cfq-iosched.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. atomic_t ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. struct cfq_group *orig_cfqg;
  131. /* Number of sectors dispatched from queue in single dispatch round */
  132. unsigned long nr_sectors;
  133. };
  134. /*
  135. * First index in the service_trees.
  136. * IDLE is handled separately, so it has negative index
  137. */
  138. enum wl_prio_t {
  139. BE_WORKLOAD = 0,
  140. RT_WORKLOAD = 1,
  141. IDLE_WORKLOAD = 2,
  142. CFQ_PRIO_NR,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. bool on_st;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queus average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. atomic_t ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. };
  190. /*
  191. * Per block device queue structure
  192. */
  193. struct cfq_data {
  194. struct request_queue *queue;
  195. /* Root service tree for cfq_groups */
  196. struct cfq_rb_root grp_service_tree;
  197. struct cfq_group root_group;
  198. /*
  199. * The priority currently being served
  200. */
  201. enum wl_prio_t serving_prio;
  202. enum wl_type_t serving_type;
  203. unsigned long workload_expires;
  204. struct cfq_group *serving_group;
  205. /*
  206. * Each priority tree is sorted by next_request position. These
  207. * trees are used when determining if two or more queues are
  208. * interleaving requests (see cfq_close_cooperator).
  209. */
  210. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  211. unsigned int busy_queues;
  212. int rq_in_driver;
  213. int rq_in_flight[2];
  214. /*
  215. * queue-depth detection
  216. */
  217. int rq_queued;
  218. int hw_tag;
  219. /*
  220. * hw_tag can be
  221. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  222. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  223. * 0 => no NCQ
  224. */
  225. int hw_tag_est_depth;
  226. unsigned int hw_tag_samples;
  227. /*
  228. * idle window management
  229. */
  230. struct timer_list idle_slice_timer;
  231. struct work_struct unplug_work;
  232. struct cfq_queue *active_queue;
  233. struct cfq_io_context *active_cic;
  234. /*
  235. * async queue for each priority case
  236. */
  237. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  238. struct cfq_queue *async_idle_cfqq;
  239. sector_t last_position;
  240. /*
  241. * tunables, see top of file
  242. */
  243. unsigned int cfq_quantum;
  244. unsigned int cfq_fifo_expire[2];
  245. unsigned int cfq_back_penalty;
  246. unsigned int cfq_back_max;
  247. unsigned int cfq_slice[2];
  248. unsigned int cfq_slice_async_rq;
  249. unsigned int cfq_slice_idle;
  250. unsigned int cfq_group_idle;
  251. unsigned int cfq_latency;
  252. unsigned int cfq_group_isolation;
  253. unsigned int cic_index;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. struct rcu_head rcu;
  263. };
  264. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  265. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  266. enum wl_prio_t prio,
  267. enum wl_type_t type)
  268. {
  269. if (!cfqg)
  270. return NULL;
  271. if (prio == IDLE_WORKLOAD)
  272. return &cfqg->service_tree_idle;
  273. return &cfqg->service_trees[prio][type];
  274. }
  275. enum cfqq_state_flags {
  276. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  277. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  278. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  279. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  280. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  281. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  282. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  283. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  284. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  285. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  286. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  287. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  288. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  289. };
  290. #define CFQ_CFQQ_FNS(name) \
  291. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  292. { \
  293. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  294. } \
  295. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  296. { \
  297. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  298. } \
  299. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  300. { \
  301. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  302. }
  303. CFQ_CFQQ_FNS(on_rr);
  304. CFQ_CFQQ_FNS(wait_request);
  305. CFQ_CFQQ_FNS(must_dispatch);
  306. CFQ_CFQQ_FNS(must_alloc_slice);
  307. CFQ_CFQQ_FNS(fifo_expire);
  308. CFQ_CFQQ_FNS(idle_window);
  309. CFQ_CFQQ_FNS(prio_changed);
  310. CFQ_CFQQ_FNS(slice_new);
  311. CFQ_CFQQ_FNS(sync);
  312. CFQ_CFQQ_FNS(coop);
  313. CFQ_CFQQ_FNS(split_coop);
  314. CFQ_CFQQ_FNS(deep);
  315. CFQ_CFQQ_FNS(wait_busy);
  316. #undef CFQ_CFQQ_FNS
  317. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  318. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  319. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  320. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  321. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  322. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  323. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  324. blkg_path(&(cfqg)->blkg), ##args); \
  325. #else
  326. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  327. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  328. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  329. #endif
  330. #define cfq_log(cfqd, fmt, args...) \
  331. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  332. /* Traverses through cfq group service trees */
  333. #define for_each_cfqg_st(cfqg, i, j, st) \
  334. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  335. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  336. : &cfqg->service_tree_idle; \
  337. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  338. (i == IDLE_WORKLOAD && j == 0); \
  339. j++, st = i < IDLE_WORKLOAD ? \
  340. &cfqg->service_trees[i][j]: NULL) \
  341. static inline bool iops_mode(struct cfq_data *cfqd)
  342. {
  343. /*
  344. * If we are not idling on queues and it is a NCQ drive, parallel
  345. * execution of requests is on and measuring time is not possible
  346. * in most of the cases until and unless we drive shallower queue
  347. * depths and that becomes a performance bottleneck. In such cases
  348. * switch to start providing fairness in terms of number of IOs.
  349. */
  350. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  351. return true;
  352. else
  353. return false;
  354. }
  355. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  356. {
  357. if (cfq_class_idle(cfqq))
  358. return IDLE_WORKLOAD;
  359. if (cfq_class_rt(cfqq))
  360. return RT_WORKLOAD;
  361. return BE_WORKLOAD;
  362. }
  363. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  364. {
  365. if (!cfq_cfqq_sync(cfqq))
  366. return ASYNC_WORKLOAD;
  367. if (!cfq_cfqq_idle_window(cfqq))
  368. return SYNC_NOIDLE_WORKLOAD;
  369. return SYNC_WORKLOAD;
  370. }
  371. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  372. struct cfq_data *cfqd,
  373. struct cfq_group *cfqg)
  374. {
  375. if (wl == IDLE_WORKLOAD)
  376. return cfqg->service_tree_idle.count;
  377. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  379. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  380. }
  381. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  382. struct cfq_group *cfqg)
  383. {
  384. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  385. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  386. }
  387. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  388. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  389. struct io_context *, gfp_t);
  390. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  391. struct io_context *);
  392. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  393. bool is_sync)
  394. {
  395. return cic->cfqq[is_sync];
  396. }
  397. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  398. struct cfq_queue *cfqq, bool is_sync)
  399. {
  400. cic->cfqq[is_sync] = cfqq;
  401. }
  402. #define CIC_DEAD_KEY 1ul
  403. #define CIC_DEAD_INDEX_SHIFT 1
  404. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  405. {
  406. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  407. }
  408. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  409. {
  410. struct cfq_data *cfqd = cic->key;
  411. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  412. return NULL;
  413. return cfqd;
  414. }
  415. /*
  416. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  417. * set (in which case it could also be direct WRITE).
  418. */
  419. static inline bool cfq_bio_sync(struct bio *bio)
  420. {
  421. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  422. }
  423. /*
  424. * scheduler run of queue, if there are requests pending and no one in the
  425. * driver that will restart queueing
  426. */
  427. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  428. {
  429. if (cfqd->busy_queues) {
  430. cfq_log(cfqd, "schedule dispatch");
  431. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  432. }
  433. }
  434. static int cfq_queue_empty(struct request_queue *q)
  435. {
  436. struct cfq_data *cfqd = q->elevator->elevator_data;
  437. return !cfqd->rq_queued;
  438. }
  439. /*
  440. * Scale schedule slice based on io priority. Use the sync time slice only
  441. * if a queue is marked sync and has sync io queued. A sync queue with async
  442. * io only, should not get full sync slice length.
  443. */
  444. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  445. unsigned short prio)
  446. {
  447. const int base_slice = cfqd->cfq_slice[sync];
  448. WARN_ON(prio >= IOPRIO_BE_NR);
  449. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  450. }
  451. static inline int
  452. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  453. {
  454. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  455. }
  456. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  457. {
  458. u64 d = delta << CFQ_SERVICE_SHIFT;
  459. d = d * BLKIO_WEIGHT_DEFAULT;
  460. do_div(d, cfqg->weight);
  461. return d;
  462. }
  463. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  464. {
  465. s64 delta = (s64)(vdisktime - min_vdisktime);
  466. if (delta > 0)
  467. min_vdisktime = vdisktime;
  468. return min_vdisktime;
  469. }
  470. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  471. {
  472. s64 delta = (s64)(vdisktime - min_vdisktime);
  473. if (delta < 0)
  474. min_vdisktime = vdisktime;
  475. return min_vdisktime;
  476. }
  477. static void update_min_vdisktime(struct cfq_rb_root *st)
  478. {
  479. u64 vdisktime = st->min_vdisktime;
  480. struct cfq_group *cfqg;
  481. if (st->left) {
  482. cfqg = rb_entry_cfqg(st->left);
  483. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  484. }
  485. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  486. }
  487. /*
  488. * get averaged number of queues of RT/BE priority.
  489. * average is updated, with a formula that gives more weight to higher numbers,
  490. * to quickly follows sudden increases and decrease slowly
  491. */
  492. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  493. struct cfq_group *cfqg, bool rt)
  494. {
  495. unsigned min_q, max_q;
  496. unsigned mult = cfq_hist_divisor - 1;
  497. unsigned round = cfq_hist_divisor / 2;
  498. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  499. min_q = min(cfqg->busy_queues_avg[rt], busy);
  500. max_q = max(cfqg->busy_queues_avg[rt], busy);
  501. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  502. cfq_hist_divisor;
  503. return cfqg->busy_queues_avg[rt];
  504. }
  505. static inline unsigned
  506. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  507. {
  508. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  509. return cfq_target_latency * cfqg->weight / st->total_weight;
  510. }
  511. static inline void
  512. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  513. {
  514. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  515. if (cfqd->cfq_latency) {
  516. /*
  517. * interested queues (we consider only the ones with the same
  518. * priority class in the cfq group)
  519. */
  520. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  521. cfq_class_rt(cfqq));
  522. unsigned sync_slice = cfqd->cfq_slice[1];
  523. unsigned expect_latency = sync_slice * iq;
  524. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  525. if (expect_latency > group_slice) {
  526. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  527. /* scale low_slice according to IO priority
  528. * and sync vs async */
  529. unsigned low_slice =
  530. min(slice, base_low_slice * slice / sync_slice);
  531. /* the adapted slice value is scaled to fit all iqs
  532. * into the target latency */
  533. slice = max(slice * group_slice / expect_latency,
  534. low_slice);
  535. }
  536. }
  537. cfqq->slice_start = jiffies;
  538. cfqq->slice_end = jiffies + slice;
  539. cfqq->allocated_slice = slice;
  540. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  541. }
  542. /*
  543. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  544. * isn't valid until the first request from the dispatch is activated
  545. * and the slice time set.
  546. */
  547. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  548. {
  549. if (cfq_cfqq_slice_new(cfqq))
  550. return false;
  551. if (time_before(jiffies, cfqq->slice_end))
  552. return false;
  553. return true;
  554. }
  555. /*
  556. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  557. * We choose the request that is closest to the head right now. Distance
  558. * behind the head is penalized and only allowed to a certain extent.
  559. */
  560. static struct request *
  561. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  562. {
  563. sector_t s1, s2, d1 = 0, d2 = 0;
  564. unsigned long back_max;
  565. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  566. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  567. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  568. if (rq1 == NULL || rq1 == rq2)
  569. return rq2;
  570. if (rq2 == NULL)
  571. return rq1;
  572. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  573. return rq1;
  574. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  575. return rq2;
  576. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  577. return rq1;
  578. else if ((rq2->cmd_flags & REQ_META) &&
  579. !(rq1->cmd_flags & REQ_META))
  580. return rq2;
  581. s1 = blk_rq_pos(rq1);
  582. s2 = blk_rq_pos(rq2);
  583. /*
  584. * by definition, 1KiB is 2 sectors
  585. */
  586. back_max = cfqd->cfq_back_max * 2;
  587. /*
  588. * Strict one way elevator _except_ in the case where we allow
  589. * short backward seeks which are biased as twice the cost of a
  590. * similar forward seek.
  591. */
  592. if (s1 >= last)
  593. d1 = s1 - last;
  594. else if (s1 + back_max >= last)
  595. d1 = (last - s1) * cfqd->cfq_back_penalty;
  596. else
  597. wrap |= CFQ_RQ1_WRAP;
  598. if (s2 >= last)
  599. d2 = s2 - last;
  600. else if (s2 + back_max >= last)
  601. d2 = (last - s2) * cfqd->cfq_back_penalty;
  602. else
  603. wrap |= CFQ_RQ2_WRAP;
  604. /* Found required data */
  605. /*
  606. * By doing switch() on the bit mask "wrap" we avoid having to
  607. * check two variables for all permutations: --> faster!
  608. */
  609. switch (wrap) {
  610. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  611. if (d1 < d2)
  612. return rq1;
  613. else if (d2 < d1)
  614. return rq2;
  615. else {
  616. if (s1 >= s2)
  617. return rq1;
  618. else
  619. return rq2;
  620. }
  621. case CFQ_RQ2_WRAP:
  622. return rq1;
  623. case CFQ_RQ1_WRAP:
  624. return rq2;
  625. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  626. default:
  627. /*
  628. * Since both rqs are wrapped,
  629. * start with the one that's further behind head
  630. * (--> only *one* back seek required),
  631. * since back seek takes more time than forward.
