sched_fair.c 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  126. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  127. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  128. /* Do the two (enqueued) entities belong to the same group ? */
  129. static inline int
  130. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  131. {
  132. if (se->cfs_rq == pse->cfs_rq)
  133. return 1;
  134. return 0;
  135. }
  136. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  137. {
  138. return se->parent;
  139. }
  140. /* return depth at which a sched entity is present in the hierarchy */
  141. static inline int depth_se(struct sched_entity *se)
  142. {
  143. int depth = 0;
  144. for_each_sched_entity(se)
  145. depth++;
  146. return depth;
  147. }
  148. static void
  149. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  150. {
  151. int se_depth, pse_depth;
  152. /*
  153. * preemption test can be made between sibling entities who are in the
  154. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  155. * both tasks until we find their ancestors who are siblings of common
  156. * parent.
  157. */
  158. /* First walk up until both entities are at same depth */
  159. se_depth = depth_se(*se);
  160. pse_depth = depth_se(*pse);
  161. while (se_depth > pse_depth) {
  162. se_depth--;
  163. *se = parent_entity(*se);
  164. }
  165. while (pse_depth > se_depth) {
  166. pse_depth--;
  167. *pse = parent_entity(*pse);
  168. }
  169. while (!is_same_group(*se, *pse)) {
  170. *se = parent_entity(*se);
  171. *pse = parent_entity(*pse);
  172. }
  173. }
  174. #else /* !CONFIG_FAIR_GROUP_SCHED */
  175. static inline struct task_struct *task_of(struct sched_entity *se)
  176. {
  177. return container_of(se, struct task_struct, se);
  178. }
  179. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  180. {
  181. return container_of(cfs_rq, struct rq, cfs);
  182. }
  183. #define entity_is_task(se) 1
  184. #define for_each_sched_entity(se) \
  185. for (; se; se = NULL)
  186. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  187. {
  188. return &task_rq(p)->cfs;
  189. }
  190. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  191. {
  192. struct task_struct *p = task_of(se);
  193. struct rq *rq = task_rq(p);
  194. return &rq->cfs;
  195. }
  196. /* runqueue "owned" by this group */
  197. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  198. {
  199. return NULL;
  200. }
  201. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  202. {
  203. return &cpu_rq(this_cpu)->cfs;
  204. }
  205. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  206. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  207. static inline int
  208. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  209. {
  210. return 1;
  211. }
  212. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  213. {
  214. return NULL;
  215. }
  216. static inline void
  217. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  218. {
  219. }
  220. #endif /* CONFIG_FAIR_GROUP_SCHED */
  221. /**************************************************************
  222. * Scheduling class tree data structure manipulation methods:
  223. */
  224. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  225. {
  226. s64 delta = (s64)(vruntime - min_vruntime);
  227. if (delta > 0)
  228. min_vruntime = vruntime;
  229. return min_vruntime;
  230. }
  231. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  232. {
  233. s64 delta = (s64)(vruntime - min_vruntime);
  234. if (delta < 0)
  235. min_vruntime = vruntime;
  236. return min_vruntime;
  237. }
  238. static inline int entity_before(struct sched_entity *a,
  239. struct sched_entity *b)
  240. {
  241. return (s64)(a->vruntime - b->vruntime) < 0;
  242. }
  243. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  244. {
  245. return se->vruntime - cfs_rq->min_vruntime;
  246. }
  247. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  248. {
  249. u64 vruntime = cfs_rq->min_vruntime;
  250. if (cfs_rq->curr)
  251. vruntime = cfs_rq->curr->vruntime;
  252. if (cfs_rq->rb_leftmost) {
  253. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  254. struct sched_entity,
  255. run_node);
  256. if (!cfs_rq->curr)
  257. vruntime = se->vruntime;
  258. else
  259. vruntime = min_vruntime(vruntime, se->vruntime);
  260. }
  261. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  262. }
  263. /*
  264. * Enqueue an entity into the rb-tree:
  265. */
  266. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  267. {
  268. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  269. struct rb_node *parent = NULL;
  270. struct sched_entity *entry;
  271. s64 key = entity_key(cfs_rq, se);
  272. int leftmost = 1;
  273. /*
  274. * Find the right place in the rbtree:
  275. */
  276. while (*link) {
  277. parent = *link;
  278. entry = rb_entry(parent, struct sched_entity, run_node);
  279. /*
  280. * We dont care about collisions. Nodes with
  281. * the same key stay together.
  282. */
  283. if (key < entity_key(cfs_rq, entry)) {
  284. link = &parent->rb_left;
  285. } else {
  286. link = &parent->rb_right;
  287. leftmost = 0;
  288. }
  289. }
  290. /*
  291. * Maintain a cache of leftmost tree entries (it is frequently
  292. * used):
  293. */
  294. if (leftmost)
  295. cfs_rq->rb_leftmost = &se->run_node;
  296. rb_link_node(&se->run_node, parent, link);
  297. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  298. }
  299. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. if (cfs_rq->rb_leftmost == &se->run_node) {
  302. struct rb_node *next_node;
  303. next_node = rb_next(&se->run_node);
  304. cfs_rq->rb_leftmost = next_node;
  305. }
  306. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  307. }
  308. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  309. {
  310. struct rb_node *left = cfs_rq->rb_leftmost;
  311. if (!left)
  312. return NULL;
  313. return rb_entry(left, struct sched_entity, run_node);
  314. }
  315. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  316. {
  317. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  318. if (!last)
  319. return NULL;
  320. return rb_entry(last, struct sched_entity, run_node);
  321. }
  322. /**************************************************************
  323. * Scheduling class statistics methods:
  324. */
  325. #ifdef CONFIG_SCHED_DEBUG
  326. int sched_proc_update_handler(struct ctl_table *table, int write,
  327. void __user *buffer, size_t *lenp,
  328. loff_t *ppos)
  329. {
  330. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  331. int factor = get_update_sysctl_factor();
  332. if (ret || !write)
  333. return ret;
  334. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  335. sysctl_sched_min_granularity);
  336. #define WRT_SYSCTL(name) \
  337. (normalized_sysctl_##name = sysctl_##name / (factor))
  338. WRT_SYSCTL(sched_min_granularity);
  339. WRT_SYSCTL(sched_latency);
  340. WRT_SYSCTL(sched_wakeup_granularity);
  341. WRT_SYSCTL(sched_shares_ratelimit);
  342. #undef WRT_SYSCTL
  343. return 0;
  344. }
  345. #endif
  346. /*
  347. * delta /= w
  348. */
  349. static inline unsigned long
  350. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  351. {
  352. if (unlikely(se->load.weight != NICE_0_LOAD))
  353. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  354. return delta;
  355. }
  356. /*
  357. * The idea is to set a period in which each task runs once.
  358. *
  359. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  360. * this period because otherwise the slices get too small.
  361. *
  362. * p = (nr <= nl) ? l : l*nr/nl
  363. */
  364. static u64 __sched_period(unsigned long nr_running)
  365. {
  366. u64 period = sysctl_sched_latency;
  367. unsigned long nr_latency = sched_nr_latency;
  368. if (unlikely(nr_running > nr_latency)) {
  369. period = sysctl_sched_min_granularity;
  370. period *= nr_running;
  371. }
  372. return period;
  373. }
  374. /*
  375. * We calculate the wall-time slice from the period by taking a part
  376. * proportional to the weight.
  377. *
  378. * s = p*P[w/rw]
  379. */
  380. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  381. {
  382. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  383. for_each_sched_entity(se) {
  384. struct load_weight *load;
  385. struct load_weight lw;
  386. cfs_rq = cfs_rq_of(se);
  387. load = &cfs_rq->load;
  388. if (unlikely(!se->on_rq)) {
  389. lw = cfs_rq->load;
  390. update_load_add(&lw, se->load.weight);
  391. load = &lw;
  392. }
  393. slice = calc_delta_mine(slice, se->load.weight, load);
  394. }
  395. return slice;
  396. }
  397. /*
  398. * We calculate the vruntime slice of a to be inserted task
  399. *
  400. * vs = s/w
  401. */
  402. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  405. }
  406. /*
  407. * Update the current task's runtime statistics. Skip current tasks that
  408. * are not in our scheduling class.
  409. */
  410. static inline void
  411. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  412. unsigned long delta_exec)
  413. {
  414. unsigned long delta_exec_weighted;
  415. schedstat_set(curr->statistics.exec_max,
  416. max((u64)delta_exec, curr->statistics.exec_max));
  417. curr->sum_exec_runtime += delta_exec;
  418. schedstat_add(cfs_rq, exec_clock, delta_exec);
  419. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  420. curr->vruntime += delta_exec_weighted;
  421. update_min_vruntime(cfs_rq);
  422. }
  423. static void update_curr(struct cfs_rq *cfs_rq)
  424. {
  425. struct sched_entity *curr = cfs_rq->curr;
  426. u64 now = rq_of(cfs_rq)->clock_task;
  427. unsigned long delta_exec;
  428. if (unlikely(!curr))
  429. return;
  430. /*
  431. * Get the amount of time the current task was running
  432. * since the last time we changed load (this cannot
  433. * overflow on 32 bits):
  434. */
  435. delta_exec = (unsigned long)(now - curr->exec_start);
  436. if (!delta_exec)
  437. return;
  438. __update_curr(cfs_rq, curr, delta_exec);
  439. curr->exec_start = now;
  440. if (entity_is_task(curr)) {
  441. struct task_struct *curtask = task_of(curr);
  442. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  443. cpuacct_charge(curtask, delta_exec);
  444. account_group_exec_runtime(curtask, delta_exec);
  445. }
  446. }
  447. static inline void
  448. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  449. {
  450. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  451. }
  452. /*
  453. * Task is being enqueued - update stats:
  454. */
  455. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  456. {
  457. /*
  458. * Are we enqueueing a waiting task? (for current tasks
  459. * a dequeue/enqueue event is a NOP)
  460. */
  461. if (se != cfs_rq->curr)
  462. update_stats_wait_start(cfs_rq, se);
  463. }
  464. static void
  465. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  466. {
  467. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  468. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  469. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  470. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  471. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  472. #ifdef CONFIG_SCHEDSTATS
  473. if (entity_is_task(se)) {
  474. trace_sched_stat_wait(task_of(se),
  475. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  476. }
  477. #endif
  478. schedstat_set(se->statistics.wait_start, 0);
  479. }
  480. static inline void
  481. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  482. {
  483. /*
  484. * Mark the end of the wait period if dequeueing a
  485. * waiting task:
  486. */
  487. if (se != cfs_rq->curr)
  488. update_stats_wait_end(cfs_rq, se);
  489. }
  490. /*
  491. * We are picking a new current task - update its stats:
  492. */
  493. static inline void
  494. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  495. {
  496. /*
  497. * We are starting a new run period:
  498. */
  499. se->exec_start = rq_of(cfs_rq)->clock_task;
  500. }
  501. /**************************************************
  502. * Scheduling class queueing methods:
  503. */
  504. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  505. static void
  506. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  507. {
  508. cfs_rq->task_weight += weight;
  509. }
  510. #else
  511. static inline void
  512. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  513. {
  514. }
  515. #endif
  516. static void
  517. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. update_load_add(&cfs_rq->load, se->load.weight);
  520. if (!parent_entity(se))
  521. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  522. if (entity_is_task(se)) {
  523. add_cfs_task_weight(cfs_rq, se->load.weight);
  524. list_add(&se->group_node, &cfs_rq->tasks);
  525. }
  526. cfs_rq->nr_running++;
  527. se->on_rq = 1;
  528. }
  529. static void
  530. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  531. {
  532. update_load_sub(&cfs_rq->load, se->load.weight);
  533. if (!parent_entity(se))
  534. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  535. if (entity_is_task(se)) {
  536. add_cfs_task_weight(cfs_rq, -se->load.weight);
  537. list_del_init(&se->group_node);
  538. }
  539. cfs_rq->nr_running--;
  540. se->on_rq = 0;
  541. }
  542. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. #ifdef CONFIG_SCHEDSTATS
  545. struct task_struct *tsk = NULL;
  546. if (entity_is_task(se))
  547. tsk = task_of(se);
  548. if (se->statistics.sleep_start) {
  549. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  550. if ((s64)delta < 0)
  551. delta = 0;
  552. if (unlikely(delta > se->statistics.sleep_max))
  553. se->statistics.sleep_max = delta;
  554. se->statistics.sleep_start = 0;
  555. se->statistics.sum_sleep_runtime += delta;
  556. if (tsk) {
  557. account_scheduler_latency(tsk, delta >> 10, 1);
  558. trace_sched_stat_sleep(tsk, delta);
  559. }
  560. }
  561. if (se->statistics.block_start) {
  562. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  563. if ((s64)delta < 0)
  564. delta = 0;
  565. if (unlikely(delta > se->statistics.block_max))
  566. se->statistics.block_max = delta;
  567. se->statistics.block_start = 0;
  568. se->statistics.sum_sleep_runtime += delta;
  569. if (tsk) {
  570. if (tsk->in_iowait) {
  571. se->statistics.iowait_sum += delta;
  572. se->statistics.iowait_count++;
  573. trace_sched_stat_iowait(tsk, delta);
  574. }
  575. /*
  576. * Blocking time is in units of nanosecs, so shift by
  577. * 20 to get a milliseconds-range estimation of the
  578. * amount of time that the task spent sleeping:
  579. */
  580. if (unlikely(prof_on == SLEEP_PROFILING)) {
  581. profile_hits(SLEEP_PROFILING,
  582. (void *)get_wchan(tsk),
  583. delta >> 20);
  584. }
  585. account_scheduler_latency(tsk, delta >> 10, 0);
  586. }
  587. }
  588. #endif
  589. }
  590. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  591. {
  592. #ifdef CONFIG_SCHED_DEBUG
  593. s64 d = se->vruntime - cfs_rq->min_vruntime;
  594. if (d < 0)
  595. d = -d;
  596. if (d > 3*sysctl_sched_latency)
  597. schedstat_inc(cfs_rq, nr_spread_over);
  598. #endif
  599. }
  600. static void
  601. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  602. {
  603. u64 vruntime = cfs_rq->min_vruntime;
  604. /*
  605. * The 'current' period is already promised to the current tasks,
  606. * however the extra weight of the new task will slow them down a
  607. * little, place the new task so that it fits in the slot that
  608. * stays open at the end.
