disk-io.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #ifdef CONFIG_X86
  48. #include <asm/cpufeature.h>
  49. #endif
  50. static struct extent_io_ops btree_extent_io_ops;
  51. static void end_workqueue_fn(struct btrfs_work *work);
  52. static void free_fs_root(struct btrfs_root *root);
  53. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  54. int read_only);
  55. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  56. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  57. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  60. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  61. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  62. struct extent_io_tree *dirty_pages,
  63. int mark);
  64. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  65. struct extent_io_tree *pinned_extents);
  66. /*
  67. * end_io_wq structs are used to do processing in task context when an IO is
  68. * complete. This is used during reads to verify checksums, and it is used
  69. * by writes to insert metadata for new file extents after IO is complete.
  70. */
  71. struct end_io_wq {
  72. struct bio *bio;
  73. bio_end_io_t *end_io;
  74. void *private;
  75. struct btrfs_fs_info *info;
  76. int error;
  77. int metadata;
  78. struct list_head list;
  79. struct btrfs_work work;
  80. };
  81. /*
  82. * async submit bios are used to offload expensive checksumming
  83. * onto the worker threads. They checksum file and metadata bios
  84. * just before they are sent down the IO stack.
  85. */
  86. struct async_submit_bio {
  87. struct inode *inode;
  88. struct bio *bio;
  89. struct list_head list;
  90. extent_submit_bio_hook_t *submit_bio_start;
  91. extent_submit_bio_hook_t *submit_bio_done;
  92. int rw;
  93. int mirror_num;
  94. unsigned long bio_flags;
  95. /*
  96. * bio_offset is optional, can be used if the pages in the bio
  97. * can't tell us where in the file the bio should go
  98. */
  99. u64 bio_offset;
  100. struct btrfs_work work;
  101. int error;
  102. };
  103. /*
  104. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  105. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  106. * the level the eb occupies in the tree.
  107. *
  108. * Different roots are used for different purposes and may nest inside each
  109. * other and they require separate keysets. As lockdep keys should be
  110. * static, assign keysets according to the purpose of the root as indicated
  111. * by btrfs_root->objectid. This ensures that all special purpose roots
  112. * have separate keysets.
  113. *
  114. * Lock-nesting across peer nodes is always done with the immediate parent
  115. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  116. * subclass to avoid triggering lockdep warning in such cases.
  117. *
  118. * The key is set by the readpage_end_io_hook after the buffer has passed
  119. * csum validation but before the pages are unlocked. It is also set by
  120. * btrfs_init_new_buffer on freshly allocated blocks.
  121. *
  122. * We also add a check to make sure the highest level of the tree is the
  123. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  124. * needs update as well.
  125. */
  126. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  127. # if BTRFS_MAX_LEVEL != 8
  128. # error
  129. # endif
  130. static struct btrfs_lockdep_keyset {
  131. u64 id; /* root objectid */
  132. const char *name_stem; /* lock name stem */
  133. char names[BTRFS_MAX_LEVEL + 1][20];
  134. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  135. } btrfs_lockdep_keysets[] = {
  136. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  137. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  138. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  139. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  140. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  141. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  142. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  143. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  144. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  145. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  146. { .id = 0, .name_stem = "tree" },
  147. };
  148. void __init btrfs_init_lockdep(void)
  149. {
  150. int i, j;
  151. /* initialize lockdep class names */
  152. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  153. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  154. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  155. snprintf(ks->names[j], sizeof(ks->names[j]),
  156. "btrfs-%s-%02d", ks->name_stem, j);
  157. }
  158. }
  159. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  160. int level)
  161. {
  162. struct btrfs_lockdep_keyset *ks;
  163. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  164. /* find the matching keyset, id 0 is the default entry */
  165. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  166. if (ks->id == objectid)
  167. break;
  168. lockdep_set_class_and_name(&eb->lock,
  169. &ks->keys[level], ks->names[level]);
  170. }
  171. #endif
  172. /*
  173. * extents on the btree inode are pretty simple, there's one extent
  174. * that covers the entire device
  175. */
  176. static struct extent_map *btree_get_extent(struct inode *inode,
  177. struct page *page, size_t pg_offset, u64 start, u64 len,
  178. int create)
  179. {
  180. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  181. struct extent_map *em;
  182. int ret;
  183. read_lock(&em_tree->lock);
  184. em = lookup_extent_mapping(em_tree, start, len);
  185. if (em) {
  186. em->bdev =
  187. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  188. read_unlock(&em_tree->lock);
  189. goto out;
  190. }
  191. read_unlock(&em_tree->lock);
  192. em = alloc_extent_map();
  193. if (!em) {
  194. em = ERR_PTR(-ENOMEM);
  195. goto out;
  196. }
  197. em->start = 0;
  198. em->len = (u64)-1;
  199. em->block_len = (u64)-1;
  200. em->block_start = 0;
  201. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  202. write_lock(&em_tree->lock);
  203. ret = add_extent_mapping(em_tree, em);
  204. if (ret == -EEXIST) {
  205. free_extent_map(em);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (!em)
  208. em = ERR_PTR(-EIO);
  209. } else if (ret) {
  210. free_extent_map(em);
  211. em = ERR_PTR(ret);
  212. }
  213. write_unlock(&em_tree->lock);
  214. out:
  215. return em;
  216. }
  217. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  218. {
  219. return crc32c(seed, data, len);
  220. }
  221. void btrfs_csum_final(u32 crc, char *result)
  222. {
  223. put_unaligned_le32(~crc, result);
  224. }
  225. /*
  226. * compute the csum for a btree block, and either verify it or write it
  227. * into the csum field of the block.
  228. */
  229. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  230. int verify)
  231. {
  232. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  233. char *result = NULL;
  234. unsigned long len;
  235. unsigned long cur_len;
  236. unsigned long offset = BTRFS_CSUM_SIZE;
  237. char *kaddr;
  238. unsigned long map_start;
  239. unsigned long map_len;
  240. int err;
  241. u32 crc = ~(u32)0;
  242. unsigned long inline_result;
  243. len = buf->len - offset;
  244. while (len > 0) {
  245. err = map_private_extent_buffer(buf, offset, 32,
  246. &kaddr, &map_start, &map_len);
  247. if (err)
  248. return 1;
  249. cur_len = min(len, map_len - (offset - map_start));
  250. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  251. crc, cur_len);
  252. len -= cur_len;
  253. offset += cur_len;
  254. }
  255. if (csum_size > sizeof(inline_result)) {
  256. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  257. if (!result)
  258. return 1;
  259. } else {
  260. result = (char *)&inline_result;
  261. }
  262. btrfs_csum_final(crc, result);
  263. if (verify) {
  264. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  265. u32 val;
  266. u32 found = 0;
  267. memcpy(&found, result, csum_size);
  268. read_extent_buffer(buf, &val, 0, csum_size);
  269. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  270. "failed on %llu wanted %X found %X "
  271. "level %d\n",
  272. root->fs_info->sb->s_id,
  273. (unsigned long long)buf->start, val, found,
  274. btrfs_header_level(buf));
  275. if (result != (char *)&inline_result)
  276. kfree(result);
  277. return 1;
  278. }
  279. } else {
  280. write_extent_buffer(buf, result, 0, csum_size);
  281. }
  282. if (result != (char *)&inline_result)
  283. kfree(result);
  284. return 0;
  285. }
  286. /*
  287. * we can't consider a given block up to date unless the transid of the
  288. * block matches the transid in the parent node's pointer. This is how we
  289. * detect blocks that either didn't get written at all or got written
  290. * in the wrong place.
  291. */
  292. static int verify_parent_transid(struct extent_io_tree *io_tree,
  293. struct extent_buffer *eb, u64 parent_transid,
  294. int atomic)
  295. {
  296. struct extent_state *cached_state = NULL;
  297. int ret;
  298. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  299. return 0;
  300. if (atomic)
  301. return -EAGAIN;
  302. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  303. 0, &cached_state);
  304. if (extent_buffer_uptodate(eb) &&
  305. btrfs_header_generation(eb) == parent_transid) {
  306. ret = 0;
  307. goto out;
  308. }
  309. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  310. "found %llu\n",
  311. (unsigned long long)eb->start,
  312. (unsigned long long)parent_transid,
  313. (unsigned long long)btrfs_header_generation(eb));
  314. ret = 1;
  315. clear_extent_buffer_uptodate(eb);
  316. out:
  317. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  318. &cached_state, GFP_NOFS);
  319. return ret;
  320. }
  321. /*
  322. * helper to read a given tree block, doing retries as required when
  323. * the checksums don't match and we have alternate mirrors to try.
  324. */
  325. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  326. struct extent_buffer *eb,
  327. u64 start, u64 parent_transid)
  328. {
  329. struct extent_io_tree *io_tree;
  330. int failed = 0;
  331. int ret;
  332. int num_copies = 0;
  333. int mirror_num = 0;
  334. int failed_mirror = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret) {
  342. if (!verify_parent_transid(io_tree, eb,
  343. parent_transid, 0))
  344. break;
  345. else
  346. ret = -EIO;
  347. }
  348. /*
  349. * This buffer's crc is fine, but its contents are corrupted, so
  350. * there is no reason to read the other copies, they won't be
  351. * any less wrong.
  352. */
  353. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  354. break;
  355. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  356. eb->start, eb->len);
  357. if (num_copies == 1)
  358. break;
  359. if (!failed_mirror) {
  360. failed = 1;
  361. failed_mirror = eb->read_mirror;
  362. }
  363. mirror_num++;
  364. if (mirror_num == failed_mirror)
  365. mirror_num++;
  366. if (mirror_num > num_copies)
  367. break;
  368. }
  369. if (failed && !ret && failed_mirror)
  370. repair_eb_io_failure(root, eb, failed_mirror);
  371. return ret;
  372. }
  373. /*
  374. * checksum a dirty tree block before IO. This has extra checks to make sure
  375. * we only fill in the checksum field in the first page of a multi-page block
  376. */
  377. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  378. {
  379. struct extent_io_tree *tree;
  380. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  381. u64 found_start;
  382. struct extent_buffer *eb;
  383. tree = &BTRFS_I(page->mapping->host)->io_tree;
  384. eb = (struct extent_buffer *)page->private;
  385. if (page != eb->pages[0])
  386. return 0;
  387. found_start = btrfs_header_bytenr(eb);
  388. if (found_start != start) {
  389. WARN_ON(1);
  390. return 0;
  391. }
  392. if (!PageUptodate(page)) {
  393. WARN_ON(1);
  394. return 0;
  395. }
  396. csum_tree_block(root, eb, 0);
  397. return 0;
  398. }
  399. static int check_tree_block_fsid(struct btrfs_root *root,
  400. struct extent_buffer *eb)
  401. {
  402. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  403. u8 fsid[BTRFS_UUID_SIZE];
  404. int ret = 1;
  405. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  406. BTRFS_FSID_SIZE);
  407. while (fs_devices) {
  408. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  409. ret = 0;
  410. break;
  411. }
  412. fs_devices = fs_devices->seed;
  413. }
  414. return ret;
  415. }
  416. #define CORRUPT(reason, eb, root, slot) \
  417. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  418. "root=%llu, slot=%d\n", reason, \
  419. (unsigned long long)btrfs_header_bytenr(eb), \
  420. (unsigned long long)root->objectid, slot)
  421. static noinline int check_leaf(struct btrfs_root *root,
  422. struct extent_buffer *leaf)
  423. {
  424. struct btrfs_key key;
  425. struct btrfs_key leaf_key;
  426. u32 nritems = btrfs_header_nritems(leaf);
  427. int slot;
  428. if (nritems == 0)
  429. return 0;
  430. /* Check the 0 item */
  431. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  432. BTRFS_LEAF_DATA_SIZE(root)) {
  433. CORRUPT("invalid item offset size pair", leaf, root, 0);
  434. return -EIO;
  435. }
  436. /*
  437. * Check to make sure each items keys are in the correct order and their
  438. * offsets make sense. We only have to loop through nritems-1 because
  439. * we check the current slot against the next slot, which verifies the
  440. * next slot's offset+size makes sense and that the current's slot
  441. * offset is correct.
  442. */
  443. for (slot = 0; slot < nritems - 1; slot++) {
  444. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  445. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  446. /* Make sure the keys are in the right order */
  447. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  448. CORRUPT("bad key order", leaf, root, slot);
  449. return -EIO;
  450. }
  451. /*
  452. * Make sure the offset and ends are right, remember that the
  453. * item data starts at the end of the leaf and grows towards the
  454. * front.
  455. */
  456. if (btrfs_item_offset_nr(leaf, slot) !=
  457. btrfs_item_end_nr(leaf, slot + 1)) {
  458. CORRUPT("slot offset bad", leaf, root, slot);
  459. return -EIO;
  460. }
  461. /*
  462. * Check to make sure that we don't point outside of the leaf,
  463. * just incase all the items are consistent to eachother, but
  464. * all point outside of the leaf.
  465. */
  466. if (btrfs_item_end_nr(leaf, slot) >
  467. BTRFS_LEAF_DATA_SIZE(root)) {
  468. CORRUPT("slot end outside of leaf", leaf, root, slot);
  469. return -EIO;
  470. }
  471. }
  472. return 0;
  473. }
  474. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  475. struct page *page, int max_walk)
  476. {
  477. struct extent_buffer *eb;
  478. u64 start = page_offset(page);
  479. u64 target = start;
  480. u64 min_start;
  481. if (start < max_walk)
  482. min_start = 0;
  483. else
  484. min_start = start - max_walk;
  485. while (start >= min_start) {
  486. eb = find_extent_buffer(tree, start, 0);
  487. if (eb) {
  488. /*
  489. * we found an extent buffer and it contains our page
  490. * horray!