  632. */
  633. if (s1 <= s2)
  634. return rq1;
  635. else
  636. return rq2;
  637. }
  638. }
  639. /*
  640. * The below is leftmost cache rbtree addon
  641. */
  642. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  643. {
  644. /* Service tree is empty */
  645. if (!root->count)
  646. return NULL;
  647. if (!root->left)
  648. root->left = rb_first(&root->rb);
  649. if (root->left)
  650. return rb_entry(root->left, struct cfq_queue, rb_node);
  651. return NULL;
  652. }
  653. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  654. {
  655. if (!root->left)
  656. root->left = rb_first(&root->rb);
  657. if (root->left)
  658. return rb_entry_cfqg(root->left);
  659. return NULL;
  660. }
  661. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  662. {
  663. rb_erase(n, root);
  664. RB_CLEAR_NODE(n);
  665. }
  666. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  667. {
  668. if (root->left == n)
  669. root->left = NULL;
  670. rb_erase_init(n, &root->rb);
  671. --root->count;
  672. }
  673. /*
  674. * would be nice to take fifo expire time into account as well
  675. */
  676. static struct request *
  677. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  678. struct request *last)
  679. {
  680. struct rb_node *rbnext = rb_next(&last->rb_node);
  681. struct rb_node *rbprev = rb_prev(&last->rb_node);
  682. struct request *next = NULL, *prev = NULL;
  683. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  684. if (rbprev)
  685. prev = rb_entry_rq(rbprev);
  686. if (rbnext)
  687. next = rb_entry_rq(rbnext);
  688. else {
  689. rbnext = rb_first(&cfqq->sort_list);
  690. if (rbnext && rbnext != &last->rb_node)
  691. next = rb_entry_rq(rbnext);
  692. }
  693. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  694. }
  695. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  696. struct cfq_queue *cfqq)
  697. {
  698. /*
  699. * just an approximation, should be ok.
  700. */
  701. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  702. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  703. }
  704. static inline s64
  705. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  706. {
  707. return cfqg->vdisktime - st->min_vdisktime;
  708. }
  709. static void
  710. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  711. {
  712. struct rb_node **node = &st->rb.rb_node;
  713. struct rb_node *parent = NULL;
  714. struct cfq_group *__cfqg;
  715. s64 key = cfqg_key(st, cfqg);
  716. int left = 1;
  717. while (*node != NULL) {
  718. parent = *node;
  719. __cfqg = rb_entry_cfqg(parent);
  720. if (key < cfqg_key(st, __cfqg))
  721. node = &parent->rb_left;
  722. else {
  723. node = &parent->rb_right;
  724. left = 0;
  725. }
  726. }
  727. if (left)
  728. st->left = &cfqg->rb_node;
  729. rb_link_node(&cfqg->rb_node, parent, node);
  730. rb_insert_color(&cfqg->rb_node, &st->rb);
  731. }
  732. static void
  733. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  734. {
  735. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  736. struct cfq_group *__cfqg;
  737. struct rb_node *n;
  738. cfqg->nr_cfqq++;
  739. if (cfqg->on_st)
  740. return;
  741. /*
  742. * Currently put the group at the end. Later implement something
  743. * so that groups get lesser vtime based on their weights, so that
  744. * if group does not loose all if it was not continously backlogged.
  745. */
  746. n = rb_last(&st->rb);
  747. if (n) {
  748. __cfqg = rb_entry_cfqg(n);
  749. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  750. } else
  751. cfqg->vdisktime = st->min_vdisktime;
  752. __cfq_group_service_tree_add(st, cfqg);
  753. cfqg->on_st = true;
  754. st->total_weight += cfqg->weight;
  755. }
  756. static void
  757. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  758. {
  759. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  760. BUG_ON(cfqg->nr_cfqq < 1);
  761. cfqg->nr_cfqq--;
  762. /* If there are other cfq queues under this group, don't delete it */
  763. if (cfqg->nr_cfqq)
  764. return;
  765. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  766. cfqg->on_st = false;
  767. st->total_weight -= cfqg->weight;
  768. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  769. cfq_rb_erase(&cfqg->rb_node, st);
  770. cfqg->saved_workload_slice = 0;
  771. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  772. }
  773. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  774. {
  775. unsigned int slice_used;
  776. /*
  777. * Queue got expired before even a single request completed or
  778. * got expired immediately after first request completion.
  779. */
  780. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  781. /*
  782. * Also charge the seek time incurred to the group, otherwise
  783. * if there are mutiple queues in the group, each can dispatch
  784. * a single request on seeky media and cause lots of seek time
  785. * and group will never know it.
  786. */
  787. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  788. 1);
  789. } else {
  790. slice_used = jiffies - cfqq->slice_start;
  791. if (slice_used > cfqq->allocated_slice)
  792. slice_used = cfqq->allocated_slice;
  793. }
  794. return slice_used;
  795. }
  796. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  797. struct cfq_queue *cfqq)
  798. {
  799. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  800. unsigned int used_sl, charge;
  801. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  802. - cfqg->service_tree_idle.count;
  803. BUG_ON(nr_sync < 0);
  804. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  805. if (iops_mode(cfqd))
  806. charge = cfqq->slice_dispatch;
  807. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  808. charge = cfqq->allocated_slice;
  809. /* Can't update vdisktime while group is on service tree */
  810. cfq_rb_erase(&cfqg->rb_node, st);
  811. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  812. __cfq_group_service_tree_add(st, cfqg);
  813. /* This group is being expired. Save the context */
  814. if (time_after(cfqd->workload_expires, jiffies)) {
  815. cfqg->saved_workload_slice = cfqd->workload_expires
  816. - jiffies;
  817. cfqg->saved_workload = cfqd->serving_type;
  818. cfqg->saved_serving_prio = cfqd->serving_prio;
  819. } else
  820. cfqg->saved_workload_slice = 0;
  821. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  822. st->min_vdisktime);
  823. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  824. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  825. iops_mode(cfqd), cfqq->nr_sectors);
  826. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  827. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  828. }
  829. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  830. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  831. {
  832. if (blkg)
  833. return container_of(blkg, struct cfq_group, blkg);
  834. return NULL;
  835. }
  836. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  837. unsigned int weight)
  838. {
  839. cfqg_of_blkg(blkg)->weight = weight;
  840. }
  841. static struct cfq_group *
  842. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  843. {
  844. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  845. struct cfq_group *cfqg = NULL;
  846. void *key = cfqd;
  847. int i, j;
  848. struct cfq_rb_root *st;
  849. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  850. unsigned int major, minor;
  851. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  852. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  853. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  854. cfqg->blkg.dev = MKDEV(major, minor);
  855. goto done;
  856. }
  857. if (cfqg || !create)
  858. goto done;
  859. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  860. if (!cfqg)
  861. goto done;
  862. for_each_cfqg_st(cfqg, i, j, st)
  863. *st = CFQ_RB_ROOT;
  864. RB_CLEAR_NODE(&cfqg->rb_node);
  865. /*
  866. * Take the initial reference that will be released on destroy
  867. * This can be thought of a joint reference by cgroup and
  868. * elevator which will be dropped by either elevator exit
  869. * or cgroup deletion path depending on who is exiting first.
  870. */
  871. atomic_set(&cfqg->ref, 1);
  872. /*
  873. * Add group onto cgroup list. It might happen that bdi->dev is
  874. * not initiliazed yet. Initialize this new group without major
  875. * and minor info and this info will be filled in once a new thread
  876. * comes for IO. See code above.
  877. */
  878. if (bdi->dev) {
  879. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  880. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  881. MKDEV(major, minor));
  882. } else
  883. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  884. 0);
  885. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  886. /* Add group on cfqd list */
  887. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  888. done:
  889. return cfqg;
  890. }
  891. /*
  892. * Search for the cfq group current task belongs to. If create = 1, then also
  893. * create the cfq group if it does not exist. request_queue lock must be held.
  894. */
  895. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  896. {
  897. struct cgroup *cgroup;
  898. struct cfq_group *cfqg = NULL;
  899. rcu_read_lock();
  900. cgroup = task_cgroup(current, blkio_subsys_id);
  901. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  902. if (!cfqg && create)
  903. cfqg = &cfqd->root_group;
  904. rcu_read_unlock();
  905. return cfqg;
  906. }
  907. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  908. {
  909. atomic_inc(&cfqg->ref);
  910. return cfqg;
  911. }
  912. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  913. {
  914. /* Currently, all async queues are mapped to root group */
  915. if (!cfq_cfqq_sync(cfqq))
  916. cfqg = &cfqq->cfqd->root_group;
  917. cfqq->cfqg = cfqg;
  918. /* cfqq reference on cfqg */
  919. atomic_inc(&cfqq->cfqg->ref);
  920. }
  921. static void cfq_put_cfqg(struct cfq_group *cfqg)
  922. {
  923. struct cfq_rb_root *st;
  924. int i, j;
  925. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  926. if (!atomic_dec_and_test(&cfqg->ref))
  927. return;
  928. for_each_cfqg_st(cfqg, i, j, st)
  929. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  930. kfree(cfqg);
  931. }
  932. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  933. {
  934. /* Something wrong if we are trying to remove same group twice */
  935. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  936. hlist_del_init(&cfqg->cfqd_node);
  937. /*
  938. * Put the reference taken at the time of creation so that when all
  939. * queues are gone, group can be destroyed.
  940. */
  941. cfq_put_cfqg(cfqg);
  942. }
  943. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  944. {
  945. struct hlist_node *pos, *n;
  946. struct cfq_group *cfqg;
  947. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  948. /*
  949. * If cgroup removal path got to blk_group first and removed
  950. * it from cgroup list, then it will take care of destroying
  951. * cfqg also.
  952. */
  953. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  954. cfq_destroy_cfqg(cfqd, cfqg);
  955. }
  956. }
  957. /*
  958. * Blk cgroup controller notification saying that blkio_group object is being
  959. * delinked as associated cgroup object is going away. That also means that
  960. * no new IO will come in this group. So get rid of this group as soon as
  961. * any pending IO in the group is finished.
  962. *
  963. * This function is called under rcu_read_lock(). key is the rcu protected
  964. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  965. * read lock.
  966. *
  967. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  968. * it should not be NULL as even if elevator was exiting, cgroup deltion
  969. * path got to it first.
  970. */
  971. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  972. {
  973. unsigned long flags;
  974. struct cfq_data *cfqd = key;
  975. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  976. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  977. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  978. }
  979. #else /* GROUP_IOSCHED */
  980. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  981. {
  982. return &cfqd->root_group;
  983. }
  984. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  985. {
  986. return cfqg;
  987. }
  988. static inline void
  989. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  990. cfqq->cfqg = cfqg;
  991. }
  992. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  993. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  994. #endif /* GROUP_IOSCHED */
  995. /*
  996. * The cfqd->service_trees holds all pending cfq_queue's that have
  997. * requests waiting to be processed. It is sorted in the order that
  998. * we will service the queues.
  999. */
  1000. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1001. bool add_front)
  1002. {
  1003. struct rb_node **p, *parent;
  1004. struct cfq_queue *__cfqq;
  1005. unsigned long rb_key;
  1006. struct cfq_rb_root *service_tree;
  1007. int left;
  1008. int new_cfqq = 1;
  1009. int group_changed = 0;
  1010. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1011. if (!cfqd->cfq_group_isolation
  1012. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1013. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1014. /* Move this cfq to root group */
  1015. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1016. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1017. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1018. cfqq->orig_cfqg = cfqq->cfqg;
  1019. cfqq->cfqg = &cfqd->root_group;
  1020. atomic_inc(&cfqd->root_group.ref);
  1021. group_changed = 1;
  1022. } else if (!cfqd->cfq_group_isolation
  1023. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1024. /* cfqq is sequential now needs to go to its original group */
  1025. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1026. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1027. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1028. cfq_put_cfqg(cfqq->cfqg);
  1029. cfqq->cfqg = cfqq->orig_cfqg;
  1030. cfqq->orig_cfqg = NULL;
  1031. group_changed = 1;
  1032. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1033. }
  1034. #endif
  1035. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1036. cfqq_type(cfqq));
  1037. if (cfq_class_idle(cfqq)) {
  1038. rb_key = CFQ_IDLE_DELAY;
  1039. parent = rb_last(&service_tree->rb);
  1040. if (parent && parent != &cfqq->rb_node) {
  1041. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1042. rb_key += __cfqq->rb_key;
  1043. } else
  1044. rb_key += jiffies;
  1045. } else if (!add_front) {
  1046. /*
  1047. * Get our rb key offset. Subtract any residual slice
  1048. * value carried from last service. A negative resid
  1049. * count indicates slice overrun, and this should position
  1050. * the next service time further away in the tree.
  1051. */
  1052. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1053. rb_key -= cfqq->slice_resid;
  1054. cfqq->slice_resid = 0;
  1055. } else {
  1056. rb_key = -HZ;
  1057. __cfqq = cfq_rb_first(service_tree);
  1058. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1059. }
  1060. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1061. new_cfqq = 0;
  1062. /*
  1063. * same position, nothing more to do
  1064. */
  1065. if (rb_key == cfqq->rb_key &&
  1066. cfqq->service_tree == service_tree)
  1067. return;
  1068. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1069. cfqq->service_tree = NULL;
  1070. }
  1071. left = 1;
  1072. parent = NULL;
  1073. cfqq->service_tree = service_tree;
  1074. p = &service_tree->rb.rb_node;
  1075. while (*p) {
  1076. struct rb_node **n;
  1077. parent = *p;
  1078. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1079. /*
  1080. * sort by key, that represents service time.