  609. */
  610. if (initial && sched_feat(START_DEBIT))
  611. vruntime += sched_vslice(cfs_rq, se);
  612. /* sleeps up to a single latency don't count. */
  613. if (!initial) {
  614. unsigned long thresh = sysctl_sched_latency;
  615. /*
  616. * Halve their sleep time's effect, to allow
  617. * for a gentler effect of sleepers:
  618. */
  619. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  620. thresh >>= 1;
  621. vruntime -= thresh;
  622. }
  623. /* ensure we never gain time by being placed backwards. */
  624. vruntime = max_vruntime(se->vruntime, vruntime);
  625. se->vruntime = vruntime;
  626. }
  627. static void
  628. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  629. {
  630. /*
  631. * Update the normalized vruntime before updating min_vruntime
  632. * through callig update_curr().
  633. */
  634. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  635. se->vruntime += cfs_rq->min_vruntime;
  636. /*
  637. * Update run-time statistics of the 'current'.
  638. */
  639. update_curr(cfs_rq);
  640. account_entity_enqueue(cfs_rq, se);
  641. if (flags & ENQUEUE_WAKEUP) {
  642. place_entity(cfs_rq, se, 0);
  643. enqueue_sleeper(cfs_rq, se);
  644. }
  645. update_stats_enqueue(cfs_rq, se);
  646. check_spread(cfs_rq, se);
  647. if (se != cfs_rq->curr)
  648. __enqueue_entity(cfs_rq, se);
  649. }
  650. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  651. {
  652. if (!se || cfs_rq->last == se)
  653. cfs_rq->last = NULL;
  654. if (!se || cfs_rq->next == se)
  655. cfs_rq->next = NULL;
  656. }
  657. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. for_each_sched_entity(se)
  660. __clear_buddies(cfs_rq_of(se), se);
  661. }
  662. static void
  663. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  664. {
  665. /*
  666. * Update run-time statistics of the 'current'.
  667. */
  668. update_curr(cfs_rq);
  669. update_stats_dequeue(cfs_rq, se);
  670. if (flags & DEQUEUE_SLEEP) {
  671. #ifdef CONFIG_SCHEDSTATS
  672. if (entity_is_task(se)) {
  673. struct task_struct *tsk = task_of(se);
  674. if (tsk->state & TASK_INTERRUPTIBLE)
  675. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  676. if (tsk->state & TASK_UNINTERRUPTIBLE)
  677. se->statistics.block_start = rq_of(cfs_rq)->clock;
  678. }
  679. #endif
  680. }
  681. clear_buddies(cfs_rq, se);
  682. if (se != cfs_rq->curr)
  683. __dequeue_entity(cfs_rq, se);
  684. account_entity_dequeue(cfs_rq, se);
  685. update_min_vruntime(cfs_rq);
  686. /*
  687. * Normalize the entity after updating the min_vruntime because the
  688. * update can refer to the ->curr item and we need to reflect this
  689. * movement in our normalized position.
  690. */
  691. if (!(flags & DEQUEUE_SLEEP))
  692. se->vruntime -= cfs_rq->min_vruntime;
  693. }
  694. /*
  695. * Preempt the current task with a newly woken task if needed:
  696. */
  697. static void
  698. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  699. {
  700. unsigned long ideal_runtime, delta_exec;
  701. ideal_runtime = sched_slice(cfs_rq, curr);
  702. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  703. if (delta_exec > ideal_runtime) {
  704. resched_task(rq_of(cfs_rq)->curr);
  705. /*
  706. * The current task ran long enough, ensure it doesn't get
  707. * re-elected due to buddy favours.
  708. */
  709. clear_buddies(cfs_rq, curr);
  710. return;
  711. }
  712. /*
  713. * Ensure that a task that missed wakeup preemption by a
  714. * narrow margin doesn't have to wait for a full slice.
  715. * This also mitigates buddy induced latencies under load.
  716. */
  717. if (!sched_feat(WAKEUP_PREEMPT))
  718. return;
  719. if (delta_exec < sysctl_sched_min_granularity)
  720. return;
  721. if (cfs_rq->nr_running > 1) {
  722. struct sched_entity *se = __pick_next_entity(cfs_rq);
  723. s64 delta = curr->vruntime - se->vruntime;
  724. if (delta > ideal_runtime)
  725. resched_task(rq_of(cfs_rq)->curr);
  726. }
  727. }
  728. static void
  729. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  730. {
  731. /* 'current' is not kept within the tree. */
  732. if (se->on_rq) {
  733. /*
  734. * Any task has to be enqueued before it get to execute on
  735. * a CPU. So account for the time it spent waiting on the
  736. * runqueue.
  737. */
  738. update_stats_wait_end(cfs_rq, se);
  739. __dequeue_entity(cfs_rq, se);
  740. }
  741. update_stats_curr_start(cfs_rq, se);
  742. cfs_rq->curr = se;
  743. #ifdef CONFIG_SCHEDSTATS
  744. /*
  745. * Track our maximum slice length, if the CPU's load is at
  746. * least twice that of our own weight (i.e. dont track it
  747. * when there are only lesser-weight tasks around):
  748. */
  749. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  750. se->statistics.slice_max = max(se->statistics.slice_max,
  751. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  752. }
  753. #endif
  754. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  755. }
  756. static int
  757. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  758. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  759. {
  760. struct sched_entity *se = __pick_next_entity(cfs_rq);
  761. struct sched_entity *left = se;
  762. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  763. se = cfs_rq->next;
  764. /*
  765. * Prefer last buddy, try to return the CPU to a preempted task.
  766. */
  767. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  768. se = cfs_rq->last;
  769. clear_buddies(cfs_rq, se);
  770. return se;
  771. }
  772. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  773. {
  774. /*
  775. * If still on the runqueue then deactivate_task()
  776. * was not called and update_curr() has to be done:
  777. */
  778. if (prev->on_rq)
  779. update_curr(cfs_rq);
  780. check_spread(cfs_rq, prev);
  781. if (prev->on_rq) {
  782. update_stats_wait_start(cfs_rq, prev);
  783. /* Put 'current' back into the tree. */
  784. __enqueue_entity(cfs_rq, prev);
  785. }
  786. cfs_rq->curr = NULL;
  787. }
  788. static void
  789. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  790. {
  791. /*
  792. * Update run-time statistics of the 'current'.
  793. */
  794. update_curr(cfs_rq);
  795. #ifdef CONFIG_SCHED_HRTICK
  796. /*
  797. * queued ticks are scheduled to match the slice, so don't bother
  798. * validating it and just reschedule.
  799. */
  800. if (queued) {
  801. resched_task(rq_of(cfs_rq)->curr);
  802. return;
  803. }
  804. /*
  805. * don't let the period tick interfere with the hrtick preemption
  806. */
  807. if (!sched_feat(DOUBLE_TICK) &&
  808. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  809. return;
  810. #endif
  811. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  812. check_preempt_tick(cfs_rq, curr);
  813. }
  814. /**************************************************
  815. * CFS operations on tasks:
  816. */
  817. #ifdef CONFIG_SCHED_HRTICK
  818. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  819. {
  820. struct sched_entity *se = &p->se;
  821. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  822. WARN_ON(task_rq(p) != rq);
  823. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  824. u64 slice = sched_slice(cfs_rq, se);
  825. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  826. s64 delta = slice - ran;
  827. if (delta < 0) {
  828. if (rq->curr == p)
  829. resched_task(p);
  830. return;
  831. }
  832. /*
  833. * Don't schedule slices shorter than 10000ns, that just
  834. * doesn't make sense. Rely on vruntime for fairness.
  835. */
  836. if (rq->curr != p)
  837. delta = max_t(s64, 10000LL, delta);
  838. hrtick_start(rq, delta);
  839. }
  840. }
  841. /*
  842. * called from enqueue/dequeue and updates the hrtick when the
  843. * current task is from our class and nr_running is low enough
  844. * to matter.
  845. */
  846. static void hrtick_update(struct rq *rq)
  847. {
  848. struct task_struct *curr = rq->curr;
  849. if (curr->sched_class != &fair_sched_class)
  850. return;
  851. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  852. hrtick_start_fair(rq, curr);
  853. }
  854. #else /* !CONFIG_SCHED_HRTICK */
  855. static inline void
  856. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  857. {
  858. }
  859. static inline void hrtick_update(struct rq *rq)
  860. {
  861. }
  862. #endif
  863. /*
  864. * The enqueue_task method is called before nr_running is
  865. * increased. Here we update the fair scheduling stats and
  866. * then put the task into the rbtree:
  867. */
  868. static void
  869. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  870. {
  871. struct cfs_rq *cfs_rq;
  872. struct sched_entity *se = &p->se;
  873. for_each_sched_entity(se) {
  874. if (se->on_rq)
  875. break;
  876. cfs_rq = cfs_rq_of(se);
  877. enqueue_entity(cfs_rq, se, flags);
  878. flags = ENQUEUE_WAKEUP;
  879. }
  880. hrtick_update(rq);
  881. }
  882. /*
  883. * The dequeue_task method is called before nr_running is
  884. * decreased. We remove the task from the rbtree and
  885. * update the fair scheduling stats:
  886. */
  887. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  888. {
  889. struct cfs_rq *cfs_rq;
  890. struct sched_entity *se = &p->se;
  891. for_each_sched_entity(se) {
  892. cfs_rq = cfs_rq_of(se);
  893. dequeue_entity(cfs_rq, se, flags);
  894. /* Don't dequeue parent if it has other entities besides us */
  895. if (cfs_rq->load.weight)
  896. break;
  897. flags |= DEQUEUE_SLEEP;
  898. }
  899. hrtick_update(rq);
  900. }
  901. /*
  902. * sched_yield() support is very simple - we dequeue and enqueue.
  903. *
  904. * If compat_yield is turned on then we requeue to the end of the tree.
  905. */
  906. static void yield_task_fair(struct rq *rq)
  907. {
  908. struct task_struct *curr = rq->curr;
  909. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  910. struct sched_entity *rightmost, *se = &curr->se;
  911. /*
  912. * Are we the only task in the tree?
  913. */
  914. if (unlikely(cfs_rq->nr_running == 1))
  915. return;
  916. clear_buddies(cfs_rq, se);
  917. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  918. update_rq_clock(rq);
  919. /*
  920. * Update run-time statistics of the 'current'.
  921. */
  922. update_curr(cfs_rq);
  923. return;
  924. }
  925. /*
  926. * Find the rightmost entry in the rbtree:
  927. */
  928. rightmost = __pick_last_entity(cfs_rq);
  929. /*
  930. * Already in the rightmost position?
  931. */
  932. if (unlikely(!rightmost || entity_before(rightmost, se)))
  933. return;
  934. /*
  935. * Minimally necessary key value to be last in the tree:
  936. * Upon rescheduling, sched_class::put_prev_task() will place
  937. * 'current' within the tree based on its new key value.
  938. */
  939. se->vruntime = rightmost->vruntime + 1;
  940. }
  941. #ifdef CONFIG_SMP
  942. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  943. {
  944. struct sched_entity *se = &p->se;
  945. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  946. se->vruntime -= cfs_rq->min_vruntime;
  947. }
  948. #ifdef CONFIG_FAIR_GROUP_SCHED
  949. /*
  950. * effective_load() calculates the load change as seen from the root_task_group
  951. *
  952. * Adding load to a group doesn't make a group heavier, but can cause movement
  953. * of group shares between cpus. Assuming the shares were perfectly aligned one
  954. * can calculate the shift in shares.
  955. *
  956. * The problem is that perfectly aligning the shares is rather expensive, hence
  957. * we try to avoid doing that too often - see update_shares(), which ratelimits
  958. * this change.
  959. *
  960. * We compensate this by not only taking the current delta into account, but
  961. * also considering the delta between when the shares were last adjusted and
  962. * now.
  963. *
  964. * We still saw a performance dip, some tracing learned us that between
  965. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  966. * significantly. Therefore try to bias the error in direction of failing
  967. * the affine wakeup.
  968. *
  969. */
  970. static long effective_load(struct task_group *tg, int cpu,
  971. long wl, long wg)
  972. {
  973. struct sched_entity *se = tg->se[cpu];
  974. if (!tg->parent)
  975. return wl;
  976. /*
  977. * By not taking the decrease of shares on the other cpu into
  978. * account our error leans towards reducing the affine wakeups.
  979. */
  980. if (!wl && sched_feat(ASYM_EFF_LOAD))
  981. return wl;
  982. for_each_sched_entity(se) {
  983. long S, rw, s, a, b;
  984. long more_w;
  985. /*
  986. * Instead of using this increment, also add the difference
  987. * between when the shares were last updated and now.
  988. */
  989. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  990. wl += more_w;
  991. wg += more_w;
  992. S = se->my_q->tg->shares;
  993. s = se->my_q->shares;
  994. rw = se->my_q->rq_weight;
  995. a = S*(rw + wl);
  996. b = S*rw + s*wg;
  997. wl = s*(a-b);
  998. if (likely(b))
  999. wl /= b;
  1000. /*
  1001. * Assume the group is already running and will
  1002. * thus already be accounted for in the weight.
