR_NULL(n))
  1141. swap(b, n);
  1142. if (b->level)
  1143. ret = btree_gc_recurse(b, op, writes, gc);
  1144. if (!b->written || btree_node_dirty(b)) {
  1145. bch_btree_node_write(b, n ? &cl : NULL);
  1146. }
  1147. if (!IS_ERR_OR_NULL(n)) {
  1148. closure_sync(&cl);
  1149. bch_btree_set_root(b);
  1150. btree_node_free(n);
  1151. rw_unlock(true, b);
  1152. }
  1153. return ret;
  1154. }
  1155. static void btree_gc_start(struct cache_set *c)
  1156. {
  1157. struct cache *ca;
  1158. struct bucket *b;
  1159. unsigned i;
  1160. if (!c->gc_mark_valid)
  1161. return;
  1162. mutex_lock(&c->bucket_lock);
  1163. c->gc_mark_valid = 0;
  1164. c->gc_done = ZERO_KEY;
  1165. for_each_cache(ca, c, i)
  1166. for_each_bucket(b, ca) {
  1167. b->gc_gen = b->gen;
  1168. if (!atomic_read(&b->pin)) {
  1169. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  1170. SET_GC_SECTORS_USED(b, 0);
  1171. }
  1172. }
  1173. mutex_unlock(&c->bucket_lock);
  1174. }
  1175. size_t bch_btree_gc_finish(struct cache_set *c)
  1176. {
  1177. size_t available = 0;
  1178. struct bucket *b;
  1179. struct cache *ca;
  1180. unsigned i;
  1181. mutex_lock(&c->bucket_lock);
  1182. set_gc_sectors(c);
  1183. c->gc_mark_valid = 1;
  1184. c->need_gc = 0;
  1185. if (c->root)
  1186. for (i = 0; i < KEY_PTRS(&c->root->key); i++)
  1187. SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
  1188. GC_MARK_METADATA);
  1189. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1190. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1191. GC_MARK_METADATA);
  1192. for_each_cache(ca, c, i) {
  1193. uint64_t *i;
  1194. ca->invalidate_needs_gc = 0;
  1195. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1196. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1197. for (i = ca->prio_buckets;
  1198. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1199. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1200. for_each_bucket(b, ca) {
  1201. b->last_gc = b->gc_gen;
  1202. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1203. if (!atomic_read(&b->pin) &&
  1204. GC_MARK(b) == GC_MARK_RECLAIMABLE) {
  1205. available++;
  1206. if (!GC_SECTORS_USED(b))
  1207. bch_bucket_add_unused(ca, b);
  1208. }
  1209. }
  1210. }
  1211. mutex_unlock(&c->bucket_lock);
  1212. return available;
  1213. }
  1214. static void bch_btree_gc(struct cache_set *c)
  1215. {
  1216. int ret;
  1217. unsigned long available;
  1218. struct gc_stat stats;
  1219. struct closure writes;
  1220. struct btree_op op;
  1221. uint64_t start_time = local_clock();
  1222. trace_bcache_gc_start(c);
  1223. memset(&stats, 0, sizeof(struct gc_stat));
  1224. closure_init_stack(&writes);
  1225. bch_btree_op_init(&op, SHRT_MAX);
  1226. btree_gc_start(c);
  1227. atomic_inc(&c->prio_blocked);
  1228. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1229. closure_sync(&writes);
  1230. if (ret) {
  1231. pr_warn("gc failed!");
  1232. return;
  1233. }
  1234. /* Possibly wait for new UUIDs or whatever to hit disk */
  1235. bch_journal_meta(c, &writes);
  1236. closure_sync(&writes);
  1237. available = bch_btree_gc_finish(c);
  1238. atomic_dec(&c->prio_blocked);
  1239. wake_up_allocators(c);
  1240. bch_time_stats_update(&c->btree_gc_time, start_time);
  1241. stats.key_bytes *= sizeof(uint64_t);
  1242. stats.dirty <<= 9;
  1243. stats.data <<= 9;
  1244. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1245. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1246. trace_bcache_gc_end(c);
  1247. bch_moving_gc(c);
  1248. }
  1249. static int bch_gc_thread(void *arg)
  1250. {
  1251. struct cache_set *c = arg;
  1252. while (1) {
  1253. bch_btree_gc(c);
  1254. set_current_state(TASK_INTERRUPTIBLE);
