delayed-inode.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  60. }
  61. static inline int btrfs_is_continuous_delayed_item(
  62. struct btrfs_delayed_item *item1,
  63. struct btrfs_delayed_item *item2)
  64. {
  65. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  66. item1->key.objectid == item2->key.objectid &&
  67. item1->key.type == item2->key.type &&
  68. item1->key.offset + 1 == item2->key.offset)
  69. return 1;
  70. return 0;
  71. }
  72. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  73. struct btrfs_root *root)
  74. {
  75. return root->fs_info->delayed_root;
  76. }
  77. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  78. {
  79. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  80. struct btrfs_root *root = btrfs_inode->root;
  81. u64 ino = btrfs_ino(inode);
  82. struct btrfs_delayed_node *node;
  83. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  84. if (node) {
  85. atomic_inc(&node->refs);
  86. return node;
  87. }
  88. spin_lock(&root->inode_lock);
  89. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  90. if (node) {
  91. if (btrfs_inode->delayed_node) {
  92. atomic_inc(&node->refs); /* can be accessed */
  93. BUG_ON(btrfs_inode->delayed_node != node);
  94. spin_unlock(&root->inode_lock);
  95. return node;
  96. }
  97. btrfs_inode->delayed_node = node;
  98. atomic_inc(&node->refs); /* can be accessed */
  99. atomic_inc(&node->refs); /* cached in the inode */
  100. spin_unlock(&root->inode_lock);
  101. return node;
  102. }
  103. spin_unlock(&root->inode_lock);
  104. return NULL;
  105. }
  106. /* Will return either the node or PTR_ERR(-ENOMEM) */
  107. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  108. struct inode *inode)
  109. {
  110. struct btrfs_delayed_node *node;
  111. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  112. struct btrfs_root *root = btrfs_inode->root;
  113. u64 ino = btrfs_ino(inode);
  114. int ret;
  115. again:
  116. node = btrfs_get_delayed_node(inode);
  117. if (node)
  118. return node;
  119. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  120. if (!node)
  121. return ERR_PTR(-ENOMEM);
  122. btrfs_init_delayed_node(node, root, ino);
  123. atomic_inc(&node->refs); /* cached in the btrfs inode */
  124. atomic_inc(&node->refs); /* can be accessed */
  125. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  126. if (ret) {
  127. kmem_cache_free(delayed_node_cache, node);
  128. return ERR_PTR(ret);
  129. }
  130. spin_lock(&root->inode_lock);
  131. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  132. if (ret == -EEXIST) {
  133. kmem_cache_free(delayed_node_cache, node);
  134. spin_unlock(&root->inode_lock);
  135. radix_tree_preload_end();
  136. goto again;
  137. }
  138. btrfs_inode->delayed_node = node;
  139. spin_unlock(&root->inode_lock);
  140. radix_tree_preload_end();
  141. return node;
  142. }
  143. /*
  144. * Call it when holding delayed_node->mutex
  145. *
  146. * If mod = 1, add this node into the prepared list.
  147. */
  148. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  149. struct btrfs_delayed_node *node,
  150. int mod)
  151. {
  152. spin_lock(&root->lock);
  153. if (node->in_list) {
  154. if (!list_empty(&node->p_list))
  155. list_move_tail(&node->p_list, &root->prepare_list);
  156. else if (mod)
  157. list_add_tail(&node->p_list, &root->prepare_list);
  158. } else {
  159. list_add_tail(&node->n_list, &root->node_list);
  160. list_add_tail(&node->p_list, &root->prepare_list);
  161. atomic_inc(&node->refs); /* inserted into list */
  162. root->nodes++;
  163. node->in_list = 1;
  164. }
  165. spin_unlock(&root->lock);
  166. }
  167. /* Call it when holding delayed_node->mutex */
  168. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  169. struct btrfs_delayed_node *node)
  170. {
  171. spin_lock(&root->lock);
  172. if (node->in_list) {
  173. root->nodes--;
  174. atomic_dec(&node->refs); /* not in the list */
  175. list_del_init(&node->n_list);