  1081. */
  1082. if (time_before(rb_key, __cfqq->rb_key))
  1083. n = &(*p)->rb_left;
  1084. else {
  1085. n = &(*p)->rb_right;
  1086. left = 0;
  1087. }
  1088. p = n;
  1089. }
  1090. if (left)
  1091. service_tree->left = &cfqq->rb_node;
  1092. cfqq->rb_key = rb_key;
  1093. rb_link_node(&cfqq->rb_node, parent, p);
  1094. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1095. service_tree->count++;
  1096. if ((add_front || !new_cfqq) && !group_changed)
  1097. return;
  1098. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1099. }
  1100. static struct cfq_queue *
  1101. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1102. sector_t sector, struct rb_node **ret_parent,
  1103. struct rb_node ***rb_link)
  1104. {
  1105. struct rb_node **p, *parent;
  1106. struct cfq_queue *cfqq = NULL;
  1107. parent = NULL;
  1108. p = &root->rb_node;
  1109. while (*p) {
  1110. struct rb_node **n;
  1111. parent = *p;
  1112. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1113. /*
  1114. * Sort strictly based on sector. Smallest to the left,
  1115. * largest to the right.
  1116. */
  1117. if (sector > blk_rq_pos(cfqq->next_rq))
  1118. n = &(*p)->rb_right;
  1119. else if (sector < blk_rq_pos(cfqq->next_rq))
  1120. n = &(*p)->rb_left;
  1121. else
  1122. break;
  1123. p = n;
  1124. cfqq = NULL;
  1125. }
  1126. *ret_parent = parent;
  1127. if (rb_link)
  1128. *rb_link = p;
  1129. return cfqq;
  1130. }
  1131. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1132. {
  1133. struct rb_node **p, *parent;
  1134. struct cfq_queue *__cfqq;
  1135. if (cfqq->p_root) {
  1136. rb_erase(&cfqq->p_node, cfqq->p_root);
  1137. cfqq->p_root = NULL;
  1138. }
  1139. if (cfq_class_idle(cfqq))
  1140. return;
  1141. if (!cfqq->next_rq)
  1142. return;
  1143. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1144. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1145. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1146. if (!__cfqq) {
  1147. rb_link_node(&cfqq->p_node, parent, p);
  1148. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1149. } else
  1150. cfqq->p_root = NULL;
  1151. }
  1152. /*
  1153. * Update cfqq's position in the service tree.
  1154. */
  1155. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1156. {
  1157. /*
  1158. * Resorting requires the cfqq to be on the RR list already.
  1159. */
  1160. if (cfq_cfqq_on_rr(cfqq)) {
  1161. cfq_service_tree_add(cfqd, cfqq, 0);
  1162. cfq_prio_tree_add(cfqd, cfqq);
  1163. }
  1164. }
  1165. /*
  1166. * add to busy list of queues for service, trying to be fair in ordering
  1167. * the pending list according to last request service
  1168. */
  1169. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1170. {
  1171. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1172. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1173. cfq_mark_cfqq_on_rr(cfqq);
  1174. cfqd->busy_queues++;
  1175. cfq_resort_rr_list(cfqd, cfqq);
  1176. }
  1177. /*
  1178. * Called when the cfqq no longer has requests pending, remove it from
  1179. * the service tree.
  1180. */
  1181. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1182. {
  1183. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1184. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1185. cfq_clear_cfqq_on_rr(cfqq);
  1186. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1187. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1188. cfqq->service_tree = NULL;
  1189. }
  1190. if (cfqq->p_root) {
  1191. rb_erase(&cfqq->p_node, cfqq->p_root);
  1192. cfqq->p_root = NULL;
  1193. }
  1194. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1195. BUG_ON(!cfqd->busy_queues);
  1196. cfqd->busy_queues--;
  1197. }
  1198. /*
  1199. * rb tree support functions
  1200. */
  1201. static void cfq_del_rq_rb(struct request *rq)
  1202. {
  1203. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1204. const int sync = rq_is_sync(rq);
  1205. BUG_ON(!cfqq->queued[sync]);
  1206. cfqq->queued[sync]--;
  1207. elv_rb_del(&cfqq->sort_list, rq);
  1208. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1209. /*
  1210. * Queue will be deleted from service tree when we actually
  1211. * expire it later. Right now just remove it from prio tree
  1212. * as it is empty.
  1213. */
  1214. if (cfqq->p_root) {
  1215. rb_erase(&cfqq->p_node, cfqq->p_root);
  1216. cfqq->p_root = NULL;
  1217. }
  1218. }
  1219. }
  1220. static void cfq_add_rq_rb(struct request *rq)
  1221. {
  1222. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1223. struct cfq_data *cfqd = cfqq->cfqd;
  1224. struct request *__alias, *prev;
  1225. cfqq->queued[rq_is_sync(rq)]++;
  1226. /*
  1227. * looks a little odd, but the first insert might return an alias.
  1228. * if that happens, put the alias on the dispatch list
  1229. */
  1230. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1231. cfq_dispatch_insert(cfqd->queue, __alias);
  1232. if (!cfq_cfqq_on_rr(cfqq))
  1233. cfq_add_cfqq_rr(cfqd, cfqq);
  1234. /*
  1235. * check if this request is a better next-serve candidate
  1236. */
  1237. prev = cfqq->next_rq;
  1238. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1239. /*
  1240. * adjust priority tree position, if ->next_rq changes
  1241. */
  1242. if (prev != cfqq->next_rq)
  1243. cfq_prio_tree_add(cfqd, cfqq);
  1244. BUG_ON(!cfqq->next_rq);
  1245. }
  1246. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1247. {
  1248. elv_rb_del(&cfqq->sort_list, rq);
  1249. cfqq->queued[rq_is_sync(rq)]--;
  1250. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1251. rq_data_dir(rq), rq_is_sync(rq));
  1252. cfq_add_rq_rb(rq);
  1253. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1254. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1255. rq_is_sync(rq));
  1256. }
  1257. static struct request *
  1258. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1259. {
  1260. struct task_struct *tsk = current;
  1261. struct cfq_io_context *cic;
  1262. struct cfq_queue *cfqq;
  1263. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1264. if (!cic)
  1265. return NULL;
  1266. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1267. if (cfqq) {
  1268. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1269. return elv_rb_find(&cfqq->sort_list, sector);
  1270. }
  1271. return NULL;
  1272. }
  1273. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1274. {
  1275. struct cfq_data *cfqd = q->elevator->elevator_data;
  1276. cfqd->rq_in_driver++;
  1277. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1278. cfqd->rq_in_driver);
  1279. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1280. }
  1281. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1282. {
  1283. struct cfq_data *cfqd = q->elevator->elevator_data;
  1284. WARN_ON(!cfqd->rq_in_driver);
  1285. cfqd->rq_in_driver--;
  1286. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1287. cfqd->rq_in_driver);
  1288. }
  1289. static void cfq_remove_request(struct request *rq)
  1290. {
  1291. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1292. if (cfqq->next_rq == rq)
  1293. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1294. list_del_init(&rq->queuelist);
  1295. cfq_del_rq_rb(rq);
  1296. cfqq->cfqd->rq_queued--;
  1297. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1298. rq_data_dir(rq), rq_is_sync(rq));
  1299. if (rq->cmd_flags & REQ_META) {
  1300. WARN_ON(!cfqq->meta_pending);
  1301. cfqq->meta_pending--;
  1302. }
  1303. }
  1304. static int cfq_merge(struct request_queue *q, struct request **req,
  1305. struct bio *bio)
  1306. {
  1307. struct cfq_data *cfqd = q->elevator->elevator_data;
  1308. struct request *__rq;
  1309. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1310. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1311. *req = __rq;
  1312. return ELEVATOR_FRONT_MERGE;
  1313. }
  1314. return ELEVATOR_NO_MERGE;
  1315. }
  1316. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1317. int type)
  1318. {
  1319. if (type == ELEVATOR_FRONT_MERGE) {
  1320. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1321. cfq_reposition_rq_rb(cfqq, req);
  1322. }
  1323. }
  1324. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1325. struct bio *bio)
  1326. {
  1327. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1328. bio_data_dir(bio), cfq_bio_sync(bio));
  1329. }
  1330. static void
  1331. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1332. struct request *next)
  1333. {
  1334. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1335. /*
  1336. * reposition in fifo if next is older than rq
  1337. */
  1338. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1339. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1340. list_move(&rq->queuelist, &next->queuelist);
  1341. rq_set_fifo_time(rq, rq_fifo_time(next));
  1342. }
  1343. if (cfqq->next_rq == next)
  1344. cfqq->next_rq = rq;
  1345. cfq_remove_request(next);
  1346. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1347. rq_data_dir(next), rq_is_sync(next));
  1348. }
  1349. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1350. struct bio *bio)
  1351. {
  1352. struct cfq_data *cfqd = q->elevator->elevator_data;
  1353. struct cfq_io_context *cic;
  1354. struct cfq_queue *cfqq;
  1355. /*
  1356. * Disallow merge of a sync bio into an async request.
  1357. */
  1358. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1359. return false;
  1360. /*
  1361. * Lookup the cfqq that this bio will be queued with. Allow
  1362. * merge only if rq is queued there.
  1363. */
  1364. cic = cfq_cic_lookup(cfqd, current->io_context);
  1365. if (!cic)
  1366. return false;
  1367. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1368. return cfqq == RQ_CFQQ(rq);
  1369. }
  1370. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1371. {
  1372. del_timer(&cfqd->idle_slice_timer);
  1373. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1374. }
  1375. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1376. struct cfq_queue *cfqq)
  1377. {
  1378. if (cfqq) {
  1379. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1380. cfqd->serving_prio, cfqd->serving_type);
  1381. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1382. cfqq->slice_start = 0;
  1383. cfqq->dispatch_start = jiffies;
  1384. cfqq->allocated_slice = 0;
  1385. cfqq->slice_end = 0;
  1386. cfqq->slice_dispatch = 0;
  1387. cfqq->nr_sectors = 0;
  1388. cfq_clear_cfqq_wait_request(cfqq);
  1389. cfq_clear_cfqq_must_dispatch(cfqq);
  1390. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1391. cfq_clear_cfqq_fifo_expire(cfqq);
  1392. cfq_mark_cfqq_slice_new(cfqq);
  1393. cfq_del_timer(cfqd, cfqq);
  1394. }
  1395. cfqd->active_queue = cfqq;
  1396. }
  1397. /*
  1398. * current cfqq expired its slice (or was too idle), select new one
  1399. */
  1400. static void
  1401. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1402. bool timed_out)
  1403. {
  1404. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1405. if (cfq_cfqq_wait_request(cfqq))
  1406. cfq_del_timer(cfqd, cfqq);
  1407. cfq_clear_cfqq_wait_request(cfqq);
  1408. cfq_clear_cfqq_wait_busy(cfqq);
  1409. /*
  1410. * If this cfqq is shared between multiple processes, check to
  1411. * make sure that those processes are still issuing I/Os within
  1412. * the mean seek distance. If not, it may be time to break the
  1413. * queues apart again.
  1414. */
  1415. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1416. cfq_mark_cfqq_split_coop(cfqq);
  1417. /*
  1418. * store what was left of this slice, if the queue idled/timed out
  1419. */
  1420. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1421. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1422. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1423. }
  1424. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1425. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1426. cfq_del_cfqq_rr(cfqd, cfqq);
  1427. cfq_resort_rr_list(cfqd, cfqq);
  1428. if (cfqq == cfqd->active_queue)
  1429. cfqd->active_queue = NULL;
  1430. if (cfqd->active_cic) {
  1431. put_io_context(cfqd->active_cic->ioc);
  1432. cfqd->active_cic = NULL;
  1433. }
  1434. }
  1435. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1436. {
  1437. struct cfq_queue *cfqq = cfqd->active_queue;
  1438. if (cfqq)
  1439. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1440. }
  1441. /*
  1442. * Get next queue for service. Unless we have a queue preemption,
  1443. * we'll simply select the first cfqq in the service tree.
  1444. */
  1445. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1446. {
  1447. struct cfq_rb_root *service_tree =
  1448. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1449. cfqd->serving_type);
  1450. if (!cfqd->rq_queued)
  1451. return NULL;
  1452. /* There is nothing to dispatch */
  1453. if (!service_tree)
  1454. return NULL;
  1455. if (RB_EMPTY_ROOT(&service_tree->rb))
  1456. return NULL;
  1457. return cfq_rb_first(service_tree);
  1458. }
  1459. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1460. {
  1461. struct cfq_group *cfqg;
  1462. struct cfq_queue *cfqq;
  1463. int i, j;
  1464. struct cfq_rb_root *st;
  1465. if (!cfqd->rq_queued)
  1466. return NULL;
  1467. cfqg = cfq_get_next_cfqg(cfqd);
  1468. if (!cfqg)
  1469. return NULL;
  1470. for_each_cfqg_st(cfqg, i, j, st)
  1471. if ((cfqq = cfq_rb_first(st)) != NULL)
  1472. return cfqq;
  1473. return NULL;
  1474. }
  1475. /*
  1476. * Get and set a new active queue for service.