  1255. if (kthread_should_stop())
  1256. break;
  1257. try_to_freeze();
  1258. schedule();
  1259. }
  1260. return 0;
  1261. }
  1262. int bch_gc_thread_start(struct cache_set *c)
  1263. {
  1264. c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
  1265. if (IS_ERR(c->gc_thread))
  1266. return PTR_ERR(c->gc_thread);
  1267. set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
  1268. return 0;
  1269. }
  1270. /* Initial partial gc */
  1271. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
  1272. unsigned long **seen)
  1273. {
  1274. int ret;
  1275. unsigned i;
  1276. struct bkey *k;
  1277. struct bucket *g;
  1278. struct btree_iter iter;
  1279. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  1280. for (i = 0; i < KEY_PTRS(k); i++) {
  1281. if (!ptr_available(b->c, k, i))
  1282. continue;
  1283. g = PTR_BUCKET(b->c, k, i);
  1284. if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
  1285. seen[PTR_DEV(k, i)]) ||
  1286. !ptr_stale(b->c, k, i)) {
  1287. g->gen = PTR_GEN(k, i);
  1288. if (b->level)
  1289. g->prio = BTREE_PRIO;
  1290. else if (g->prio == BTREE_PRIO)
  1291. g->prio = INITIAL_PRIO;
  1292. }
  1293. }
  1294. btree_mark_key(b, k);
  1295. }
  1296. if (b->level) {
  1297. k = bch_next_recurse_key(b, &ZERO_KEY);
  1298. while (k) {
  1299. struct bkey *p = bch_next_recurse_key(b, k);
  1300. if (p)
  1301. btree_node_prefetch(b->c, p, b->level - 1);
  1302. ret = btree(check_recurse, k, b, op, seen);
  1303. if (ret)
  1304. return ret;
  1305. k = p;
  1306. }
  1307. }
  1308. return 0;
  1309. }
  1310. int bch_btree_check(struct cache_set *c)
  1311. {
  1312. int ret = -ENOMEM;
  1313. unsigned i;
  1314. unsigned long *seen[MAX_CACHES_PER_SET];
  1315. struct btree_op op;
  1316. memset(seen, 0, sizeof(seen));
  1317. bch_btree_op_init(&op, SHRT_MAX);
  1318. for (i = 0; c->cache[i]; i++) {
  1319. size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
  1320. seen[i] = kmalloc(n, GFP_KERNEL);
  1321. if (!seen[i])
  1322. goto err;
  1323. /* Disables the seen array until prio_read() uses it too */
  1324. memset(seen[i], 0xFF, n);
  1325. }
  1326. ret = btree_root(check_recurse, c, &op, seen);
  1327. err:
  1328. for (i = 0; i < MAX_CACHES_PER_SET; i++)
  1329. kfree(seen[i]);
  1330. return ret;
  1331. }
  1332. /* Btree insertion */
  1333. static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
  1334. {
  1335. struct bset *i = b->sets[b->nsets].data;
  1336. memmove((uint64_t *) where + bkey_u64s(insert),
  1337. where,
  1338. (void *) end(i) - (void *) where);
  1339. i->keys += bkey_u64s(insert);
  1340. bkey_copy(where, insert);
  1341. bch_bset_fix_lookup_table(b, where);
  1342. }
  1343. static bool fix_overlapping_extents(struct btree *b,
  1344. struct bkey *insert,
  1345. struct btree_iter *iter,
  1346. struct btree_op *op)
  1347. {
  1348. void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
  1349. {
  1350. if (KEY_DIRTY(k))
  1351. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1352. offset, -sectors);
  1353. }
  1354. uint64_t old_offset;
  1355. unsigned old_size, sectors_found = 0;
  1356. while (1) {
  1357. struct bkey *k = bch_btree_iter_next(iter);
  1358. if (!k ||
  1359. bkey_cmp(&START_KEY(k), insert) >= 0)
  1360. break;
  1361. if (bkey_cmp(k, &START_KEY(insert)) <= 0)
  1362. continue;
  1363. old_offset = KEY_START(k);
  1364. old_size = KEY_SIZE(k);
  1365. /*
  1366. * We might overlap with 0 size extents; we can't skip these
  1367. * because if they're in the set we're inserting to we have to
  1368. * adjust them so they don't overlap with the key we're
  1369. * inserting. But we don't want to check them for BTREE_REPLACE
  1370. * operations.