  176. if (!list_empty(&node->p_list))
  177. list_del_init(&node->p_list);
  178. node->in_list = 0;
  179. }
  180. spin_unlock(&root->lock);
  181. }
  182. struct btrfs_delayed_node *btrfs_first_delayed_node(
  183. struct btrfs_delayed_root *delayed_root)
  184. {
  185. struct list_head *p;
  186. struct btrfs_delayed_node *node = NULL;
  187. spin_lock(&delayed_root->lock);
  188. if (list_empty(&delayed_root->node_list))
  189. goto out;
  190. p = delayed_root->node_list.next;
  191. node = list_entry(p, struct btrfs_delayed_node, n_list);
  192. atomic_inc(&node->refs);
  193. out:
  194. spin_unlock(&delayed_root->lock);
  195. return node;
  196. }
  197. struct btrfs_delayed_node *btrfs_next_delayed_node(
  198. struct btrfs_delayed_node *node)
  199. {
  200. struct btrfs_delayed_root *delayed_root;
  201. struct list_head *p;
  202. struct btrfs_delayed_node *next = NULL;
  203. delayed_root = node->root->fs_info->delayed_root;
  204. spin_lock(&delayed_root->lock);
  205. if (!node->in_list) { /* not in the list */
  206. if (list_empty(&delayed_root->node_list))
  207. goto out;
  208. p = delayed_root->node_list.next;
  209. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  210. goto out;
  211. else
  212. p = node->n_list.next;
  213. next = list_entry(p, struct btrfs_delayed_node, n_list);
  214. atomic_inc(&next->refs);
  215. out:
  216. spin_unlock(&delayed_root->lock);
  217. return next;
  218. }
  219. static void __btrfs_release_delayed_node(
  220. struct btrfs_delayed_node *delayed_node,
  221. int mod)
  222. {
  223. struct btrfs_delayed_root *delayed_root;
  224. if (!delayed_node)
  225. return;
  226. delayed_root = delayed_node->root->fs_info->delayed_root;
  227. mutex_lock(&delayed_node->mutex);
  228. if (delayed_node->count)
  229. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  230. else
  231. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  232. mutex_unlock(&delayed_node->mutex);
  233. if (atomic_dec_and_test(&delayed_node->refs)) {
  234. struct btrfs_root *root = delayed_node->root;
  235. spin_lock(&root->inode_lock);
  236. if (atomic_read(&delayed_node->refs) == 0) {
  237. radix_tree_delete(&root->delayed_nodes_tree,
  238. delayed_node->inode_id);
  239. kmem_cache_free(delayed_node_cache, delayed_node);
  240. }
  241. spin_unlock(&root->inode_lock);
  242. }
  243. }
  244. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  245. {
  246. __btrfs_release_delayed_node(node, 0);
  247. }
  248. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  249. struct btrfs_delayed_root *delayed_root)
  250. {
  251. struct list_head *p;
  252. struct btrfs_delayed_node *node = NULL;
  253. spin_lock(&delayed_root->lock);
  254. if (list_empty(&delayed_root->prepare_list))
  255. goto out;
  256. p = delayed_root->prepare_list.next;
  257. list_del_init(p);
  258. node = list_entry(p, struct btrfs_delayed_node, p_list);
  259. atomic_inc(&node->refs);
  260. out:
  261. spin_unlock(&delayed_root->lock);
  262. return node;
  263. }
  264. static inline void btrfs_release_prepared_delayed_node(
  265. struct btrfs_delayed_node *node)
  266. {
  267. __btrfs_release_delayed_node(node, 1);
  268. }
  269. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  270. {
  271. struct btrfs_delayed_item *item;
  272. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  273. if (item) {
  274. item->data_len = data_len;
  275. item->ins_or_del = 0;
  276. item->bytes_reserved = 0;
  277. item->delayed_node = NULL;
  278. atomic_set(&item->refs, 1);
  279. }
  280. return item;
  281. }
  282. /*
  283. * __btrfs_lookup_delayed_item - look up the delayed item by key
  284. * @delayed_node: pointer to the delayed node
  285. * @key: the key to look up
  286. * @prev: used to store the prev item if the right item isn't found
  287. * @next: used to store the next item if the right item isn't found
  288. *
  289. * Note: if we don't find the right item, we will return the prev item and
  290. * the next item.