  1477. */
  1478. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1479. struct cfq_queue *cfqq)
  1480. {
  1481. if (!cfqq)
  1482. cfqq = cfq_get_next_queue(cfqd);
  1483. __cfq_set_active_queue(cfqd, cfqq);
  1484. return cfqq;
  1485. }
  1486. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1487. struct request *rq)
  1488. {
  1489. if (blk_rq_pos(rq) >= cfqd->last_position)
  1490. return blk_rq_pos(rq) - cfqd->last_position;
  1491. else
  1492. return cfqd->last_position - blk_rq_pos(rq);
  1493. }
  1494. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1495. struct request *rq)
  1496. {
  1497. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1498. }
  1499. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1500. struct cfq_queue *cur_cfqq)
  1501. {
  1502. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1503. struct rb_node *parent, *node;
  1504. struct cfq_queue *__cfqq;
  1505. sector_t sector = cfqd->last_position;
  1506. if (RB_EMPTY_ROOT(root))
  1507. return NULL;
  1508. /*
  1509. * First, if we find a request starting at the end of the last
  1510. * request, choose it.
  1511. */
  1512. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1513. if (__cfqq)
  1514. return __cfqq;
  1515. /*
  1516. * If the exact sector wasn't found, the parent of the NULL leaf
  1517. * will contain the closest sector.
  1518. */
  1519. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1520. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1521. return __cfqq;
  1522. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1523. node = rb_next(&__cfqq->p_node);
  1524. else
  1525. node = rb_prev(&__cfqq->p_node);
  1526. if (!node)
  1527. return NULL;
  1528. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1529. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1530. return __cfqq;
  1531. return NULL;
  1532. }
  1533. /*
  1534. * cfqd - obvious
  1535. * cur_cfqq - passed in so that we don't decide that the current queue is
  1536. * closely cooperating with itself.
  1537. *
  1538. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1539. * one request, and that cfqd->last_position reflects a position on the disk
  1540. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1541. * assumption.
  1542. */
  1543. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1544. struct cfq_queue *cur_cfqq)
  1545. {
  1546. struct cfq_queue *cfqq;
  1547. if (cfq_class_idle(cur_cfqq))
  1548. return NULL;
  1549. if (!cfq_cfqq_sync(cur_cfqq))
  1550. return NULL;
  1551. if (CFQQ_SEEKY(cur_cfqq))
  1552. return NULL;
  1553. /*
  1554. * Don't search priority tree if it's the only queue in the group.
  1555. */
  1556. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1557. return NULL;
  1558. /*
  1559. * We should notice if some of the queues are cooperating, eg
  1560. * working closely on the same area of the disk. In that case,
  1561. * we can group them together and don't waste time idling.
  1562. */
  1563. cfqq = cfqq_close(cfqd, cur_cfqq);
  1564. if (!cfqq)
  1565. return NULL;
  1566. /* If new queue belongs to different cfq_group, don't choose it */
  1567. if (cur_cfqq->cfqg != cfqq->cfqg)
  1568. return NULL;
  1569. /*
  1570. * It only makes sense to merge sync queues.
  1571. */
  1572. if (!cfq_cfqq_sync(cfqq))
  1573. return NULL;
  1574. if (CFQQ_SEEKY(cfqq))
  1575. return NULL;
  1576. /*
  1577. * Do not merge queues of different priority classes
  1578. */
  1579. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1580. return NULL;
  1581. return cfqq;
  1582. }
  1583. /*
  1584. * Determine whether we should enforce idle window for this queue.
  1585. */
  1586. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1587. {
  1588. enum wl_prio_t prio = cfqq_prio(cfqq);
  1589. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1590. BUG_ON(!service_tree);
  1591. BUG_ON(!service_tree->count);
  1592. if (!cfqd->cfq_slice_idle)
  1593. return false;
  1594. /* We never do for idle class queues. */
  1595. if (prio == IDLE_WORKLOAD)
  1596. return false;
  1597. /* We do for queues that were marked with idle window flag. */
  1598. if (cfq_cfqq_idle_window(cfqq) &&
  1599. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1600. return true;
  1601. /*
  1602. * Otherwise, we do only if they are the last ones
  1603. * in their service tree.
  1604. */
  1605. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1606. return true;
  1607. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1608. service_tree->count);
  1609. return false;
  1610. }
  1611. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1612. {
  1613. struct cfq_queue *cfqq = cfqd->active_queue;
  1614. struct cfq_io_context *cic;
  1615. unsigned long sl, group_idle = 0;
  1616. /*
  1617. * SSD device without seek penalty, disable idling. But only do so
  1618. * for devices that support queuing, otherwise we still have a problem
  1619. * with sync vs async workloads.
  1620. */
  1621. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1622. return;
  1623. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1624. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1625. /*
  1626. * idle is disabled, either manually or by past process history
  1627. */
  1628. if (!cfq_should_idle(cfqd, cfqq)) {
  1629. /* no queue idling. Check for group idling */
  1630. if (cfqd->cfq_group_idle)
  1631. group_idle = cfqd->cfq_group_idle;
  1632. else
  1633. return;
  1634. }
  1635. /*
  1636. * still active requests from this queue, don't idle
  1637. */
  1638. if (cfqq->dispatched)
  1639. return;
  1640. /*
  1641. * task has exited, don't wait
  1642. */
  1643. cic = cfqd->active_cic;
  1644. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1645. return;
  1646. /*
  1647. * If our average think time is larger than the remaining time
  1648. * slice, then don't idle. This avoids overrunning the allotted
  1649. * time slice.
  1650. */
  1651. if (sample_valid(cic->ttime_samples) &&
  1652. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1653. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1654. cic->ttime_mean);
  1655. return;
  1656. }
  1657. /* There are other queues in the group, don't do group idle */
  1658. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1659. return;
  1660. cfq_mark_cfqq_wait_request(cfqq);
  1661. if (group_idle)
  1662. sl = cfqd->cfq_group_idle;
  1663. else
  1664. sl = cfqd->cfq_slice_idle;
  1665. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1666. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1667. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1668. group_idle ? 1 : 0);
  1669. }
  1670. /*
  1671. * Move request from internal lists to the request queue dispatch list.
  1672. */
  1673. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1674. {
  1675. struct cfq_data *cfqd = q->elevator->elevator_data;
  1676. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1677. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1678. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1679. cfq_remove_request(rq);
  1680. cfqq->dispatched++;
  1681. (RQ_CFQG(rq))->dispatched++;
  1682. elv_dispatch_sort(q, rq);
  1683. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1684. cfqq->nr_sectors += blk_rq_sectors(rq);
  1685. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1686. rq_data_dir(rq), rq_is_sync(rq));
  1687. }
  1688. /*
  1689. * return expired entry, or NULL to just start from scratch in rbtree
  1690. */
  1691. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1692. {
  1693. struct request *rq = NULL;
  1694. if (cfq_cfqq_fifo_expire(cfqq))
  1695. return NULL;
  1696. cfq_mark_cfqq_fifo_expire(cfqq);
  1697. if (list_empty(&cfqq->fifo))
  1698. return NULL;
  1699. rq = rq_entry_fifo(cfqq->fifo.next);
  1700. if (time_before(jiffies, rq_fifo_time(rq)))
  1701. rq = NULL;
  1702. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1703. return rq;
  1704. }
  1705. static inline int
  1706. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1707. {
  1708. const int base_rq = cfqd->cfq_slice_async_rq;
  1709. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1710. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1711. }
  1712. /*
  1713. * Must be called with the queue_lock held.
  1714. */
  1715. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1716. {
  1717. int process_refs, io_refs;
  1718. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1719. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1720. BUG_ON(process_refs < 0);
  1721. return process_refs;
  1722. }
  1723. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1724. {
  1725. int process_refs, new_process_refs;
  1726. struct cfq_queue *__cfqq;
  1727. /*
  1728. * If there are no process references on the new_cfqq, then it is
  1729. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1730. * chain may have dropped their last reference (not just their
  1731. * last process reference).
  1732. */
  1733. if (!cfqq_process_refs(new_cfqq))
  1734. return;
  1735. /* Avoid a circular list and skip interim queue merges */
  1736. while ((__cfqq = new_cfqq->new_cfqq)) {
  1737. if (__cfqq == cfqq)
  1738. return;
  1739. new_cfqq = __cfqq;
  1740. }
  1741. process_refs = cfqq_process_refs(cfqq);
  1742. new_process_refs = cfqq_process_refs(new_cfqq);
  1743. /*
  1744. * If the process for the cfqq has gone away, there is no
  1745. * sense in merging the queues.
  1746. */
  1747. if (process_refs == 0 || new_process_refs == 0)
  1748. return;
  1749. /*
  1750. * Merge in the direction of the lesser amount of work.
  1751. */
  1752. if (new_process_refs >= process_refs) {
  1753. cfqq->new_cfqq = new_cfqq;
  1754. atomic_add(process_refs, &new_cfqq->ref);
  1755. } else {
  1756. new_cfqq->new_cfqq = cfqq;
  1757. atomic_add(new_process_refs, &cfqq->ref);
  1758. }
  1759. }
  1760. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1761. struct cfq_group *cfqg, enum wl_prio_t prio)
  1762. {
  1763. struct cfq_queue *queue;
  1764. int i;
  1765. bool key_valid = false;
  1766. unsigned long lowest_key = 0;
  1767. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1768. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1769. /* select the one with lowest rb_key */
  1770. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1771. if (queue &&
  1772. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1773. lowest_key = queue->rb_key;
  1774. cur_best = i;
  1775. key_valid = true;
  1776. }
  1777. }
  1778. return cur_best;
  1779. }
  1780. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1781. {
  1782. unsigned slice;
  1783. unsigned count;
  1784. struct cfq_rb_root *st;
  1785. unsigned group_slice;
  1786. if (!cfqg) {
  1787. cfqd->serving_prio = IDLE_WORKLOAD;
  1788. cfqd->workload_expires = jiffies + 1;
  1789. return;
  1790. }
  1791. /* Choose next priority. RT > BE > IDLE */
  1792. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1793. cfqd->serving_prio = RT_WORKLOAD;
  1794. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1795. cfqd->serving_prio = BE_WORKLOAD;
  1796. else {
  1797. cfqd->serving_prio = IDLE_WORKLOAD;
  1798. cfqd->workload_expires = jiffies + 1;
  1799. return;
  1800. }
  1801. /*
  1802. * For RT and BE, we have to choose also the type
  1803. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1804. * expiration time
  1805. */
  1806. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1807. count = st->count;
  1808. /*
  1809. * check workload expiration, and that we still have other queues ready
  1810. */
  1811. if (count && !time_after(jiffies, cfqd->workload_expires))
  1812. return;
  1813. /* otherwise select new workload type */
  1814. cfqd->serving_type =
  1815. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1816. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1817. count = st->count;
  1818. /*
  1819. * the workload slice is computed as a fraction of target latency
  1820. * proportional to the number of queues in that workload, over
  1821. * all the queues in the same priority class
  1822. */
  1823. group_slice = cfq_group_slice(cfqd, cfqg);
  1824. slice = group_slice * count /
  1825. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1826. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1827. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1828. unsigned int tmp;
  1829. /*
  1830. * Async queues are currently system wide. Just taking
  1831. * proportion of queues with-in same group will lead to higher
  1832. * async ratio system wide as generally root group is going
  1833. * to have higher weight. A more accurate thing would be to
  1834. * calculate system wide asnc/sync ratio.
  1835. */
  1836. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1837. tmp = tmp/cfqd->busy_queues;
  1838. slice = min_t(unsigned, slice, tmp);
  1839. /* async workload slice is scaled down according to
  1840. * the sync/async slice ratio. */
  1841. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1842. } else
  1843. /* sync workload slice is at least 2 * cfq_slice_idle */
  1844. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1845. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1846. cfq_log(cfqd, "workload slice:%d", slice);
  1847. cfqd->workload_expires = jiffies + slice;
  1848. }
  1849. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1850. {
  1851. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1852. struct cfq_group *cfqg;
  1853. if (RB_EMPTY_ROOT(&st->rb))
  1854. return NULL;
  1855. cfqg = cfq_rb_first_group(st);
  1856. update_min_vdisktime(st);
  1857. return cfqg;
  1858. }
  1859. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1860. {
  1861. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1862. cfqd->serving_group = cfqg;
  1863. /* Restore the workload type data */
  1864. if (cfqg->saved_workload_slice) {
  1865. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1866. cfqd->serving_type = cfqg->saved_workload;
  1867. cfqd->serving_prio = cfqg->saved_serving_prio;
  1868. } else
  1869. cfqd->workload_expires = jiffies - 1;
  1870. choose_service_tree(cfqd, cfqg);
  1871. }
  1872. /*
  1873. * Select a queue for service. If we have a current active queue,
  1874. * check whether to continue servicing it, or retrieve and set a new one.
  1875. */
  1876. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1877. {
  1878. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1879. cfqq = cfqd->active_queue;
  1880. if (!cfqq)
  1881. goto new_queue;
  1882. if (!cfqd->rq_queued)
  1883. return NULL;
  1884. /*
  1885. * We were waiting for group to get backlogged. Expire the queue
  1886. */
  1887. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1888. goto expire;
  1889. /*
  1890. * The active queue has run out of time, expire it and select new.
  1891. */
  1892. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1893. /*
  1894. * If slice had not expired at the completion of last request
  1895. * we might not have turned on wait_busy flag. Don't expire
  1896. * the queue yet. Allow the group to get backlogged.
  1897. *
  1898. * The very fact that we have used the slice, that means we
  1899. * have been idling all along on this queue and it should be
  1900. * ok to wait for this request to complete.
  1901. */
  1902. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1903. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1904. cfqq = NULL;
  1905. goto keep_queue;
  1906. } else
  1907. goto check_group_idle;
  1908. }
  1909. /*
  1910. * The active queue has requests and isn't expired, allow it to
  1911. * dispatch.
  1912. */
  1913. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1914. goto keep_queue;
  1915. /*
  1916. * If another queue has a request waiting within our mean seek
  1917. * distance, let it run. The expire code will check for close
  1918. * cooperators and put the close queue at the front of the service
  1919. * tree. If possible, merge the expiring queue with the new cfqq.