  491. */
  492. if (eb->start <= target &&
  493. eb->start + eb->len > target)
  494. return eb;
  495. /* we found an extent buffer that wasn't for us */
  496. free_extent_buffer(eb);
  497. return NULL;
  498. }
  499. if (start == 0)
  500. break;
  501. start -= PAGE_CACHE_SIZE;
  502. }
  503. return NULL;
  504. }
  505. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  506. struct extent_state *state, int mirror)
  507. {
  508. struct extent_io_tree *tree;
  509. u64 found_start;
  510. int found_level;
  511. struct extent_buffer *eb;
  512. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  513. int ret = 0;
  514. int reads_done;
  515. if (!page->private)
  516. goto out;
  517. tree = &BTRFS_I(page->mapping->host)->io_tree;
  518. eb = (struct extent_buffer *)page->private;
  519. /* the pending IO might have been the only thing that kept this buffer
  520. * in memory. Make sure we have a ref for all this other checks
  521. */
  522. extent_buffer_get(eb);
  523. reads_done = atomic_dec_and_test(&eb->io_pages);
  524. if (!reads_done)
  525. goto err;
  526. eb->read_mirror = mirror;
  527. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  528. ret = -EIO;
  529. goto err;
  530. }
  531. found_start = btrfs_header_bytenr(eb);
  532. if (found_start != eb->start) {
  533. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  534. "%llu %llu\n",
  535. (unsigned long long)found_start,
  536. (unsigned long long)eb->start);
  537. ret = -EIO;
  538. goto err;
  539. }
  540. if (check_tree_block_fsid(root, eb)) {
  541. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  542. (unsigned long long)eb->start);
  543. ret = -EIO;
  544. goto err;
  545. }
  546. found_level = btrfs_header_level(eb);
  547. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  548. eb, found_level);
  549. ret = csum_tree_block(root, eb, 1);
  550. if (ret) {
  551. ret = -EIO;
  552. goto err;
  553. }
  554. /*
  555. * If this is a leaf block and it is corrupt, set the corrupt bit so
  556. * that we don't try and read the other copies of this block, just
  557. * return -EIO.
  558. */
  559. if (found_level == 0 && check_leaf(root, eb)) {
  560. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  561. ret = -EIO;
  562. }
  563. if (!ret)
  564. set_extent_buffer_uptodate(eb);
  565. err:
  566. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  567. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  568. btree_readahead_hook(root, eb, eb->start, ret);
  569. }
  570. if (ret)
  571. clear_extent_buffer_uptodate(eb);
  572. free_extent_buffer(eb);
  573. out:
  574. return ret;
  575. }
  576. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  577. {
  578. struct extent_buffer *eb;
  579. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  580. eb = (struct extent_buffer *)page->private;
  581. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  582. eb->read_mirror = failed_mirror;
  583. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  584. btree_readahead_hook(root, eb, eb->start, -EIO);
  585. return -EIO; /* we fixed nothing */
  586. }
  587. static void end_workqueue_bio(struct bio *bio, int err)
  588. {
  589. struct end_io_wq *end_io_wq = bio->bi_private;
  590. struct btrfs_fs_info *fs_info;
  591. fs_info = end_io_wq->info;
  592. end_io_wq->error = err;
  593. end_io_wq->work.func = end_workqueue_fn;
  594. end_io_wq->work.flags = 0;
  595. if (bio->bi_rw & REQ_WRITE) {
  596. if (end_io_wq->metadata == 1)
  597. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  598. &end_io_wq->work);
  599. else if (end_io_wq->metadata == 2)
  600. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  601. &end_io_wq->work);
  602. else
  603. btrfs_queue_worker(&fs_info->endio_write_workers,
  604. &end_io_wq->work);
  605. } else {
  606. if (end_io_wq->metadata)
  607. btrfs_queue_worker(&fs_info->endio_meta_workers,
  608. &end_io_wq->work);
  609. else
  610. btrfs_queue_worker(&fs_info->endio_workers,
  611. &end_io_wq->work);
  612. }
  613. }
  614. /*
  615. * For the metadata arg you want
  616. *
  617. * 0 - if data
  618. * 1 - if normal metadta
  619. * 2 - if writing to the free space cache area
  620. */
  621. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  622. int metadata)
  623. {
  624. struct end_io_wq *end_io_wq;
  625. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  626. if (!end_io_wq)
  627. return -ENOMEM;
  628. end_io_wq->private = bio->bi_private;
  629. end_io_wq->end_io = bio->bi_end_io;
  630. end_io_wq->info = info;
  631. end_io_wq->error = 0;
  632. end_io_wq->bio = bio;
  633. end_io_wq->metadata = metadata;
  634. bio->bi_private = end_io_wq;
  635. bio->bi_end_io = end_workqueue_bio;
  636. return 0;
  637. }
  638. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  639. {
  640. unsigned long limit = min_t(unsigned long,
  641. info->workers.max_workers,
  642. info->fs_devices->open_devices);
  643. return 256 * limit;
  644. }
  645. static void run_one_async_start(struct btrfs_work *work)
  646. {
  647. struct async_submit_bio *async;
  648. int ret;
  649. async = container_of(work, struct async_submit_bio, work);
  650. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  651. async->mirror_num, async->bio_flags,
  652. async->bio_offset);
  653. if (ret)
  654. async->error = ret;
  655. }
  656. static void run_one_async_done(struct btrfs_work *work)
  657. {
  658. struct btrfs_fs_info *fs_info;
  659. struct async_submit_bio *async;
  660. int limit;
  661. async = container_of(work, struct async_submit_bio, work);
  662. fs_info = BTRFS_I(async->inode)->root->fs_info;
  663. limit = btrfs_async_submit_limit(fs_info);
  664. limit = limit * 2 / 3;
  665. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  666. waitqueue_active(&fs_info->async_submit_wait))
  667. wake_up(&fs_info->async_submit_wait);
  668. /* If an error occured we just want to clean up the bio and move on */
  669. if (async->error) {
  670. bio_endio(async->bio, async->error);
  671. return;
  672. }
  673. async->submit_bio_done(async->inode, async->rw, async->bio,
  674. async->mirror_num, async->bio_flags,
  675. async->bio_offset);
  676. }
  677. static void run_one_async_free(struct btrfs_work *work)
  678. {
  679. struct async_submit_bio *async;
  680. async = container_of(work, struct async_submit_bio, work);
  681. kfree(async);
  682. }
  683. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  684. int rw, struct bio *bio, int mirror_num,
  685. unsigned long bio_flags,
  686. u64 bio_offset,
  687. extent_submit_bio_hook_t *submit_bio_start,
  688. extent_submit_bio_hook_t *submit_bio_done)
  689. {
  690. struct async_submit_bio *async;
  691. async = kmalloc(sizeof(*async), GFP_NOFS);
  692. if (!async)
  693. return -ENOMEM;
  694. async->inode = inode;
  695. async->rw = rw;
  696. async->bio = bio;
  697. async->mirror_num = mirror_num;
  698. async->submit_bio_start = submit_bio_start;
  699. async->submit_bio_done = submit_bio_done;
  700. async->work.func = run_one_async_start;
  701. async->work.ordered_func = run_one_async_done;
  702. async->work.ordered_free = run_one_async_free;
  703. async->work.flags = 0;
  704. async->bio_flags = bio_flags;
  705. async->bio_offset = bio_offset;
  706. async->error = 0;
  707. atomic_inc(&fs_info->nr_async_submits);
  708. if (rw & REQ_SYNC)
  709. btrfs_set_work_high_prio(&async->work);
  710. btrfs_queue_worker(&fs_info->workers, &async->work);
  711. while (atomic_read(&fs_info->async_submit_draining) &&
  712. atomic_read(&fs_info->nr_async_submits)) {
  713. wait_event(fs_info->async_submit_wait,
  714. (atomic_read(&fs_info->nr_async_submits) == 0));
  715. }
  716. return 0;
  717. }
  718. static int btree_csum_one_bio(struct bio *bio)
  719. {
  720. struct bio_vec *bvec = bio->bi_io_vec;
  721. int bio_index = 0;
  722. struct btrfs_root *root;
  723. int ret = 0;
  724. WARN_ON(bio->bi_vcnt <= 0);
  725. while (bio_index < bio->bi_vcnt) {
  726. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  727. ret = csum_dirty_buffer(root, bvec->bv_page);
  728. if (ret)
  729. break;
  730. bio_index++;
  731. bvec++;
  732. }
  733. return ret;
  734. }
  735. static int __btree_submit_bio_start(struct inode *inode, int rw,
  736. struct bio *bio, int mirror_num,
  737. unsigned long bio_flags,
  738. u64 bio_offset)
  739. {
  740. /*
  741. * when we're called for a write, we're already in the async
  742. * submission context. Just jump into btrfs_map_bio
  743. */
  744. return btree_csum_one_bio(bio);
  745. }
  746. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  747. int mirror_num, unsigned long bio_flags,
  748. u64 bio_offset)
  749. {
  750. /*
  751. * when we're called for a write, we're already in the async
  752. * submission context. Just jump into btrfs_map_bio
  753. */
  754. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  755. }
  756. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  757. {
  758. if (bio_flags & EXTENT_BIO_TREE_LOG)
  759. return 0;
  760. #ifdef CONFIG_X86
  761. if (cpu_has_xmm4_2)
  762. return 0;
  763. #endif
  764. return 1;
  765. }
  766. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  767. int mirror_num, unsigned long bio_flags,
  768. u64 bio_offset)
  769. {
  770. int async = check_async_write(inode, bio_flags);
  771. int ret;
  772. if (!(rw & REQ_WRITE)) {
  773. /*
  774. * called for a read, do the setup so that checksum validation
  775. * can happen in the async kernel threads
  776. */
  777. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  778. bio, 1);
  779. if (ret)
  780. return ret;
  781. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  782. mirror_num, 0);
  783. } else if (!async) {
  784. ret = btree_csum_one_bio(bio);
  785. if (ret)
  786. return ret;
  787. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  788. mirror_num, 0);
  789. }
  790. /*
  791. * kthread helpers are used to submit writes so that checksumming
  792. * can happen in parallel across all CPUs
  793. */
  794. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  795. inode, rw, bio, mirror_num, 0,
  796. bio_offset,
  797. __btree_submit_bio_start,
  798. __btree_submit_bio_done);
  799. }
  800. #ifdef CONFIG_MIGRATION
  801. static int btree_migratepage(struct address_space *mapping,
  802. struct page *newpage, struct page *page,
  803. enum migrate_mode mode)
  804. {
  805. /*
  806. * we can't safely write a btree page from here,
  807. * we haven't done the locking hook
  808. */
  809. if (PageDirty(page))
  810. return -EAGAIN;
  811. /*
  812. * Buffers may be managed in a filesystem specific way.
  813. * We must have no buffers or drop them.
  814. */
  815. if (page_has_private(page) &&
  816. !try_to_release_page(page, GFP_KERNEL))
  817. return -EAGAIN;
  818. return migrate_page(mapping, newpage, page, mode);
  819. }
  820. #endif
  821. static int btree_writepages(struct address_space *mapping,
  822. struct writeback_control *wbc)
  823. {
  824. struct extent_io_tree *tree;
  825. tree = &BTRFS_I(mapping->host)->io_tree;
  826. if (wbc->sync_mode == WB_SYNC_NONE) {
  827. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  828. u64 num_dirty;
  829. unsigned long thresh = 32 * 1024 * 1024;
  830. if (wbc->for_kupdate)
  831. return 0;
  832. /* this is a bit racy, but that's ok */
  833. num_dirty = root->fs_info->dirty_metadata_bytes;
  834. if (num_dirty < thresh)
  835. return 0;
  836. }
  837. return btree_write_cache_pages(mapping, wbc);
  838. }
  839. static int btree_readpage(struct file *file, struct page *page)
  840. {
  841. struct extent_io_tree *tree;
  842. tree = &BTRFS_I(page->mapping->host)->io_tree;
  843. return extent_read_full_page(tree, page, btree_get_extent, 0);
  844. }
  845. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  846. {
  847. if (PageWriteback(page) || PageDirty(page))
  848. return 0;
  849. /*
  850. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  851. * slab allocation from alloc_extent_state down the callchain where
  852. * it'd hit a BUG_ON as those flags are not allowed.