  291. */
  292. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  293. struct rb_root *root,
  294. struct btrfs_key *key,
  295. struct btrfs_delayed_item **prev,
  296. struct btrfs_delayed_item **next)
  297. {
  298. struct rb_node *node, *prev_node = NULL;
  299. struct btrfs_delayed_item *delayed_item = NULL;
  300. int ret = 0;
  301. node = root->rb_node;
  302. while (node) {
  303. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  304. rb_node);
  305. prev_node = node;
  306. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  307. if (ret < 0)
  308. node = node->rb_right;
  309. else if (ret > 0)
  310. node = node->rb_left;
  311. else
  312. return delayed_item;
  313. }
  314. if (prev) {
  315. if (!prev_node)
  316. *prev = NULL;
  317. else if (ret < 0)
  318. *prev = delayed_item;
  319. else if ((node = rb_prev(prev_node)) != NULL) {
  320. *prev = rb_entry(node, struct btrfs_delayed_item,
  321. rb_node);
  322. } else
  323. *prev = NULL;
  324. }
  325. if (next) {
  326. if (!prev_node)
  327. *next = NULL;
  328. else if (ret > 0)
  329. *next = delayed_item;
  330. else if ((node = rb_next(prev_node)) != NULL) {
  331. *next = rb_entry(node, struct btrfs_delayed_item,
  332. rb_node);
  333. } else
  334. *next = NULL;
  335. }
  336. return NULL;
  337. }
  338. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  339. struct btrfs_delayed_node *delayed_node,
  340. struct btrfs_key *key)
  341. {
  342. struct btrfs_delayed_item *item;
  343. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  344. NULL, NULL);
  345. return item;
  346. }
  347. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  348. struct btrfs_delayed_node *delayed_node,
  349. struct btrfs_key *key)
  350. {
  351. struct btrfs_delayed_item *item;
  352. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  353. NULL, NULL);
  354. return item;
  355. }
  356. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  357. struct btrfs_delayed_node *delayed_node,
  358. struct btrfs_key *key)
  359. {
  360. struct btrfs_delayed_item *item, *next;
  361. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  362. NULL, &next);
  363. if (!item)
  364. item = next;
  365. return item;
  366. }
  367. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  368. struct btrfs_delayed_node *delayed_node,
  369. struct btrfs_key *key)
  370. {
  371. struct btrfs_delayed_item *item, *next;
  372. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  373. NULL, &next);
  374. if (!item)
  375. item = next;
  376. return item;
  377. }
  378. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  379. struct btrfs_delayed_item *ins,
  380. int action)
  381. {
  382. struct rb_node **p, *node;
  383. struct rb_node *parent_node = NULL;
  384. struct rb_root *root;
  385. struct btrfs_delayed_item *item;
  386. int cmp;
  387. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  388. root = &delayed_node->ins_root;
  389. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  390. root = &delayed_node->del_root;
  391. else
  392. BUG();
  393. p = &root->rb_node;
  394. node = &ins->rb_node;
  395. while (*p) {
  396. parent_node = *p;
  397. item = rb_entry(parent_node, struct btrfs_delayed_item,
  398. rb_node);
  399. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  400. if (cmp < 0)
  401. p = &(*p)->rb_right;
  402. else if (cmp > 0)
  403. p = &(*p)->rb_left;
  404. else
  405. return -EEXIST;
  406. }
  407. rb_link_node(node, parent_node, p);
  408. rb_insert_color(node, root);
  409. ins->delayed_node = delayed_node;
  410. ins->ins_or_del = action;
  411. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  412. action == BTRFS_DELAYED_INSERTION_ITEM &&
  413. ins->key.offset >= delayed_node->index_cnt)
  414. delayed_node->index_cnt = ins->key.offset + 1;
  415. delayed_node->count++;
  416. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  417. return 0;
  418. }
  419. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  420. struct btrfs_delayed_item *item)
  421. {
  422. return __btrfs_add_delayed_item(node, item,
  423. BTRFS_DELAYED_INSERTION_ITEM);
  424. }
  425. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  426. struct btrfs_delayed_item *item)
  427. {
  428. return __btrfs_add_delayed_item(node, item,
  429. BTRFS_DELAYED_DELETION_ITEM);
  430. }
  431. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  432. {
  433. struct rb_root *root;
  434. struct btrfs_delayed_root *delayed_root;
  435. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  436. BUG_ON(!delayed_root);
  437. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  438. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  439. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  440. root = &delayed_item->delayed_node->ins_root;
  441. else
  442. root = &delayed_item->delayed_node->del_root;
  443. rb_erase(&delayed_item->rb_node, root);
  444. delayed_item->delayed_node->count--;
  445. if (atomic_dec_return(&delayed_root->items) <
  446. BTRFS_DELAYED_BACKGROUND &&
  447. waitqueue_active(&delayed_root->wait))
  448. wake_up(&delayed_root->wait);