  1371. */
  1372. if (op->type == BTREE_REPLACE &&
  1373. KEY_SIZE(k)) {
  1374. /*
  1375. * k might have been split since we inserted/found the
  1376. * key we're replacing
  1377. */
  1378. unsigned i;
  1379. uint64_t offset = KEY_START(k) -
  1380. KEY_START(&op->replace);
  1381. /* But it must be a subset of the replace key */
  1382. if (KEY_START(k) < KEY_START(&op->replace) ||
  1383. KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
  1384. goto check_failed;
  1385. /* We didn't find a key that we were supposed to */
  1386. if (KEY_START(k) > KEY_START(insert) + sectors_found)
  1387. goto check_failed;
  1388. if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
  1389. goto check_failed;
  1390. /* skip past gen */
  1391. offset <<= 8;
  1392. BUG_ON(!KEY_PTRS(&op->replace));
  1393. for (i = 0; i < KEY_PTRS(&op->replace); i++)
  1394. if (k->ptr[i] != op->replace.ptr[i] + offset)
  1395. goto check_failed;
  1396. sectors_found = KEY_OFFSET(k) - KEY_START(insert);
  1397. }
  1398. if (bkey_cmp(insert, k) < 0 &&
  1399. bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
  1400. /*
  1401. * We overlapped in the middle of an existing key: that
  1402. * means we have to split the old key. But we have to do
  1403. * slightly different things depending on whether the
  1404. * old key has been written out yet.
  1405. */
  1406. struct bkey *top;
  1407. subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
  1408. if (bkey_written(b, k)) {
  1409. /*
  1410. * We insert a new key to cover the top of the
  1411. * old key, and the old key is modified in place
  1412. * to represent the bottom split.
  1413. *
  1414. * It's completely arbitrary whether the new key
  1415. * is the top or the bottom, but it has to match
  1416. * up with what btree_sort_fixup() does - it
  1417. * doesn't check for this kind of overlap, it
  1418. * depends on us inserting a new key for the top
  1419. * here.
  1420. */
  1421. top = bch_bset_search(b, &b->sets[b->nsets],
  1422. insert);
  1423. shift_keys(b, top, k);
  1424. } else {
  1425. BKEY_PADDED(key) temp;
  1426. bkey_copy(&temp.key, k);
  1427. shift_keys(b, k, &temp.key);
  1428. top = bkey_next(k);
  1429. }
  1430. bch_cut_front(insert, top);
  1431. bch_cut_back(&START_KEY(insert), k);
  1432. bch_bset_fix_invalidated_key(b, k);
  1433. return false;
  1434. }
  1435. if (bkey_cmp(insert, k) < 0) {
  1436. bch_cut_front(insert, k);
  1437. } else {
  1438. if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
  1439. old_offset = KEY_START(insert);
  1440. if (bkey_written(b, k) &&
  1441. bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
  1442. /*
  1443. * Completely overwrote, so we don't have to
  1444. * invalidate the binary search tree
  1445. */
  1446. bch_cut_front(k, k);
  1447. } else {
  1448. __bch_cut_back(&START_KEY(insert), k);
  1449. bch_bset_fix_invalidated_key(b, k);
  1450. }
  1451. }
  1452. subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
  1453. }
  1454. check_failed:
  1455. if (op->type == BTREE_REPLACE) {
  1456. if (!sectors_found) {
  1457. op->insert_collision = true;
  1458. return true;
  1459. } else if (sectors_found < KEY_SIZE(insert)) {
  1460. SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
  1461. (KEY_SIZE(insert) - sectors_found));
  1462. SET_KEY_SIZE(insert, sectors_found);
  1463. }
  1464. }
  1465. return false;
  1466. }
  1467. static bool btree_insert_key(struct btree *b, struct btree_op *op,
  1468. struct bkey *k)
  1469. {
  1470. struct bset *i = b->sets[b->nsets].data;
  1471. struct bkey *m, *prev;
  1472. unsigned status = BTREE_INSERT_STATUS_INSERT;
  1473. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1474. BUG_ON(b->level && !KEY_PTRS(k));
  1475. BUG_ON(!b->level && !KEY_OFFSET(k));
  1476. if (!b->level) {
  1477. struct btree_iter iter;
  1478. struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
  1479. /*
  1480. * bset_search() returns the first key that is strictly greater
  1481. * than the search key - but for back merging, we want to find
  1482. * the first key that is greater than or equal to KEY_START(k) -
  1483. * unless KEY_START(k) is 0.