  1920. */
  1921. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1922. if (new_cfqq) {
  1923. if (!cfqq->new_cfqq)
  1924. cfq_setup_merge(cfqq, new_cfqq);
  1925. goto expire;
  1926. }
  1927. /*
  1928. * No requests pending. If the active queue still has requests in
  1929. * flight or is idling for a new request, allow either of these
  1930. * conditions to happen (or time out) before selecting a new queue.
  1931. */
  1932. if (timer_pending(&cfqd->idle_slice_timer)) {
  1933. cfqq = NULL;
  1934. goto keep_queue;
  1935. }
  1936. /*
  1937. * This is a deep seek queue, but the device is much faster than
  1938. * the queue can deliver, don't idle
  1939. **/
  1940. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1941. (cfq_cfqq_slice_new(cfqq) ||
  1942. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1943. cfq_clear_cfqq_deep(cfqq);
  1944. cfq_clear_cfqq_idle_window(cfqq);
  1945. }
  1946. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1947. cfqq = NULL;
  1948. goto keep_queue;
  1949. }
  1950. /*
  1951. * If group idle is enabled and there are requests dispatched from
  1952. * this group, wait for requests to complete.
  1953. */
  1954. check_group_idle:
  1955. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1956. && cfqq->cfqg->dispatched) {
  1957. cfqq = NULL;
  1958. goto keep_queue;
  1959. }
  1960. expire:
  1961. cfq_slice_expired(cfqd, 0);
  1962. new_queue:
  1963. /*
  1964. * Current queue expired. Check if we have to switch to a new
  1965. * service tree
  1966. */
  1967. if (!new_cfqq)
  1968. cfq_choose_cfqg(cfqd);
  1969. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1970. keep_queue:
  1971. return cfqq;
  1972. }
  1973. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1974. {
  1975. int dispatched = 0;
  1976. while (cfqq->next_rq) {
  1977. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1978. dispatched++;
  1979. }
  1980. BUG_ON(!list_empty(&cfqq->fifo));
  1981. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1982. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1983. return dispatched;
  1984. }
  1985. /*
  1986. * Drain our current requests. Used for barriers and when switching
  1987. * io schedulers on-the-fly.
  1988. */
  1989. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1990. {
  1991. struct cfq_queue *cfqq;
  1992. int dispatched = 0;
  1993. /* Expire the timeslice of the current active queue first */
  1994. cfq_slice_expired(cfqd, 0);
  1995. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1996. __cfq_set_active_queue(cfqd, cfqq);
  1997. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1998. }
  1999. BUG_ON(cfqd->busy_queues);
  2000. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2001. return dispatched;
  2002. }
  2003. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2004. struct cfq_queue *cfqq)
  2005. {
  2006. /* the queue hasn't finished any request, can't estimate */
  2007. if (cfq_cfqq_slice_new(cfqq))
  2008. return true;
  2009. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2010. cfqq->slice_end))
  2011. return true;
  2012. return false;
  2013. }
  2014. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2015. {
  2016. unsigned int max_dispatch;
  2017. /*
  2018. * Drain async requests before we start sync IO
  2019. */
  2020. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2021. return false;
  2022. /*
  2023. * If this is an async queue and we have sync IO in flight, let it wait
  2024. */
  2025. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2026. return false;
  2027. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2028. if (cfq_class_idle(cfqq))
  2029. max_dispatch = 1;
  2030. /*
  2031. * Does this cfqq already have too much IO in flight?
  2032. */
  2033. if (cfqq->dispatched >= max_dispatch) {
  2034. /*
  2035. * idle queue must always only have a single IO in flight
  2036. */
  2037. if (cfq_class_idle(cfqq))
  2038. return false;
  2039. /*
  2040. * We have other queues, don't allow more IO from this one
  2041. */
  2042. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2043. return false;
  2044. /*
  2045. * Sole queue user, no limit
  2046. */
  2047. if (cfqd->busy_queues == 1)
  2048. max_dispatch = -1;
  2049. else
  2050. /*
  2051. * Normally we start throttling cfqq when cfq_quantum/2
  2052. * requests have been dispatched. But we can drive
  2053. * deeper queue depths at the beginning of slice
  2054. * subjected to upper limit of cfq_quantum.
  2055. * */
  2056. max_dispatch = cfqd->cfq_quantum;
  2057. }
  2058. /*
  2059. * Async queues must wait a bit before being allowed dispatch.
  2060. * We also ramp up the dispatch depth gradually for async IO,
  2061. * based on the last sync IO we serviced
  2062. */
  2063. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2064. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2065. unsigned int depth;
  2066. depth = last_sync / cfqd->cfq_slice[1];
  2067. if (!depth && !cfqq->dispatched)
  2068. depth = 1;
  2069. if (depth < max_dispatch)
  2070. max_dispatch = depth;
  2071. }
  2072. /*
  2073. * If we're below the current max, allow a dispatch
  2074. */
  2075. return cfqq->dispatched < max_dispatch;
  2076. }
  2077. /*
  2078. * Dispatch a request from cfqq, moving them to the request queue
  2079. * dispatch list.
  2080. */
  2081. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2082. {
  2083. struct request *rq;
  2084. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2085. if (!cfq_may_dispatch(cfqd, cfqq))
  2086. return false;
  2087. /*
  2088. * follow expired path, else get first next available
  2089. */
  2090. rq = cfq_check_fifo(cfqq);
  2091. if (!rq)
  2092. rq = cfqq->next_rq;
  2093. /*
  2094. * insert request into driver dispatch list
  2095. */
  2096. cfq_dispatch_insert(cfqd->queue, rq);
  2097. if (!cfqd->active_cic) {
  2098. struct cfq_io_context *cic = RQ_CIC(rq);
  2099. atomic_long_inc(&cic->ioc->refcount);
  2100. cfqd->active_cic = cic;
  2101. }
  2102. return true;
  2103. }
  2104. /*
  2105. * Find the cfqq that we need to service and move a request from that to the
  2106. * dispatch list
  2107. */
  2108. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2109. {
  2110. struct cfq_data *cfqd = q->elevator->elevator_data;
  2111. struct cfq_queue *cfqq;
  2112. if (!cfqd->busy_queues)
  2113. return 0;
  2114. if (unlikely(force))
  2115. return cfq_forced_dispatch(cfqd);
  2116. cfqq = cfq_select_queue(cfqd);
  2117. if (!cfqq)
  2118. return 0;
  2119. /*
  2120. * Dispatch a request from this cfqq, if it is allowed
  2121. */
  2122. if (!cfq_dispatch_request(cfqd, cfqq))
  2123. return 0;
  2124. cfqq->slice_dispatch++;
  2125. cfq_clear_cfqq_must_dispatch(cfqq);
  2126. /*
  2127. * expire an async queue immediately if it has used up its slice. idle
  2128. * queue always expire after 1 dispatch round.
  2129. */
  2130. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2131. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2132. cfq_class_idle(cfqq))) {
  2133. cfqq->slice_end = jiffies + 1;
  2134. cfq_slice_expired(cfqd, 0);
  2135. }
  2136. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2137. return 1;
  2138. }
  2139. /*
  2140. * task holds one reference to the queue, dropped when task exits. each rq
  2141. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2142. *
  2143. * Each cfq queue took a reference on the parent group. Drop it now.
  2144. * queue lock must be held here.
  2145. */
  2146. static void cfq_put_queue(struct cfq_queue *cfqq)
  2147. {
  2148. struct cfq_data *cfqd = cfqq->cfqd;
  2149. struct cfq_group *cfqg, *orig_cfqg;
  2150. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2151. if (!atomic_dec_and_test(&cfqq->ref))
  2152. return;
  2153. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2154. BUG_ON(rb_first(&cfqq->sort_list));
  2155. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2156. cfqg = cfqq->cfqg;
  2157. orig_cfqg = cfqq->orig_cfqg;
  2158. if (unlikely(cfqd->active_queue == cfqq)) {
  2159. __cfq_slice_expired(cfqd, cfqq, 0);
  2160. cfq_schedule_dispatch(cfqd);
  2161. }
  2162. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2163. kmem_cache_free(cfq_pool, cfqq);
  2164. cfq_put_cfqg(cfqg);
  2165. if (orig_cfqg)
  2166. cfq_put_cfqg(orig_cfqg);
  2167. }
  2168. /*
  2169. * Must always be called with the rcu_read_lock() held
  2170. */
  2171. static void
  2172. __call_for_each_cic(struct io_context *ioc,
  2173. void (*func)(struct io_context *, struct cfq_io_context *))
  2174. {
  2175. struct cfq_io_context *cic;
  2176. struct hlist_node *n;
  2177. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2178. func(ioc, cic);
  2179. }
  2180. /*
  2181. * Call func for each cic attached to this ioc.
  2182. */
  2183. static void
  2184. call_for_each_cic(struct io_context *ioc,
  2185. void (*func)(struct io_context *, struct cfq_io_context *))
  2186. {
  2187. rcu_read_lock();
  2188. __call_for_each_cic(ioc, func);
  2189. rcu_read_unlock();
  2190. }
  2191. static void cfq_cic_free_rcu(struct rcu_head *head)
  2192. {
  2193. struct cfq_io_context *cic;
  2194. cic = container_of(head, struct cfq_io_context, rcu_head);
  2195. kmem_cache_free(cfq_ioc_pool, cic);
  2196. elv_ioc_count_dec(cfq_ioc_count);
  2197. if (ioc_gone) {
  2198. /*
  2199. * CFQ scheduler is exiting, grab exit lock and check
  2200. * the pending io context count. If it hits zero,
  2201. * complete ioc_gone and set it back to NULL
  2202. */
  2203. spin_lock(&ioc_gone_lock);
  2204. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2205. complete(ioc_gone);
  2206. ioc_gone = NULL;
  2207. }
  2208. spin_unlock(&ioc_gone_lock);
  2209. }
  2210. }
  2211. static void cfq_cic_free(struct cfq_io_context *cic)
  2212. {
  2213. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2214. }
  2215. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2216. {
  2217. unsigned long flags;
  2218. unsigned long dead_key = (unsigned long) cic->key;
  2219. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2220. spin_lock_irqsave(&ioc->lock, flags);
  2221. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2222. hlist_del_rcu(&cic->cic_list);
  2223. spin_unlock_irqrestore(&ioc->lock, flags);
  2224. cfq_cic_free(cic);
  2225. }
  2226. /*
  2227. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2228. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2229. * and ->trim() which is called with the task lock held
  2230. */
  2231. static void cfq_free_io_context(struct io_context *ioc)
  2232. {
  2233. /*
  2234. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2235. * so no more cic's are allowed to be linked into this ioc. So it
  2236. * should be ok to iterate over the known list, we will see all cic's
  2237. * since no new ones are added.
  2238. */
  2239. __call_for_each_cic(ioc, cic_free_func);
  2240. }
  2241. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2242. {
  2243. struct cfq_queue *__cfqq, *next;
  2244. /*
  2245. * If this queue was scheduled to merge with another queue, be
  2246. * sure to drop the reference taken on that queue (and others in
  2247. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2248. */
  2249. __cfqq = cfqq->new_cfqq;
  2250. while (__cfqq) {
  2251. if (__cfqq == cfqq) {
  2252. WARN(1, "cfqq->new_cfqq loop detected\n");
  2253. break;
  2254. }
  2255. next = __cfqq->new_cfqq;
  2256. cfq_put_queue(__cfqq);
  2257. __cfqq = next;
  2258. }
  2259. }
  2260. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2261. {
  2262. if (unlikely(cfqq == cfqd->active_queue)) {
  2263. __cfq_slice_expired(cfqd, cfqq, 0);
  2264. cfq_schedule_dispatch(cfqd);
  2265. }
  2266. cfq_put_cooperator(cfqq);
  2267. cfq_put_queue(cfqq);
  2268. }
  2269. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2270. struct cfq_io_context *cic)
  2271. {
  2272. struct io_context *ioc = cic->ioc;
  2273. list_del_init(&cic->queue_list);
  2274. /*
  2275. * Make sure dead mark is seen for dead queues
  2276. */
  2277. smp_wmb();
  2278. cic->key = cfqd_dead_key(cfqd);
  2279. if (ioc->ioc_data == cic)
  2280. rcu_assign_pointer(ioc->ioc_data, NULL);
  2281. if (cic->cfqq[BLK_RW_ASYNC]) {
  2282. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2283. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2284. }
  2285. if (cic->cfqq[BLK_RW_SYNC]) {
  2286. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2287. cic->cfqq[BLK_RW_SYNC] = NULL;
  2288. }
  2289. }
  2290. static void cfq_exit_single_io_context(struct io_context *ioc,
  2291. struct cfq_io_context *cic)
  2292. {
  2293. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2294. if (cfqd) {
  2295. struct request_queue *q = cfqd->queue;
  2296. unsigned long flags;
  2297. spin_lock_irqsave(q->queue_lock, flags);
  2298. /*
  2299. * Ensure we get a fresh copy of the ->key to prevent
  2300. * race between exiting task and queue
  2301. */
  2302. smp_read_barrier_depends();
  2303. if (cic->key == cfqd)
  2304. __cfq_exit_single_io_context(cfqd, cic);
  2305. spin_unlock_irqrestore(q->queue_lock, flags);
  2306. }
  2307. }
  2308. /*
  2309. * The process that ioc belongs to has exited, we need to clean up
  2310. * and put the internal structures we have that belongs to that process.