  449. }
  450. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  451. {
  452. if (item) {
  453. __btrfs_remove_delayed_item(item);
  454. if (atomic_dec_and_test(&item->refs))
  455. kfree(item);
  456. }
  457. }
  458. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  459. struct btrfs_delayed_node *delayed_node)
  460. {
  461. struct rb_node *p;
  462. struct btrfs_delayed_item *item = NULL;
  463. p = rb_first(&delayed_node->ins_root);
  464. if (p)
  465. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  466. return item;
  467. }
  468. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  469. struct btrfs_delayed_node *delayed_node)
  470. {
  471. struct rb_node *p;
  472. struct btrfs_delayed_item *item = NULL;
  473. p = rb_first(&delayed_node->del_root);
  474. if (p)
  475. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  476. return item;
  477. }
  478. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  479. struct btrfs_delayed_item *item)
  480. {
  481. struct rb_node *p;
  482. struct btrfs_delayed_item *next = NULL;
  483. p = rb_next(&item->rb_node);
  484. if (p)
  485. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  486. return next;
  487. }
  488. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  489. u64 root_id)
  490. {
  491. struct btrfs_key root_key;
  492. if (root->objectid == root_id)
  493. return root;
  494. root_key.objectid = root_id;
  495. root_key.type = BTRFS_ROOT_ITEM_KEY;
  496. root_key.offset = (u64)-1;
  497. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  498. }
  499. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  500. struct btrfs_root *root,
  501. struct btrfs_delayed_item *item)
  502. {
  503. struct btrfs_block_rsv *src_rsv;
  504. struct btrfs_block_rsv *dst_rsv;
  505. u64 num_bytes;
  506. int ret;
  507. if (!trans->bytes_reserved)
  508. return 0;
  509. src_rsv = trans->block_rsv;
  510. dst_rsv = &root->fs_info->delayed_block_rsv;
  511. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  512. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  513. if (!ret) {
  514. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  515. item->key.objectid,
  516. num_bytes, 1);
  517. item->bytes_reserved = num_bytes;
  518. }
  519. return ret;
  520. }
  521. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  522. struct btrfs_delayed_item *item)
  523. {
  524. struct btrfs_block_rsv *rsv;
  525. if (!item->bytes_reserved)
  526. return;
  527. rsv = &root->fs_info->delayed_block_rsv;
  528. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  529. item->key.objectid, item->bytes_reserved,
  530. 0);
  531. btrfs_block_rsv_release(root, rsv,
  532. item->bytes_reserved);
  533. }
  534. static int btrfs_delayed_inode_reserve_metadata(
  535. struct btrfs_trans_handle *trans,
  536. struct btrfs_root *root,
  537. struct inode *inode,
  538. struct btrfs_delayed_node *node)
  539. {
  540. struct btrfs_block_rsv *src_rsv;
  541. struct btrfs_block_rsv *dst_rsv;
  542. u64 num_bytes;
  543. int ret;
  544. bool release = false;
  545. src_rsv = trans->block_rsv;
  546. dst_rsv = &root->fs_info->delayed_block_rsv;
  547. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  548. /*
  549. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  550. * which doesn't reserve space for speed. This is a problem since we
  551. * still need to reserve space for this update, so try to reserve the
  552. * space.
  553. *
  554. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  555. * we're accounted for.
  556. */
  557. if (!src_rsv || (!trans->bytes_reserved &&
  558. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  559. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  560. BTRFS_RESERVE_NO_FLUSH);
  561. /*
  562. * Since we're under a transaction reserve_metadata_bytes could
  563. * try to commit the transaction which will make it return
  564. * EAGAIN to make us stop the transaction we have, so return
  565. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  566. */
  567. if (ret == -EAGAIN)
  568. ret = -ENOSPC;
  569. if (!ret) {
  570. node->bytes_reserved = num_bytes;
  571. trace_btrfs_space_reservation(root->fs_info,
  572. "delayed_inode",
  573. btrfs_ino(inode),
  574. num_bytes, 1);
  575. }
  576. return ret;
  577. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  578. spin_lock(&BTRFS_I(inode)->lock);
  579. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  580. &BTRFS_I(inode)->runtime_flags)) {
  581. spin_unlock(&BTRFS_I(inode)->lock);
  582. release = true;
  583. goto migrate;
  584. }
  585. spin_unlock(&BTRFS_I(inode)->lock);
  586. /* Ok we didn't have space pre-reserved. This shouldn't happen
  587. * too often but it can happen if we do delalloc to an existing
  588. * inode which gets dirtied because of the time update, and then
  589. * isn't touched again until after the transaction commits and
  590. * then we try to write out the data. First try to be nice and
  591. * reserve something strictly for us. If not be a pain and try
  592. * to steal from the delalloc block rsv.