  1003. *
  1004. * That is, moving shares between CPUs, does not
  1005. * alter the group weight.
  1006. */
  1007. wg = 0;
  1008. }
  1009. return wl;
  1010. }
  1011. #else
  1012. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1013. unsigned long wl, unsigned long wg)
  1014. {
  1015. return wl;
  1016. }
  1017. #endif
  1018. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1019. {
  1020. unsigned long this_load, load;
  1021. int idx, this_cpu, prev_cpu;
  1022. unsigned long tl_per_task;
  1023. struct task_group *tg;
  1024. unsigned long weight;
  1025. int balanced;
  1026. idx = sd->wake_idx;
  1027. this_cpu = smp_processor_id();
  1028. prev_cpu = task_cpu(p);
  1029. load = source_load(prev_cpu, idx);
  1030. this_load = target_load(this_cpu, idx);
  1031. /*
  1032. * If sync wakeup then subtract the (maximum possible)
  1033. * effect of the currently running task from the load
  1034. * of the current CPU:
  1035. */
  1036. rcu_read_lock();
  1037. if (sync) {
  1038. tg = task_group(current);
  1039. weight = current->se.load.weight;
  1040. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1041. load += effective_load(tg, prev_cpu, 0, -weight);
  1042. }
  1043. tg = task_group(p);
  1044. weight = p->se.load.weight;
  1045. /*
  1046. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1047. * due to the sync cause above having dropped this_load to 0, we'll
  1048. * always have an imbalance, but there's really nothing you can do
  1049. * about that, so that's good too.
  1050. *
  1051. * Otherwise check if either cpus are near enough in load to allow this
  1052. * task to be woken on this_cpu.
  1053. */
  1054. if (this_load) {
  1055. unsigned long this_eff_load, prev_eff_load;
  1056. this_eff_load = 100;
  1057. this_eff_load *= power_of(prev_cpu);
  1058. this_eff_load *= this_load +
  1059. effective_load(tg, this_cpu, weight, weight);
  1060. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1061. prev_eff_load *= power_of(this_cpu);
  1062. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1063. balanced = this_eff_load <= prev_eff_load;
  1064. } else
  1065. balanced = true;
  1066. rcu_read_unlock();
  1067. /*
  1068. * If the currently running task will sleep within
  1069. * a reasonable amount of time then attract this newly
  1070. * woken task:
  1071. */
  1072. if (sync && balanced)
  1073. return 1;
  1074. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1075. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1076. if (balanced ||
  1077. (this_load <= load &&
  1078. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1079. /*
  1080. * This domain has SD_WAKE_AFFINE and
  1081. * p is cache cold in this domain, and
  1082. * there is no bad imbalance.
  1083. */
  1084. schedstat_inc(sd, ttwu_move_affine);
  1085. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1086. return 1;
  1087. }
  1088. return 0;
  1089. }
  1090. /*
  1091. * find_idlest_group finds and returns the least busy CPU group within the
  1092. * domain.
  1093. */
  1094. static struct sched_group *
  1095. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1096. int this_cpu, int load_idx)
  1097. {
  1098. struct sched_group *idlest = NULL, *group = sd->groups;
  1099. unsigned long min_load = ULONG_MAX, this_load = 0;
  1100. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1101. do {
  1102. unsigned long load, avg_load;
  1103. int local_group;
  1104. int i;
  1105. /* Skip over this group if it has no CPUs allowed */
  1106. if (!cpumask_intersects(sched_group_cpus(group),
  1107. &p->cpus_allowed))
  1108. continue;
  1109. local_group = cpumask_test_cpu(this_cpu,
  1110. sched_group_cpus(group));
  1111. /* Tally up the load of all CPUs in the group */
  1112. avg_load = 0;
  1113. for_each_cpu(i, sched_group_cpus(group)) {
  1114. /* Bias balancing toward cpus of our domain */
  1115. if (local_group)
  1116. load = source_load(i, load_idx);
  1117. else
  1118. load = target_load(i, load_idx);
  1119. avg_load += load;
  1120. }
  1121. /* Adjust by relative CPU power of the group */
  1122. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1123. if (local_group) {
  1124. this_load = avg_load;
  1125. } else if (avg_load < min_load) {
  1126. min_load = avg_load;
  1127. idlest = group;
  1128. }
  1129. } while (group = group->next, group != sd->groups);
  1130. if (!idlest || 100*this_load < imbalance*min_load)
  1131. return NULL;
  1132. return idlest;
  1133. }
  1134. /*
  1135. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1136. */
  1137. static int
  1138. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1139. {
  1140. unsigned long load, min_load = ULONG_MAX;
  1141. int idlest = -1;
  1142. int i;
  1143. /* Traverse only the allowed CPUs */
  1144. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1145. load = weighted_cpuload(i);
  1146. if (load < min_load || (load == min_load && i == this_cpu)) {
  1147. min_load = load;
  1148. idlest = i;
  1149. }
  1150. }
  1151. return idlest;
  1152. }
  1153. /*
  1154. * Try and locate an idle CPU in the sched_domain.
  1155. */
  1156. static int select_idle_sibling(struct task_struct *p, int target)
  1157. {
  1158. int cpu = smp_processor_id();
  1159. int prev_cpu = task_cpu(p);
  1160. struct sched_domain *sd;
  1161. int i;
  1162. /*
  1163. * If the task is going to be woken-up on this cpu and if it is
  1164. * already idle, then it is the right target.
  1165. */
  1166. if (target == cpu && idle_cpu(cpu))
  1167. return cpu;
  1168. /*
  1169. * If the task is going to be woken-up on the cpu where it previously
  1170. * ran and if it is currently idle, then it the right target.
  1171. */
  1172. if (target == prev_cpu && idle_cpu(prev_cpu))
  1173. return prev_cpu;
  1174. /*
  1175. * Otherwise, iterate the domains and find an elegible idle cpu.
  1176. */
  1177. for_each_domain(target, sd) {
  1178. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1179. break;
  1180. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1181. if (idle_cpu(i)) {
  1182. target = i;
  1183. break;
  1184. }
  1185. }
  1186. /*
  1187. * Lets stop looking for an idle sibling when we reached
  1188. * the domain that spans the current cpu and prev_cpu.
  1189. */
  1190. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1191. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1192. break;
  1193. }
  1194. return target;
  1195. }
  1196. /*
  1197. * sched_balance_self: balance the current task (running on cpu) in domains
  1198. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1199. * SD_BALANCE_EXEC.
  1200. *
  1201. * Balance, ie. select the least loaded group.
  1202. *
  1203. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1204. *
  1205. * preempt must be disabled.
  1206. */
  1207. static int
  1208. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1209. {
  1210. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1211. int cpu = smp_processor_id();
  1212. int prev_cpu = task_cpu(p);
  1213. int new_cpu = cpu;
  1214. int want_affine = 0;
  1215. int want_sd = 1;
  1216. int sync = wake_flags & WF_SYNC;
  1217. if (sd_flag & SD_BALANCE_WAKE) {
  1218. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1219. want_affine = 1;
  1220. new_cpu = prev_cpu;
  1221. }
  1222. for_each_domain(cpu, tmp) {
  1223. if (!(tmp->flags & SD_LOAD_BALANCE))
  1224. continue;
  1225. /*
  1226. * If power savings logic is enabled for a domain, see if we
  1227. * are not overloaded, if so, don't balance wider.
  1228. */
  1229. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1230. unsigned long power = 0;
  1231. unsigned long nr_running = 0;
  1232. unsigned long capacity;
  1233. int i;
  1234. for_each_cpu(i, sched_domain_span(tmp)) {
  1235. power += power_of(i);
  1236. nr_running += cpu_rq(i)->cfs.nr_running;
  1237. }
  1238. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1239. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1240. nr_running /= 2;
  1241. if (nr_running < capacity)
  1242. want_sd = 0;
  1243. }
  1244. /*
  1245. * If both cpu and prev_cpu are part of this domain,
  1246. * cpu is a valid SD_WAKE_AFFINE target.
  1247. */
  1248. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1249. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1250. affine_sd = tmp;
  1251. want_affine = 0;
  1252. }
  1253. if (!want_sd && !want_affine)
  1254. break;
  1255. if (!(tmp->flags & sd_flag))
  1256. continue;
  1257. if (want_sd)
  1258. sd = tmp;
  1259. }
  1260. #ifdef CONFIG_FAIR_GROUP_SCHED
  1261. if (sched_feat(LB_SHARES_UPDATE)) {
  1262. /*
  1263. * Pick the largest domain to update shares over
  1264. */
  1265. tmp = sd;
  1266. if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
  1267. tmp = affine_sd;
  1268. if (tmp) {
  1269. raw_spin_unlock(&rq->lock);
  1270. update_shares(tmp);
  1271. raw_spin_lock(&rq->lock);
  1272. }
  1273. }
  1274. #endif
  1275. if (affine_sd) {
  1276. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1277. return select_idle_sibling(p, cpu);
  1278. else
  1279. return select_idle_sibling(p, prev_cpu);
  1280. }
  1281. while (sd) {
  1282. int load_idx = sd->forkexec_idx;
  1283. struct sched_group *group;
  1284. int weight;
  1285. if (!(sd->flags & sd_flag)) {
  1286. sd = sd->child;
  1287. continue;
  1288. }
  1289. if (sd_flag & SD_BALANCE_WAKE)
  1290. load_idx = sd->wake_idx;
  1291. group = find_idlest_group(sd, p, cpu, load_idx);
  1292. if (!group) {
  1293. sd = sd->child;
  1294. continue;
  1295. }
  1296. new_cpu = find_idlest_cpu(group, p, cpu);
  1297. if (new_cpu == -1 || new_cpu == cpu) {
  1298. /* Now try balancing at a lower domain level of cpu */
  1299. sd = sd->child;
  1300. continue;
  1301. }
  1302. /* Now try balancing at a lower domain level of new_cpu */
  1303. cpu = new_cpu;
  1304. weight = sd->span_weight;
  1305. sd = NULL;
  1306. for_each_domain(cpu, tmp) {
  1307. if (weight <= tmp->span_weight)
  1308. break;
  1309. if (tmp->flags & sd_flag)
  1310. sd = tmp;
  1311. }
  1312. /* while loop will break here if sd == NULL */
  1313. }
  1314. return new_cpu;
  1315. }
  1316. #endif /* CONFIG_SMP */
  1317. static unsigned long
  1318. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1319. {
  1320. unsigned long gran = sysctl_sched_wakeup_granularity;
  1321. /*
  1322. * Since its curr running now, convert the gran from real-time
  1323. * to virtual-time in his units.
  1324. *
  1325. * By using 'se' instead of 'curr' we penalize light tasks, so
  1326. * they get preempted easier. That is, if 'se' < 'curr' then
  1327. * the resulting gran will be larger, therefore penalizing the
  1328. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1329. * be smaller, again penalizing the lighter task.
  1330. *
  1331. * This is especially important for buddies when the leftmost
  1332. * task is higher priority than the buddy.
  1333. */
  1334. if (unlikely(se->load.weight != NICE_0_LOAD))
  1335. gran = calc_delta_fair(gran, se);
  1336. return gran;
  1337. }
  1338. /*
  1339. * Should 'se' preempt 'curr'.
  1340. *
  1341. * |s1
  1342. * |s2
  1343. * |s3
  1344. * g
  1345. * |<--->|c
  1346. *
  1347. * w(c, s1) = -1
  1348. * w(c, s2) = 0
  1349. * w(c, s3) = 1
  1350. *
  1351. */
  1352. static int
  1353. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1354. {
  1355. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1356. if (vdiff <= 0)
  1357. return -1;
  1358. gran = wakeup_gran(curr, se);
  1359. if (vdiff > gran)
  1360. return 1;
  1361. return 0;
  1362. }
  1363. static void set_last_buddy(struct sched_entity *se)
  1364. {
  1365. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1366. for_each_sched_entity(se)
  1367. cfs_rq_of(se)->last = se;
  1368. }
  1369. }
  1370. static void set_next_buddy(struct sched_entity *se)
  1371. {
  1372. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1373. for_each_sched_entity(se)
  1374. cfs_rq_of(se)->next = se;
  1375. }
  1376. }
  1377. /*
  1378. * Preempt the current task with a newly woken task if needed:
  1379. */
  1380. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1381. {
  1382. struct task_struct *curr = rq->curr;
  1383. struct sched_entity *se = &curr->se, *pse = &p->se;
  1384. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1385. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1386. if (unlikely(se == pse))
  1387. return;
  1388. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1389. set_next_buddy(pse);
  1390. /*
  1391. * We can come here with TIF_NEED_RESCHED already set from new task
  1392. * wake up path.
  1393. */
  1394. if (test_tsk_need_resched(curr))
  1395. return;
  1396. /*
  1397. * Batch and idle tasks do not preempt (their preemption is driven by
  1398. * the tick):
  1399. */
  1400. if (unlikely(p->policy != SCHED_NORMAL))
  1401. return;
  1402. /* Idle tasks are by definition preempted by everybody. */
  1403. if (unlikely(curr->policy == SCHED_IDLE))
  1404. goto preempt;
  1405. if (!sched_feat(WAKEUP_PREEMPT))
  1406. return;
  1407. update_curr(cfs_rq);
  1408. find_matching_se(&se, &pse);
  1409. BUG_ON(!pse);
  1410. if (wakeup_preempt_entity(se, pse) == 1)
  1411. goto preempt;
  1412. return;
  1413. preempt:
  1414. resched_task(curr);
  1415. /*
  1416. * Only set the backward buddy when the current task is still
  1417. * on the rq. This can happen when a wakeup gets interleaved
  1418. * with schedule on the ->pre_schedule() or idle_balance()
  1419. * point, either of which can * drop the rq lock.