  1484. */
  1485. if (KEY_OFFSET(&search))
  1486. SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
  1487. prev = NULL;
  1488. m = bch_btree_iter_init(b, &iter, &search);
  1489. if (fix_overlapping_extents(b, k, &iter, op))
  1490. return false;
  1491. if (KEY_DIRTY(k))
  1492. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1493. KEY_START(k), KEY_SIZE(k));
  1494. while (m != end(i) &&
  1495. bkey_cmp(k, &START_KEY(m)) > 0)
  1496. prev = m, m = bkey_next(m);
  1497. if (key_merging_disabled(b->c))
  1498. goto insert;
  1499. /* prev is in the tree, if we merge we're done */
  1500. status = BTREE_INSERT_STATUS_BACK_MERGE;
  1501. if (prev &&
  1502. bch_bkey_try_merge(b, prev, k))
  1503. goto merged;
  1504. status = BTREE_INSERT_STATUS_OVERWROTE;
  1505. if (m != end(i) &&
  1506. KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
  1507. goto copy;
  1508. status = BTREE_INSERT_STATUS_FRONT_MERGE;
  1509. if (m != end(i) &&
  1510. bch_bkey_try_merge(b, k, m))
  1511. goto copy;
  1512. } else
  1513. m = bch_bset_search(b, &b->sets[b->nsets], k);
  1514. insert: shift_keys(b, m, k);
  1515. copy: bkey_copy(m, k);
  1516. merged:
  1517. bch_check_keys(b, "%u for %s", status, op_type(op));
  1518. if (b->level && !KEY_OFFSET(k))
  1519. btree_current_write(b)->prio_blocked++;
  1520. trace_bcache_btree_insert_key(b, k, op->type, status);
  1521. return true;
  1522. }
  1523. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1524. struct keylist *insert_keys)
  1525. {
  1526. bool ret = false;
  1527. unsigned oldsize = bch_count_data(b);
  1528. while (!bch_keylist_empty(insert_keys)) {
  1529. struct bset *i = write_block(b);
  1530. struct bkey *k = insert_keys->keys;
  1531. if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
  1532. > btree_blocks(b))
  1533. break;
  1534. if (bkey_cmp(k, &b->key) <= 0) {
  1535. bkey_put(b->c, k, b->level);
  1536. ret |= btree_insert_key(b, op, k);
  1537. bch_keylist_pop_front(insert_keys);
  1538. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1539. #if 0
  1540. if (op->type == BTREE_REPLACE) {
  1541. bkey_put(b->c, k, b->level);
  1542. bch_keylist_pop_front(insert_keys);
  1543. op->insert_collision = true;
  1544. break;
  1545. }
  1546. #endif
  1547. BKEY_PADDED(key) temp;
  1548. bkey_copy(&temp.key, insert_keys->keys);
  1549. bch_cut_back(&b->key, &temp.key);
  1550. bch_cut_front(&b->key, insert_keys->keys);
  1551. ret |= btree_insert_key(b, op, &temp.key);
  1552. break;
  1553. } else {
  1554. break;
  1555. }
  1556. }
  1557. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1558. BUG_ON(bch_count_data(b) < oldsize);
  1559. return ret;
  1560. }
  1561. static int btree_split(struct btree *b, struct btree_op *op,
  1562. struct keylist *insert_keys,
  1563. struct keylist *parent_keys)
  1564. {
  1565. bool split;
  1566. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1567. uint64_t start_time = local_clock();
  1568. struct closure cl;
  1569. closure_init_stack(&cl);
  1570. n1 = btree_node_alloc_replacement(b);
  1571. if (IS_ERR(n1))
  1572. goto err;
  1573. split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
  1574. if (split) {
  1575. unsigned keys = 0;
  1576. trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
  1577. n2 = bch_btree_node_alloc(b->c, b->level);
  1578. if (IS_ERR(n2))