  2311. */
  2312. static void cfq_exit_io_context(struct io_context *ioc)
  2313. {
  2314. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2315. }
  2316. static struct cfq_io_context *
  2317. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2318. {
  2319. struct cfq_io_context *cic;
  2320. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2321. cfqd->queue->node);
  2322. if (cic) {
  2323. cic->last_end_request = jiffies;
  2324. INIT_LIST_HEAD(&cic->queue_list);
  2325. INIT_HLIST_NODE(&cic->cic_list);
  2326. cic->dtor = cfq_free_io_context;
  2327. cic->exit = cfq_exit_io_context;
  2328. elv_ioc_count_inc(cfq_ioc_count);
  2329. }
  2330. return cic;
  2331. }
  2332. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2333. {
  2334. struct task_struct *tsk = current;
  2335. int ioprio_class;
  2336. if (!cfq_cfqq_prio_changed(cfqq))
  2337. return;
  2338. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2339. switch (ioprio_class) {
  2340. default:
  2341. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2342. case IOPRIO_CLASS_NONE:
  2343. /*
  2344. * no prio set, inherit CPU scheduling settings
  2345. */
  2346. cfqq->ioprio = task_nice_ioprio(tsk);
  2347. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2348. break;
  2349. case IOPRIO_CLASS_RT:
  2350. cfqq->ioprio = task_ioprio(ioc);
  2351. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2352. break;
  2353. case IOPRIO_CLASS_BE:
  2354. cfqq->ioprio = task_ioprio(ioc);
  2355. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2356. break;
  2357. case IOPRIO_CLASS_IDLE:
  2358. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2359. cfqq->ioprio = 7;
  2360. cfq_clear_cfqq_idle_window(cfqq);
  2361. break;
  2362. }
  2363. /*
  2364. * keep track of original prio settings in case we have to temporarily
  2365. * elevate the priority of this queue
  2366. */
  2367. cfqq->org_ioprio = cfqq->ioprio;
  2368. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2369. cfq_clear_cfqq_prio_changed(cfqq);
  2370. }
  2371. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2372. {
  2373. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2374. struct cfq_queue *cfqq;
  2375. unsigned long flags;
  2376. if (unlikely(!cfqd))
  2377. return;
  2378. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2379. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2380. if (cfqq) {
  2381. struct cfq_queue *new_cfqq;
  2382. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2383. GFP_ATOMIC);
  2384. if (new_cfqq) {
  2385. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2386. cfq_put_queue(cfqq);
  2387. }
  2388. }
  2389. cfqq = cic->cfqq[BLK_RW_SYNC];
  2390. if (cfqq)
  2391. cfq_mark_cfqq_prio_changed(cfqq);
  2392. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2393. }
  2394. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2395. {
  2396. call_for_each_cic(ioc, changed_ioprio);
  2397. ioc->ioprio_changed = 0;
  2398. }
  2399. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2400. pid_t pid, bool is_sync)
  2401. {
  2402. RB_CLEAR_NODE(&cfqq->rb_node);
  2403. RB_CLEAR_NODE(&cfqq->p_node);
  2404. INIT_LIST_HEAD(&cfqq->fifo);
  2405. atomic_set(&cfqq->ref, 0);
  2406. cfqq->cfqd = cfqd;
  2407. cfq_mark_cfqq_prio_changed(cfqq);
  2408. if (is_sync) {
  2409. if (!cfq_class_idle(cfqq))
  2410. cfq_mark_cfqq_idle_window(cfqq);
  2411. cfq_mark_cfqq_sync(cfqq);
  2412. }
  2413. cfqq->pid = pid;
  2414. }
  2415. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2416. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2417. {
  2418. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2419. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2420. unsigned long flags;
  2421. struct request_queue *q;
  2422. if (unlikely(!cfqd))
  2423. return;
  2424. q = cfqd->queue;
  2425. spin_lock_irqsave(q->queue_lock, flags);
  2426. if (sync_cfqq) {
  2427. /*
  2428. * Drop reference to sync queue. A new sync queue will be
  2429. * assigned in new group upon arrival of a fresh request.
  2430. */
  2431. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2432. cic_set_cfqq(cic, NULL, 1);
  2433. cfq_put_queue(sync_cfqq);
  2434. }
  2435. spin_unlock_irqrestore(q->queue_lock, flags);
  2436. }
  2437. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2438. {
  2439. call_for_each_cic(ioc, changed_cgroup);
  2440. ioc->cgroup_changed = 0;
  2441. }
  2442. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2443. static struct cfq_queue *
  2444. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2445. struct io_context *ioc, gfp_t gfp_mask)
  2446. {
  2447. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2448. struct cfq_io_context *cic;
  2449. struct cfq_group *cfqg;
  2450. retry:
  2451. cfqg = cfq_get_cfqg(cfqd, 1);
  2452. cic = cfq_cic_lookup(cfqd, ioc);
  2453. /* cic always exists here */
  2454. cfqq = cic_to_cfqq(cic, is_sync);
  2455. /*
  2456. * Always try a new alloc if we fell back to the OOM cfqq
  2457. * originally, since it should just be a temporary situation.
  2458. */
  2459. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2460. cfqq = NULL;
  2461. if (new_cfqq) {
  2462. cfqq = new_cfqq;
  2463. new_cfqq = NULL;
  2464. } else if (gfp_mask & __GFP_WAIT) {
  2465. spin_unlock_irq(cfqd->queue->queue_lock);
  2466. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2467. gfp_mask | __GFP_ZERO,
  2468. cfqd->queue->node);
  2469. spin_lock_irq(cfqd->queue->queue_lock);
  2470. if (new_cfqq)
  2471. goto retry;
  2472. } else {
  2473. cfqq = kmem_cache_alloc_node(cfq_pool,
  2474. gfp_mask | __GFP_ZERO,
  2475. cfqd->queue->node);
  2476. }
  2477. if (cfqq) {
  2478. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2479. cfq_init_prio_data(cfqq, ioc);
  2480. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2481. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2482. } else
  2483. cfqq = &cfqd->oom_cfqq;
  2484. }
  2485. if (new_cfqq)
  2486. kmem_cache_free(cfq_pool, new_cfqq);
  2487. return cfqq;
  2488. }
  2489. static struct cfq_queue **
  2490. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2491. {
  2492. switch (ioprio_class) {
  2493. case IOPRIO_CLASS_RT:
  2494. return &cfqd->async_cfqq[0][ioprio];
  2495. case IOPRIO_CLASS_BE:
  2496. return &cfqd->async_cfqq[1][ioprio];
  2497. case IOPRIO_CLASS_IDLE:
  2498. return &cfqd->async_idle_cfqq;
  2499. default:
  2500. BUG();
  2501. }
  2502. }
  2503. static struct cfq_queue *
  2504. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2505. gfp_t gfp_mask)
  2506. {
  2507. const int ioprio = task_ioprio(ioc);
  2508. const int ioprio_class = task_ioprio_class(ioc);
  2509. struct cfq_queue **async_cfqq = NULL;
  2510. struct cfq_queue *cfqq = NULL;
  2511. if (!is_sync) {
  2512. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2513. cfqq = *async_cfqq;
  2514. }
  2515. if (!cfqq)
  2516. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2517. /*
  2518. * pin the queue now that it's allocated, scheduler exit will prune it
  2519. */
  2520. if (!is_sync && !(*async_cfqq)) {
  2521. atomic_inc(&cfqq->ref);
  2522. *async_cfqq = cfqq;
  2523. }
  2524. atomic_inc(&cfqq->ref);
  2525. return cfqq;
  2526. }
  2527. /*
  2528. * We drop cfq io contexts lazily, so we may find a dead one.
  2529. */
  2530. static void
  2531. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2532. struct cfq_io_context *cic)
  2533. {
  2534. unsigned long flags;
  2535. WARN_ON(!list_empty(&cic->queue_list));
  2536. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2537. spin_lock_irqsave(&ioc->lock, flags);
  2538. BUG_ON(ioc->ioc_data == cic);
  2539. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2540. hlist_del_rcu(&cic->cic_list);
  2541. spin_unlock_irqrestore(&ioc->lock, flags);
  2542. cfq_cic_free(cic);
  2543. }
  2544. static struct cfq_io_context *
  2545. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2546. {
  2547. struct cfq_io_context *cic;
  2548. unsigned long flags;
  2549. if (unlikely(!ioc))
  2550. return NULL;
  2551. rcu_read_lock();
  2552. /*
  2553. * we maintain a last-hit cache, to avoid browsing over the tree
  2554. */
  2555. cic = rcu_dereference(ioc->ioc_data);
  2556. if (cic && cic->key == cfqd) {
  2557. rcu_read_unlock();
  2558. return cic;
  2559. }
  2560. do {
  2561. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2562. rcu_read_unlock();
  2563. if (!cic)
  2564. break;
  2565. if (unlikely(cic->key != cfqd)) {
  2566. cfq_drop_dead_cic(cfqd, ioc, cic);
  2567. rcu_read_lock();
  2568. continue;
  2569. }
  2570. spin_lock_irqsave(&ioc->lock, flags);
  2571. rcu_assign_pointer(ioc->ioc_data, cic);
  2572. spin_unlock_irqrestore(&ioc->lock, flags);
  2573. break;
  2574. } while (1);
  2575. return cic;
  2576. }
  2577. /*
  2578. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2579. * the process specific cfq io context when entered from the block layer.
  2580. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2581. */
  2582. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2583. struct cfq_io_context *cic, gfp_t gfp_mask)
  2584. {
  2585. unsigned long flags;
  2586. int ret;
  2587. ret = radix_tree_preload(gfp_mask);
  2588. if (!ret) {
  2589. cic->ioc = ioc;
  2590. cic->key = cfqd;
  2591. spin_lock_irqsave(&ioc->lock, flags);
  2592. ret = radix_tree_insert(&ioc->radix_root,
  2593. cfqd->cic_index, cic);
  2594. if (!ret)
  2595. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2596. spin_unlock_irqrestore(&ioc->lock, flags);
  2597. radix_tree_preload_end();
  2598. if (!ret) {
  2599. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2600. list_add(&cic->queue_list, &cfqd->cic_list);
  2601. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2602. }
  2603. }
  2604. if (ret)
  2605. printk(KERN_ERR "cfq: cic link failed!\n");
  2606. return ret;
  2607. }
  2608. /*
  2609. * Setup general io context and cfq io context. There can be several cfq
  2610. * io contexts per general io context, if this process is doing io to more
  2611. * than one device managed by cfq.
  2612. */
  2613. static struct cfq_io_context *
  2614. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2615. {
  2616. struct io_context *ioc = NULL;
  2617. struct cfq_io_context *cic;
  2618. might_sleep_if(gfp_mask & __GFP_WAIT);
  2619. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2620. if (!ioc)
  2621. return NULL;
  2622. cic = cfq_cic_lookup(cfqd, ioc);
  2623. if (cic)
  2624. goto out;
  2625. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2626. if (cic == NULL)
  2627. goto err;
  2628. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2629. goto err_free;
  2630. out:
  2631. smp_read_barrier_depends();
  2632. if (unlikely(ioc->ioprio_changed))
  2633. cfq_ioc_set_ioprio(ioc);
  2634. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2635. if (unlikely(ioc->cgroup_changed))
  2636. cfq_ioc_set_cgroup(ioc);
  2637. #endif
  2638. return cic;
  2639. err_free:
  2640. cfq_cic_free(cic);
  2641. err:
  2642. put_io_context(ioc);
  2643. return NULL;
  2644. }
  2645. static void
  2646. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2647. {
  2648. unsigned long elapsed = jiffies - cic->last_end_request;
  2649. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2650. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2651. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2652. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2653. }
  2654. static void
  2655. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2656. struct request *rq)
  2657. {
  2658. sector_t sdist = 0;
  2659. sector_t n_sec = blk_rq_sectors(rq);
  2660. if (cfqq->last_request_pos) {
  2661. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2662. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2663. else
  2664. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2665. }
  2666. cfqq->seek_history <<= 1;
  2667. if (blk_queue_nonrot(cfqd->queue))
  2668. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2669. else
  2670. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2671. }
  2672. /*
  2673. * Disable idle window if the process thinks too long or seeks so much that
  2674. * it doesn't matter
  2675. */
  2676. static void
  2677. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2678. struct cfq_io_context *cic)
  2679. {
  2680. int old_idle, enable_idle;
  2681. /*
  2682. * Don't idle for async or idle io prio class
  2683. */
  2684. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2685. return;
  2686. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2687. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2688. cfq_mark_cfqq_deep(cfqq);
  2689. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2690. enable_idle = 0;
  2691. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2692. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2693. enable_idle = 0;
  2694. else if (sample_valid(cic->ttime_samples)) {
  2695. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2696. enable_idle = 0;
  2697. else
  2698. enable_idle = 1;
  2699. }
  2700. if (old_idle != enable_idle) {
  2701. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2702. if (enable_idle)
  2703. cfq_mark_cfqq_idle_window(cfqq);
  2704. else
  2705. cfq_clear_cfqq_idle_window(cfqq);
  2706. }
  2707. }
  2708. /*
  2709. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2710. * no or if we aren't sure, a 1 will cause a preempt.
  2711. */
  2712. static bool
  2713. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2714. struct request *rq)
  2715. {
  2716. struct cfq_queue *cfqq;
  2717. cfqq = cfqd->active_queue;
  2718. if (!cfqq)
  2719. return false;
  2720. if (cfq_class_idle(new_cfqq))
  2721. return false;
  2722. if (cfq_class_idle(cfqq))
  2723. return true;
  2724. /*
  2725. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2726. */
  2727. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2728. return false;
  2729. /*
  2730. * if the new request is sync, but the currently running queue is
  2731. * not, let the sync request have priority.