  1420. *
  1421. * Also, during early boot the idle thread is in the fair class,
  1422. * for obvious reasons its a bad idea to schedule back to it.
  1423. */
  1424. if (unlikely(!se->on_rq || curr == rq->idle))
  1425. return;
  1426. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1427. set_last_buddy(se);
  1428. }
  1429. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1430. {
  1431. struct task_struct *p;
  1432. struct cfs_rq *cfs_rq = &rq->cfs;
  1433. struct sched_entity *se;
  1434. if (!cfs_rq->nr_running)
  1435. return NULL;
  1436. do {
  1437. se = pick_next_entity(cfs_rq);
  1438. set_next_entity(cfs_rq, se);
  1439. cfs_rq = group_cfs_rq(se);
  1440. } while (cfs_rq);
  1441. p = task_of(se);
  1442. hrtick_start_fair(rq, p);
  1443. return p;
  1444. }
  1445. /*
  1446. * Account for a descheduled task:
  1447. */
  1448. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1449. {
  1450. struct sched_entity *se = &prev->se;
  1451. struct cfs_rq *cfs_rq;
  1452. for_each_sched_entity(se) {
  1453. cfs_rq = cfs_rq_of(se);
  1454. put_prev_entity(cfs_rq, se);
  1455. }
  1456. }
  1457. #ifdef CONFIG_SMP
  1458. /**************************************************
  1459. * Fair scheduling class load-balancing methods:
  1460. */
  1461. /*
  1462. * pull_task - move a task from a remote runqueue to the local runqueue.
  1463. * Both runqueues must be locked.
  1464. */
  1465. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1466. struct rq *this_rq, int this_cpu)
  1467. {
  1468. deactivate_task(src_rq, p, 0);
  1469. set_task_cpu(p, this_cpu);
  1470. activate_task(this_rq, p, 0);
  1471. check_preempt_curr(this_rq, p, 0);
  1472. }
  1473. /*
  1474. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1475. */
  1476. static
  1477. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1478. struct sched_domain *sd, enum cpu_idle_type idle,
  1479. int *all_pinned)
  1480. {
  1481. int tsk_cache_hot = 0;
  1482. /*
  1483. * We do not migrate tasks that are:
  1484. * 1) running (obviously), or
  1485. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1486. * 3) are cache-hot on their current CPU.
  1487. */
  1488. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1489. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1490. return 0;
  1491. }
  1492. *all_pinned = 0;
  1493. if (task_running(rq, p)) {
  1494. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1495. return 0;
  1496. }
  1497. /*
  1498. * Aggressive migration if:
  1499. * 1) task is cache cold, or
  1500. * 2) too many balance attempts have failed.
  1501. */
  1502. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1503. if (!tsk_cache_hot ||
  1504. sd->nr_balance_failed > sd->cache_nice_tries) {
  1505. #ifdef CONFIG_SCHEDSTATS
  1506. if (tsk_cache_hot) {
  1507. schedstat_inc(sd, lb_hot_gained[idle]);
  1508. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1509. }
  1510. #endif
  1511. return 1;
  1512. }
  1513. if (tsk_cache_hot) {
  1514. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1515. return 0;
  1516. }
  1517. return 1;
  1518. }
  1519. /*
  1520. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1521. * part of active balancing operations within "domain".
  1522. * Returns 1 if successful and 0 otherwise.
  1523. *
  1524. * Called with both runqueues locked.
  1525. */
  1526. static int
  1527. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1528. struct sched_domain *sd, enum cpu_idle_type idle)
  1529. {
  1530. struct task_struct *p, *n;
  1531. struct cfs_rq *cfs_rq;
  1532. int pinned = 0;
  1533. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1534. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1535. if (!can_migrate_task(p, busiest, this_cpu,
  1536. sd, idle, &pinned))
  1537. continue;
  1538. pull_task(busiest, p, this_rq, this_cpu);
  1539. /*
  1540. * Right now, this is only the second place pull_task()
  1541. * is called, so we can safely collect pull_task()
  1542. * stats here rather than inside pull_task().
  1543. */
  1544. schedstat_inc(sd, lb_gained[idle]);
  1545. return 1;
  1546. }
  1547. }
  1548. return 0;
  1549. }
  1550. static unsigned long
  1551. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1552. unsigned long max_load_move, struct sched_domain *sd,
  1553. enum cpu_idle_type idle, int *all_pinned,
  1554. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1555. {
  1556. int loops = 0, pulled = 0, pinned = 0;
  1557. long rem_load_move = max_load_move;
  1558. struct task_struct *p, *n;
  1559. if (max_load_move == 0)
  1560. goto out;
  1561. pinned = 1;
  1562. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1563. if (loops++ > sysctl_sched_nr_migrate)
  1564. break;
  1565. if ((p->se.load.weight >> 1) > rem_load_move ||
  1566. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1567. continue;
  1568. pull_task(busiest, p, this_rq, this_cpu);
  1569. pulled++;
  1570. rem_load_move -= p->se.load.weight;
  1571. #ifdef CONFIG_PREEMPT
  1572. /*
  1573. * NEWIDLE balancing is a source of latency, so preemptible
  1574. * kernels will stop after the first task is pulled to minimize
  1575. * the critical section.
  1576. */
  1577. if (idle == CPU_NEWLY_IDLE)
  1578. break;
  1579. #endif
  1580. /*
  1581. * We only want to steal up to the prescribed amount of
  1582. * weighted load.
  1583. */
  1584. if (rem_load_move <= 0)
  1585. break;
  1586. if (p->prio < *this_best_prio)
  1587. *this_best_prio = p->prio;
  1588. }
  1589. out:
  1590. /*
  1591. * Right now, this is one of only two places pull_task() is called,
  1592. * so we can safely collect pull_task() stats here rather than
  1593. * inside pull_task().
  1594. */
  1595. schedstat_add(sd, lb_gained[idle], pulled);
  1596. if (all_pinned)
  1597. *all_pinned = pinned;
  1598. return max_load_move - rem_load_move;
  1599. }
  1600. #ifdef CONFIG_FAIR_GROUP_SCHED
  1601. static unsigned long
  1602. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1603. unsigned long max_load_move,
  1604. struct sched_domain *sd, enum cpu_idle_type idle,
  1605. int *all_pinned, int *this_best_prio)
  1606. {
  1607. long rem_load_move = max_load_move;
  1608. int busiest_cpu = cpu_of(busiest);
  1609. struct task_group *tg;
  1610. rcu_read_lock();
  1611. update_h_load(busiest_cpu);
  1612. list_for_each_entry_rcu(tg, &task_groups, list) {
  1613. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1614. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1615. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1616. u64 rem_load, moved_load;
  1617. /*
  1618. * empty group
  1619. */
  1620. if (!busiest_cfs_rq->task_weight)
  1621. continue;
  1622. rem_load = (u64)rem_load_move * busiest_weight;
  1623. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1624. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1625. rem_load, sd, idle, all_pinned, this_best_prio,
  1626. busiest_cfs_rq);
  1627. if (!moved_load)
  1628. continue;
  1629. moved_load *= busiest_h_load;
  1630. moved_load = div_u64(moved_load, busiest_weight + 1);
  1631. rem_load_move -= moved_load;
  1632. if (rem_load_move < 0)
  1633. break;
  1634. }
  1635. rcu_read_unlock();
  1636. return max_load_move - rem_load_move;
  1637. }
  1638. #else
  1639. static unsigned long
  1640. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1641. unsigned long max_load_move,
  1642. struct sched_domain *sd, enum cpu_idle_type idle,
  1643. int *all_pinned, int *this_best_prio)
  1644. {
  1645. return balance_tasks(this_rq, this_cpu, busiest,
  1646. max_load_move, sd, idle, all_pinned,
  1647. this_best_prio, &busiest->cfs);
  1648. }
  1649. #endif
  1650. /*
  1651. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1652. * this_rq, as part of a balancing operation within domain "sd".
  1653. * Returns 1 if successful and 0 otherwise.
  1654. *
  1655. * Called with both runqueues locked.
  1656. */
  1657. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1658. unsigned long max_load_move,
  1659. struct sched_domain *sd, enum cpu_idle_type idle,
  1660. int *all_pinned)
  1661. {
  1662. unsigned long total_load_moved = 0, load_moved;
  1663. int this_best_prio = this_rq->curr->prio;
  1664. do {
  1665. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1666. max_load_move - total_load_moved,
  1667. sd, idle, all_pinned, &this_best_prio);
  1668. total_load_moved += load_moved;
  1669. #ifdef CONFIG_PREEMPT
  1670. /*
  1671. * NEWIDLE balancing is a source of latency, so preemptible
  1672. * kernels will stop after the first task is pulled to minimize
  1673. * the critical section.
  1674. */
  1675. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1676. break;
  1677. if (raw_spin_is_contended(&this_rq->lock) ||
  1678. raw_spin_is_contended(&busiest->lock))
  1679. break;
  1680. #endif
  1681. } while (load_moved && max_load_move > total_load_moved);
  1682. return total_load_moved > 0;
  1683. }
  1684. /********** Helpers for find_busiest_group ************************/
  1685. /*
  1686. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1687. * during load balancing.
  1688. */
  1689. struct sd_lb_stats {
  1690. struct sched_group *busiest; /* Busiest group in this sd */
  1691. struct sched_group *this; /* Local group in this sd */
  1692. unsigned long total_load; /* Total load of all groups in sd */
  1693. unsigned long total_pwr; /* Total power of all groups in sd */
  1694. unsigned long avg_load; /* Average load across all groups in sd */
  1695. /** Statistics of this group */
  1696. unsigned long this_load;
  1697. unsigned long this_load_per_task;
  1698. unsigned long this_nr_running;
  1699. unsigned long this_has_capacity;
  1700. unsigned int this_idle_cpus;
  1701. /* Statistics of the busiest group */
  1702. unsigned int busiest_idle_cpus;
  1703. unsigned long max_load;
  1704. unsigned long busiest_load_per_task;
  1705. unsigned long busiest_nr_running;
  1706. unsigned long busiest_group_capacity;
  1707. unsigned long busiest_has_capacity;
  1708. unsigned int busiest_group_weight;
  1709. int group_imb; /* Is there imbalance in this sd */
  1710. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1711. int power_savings_balance; /* Is powersave balance needed for this sd */
  1712. struct sched_group *group_min; /* Least loaded group in sd */
  1713. struct sched_group *group_leader; /* Group which relieves group_min */
  1714. unsigned long min_load_per_task; /* load_per_task in group_min */
  1715. unsigned long leader_nr_running; /* Nr running of group_leader */
  1716. unsigned long min_nr_running; /* Nr running of group_min */
  1717. #endif
  1718. };
  1719. /*
  1720. * sg_lb_stats - stats of a sched_group required for load_balancing
  1721. */
  1722. struct sg_lb_stats {
  1723. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1724. unsigned long group_load; /* Total load over the CPUs of the group */
  1725. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1726. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1727. unsigned long group_capacity;
  1728. unsigned long idle_cpus;
  1729. unsigned long group_weight;
  1730. int group_imb; /* Is there an imbalance in the group ? */
  1731. int group_has_capacity; /* Is there extra capacity in the group? */
  1732. };
  1733. /**
  1734. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1735. * @group: The group whose first cpu is to be returned.
  1736. */
  1737. static inline unsigned int group_first_cpu(struct sched_group *group)
  1738. {
  1739. return cpumask_first(sched_group_cpus(group));
  1740. }
  1741. /**
  1742. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1743. * @sd: The sched_domain whose load_idx is to be obtained.
  1744. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1745. */
  1746. static inline int get_sd_load_idx(struct sched_domain *sd,
  1747. enum cpu_idle_type idle)
  1748. {
  1749. int load_idx;
  1750. switch (idle) {
  1751. case CPU_NOT_IDLE:
  1752. load_idx = sd->busy_idx;
  1753. break;
  1754. case CPU_NEWLY_IDLE:
  1755. load_idx = sd->newidle_idx;
  1756. break;
  1757. default:
  1758. load_idx = sd->idle_idx;
  1759. break;
  1760. }
  1761. return load_idx;
  1762. }
  1763. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1764. /**
  1765. * init_sd_power_savings_stats - Initialize power savings statistics for
  1766. * the given sched_domain, during load balancing.
  1767. *
  1768. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1769. * @sds: Variable containing the statistics for sd.
  1770. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1771. */
  1772. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1773. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1774. {
  1775. /*
  1776. * Busy processors will not participate in power savings
  1777. * balance.
  1778. */
  1779. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1780. sds->power_savings_balance = 0;
  1781. else {
  1782. sds->power_savings_balance = 1;
  1783. sds->min_nr_running = ULONG_MAX;
  1784. sds->leader_nr_running = 0;
  1785. }
  1786. }
  1787. /**
  1788. * update_sd_power_savings_stats - Update the power saving stats for a
  1789. * sched_domain while performing load balancing.
  1790. *
  1791. * @group: sched_group belonging to the sched_domain under consideration.
  1792. * @sds: Variable containing the statistics of the sched_domain
  1793. * @local_group: Does group contain the CPU for which we're performing
  1794. * load balancing ?
  1795. * @sgs: Variable containing the statistics of the group.
  1796. */
  1797. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1798. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1799. {
  1800. if (!sds->power_savings_balance)
  1801. return;
  1802. /*
  1803. * If the local group is idle or completely loaded
  1804. * no need to do power savings balance at this domain
  1805. */
  1806. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1807. !sds->this_nr_running))
  1808. sds->power_savings_balance = 0;
  1809. /*
  1810. * If a group is already running at full capacity or idle,
  1811. * don't include that group in power savings calculations
  1812. */
  1813. if (!sds->power_savings_balance ||
  1814. sgs->sum_nr_running >= sgs->group_capacity ||
  1815. !sgs->sum_nr_running)
  1816. return;
  1817. /*
  1818. * Calculate the group which has the least non-idle load.