  853. */
  854. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  855. return try_release_extent_buffer(page, gfp_flags);
  856. }
  857. static void btree_invalidatepage(struct page *page, unsigned long offset)
  858. {
  859. struct extent_io_tree *tree;
  860. tree = &BTRFS_I(page->mapping->host)->io_tree;
  861. extent_invalidatepage(tree, page, offset);
  862. btree_releasepage(page, GFP_NOFS);
  863. if (PagePrivate(page)) {
  864. printk(KERN_WARNING "btrfs warning page private not zero "
  865. "on page %llu\n", (unsigned long long)page_offset(page));
  866. ClearPagePrivate(page);
  867. set_page_private(page, 0);
  868. page_cache_release(page);
  869. }
  870. }
  871. static int btree_set_page_dirty(struct page *page)
  872. {
  873. struct extent_buffer *eb;
  874. BUG_ON(!PagePrivate(page));
  875. eb = (struct extent_buffer *)page->private;
  876. BUG_ON(!eb);
  877. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  878. BUG_ON(!atomic_read(&eb->refs));
  879. btrfs_assert_tree_locked(eb);
  880. return __set_page_dirty_nobuffers(page);
  881. }
  882. static const struct address_space_operations btree_aops = {
  883. .readpage = btree_readpage,
  884. .writepages = btree_writepages,
  885. .releasepage = btree_releasepage,
  886. .invalidatepage = btree_invalidatepage,
  887. #ifdef CONFIG_MIGRATION
  888. .migratepage = btree_migratepage,
  889. #endif
  890. .set_page_dirty = btree_set_page_dirty,
  891. };
  892. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  893. u64 parent_transid)
  894. {
  895. struct extent_buffer *buf = NULL;
  896. struct inode *btree_inode = root->fs_info->btree_inode;
  897. int ret = 0;
  898. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  899. if (!buf)
  900. return 0;
  901. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  902. buf, 0, WAIT_NONE, btree_get_extent, 0);
  903. free_extent_buffer(buf);
  904. return ret;
  905. }
  906. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  907. int mirror_num, struct extent_buffer **eb)
  908. {
  909. struct extent_buffer *buf = NULL;
  910. struct inode *btree_inode = root->fs_info->btree_inode;
  911. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  912. int ret;
  913. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  914. if (!buf)
  915. return 0;
  916. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  917. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  918. btree_get_extent, mirror_num);
  919. if (ret) {
  920. free_extent_buffer(buf);
  921. return ret;
  922. }
  923. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  924. free_extent_buffer(buf);
  925. return -EIO;
  926. } else if (extent_buffer_uptodate(buf)) {
  927. *eb = buf;
  928. } else {
  929. free_extent_buffer(buf);
  930. }
  931. return 0;
  932. }
  933. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  934. u64 bytenr, u32 blocksize)
  935. {
  936. struct inode *btree_inode = root->fs_info->btree_inode;
  937. struct extent_buffer *eb;
  938. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  939. bytenr, blocksize);
  940. return eb;
  941. }
  942. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  943. u64 bytenr, u32 blocksize)
  944. {
  945. struct inode *btree_inode = root->fs_info->btree_inode;
  946. struct extent_buffer *eb;
  947. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  948. bytenr, blocksize);
  949. return eb;
  950. }
  951. int btrfs_write_tree_block(struct extent_buffer *buf)
  952. {
  953. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  954. buf->start + buf->len - 1);
  955. }
  956. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  957. {
  958. return filemap_fdatawait_range(buf->pages[0]->mapping,
  959. buf->start, buf->start + buf->len - 1);
  960. }
  961. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  962. u32 blocksize, u64 parent_transid)
  963. {
  964. struct extent_buffer *buf = NULL;
  965. int ret;
  966. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  967. if (!buf)
  968. return NULL;
  969. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  970. return buf;
  971. }
  972. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  973. struct extent_buffer *buf)
  974. {
  975. if (btrfs_header_generation(buf) ==
  976. root->fs_info->running_transaction->transid) {
  977. btrfs_assert_tree_locked(buf);
  978. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  979. spin_lock(&root->fs_info->delalloc_lock);
  980. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  981. root->fs_info->dirty_metadata_bytes -= buf->len;
  982. else {
  983. spin_unlock(&root->fs_info->delalloc_lock);
  984. btrfs_panic(root->fs_info, -EOVERFLOW,
  985. "Can't clear %lu bytes from "
  986. " dirty_mdatadata_bytes (%llu)",
  987. buf->len,
  988. root->fs_info->dirty_metadata_bytes);
  989. }
  990. spin_unlock(&root->fs_info->delalloc_lock);
  991. }
  992. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  993. btrfs_set_lock_blocking(buf);
  994. clear_extent_buffer_dirty(buf);
  995. }
  996. }
  997. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  998. u32 stripesize, struct btrfs_root *root,
  999. struct btrfs_fs_info *fs_info,
  1000. u64 objectid)
  1001. {
  1002. root->node = NULL;
  1003. root->commit_root = NULL;
  1004. root->sectorsize = sectorsize;
  1005. root->nodesize = nodesize;
  1006. root->leafsize = leafsize;
  1007. root->stripesize = stripesize;
  1008. root->ref_cows = 0;
  1009. root->track_dirty = 0;
  1010. root->in_radix = 0;
  1011. root->orphan_item_inserted = 0;
  1012. root->orphan_cleanup_state = 0;
  1013. root->objectid = objectid;
  1014. root->last_trans = 0;
  1015. root->highest_objectid = 0;
  1016. root->name = NULL;
  1017. root->inode_tree = RB_ROOT;
  1018. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1019. root->block_rsv = NULL;
  1020. root->orphan_block_rsv = NULL;
  1021. INIT_LIST_HEAD(&root->dirty_list);
  1022. INIT_LIST_HEAD(&root->root_list);
  1023. spin_lock_init(&root->orphan_lock);
  1024. spin_lock_init(&root->inode_lock);
  1025. spin_lock_init(&root->accounting_lock);
  1026. mutex_init(&root->objectid_mutex);
  1027. mutex_init(&root->log_mutex);
  1028. init_waitqueue_head(&root->log_writer_wait);
  1029. init_waitqueue_head(&root->log_commit_wait[0]);
  1030. init_waitqueue_head(&root->log_commit_wait[1]);
  1031. atomic_set(&root->log_commit[0], 0);
  1032. atomic_set(&root->log_commit[1], 0);
  1033. atomic_set(&root->log_writers, 0);
  1034. atomic_set(&root->log_batch, 0);
  1035. atomic_set(&root->orphan_inodes, 0);
  1036. root->log_transid = 0;
  1037. root->last_log_commit = 0;
  1038. extent_io_tree_init(&root->dirty_log_pages,
  1039. fs_info->btree_inode->i_mapping);
  1040. memset(&root->root_key, 0, sizeof(root->root_key));
  1041. memset(&root->root_item, 0, sizeof(root->root_item));
  1042. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1043. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1044. root->defrag_trans_start = fs_info->generation;
  1045. init_completion(&root->kobj_unregister);
  1046. root->defrag_running = 0;
  1047. root->root_key.objectid = objectid;
  1048. root->anon_dev = 0;
  1049. spin_lock_init(&root->root_times_lock);
  1050. }
  1051. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1052. struct btrfs_fs_info *fs_info,
  1053. u64 objectid,
  1054. struct btrfs_root *root)
  1055. {
  1056. int ret;
  1057. u32 blocksize;
  1058. u64 generation;
  1059. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1060. tree_root->sectorsize, tree_root->stripesize,
  1061. root, fs_info, objectid);
  1062. ret = btrfs_find_last_root(tree_root, objectid,
  1063. &root->root_item, &root->root_key);
  1064. if (ret > 0)
  1065. return -ENOENT;
  1066. else if (ret < 0)
  1067. return ret;
  1068. generation = btrfs_root_generation(&root->root_item);
  1069. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1070. root->commit_root = NULL;
  1071. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1072. blocksize, generation);
  1073. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1074. free_extent_buffer(root->node);
  1075. root->node = NULL;
  1076. return -EIO;
  1077. }
  1078. root->commit_root = btrfs_root_node(root);
  1079. return 0;
  1080. }
  1081. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1082. {
  1083. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1084. if (root)
  1085. root->fs_info = fs_info;
  1086. return root;
  1087. }
  1088. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1089. struct btrfs_fs_info *fs_info,
  1090. u64 objectid)
  1091. {
  1092. struct extent_buffer *leaf;
  1093. struct btrfs_root *tree_root = fs_info->tree_root;
  1094. struct btrfs_root *root;
  1095. struct btrfs_key key;
  1096. int ret = 0;
  1097. u64 bytenr;
  1098. root = btrfs_alloc_root(fs_info);
  1099. if (!root)
  1100. return ERR_PTR(-ENOMEM);
  1101. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1102. tree_root->sectorsize, tree_root->stripesize,
  1103. root, fs_info, objectid);
  1104. root->root_key.objectid = objectid;
  1105. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1106. root->root_key.offset = 0;
  1107. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1108. 0, objectid, NULL, 0, 0, 0);
  1109. if (IS_ERR(leaf)) {
  1110. ret = PTR_ERR(leaf);
  1111. goto fail;
  1112. }
  1113. bytenr = leaf->start;
  1114. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1115. btrfs_set_header_bytenr(leaf, leaf->start);
  1116. btrfs_set_header_generation(leaf, trans->transid);
  1117. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1118. btrfs_set_header_owner(leaf, objectid);
  1119. root->node = leaf;
  1120. write_extent_buffer(leaf, fs_info->fsid,
  1121. (unsigned long)btrfs_header_fsid(leaf),
  1122. BTRFS_FSID_SIZE);
  1123. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1124. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1125. BTRFS_UUID_SIZE);
  1126. btrfs_mark_buffer_dirty(leaf);
  1127. root->commit_root = btrfs_root_node(root);
  1128. root->track_dirty = 1;
  1129. root->root_item.flags = 0;
  1130. root->root_item.byte_limit = 0;
  1131. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1132. btrfs_set_root_generation(&root->root_item, trans->transid);
  1133. btrfs_set_root_level(&root->root_item, 0);
  1134. btrfs_set_root_refs(&root->root_item, 1);
  1135. btrfs_set_root_used(&root->root_item, leaf->len);
  1136. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1137. btrfs_set_root_dirid(&root->root_item, 0);
  1138. root->root_item.drop_level = 0;
  1139. key.objectid = objectid;
  1140. key.type = BTRFS_ROOT_ITEM_KEY;
  1141. key.offset = 0;
  1142. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1143. if (ret)
  1144. goto fail;
  1145. btrfs_tree_unlock(leaf);
  1146. fail:
  1147. if (ret)
  1148. return ERR_PTR(ret);
  1149. return root;
  1150. }
  1151. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1152. struct btrfs_fs_info *fs_info)
  1153. {
  1154. struct btrfs_root *root;
  1155. struct btrfs_root *tree_root = fs_info->tree_root;
  1156. struct extent_buffer *leaf;
  1157. root = btrfs_alloc_root(fs_info);
  1158. if (!root)
  1159. return ERR_PTR(-ENOMEM);
  1160. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1161. tree_root->sectorsize, tree_root->stripesize,
  1162. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1163. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1164. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1165. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1166. /*
  1167. * log trees do not get reference counted because they go away
  1168. * before a real commit is actually done. They do store pointers
  1169. * to file data extents, and those reference counts still get
  1170. * updated (along with back refs to the log tree).
  1171. */
  1172. root->ref_cows = 0;
  1173. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1174. BTRFS_TREE_LOG_OBJECTID, NULL,
  1175. 0, 0, 0);
  1176. if (IS_ERR(leaf)) {
  1177. kfree(root);
  1178. return ERR_CAST(leaf);
  1179. }
  1180. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1181. btrfs_set_header_bytenr(leaf, leaf->start);
  1182. btrfs_set_header_generation(leaf, trans->transid);
  1183. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1184. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1185. root->node = leaf;
  1186. write_extent_buffer(root->node, root->fs_info->fsid,
  1187. (unsigned long)btrfs_header_fsid(root->node),
  1188. BTRFS_FSID_SIZE);
  1189. btrfs_mark_buffer_dirty(root->node);
  1190. btrfs_tree_unlock(root->node);
  1191. return root;
  1192. }
  1193. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1194. struct btrfs_fs_info *fs_info)
  1195. {
  1196. struct btrfs_root *log_root;
  1197. log_root = alloc_log_tree(trans, fs_info);
  1198. if (IS_ERR(log_root))
  1199. return PTR_ERR(log_root);
  1200. WARN_ON(fs_info->log_root_tree);
  1201. fs_info->log_root_tree = log_root;
  1202. return 0;
  1203. }
  1204. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1205. struct btrfs_root *root)
  1206. {
  1207. struct btrfs_root *log_root;
  1208. struct btrfs_inode_item *inode_item;
  1209. log_root = alloc_log_tree(trans, root->fs_info);
  1210. if (IS_ERR(log_root))
  1211. return PTR_ERR(log_root);
  1212. log_root->last_trans = trans->transid;
  1213. log_root->root_key.offset = root->root_key.objectid;
  1214. inode_item = &log_root->root_item.inode;
  1215. inode_item->generation = cpu_to_le64(1);
  1216. inode_item->size = cpu_to_le64(3);
  1217. inode_item->nlink = cpu_to_le32(1);
  1218. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1219. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1220. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1221. WARN_ON(root->log_root);
  1222. root->log_root = log_root;
  1223. root->log_transid = 0;
  1224. root->last_log_commit = 0;
  1225. return 0;
  1226. }
  1227. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1228. struct btrfs_key *location)
  1229. {
  1230. struct btrfs_root *root;
  1231. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1232. struct btrfs_path *path;
  1233. struct extent_buffer *l;
  1234. u64 generation;
  1235. u32 blocksize;
  1236. int ret = 0;
  1237. int slot;
  1238. root = btrfs_alloc_root(fs_info);
  1239. if (!root)
  1240. return ERR_PTR(-ENOMEM);
  1241. if (location->offset == (u64)-1) {
  1242. ret = find_and_setup_root(tree_root, fs_info,
  1243. location->objectid, root);
  1244. if (ret) {
  1245. kfree(root);
  1246. return ERR_PTR(ret);
  1247. }
  1248. goto out;
  1249. }
  1250. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1251. tree_root->sectorsize, tree_root->stripesize,
  1252. root, fs_info, location->objectid);
  1253. path = btrfs_alloc_path();
  1254. if (!path) {
  1255. kfree(root);
  1256. return ERR_PTR(-ENOMEM);
  1257. }
  1258. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1259. if (ret == 0) {
  1260. l = path->nodes[0];
  1261. slot = path->slots[0];
  1262. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1263. memcpy(&root->root_key, location, sizeof(*location));
  1264. }
  1265. btrfs_free_path(path);
  1266. if (ret) {
  1267. kfree(root);
  1268. if (ret > 0)
  1269. ret = -ENOENT;
  1270. return ERR_PTR(ret);
  1271. }
  1272. generation = btrfs_root_generation(&root->root_item);
  1273. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1274. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1275. blocksize, generation);
  1276. root->commit_root = btrfs_root_node(root);
  1277. BUG_ON(!root->node); /* -ENOMEM */
  1278. out:
  1279. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1280. root->ref_cows = 1;
  1281. btrfs_check_and_init_root_item(&root->root_item);
  1282. }
  1283. return root;
  1284. }
  1285. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1286. struct btrfs_key *location)
  1287. {
  1288. struct btrfs_root *root;
  1289. int ret;
  1290. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1291. return fs_info->tree_root;
  1292. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1293. return fs_info->extent_root;
  1294. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1295. return fs_info->chunk_root;
  1296. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1297. return fs_info->dev_root;
  1298. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1299. return fs_info->csum_root;
  1300. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1301. return fs_info->quota_root ? fs_info->quota_root :
  1302. ERR_PTR(-ENOENT);
  1303. again:
  1304. spin_lock(&fs_info->fs_roots_radix_lock);
  1305. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1306. (unsigned long)location->objectid);
  1307. spin_unlock(&fs_info->fs_roots_radix_lock);
  1308. if (root)
  1309. return root;
  1310. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1311. if (IS_ERR(root))
  1312. return root;
  1313. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1314. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1315. GFP_NOFS);
  1316. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1317. ret = -ENOMEM;
  1318. goto fail;
  1319. }
  1320. btrfs_init_free_ino_ctl(root);
  1321. mutex_init(&root->fs_commit_mutex);
  1322. spin_lock_init(&root->cache_lock);
  1323. init_waitqueue_head(&root->cache_wait);
  1324. ret = get_anon_bdev(&root->anon_dev);
  1325. if (ret)
  1326. goto fail;
  1327. if (btrfs_root_refs(&root->root_item) == 0) {
  1328. ret = -ENOENT;
  1329. goto fail;
  1330. }
  1331. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1332. if (ret < 0)
  1333. goto fail;
  1334. if (ret == 0)
  1335. root->orphan_item_inserted = 1;
  1336. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1337. if (ret)
  1338. goto fail;
  1339. spin_lock(&fs_info->fs_roots_radix_lock);
  1340. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1341. (unsigned long)root->root_key.objectid,
  1342. root);
  1343. if (ret == 0)
  1344. root->in_radix = 1;
  1345. spin_unlock(&fs_info->fs_roots_radix_lock);
  1346. radix_tree_preload_end();
  1347. if (ret) {
  1348. if (ret == -EEXIST) {
  1349. free_fs_root(root);
  1350. goto again;
  1351. }
  1352. goto fail;
  1353. }
  1354. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1355. root->root_key.objectid);
  1356. WARN_ON(ret);
  1357. return root;
  1358. fail:
  1359. free_fs_root(root);
  1360. return ERR_PTR(ret);
  1361. }
  1362. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1363. {
  1364. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1365. int ret = 0;
  1366. struct btrfs_device *device;
  1367. struct backing_dev_info *bdi;
  1368. rcu_read_lock();
  1369. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1370. if (!device->bdev)
  1371. continue;
  1372. bdi = blk_get_backing_dev_info(device->bdev);
  1373. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1374. ret = 1;
  1375. break;
  1376. }
  1377. }
  1378. rcu_read_unlock();
  1379. return ret;
  1380. }
  1381. /*
  1382. * If this fails, caller must call bdi_destroy() to get rid of the
  1383. * bdi again.