  593. */
  594. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  595. BTRFS_RESERVE_NO_FLUSH);
  596. if (!ret)
  597. goto out;
  598. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  599. if (!ret)
  600. goto out;
  601. /*
  602. * Ok this is a problem, let's just steal from the global rsv
  603. * since this really shouldn't happen that often.
  604. */
  605. WARN_ON(1);
  606. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  607. dst_rsv, num_bytes);
  608. goto out;
  609. }
  610. migrate:
  611. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  612. out:
  613. /*
  614. * Migrate only takes a reservation, it doesn't touch the size of the
  615. * block_rsv. This is to simplify people who don't normally have things
  616. * migrated from their block rsv. If they go to release their
  617. * reservation, that will decrease the size as well, so if migrate
  618. * reduced size we'd end up with a negative size. But for the
  619. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  620. * but we could in fact do this reserve/migrate dance several times
  621. * between the time we did the original reservation and we'd clean it
  622. * up. So to take care of this, release the space for the meta
  623. * reservation here. I think it may be time for a documentation page on
  624. * how block rsvs. work.
  625. */
  626. if (!ret) {
  627. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  628. btrfs_ino(inode), num_bytes, 1);
  629. node->bytes_reserved = num_bytes;
  630. }
  631. if (release) {
  632. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  633. btrfs_ino(inode), num_bytes, 0);
  634. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  635. }
  636. return ret;
  637. }
  638. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  639. struct btrfs_delayed_node *node)
  640. {
  641. struct btrfs_block_rsv *rsv;
  642. if (!node->bytes_reserved)
  643. return;
  644. rsv = &root->fs_info->delayed_block_rsv;
  645. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  646. node->inode_id, node->bytes_reserved, 0);
  647. btrfs_block_rsv_release(root, rsv,
  648. node->bytes_reserved);
  649. node->bytes_reserved = 0;
  650. }
  651. /*
  652. * This helper will insert some continuous items into the same leaf according
  653. * to the free space of the leaf.
  654. */
  655. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  656. struct btrfs_root *root,
  657. struct btrfs_path *path,
  658. struct btrfs_delayed_item *item)
  659. {
  660. struct btrfs_delayed_item *curr, *next;
  661. int free_space;
  662. int total_data_size = 0, total_size = 0;
  663. struct extent_buffer *leaf;
  664. char *data_ptr;
  665. struct btrfs_key *keys;
  666. u32 *data_size;
  667. struct list_head head;
  668. int slot;
  669. int nitems;
  670. int i;
  671. int ret = 0;
  672. BUG_ON(!path->nodes[0]);
  673. leaf = path->nodes[0];
  674. free_space = btrfs_leaf_free_space(root, leaf);
  675. INIT_LIST_HEAD(&head);
  676. next = item;
  677. nitems = 0;
  678. /*
  679. * count the number of the continuous items that we can insert in batch
  680. */
  681. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  682. free_space) {
  683. total_data_size += next->data_len;
  684. total_size += next->data_len + sizeof(struct btrfs_item);
  685. list_add_tail(&next->tree_list, &head);
  686. nitems++;
  687. curr = next;
  688. next = __btrfs_next_delayed_item(curr);
  689. if (!next)
  690. break;
  691. if (!btrfs_is_continuous_delayed_item(curr, next))
  692. break;
  693. }
  694. if (!nitems) {
  695. ret = 0;
  696. goto out;
  697. }
  698. /*
  699. * we need allocate some memory space, but it might cause the task
  700. * to sleep, so we set all locked nodes in the path to blocking locks
  701. * first.
  702. */
  703. btrfs_set_path_blocking(path);
  704. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  705. if (!keys) {
  706. ret = -ENOMEM;
  707. goto out;
  708. }
  709. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  710. if (!data_size) {
  711. ret = -ENOMEM;
  712. goto error;
  713. }
  714. /* get keys of all the delayed items */
  715. i = 0;
  716. list_for_each_entry(next, &head, tree_list) {
  717. keys[i] = next->key;
  718. data_size[i] = next->data_len;
  719. i++;
  720. }
  721. /* reset all the locked nodes in the patch to spinning locks. */
  722. btrfs_clear_path_blocking(path, NULL, 0);
  723. /* insert the keys of the items */
  724. setup_items_for_insert(trans, root, path, keys, data_size,
  725. total_data_size, total_size, nitems);
  726. /* insert the dir index items */
  727. slot = path->slots[0];
  728. list_for_each_entry_safe(curr, next, &head, tree_list) {
  729. data_ptr = btrfs_item_ptr(leaf, slot, char);
  730. write_extent_buffer(leaf, &curr->data,
  731. (unsigned long)data_ptr,
  732. curr->data_len);
  733. slot++;
  734. btrfs_delayed_item_release_metadata(root, curr);
  735. list_del(&curr->tree_list);
  736. btrfs_release_delayed_item(curr);
  737. }
  738. error:
  739. kfree(data_size);
  740. kfree(keys);
  741. out:
  742. return ret;
  743. }
  744. /*
  745. * This helper can just do simple insertion that needn't extend item for new
  746. * data, such as directory name index insertion, inode insertion.