  2732. */
  2733. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2734. return true;
  2735. if (new_cfqq->cfqg != cfqq->cfqg)
  2736. return false;
  2737. if (cfq_slice_used(cfqq))
  2738. return true;
  2739. /* Allow preemption only if we are idling on sync-noidle tree */
  2740. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2741. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2742. new_cfqq->service_tree->count == 2 &&
  2743. RB_EMPTY_ROOT(&cfqq->sort_list))
  2744. return true;
  2745. /*
  2746. * So both queues are sync. Let the new request get disk time if
  2747. * it's a metadata request and the current queue is doing regular IO.
  2748. */
  2749. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2750. return true;
  2751. /*
  2752. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2753. */
  2754. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2755. return true;
  2756. /* An idle queue should not be idle now for some reason */
  2757. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2758. return true;
  2759. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2760. return false;
  2761. /*
  2762. * if this request is as-good as one we would expect from the
  2763. * current cfqq, let it preempt
  2764. */
  2765. if (cfq_rq_close(cfqd, cfqq, rq))
  2766. return true;
  2767. return false;
  2768. }
  2769. /*
  2770. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2771. * let it have half of its nominal slice.
  2772. */
  2773. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2774. {
  2775. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2776. cfq_slice_expired(cfqd, 1);
  2777. /*
  2778. * Put the new queue at the front of the of the current list,
  2779. * so we know that it will be selected next.
  2780. */
  2781. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2782. cfq_service_tree_add(cfqd, cfqq, 1);
  2783. cfqq->slice_end = 0;
  2784. cfq_mark_cfqq_slice_new(cfqq);
  2785. }
  2786. /*
  2787. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2788. * something we should do about it
  2789. */
  2790. static void
  2791. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2792. struct request *rq)
  2793. {
  2794. struct cfq_io_context *cic = RQ_CIC(rq);
  2795. cfqd->rq_queued++;
  2796. if (rq->cmd_flags & REQ_META)
  2797. cfqq->meta_pending++;
  2798. cfq_update_io_thinktime(cfqd, cic);
  2799. cfq_update_io_seektime(cfqd, cfqq, rq);
  2800. cfq_update_idle_window(cfqd, cfqq, cic);
  2801. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2802. if (cfqq == cfqd->active_queue) {
  2803. /*
  2804. * Remember that we saw a request from this process, but
  2805. * don't start queuing just yet. Otherwise we risk seeing lots
  2806. * of tiny requests, because we disrupt the normal plugging
  2807. * and merging. If the request is already larger than a single
  2808. * page, let it rip immediately. For that case we assume that
  2809. * merging is already done. Ditto for a busy system that
  2810. * has other work pending, don't risk delaying until the
  2811. * idle timer unplug to continue working.
  2812. */
  2813. if (cfq_cfqq_wait_request(cfqq)) {
  2814. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2815. cfqd->busy_queues > 1) {
  2816. cfq_del_timer(cfqd, cfqq);
  2817. cfq_clear_cfqq_wait_request(cfqq);
  2818. __blk_run_queue(cfqd->queue);
  2819. } else {
  2820. cfq_blkiocg_update_idle_time_stats(
  2821. &cfqq->cfqg->blkg);
  2822. cfq_mark_cfqq_must_dispatch(cfqq);
  2823. }
  2824. }
  2825. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2826. /*
  2827. * not the active queue - expire current slice if it is
  2828. * idle and has expired it's mean thinktime or this new queue
  2829. * has some old slice time left and is of higher priority or
  2830. * this new queue is RT and the current one is BE
  2831. */
  2832. cfq_preempt_queue(cfqd, cfqq);
  2833. __blk_run_queue(cfqd->queue);
  2834. }
  2835. }
  2836. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2837. {
  2838. struct cfq_data *cfqd = q->elevator->elevator_data;
  2839. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2840. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2841. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2842. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2843. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2844. cfq_add_rq_rb(rq);
  2845. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2846. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2847. rq_is_sync(rq));
  2848. cfq_rq_enqueued(cfqd, cfqq, rq);
  2849. }
  2850. /*
  2851. * Update hw_tag based on peak queue depth over 50 samples under
  2852. * sufficient load.
  2853. */
  2854. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2855. {
  2856. struct cfq_queue *cfqq = cfqd->active_queue;
  2857. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2858. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2859. if (cfqd->hw_tag == 1)
  2860. return;
  2861. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2862. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2863. return;
  2864. /*
  2865. * If active queue hasn't enough requests and can idle, cfq might not
  2866. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2867. * case
  2868. */
  2869. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2870. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2871. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2872. return;
  2873. if (cfqd->hw_tag_samples++ < 50)
  2874. return;
  2875. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2876. cfqd->hw_tag = 1;
  2877. else
  2878. cfqd->hw_tag = 0;
  2879. }
  2880. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2881. {
  2882. struct cfq_io_context *cic = cfqd->active_cic;
  2883. /* If there are other queues in the group, don't wait */
  2884. if (cfqq->cfqg->nr_cfqq > 1)
  2885. return false;
  2886. if (cfq_slice_used(cfqq))
  2887. return true;
  2888. /* if slice left is less than think time, wait busy */
  2889. if (cic && sample_valid(cic->ttime_samples)
  2890. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2891. return true;
  2892. /*
  2893. * If think times is less than a jiffy than ttime_mean=0 and above
  2894. * will not be true. It might happen that slice has not expired yet
  2895. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2896. * case where think time is less than a jiffy, mark the queue wait
  2897. * busy if only 1 jiffy is left in the slice.
  2898. */
  2899. if (cfqq->slice_end - jiffies == 1)
  2900. return true;
  2901. return false;
  2902. }
  2903. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2904. {
  2905. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2906. struct cfq_data *cfqd = cfqq->cfqd;
  2907. const int sync = rq_is_sync(rq);
  2908. unsigned long now;
  2909. now = jiffies;
  2910. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2911. !!(rq->cmd_flags & REQ_NOIDLE));
  2912. cfq_update_hw_tag(cfqd);
  2913. WARN_ON(!cfqd->rq_in_driver);
  2914. WARN_ON(!cfqq->dispatched);
  2915. cfqd->rq_in_driver--;
  2916. cfqq->dispatched--;
  2917. (RQ_CFQG(rq))->dispatched--;
  2918. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2919. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2920. rq_data_dir(rq), rq_is_sync(rq));
  2921. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2922. if (sync) {
  2923. RQ_CIC(rq)->last_end_request = now;
  2924. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2925. cfqd->last_delayed_sync = now;
  2926. }
  2927. /*
  2928. * If this is the active queue, check if it needs to be expired,
  2929. * or if we want to idle in case it has no pending requests.
  2930. */
  2931. if (cfqd->active_queue == cfqq) {
  2932. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2933. if (cfq_cfqq_slice_new(cfqq)) {
  2934. cfq_set_prio_slice(cfqd, cfqq);
  2935. cfq_clear_cfqq_slice_new(cfqq);
  2936. }
  2937. /*
  2938. * Should we wait for next request to come in before we expire
  2939. * the queue.
  2940. */
  2941. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2942. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2943. if (!cfqd->cfq_slice_idle)
  2944. extend_sl = cfqd->cfq_group_idle;
  2945. cfqq->slice_end = jiffies + extend_sl;
  2946. cfq_mark_cfqq_wait_busy(cfqq);
  2947. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2948. }
  2949. /*
  2950. * Idling is not enabled on:
  2951. * - expired queues
  2952. * - idle-priority queues
  2953. * - async queues
  2954. * - queues with still some requests queued
  2955. * - when there is a close cooperator
  2956. */
  2957. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2958. cfq_slice_expired(cfqd, 1);
  2959. else if (sync && cfqq_empty &&
  2960. !cfq_close_cooperator(cfqd, cfqq)) {
  2961. cfq_arm_slice_timer(cfqd);
  2962. }
  2963. }
  2964. if (!cfqd->rq_in_driver)
  2965. cfq_schedule_dispatch(cfqd);
  2966. }
  2967. /*
  2968. * we temporarily boost lower priority queues if they are holding fs exclusive
  2969. * resources. they are boosted to normal prio (CLASS_BE/4)
  2970. */
  2971. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2972. {
  2973. if (has_fs_excl()) {
  2974. /*
  2975. * boost idle prio on transactions that would lock out other
  2976. * users of the filesystem
  2977. */
  2978. if (cfq_class_idle(cfqq))
  2979. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2980. if (cfqq->ioprio > IOPRIO_NORM)
  2981. cfqq->ioprio = IOPRIO_NORM;
  2982. } else {
  2983. /*
  2984. * unboost the queue (if needed)
  2985. */
  2986. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2987. cfqq->ioprio = cfqq->org_ioprio;
  2988. }
  2989. }
  2990. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2991. {
  2992. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2993. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2994. return ELV_MQUEUE_MUST;
  2995. }
  2996. return ELV_MQUEUE_MAY;
  2997. }
  2998. static int cfq_may_queue(struct request_queue *q, int rw)
  2999. {
  3000. struct cfq_data *cfqd = q->elevator->elevator_data;
  3001. struct task_struct *tsk = current;
  3002. struct cfq_io_context *cic;
  3003. struct cfq_queue *cfqq;
  3004. /*
  3005. * don't force setup of a queue from here, as a call to may_queue
  3006. * does not necessarily imply that a request actually will be queued.
  3007. * so just lookup a possibly existing queue, or return 'may queue'
  3008. * if that fails
  3009. */
  3010. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3011. if (!cic)
  3012. return ELV_MQUEUE_MAY;
  3013. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3014. if (cfqq) {
  3015. cfq_init_prio_data(cfqq, cic->ioc);
  3016. cfq_prio_boost(cfqq);
  3017. return __cfq_may_queue(cfqq);
  3018. }
  3019. return ELV_MQUEUE_MAY;
  3020. }
  3021. /*
  3022. * queue lock held here
  3023. */
  3024. static void cfq_put_request(struct request *rq)
  3025. {
  3026. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3027. if (cfqq) {
  3028. const int rw = rq_data_dir(rq);
  3029. BUG_ON(!cfqq->allocated[rw]);
  3030. cfqq->allocated[rw]--;
  3031. put_io_context(RQ_CIC(rq)->ioc);
  3032. rq->elevator_private = NULL;
  3033. rq->elevator_private2 = NULL;
  3034. /* Put down rq reference on cfqg */
  3035. cfq_put_cfqg(RQ_CFQG(rq));
  3036. rq->elevator_private3 = NULL;
  3037. cfq_put_queue(cfqq);
  3038. }
  3039. }
  3040. static struct cfq_queue *
  3041. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3042. struct cfq_queue *cfqq)
  3043. {
  3044. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3045. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3046. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3047. cfq_put_queue(cfqq);
  3048. return cic_to_cfqq(cic, 1);
  3049. }
  3050. /*
  3051. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3052. * was the last process referring to said cfqq.
  3053. */
  3054. static struct cfq_queue *
  3055. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3056. {
  3057. if (cfqq_process_refs(cfqq) == 1) {
  3058. cfqq->pid = current->pid;
  3059. cfq_clear_cfqq_coop(cfqq);
  3060. cfq_clear_cfqq_split_coop(cfqq);
  3061. return cfqq;
  3062. }
  3063. cic_set_cfqq(cic, NULL, 1);
  3064. cfq_put_cooperator(cfqq);
  3065. cfq_put_queue(cfqq);
  3066. return NULL;
  3067. }
  3068. /*
  3069. * Allocate cfq data structures associated with this request.
  3070. */
  3071. static int
  3072. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3073. {
  3074. struct cfq_data *cfqd = q->elevator->elevator_data;
  3075. struct cfq_io_context *cic;
  3076. const int rw = rq_data_dir(rq);
  3077. const bool is_sync = rq_is_sync(rq);
  3078. struct cfq_queue *cfqq;
  3079. unsigned long flags;
  3080. might_sleep_if(gfp_mask & __GFP_WAIT);
  3081. cic = cfq_get_io_context(cfqd, gfp_mask);
  3082. spin_lock_irqsave(q->queue_lock, flags);
  3083. if (!cic)
  3084. goto queue_fail;
  3085. new_queue:
  3086. cfqq = cic_to_cfqq(cic, is_sync);
  3087. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3088. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3089. cic_set_cfqq(cic, cfqq, is_sync);
  3090. } else {
  3091. /*
  3092. * If the queue was seeky for too long, break it apart.
  3093. */
  3094. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3095. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3096. cfqq = split_cfqq(cic, cfqq);
  3097. if (!cfqq)
  3098. goto new_queue;
  3099. }
  3100. /*
  3101. * Check to see if this queue is scheduled to merge with
  3102. * another, closely cooperating queue. The merging of
  3103. * queues happens here as it must be done in process context.
  3104. * The reference on new_cfqq was taken in merge_cfqqs.