  1819. * This is the group from where we need to pick up the load
  1820. * for saving power
  1821. */
  1822. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1823. (sgs->sum_nr_running == sds->min_nr_running &&
  1824. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1825. sds->group_min = group;
  1826. sds->min_nr_running = sgs->sum_nr_running;
  1827. sds->min_load_per_task = sgs->sum_weighted_load /
  1828. sgs->sum_nr_running;
  1829. }
  1830. /*
  1831. * Calculate the group which is almost near its
  1832. * capacity but still has some space to pick up some load
  1833. * from other group and save more power
  1834. */
  1835. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1836. return;
  1837. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1838. (sgs->sum_nr_running == sds->leader_nr_running &&
  1839. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1840. sds->group_leader = group;
  1841. sds->leader_nr_running = sgs->sum_nr_running;
  1842. }
  1843. }
  1844. /**
  1845. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1846. * @sds: Variable containing the statistics of the sched_domain
  1847. * under consideration.
  1848. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1849. * @imbalance: Variable to store the imbalance.
  1850. *
  1851. * Description:
  1852. * Check if we have potential to perform some power-savings balance.
  1853. * If yes, set the busiest group to be the least loaded group in the
  1854. * sched_domain, so that it's CPUs can be put to idle.
  1855. *
  1856. * Returns 1 if there is potential to perform power-savings balance.
  1857. * Else returns 0.
  1858. */
  1859. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1860. int this_cpu, unsigned long *imbalance)
  1861. {
  1862. if (!sds->power_savings_balance)
  1863. return 0;
  1864. if (sds->this != sds->group_leader ||
  1865. sds->group_leader == sds->group_min)
  1866. return 0;
  1867. *imbalance = sds->min_load_per_task;
  1868. sds->busiest = sds->group_min;
  1869. return 1;
  1870. }
  1871. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1872. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1873. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1874. {
  1875. return;
  1876. }
  1877. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1878. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1879. {
  1880. return;
  1881. }
  1882. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1883. int this_cpu, unsigned long *imbalance)
  1884. {
  1885. return 0;
  1886. }
  1887. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1888. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  1889. {
  1890. return SCHED_LOAD_SCALE;
  1891. }
  1892. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  1893. {
  1894. return default_scale_freq_power(sd, cpu);
  1895. }
  1896. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  1897. {
  1898. unsigned long weight = sd->span_weight;
  1899. unsigned long smt_gain = sd->smt_gain;
  1900. smt_gain /= weight;
  1901. return smt_gain;
  1902. }
  1903. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  1904. {
  1905. return default_scale_smt_power(sd, cpu);
  1906. }
  1907. unsigned long scale_rt_power(int cpu)
  1908. {
  1909. struct rq *rq = cpu_rq(cpu);
  1910. u64 total, available;
  1911. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  1912. if (unlikely(total < rq->rt_avg)) {
  1913. /* Ensures that power won't end up being negative */
  1914. available = 0;
  1915. } else {
  1916. available = total - rq->rt_avg;
  1917. }
  1918. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  1919. total = SCHED_LOAD_SCALE;
  1920. total >>= SCHED_LOAD_SHIFT;
  1921. return div_u64(available, total);
  1922. }
  1923. static void update_cpu_power(struct sched_domain *sd, int cpu)
  1924. {
  1925. unsigned long weight = sd->span_weight;
  1926. unsigned long power = SCHED_LOAD_SCALE;
  1927. struct sched_group *sdg = sd->groups;
  1928. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  1929. if (sched_feat(ARCH_POWER))
  1930. power *= arch_scale_smt_power(sd, cpu);
  1931. else
  1932. power *= default_scale_smt_power(sd, cpu);
  1933. power >>= SCHED_LOAD_SHIFT;
  1934. }
  1935. sdg->cpu_power_orig = power;
  1936. if (sched_feat(ARCH_POWER))
  1937. power *= arch_scale_freq_power(sd, cpu);
  1938. else
  1939. power *= default_scale_freq_power(sd, cpu);
  1940. power >>= SCHED_LOAD_SHIFT;
  1941. power *= scale_rt_power(cpu);
  1942. power >>= SCHED_LOAD_SHIFT;
  1943. if (!power)
  1944. power = 1;
  1945. cpu_rq(cpu)->cpu_power = power;
  1946. sdg->cpu_power = power;
  1947. }
  1948. static void update_group_power(struct sched_domain *sd, int cpu)
  1949. {
  1950. struct sched_domain *child = sd->child;
  1951. struct sched_group *group, *sdg = sd->groups;
  1952. unsigned long power;
  1953. if (!child) {
  1954. update_cpu_power(sd, cpu);
  1955. return;
  1956. }
  1957. power = 0;
  1958. group = child->groups;
  1959. do {
  1960. power += group->cpu_power;
  1961. group = group->next;
  1962. } while (group != child->groups);
  1963. sdg->cpu_power = power;
  1964. }
  1965. /*
  1966. * Try and fix up capacity for tiny siblings, this is needed when
  1967. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  1968. * which on its own isn't powerful enough.
  1969. *
  1970. * See update_sd_pick_busiest() and check_asym_packing().
  1971. */
  1972. static inline int
  1973. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  1974. {
  1975. /*
  1976. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  1977. */
  1978. if (sd->level != SD_LV_SIBLING)
  1979. return 0;
  1980. /*
  1981. * If ~90% of the cpu_power is still there, we're good.
  1982. */
  1983. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  1984. return 1;
  1985. return 0;
  1986. }
  1987. /**
  1988. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  1989. * @sd: The sched_domain whose statistics are to be updated.
  1990. * @group: sched_group whose statistics are to be updated.
  1991. * @this_cpu: Cpu for which load balance is currently performed.
  1992. * @idle: Idle status of this_cpu
  1993. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  1994. * @sd_idle: Idle status of the sched_domain containing group.
  1995. * @local_group: Does group contain this_cpu.
  1996. * @cpus: Set of cpus considered for load balancing.
  1997. * @balance: Should we balance.
  1998. * @sgs: variable to hold the statistics for this group.
  1999. */
  2000. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2001. struct sched_group *group, int this_cpu,
  2002. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2003. int local_group, const struct cpumask *cpus,
  2004. int *balance, struct sg_lb_stats *sgs)
  2005. {
  2006. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2007. int i;
  2008. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2009. unsigned long avg_load_per_task = 0;
  2010. if (local_group)
  2011. balance_cpu = group_first_cpu(group);
  2012. /* Tally up the load of all CPUs in the group */
  2013. max_cpu_load = 0;
  2014. min_cpu_load = ~0UL;
  2015. max_nr_running = 0;
  2016. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2017. struct rq *rq = cpu_rq(i);
  2018. if (*sd_idle && rq->nr_running)
  2019. *sd_idle = 0;
  2020. /* Bias balancing toward cpus of our domain */
  2021. if (local_group) {
  2022. if (idle_cpu(i) && !first_idle_cpu) {
  2023. first_idle_cpu = 1;
  2024. balance_cpu = i;
  2025. }
  2026. load = target_load(i, load_idx);
  2027. } else {
  2028. load = source_load(i, load_idx);
  2029. if (load > max_cpu_load) {
  2030. max_cpu_load = load;
  2031. max_nr_running = rq->nr_running;
  2032. }
  2033. if (min_cpu_load > load)
  2034. min_cpu_load = load;
  2035. }
  2036. sgs->group_load += load;
  2037. sgs->sum_nr_running += rq->nr_running;
  2038. sgs->sum_weighted_load += weighted_cpuload(i);
  2039. if (idle_cpu(i))
  2040. sgs->idle_cpus++;
  2041. }
  2042. /*
  2043. * First idle cpu or the first cpu(busiest) in this sched group
  2044. * is eligible for doing load balancing at this and above
  2045. * domains. In the newly idle case, we will allow all the cpu's
  2046. * to do the newly idle load balance.
  2047. */
  2048. if (idle != CPU_NEWLY_IDLE && local_group) {
  2049. if (balance_cpu != this_cpu) {
  2050. *balance = 0;
  2051. return;
  2052. }
  2053. update_group_power(sd, this_cpu);
  2054. }
  2055. /* Adjust by relative CPU power of the group */
  2056. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2057. /*
  2058. * Consider the group unbalanced when the imbalance is larger
  2059. * than the average weight of two tasks.
  2060. *
  2061. * APZ: with cgroup the avg task weight can vary wildly and
  2062. * might not be a suitable number - should we keep a
  2063. * normalized nr_running number somewhere that negates
  2064. * the hierarchy?
  2065. */
  2066. if (sgs->sum_nr_running)
  2067. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2068. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2069. sgs->group_imb = 1;
  2070. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2071. if (!sgs->group_capacity)
  2072. sgs->group_capacity = fix_small_capacity(sd, group);
  2073. sgs->group_weight = group->group_weight;
  2074. if (sgs->group_capacity > sgs->sum_nr_running)
  2075. sgs->group_has_capacity = 1;
  2076. }
  2077. /**
  2078. * update_sd_pick_busiest - return 1 on busiest group
  2079. * @sd: sched_domain whose statistics are to be checked
  2080. * @sds: sched_domain statistics
  2081. * @sg: sched_group candidate to be checked for being the busiest
  2082. * @sgs: sched_group statistics
  2083. * @this_cpu: the current cpu
  2084. *
  2085. * Determine if @sg is a busier group than the previously selected
  2086. * busiest group.
  2087. */
  2088. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2089. struct sd_lb_stats *sds,
  2090. struct sched_group *sg,
  2091. struct sg_lb_stats *sgs,
  2092. int this_cpu)
  2093. {
  2094. if (sgs->avg_load <= sds->max_load)
  2095. return false;
  2096. if (sgs->sum_nr_running > sgs->group_capacity)
  2097. return true;
  2098. if (sgs->group_imb)
  2099. return true;
  2100. /*
  2101. * ASYM_PACKING needs to move all the work to the lowest
  2102. * numbered CPUs in the group, therefore mark all groups
  2103. * higher than ourself as busy.
  2104. */
  2105. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2106. this_cpu < group_first_cpu(sg)) {
  2107. if (!sds->busiest)
  2108. return true;
  2109. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2110. return true;
  2111. }
  2112. return false;
  2113. }
  2114. /**
  2115. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2116. * @sd: sched_domain whose statistics are to be updated.
  2117. * @this_cpu: Cpu for which load balance is currently performed.
  2118. * @idle: Idle status of this_cpu
  2119. * @sd_idle: Idle status of the sched_domain containing sg.
  2120. * @cpus: Set of cpus considered for load balancing.
  2121. * @balance: Should we balance.
  2122. * @sds: variable to hold the statistics for this sched_domain.
  2123. */
  2124. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2125. enum cpu_idle_type idle, int *sd_idle,
  2126. const struct cpumask *cpus, int *balance,
  2127. struct sd_lb_stats *sds)
  2128. {
  2129. struct sched_domain *child = sd->child;
  2130. struct sched_group *sg = sd->groups;
  2131. struct sg_lb_stats sgs;
  2132. int load_idx, prefer_sibling = 0;
  2133. if (child && child->flags & SD_PREFER_SIBLING)
  2134. prefer_sibling = 1;
  2135. init_sd_power_savings_stats(sd, sds, idle);
  2136. load_idx = get_sd_load_idx(sd, idle);
  2137. do {
  2138. int local_group;
  2139. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2140. memset(&sgs, 0, sizeof(sgs));
  2141. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2142. local_group, cpus, balance, &sgs);
  2143. if (local_group && !(*balance))
  2144. return;
  2145. sds->total_load += sgs.group_load;
  2146. sds->total_pwr += sg->cpu_power;
  2147. /*
  2148. * In case the child domain prefers tasks go to siblings
  2149. * first, lower the sg capacity to one so that we'll try
  2150. * and move all the excess tasks away. We lower the capacity
  2151. * of a group only if the local group has the capacity to fit
  2152. * these excess tasks, i.e. nr_running < group_capacity. The
  2153. * extra check prevents the case where you always pull from the
  2154. * heaviest group when it is already under-utilized (possible
  2155. * with a large weight task outweighs the tasks on the system).
  2156. */
  2157. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2158. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2159. if (local_group) {
  2160. sds->this_load = sgs.avg_load;
  2161. sds->this = sg;
  2162. sds->this_nr_running = sgs.sum_nr_running;
  2163. sds->this_load_per_task = sgs.sum_weighted_load;
  2164. sds->this_has_capacity = sgs.group_has_capacity;
  2165. sds->this_idle_cpus = sgs.idle_cpus;
  2166. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2167. sds->max_load = sgs.avg_load;
  2168. sds->busiest = sg;
  2169. sds->busiest_nr_running = sgs.sum_nr_running;
  2170. sds->busiest_idle_cpus = sgs.idle_cpus;
  2171. sds->busiest_group_capacity = sgs.group_capacity;
  2172. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2173. sds->busiest_has_capacity = sgs.group_has_capacity;
  2174. sds->busiest_group_weight = sgs.group_weight;
  2175. sds->group_imb = sgs.group_imb;
  2176. }
  2177. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2178. sg = sg->next;
  2179. } while (sg != sd->groups);
  2180. }
  2181. int __weak arch_sd_sibling_asym_packing(void)
  2182. {
  2183. return 0*SD_ASYM_PACKING;
  2184. }
  2185. /**
  2186. * check_asym_packing - Check to see if the group is packed into the
  2187. * sched doman.
  2188. *
  2189. * This is primarily intended to used at the sibling level. Some
  2190. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2191. * case of POWER7, it can move to lower SMT modes only when higher
  2192. * threads are idle. When in lower SMT modes, the threads will
  2193. * perform better since they share less core resources. Hence when we
  2194. * have idle threads, we want them to be the higher ones.