  747. */
  748. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  749. struct btrfs_root *root,
  750. struct btrfs_path *path,
  751. struct btrfs_delayed_item *delayed_item)
  752. {
  753. struct extent_buffer *leaf;
  754. struct btrfs_item *item;
  755. char *ptr;
  756. int ret;
  757. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  758. delayed_item->data_len);
  759. if (ret < 0 && ret != -EEXIST)
  760. return ret;
  761. leaf = path->nodes[0];
  762. item = btrfs_item_nr(leaf, path->slots[0]);
  763. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  764. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  765. delayed_item->data_len);
  766. btrfs_mark_buffer_dirty(leaf);
  767. btrfs_delayed_item_release_metadata(root, delayed_item);
  768. return 0;
  769. }
  770. /*
  771. * we insert an item first, then if there are some continuous items, we try
  772. * to insert those items into the same leaf.
  773. */
  774. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  775. struct btrfs_path *path,
  776. struct btrfs_root *root,
  777. struct btrfs_delayed_node *node)
  778. {
  779. struct btrfs_delayed_item *curr, *prev;
  780. int ret = 0;
  781. do_again:
  782. mutex_lock(&node->mutex);
  783. curr = __btrfs_first_delayed_insertion_item(node);
  784. if (!curr)
  785. goto insert_end;
  786. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  787. if (ret < 0) {
  788. btrfs_release_path(path);
  789. goto insert_end;
  790. }
  791. prev = curr;
  792. curr = __btrfs_next_delayed_item(prev);
  793. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  794. /* insert the continuous items into the same leaf */
  795. path->slots[0]++;
  796. btrfs_batch_insert_items(trans, root, path, curr);
  797. }
  798. btrfs_release_delayed_item(prev);
  799. btrfs_mark_buffer_dirty(path->nodes[0]);
  800. btrfs_release_path(path);
  801. mutex_unlock(&node->mutex);
  802. goto do_again;
  803. insert_end:
  804. mutex_unlock(&node->mutex);
  805. return ret;
  806. }
  807. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  808. struct btrfs_root *root,
  809. struct btrfs_path *path,
  810. struct btrfs_delayed_item *item)
  811. {
  812. struct btrfs_delayed_item *curr, *next;
  813. struct extent_buffer *leaf;
  814. struct btrfs_key key;
  815. struct list_head head;
  816. int nitems, i, last_item;
  817. int ret = 0;
  818. BUG_ON(!path->nodes[0]);
  819. leaf = path->nodes[0];
  820. i = path->slots[0];
  821. last_item = btrfs_header_nritems(leaf) - 1;
  822. if (i > last_item)
  823. return -ENOENT; /* FIXME: Is errno suitable? */
  824. next = item;
  825. INIT_LIST_HEAD(&head);
  826. btrfs_item_key_to_cpu(leaf, &key, i);
  827. nitems = 0;
  828. /*
  829. * count the number of the dir index items that we can delete in batch
  830. */
  831. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  832. list_add_tail(&next->tree_list, &head);
  833. nitems++;
  834. curr = next;
  835. next = __btrfs_next_delayed_item(curr);
  836. if (!next)
  837. break;
  838. if (!btrfs_is_continuous_delayed_item(curr, next))
  839. break;
  840. i++;
  841. if (i > last_item)
  842. break;
  843. btrfs_item_key_to_cpu(leaf, &key, i);
  844. }
  845. if (!nitems)
  846. return 0;
  847. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  848. if (ret)
  849. goto out;
  850. list_for_each_entry_safe(curr, next, &head, tree_list) {
  851. btrfs_delayed_item_release_metadata(root, curr);
  852. list_del(&curr->tree_list);
  853. btrfs_release_delayed_item(curr);
  854. }
  855. out:
  856. return ret;
  857. }
  858. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  859. struct btrfs_path *path,
  860. struct btrfs_root *root,
  861. struct btrfs_delayed_node *node)
  862. {
  863. struct btrfs_delayed_item *curr, *prev;
  864. int ret = 0;
  865. do_again:
  866. mutex_lock(&node->mutex);
  867. curr = __btrfs_first_delayed_deletion_item(node);
  868. if (!curr)
  869. goto delete_fail;
  870. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  871. if (ret < 0)
  872. goto delete_fail;
  873. else if (ret > 0) {
  874. /*
  875. * can't find the item which the node points to, so this node
  876. * is invalid, just drop it.