  1579. goto err_free1;
  1580. if (!b->parent) {
  1581. n3 = bch_btree_node_alloc(b->c, b->level + 1);
  1582. if (IS_ERR(n3))
  1583. goto err_free2;
  1584. }
  1585. bch_btree_insert_keys(n1, op, insert_keys);
  1586. /*
  1587. * Has to be a linear search because we don't have an auxiliary
  1588. * search tree yet
  1589. */
  1590. while (keys < (n1->sets[0].data->keys * 3) / 5)
  1591. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1592. bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
  1593. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1594. n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
  1595. n1->sets[0].data->keys = keys;
  1596. memcpy(n2->sets[0].data->start,
  1597. end(n1->sets[0].data),
  1598. n2->sets[0].data->keys * sizeof(uint64_t));
  1599. bkey_copy_key(&n2->key, &b->key);
  1600. bch_keylist_add(parent_keys, &n2->key);
  1601. bch_btree_node_write(n2, &cl);
  1602. rw_unlock(true, n2);
  1603. } else {
  1604. trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
  1605. bch_btree_insert_keys(n1, op, insert_keys);
  1606. }
  1607. bch_keylist_add(parent_keys, &n1->key);
  1608. bch_btree_node_write(n1, &cl);
  1609. if (n3) {
  1610. /* Depth increases, make a new root */
  1611. bkey_copy_key(&n3->key, &MAX_KEY);
  1612. bch_btree_insert_keys(n3, op, parent_keys);
  1613. bch_btree_node_write(n3, &cl);
  1614. closure_sync(&cl);
  1615. bch_btree_set_root(n3);
  1616. rw_unlock(true, n3);
  1617. } else if (!b->parent) {
  1618. /* Root filled up but didn't need to be split */
  1619. bch_keylist_reset(parent_keys);
  1620. closure_sync(&cl);
  1621. bch_btree_set_root(n1);
  1622. } else {
  1623. unsigned i;
  1624. bkey_copy(parent_keys->top, &b->key);
  1625. bkey_copy_key(parent_keys->top, &ZERO_KEY);
  1626. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  1627. uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
  1628. SET_PTR_GEN(parent_keys->top, i, g);
  1629. }
  1630. bch_keylist_push(parent_keys);
  1631. closure_sync(&cl);
  1632. atomic_inc(&b->c->prio_blocked);
  1633. }
  1634. rw_unlock(true, n1);
  1635. btree_node_free(b);
  1636. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1637. return 0;
  1638. err_free2:
  1639. __bkey_put(n2->c, &n2->key);
  1640. btree_node_free(n2);
  1641. rw_unlock(true, n2);
  1642. err_free1:
  1643. __bkey_put(n1->c, &n1->key);
  1644. btree_node_free(n1);
  1645. rw_unlock(true, n1);
  1646. err:
  1647. if (n3 == ERR_PTR(-EAGAIN) ||
  1648. n2 == ERR_PTR(-EAGAIN) ||
  1649. n1 == ERR_PTR(-EAGAIN))
  1650. return -EAGAIN;
  1651. pr_warn("couldn't split");
  1652. return -ENOMEM;
  1653. }
  1654. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1655. struct keylist *insert_keys,
  1656. atomic_t *journal_ref)
  1657. {
  1658. int ret = 0;
  1659. struct keylist split_keys;
  1660. bch_keylist_init(&split_keys);
  1661. BUG_ON(b->level);
  1662. do {
  1663. if (should_split(b)) {
  1664. if (current->bio_list) {
  1665. op->lock = b->c->root->level + 1;
  1666. ret = -EAGAIN;
  1667. } else if (op->lock <= b->c->root->level) {
  1668. op->lock = b->c->root->level + 1;
  1669. ret = -EINTR;
  1670. } else {
  1671. struct btree *parent = b->parent;
  1672. ret = btree_split(b, op, insert_keys,
  1673. &split_keys);
  1674. insert_keys = &split_keys;
  1675. b = parent;
  1676. if (!ret)
  1677. ret = -EINTR;