  2195. *
  2196. * This packing function is run on idle threads. It checks to see if
  2197. * the busiest CPU in this domain (core in the P7 case) has a higher
  2198. * CPU number than the packing function is being run on. Here we are
  2199. * assuming lower CPU number will be equivalent to lower a SMT thread
  2200. * number.
  2201. *
  2202. * Returns 1 when packing is required and a task should be moved to
  2203. * this CPU. The amount of the imbalance is returned in *imbalance.
  2204. *
  2205. * @sd: The sched_domain whose packing is to be checked.
  2206. * @sds: Statistics of the sched_domain which is to be packed
  2207. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2208. * @imbalance: returns amount of imbalanced due to packing.
  2209. */
  2210. static int check_asym_packing(struct sched_domain *sd,
  2211. struct sd_lb_stats *sds,
  2212. int this_cpu, unsigned long *imbalance)
  2213. {
  2214. int busiest_cpu;
  2215. if (!(sd->flags & SD_ASYM_PACKING))
  2216. return 0;
  2217. if (!sds->busiest)
  2218. return 0;
  2219. busiest_cpu = group_first_cpu(sds->busiest);
  2220. if (this_cpu > busiest_cpu)
  2221. return 0;
  2222. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2223. SCHED_LOAD_SCALE);
  2224. return 1;
  2225. }
  2226. /**
  2227. * fix_small_imbalance - Calculate the minor imbalance that exists
  2228. * amongst the groups of a sched_domain, during
  2229. * load balancing.
  2230. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2231. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2232. * @imbalance: Variable to store the imbalance.
  2233. */
  2234. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2235. int this_cpu, unsigned long *imbalance)
  2236. {
  2237. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2238. unsigned int imbn = 2;
  2239. unsigned long scaled_busy_load_per_task;
  2240. if (sds->this_nr_running) {
  2241. sds->this_load_per_task /= sds->this_nr_running;
  2242. if (sds->busiest_load_per_task >
  2243. sds->this_load_per_task)
  2244. imbn = 1;
  2245. } else
  2246. sds->this_load_per_task =
  2247. cpu_avg_load_per_task(this_cpu);
  2248. scaled_busy_load_per_task = sds->busiest_load_per_task
  2249. * SCHED_LOAD_SCALE;
  2250. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2251. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2252. (scaled_busy_load_per_task * imbn)) {
  2253. *imbalance = sds->busiest_load_per_task;
  2254. return;
  2255. }
  2256. /*
  2257. * OK, we don't have enough imbalance to justify moving tasks,
  2258. * however we may be able to increase total CPU power used by
  2259. * moving them.
  2260. */
  2261. pwr_now += sds->busiest->cpu_power *
  2262. min(sds->busiest_load_per_task, sds->max_load);
  2263. pwr_now += sds->this->cpu_power *
  2264. min(sds->this_load_per_task, sds->this_load);
  2265. pwr_now /= SCHED_LOAD_SCALE;
  2266. /* Amount of load we'd subtract */
  2267. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2268. sds->busiest->cpu_power;
  2269. if (sds->max_load > tmp)
  2270. pwr_move += sds->busiest->cpu_power *
  2271. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2272. /* Amount of load we'd add */
  2273. if (sds->max_load * sds->busiest->cpu_power <
  2274. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2275. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2276. sds->this->cpu_power;
  2277. else
  2278. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2279. sds->this->cpu_power;
  2280. pwr_move += sds->this->cpu_power *
  2281. min(sds->this_load_per_task, sds->this_load + tmp);
  2282. pwr_move /= SCHED_LOAD_SCALE;
  2283. /* Move if we gain throughput */
  2284. if (pwr_move > pwr_now)
  2285. *imbalance = sds->busiest_load_per_task;
  2286. }
  2287. /**
  2288. * calculate_imbalance - Calculate the amount of imbalance present within the
  2289. * groups of a given sched_domain during load balance.
  2290. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2291. * @this_cpu: Cpu for which currently load balance is being performed.
  2292. * @imbalance: The variable to store the imbalance.
  2293. */
  2294. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2295. unsigned long *imbalance)
  2296. {
  2297. unsigned long max_pull, load_above_capacity = ~0UL;
  2298. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2299. if (sds->group_imb) {
  2300. sds->busiest_load_per_task =
  2301. min(sds->busiest_load_per_task, sds->avg_load);
  2302. }
  2303. /*
  2304. * In the presence of smp nice balancing, certain scenarios can have
  2305. * max load less than avg load(as we skip the groups at or below
  2306. * its cpu_power, while calculating max_load..)
  2307. */
  2308. if (sds->max_load < sds->avg_load) {
  2309. *imbalance = 0;
  2310. return fix_small_imbalance(sds, this_cpu, imbalance);
  2311. }
  2312. if (!sds->group_imb) {
  2313. /*
  2314. * Don't want to pull so many tasks that a group would go idle.
  2315. */
  2316. load_above_capacity = (sds->busiest_nr_running -
  2317. sds->busiest_group_capacity);
  2318. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2319. load_above_capacity /= sds->busiest->cpu_power;
  2320. }
  2321. /*
  2322. * We're trying to get all the cpus to the average_load, so we don't
  2323. * want to push ourselves above the average load, nor do we wish to
  2324. * reduce the max loaded cpu below the average load. At the same time,
  2325. * we also don't want to reduce the group load below the group capacity
  2326. * (so that we can implement power-savings policies etc). Thus we look
  2327. * for the minimum possible imbalance.
  2328. * Be careful of negative numbers as they'll appear as very large values
  2329. * with unsigned longs.
  2330. */
  2331. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2332. /* How much load to actually move to equalise the imbalance */
  2333. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2334. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2335. / SCHED_LOAD_SCALE;
  2336. /*
  2337. * if *imbalance is less than the average load per runnable task
  2338. * there is no gaurantee that any tasks will be moved so we'll have
  2339. * a think about bumping its value to force at least one task to be
  2340. * moved
  2341. */
  2342. if (*imbalance < sds->busiest_load_per_task)
  2343. return fix_small_imbalance(sds, this_cpu, imbalance);
  2344. }
  2345. /******* find_busiest_group() helpers end here *********************/
  2346. /**
  2347. * find_busiest_group - Returns the busiest group within the sched_domain
  2348. * if there is an imbalance. If there isn't an imbalance, and
  2349. * the user has opted for power-savings, it returns a group whose
  2350. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2351. * such a group exists.
  2352. *
  2353. * Also calculates the amount of weighted load which should be moved
  2354. * to restore balance.
  2355. *
  2356. * @sd: The sched_domain whose busiest group is to be returned.
  2357. * @this_cpu: The cpu for which load balancing is currently being performed.
  2358. * @imbalance: Variable which stores amount of weighted load which should
  2359. * be moved to restore balance/put a group to idle.
  2360. * @idle: The idle status of this_cpu.
  2361. * @sd_idle: The idleness of sd
  2362. * @cpus: The set of CPUs under consideration for load-balancing.
  2363. * @balance: Pointer to a variable indicating if this_cpu
  2364. * is the appropriate cpu to perform load balancing at this_level.
  2365. *
  2366. * Returns: - the busiest group if imbalance exists.
  2367. * - If no imbalance and user has opted for power-savings balance,
  2368. * return the least loaded group whose CPUs can be
  2369. * put to idle by rebalancing its tasks onto our group.
  2370. */
  2371. static struct sched_group *
  2372. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2373. unsigned long *imbalance, enum cpu_idle_type idle,
  2374. int *sd_idle, const struct cpumask *cpus, int *balance)
  2375. {
  2376. struct sd_lb_stats sds;
  2377. memset(&sds, 0, sizeof(sds));
  2378. /*
  2379. * Compute the various statistics relavent for load balancing at
  2380. * this level.
  2381. */
  2382. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2383. balance, &sds);
  2384. /* Cases where imbalance does not exist from POV of this_cpu */
  2385. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2386. * at this level.
  2387. * 2) There is no busy sibling group to pull from.
  2388. * 3) This group is the busiest group.
  2389. * 4) This group is more busy than the avg busieness at this
  2390. * sched_domain.
  2391. * 5) The imbalance is within the specified limit.
  2392. *
  2393. * Note: when doing newidle balance, if the local group has excess
  2394. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2395. * does not have any capacity, we force a load balance to pull tasks
  2396. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2397. */
  2398. if (!(*balance))
  2399. goto ret;
  2400. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2401. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2402. return sds.busiest;
  2403. if (!sds.busiest || sds.busiest_nr_running == 0)
  2404. goto out_balanced;
  2405. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2406. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2407. !sds.busiest_has_capacity)
  2408. goto force_balance;
  2409. if (sds.this_load >= sds.max_load)
  2410. goto out_balanced;
  2411. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2412. if (sds.this_load >= sds.avg_load)
  2413. goto out_balanced;
  2414. /*
  2415. * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
  2416. * And to check for busy balance use !idle_cpu instead of
  2417. * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
  2418. * even when they are idle.
  2419. */
  2420. if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
  2421. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2422. goto out_balanced;
  2423. } else {
  2424. /*
  2425. * This cpu is idle. If the busiest group load doesn't
  2426. * have more tasks than the number of available cpu's and
  2427. * there is no imbalance between this and busiest group
  2428. * wrt to idle cpu's, it is balanced.
  2429. */
  2430. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2431. sds.busiest_nr_running <= sds.busiest_group_weight)
  2432. goto out_balanced;
  2433. }
  2434. force_balance:
  2435. /* Looks like there is an imbalance. Compute it */
  2436. calculate_imbalance(&sds, this_cpu, imbalance);
  2437. return sds.busiest;
  2438. out_balanced:
  2439. /*
  2440. * There is no obvious imbalance. But check if we can do some balancing
  2441. * to save power.
  2442. */
  2443. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2444. return sds.busiest;
  2445. ret:
  2446. *imbalance = 0;
  2447. return NULL;
  2448. }
  2449. /*
  2450. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2451. */
  2452. static struct rq *
  2453. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2454. enum cpu_idle_type idle, unsigned long imbalance,
  2455. const struct cpumask *cpus)
  2456. {
  2457. struct rq *busiest = NULL, *rq;
  2458. unsigned long max_load = 0;
  2459. int i;
  2460. for_each_cpu(i, sched_group_cpus(group)) {
  2461. unsigned long power = power_of(i);
  2462. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2463. unsigned long wl;
  2464. if (!capacity)
  2465. capacity = fix_small_capacity(sd, group);
  2466. if (!cpumask_test_cpu(i, cpus))
  2467. continue;
  2468. rq = cpu_rq(i);
  2469. wl = weighted_cpuload(i);
  2470. /*
  2471. * When comparing with imbalance, use weighted_cpuload()
  2472. * which is not scaled with the cpu power.
  2473. */
  2474. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2475. continue;
  2476. /*
  2477. * For the load comparisons with the other cpu's, consider
  2478. * the weighted_cpuload() scaled with the cpu power, so that
  2479. * the load can be moved away from the cpu that is potentially
  2480. * running at a lower capacity.
  2481. */
  2482. wl = (wl * SCHED_LOAD_SCALE) / power;
  2483. if (wl > max_load) {
  2484. max_load = wl;
  2485. busiest = rq;
  2486. }
  2487. }
  2488. return busiest;
  2489. }
  2490. /*
  2491. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2492. * so long as it is large enough.
  2493. */
  2494. #define MAX_PINNED_INTERVAL 512
  2495. /* Working cpumask for load_balance and load_balance_newidle. */
  2496. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2497. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2498. int busiest_cpu, int this_cpu)
  2499. {
  2500. if (idle == CPU_NEWLY_IDLE) {
  2501. /*
  2502. * ASYM_PACKING needs to force migrate tasks from busy but
  2503. * higher numbered CPUs in order to pack all tasks in the
  2504. * lowest numbered CPUs.
  2505. */
  2506. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2507. return 1;
  2508. /*
  2509. * The only task running in a non-idle cpu can be moved to this
  2510. * cpu in an attempt to completely freeup the other CPU
  2511. * package.
  2512. *
  2513. * The package power saving logic comes from
  2514. * find_busiest_group(). If there are no imbalance, then
  2515. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2516. * f_b_g() will select a group from which a running task may be
  2517. * pulled to this cpu in order to make the other package idle.
  2518. * If there is no opportunity to make a package idle and if
  2519. * there are no imbalance, then f_b_g() will return NULL and no
  2520. * action will be taken in load_balance_newidle().
  2521. *
  2522. * Under normal task pull operation due to imbalance, there
  2523. * will be more than one task in the source run queue and
  2524. * move_tasks() will succeed. ld_moved will be true and this
  2525. * active balance code will not be triggered.
  2526. */
  2527. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2528. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2529. return 0;
  2530. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2531. return 0;
  2532. }
  2533. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2534. }
  2535. static int active_load_balance_cpu_stop(void *data);
  2536. /*
  2537. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2538. * tasks if there is an imbalance.
  2539. */
  2540. static int load_balance(int this_cpu, struct rq *this_rq,
  2541. struct sched_domain *sd, enum cpu_idle_type idle,
  2542. int *balance)
  2543. {
  2544. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2545. struct sched_group *group;
  2546. unsigned long imbalance;
  2547. struct rq *busiest;
  2548. unsigned long flags;
  2549. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2550. cpumask_copy(cpus, cpu_active_mask);
  2551. /*
  2552. * When power savings policy is enabled for the parent domain, idle
  2553. * sibling can pick up load irrespective of busy siblings. In this case,
  2554. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2555. * portraying it as CPU_NOT_IDLE.