  877. */
  878. prev = curr;
  879. curr = __btrfs_next_delayed_item(prev);
  880. btrfs_release_delayed_item(prev);
  881. ret = 0;
  882. btrfs_release_path(path);
  883. if (curr) {
  884. mutex_unlock(&node->mutex);
  885. goto do_again;
  886. } else
  887. goto delete_fail;
  888. }
  889. btrfs_batch_delete_items(trans, root, path, curr);
  890. btrfs_release_path(path);
  891. mutex_unlock(&node->mutex);
  892. goto do_again;
  893. delete_fail:
  894. btrfs_release_path(path);
  895. mutex_unlock(&node->mutex);
  896. return ret;
  897. }
  898. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  899. {
  900. struct btrfs_delayed_root *delayed_root;
  901. if (delayed_node && delayed_node->inode_dirty) {
  902. BUG_ON(!delayed_node->root);
  903. delayed_node->inode_dirty = 0;
  904. delayed_node->count--;
  905. delayed_root = delayed_node->root->fs_info->delayed_root;
  906. if (atomic_dec_return(&delayed_root->items) <
  907. BTRFS_DELAYED_BACKGROUND &&
  908. waitqueue_active(&delayed_root->wait))
  909. wake_up(&delayed_root->wait);
  910. }
  911. }
  912. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  913. struct btrfs_root *root,
  914. struct btrfs_path *path,
  915. struct btrfs_delayed_node *node)
  916. {
  917. struct btrfs_key key;
  918. struct btrfs_inode_item *inode_item;
  919. struct extent_buffer *leaf;
  920. int ret;
  921. mutex_lock(&node->mutex);
  922. if (!node->inode_dirty) {
  923. mutex_unlock(&node->mutex);
  924. return 0;
  925. }
  926. key.objectid = node->inode_id;
  927. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  928. key.offset = 0;
  929. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  930. if (ret > 0) {
  931. btrfs_release_path(path);
  932. mutex_unlock(&node->mutex);
  933. return -ENOENT;
  934. } else if (ret < 0) {
  935. mutex_unlock(&node->mutex);
  936. return ret;
  937. }
  938. btrfs_unlock_up_safe(path, 1);
  939. leaf = path->nodes[0];
  940. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  941. struct btrfs_inode_item);
  942. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  943. sizeof(struct btrfs_inode_item));
  944. btrfs_mark_buffer_dirty(leaf);
  945. btrfs_release_path(path);
  946. btrfs_delayed_inode_release_metadata(root, node);
  947. btrfs_release_delayed_inode(node);
  948. mutex_unlock(&node->mutex);
  949. return 0;
  950. }
  951. /*
  952. * Called when committing the transaction.
  953. * Returns 0 on success.
  954. * Returns < 0 on error and returns with an aborted transaction with any
  955. * outstanding delayed items cleaned up.