  1678. }
  1679. } else {
  1680. BUG_ON(write_block(b) != b->sets[b->nsets].data);
  1681. if (bch_btree_insert_keys(b, op, insert_keys)) {
  1682. if (!b->level) {
  1683. bch_btree_leaf_dirty(b, journal_ref);
  1684. } else {
  1685. struct closure cl;
  1686. closure_init_stack(&cl);
  1687. bch_btree_node_write(b, &cl);
  1688. closure_sync(&cl);
  1689. }
  1690. }
  1691. }
  1692. } while (!bch_keylist_empty(&split_keys));
  1693. return ret;
  1694. }
  1695. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1696. struct bkey *check_key)
  1697. {
  1698. int ret = -EINTR;
  1699. uint64_t btree_ptr = b->key.ptr[0];
  1700. unsigned long seq = b->seq;
  1701. struct keylist insert;
  1702. bool upgrade = op->lock == -1;
  1703. bch_keylist_init(&insert);
  1704. if (upgrade) {
  1705. rw_unlock(false, b);
  1706. rw_lock(true, b, b->level);
  1707. if (b->key.ptr[0] != btree_ptr ||
  1708. b->seq != seq + 1)
  1709. goto out;
  1710. }
  1711. SET_KEY_PTRS(check_key, 1);
  1712. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1713. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1714. bch_keylist_add(&insert, check_key);
  1715. BUG_ON(op->type != BTREE_INSERT);
  1716. ret = bch_btree_insert_node(b, op, &insert, NULL);
  1717. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1718. out:
  1719. if (upgrade)
  1720. downgrade_write(&b->lock);
  1721. return ret;
  1722. }
  1723. static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
  1724. struct keylist *keys, atomic_t *journal_ref)
  1725. {
  1726. if (bch_keylist_empty(keys))
  1727. return 0;
  1728. if (b->level) {
  1729. struct bkey *k;
  1730. k = bch_next_recurse_key(b, &START_KEY(keys->keys));
  1731. if (!k) {
  1732. btree_bug(b, "no key to recurse on at level %i/%i",
  1733. b->level, b->c->root->level);
  1734. bch_keylist_reset(keys);
  1735. return -EIO;
  1736. }
  1737. return btree(insert_recurse, k, b, op, keys, journal_ref);
  1738. } else {
  1739. return bch_btree_insert_node(b, op, keys, journal_ref);
  1740. }
  1741. }
  1742. int bch_btree_insert(struct btree_op *op, struct cache_set *c,
  1743. struct keylist *keys, atomic_t *journal_ref)
  1744. {
  1745. int ret = 0;
  1746. BUG_ON(bch_keylist_empty(keys));
  1747. while (!bch_keylist_empty(keys)) {
  1748. op->lock = 0;
  1749. ret = btree_root(insert_recurse, c, op, keys, journal_ref);
  1750. if (ret == -EAGAIN) {
  1751. BUG();
  1752. ret = 0;
  1753. } else if (ret) {
  1754. struct bkey *k;
  1755. pr_err("error %i trying to insert key for %s",
  1756. ret, op_type(op));
  1757. while ((k = bch_keylist_pop(keys)))
  1758. bkey_put(c, k, 0);
  1759. }
  1760. }
  1761. return ret;
  1762. }
  1763. void bch_btree_set_root(struct btree *b)
  1764. {
  1765. unsigned i;
  1766. struct closure cl;
  1767. closure_init_stack(&cl);
  1768. trace_bcache_btree_set_root(b);
  1769. BUG_ON(!b->written);
  1770. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1771. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1772. mutex_lock(&b->c->bucket_lock);
  1773. list_del_init(&b->list);
  1774. mutex_unlock(&b->c->bucket_lock);
  1775. b->c->root = b;
  1776. __bkey_put(b->c, &b->key);
  1777. bch_journal_meta(b->c, &cl);
  1778. closure_sync(&cl);
  1779. }
  1780. /* Map across nodes or keys */
  1781. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1782. struct bkey *from,