  1384. */
  1385. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1386. {
  1387. int err;
  1388. bdi->capabilities = BDI_CAP_MAP_COPY;
  1389. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1390. if (err)
  1391. return err;
  1392. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1393. bdi->congested_fn = btrfs_congested_fn;
  1394. bdi->congested_data = info;
  1395. return 0;
  1396. }
  1397. /*
  1398. * called by the kthread helper functions to finally call the bio end_io
  1399. * functions. This is where read checksum verification actually happens
  1400. */
  1401. static void end_workqueue_fn(struct btrfs_work *work)
  1402. {
  1403. struct bio *bio;
  1404. struct end_io_wq *end_io_wq;
  1405. struct btrfs_fs_info *fs_info;
  1406. int error;
  1407. end_io_wq = container_of(work, struct end_io_wq, work);
  1408. bio = end_io_wq->bio;
  1409. fs_info = end_io_wq->info;
  1410. error = end_io_wq->error;
  1411. bio->bi_private = end_io_wq->private;
  1412. bio->bi_end_io = end_io_wq->end_io;
  1413. kfree(end_io_wq);
  1414. bio_endio(bio, error);
  1415. }
  1416. static int cleaner_kthread(void *arg)
  1417. {
  1418. struct btrfs_root *root = arg;
  1419. do {
  1420. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1421. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1422. btrfs_run_delayed_iputs(root);
  1423. btrfs_clean_old_snapshots(root);
  1424. mutex_unlock(&root->fs_info->cleaner_mutex);
  1425. btrfs_run_defrag_inodes(root->fs_info);
  1426. }
  1427. if (!try_to_freeze()) {
  1428. set_current_state(TASK_INTERRUPTIBLE);
  1429. if (!kthread_should_stop())
  1430. schedule();
  1431. __set_current_state(TASK_RUNNING);
  1432. }
  1433. } while (!kthread_should_stop());
  1434. return 0;
  1435. }
  1436. static int transaction_kthread(void *arg)
  1437. {
  1438. struct btrfs_root *root = arg;
  1439. struct btrfs_trans_handle *trans;
  1440. struct btrfs_transaction *cur;
  1441. u64 transid;
  1442. unsigned long now;
  1443. unsigned long delay;
  1444. bool cannot_commit;
  1445. do {
  1446. cannot_commit = false;
  1447. delay = HZ * 30;
  1448. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1449. spin_lock(&root->fs_info->trans_lock);
  1450. cur = root->fs_info->running_transaction;
  1451. if (!cur) {
  1452. spin_unlock(&root->fs_info->trans_lock);
  1453. goto sleep;
  1454. }
  1455. now = get_seconds();
  1456. if (!cur->blocked &&
  1457. (now < cur->start_time || now - cur->start_time < 30)) {
  1458. spin_unlock(&root->fs_info->trans_lock);
  1459. delay = HZ * 5;
  1460. goto sleep;
  1461. }
  1462. transid = cur->transid;
  1463. spin_unlock(&root->fs_info->trans_lock);
  1464. /* If the file system is aborted, this will always fail. */
  1465. trans = btrfs_attach_transaction(root);
  1466. if (IS_ERR(trans)) {
  1467. if (PTR_ERR(trans) != -ENOENT)
  1468. cannot_commit = true;
  1469. goto sleep;
  1470. }
  1471. if (transid == trans->transid) {
  1472. btrfs_commit_transaction(trans, root);
  1473. } else {
  1474. btrfs_end_transaction(trans, root);
  1475. }
  1476. sleep:
  1477. wake_up_process(root->fs_info->cleaner_kthread);
  1478. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1479. if (!try_to_freeze()) {
  1480. set_current_state(TASK_INTERRUPTIBLE);
  1481. if (!kthread_should_stop() &&
  1482. (!btrfs_transaction_blocked(root->fs_info) ||
  1483. cannot_commit))
  1484. schedule_timeout(delay);
  1485. __set_current_state(TASK_RUNNING);
  1486. }
  1487. } while (!kthread_should_stop());
  1488. return 0;
  1489. }
  1490. /*
  1491. * this will find the highest generation in the array of
  1492. * root backups. The index of the highest array is returned,
  1493. * or -1 if we can't find anything.
  1494. *
  1495. * We check to make sure the array is valid by comparing the
  1496. * generation of the latest root in the array with the generation
  1497. * in the super block. If they don't match we pitch it.
  1498. */
  1499. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1500. {
  1501. u64 cur;
  1502. int newest_index = -1;
  1503. struct btrfs_root_backup *root_backup;
  1504. int i;
  1505. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1506. root_backup = info->super_copy->super_roots + i;
  1507. cur = btrfs_backup_tree_root_gen(root_backup);
  1508. if (cur == newest_gen)
  1509. newest_index = i;
  1510. }
  1511. /* check to see if we actually wrapped around */
  1512. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1513. root_backup = info->super_copy->super_roots;
  1514. cur = btrfs_backup_tree_root_gen(root_backup);
  1515. if (cur == newest_gen)
  1516. newest_index = 0;
  1517. }
  1518. return newest_index;
  1519. }
  1520. /*
  1521. * find the oldest backup so we know where to store new entries
  1522. * in the backup array. This will set the backup_root_index
  1523. * field in the fs_info struct
  1524. */
  1525. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1526. u64 newest_gen)
  1527. {
  1528. int newest_index = -1;
  1529. newest_index = find_newest_super_backup(info, newest_gen);
  1530. /* if there was garbage in there, just move along */
  1531. if (newest_index == -1) {
  1532. info->backup_root_index = 0;
  1533. } else {
  1534. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1535. }
  1536. }
  1537. /*
  1538. * copy all the root pointers into the super backup array.
  1539. * this will bump the backup pointer by one when it is
  1540. * done
  1541. */
  1542. static void backup_super_roots(struct btrfs_fs_info *info)
  1543. {
  1544. int next_backup;
  1545. struct btrfs_root_backup *root_backup;
  1546. int last_backup;
  1547. next_backup = info->backup_root_index;
  1548. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1549. BTRFS_NUM_BACKUP_ROOTS;
  1550. /*
  1551. * just overwrite the last backup if we're at the same generation
  1552. * this happens only at umount
  1553. */
  1554. root_backup = info->super_for_commit->super_roots + last_backup;
  1555. if (btrfs_backup_tree_root_gen(root_backup) ==
  1556. btrfs_header_generation(info->tree_root->node))
  1557. next_backup = last_backup;
  1558. root_backup = info->super_for_commit->super_roots + next_backup;
  1559. /*
  1560. * make sure all of our padding and empty slots get zero filled
  1561. * regardless of which ones we use today
  1562. */
  1563. memset(root_backup, 0, sizeof(*root_backup));
  1564. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1565. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1566. btrfs_set_backup_tree_root_gen(root_backup,
  1567. btrfs_header_generation(info->tree_root->node));
  1568. btrfs_set_backup_tree_root_level(root_backup,
  1569. btrfs_header_level(info->tree_root->node));
  1570. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1571. btrfs_set_backup_chunk_root_gen(root_backup,
  1572. btrfs_header_generation(info->chunk_root->node));
  1573. btrfs_set_backup_chunk_root_level(root_backup,
  1574. btrfs_header_level(info->chunk_root->node));
  1575. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1576. btrfs_set_backup_extent_root_gen(root_backup,
  1577. btrfs_header_generation(info->extent_root->node));
  1578. btrfs_set_backup_extent_root_level(root_backup,
  1579. btrfs_header_level(info->extent_root->node));
  1580. /*
  1581. * we might commit during log recovery, which happens before we set
  1582. * the fs_root. Make sure it is valid before we fill it in.
  1583. */
  1584. if (info->fs_root && info->fs_root->node) {
  1585. btrfs_set_backup_fs_root(root_backup,
  1586. info->fs_root->node->start);
  1587. btrfs_set_backup_fs_root_gen(root_backup,
  1588. btrfs_header_generation(info->fs_root->node));
  1589. btrfs_set_backup_fs_root_level(root_backup,
  1590. btrfs_header_level(info->fs_root->node));
  1591. }
  1592. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1593. btrfs_set_backup_dev_root_gen(root_backup,
  1594. btrfs_header_generation(info->dev_root->node));
  1595. btrfs_set_backup_dev_root_level(root_backup,
  1596. btrfs_header_level(info->dev_root->node));
  1597. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1598. btrfs_set_backup_csum_root_gen(root_backup,
  1599. btrfs_header_generation(info->csum_root->node));
  1600. btrfs_set_backup_csum_root_level(root_backup,
  1601. btrfs_header_level(info->csum_root->node));
  1602. btrfs_set_backup_total_bytes(root_backup,
  1603. btrfs_super_total_bytes(info->super_copy));
  1604. btrfs_set_backup_bytes_used(root_backup,
  1605. btrfs_super_bytes_used(info->super_copy));
  1606. btrfs_set_backup_num_devices(root_backup,
  1607. btrfs_super_num_devices(info->super_copy));
  1608. /*
  1609. * if we don't copy this out to the super_copy, it won't get remembered
  1610. * for the next commit
  1611. */
  1612. memcpy(&info->super_copy->super_roots,
  1613. &info->super_for_commit->super_roots,
  1614. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1615. }
  1616. /*
  1617. * this copies info out of the root backup array and back into
  1618. * the in-memory super block. It is meant to help iterate through
  1619. * the array, so you send it the number of backups you've already
  1620. * tried and the last backup index you used.
  1621. *
  1622. * this returns -1 when it has tried all the backups
  1623. */
  1624. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1625. struct btrfs_super_block *super,
  1626. int *num_backups_tried, int *backup_index)
  1627. {
  1628. struct btrfs_root_backup *root_backup;
  1629. int newest = *backup_index;
  1630. if (*num_backups_tried == 0) {
  1631. u64 gen = btrfs_super_generation(super);
  1632. newest = find_newest_super_backup(info, gen);
  1633. if (newest == -1)
  1634. return -1;
  1635. *backup_index = newest;
  1636. *num_backups_tried = 1;
  1637. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1638. /* we've tried all the backups, all done */
  1639. return -1;
  1640. } else {
  1641. /* jump to the next oldest backup */
  1642. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1643. BTRFS_NUM_BACKUP_ROOTS;
  1644. *backup_index = newest;
  1645. *num_backups_tried += 1;
  1646. }
  1647. root_backup = super->super_roots + newest;
  1648. btrfs_set_super_generation(super,
  1649. btrfs_backup_tree_root_gen(root_backup));
  1650. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1651. btrfs_set_super_root_level(super,
  1652. btrfs_backup_tree_root_level(root_backup));
  1653. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1654. /*
  1655. * fixme: the total bytes and num_devices need to match or we should
  1656. * need a fsck
  1657. */
  1658. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1659. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1660. return 0;
  1661. }
  1662. /* helper to cleanup tree roots */
  1663. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1664. {
  1665. free_extent_buffer(info->tree_root->node);
  1666. free_extent_buffer(info->tree_root->commit_root);
  1667. free_extent_buffer(info->dev_root->node);
  1668. free_extent_buffer(info->dev_root->commit_root);
  1669. free_extent_buffer(info->extent_root->node);
  1670. free_extent_buffer(info->extent_root->commit_root);
  1671. free_extent_buffer(info->csum_root->node);
  1672. free_extent_buffer(info->csum_root->commit_root);
  1673. if (info->quota_root) {
  1674. free_extent_buffer(info->quota_root->node);
  1675. free_extent_buffer(info->quota_root->commit_root);
  1676. }
  1677. info->tree_root->node = NULL;
  1678. info->tree_root->commit_root = NULL;
  1679. info->dev_root->node = NULL;
  1680. info->dev_root->commit_root = NULL;
  1681. info->extent_root->node = NULL;
  1682. info->extent_root->commit_root = NULL;
  1683. info->csum_root->node = NULL;
  1684. info->csum_root->commit_root = NULL;
  1685. if (info->quota_root) {
  1686. info->quota_root->node = NULL;
  1687. info->quota_root->commit_root = NULL;
  1688. }
  1689. if (chunk_root) {
  1690. free_extent_buffer(info->chunk_root->node);
  1691. free_extent_buffer(info->chunk_root->commit_root);
  1692. info->chunk_root->node = NULL;
  1693. info->chunk_root->commit_root = NULL;
  1694. }
  1695. }
  1696. int open_ctree(struct super_block *sb,
  1697. struct btrfs_fs_devices *fs_devices,
  1698. char *options)
  1699. {
  1700. u32 sectorsize;
  1701. u32 nodesize;
  1702. u32 leafsize;
  1703. u32 blocksize;
  1704. u32 stripesize;
  1705. u64 generation;
  1706. u64 features;
  1707. struct btrfs_key location;
  1708. struct buffer_head *bh;
  1709. struct btrfs_super_block *disk_super;
  1710. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1711. struct btrfs_root *tree_root;
  1712. struct btrfs_root *extent_root;
  1713. struct btrfs_root *csum_root;
  1714. struct btrfs_root *chunk_root;
  1715. struct btrfs_root *dev_root;
  1716. struct btrfs_root *quota_root;
  1717. struct btrfs_root *log_tree_root;
  1718. int ret;
  1719. int err = -EINVAL;
  1720. int num_backups_tried = 0;
  1721. int backup_index = 0;
  1722. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1723. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1724. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1725. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1726. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1727. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1728. if (!tree_root || !extent_root || !csum_root ||
  1729. !chunk_root || !dev_root || !quota_root) {
  1730. err = -ENOMEM;
  1731. goto fail;
  1732. }
  1733. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1734. if (ret) {
  1735. err = ret;
  1736. goto fail;
  1737. }
  1738. ret = setup_bdi(fs_info, &fs_info->bdi);
  1739. if (ret) {
  1740. err = ret;
  1741. goto fail_srcu;
  1742. }
  1743. fs_info->btree_inode = new_inode(sb);
  1744. if (!fs_info->btree_inode) {
  1745. err = -ENOMEM;
  1746. goto fail_bdi;
  1747. }
  1748. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1749. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1750. INIT_LIST_HEAD(&fs_info->trans_list);
  1751. INIT_LIST_HEAD(&fs_info->dead_roots);
  1752. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1753. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1754. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1755. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1756. spin_lock_init(&fs_info->delalloc_lock);
  1757. spin_lock_init(&fs_info->trans_lock);
  1758. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1759. spin_lock_init(&fs_info->delayed_iput_lock);
  1760. spin_lock_init(&fs_info->defrag_inodes_lock);
  1761. spin_lock_init(&fs_info->free_chunk_lock);
  1762. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1763. rwlock_init(&fs_info->tree_mod_log_lock);
  1764. mutex_init(&fs_info->reloc_mutex);
  1765. init_completion(&fs_info->kobj_unregister);
  1766. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1767. INIT_LIST_HEAD(&fs_info->space_info);
  1768. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1769. btrfs_mapping_init(&fs_info->mapping_tree);
  1770. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1771. BTRFS_BLOCK_RSV_GLOBAL);
  1772. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1773. BTRFS_BLOCK_RSV_DELALLOC);
  1774. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1775. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1776. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1777. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1778. BTRFS_BLOCK_RSV_DELOPS);
  1779. atomic_set(&fs_info->nr_async_submits, 0);
  1780. atomic_set(&fs_info->async_delalloc_pages, 0);
  1781. atomic_set(&fs_info->async_submit_draining, 0);
  1782. atomic_set(&fs_info->nr_async_bios, 0);
  1783. atomic_set(&fs_info->defrag_running, 0);
  1784. atomic_set(&fs_info->tree_mod_seq, 0);
  1785. fs_info->sb = sb;
  1786. fs_info->max_inline = 8192 * 1024;
  1787. fs_info->metadata_ratio = 0;
  1788. fs_info->defrag_inodes = RB_ROOT;
  1789. fs_info->trans_no_join = 0;
  1790. fs_info->free_chunk_space = 0;
  1791. fs_info->tree_mod_log = RB_ROOT;
  1792. /* readahead state */
  1793. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1794. spin_lock_init(&fs_info->reada_lock);
  1795. fs_info->thread_pool_size = min_t(unsigned long,
  1796. num_online_cpus() + 2, 8);
  1797. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1798. spin_lock_init(&fs_info->ordered_extent_lock);
  1799. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1800. GFP_NOFS);
  1801. if (!fs_info->delayed_root) {
  1802. err = -ENOMEM;
  1803. goto fail_iput;
  1804. }
  1805. btrfs_init_delayed_root(fs_info->delayed_root);
  1806. mutex_init(&fs_info->scrub_lock);
  1807. atomic_set(&fs_info->scrubs_running, 0);
  1808. atomic_set(&fs_info->scrub_pause_req, 0);
  1809. atomic_set(&fs_info->scrubs_paused, 0);
  1810. atomic_set(&fs_info->scrub_cancel_req, 0);
  1811. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1812. init_rwsem(&fs_info->scrub_super_lock);
  1813. fs_info->scrub_workers_refcnt = 0;
  1814. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1815. fs_info->check_integrity_print_mask = 0;
  1816. #endif
  1817. spin_lock_init(&fs_info->balance_lock);
  1818. mutex_init(&fs_info->balance_mutex);
  1819. atomic_set(&fs_info->balance_running, 0);
  1820. atomic_set(&fs_info->balance_pause_req, 0);
  1821. atomic_set(&fs_info->balance_cancel_req, 0);
  1822. fs_info->balance_ctl = NULL;
  1823. init_waitqueue_head(&fs_info->balance_wait_q);
  1824. sb->s_blocksize = 4096;
  1825. sb->s_blocksize_bits = blksize_bits(4096);
  1826. sb->s_bdi = &fs_info->bdi;
  1827. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1828. set_nlink(fs_info->btree_inode, 1);
  1829. /*
  1830. * we set the i_size on the btree inode to the max possible int.