  2556. */
  2557. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2558. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2559. sd_idle = 1;
  2560. schedstat_inc(sd, lb_count[idle]);
  2561. redo:
  2562. update_shares(sd);
  2563. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2564. cpus, balance);
  2565. if (*balance == 0)
  2566. goto out_balanced;
  2567. if (!group) {
  2568. schedstat_inc(sd, lb_nobusyg[idle]);
  2569. goto out_balanced;
  2570. }
  2571. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2572. if (!busiest) {
  2573. schedstat_inc(sd, lb_nobusyq[idle]);
  2574. goto out_balanced;
  2575. }
  2576. BUG_ON(busiest == this_rq);
  2577. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2578. ld_moved = 0;
  2579. if (busiest->nr_running > 1) {
  2580. /*
  2581. * Attempt to move tasks. If find_busiest_group has found
  2582. * an imbalance but busiest->nr_running <= 1, the group is
  2583. * still unbalanced. ld_moved simply stays zero, so it is
  2584. * correctly treated as an imbalance.
  2585. */
  2586. local_irq_save(flags);
  2587. double_rq_lock(this_rq, busiest);
  2588. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2589. imbalance, sd, idle, &all_pinned);
  2590. double_rq_unlock(this_rq, busiest);
  2591. local_irq_restore(flags);
  2592. /*
  2593. * some other cpu did the load balance for us.
  2594. */
  2595. if (ld_moved && this_cpu != smp_processor_id())
  2596. resched_cpu(this_cpu);
  2597. /* All tasks on this runqueue were pinned by CPU affinity */
  2598. if (unlikely(all_pinned)) {
  2599. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2600. if (!cpumask_empty(cpus))
  2601. goto redo;
  2602. goto out_balanced;
  2603. }
  2604. }
  2605. if (!ld_moved) {
  2606. schedstat_inc(sd, lb_failed[idle]);
  2607. /*
  2608. * Increment the failure counter only on periodic balance.
  2609. * We do not want newidle balance, which can be very
  2610. * frequent, pollute the failure counter causing
  2611. * excessive cache_hot migrations and active balances.
  2612. */
  2613. if (idle != CPU_NEWLY_IDLE)
  2614. sd->nr_balance_failed++;
  2615. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2616. this_cpu)) {
  2617. raw_spin_lock_irqsave(&busiest->lock, flags);
  2618. /* don't kick the active_load_balance_cpu_stop,
  2619. * if the curr task on busiest cpu can't be
  2620. * moved to this_cpu
  2621. */
  2622. if (!cpumask_test_cpu(this_cpu,
  2623. &busiest->curr->cpus_allowed)) {
  2624. raw_spin_unlock_irqrestore(&busiest->lock,
  2625. flags);
  2626. all_pinned = 1;
  2627. goto out_one_pinned;
  2628. }
  2629. /*
  2630. * ->active_balance synchronizes accesses to
  2631. * ->active_balance_work. Once set, it's cleared
  2632. * only after active load balance is finished.
  2633. */
  2634. if (!busiest->active_balance) {
  2635. busiest->active_balance = 1;
  2636. busiest->push_cpu = this_cpu;
  2637. active_balance = 1;
  2638. }
  2639. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2640. if (active_balance)
  2641. stop_one_cpu_nowait(cpu_of(busiest),
  2642. active_load_balance_cpu_stop, busiest,
  2643. &busiest->active_balance_work);
  2644. /*
  2645. * We've kicked active balancing, reset the failure
  2646. * counter.
  2647. */
  2648. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2649. }
  2650. } else
  2651. sd->nr_balance_failed = 0;
  2652. if (likely(!active_balance)) {
  2653. /* We were unbalanced, so reset the balancing interval */
  2654. sd->balance_interval = sd->min_interval;
  2655. } else {
  2656. /*
  2657. * If we've begun active balancing, start to back off. This
  2658. * case may not be covered by the all_pinned logic if there
  2659. * is only 1 task on the busy runqueue (because we don't call
  2660. * move_tasks).
  2661. */
  2662. if (sd->balance_interval < sd->max_interval)
  2663. sd->balance_interval *= 2;
  2664. }
  2665. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2666. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2667. ld_moved = -1;
  2668. goto out;
  2669. out_balanced:
  2670. schedstat_inc(sd, lb_balanced[idle]);
  2671. sd->nr_balance_failed = 0;
  2672. out_one_pinned:
  2673. /* tune up the balancing interval */
  2674. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2675. (sd->balance_interval < sd->max_interval))
  2676. sd->balance_interval *= 2;
  2677. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2678. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2679. ld_moved = -1;
  2680. else
  2681. ld_moved = 0;
  2682. out:
  2683. if (ld_moved)
  2684. update_shares(sd);
  2685. return ld_moved;
  2686. }
  2687. /*
  2688. * idle_balance is called by schedule() if this_cpu is about to become
  2689. * idle. Attempts to pull tasks from other CPUs.
  2690. */
  2691. static void idle_balance(int this_cpu, struct rq *this_rq)
  2692. {
  2693. struct sched_domain *sd;
  2694. int pulled_task = 0;
  2695. unsigned long next_balance = jiffies + HZ;
  2696. this_rq->idle_stamp = this_rq->clock;
  2697. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2698. return;
  2699. /*
  2700. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2701. */
  2702. raw_spin_unlock(&this_rq->lock);
  2703. for_each_domain(this_cpu, sd) {
  2704. unsigned long interval;
  2705. int balance = 1;
  2706. if (!(sd->flags & SD_LOAD_BALANCE))
  2707. continue;
  2708. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2709. /* If we've pulled tasks over stop searching: */
  2710. pulled_task = load_balance(this_cpu, this_rq,
  2711. sd, CPU_NEWLY_IDLE, &balance);
  2712. }
  2713. interval = msecs_to_jiffies(sd->balance_interval);
  2714. if (time_after(next_balance, sd->last_balance + interval))
  2715. next_balance = sd->last_balance + interval;
  2716. if (pulled_task)
  2717. break;
  2718. }
  2719. raw_spin_lock(&this_rq->lock);
  2720. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2721. /*
  2722. * We are going idle. next_balance may be set based on
  2723. * a busy processor. So reset next_balance.
  2724. */
  2725. this_rq->next_balance = next_balance;
  2726. }
  2727. }
  2728. /*
  2729. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2730. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2731. * least 1 task to be running on each physical CPU where possible, and
  2732. * avoids physical / logical imbalances.
  2733. */
  2734. static int active_load_balance_cpu_stop(void *data)
  2735. {
  2736. struct rq *busiest_rq = data;
  2737. int busiest_cpu = cpu_of(busiest_rq);
  2738. int target_cpu = busiest_rq->push_cpu;
  2739. struct rq *target_rq = cpu_rq(target_cpu);
  2740. struct sched_domain *sd;
  2741. raw_spin_lock_irq(&busiest_rq->lock);
  2742. /* make sure the requested cpu hasn't gone down in the meantime */
  2743. if (unlikely(busiest_cpu != smp_processor_id() ||
  2744. !busiest_rq->active_balance))
  2745. goto out_unlock;
  2746. /* Is there any task to move? */
  2747. if (busiest_rq->nr_running <= 1)
  2748. goto out_unlock;
  2749. /*
  2750. * This condition is "impossible", if it occurs
  2751. * we need to fix it. Originally reported by
  2752. * Bjorn Helgaas on a 128-cpu setup.
  2753. */
  2754. BUG_ON(busiest_rq == target_rq);
  2755. /* move a task from busiest_rq to target_rq */
  2756. double_lock_balance(busiest_rq, target_rq);
  2757. /* Search for an sd spanning us and the target CPU. */
  2758. for_each_domain(target_cpu, sd) {
  2759. if ((sd->flags & SD_LOAD_BALANCE) &&
  2760. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2761. break;
  2762. }
  2763. if (likely(sd)) {
  2764. schedstat_inc(sd, alb_count);
  2765. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2766. sd, CPU_IDLE))
  2767. schedstat_inc(sd, alb_pushed);
  2768. else
  2769. schedstat_inc(sd, alb_failed);
  2770. }
  2771. double_unlock_balance(busiest_rq, target_rq);
  2772. out_unlock:
  2773. busiest_rq->active_balance = 0;
  2774. raw_spin_unlock_irq(&busiest_rq->lock);
  2775. return 0;
  2776. }
  2777. #ifdef CONFIG_NO_HZ
  2778. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2779. static void trigger_sched_softirq(void *data)
  2780. {
  2781. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2782. }
  2783. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2784. {
  2785. csd->func = trigger_sched_softirq;
  2786. csd->info = NULL;
  2787. csd->flags = 0;
  2788. csd->priv = 0;
  2789. }
  2790. /*
  2791. * idle load balancing details
  2792. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2793. * entering idle.
  2794. * - This idle load balancer CPU will also go into tickless mode when
  2795. * it is idle, just like all other idle CPUs
  2796. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2797. * needed, they will kick the idle load balancer, which then does idle
  2798. * load balancing for all the idle CPUs.
  2799. */
  2800. static struct {
  2801. atomic_t load_balancer;
  2802. atomic_t first_pick_cpu;
  2803. atomic_t second_pick_cpu;
  2804. cpumask_var_t idle_cpus_mask;
  2805. cpumask_var_t grp_idle_mask;
  2806. unsigned long next_balance; /* in jiffy units */
  2807. } nohz ____cacheline_aligned;
  2808. int get_nohz_load_balancer(void)
  2809. {
  2810. return atomic_read(&nohz.load_balancer);
  2811. }
  2812. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2813. /**
  2814. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2815. * @cpu: The cpu whose lowest level of sched domain is to
  2816. * be returned.
  2817. * @flag: The flag to check for the lowest sched_domain
  2818. * for the given cpu.
  2819. *
  2820. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2821. */
  2822. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2823. {
  2824. struct sched_domain *sd;
  2825. for_each_domain(cpu, sd)
  2826. if (sd && (sd->flags & flag))
  2827. break;
  2828. return sd;
  2829. }
  2830. /**
  2831. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2832. * @cpu: The cpu whose domains we're iterating over.
  2833. * @sd: variable holding the value of the power_savings_sd
  2834. * for cpu.
  2835. * @flag: The flag to filter the sched_domains to be iterated.
  2836. *
  2837. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2838. * set, starting from the lowest sched_domain to the highest.
  2839. */
  2840. #define for_each_flag_domain(cpu, sd, flag) \
  2841. for (sd = lowest_flag_domain(cpu, flag); \
  2842. (sd && (sd->flags & flag)); sd = sd->parent)
  2843. /**
  2844. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2845. * @ilb_group: group to be checked for semi-idleness
  2846. *
  2847. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2848. *
  2849. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2850. * and atleast one non-idle CPU. This helper function checks if the given
  2851. * sched_group is semi-idle or not.
  2852. */
  2853. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2854. {
  2855. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  2856. sched_group_cpus(ilb_group));
  2857. /*
  2858. * A sched_group is semi-idle when it has atleast one busy cpu
  2859. * and atleast one idle cpu.
  2860. */
  2861. if (cpumask_empty(nohz.grp_idle_mask))
  2862. return 0;
  2863. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  2864. return 0;
  2865. return 1;
  2866. }
  2867. /**
  2868. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2869. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2870. *
  2871. * Returns: Returns the id of the idle load balancer if it exists,
  2872. * Else, returns >= nr_cpu_ids.
  2873. *
  2874. * This algorithm picks the idle load balancer such that it belongs to a
  2875. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2876. * completely idle packages/cores just for the purpose of idle load balancing
  2877. * when there are other idle cpu's which are better suited for that job.
  2878. */
  2879. static int find_new_ilb(int cpu)
  2880. {
  2881. struct sched_domain *sd;
  2882. struct sched_group *ilb_group;
  2883. /*
  2884. * Have idle load balancer selection from semi-idle packages only
  2885. * when power-aware load balancing is enabled
  2886. */
  2887. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2888. goto out_done;
  2889. /*
  2890. * Optimize for the case when we have no idle CPUs or only one
  2891. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2892. */
  2893. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  2894. goto out_done;
  2895. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2896. ilb_group = sd->groups;
  2897. do {
  2898. if (is_semi_idle_group(ilb_group))
  2899. return cpumask_first(nohz.grp_idle_mask);
  2900. ilb_group = ilb_group->next;
  2901. } while (ilb_group != sd->groups);
  2902. }
  2903. out_done:
  2904. return nr_cpu_ids;
  2905. }
  2906. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  2907. static inline int find_new_ilb(int call_cpu)
  2908. {
  2909. return nr_cpu_ids;
  2910. }
  2911. #endif
  2912. /*
  2913. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  2914. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  2915. * CPU (if there is one).
  2916. */
  2917. static void nohz_balancer_kick(int cpu)
  2918. {
  2919. int ilb_cpu;
  2920. nohz.next_balance++;
  2921. ilb_cpu = get_nohz_load_balancer();
  2922. if (ilb_cpu >= nr_cpu_ids) {
  2923. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  2924. if (ilb_cpu >= nr_cpu_ids)
  2925. return;
  2926. }
  2927. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  2928. struct call_single_data *cp;
  2929. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  2930. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  2931. __smp_call_function_single(ilb_cpu, cp, 0);
  2932. }
  2933. return;
  2934. }
  2935. /*
  2936. * This routine will try to nominate the ilb (idle load balancing)
  2937. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2938. * load balancing on behalf of all those cpus.
  2939. *
  2940. * When the ilb owner becomes busy, we will not have new ilb owner until some
  2941. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  2942. * idle load balancing by kicking one of the idle CPUs.
  2943. *
  2944. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  2945. * ilb owner CPU in future (when there is a need for idle load balancing on
  2946. * behalf of all idle CPUs).