  1783. btree_map_nodes_fn *fn, int flags)
  1784. {
  1785. int ret = MAP_CONTINUE;
  1786. if (b->level) {
  1787. struct bkey *k;
  1788. struct btree_iter iter;
  1789. bch_btree_iter_init(b, &iter, from);
  1790. while ((k = bch_btree_iter_next_filter(&iter, b,
  1791. bch_ptr_bad))) {
  1792. ret = btree(map_nodes_recurse, k, b,
  1793. op, from, fn, flags);
  1794. from = NULL;
  1795. if (ret != MAP_CONTINUE)
  1796. return ret;
  1797. }
  1798. }
  1799. if (!b->level || flags == MAP_ALL_NODES)
  1800. ret = fn(op, b);
  1801. return ret;
  1802. }
  1803. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1804. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1805. {
  1806. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1807. }
  1808. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1809. struct bkey *from, btree_map_keys_fn *fn,
  1810. int flags)
  1811. {
  1812. int ret = MAP_CONTINUE;
  1813. struct bkey *k;
  1814. struct btree_iter iter;
  1815. bch_btree_iter_init(b, &iter, from);
  1816. while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad))) {
  1817. ret = !b->level
  1818. ? fn(op, b, k)
  1819. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1820. from = NULL;
  1821. if (ret != MAP_CONTINUE)
  1822. return ret;
  1823. }
  1824. if (!b->level && (flags & MAP_END_KEY))
  1825. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1826. KEY_OFFSET(&b->key), 0));
  1827. return ret;
  1828. }
  1829. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1830. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1831. {
  1832. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1833. }
  1834. /* Keybuf code */
  1835. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1836. {
  1837. /* Overlapping keys compare equal */
  1838. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1839. return -1;
  1840. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1841. return 1;
  1842. return 0;
  1843. }
  1844. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1845. struct keybuf_key *r)
  1846. {
  1847. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1848. }
  1849. struct refill {
  1850. struct btree_op op;
  1851. struct keybuf *buf;
  1852. struct bkey *end;
  1853. keybuf_pred_fn *pred;
  1854. };
  1855. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1856. struct bkey *k)
  1857. {
  1858. struct refill *refill = container_of(op, struct refill, op);
  1859. struct keybuf *buf = refill->buf;
  1860. int ret = MAP_CONTINUE;
  1861. if (bkey_cmp(k, refill->end) >= 0) {
  1862. ret = MAP_DONE;
  1863. goto out;
  1864. }
  1865. if (!KEY_SIZE(k)) /* end key */
  1866. goto out;
  1867. if (refill->pred(buf, k)) {
  1868. struct keybuf_key *w;
  1869. spin_lock(&buf->lock);
  1870. w = array_alloc(&buf->freelist);
  1871. if (!w) {
  1872. spin_unlock(&buf->lock);
  1873. return MAP_DONE;
  1874. }
  1875. w->private = NULL;
  1876. bkey_copy(&w->key, k);
  1877. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1878. array_free(&buf->freelist, w);
  1879. if (array_freelist_empty(&buf->freelist))
  1880. ret = MAP_DONE;
  1881. spin_unlock(&buf->lock);
  1882. }
  1883. out:
  1884. buf->last_scanned = *k;
  1885. return ret;
  1886. }
  1887. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1888. struct bkey *end, keybuf_pred_fn *pred)
  1889. {