  1831. * the real end of the address space is determined by all of
  1832. * the devices in the system
  1833. */
  1834. fs_info->btree_inode->i_size = OFFSET_MAX;
  1835. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1836. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1837. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1838. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1839. fs_info->btree_inode->i_mapping);
  1840. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1841. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1842. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1843. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1844. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1845. sizeof(struct btrfs_key));
  1846. set_bit(BTRFS_INODE_DUMMY,
  1847. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1848. insert_inode_hash(fs_info->btree_inode);
  1849. spin_lock_init(&fs_info->block_group_cache_lock);
  1850. fs_info->block_group_cache_tree = RB_ROOT;
  1851. extent_io_tree_init(&fs_info->freed_extents[0],
  1852. fs_info->btree_inode->i_mapping);
  1853. extent_io_tree_init(&fs_info->freed_extents[1],
  1854. fs_info->btree_inode->i_mapping);
  1855. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1856. fs_info->do_barriers = 1;
  1857. mutex_init(&fs_info->ordered_operations_mutex);
  1858. mutex_init(&fs_info->tree_log_mutex);
  1859. mutex_init(&fs_info->chunk_mutex);
  1860. mutex_init(&fs_info->transaction_kthread_mutex);
  1861. mutex_init(&fs_info->cleaner_mutex);
  1862. mutex_init(&fs_info->volume_mutex);
  1863. init_rwsem(&fs_info->extent_commit_sem);
  1864. init_rwsem(&fs_info->cleanup_work_sem);
  1865. init_rwsem(&fs_info->subvol_sem);
  1866. spin_lock_init(&fs_info->qgroup_lock);
  1867. fs_info->qgroup_tree = RB_ROOT;
  1868. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1869. fs_info->qgroup_seq = 1;
  1870. fs_info->quota_enabled = 0;
  1871. fs_info->pending_quota_state = 0;
  1872. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1873. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1874. init_waitqueue_head(&fs_info->transaction_throttle);
  1875. init_waitqueue_head(&fs_info->transaction_wait);
  1876. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1877. init_waitqueue_head(&fs_info->async_submit_wait);
  1878. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1879. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1880. invalidate_bdev(fs_devices->latest_bdev);
  1881. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1882. if (!bh) {
  1883. err = -EINVAL;
  1884. goto fail_alloc;
  1885. }
  1886. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1887. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1888. sizeof(*fs_info->super_for_commit));
  1889. brelse(bh);
  1890. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1891. disk_super = fs_info->super_copy;
  1892. if (!btrfs_super_root(disk_super))
  1893. goto fail_alloc;
  1894. /* check FS state, whether FS is broken. */
  1895. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1896. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1897. if (ret) {
  1898. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1899. err = ret;
  1900. goto fail_alloc;
  1901. }
  1902. /*
  1903. * run through our array of backup supers and setup
  1904. * our ring pointer to the oldest one
  1905. */
  1906. generation = btrfs_super_generation(disk_super);
  1907. find_oldest_super_backup(fs_info, generation);
  1908. /*
  1909. * In the long term, we'll store the compression type in the super
  1910. * block, and it'll be used for per file compression control.
  1911. */
  1912. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1913. ret = btrfs_parse_options(tree_root, options);
  1914. if (ret) {
  1915. err = ret;
  1916. goto fail_alloc;
  1917. }
  1918. features = btrfs_super_incompat_flags(disk_super) &
  1919. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1920. if (features) {
  1921. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1922. "unsupported optional features (%Lx).\n",
  1923. (unsigned long long)features);
  1924. err = -EINVAL;
  1925. goto fail_alloc;
  1926. }
  1927. if (btrfs_super_leafsize(disk_super) !=
  1928. btrfs_super_nodesize(disk_super)) {
  1929. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1930. "blocksizes don't match. node %d leaf %d\n",
  1931. btrfs_super_nodesize(disk_super),
  1932. btrfs_super_leafsize(disk_super));
  1933. err = -EINVAL;
  1934. goto fail_alloc;
  1935. }
  1936. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1937. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1938. "blocksize (%d) was too large\n",
  1939. btrfs_super_leafsize(disk_super));
  1940. err = -EINVAL;
  1941. goto fail_alloc;
  1942. }
  1943. features = btrfs_super_incompat_flags(disk_super);
  1944. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1945. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1946. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1947. /*
  1948. * flag our filesystem as having big metadata blocks if
  1949. * they are bigger than the page size
  1950. */
  1951. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1952. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1953. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1954. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1955. }
  1956. nodesize = btrfs_super_nodesize(disk_super);
  1957. leafsize = btrfs_super_leafsize(disk_super);
  1958. sectorsize = btrfs_super_sectorsize(disk_super);
  1959. stripesize = btrfs_super_stripesize(disk_super);
  1960. /*
  1961. * mixed block groups end up with duplicate but slightly offset
  1962. * extent buffers for the same range. It leads to corruptions
  1963. */
  1964. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1965. (sectorsize != leafsize)) {
  1966. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1967. "are not allowed for mixed block groups on %s\n",
  1968. sb->s_id);
  1969. goto fail_alloc;
  1970. }
  1971. btrfs_set_super_incompat_flags(disk_super, features);
  1972. features = btrfs_super_compat_ro_flags(disk_super) &
  1973. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1974. if (!(sb->s_flags & MS_RDONLY) && features) {
  1975. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1976. "unsupported option features (%Lx).\n",
  1977. (unsigned long long)features);
  1978. err = -EINVAL;
  1979. goto fail_alloc;
  1980. }
  1981. btrfs_init_workers(&fs_info->generic_worker,
  1982. "genwork", 1, NULL);
  1983. btrfs_init_workers(&fs_info->workers, "worker",
  1984. fs_info->thread_pool_size,
  1985. &fs_info->generic_worker);
  1986. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1987. fs_info->thread_pool_size,
  1988. &fs_info->generic_worker);
  1989. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  1990. fs_info->thread_pool_size,
  1991. &fs_info->generic_worker);
  1992. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1993. min_t(u64, fs_devices->num_devices,
  1994. fs_info->thread_pool_size),
  1995. &fs_info->generic_worker);
  1996. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1997. 2, &fs_info->generic_worker);
  1998. /* a higher idle thresh on the submit workers makes it much more
  1999. * likely that bios will be send down in a sane order to the
  2000. * devices
  2001. */
  2002. fs_info->submit_workers.idle_thresh = 64;
  2003. fs_info->workers.idle_thresh = 16;
  2004. fs_info->workers.ordered = 1;
  2005. fs_info->delalloc_workers.idle_thresh = 2;
  2006. fs_info->delalloc_workers.ordered = 1;
  2007. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2008. &fs_info->generic_worker);
  2009. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2010. fs_info->thread_pool_size,
  2011. &fs_info->generic_worker);
  2012. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2013. fs_info->thread_pool_size,
  2014. &fs_info->generic_worker);
  2015. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2016. "endio-meta-write", fs_info->thread_pool_size,
  2017. &fs_info->generic_worker);
  2018. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2019. fs_info->thread_pool_size,
  2020. &fs_info->generic_worker);
  2021. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2022. 1, &fs_info->generic_worker);
  2023. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2024. fs_info->thread_pool_size,
  2025. &fs_info->generic_worker);
  2026. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2027. fs_info->thread_pool_size,
  2028. &fs_info->generic_worker);
  2029. /*
  2030. * endios are largely parallel and should have a very
  2031. * low idle thresh
  2032. */
  2033. fs_info->endio_workers.idle_thresh = 4;
  2034. fs_info->endio_meta_workers.idle_thresh = 4;
  2035. fs_info->endio_write_workers.idle_thresh = 2;
  2036. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2037. fs_info->readahead_workers.idle_thresh = 2;
  2038. /*
  2039. * btrfs_start_workers can really only fail because of ENOMEM so just
  2040. * return -ENOMEM if any of these fail.