  2947. */
  2948. void select_nohz_load_balancer(int stop_tick)
  2949. {
  2950. int cpu = smp_processor_id();
  2951. if (stop_tick) {
  2952. if (!cpu_active(cpu)) {
  2953. if (atomic_read(&nohz.load_balancer) != cpu)
  2954. return;
  2955. /*
  2956. * If we are going offline and still the leader,
  2957. * give up!
  2958. */
  2959. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  2960. nr_cpu_ids) != cpu)
  2961. BUG();
  2962. return;
  2963. }
  2964. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  2965. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  2966. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  2967. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  2968. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  2969. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  2970. int new_ilb;
  2971. /* make me the ilb owner */
  2972. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  2973. cpu) != nr_cpu_ids)
  2974. return;
  2975. /*
  2976. * Check to see if there is a more power-efficient
  2977. * ilb.
  2978. */
  2979. new_ilb = find_new_ilb(cpu);
  2980. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  2981. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  2982. resched_cpu(new_ilb);
  2983. return;
  2984. }
  2985. return;
  2986. }
  2987. } else {
  2988. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  2989. return;
  2990. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  2991. if (atomic_read(&nohz.load_balancer) == cpu)
  2992. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  2993. nr_cpu_ids) != cpu)
  2994. BUG();
  2995. }
  2996. return;
  2997. }
  2998. #endif
  2999. static DEFINE_SPINLOCK(balancing);
  3000. /*
  3001. * It checks each scheduling domain to see if it is due to be balanced,
  3002. * and initiates a balancing operation if so.
  3003. *
  3004. * Balancing parameters are set up in arch_init_sched_domains.
  3005. */
  3006. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3007. {
  3008. int balance = 1;
  3009. struct rq *rq = cpu_rq(cpu);
  3010. unsigned long interval;
  3011. struct sched_domain *sd;
  3012. /* Earliest time when we have to do rebalance again */
  3013. unsigned long next_balance = jiffies + 60*HZ;
  3014. int update_next_balance = 0;
  3015. int need_serialize;
  3016. for_each_domain(cpu, sd) {
  3017. if (!(sd->flags & SD_LOAD_BALANCE))
  3018. continue;
  3019. interval = sd->balance_interval;
  3020. if (idle != CPU_IDLE)
  3021. interval *= sd->busy_factor;
  3022. /* scale ms to jiffies */
  3023. interval = msecs_to_jiffies(interval);
  3024. if (unlikely(!interval))
  3025. interval = 1;
  3026. if (interval > HZ*NR_CPUS/10)
  3027. interval = HZ*NR_CPUS/10;
  3028. need_serialize = sd->flags & SD_SERIALIZE;
  3029. if (need_serialize) {
  3030. if (!spin_trylock(&balancing))
  3031. goto out;
  3032. }
  3033. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3034. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3035. /*
  3036. * We've pulled tasks over so either we're no
  3037. * longer idle, or one of our SMT siblings is
  3038. * not idle.
  3039. */
  3040. idle = CPU_NOT_IDLE;
  3041. }
  3042. sd->last_balance = jiffies;
  3043. }
  3044. if (need_serialize)
  3045. spin_unlock(&balancing);
  3046. out:
  3047. if (time_after(next_balance, sd->last_balance + interval)) {
  3048. next_balance = sd->last_balance + interval;
  3049. update_next_balance = 1;
  3050. }
  3051. /*
  3052. * Stop the load balance at this level. There is another
  3053. * CPU in our sched group which is doing load balancing more
  3054. * actively.
  3055. */
  3056. if (!balance)
  3057. break;
  3058. }
  3059. /*
  3060. * next_balance will be updated only when there is a need.
  3061. * When the cpu is attached to null domain for ex, it will not be
  3062. * updated.
  3063. */
  3064. if (likely(update_next_balance))
  3065. rq->next_balance = next_balance;
  3066. }
  3067. #ifdef CONFIG_NO_HZ
  3068. /*
  3069. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3070. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3071. */
  3072. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3073. {
  3074. struct rq *this_rq = cpu_rq(this_cpu);
  3075. struct rq *rq;
  3076. int balance_cpu;
  3077. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3078. return;
  3079. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3080. if (balance_cpu == this_cpu)
  3081. continue;
  3082. /*
  3083. * If this cpu gets work to do, stop the load balancing
  3084. * work being done for other cpus. Next load
  3085. * balancing owner will pick it up.
  3086. */
  3087. if (need_resched()) {
  3088. this_rq->nohz_balance_kick = 0;
  3089. break;
  3090. }
  3091. raw_spin_lock_irq(&this_rq->lock);
  3092. update_rq_clock(this_rq);
  3093. update_cpu_load(this_rq);
  3094. raw_spin_unlock_irq(&this_rq->lock);
  3095. rebalance_domains(balance_cpu, CPU_IDLE);
  3096. rq = cpu_rq(balance_cpu);
  3097. if (time_after(this_rq->next_balance, rq->next_balance))
  3098. this_rq->next_balance = rq->next_balance;
  3099. }
  3100. nohz.next_balance = this_rq->next_balance;
  3101. this_rq->nohz_balance_kick = 0;
  3102. }
  3103. /*
  3104. * Current heuristic for kicking the idle load balancer
  3105. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3106. * idle load balancer when it has more than one process active. This
  3107. * eliminates the need for idle load balancing altogether when we have
  3108. * only one running process in the system (common case).
  3109. * - If there are more than one busy CPU, idle load balancer may have
  3110. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3111. * SMT or core siblings and can run better if they move to different
  3112. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3113. * which will kick idle load balancer as soon as it has any load.
  3114. */
  3115. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3116. {
  3117. unsigned long now = jiffies;
  3118. int ret;
  3119. int first_pick_cpu, second_pick_cpu;
  3120. if (time_before(now, nohz.next_balance))
  3121. return 0;
  3122. if (rq->idle_at_tick)
  3123. return 0;
  3124. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3125. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3126. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3127. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3128. return 0;
  3129. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3130. if (ret == nr_cpu_ids || ret == cpu) {
  3131. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3132. if (rq->nr_running > 1)
  3133. return 1;
  3134. } else {
  3135. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3136. if (ret == nr_cpu_ids || ret == cpu) {
  3137. if (rq->nr_running)
  3138. return 1;
  3139. }
  3140. }
  3141. return 0;
  3142. }
  3143. #else
  3144. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3145. #endif
  3146. /*
  3147. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3148. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3149. */
  3150. static void run_rebalance_domains(struct softirq_action *h)
  3151. {
  3152. int this_cpu = smp_processor_id();
  3153. struct rq *this_rq = cpu_rq(this_cpu);
  3154. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3155. CPU_IDLE : CPU_NOT_IDLE;
  3156. rebalance_domains(this_cpu, idle);
  3157. /*
  3158. * If this cpu has a pending nohz_balance_kick, then do the
  3159. * balancing on behalf of the other idle cpus whose ticks are
  3160. * stopped.
  3161. */
  3162. nohz_idle_balance(this_cpu, idle);
  3163. }
  3164. static inline int on_null_domain(int cpu)
  3165. {
  3166. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3167. }
  3168. /*
  3169. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3170. */
  3171. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3172. {
  3173. /* Don't need to rebalance while attached to NULL domain */
  3174. if (time_after_eq(jiffies, rq->next_balance) &&
  3175. likely(!on_null_domain(cpu)))
  3176. raise_softirq(SCHED_SOFTIRQ);
  3177. #ifdef CONFIG_NO_HZ
  3178. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3179. nohz_balancer_kick(cpu);
  3180. #endif
  3181. }
  3182. static void rq_online_fair(struct rq *rq)
  3183. {
  3184. update_sysctl();
  3185. }
  3186. static void rq_offline_fair(struct rq *rq)
  3187. {
  3188. update_sysctl();
  3189. }
  3190. #else /* CONFIG_SMP */
  3191. /*
  3192. * on UP we do not need to balance between CPUs:
  3193. */
  3194. static inline void idle_balance(int cpu, struct rq *rq)
  3195. {
  3196. }
  3197. #endif /* CONFIG_SMP */
  3198. /*
  3199. * scheduler tick hitting a task of our scheduling class:
  3200. */
  3201. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3202. {
  3203. struct cfs_rq *cfs_rq;
  3204. struct sched_entity *se = &curr->se;
  3205. for_each_sched_entity(se) {
  3206. cfs_rq = cfs_rq_of(se);
  3207. entity_tick(cfs_rq, se, queued);
  3208. }
  3209. }
  3210. /*
  3211. * called on fork with the child task as argument from the parent's context
  3212. * - child not yet on the tasklist
  3213. * - preemption disabled
  3214. */
  3215. static void task_fork_fair(struct task_struct *p)
  3216. {
  3217. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3218. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3219. int this_cpu = smp_processor_id();
  3220. struct rq *rq = this_rq();
  3221. unsigned long flags;
  3222. raw_spin_lock_irqsave(&rq->lock, flags);
  3223. update_rq_clock(rq);
  3224. if (unlikely(task_cpu(p) != this_cpu)) {
  3225. rcu_read_lock();
  3226. __set_task_cpu(p, this_cpu);
  3227. rcu_read_unlock();
  3228. }
  3229. update_curr(cfs_rq);
  3230. if (curr)
  3231. se->vruntime = curr->vruntime;
  3232. place_entity(cfs_rq, se, 1);
  3233. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3234. /*
  3235. * Upon rescheduling, sched_class::put_prev_task() will place
  3236. * 'current' within the tree based on its new key value.
  3237. */
  3238. swap(curr->vruntime, se->vruntime);
  3239. resched_task(rq->curr);
  3240. }
  3241. se->vruntime -= cfs_rq->min_vruntime;
  3242. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3243. }
  3244. /*
  3245. * Priority of the task has changed. Check to see if we preempt
  3246. * the current task.
  3247. */
  3248. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3249. int oldprio, int running)
  3250. {
  3251. /*
  3252. * Reschedule if we are currently running on this runqueue and
  3253. * our priority decreased, or if we are not currently running on
  3254. * this runqueue and our priority is higher than the current's
  3255. */
  3256. if (running) {
  3257. if (p->prio > oldprio)
  3258. resched_task(rq->curr);
  3259. } else
  3260. check_preempt_curr(rq, p, 0);
  3261. }
  3262. /*
  3263. * We switched to the sched_fair class.
  3264. */
  3265. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3266. int running)
  3267. {
  3268. /*
  3269. * We were most likely switched from sched_rt, so
  3270. * kick off the schedule if running, otherwise just see
  3271. * if we can still preempt the current task.
  3272. */
  3273. if (running)
  3274. resched_task(rq->curr);
  3275. else
  3276. check_preempt_curr(rq, p, 0);
  3277. }
  3278. /* Account for a task changing its policy or group.
  3279. *
  3280. * This routine is mostly called to set cfs_rq->curr field when a task
  3281. * migrates between groups/classes.
  3282. */
  3283. static void set_curr_task_fair(struct rq *rq)
  3284. {
  3285. struct sched_entity *se = &rq->curr->se;
  3286. for_each_sched_entity(se)
  3287. set_next_entity(cfs_rq_of(se), se);
  3288. }
  3289. #ifdef CONFIG_FAIR_GROUP_SCHED
  3290. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3291. {
  3292. /*
  3293. * If the task was not on the rq at the time of this cgroup movement
  3294. * it must have been asleep, sleeping tasks keep their ->vruntime
  3295. * absolute on their old rq until wakeup (needed for the fair sleeper
  3296. * bonus in place_entity()).
  3297. *
  3298. * If it was on the rq, we've just 'preempted' it, which does convert
  3299. * ->vruntime to a relative base.
  3300. *
  3301. * Make sure both cases convert their relative position when migrating
  3302. * to another cgroup's rq. This does somewhat interfere with the
  3303. * fair sleeper stuff for the first placement, but who cares.
  3304. */
  3305. if (!on_rq)
  3306. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3307. set_task_rq(p, task_cpu(p));
  3308. if (!on_rq)
  3309. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3310. }
  3311. #endif
  3312. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3313. {
  3314. struct sched_entity *se = &task->se;
  3315. unsigned int rr_interval = 0;
  3316. /*
  3317. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3318. * idle runqueue:
  3319. */
  3320. if (rq->cfs.load.weight)
  3321. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3322. return rr_interval;
  3323. }
  3324. /*
  3325. * All the scheduling class methods:
  3326. */
  3327. static const struct sched_class fair_sched_class = {
  3328. .next = &idle_sched_class,
  3329. .enqueue_task = enqueue_task_fair,
  3330. .dequeue_task = dequeue_task_fair,
  3331. .yield_task = yield_task_fair,
  3332. .check_preempt_curr = check_preempt_wakeup,
  3333. .pick_next_task = pick_next_task_fair,
  3334. .put_prev_task = put_prev_task_fair,
  3335. #ifdef CONFIG_SMP
  3336. .select_task_rq = select_task_rq_fair,
  3337. .rq_online = rq_online_fair,
  3338. .rq_offline = rq_offline_fair,
  3339. .task_waking = task_waking_fair,
  3340. #endif
  3341. .set_curr_task = set_curr_task_fair,
  3342. .task_tick = task_tick_fair,
  3343. .task_fork = task_fork_fair,
  3344. .prio_changed = prio_changed_fair,
  3345. .switched_to = switched_to_fair,
  3346. .get_rr_interval = get_rr_interval_fair,
  3347. #ifdef CONFIG_FAIR_GROUP_SCHED
  3348. .task_move_group = task_move_group_fair,
  3349. #endif
  3350. };
  3351. #ifdef CONFIG_SCHED_DEBUG
  3352. static void print_cfs_stats(struct seq_file *m, int cpu)
  3353. {
  3354. struct cfs_rq *cfs_rq;
  3355. rcu_read_lock();
  3356. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3357. print_cfs_rq(m, cpu, cfs_rq);
  3358. rcu_read_unlock();
  3359. }
  3360. #endif