  1890. struct bkey start = buf->last_scanned;
  1891. struct refill refill;
  1892. cond_resched();
  1893. bch_btree_op_init(&refill.op, -1);
  1894. refill.buf = buf;
  1895. refill.end = end;
  1896. refill.pred = pred;
  1897. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  1898. refill_keybuf_fn, MAP_END_KEY);
  1899. pr_debug("found %s keys from %llu:%llu to %llu:%llu",
  1900. RB_EMPTY_ROOT(&buf->keys) ? "no" :
  1901. array_freelist_empty(&buf->freelist) ? "some" : "a few",
  1902. KEY_INODE(&start), KEY_OFFSET(&start),
  1903. KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
  1904. spin_lock(&buf->lock);
  1905. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1906. struct keybuf_key *w;
  1907. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1908. buf->start = START_KEY(&w->key);
  1909. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1910. buf->end = w->key;
  1911. } else {
  1912. buf->start = MAX_KEY;
  1913. buf->end = MAX_KEY;
  1914. }
  1915. spin_unlock(&buf->lock);
  1916. }
  1917. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1918. {
  1919. rb_erase(&w->node, &buf->keys);
  1920. array_free(&buf->freelist, w);
  1921. }
  1922. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1923. {
  1924. spin_lock(&buf->lock);
  1925. __bch_keybuf_del(buf, w);
  1926. spin_unlock(&buf->lock);
  1927. }
  1928. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1929. struct bkey *end)
  1930. {
  1931. bool ret = false;
  1932. struct keybuf_key *p, *w, s;
  1933. s.key = *start;
  1934. if (bkey_cmp(end, &buf->start) <= 0 ||
  1935. bkey_cmp(start, &buf->end) >= 0)
  1936. return false;
  1937. spin_lock(&buf->lock);
  1938. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1939. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1940. p = w;
  1941. w = RB_NEXT(w, node);
  1942. if (p->private)
  1943. ret = true;
  1944. else
  1945. __bch_keybuf_del(buf, p);
  1946. }
  1947. spin_unlock(&buf->lock);
  1948. return ret;
  1949. }
  1950. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1951. {
  1952. struct keybuf_key *w;
  1953. spin_lock(&buf->lock);
  1954. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1955. while (w && w->private)
  1956. w = RB_NEXT(w, node);
  1957. if (w)
  1958. w->private = ERR_PTR(-EINTR);
  1959. spin_unlock(&buf->lock);
  1960. return w;
  1961. }
  1962. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1963. struct keybuf *buf,
  1964. struct bkey *end,
  1965. keybuf_pred_fn *pred)
  1966. {
  1967. struct keybuf_key *ret;
  1968. while (1) {
  1969. ret = bch_keybuf_next(buf);
  1970. if (ret)
  1971. break;
  1972. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1973. pr_debug("scan finished");
  1974. break;
  1975. }
  1976. bch_refill_keybuf(c, buf, end, pred);
  1977. }
  1978. return ret;
  1979. }
  1980. void bch_keybuf_init(struct keybuf *buf)
  1981. {
  1982. buf->last_scanned = MAX_KEY;
  1983. buf->keys = RB_ROOT;
  1984. spin_lock_init(&buf->lock);
  1985. array_allocator_init(&buf->freelist);
  1986. }
  1987. void bch_btree_exit(void)
  1988. {
  1989. if (btree_io_wq)
  1990. destroy_workqueue(btree_io_wq);
  1991. }
  1992. int __init bch_btree_init(void)
  1993. {
  1994. btree_io_wq = create_singlethread_workqueue("bch_btree_io");
  1995. if (!btree_io_wq)
  1996. return -ENOMEM;
  1997. return 0;
  1998. }