  2041. */
  2042. ret = btrfs_start_workers(&fs_info->workers);
  2043. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2044. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2045. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2046. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2047. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2048. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2049. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2050. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2051. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2052. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2053. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2054. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2055. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2056. if (ret) {
  2057. err = -ENOMEM;
  2058. goto fail_sb_buffer;
  2059. }
  2060. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2061. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2062. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2063. tree_root->nodesize = nodesize;
  2064. tree_root->leafsize = leafsize;
  2065. tree_root->sectorsize = sectorsize;
  2066. tree_root->stripesize = stripesize;
  2067. sb->s_blocksize = sectorsize;
  2068. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2069. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2070. sizeof(disk_super->magic))) {
  2071. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2072. goto fail_sb_buffer;
  2073. }
  2074. if (sectorsize != PAGE_SIZE) {
  2075. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2076. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2077. goto fail_sb_buffer;
  2078. }
  2079. mutex_lock(&fs_info->chunk_mutex);
  2080. ret = btrfs_read_sys_array(tree_root);
  2081. mutex_unlock(&fs_info->chunk_mutex);
  2082. if (ret) {
  2083. printk(KERN_WARNING "btrfs: failed to read the system "
  2084. "array on %s\n", sb->s_id);
  2085. goto fail_sb_buffer;
  2086. }
  2087. blocksize = btrfs_level_size(tree_root,
  2088. btrfs_super_chunk_root_level(disk_super));
  2089. generation = btrfs_super_chunk_root_generation(disk_super);
  2090. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2091. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2092. chunk_root->node = read_tree_block(chunk_root,
  2093. btrfs_super_chunk_root(disk_super),
  2094. blocksize, generation);
  2095. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2096. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2097. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2098. sb->s_id);
  2099. goto fail_tree_roots;
  2100. }
  2101. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2102. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2103. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2104. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2105. BTRFS_UUID_SIZE);
  2106. ret = btrfs_read_chunk_tree(chunk_root);
  2107. if (ret) {
  2108. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2109. sb->s_id);
  2110. goto fail_tree_roots;
  2111. }
  2112. btrfs_close_extra_devices(fs_devices);
  2113. if (!fs_devices->latest_bdev) {
  2114. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2115. sb->s_id);
  2116. goto fail_tree_roots;
  2117. }
  2118. retry_root_backup:
  2119. blocksize = btrfs_level_size(tree_root,
  2120. btrfs_super_root_level(disk_super));
  2121. generation = btrfs_super_generation(disk_super);
  2122. tree_root->node = read_tree_block(tree_root,
  2123. btrfs_super_root(disk_super),
  2124. blocksize, generation);
  2125. if (!tree_root->node ||
  2126. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2127. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2128. sb->s_id);
  2129. goto recovery_tree_root;
  2130. }
  2131. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2132. tree_root->commit_root = btrfs_root_node(tree_root);
  2133. ret = find_and_setup_root(tree_root, fs_info,
  2134. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2135. if (ret)
  2136. goto recovery_tree_root;
  2137. extent_root->track_dirty = 1;
  2138. ret = find_and_setup_root(tree_root, fs_info,
  2139. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2140. if (ret)
  2141. goto recovery_tree_root;
  2142. dev_root->track_dirty = 1;
  2143. ret = find_and_setup_root(tree_root, fs_info,
  2144. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2145. if (ret)
  2146. goto recovery_tree_root;
  2147. csum_root->track_dirty = 1;
  2148. ret = find_and_setup_root(tree_root, fs_info,
  2149. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2150. if (ret) {
  2151. kfree(quota_root);
  2152. quota_root = fs_info->quota_root = NULL;
  2153. } else {
  2154. quota_root->track_dirty = 1;
  2155. fs_info->quota_enabled = 1;
  2156. fs_info->pending_quota_state = 1;
  2157. }
  2158. fs_info->generation = generation;
  2159. fs_info->last_trans_committed = generation;
  2160. ret = btrfs_recover_balance(fs_info);
  2161. if (ret) {
  2162. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2163. goto fail_block_groups;
  2164. }
  2165. ret = btrfs_init_dev_stats(fs_info);
  2166. if (ret) {
  2167. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2168. ret);
  2169. goto fail_block_groups;
  2170. }
  2171. ret = btrfs_init_space_info(fs_info);
  2172. if (ret) {
  2173. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2174. goto fail_block_groups;
  2175. }
  2176. ret = btrfs_read_block_groups(extent_root);
  2177. if (ret) {
  2178. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2179. goto fail_block_groups;
  2180. }
  2181. fs_info->num_tolerated_disk_barrier_failures =
  2182. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2183. if (fs_info->fs_devices->missing_devices >
  2184. fs_info->num_tolerated_disk_barrier_failures &&
  2185. !(sb->s_flags & MS_RDONLY)) {
  2186. printk(KERN_WARNING
  2187. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2188. goto fail_block_groups;
  2189. }
  2190. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2191. "btrfs-cleaner");
  2192. if (IS_ERR(fs_info->cleaner_kthread))
  2193. goto fail_block_groups;
  2194. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2195. tree_root,
  2196. "btrfs-transaction");
  2197. if (IS_ERR(fs_info->transaction_kthread))
  2198. goto fail_cleaner;
  2199. if (!btrfs_test_opt(tree_root, SSD) &&
  2200. !btrfs_test_opt(tree_root, NOSSD) &&
  2201. !fs_info->fs_devices->rotating) {
  2202. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2203. "mode\n");
  2204. btrfs_set_opt(fs_info->mount_opt, SSD);
  2205. }
  2206. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2207. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2208. ret = btrfsic_mount(tree_root, fs_devices,
  2209. btrfs_test_opt(tree_root,
  2210. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2211. 1 : 0,
  2212. fs_info->check_integrity_print_mask);
  2213. if (ret)
  2214. printk(KERN_WARNING "btrfs: failed to initialize"
  2215. " integrity check module %s\n", sb->s_id);
  2216. }
  2217. #endif
  2218. ret = btrfs_read_qgroup_config(fs_info);
  2219. if (ret)
  2220. goto fail_trans_kthread;
  2221. /* do not make disk changes in broken FS */
  2222. if (btrfs_super_log_root(disk_super) != 0) {
  2223. u64 bytenr = btrfs_super_log_root(disk_super);
  2224. if (fs_devices->rw_devices == 0) {
  2225. printk(KERN_WARNING "Btrfs log replay required "
  2226. "on RO media\n");
  2227. err = -EIO;
  2228. goto fail_qgroup;
  2229. }
  2230. blocksize =
  2231. btrfs_level_size(tree_root,
  2232. btrfs_super_log_root_level(disk_super));
  2233. log_tree_root = btrfs_alloc_root(fs_info);
  2234. if (!log_tree_root) {
  2235. err = -ENOMEM;
  2236. goto fail_qgroup;
  2237. }
  2238. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2239. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2240. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2241. blocksize,
  2242. generation + 1);
  2243. /* returns with log_tree_root freed on success */
  2244. ret = btrfs_recover_log_trees(log_tree_root);
  2245. if (ret) {
  2246. btrfs_error(tree_root->fs_info, ret,
  2247. "Failed to recover log tree");
  2248. free_extent_buffer(log_tree_root->node);
  2249. kfree(log_tree_root);
  2250. goto fail_trans_kthread;
  2251. }
  2252. if (sb->s_flags & MS_RDONLY) {
  2253. ret = btrfs_commit_super(tree_root);
  2254. if (ret)
  2255. goto fail_trans_kthread;
  2256. }
  2257. }
  2258. ret = btrfs_find_orphan_roots(tree_root);
  2259. if (ret)
  2260. goto fail_trans_kthread;
  2261. if (!(sb->s_flags & MS_RDONLY)) {
  2262. ret = btrfs_cleanup_fs_roots(fs_info);
  2263. if (ret)
  2264. goto fail_trans_kthread;
  2265. ret = btrfs_recover_relocation(tree_root);
  2266. if (ret < 0) {
  2267. printk(KERN_WARNING
  2268. "btrfs: failed to recover relocation\n");
  2269. err = -EINVAL;
  2270. goto fail_qgroup;
  2271. }
  2272. }
  2273. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2274. location.type = BTRFS_ROOT_ITEM_KEY;
  2275. location.offset = (u64)-1;
  2276. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2277. if (!fs_info->fs_root)
  2278. goto fail_qgroup;
  2279. if (IS_ERR(fs_info->fs_root)) {
  2280. err = PTR_ERR(fs_info->fs_root);
  2281. goto fail_qgroup;
  2282. }
  2283. if (sb->s_flags & MS_RDONLY)
  2284. return 0;
  2285. down_read(&fs_info->cleanup_work_sem);
  2286. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2287. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2288. up_read(&fs_info->cleanup_work_sem);
  2289. close_ctree(tree_root);
  2290. return ret;
  2291. }
  2292. up_read(&fs_info->cleanup_work_sem);
  2293. ret = btrfs_resume_balance_async(fs_info);
  2294. if (ret) {
  2295. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2296. close_ctree(tree_root);
  2297. return ret;
  2298. }
  2299. return 0;
  2300. fail_qgroup:
  2301. btrfs_free_qgroup_config(fs_info);
  2302. fail_trans_kthread:
  2303. kthread_stop(fs_info->transaction_kthread);
  2304. fail_cleaner:
  2305. kthread_stop(fs_info->cleaner_kthread);
  2306. /*
  2307. * make sure we're done with the btree inode before we stop our
  2308. * kthreads
  2309. */
  2310. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2311. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2312. fail_block_groups:
  2313. btrfs_free_block_groups(fs_info);
  2314. fail_tree_roots:
  2315. free_root_pointers(fs_info, 1);
  2316. fail_sb_buffer:
  2317. btrfs_stop_workers(&fs_info->generic_worker);
  2318. btrfs_stop_workers(&fs_info->readahead_workers);
  2319. btrfs_stop_workers(&fs_info->fixup_workers);
  2320. btrfs_stop_workers(&fs_info->delalloc_workers);
  2321. btrfs_stop_workers(&fs_info->workers);
  2322. btrfs_stop_workers(&fs_info->endio_workers);
  2323. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2324. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2325. btrfs_stop_workers(&fs_info->endio_write_workers);
  2326. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2327. btrfs_stop_workers(&fs_info->submit_workers);
  2328. btrfs_stop_workers(&fs_info->delayed_workers);
  2329. btrfs_stop_workers(&fs_info->caching_workers);
  2330. btrfs_stop_workers(&fs_info->flush_workers);
  2331. fail_alloc:
  2332. fail_iput:
  2333. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2334. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2335. iput(fs_info->btree_inode);
  2336. fail_bdi:
  2337. bdi_destroy(&fs_info->bdi);
  2338. fail_srcu:
  2339. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2340. fail:
  2341. btrfs_close_devices(fs_info->fs_devices);
  2342. return err;
  2343. recovery_tree_root:
  2344. if (!btrfs_test_opt(tree_root, RECOVERY))
  2345. goto fail_tree_roots;
  2346. free_root_pointers(fs_info, 0);
  2347. /* don't use the log in recovery mode, it won't be valid */
  2348. btrfs_set_super_log_root(disk_super, 0);
  2349. /* we can't trust the free space cache either */
  2350. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2351. ret = next_root_backup(fs_info, fs_info->super_copy,
  2352. &num_backups_tried, &backup_index);
  2353. if (ret == -1)
  2354. goto fail_block_groups;
  2355. goto retry_root_backup;
  2356. }
  2357. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2358. {
  2359. if (uptodate) {
  2360. set_buffer_uptodate(bh);
  2361. } else {
  2362. struct btrfs_device *device = (struct btrfs_device *)
  2363. bh->b_private;
  2364. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2365. "I/O error on %s\n",
  2366. rcu_str_deref(device->name));
  2367. /* note, we dont' set_buffer_write_io_error because we have
  2368. * our own ways of dealing with the IO errors
  2369. */
  2370. clear_buffer_uptodate(bh);
  2371. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2372. }
  2373. unlock_buffer(bh);
  2374. put_bh(bh);
  2375. }
  2376. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2377. {
  2378. struct buffer_head *bh;
  2379. struct buffer_head *latest = NULL;
  2380. struct btrfs_super_block *super;
  2381. int i;
  2382. u64 transid = 0;
  2383. u64 bytenr;
  2384. /* we would like to check all the supers, but that would make
  2385. * a btrfs mount succeed after a mkfs from a different FS.
  2386. * So, we need to add a special mount option to scan for
  2387. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2388. */
  2389. for (i = 0; i < 1; i++) {
  2390. bytenr = btrfs_sb_offset(i);
  2391. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2392. break;
  2393. bh = __bread(bdev, bytenr / 4096, 4096);
  2394. if (!bh)
  2395. continue;
  2396. super = (struct btrfs_super_block *)bh->b_data;
  2397. if (btrfs_super_bytenr(super) != bytenr ||
  2398. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2399. sizeof(super->magic))) {
  2400. brelse(bh);
  2401. continue;
  2402. }
  2403. if (!latest || btrfs_super_generation(super) > transid) {
  2404. brelse(latest);
  2405. latest = bh;
  2406. transid = btrfs_super_generation(super);
  2407. } else {
  2408. brelse(bh);
  2409. }
  2410. }
  2411. return latest;
  2412. }
  2413. /*
  2414. * this should be called twice, once with wait == 0 and
  2415. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2416. * we write are pinned.
  2417. *
  2418. * They are released when wait == 1 is done.
  2419. * max_mirrors must be the same for both runs, and it indicates how
  2420. * many supers on this one device should be written.
  2421. *
  2422. * max_mirrors == 0 means to write them all.
  2423. */
  2424. static int write_dev_supers(struct btrfs_device *device,
  2425. struct btrfs_super_block *sb,
  2426. int do_barriers, int wait, int max_mirrors)
  2427. {
  2428. struct buffer_head *bh;
  2429. int i;
  2430. int ret;
  2431. int errors = 0;
  2432. u32 crc;
  2433. u64 bytenr;
  2434. if (max_mirrors == 0)
  2435. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2436. for (i = 0; i < max_mirrors; i++) {
  2437. bytenr = btrfs_sb_offset(i);
  2438. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2439. break;
  2440. if (wait) {
  2441. bh = __find_get_block(device->bdev, bytenr / 4096,
  2442. BTRFS_SUPER_INFO_SIZE);
  2443. BUG_ON(!bh);
  2444. wait_on_buffer(bh);
  2445. if (!buffer_uptodate(bh))
  2446. errors++;
  2447. /* drop our reference */
  2448. brelse(bh);
  2449. /* drop the reference from the wait == 0 run */
  2450. brelse(bh);
  2451. continue;
  2452. } else {
  2453. btrfs_set_super_bytenr(sb, bytenr);
  2454. crc = ~(u32)0;
  2455. crc = btrfs_csum_data(NULL, (char *)sb +
  2456. BTRFS_CSUM_SIZE, crc,
  2457. BTRFS_SUPER_INFO_SIZE -
  2458. BTRFS_CSUM_SIZE);
  2459. btrfs_csum_final(crc, sb->csum);
  2460. /*
  2461. * one reference for us, and we leave it for the
  2462. * caller
  2463. */
  2464. bh = __getblk(device->bdev, bytenr / 4096,
  2465. BTRFS_SUPER_INFO_SIZE);
  2466. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2467. /* one reference for submit_bh */
  2468. get_bh(bh);
  2469. set_buffer_uptodate(bh);
  2470. lock_buffer(bh);
  2471. bh->b_end_io = btrfs_end_buffer_write_sync;
  2472. bh->b_private = device;
  2473. }
  2474. /*
  2475. * we fua the first super. The others we allow
  2476. * to go down lazy.
  2477. */
  2478. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2479. if (ret)
  2480. errors++;
  2481. }
  2482. return errors < i ? 0 : -1;
  2483. }
  2484. /*
  2485. * endio for the write_dev_flush, this will wake anyone waiting
  2486. * for the barrier when it is done
  2487. */
  2488. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2489. {
  2490. if (err) {
  2491. if (err == -EOPNOTSUPP)
  2492. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2493. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2494. }
  2495. if (bio->bi_private)
  2496. complete(bio->bi_private);
  2497. bio_put(bio);
  2498. }
  2499. /*
  2500. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2501. * sent down. With wait == 1, it waits for the previous flush.