  3105. */
  3106. if (cfqq->new_cfqq)
  3107. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3108. }
  3109. cfqq->allocated[rw]++;
  3110. atomic_inc(&cfqq->ref);
  3111. spin_unlock_irqrestore(q->queue_lock, flags);
  3112. rq->elevator_private = cic;
  3113. rq->elevator_private2 = cfqq;
  3114. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3115. return 0;
  3116. queue_fail:
  3117. if (cic)
  3118. put_io_context(cic->ioc);
  3119. cfq_schedule_dispatch(cfqd);
  3120. spin_unlock_irqrestore(q->queue_lock, flags);
  3121. cfq_log(cfqd, "set_request fail");
  3122. return 1;
  3123. }
  3124. static void cfq_kick_queue(struct work_struct *work)
  3125. {
  3126. struct cfq_data *cfqd =
  3127. container_of(work, struct cfq_data, unplug_work);
  3128. struct request_queue *q = cfqd->queue;
  3129. spin_lock_irq(q->queue_lock);
  3130. __blk_run_queue(cfqd->queue);
  3131. spin_unlock_irq(q->queue_lock);
  3132. }
  3133. /*
  3134. * Timer running if the active_queue is currently idling inside its time slice
  3135. */
  3136. static void cfq_idle_slice_timer(unsigned long data)
  3137. {
  3138. struct cfq_data *cfqd = (struct cfq_data *) data;
  3139. struct cfq_queue *cfqq;
  3140. unsigned long flags;
  3141. int timed_out = 1;
  3142. cfq_log(cfqd, "idle timer fired");
  3143. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3144. cfqq = cfqd->active_queue;
  3145. if (cfqq) {
  3146. timed_out = 0;
  3147. /*
  3148. * We saw a request before the queue expired, let it through
  3149. */
  3150. if (cfq_cfqq_must_dispatch(cfqq))
  3151. goto out_kick;
  3152. /*
  3153. * expired
  3154. */
  3155. if (cfq_slice_used(cfqq))
  3156. goto expire;
  3157. /*
  3158. * only expire and reinvoke request handler, if there are
  3159. * other queues with pending requests
  3160. */
  3161. if (!cfqd->busy_queues)
  3162. goto out_cont;
  3163. /*
  3164. * not expired and it has a request pending, let it dispatch
  3165. */
  3166. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3167. goto out_kick;
  3168. /*
  3169. * Queue depth flag is reset only when the idle didn't succeed
  3170. */
  3171. cfq_clear_cfqq_deep(cfqq);
  3172. }
  3173. expire:
  3174. cfq_slice_expired(cfqd, timed_out);
  3175. out_kick:
  3176. cfq_schedule_dispatch(cfqd);
  3177. out_cont:
  3178. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3179. }
  3180. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3181. {
  3182. del_timer_sync(&cfqd->idle_slice_timer);
  3183. cancel_work_sync(&cfqd->unplug_work);
  3184. }
  3185. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3186. {
  3187. int i;
  3188. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3189. if (cfqd->async_cfqq[0][i])
  3190. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3191. if (cfqd->async_cfqq[1][i])
  3192. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3193. }
  3194. if (cfqd->async_idle_cfqq)
  3195. cfq_put_queue(cfqd->async_idle_cfqq);
  3196. }
  3197. static void cfq_cfqd_free(struct rcu_head *head)
  3198. {
  3199. kfree(container_of(head, struct cfq_data, rcu));
  3200. }
  3201. static void cfq_exit_queue(struct elevator_queue *e)
  3202. {
  3203. struct cfq_data *cfqd = e->elevator_data;
  3204. struct request_queue *q = cfqd->queue;
  3205. cfq_shutdown_timer_wq(cfqd);
  3206. spin_lock_irq(q->queue_lock);
  3207. if (cfqd->active_queue)
  3208. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3209. while (!list_empty(&cfqd->cic_list)) {
  3210. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3211. struct cfq_io_context,
  3212. queue_list);
  3213. __cfq_exit_single_io_context(cfqd, cic);
  3214. }
  3215. cfq_put_async_queues(cfqd);
  3216. cfq_release_cfq_groups(cfqd);
  3217. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3218. spin_unlock_irq(q->queue_lock);
  3219. cfq_shutdown_timer_wq(cfqd);
  3220. spin_lock(&cic_index_lock);
  3221. ida_remove(&cic_index_ida, cfqd->cic_index);
  3222. spin_unlock(&cic_index_lock);
  3223. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3224. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3225. }
  3226. static int cfq_alloc_cic_index(void)
  3227. {
  3228. int index, error;
  3229. do {
  3230. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3231. return -ENOMEM;
  3232. spin_lock(&cic_index_lock);
  3233. error = ida_get_new(&cic_index_ida, &index);
  3234. spin_unlock(&cic_index_lock);
  3235. if (error && error != -EAGAIN)
  3236. return error;
  3237. } while (error);
  3238. return index;
  3239. }
  3240. static void *cfq_init_queue(struct request_queue *q)
  3241. {
  3242. struct cfq_data *cfqd;
  3243. int i, j;
  3244. struct cfq_group *cfqg;
  3245. struct cfq_rb_root *st;
  3246. i = cfq_alloc_cic_index();
  3247. if (i < 0)
  3248. return NULL;
  3249. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3250. if (!cfqd)
  3251. return NULL;
  3252. cfqd->cic_index = i;
  3253. /* Init root service tree */
  3254. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3255. /* Init root group */
  3256. cfqg = &cfqd->root_group;
  3257. for_each_cfqg_st(cfqg, i, j, st)
  3258. *st = CFQ_RB_ROOT;
  3259. RB_CLEAR_NODE(&cfqg->rb_node);
  3260. /* Give preference to root group over other groups */
  3261. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3262. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3263. /*
  3264. * Take a reference to root group which we never drop. This is just
  3265. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3266. */
  3267. atomic_set(&cfqg->ref, 1);
  3268. rcu_read_lock();
  3269. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3270. (void *)cfqd, 0);
  3271. rcu_read_unlock();
  3272. #endif
  3273. /*
  3274. * Not strictly needed (since RB_ROOT just clears the node and we
  3275. * zeroed cfqd on alloc), but better be safe in case someone decides
  3276. * to add magic to the rb code
  3277. */
  3278. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3279. cfqd->prio_trees[i] = RB_ROOT;
  3280. /*
  3281. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3282. * Grab a permanent reference to it, so that the normal code flow
  3283. * will not attempt to free it.
  3284. */
  3285. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3286. atomic_inc(&cfqd->oom_cfqq.ref);
  3287. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3288. INIT_LIST_HEAD(&cfqd->cic_list);
  3289. cfqd->queue = q;
  3290. init_timer(&cfqd->idle_slice_timer);
  3291. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3292. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3293. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3294. cfqd->cfq_quantum = cfq_quantum;
  3295. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3296. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3297. cfqd->cfq_back_max = cfq_back_max;
  3298. cfqd->cfq_back_penalty = cfq_back_penalty;
  3299. cfqd->cfq_slice[0] = cfq_slice_async;
  3300. cfqd->cfq_slice[1] = cfq_slice_sync;
  3301. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3302. cfqd->cfq_slice_idle = cfq_slice_idle;
  3303. cfqd->cfq_group_idle = cfq_group_idle;
  3304. cfqd->cfq_latency = 1;
  3305. cfqd->cfq_group_isolation = 0;
  3306. cfqd->hw_tag = -1;
  3307. /*
  3308. * we optimistically start assuming sync ops weren't delayed in last
  3309. * second, in order to have larger depth for async operations.
  3310. */
  3311. cfqd->last_delayed_sync = jiffies - HZ;
  3312. return cfqd;
  3313. }
  3314. static void cfq_slab_kill(void)
  3315. {
  3316. /*
  3317. * Caller already ensured that pending RCU callbacks are completed,
  3318. * so we should have no busy allocations at this point.
  3319. */
  3320. if (cfq_pool)
  3321. kmem_cache_destroy(cfq_pool);
  3322. if (cfq_ioc_pool)
  3323. kmem_cache_destroy(cfq_ioc_pool);
  3324. }
  3325. static int __init cfq_slab_setup(void)
  3326. {
  3327. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3328. if (!cfq_pool)
  3329. goto fail;
  3330. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3331. if (!cfq_ioc_pool)
  3332. goto fail;
  3333. return 0;
  3334. fail:
  3335. cfq_slab_kill();
  3336. return -ENOMEM;
  3337. }
  3338. /*
  3339. * sysfs parts below -->
  3340. */
  3341. static ssize_t
  3342. cfq_var_show(unsigned int var, char *page)
  3343. {
  3344. return sprintf(page, "%d\n", var);
  3345. }
  3346. static ssize_t
  3347. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3348. {
  3349. char *p = (char *) page;
  3350. *var = simple_strtoul(p, &p, 10);
  3351. return count;
  3352. }
  3353. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3354. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3355. { \
  3356. struct cfq_data *cfqd = e->elevator_data; \
  3357. unsigned int __data = __VAR; \
  3358. if (__CONV) \
  3359. __data = jiffies_to_msecs(__data); \
  3360. return cfq_var_show(__data, (page)); \
  3361. }
  3362. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3363. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3364. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3365. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3366. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3367. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3368. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3369. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3370. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3371. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3372. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3373. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3374. #undef SHOW_FUNCTION
  3375. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3376. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3377. { \
  3378. struct cfq_data *cfqd = e->elevator_data; \
  3379. unsigned int __data; \
  3380. int ret = cfq_var_store(&__data, (page), count); \
  3381. if (__data < (MIN)) \
  3382. __data = (MIN); \
  3383. else if (__data > (MAX)) \
  3384. __data = (MAX); \
  3385. if (__CONV) \
  3386. *(__PTR) = msecs_to_jiffies(__data); \
  3387. else \
  3388. *(__PTR) = __data; \
  3389. return ret; \
  3390. }
  3391. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3392. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3393. UINT_MAX, 1);
  3394. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3395. UINT_MAX, 1);
  3396. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3397. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3398. UINT_MAX, 0);
  3399. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3400. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3401. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3402. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3403. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3404. UINT_MAX, 0);
  3405. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3406. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3407. #undef STORE_FUNCTION
  3408. #define CFQ_ATTR(name) \
  3409. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3410. static struct elv_fs_entry cfq_attrs[] = {
  3411. CFQ_ATTR(quantum),
  3412. CFQ_ATTR(fifo_expire_sync),
  3413. CFQ_ATTR(fifo_expire_async),
  3414. CFQ_ATTR(back_seek_max),
  3415. CFQ_ATTR(back_seek_penalty),
  3416. CFQ_ATTR(slice_sync),
  3417. CFQ_ATTR(slice_async),
  3418. CFQ_ATTR(slice_async_rq),
  3419. CFQ_ATTR(slice_idle),
  3420. CFQ_ATTR(group_idle),
  3421. CFQ_ATTR(low_latency),
  3422. CFQ_ATTR(group_isolation),
  3423. __ATTR_NULL
  3424. };
  3425. static struct elevator_type iosched_cfq = {
  3426. .ops = {
  3427. .elevator_merge_fn = cfq_merge,
  3428. .elevator_merged_fn = cfq_merged_request,
  3429. .elevator_merge_req_fn = cfq_merged_requests,
  3430. .elevator_allow_merge_fn = cfq_allow_merge,
  3431. .elevator_bio_merged_fn = cfq_bio_merged,
  3432. .elevator_dispatch_fn = cfq_dispatch_requests,
  3433. .elevator_add_req_fn = cfq_insert_request,
  3434. .elevator_activate_req_fn = cfq_activate_request,
  3435. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3436. .elevator_queue_empty_fn = cfq_queue_empty,
  3437. .elevator_completed_req_fn = cfq_completed_request,
  3438. .elevator_former_req_fn = elv_rb_former_request,
  3439. .elevator_latter_req_fn = elv_rb_latter_request,
  3440. .elevator_set_req_fn = cfq_set_request,
  3441. .elevator_put_req_fn = cfq_put_request,
  3442. .elevator_may_queue_fn = cfq_may_queue,
  3443. .elevator_init_fn = cfq_init_queue,
  3444. .elevator_exit_fn = cfq_exit_queue,
  3445. .trim = cfq_free_io_context,
  3446. },
  3447. .elevator_attrs = cfq_attrs,
  3448. .elevator_name = "cfq",
  3449. .elevator_owner = THIS_MODULE,
  3450. };
  3451. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3452. static struct blkio_policy_type blkio_policy_cfq = {
  3453. .ops = {
  3454. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3455. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3456. },
  3457. .plid = BLKIO_POLICY_PROP,
  3458. };
  3459. #else
  3460. static struct blkio_policy_type blkio_policy_cfq;
  3461. #endif
  3462. static int __init cfq_init(void)
  3463. {
  3464. /*
  3465. * could be 0 on HZ < 1000 setups
  3466. */
  3467. if (!cfq_slice_async)
  3468. cfq_slice_async = 1;
  3469. if (!cfq_slice_idle)
  3470. cfq_slice_idle = 1;
  3471. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3472. if (!cfq_group_idle)
  3473. cfq_group_idle = 1;
  3474. #else
  3475. cfq_group_idle = 0;
  3476. #endif
  3477. if (cfq_slab_setup())
  3478. return -ENOMEM;
  3479. elv_register(&iosched_cfq);
  3480. blkio_policy_register(&blkio_policy_cfq);
  3481. return 0;
  3482. }
  3483. static void __exit cfq_exit(void)
  3484. {
  3485. DECLARE_COMPLETION_ONSTACK(all_gone);
  3486. blkio_policy_unregister(&blkio_policy_cfq);
  3487. elv_unregister(&iosched_cfq);
  3488. ioc_gone = &all_gone;
  3489. /* ioc_gone's update must be visible before reading ioc_count */
  3490. smp_wmb();
  3491. /*
  3492. * this also protects us from entering cfq_slab_kill() with
  3493. * pending RCU callbacks
  3494. */
  3495. if (elv_ioc_count_read(cfq_ioc_count))
  3496. wait_for_completion(&all_gone);
  3497. ida_destroy(&cic_index_ida);
  3498. cfq_slab_kill();
  3499. }
  3500. module_init(cfq_init);
  3501. module_exit(cfq_exit);
  3502. MODULE_AUTHOR("Jens Axboe");
  3503. MODULE_LICENSE("GPL");
  3504. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");