  2502. *
  2503. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2504. * capable
  2505. */
  2506. static int write_dev_flush(struct btrfs_device *device, int wait)
  2507. {
  2508. struct bio *bio;
  2509. int ret = 0;
  2510. if (device->nobarriers)
  2511. return 0;
  2512. if (wait) {
  2513. bio = device->flush_bio;
  2514. if (!bio)
  2515. return 0;
  2516. wait_for_completion(&device->flush_wait);
  2517. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2518. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2519. rcu_str_deref(device->name));
  2520. device->nobarriers = 1;
  2521. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2522. ret = -EIO;
  2523. btrfs_dev_stat_inc_and_print(device,
  2524. BTRFS_DEV_STAT_FLUSH_ERRS);
  2525. }
  2526. /* drop the reference from the wait == 0 run */
  2527. bio_put(bio);
  2528. device->flush_bio = NULL;
  2529. return ret;
  2530. }
  2531. /*
  2532. * one reference for us, and we leave it for the
  2533. * caller
  2534. */
  2535. device->flush_bio = NULL;
  2536. bio = bio_alloc(GFP_NOFS, 0);
  2537. if (!bio)
  2538. return -ENOMEM;
  2539. bio->bi_end_io = btrfs_end_empty_barrier;
  2540. bio->bi_bdev = device->bdev;
  2541. init_completion(&device->flush_wait);
  2542. bio->bi_private = &device->flush_wait;
  2543. device->flush_bio = bio;
  2544. bio_get(bio);
  2545. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2546. return 0;
  2547. }
  2548. /*
  2549. * send an empty flush down to each device in parallel,
  2550. * then wait for them
  2551. */
  2552. static int barrier_all_devices(struct btrfs_fs_info *info)
  2553. {
  2554. struct list_head *head;
  2555. struct btrfs_device *dev;
  2556. int errors_send = 0;
  2557. int errors_wait = 0;
  2558. int ret;
  2559. /* send down all the barriers */
  2560. head = &info->fs_devices->devices;
  2561. list_for_each_entry_rcu(dev, head, dev_list) {
  2562. if (!dev->bdev) {
  2563. errors_send++;
  2564. continue;
  2565. }
  2566. if (!dev->in_fs_metadata || !dev->writeable)
  2567. continue;
  2568. ret = write_dev_flush(dev, 0);
  2569. if (ret)
  2570. errors_send++;
  2571. }
  2572. /* wait for all the barriers */
  2573. list_for_each_entry_rcu(dev, head, dev_list) {
  2574. if (!dev->bdev) {
  2575. errors_wait++;
  2576. continue;
  2577. }
  2578. if (!dev->in_fs_metadata || !dev->writeable)
  2579. continue;
  2580. ret = write_dev_flush(dev, 1);
  2581. if (ret)
  2582. errors_wait++;
  2583. }
  2584. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2585. errors_wait > info->num_tolerated_disk_barrier_failures)
  2586. return -EIO;
  2587. return 0;
  2588. }
  2589. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2590. struct btrfs_fs_info *fs_info)
  2591. {
  2592. struct btrfs_ioctl_space_info space;
  2593. struct btrfs_space_info *sinfo;
  2594. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2595. BTRFS_BLOCK_GROUP_SYSTEM,
  2596. BTRFS_BLOCK_GROUP_METADATA,
  2597. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2598. int num_types = 4;
  2599. int i;
  2600. int c;
  2601. int num_tolerated_disk_barrier_failures =
  2602. (int)fs_info->fs_devices->num_devices;
  2603. for (i = 0; i < num_types; i++) {
  2604. struct btrfs_space_info *tmp;
  2605. sinfo = NULL;
  2606. rcu_read_lock();
  2607. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2608. if (tmp->flags == types[i]) {
  2609. sinfo = tmp;
  2610. break;
  2611. }
  2612. }
  2613. rcu_read_unlock();
  2614. if (!sinfo)
  2615. continue;
  2616. down_read(&sinfo->groups_sem);
  2617. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2618. if (!list_empty(&sinfo->block_groups[c])) {
  2619. u64 flags;
  2620. btrfs_get_block_group_info(
  2621. &sinfo->block_groups[c], &space);
  2622. if (space.total_bytes == 0 ||
  2623. space.used_bytes == 0)
  2624. continue;
  2625. flags = space.flags;
  2626. /*
  2627. * return
  2628. * 0: if dup, single or RAID0 is configured for
  2629. * any of metadata, system or data, else
  2630. * 1: if RAID5 is configured, or if RAID1 or
  2631. * RAID10 is configured and only two mirrors
  2632. * are used, else
  2633. * 2: if RAID6 is configured, else
  2634. * num_mirrors - 1: if RAID1 or RAID10 is
  2635. * configured and more than
  2636. * 2 mirrors are used.
  2637. */
  2638. if (num_tolerated_disk_barrier_failures > 0 &&
  2639. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2640. BTRFS_BLOCK_GROUP_RAID0)) ||
  2641. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2642. == 0)))
  2643. num_tolerated_disk_barrier_failures = 0;
  2644. else if (num_tolerated_disk_barrier_failures > 1
  2645. &&
  2646. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2647. BTRFS_BLOCK_GROUP_RAID10)))
  2648. num_tolerated_disk_barrier_failures = 1;
  2649. }
  2650. }
  2651. up_read(&sinfo->groups_sem);
  2652. }
  2653. return num_tolerated_disk_barrier_failures;
  2654. }
  2655. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2656. {
  2657. struct list_head *head;
  2658. struct btrfs_device *dev;
  2659. struct btrfs_super_block *sb;
  2660. struct btrfs_dev_item *dev_item;
  2661. int ret;
  2662. int do_barriers;
  2663. int max_errors;
  2664. int total_errors = 0;
  2665. u64 flags;
  2666. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2667. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2668. backup_super_roots(root->fs_info);
  2669. sb = root->fs_info->super_for_commit;
  2670. dev_item = &sb->dev_item;
  2671. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2672. head = &root->fs_info->fs_devices->devices;
  2673. if (do_barriers) {
  2674. ret = barrier_all_devices(root->fs_info);
  2675. if (ret) {
  2676. mutex_unlock(
  2677. &root->fs_info->fs_devices->device_list_mutex);
  2678. btrfs_error(root->fs_info, ret,
  2679. "errors while submitting device barriers.");
  2680. return ret;
  2681. }
  2682. }
  2683. list_for_each_entry_rcu(dev, head, dev_list) {
  2684. if (!dev->bdev) {
  2685. total_errors++;
  2686. continue;
  2687. }
  2688. if (!dev->in_fs_metadata || !dev->writeable)
  2689. continue;
  2690. btrfs_set_stack_device_generation(dev_item, 0);
  2691. btrfs_set_stack_device_type(dev_item, dev->type);
  2692. btrfs_set_stack_device_id(dev_item, dev->devid);
  2693. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2694. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2695. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2696. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2697. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2698. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2699. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2700. flags = btrfs_super_flags(sb);
  2701. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2702. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2703. if (ret)
  2704. total_errors++;
  2705. }
  2706. if (total_errors > max_errors) {
  2707. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2708. total_errors);
  2709. /* This shouldn't happen. FUA is masked off if unsupported */
  2710. BUG();
  2711. }
  2712. total_errors = 0;
  2713. list_for_each_entry_rcu(dev, head, dev_list) {
  2714. if (!dev->bdev)
  2715. continue;
  2716. if (!dev->in_fs_metadata || !dev->writeable)
  2717. continue;
  2718. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2719. if (ret)
  2720. total_errors++;
  2721. }
  2722. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2723. if (total_errors > max_errors) {
  2724. btrfs_error(root->fs_info, -EIO,
  2725. "%d errors while writing supers", total_errors);
  2726. return -EIO;
  2727. }
  2728. return 0;
  2729. }
  2730. int write_ctree_super(struct btrfs_trans_handle *trans,
  2731. struct btrfs_root *root, int max_mirrors)
  2732. {
  2733. int ret;
  2734. ret = write_all_supers(root, max_mirrors);
  2735. return ret;
  2736. }
  2737. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2738. {
  2739. spin_lock(&fs_info->fs_roots_radix_lock);
  2740. radix_tree_delete(&fs_info->fs_roots_radix,
  2741. (unsigned long)root->root_key.objectid);
  2742. spin_unlock(&fs_info->fs_roots_radix_lock);
  2743. if (btrfs_root_refs(&root->root_item) == 0)
  2744. synchronize_srcu(&fs_info->subvol_srcu);
  2745. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2746. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2747. free_fs_root(root);
  2748. }
  2749. static void free_fs_root(struct btrfs_root *root)
  2750. {
  2751. iput(root->cache_inode);
  2752. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2753. if (root->anon_dev)
  2754. free_anon_bdev(root->anon_dev);
  2755. free_extent_buffer(root->node);
  2756. free_extent_buffer(root->commit_root);
  2757. kfree(root->free_ino_ctl);
  2758. kfree(root->free_ino_pinned);
  2759. kfree(root->name);
  2760. kfree(root);
  2761. }
  2762. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2763. {
  2764. int ret;
  2765. struct btrfs_root *gang[8];
  2766. int i;
  2767. while (!list_empty(&fs_info->dead_roots)) {
  2768. gang[0] = list_entry(fs_info->dead_roots.next,
  2769. struct btrfs_root, root_list);
  2770. list_del(&gang[0]->root_list);
  2771. if (gang[0]->in_radix) {
  2772. btrfs_free_fs_root(fs_info, gang[0]);
  2773. } else {
  2774. free_extent_buffer(gang[0]->node);
  2775. free_extent_buffer(gang[0]->commit_root);
  2776. kfree(gang[0]);
  2777. }
  2778. }
  2779. while (1) {
  2780. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2781. (void **)gang, 0,
  2782. ARRAY_SIZE(gang));
  2783. if (!ret)
  2784. break;
  2785. for (i = 0; i < ret; i++)
  2786. btrfs_free_fs_root(fs_info, gang[i]);
  2787. }
  2788. }
  2789. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2790. {
  2791. u64 root_objectid = 0;
  2792. struct btrfs_root *gang[8];
  2793. int i;
  2794. int ret;
  2795. while (1) {
  2796. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2797. (void **)gang, root_objectid,
  2798. ARRAY_SIZE(gang));
  2799. if (!ret)
  2800. break;
  2801. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2802. for (i = 0; i < ret; i++) {
  2803. int err;
  2804. root_objectid = gang[i]->root_key.objectid;
  2805. err = btrfs_orphan_cleanup(gang[i]);
  2806. if (err)
  2807. return err;
  2808. }
  2809. root_objectid++;
  2810. }
  2811. return 0;
  2812. }
  2813. int btrfs_commit_super(struct btrfs_root *root)
  2814. {
  2815. struct btrfs_trans_handle *trans;
  2816. int ret;
  2817. mutex_lock(&root->fs_info->cleaner_mutex);
  2818. btrfs_run_delayed_iputs(root);
  2819. btrfs_clean_old_snapshots(root);
  2820. mutex_unlock(&root->fs_info->cleaner_mutex);
  2821. /* wait until ongoing cleanup work done */
  2822. down_write(&root->fs_info->cleanup_work_sem);
  2823. up_write(&root->fs_info->cleanup_work_sem);
  2824. trans = btrfs_join_transaction(root);
  2825. if (IS_ERR(trans))
  2826. return PTR_ERR(trans);
  2827. ret = btrfs_commit_transaction(trans, root);
  2828. if (ret)
  2829. return ret;
  2830. /* run commit again to drop the original snapshot */
  2831. trans = btrfs_join_transaction(root);
  2832. if (IS_ERR(trans))
  2833. return PTR_ERR(trans);
  2834. ret = btrfs_commit_transaction(trans, root);
  2835. if (ret)
  2836. return ret;
  2837. ret = btrfs_write_and_wait_transaction(NULL, root);
  2838. if (ret) {
  2839. btrfs_error(root->fs_info, ret,
  2840. "Failed to sync btree inode to disk.");
  2841. return ret;
  2842. }
  2843. ret = write_ctree_super(NULL, root, 0);
  2844. return ret;
  2845. }
  2846. int close_ctree(struct btrfs_root *root)
  2847. {
  2848. struct btrfs_fs_info *fs_info = root->fs_info;
  2849. int ret;
  2850. fs_info->closing = 1;
  2851. smp_mb();
  2852. /* pause restriper - we want to resume on mount */
  2853. btrfs_pause_balance(root->fs_info);
  2854. btrfs_scrub_cancel(root);
  2855. /* wait for any defraggers to finish */
  2856. wait_event(fs_info->transaction_wait,
  2857. (atomic_read(&fs_info->defrag_running) == 0));
  2858. /* clear out the rbtree of defraggable inodes */
  2859. btrfs_run_defrag_inodes(fs_info);
  2860. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2861. ret = btrfs_commit_super(root);
  2862. if (ret)
  2863. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2864. }
  2865. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2866. btrfs_error_commit_super(root);
  2867. btrfs_put_block_group_cache(fs_info);
  2868. kthread_stop(fs_info->transaction_kthread);
  2869. kthread_stop(fs_info->cleaner_kthread);
  2870. fs_info->closing = 2;
  2871. smp_mb();
  2872. btrfs_free_qgroup_config(root->fs_info);
  2873. if (fs_info->delalloc_bytes) {
  2874. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2875. (unsigned long long)fs_info->delalloc_bytes);
  2876. }
  2877. free_extent_buffer(fs_info->extent_root->node);
  2878. free_extent_buffer(fs_info->extent_root->commit_root);
  2879. free_extent_buffer(fs_info->tree_root->node);
  2880. free_extent_buffer(fs_info->tree_root->commit_root);
  2881. free_extent_buffer(fs_info->chunk_root->node);
  2882. free_extent_buffer(fs_info->chunk_root->commit_root);
  2883. free_extent_buffer(fs_info->dev_root->node);
  2884. free_extent_buffer(fs_info->dev_root->commit_root);
  2885. free_extent_buffer(fs_info->csum_root->node);
  2886. free_extent_buffer(fs_info->csum_root->commit_root);
  2887. if (fs_info->quota_root) {
  2888. free_extent_buffer(fs_info->quota_root->node);
  2889. free_extent_buffer(fs_info->quota_root->commit_root);
  2890. }
  2891. btrfs_free_block_groups(fs_info);
  2892. del_fs_roots(fs_info);
  2893. iput(fs_info->btree_inode);
  2894. btrfs_stop_workers(&fs_info->generic_worker);
  2895. btrfs_stop_workers(&fs_info->fixup_workers);
  2896. btrfs_stop_workers(&fs_info->delalloc_workers);
  2897. btrfs_stop_workers(&fs_info->workers);
  2898. btrfs_stop_workers(&fs_info->endio_workers);
  2899. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2900. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2901. btrfs_stop_workers(&fs_info->endio_write_workers);
  2902. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2903. btrfs_stop_workers(&fs_info->submit_workers);
  2904. btrfs_stop_workers(&fs_info->delayed_workers);
  2905. btrfs_stop_workers(&fs_info->caching_workers);
  2906. btrfs_stop_workers(&fs_info->readahead_workers);
  2907. btrfs_stop_workers(&fs_info->flush_workers);
  2908. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2909. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2910. btrfsic_unmount(root, fs_info->fs_devices);
  2911. #endif
  2912. btrfs_close_devices(fs_info->fs_devices);
  2913. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2914. bdi_destroy(&fs_info->bdi);
  2915. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2916. return 0;
  2917. }
  2918. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2919. int atomic)
  2920. {
  2921. int ret;
  2922. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2923. ret = extent_buffer_uptodate(buf);
  2924. if (!ret)
  2925. return ret;
  2926. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2927. parent_transid, atomic);
  2928. if (ret == -EAGAIN)
  2929. return ret;
  2930. return !ret;
  2931. }
  2932. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2933. {
  2934. return set_extent_buffer_uptodate(buf);
  2935. }
  2936. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2937. {
  2938. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2939. u64 transid = btrfs_header_generation(buf);
  2940. int was_dirty;
  2941. btrfs_assert_tree_locked(buf);
  2942. if (transid != root->fs_info->generation)
  2943. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2944. "found %llu running %llu\n",
  2945. (unsigned long long)buf->start,
  2946. (unsigned long long)transid,
  2947. (unsigned long long)root->fs_info->generation);
  2948. was_dirty = set_extent_buffer_dirty(buf);
  2949. if (!was_dirty) {
  2950. spin_lock(&root->fs_info->delalloc_lock);
  2951. root->fs_info->dirty_metadata_bytes += buf->len;
  2952. spin_unlock(&root->fs_info->delalloc_lock);
  2953. }
  2954. }
  2955. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  2956. int flush_delayed)
  2957. {
  2958. /*
  2959. * looks as though older kernels can get into trouble with
  2960. * this code, they end up stuck in balance_dirty_pages forever
  2961. */
  2962. u64 num_dirty;
  2963. unsigned long thresh = 32 * 1024 * 1024;
  2964. if (current->flags & PF_MEMALLOC)
  2965. return;
  2966. if (flush_delayed)
  2967. btrfs_balance_delayed_items(root);
  2968. num_dirty = root->fs_info->dirty_metadata_bytes;
  2969. if (num_dirty > thresh) {
  2970. balance_dirty_pages_ratelimited_nr(
  2971. root->fs_info->btree_inode->i_mapping, 1);
  2972. }
  2973. return;
  2974. }
  2975. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  2976. {
  2977. __btrfs_btree_balance_dirty(root, 1);
  2978. }
  2979. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  2980. {
  2981. __btrfs_btree_balance_dirty(root, 0);
  2982. }
  2983. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2984. {
  2985. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2986. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2987. }
  2988. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2989. int read_only)
  2990. {
  2991. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2992. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2993. return -EINVAL;
  2994. }
  2995. if (read_only)
  2996. return 0;
  2997. return 0;
  2998. }
  2999. void btrfs_error_commit_super(struct btrfs_root *root)
  3000. {
  3001. mutex_lock(&root->fs_info->cleaner_mutex);
  3002. btrfs_run_delayed_iputs(root);
  3003. mutex_unlock(&root->fs_info->cleaner_mutex);
  3004. down_write(&root->fs_info->cleanup_work_sem);
  3005. up_write(&root->fs_info->cleanup_work_sem);
  3006. /* cleanup FS via transaction */
  3007. btrfs_cleanup_transaction(root);
  3008. }
  3009. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  3010. {
  3011. struct btrfs_inode *btrfs_inode;
  3012. struct list_head splice;
  3013. INIT_LIST_HEAD(&splice);
  3014. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3015. spin_lock(&root->fs_info->ordered_extent_lock);
  3016. list_splice_init(&root->fs_info->ordered_operations, &splice);
  3017. while (!list_empty(&splice)) {
  3018. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3019. ordered_operations);
  3020. list_del_init(&btrfs_inode->ordered_operations);
  3021. btrfs_invalidate_inodes(btrfs_inode->root);
  3022. }
  3023. spin_unlock(&root->fs_info->ordered_extent_lock);
  3024. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3025. }
  3026. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3027. {
  3028. struct list_head splice;
  3029. struct btrfs_ordered_extent *ordered;
  3030. struct inode *inode;
  3031. INIT_LIST_HEAD(&splice);
  3032. spin_lock(&root->fs_info->ordered_extent_lock);
  3033. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3034. while (!list_empty(&splice)) {
  3035. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3036. root_extent_list);
  3037. list_del_init(&ordered->root_extent_list);
  3038. atomic_inc(&ordered->refs);
  3039. /* the inode may be getting freed (in sys_unlink path). */
  3040. inode = igrab(ordered->inode);
  3041. spin_unlock(&root->fs_info->ordered_extent_lock);
  3042. if (inode)
  3043. iput(inode);
  3044. atomic_set(&ordered->refs, 1);
  3045. btrfs_put_ordered_extent(ordered);
  3046. spin_lock(&root->fs_info->ordered_extent_lock);
  3047. }
  3048. spin_unlock(&root->fs_info->ordered_extent_lock);
  3049. }
  3050. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3051. struct btrfs_root *root)
  3052. {
  3053. struct rb_node *node;
  3054. struct btrfs_delayed_ref_root *delayed_refs;
  3055. struct btrfs_delayed_ref_node *ref;
  3056. int ret = 0;
  3057. delayed_refs = &trans->delayed_refs;
  3058. spin_lock(&delayed_refs->lock);
  3059. if (delayed_refs->num_entries == 0) {
  3060. spin_unlock(&delayed_refs->lock);
  3061. printk(KERN_INFO "delayed_refs has NO entry\n");
  3062. return ret;
  3063. }
  3064. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3065. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3066. atomic_set(&ref->refs, 1);
  3067. if (btrfs_delayed_ref_is_head(ref)) {
  3068. struct btrfs_delayed_ref_head *head;
  3069. head = btrfs_delayed_node_to_head(ref);
  3070. if (!mutex_trylock(&head->mutex)) {
  3071. atomic_inc(&ref->refs);
  3072. spin_unlock(&delayed_refs->lock);
  3073. /* Need to wait for the delayed ref to run */
  3074. mutex_lock(&head->mutex);
  3075. mutex_unlock(&head->mutex);
  3076. btrfs_put_delayed_ref(ref);
  3077. spin_lock(&delayed_refs->lock);
  3078. continue;
  3079. }
  3080. kfree(head->extent_op);
  3081. delayed_refs->num_heads--;
  3082. if (list_empty(&head->cluster))
  3083. delayed_refs->num_heads_ready--;
  3084. list_del_init(&head->cluster);
  3085. }
  3086. ref->in_tree = 0;
  3087. rb_erase(&ref->rb_node, &delayed_refs->root);
  3088. delayed_refs->num_entries--;
  3089. spin_unlock(&delayed_refs->lock);
  3090. btrfs_put_delayed_ref(ref);
  3091. cond_resched();
  3092. spin_lock(&delayed_refs->lock);
  3093. }
  3094. spin_unlock(&delayed_refs->lock);
  3095. return ret;
  3096. }
  3097. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3098. {
  3099. struct btrfs_pending_snapshot *snapshot;
  3100. struct list_head splice;
  3101. INIT_LIST_HEAD(&splice);
  3102. list_splice_init(&t->pending_snapshots, &splice);
  3103. while (!list_empty(&splice)) {
  3104. snapshot = list_entry(splice.next,
  3105. struct btrfs_pending_snapshot,
  3106. list);
  3107. list_del_init(&snapshot->list);
  3108. kfree(snapshot);
  3109. }
  3110. }
  3111. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3112. {
  3113. struct btrfs_inode *btrfs_inode;
  3114. struct list_head splice;
  3115. INIT_LIST_HEAD(&splice);
  3116. spin_lock(&root->fs_info->delalloc_lock);
  3117. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3118. while (!list_empty(&splice)) {
  3119. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3120. delalloc_inodes);
  3121. list_del_init(&btrfs_inode->delalloc_inodes);
  3122. btrfs_invalidate_inodes(btrfs_inode->root);
  3123. }
  3124. spin_unlock(&root->fs_info->delalloc_lock);
  3125. }
  3126. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3127. struct extent_io_tree *dirty_pages,
  3128. int mark)
  3129. {
  3130. int ret;
  3131. struct page *page;
  3132. struct inode *btree_inode = root->fs_info->btree_inode;
  3133. struct extent_buffer *eb;
  3134. u64 start = 0;
  3135. u64 end;
  3136. u64 offset;
  3137. unsigned long index;
  3138. while (1) {
  3139. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3140. mark, NULL);
  3141. if (ret)
  3142. break;
  3143. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3144. while (start <= end) {
  3145. index = start >> PAGE_CACHE_SHIFT;
  3146. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3147. page = find_get_page(btree_inode->i_mapping, index);
  3148. if (!page)
  3149. continue;
  3150. offset = page_offset(page);
  3151. spin_lock(&dirty_pages->buffer_lock);
  3152. eb = radix_tree_lookup(
  3153. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3154. offset >> PAGE_CACHE_SHIFT);
  3155. spin_unlock(&dirty_pages->buffer_lock);
  3156. if (eb)
  3157. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3158. &eb->bflags);
  3159. if (PageWriteback(page))
  3160. end_page_writeback(page);
  3161. lock_page(page);
  3162. if (PageDirty(page)) {
  3163. clear_page_dirty_for_io(page);
  3164. spin_lock_irq(&page->mapping->tree_lock);
  3165. radix_tree_tag_clear(&page->mapping->page_tree,
  3166. page_index(page),
  3167. PAGECACHE_TAG_DIRTY);
  3168. spin_unlock_irq(&page->mapping->tree_lock);
  3169. }
  3170. unlock_page(page);
  3171. page_cache_release(page);
  3172. }
  3173. }
  3174. return ret;
  3175. }
  3176. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3177. struct extent_io_tree *pinned_extents)
  3178. {
  3179. struct extent_io_tree *unpin;
  3180. u64 start;
  3181. u64 end;
  3182. int ret;
  3183. bool loop = true;
  3184. unpin = pinned_extents;
  3185. again:
  3186. while (1) {
  3187. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3188. EXTENT_DIRTY, NULL);
  3189. if (ret)
  3190. break;
  3191. /* opt_discard */
  3192. if (btrfs_test_opt(root, DISCARD))
  3193. ret = btrfs_error_discard_extent(root, start,
  3194. end + 1 - start,
  3195. NULL);
  3196. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3197. btrfs_error_unpin_extent_range(root, start, end);
  3198. cond_resched();
  3199. }
  3200. if (loop) {
  3201. if (unpin == &root->fs_info->freed_extents[0])
  3202. unpin = &root->fs_info->freed_extents[1];
  3203. else
  3204. unpin = &root->fs_info->freed_extents[0];
  3205. loop = false;
  3206. goto again;
  3207. }
  3208. return 0;
  3209. }
  3210. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3211. struct btrfs_root *root)
  3212. {
  3213. btrfs_destroy_delayed_refs(cur_trans, root);
  3214. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3215. cur_trans->dirty_pages.dirty_bytes);
  3216. /* FIXME: cleanup wait for commit */
  3217. cur_trans->in_commit = 1;
  3218. cur_trans->blocked = 1;
  3219. wake_up(&root->fs_info->transaction_blocked_wait);
  3220. cur_trans->blocked = 0;
  3221. wake_up(&root->fs_info->transaction_wait);
  3222. cur_trans->commit_done = 1;
  3223. wake_up(&cur_trans->commit_wait);
  3224. btrfs_destroy_delayed_inodes(root);
  3225. btrfs_assert_delayed_root_empty(root);
  3226. btrfs_destroy_pending_snapshots(cur_trans);
  3227. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3228. EXTENT_DIRTY);
  3229. btrfs_destroy_pinned_extent(root,
  3230. root->fs_info->pinned_extents);
  3231. /*
  3232. memset(cur_trans, 0, sizeof(*cur_trans));
  3233. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3234. */
  3235. }
  3236. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3237. {
  3238. struct btrfs_transaction *t;
  3239. LIST_HEAD(list);
  3240. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3241. spin_lock(&root->fs_info->trans_lock);
  3242. list_splice_init(&root->fs_info->trans_list, &list);
  3243. root->fs_info->trans_no_join = 1;
  3244. spin_unlock(&root->fs_info->trans_lock);
  3245. while (!list_empty(&list)) {
  3246. t = list_entry(list.next, struct btrfs_transaction, list);
  3247. if (!t)
  3248. break;
  3249. btrfs_destroy_ordered_operations(root);
  3250. btrfs_destroy_ordered_extents(root);
  3251. btrfs_destroy_delayed_refs(t, root);
  3252. btrfs_block_rsv_release(root,
  3253. &root->fs_info->trans_block_rsv,
  3254. t->dirty_pages.dirty_bytes);
  3255. /* FIXME: cleanup wait for commit */
  3256. t->in_commit = 1;
  3257. t->blocked = 1;
  3258. smp_mb();
  3259. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3260. wake_up(&root->fs_info->transaction_blocked_wait);
  3261. t->blocked = 0;
  3262. smp_mb();
  3263. if (waitqueue_active(&root->fs_info->transaction_wait))
  3264. wake_up(&root->fs_info->transaction_wait);
  3265. t->commit_done = 1;
  3266. smp_mb();
  3267. if (waitqueue_active(&t->commit_wait))
  3268. wake_up(&t->commit_wait);
  3269. btrfs_destroy_delayed_inodes(root);
  3270. btrfs_assert_delayed_root_empty(root);
  3271. btrfs_destroy_pending_snapshots(t);
  3272. btrfs_destroy_delalloc_inodes(root);
  3273. spin_lock(&root->fs_info->trans_lock);
  3274. root->fs_info->running_transaction = NULL;
  3275. spin_unlock(&root->fs_info->trans_lock);
  3276. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3277. EXTENT_DIRTY);
  3278. btrfs_destroy_pinned_extent(root,
  3279. root->fs_info->pinned_extents);
  3280. atomic_set(&t->use_count, 0);
  3281. list_del_init(&t->list);
  3282. memset(t, 0, sizeof(*t));
  3283. kmem_cache_free(btrfs_transaction_cachep, t);
  3284. }
  3285. spin_lock(&root->fs_info->trans_lock);
  3286. root->fs_info->trans_no_join = 0;
  3287. spin_unlock(&root->fs_info->trans_lock);
  3288. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3289. return 0;
  3290. }
  3291. static struct extent_io_ops btree_extent_io_ops = {
  3292. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3293. .readpage_io_failed_hook = btree_io_failed_hook,
  3294. .submit_bio_hook = btree_submit_bio_hook,
  3295. /* note we're sharing with inode.c for the merge bio hook */
  3296. .merge_bio_hook = btrfs_merge_bio_hook,
  3297. };