  956. */
  957. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  958. struct btrfs_root *root, int nr)
  959. {
  960. struct btrfs_root *curr_root = root;
  961. struct btrfs_delayed_root *delayed_root;
  962. struct btrfs_delayed_node *curr_node, *prev_node;
  963. struct btrfs_path *path;
  964. struct btrfs_block_rsv *block_rsv;
  965. int ret = 0;
  966. bool count = (nr > 0);
  967. if (trans->aborted)
  968. return -EIO;
  969. path = btrfs_alloc_path();
  970. if (!path)
  971. return -ENOMEM;
  972. path->leave_spinning = 1;
  973. block_rsv = trans->block_rsv;
  974. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  975. delayed_root = btrfs_get_delayed_root(root);
  976. curr_node = btrfs_first_delayed_node(delayed_root);
  977. while (curr_node && (!count || (count && nr--))) {
  978. curr_root = curr_node->root;
  979. ret = btrfs_insert_delayed_items(trans, path, curr_root,
  980. curr_node);
  981. if (!ret)
  982. ret = btrfs_delete_delayed_items(trans, path,
  983. curr_root, curr_node);
  984. if (!ret)
  985. ret = btrfs_update_delayed_inode(trans, curr_root,
  986. path, curr_node);
  987. if (ret) {
  988. btrfs_release_delayed_node(curr_node);
  989. curr_node = NULL;
  990. btrfs_abort_transaction(trans, root, ret);
  991. break;
  992. }
  993. prev_node = curr_node;
  994. curr_node = btrfs_next_delayed_node(curr_node);
  995. btrfs_release_delayed_node(prev_node);
  996. }
  997. if (curr_node)
  998. btrfs_release_delayed_node(curr_node);
  999. btrfs_free_path(path);
  1000. trans->block_rsv = block_rsv;
  1001. return ret;
  1002. }
  1003. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1004. struct btrfs_root *root)
  1005. {
  1006. return __btrfs_run_delayed_items(trans, root, -1);
  1007. }
  1008. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1009. struct btrfs_root *root, int nr)
  1010. {
  1011. return __btrfs_run_delayed_items(trans, root, nr);
  1012. }
  1013. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1014. struct btrfs_delayed_node *node)
  1015. {
  1016. struct btrfs_path *path;
  1017. struct btrfs_block_rsv *block_rsv;
  1018. int ret;
  1019. path = btrfs_alloc_path();
  1020. if (!path)
  1021. return -ENOMEM;
  1022. path->leave_spinning = 1;
  1023. block_rsv = trans->block_rsv;
  1024. trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
  1025. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  1026. if (!ret)
  1027. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  1028. if (!ret)
  1029. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  1030. btrfs_free_path(path);
  1031. trans->block_rsv = block_rsv;
  1032. return ret;
  1033. }
  1034. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1035. struct inode *inode)
  1036. {
  1037. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1038. int ret;
  1039. if (!delayed_node)
  1040. return 0;
  1041. mutex_lock(&delayed_node->mutex);
  1042. if (!delayed_node->count) {
  1043. mutex_unlock(&delayed_node->mutex);
  1044. btrfs_release_delayed_node(delayed_node);
  1045. return 0;
  1046. }
  1047. mutex_unlock(&delayed_node->mutex);
  1048. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  1049. btrfs_release_delayed_node(delayed_node);
  1050. return ret;
  1051. }
  1052. void btrfs_remove_delayed_node(struct inode *inode)
  1053. {
  1054. struct btrfs_delayed_node *delayed_node;
  1055. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1056. if (!delayed_node)
  1057. return;
  1058. BTRFS_I(inode)->delayed_node = NULL;
  1059. btrfs_release_delayed_node(delayed_node);
  1060. }
  1061. struct btrfs_async_delayed_node {
  1062. struct btrfs_root *root;
  1063. struct btrfs_delayed_node *delayed_node;
  1064. struct btrfs_work work;
  1065. };
  1066. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  1067. {
  1068. struct btrfs_async_delayed_node *async_node;
  1069. struct btrfs_trans_handle *trans;
  1070. struct btrfs_path *path;
  1071. struct btrfs_delayed_node *delayed_node = NULL;
  1072. struct btrfs_root *root;
  1073. struct btrfs_block_rsv *block_rsv;
  1074. int need_requeue = 0;
  1075. int ret;
  1076. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  1077. path = btrfs_alloc_path();
  1078. if (!path)
  1079. goto out;
  1080. path->leave_spinning = 1;
  1081. delayed_node = async_node->delayed_node;
  1082. root = delayed_node->root;
  1083. trans = btrfs_join_transaction(root);
  1084. if (IS_ERR(trans))
  1085. goto free_path;
  1086. block_rsv = trans->block_rsv;
  1087. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1088. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  1089. if (!ret)
  1090. ret = btrfs_delete_delayed_items(trans, path, root,
  1091. delayed_node);
  1092. if (!ret)
  1093. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  1094. /*
  1095. * Maybe new delayed items have been inserted, so we need requeue
  1096. * the work. Besides that, we must dequeue the empty delayed nodes
  1097. * to avoid the race between delayed items balance and the worker.
  1098. * The race like this:
  1099. * Task1 Worker thread
  1100. * count == 0, needn't requeue
  1101. * also needn't insert the
  1102. * delayed node into prepare
  1103. * list again.
  1104. * add lots of delayed items
  1105. * queue the delayed node
  1106. * already in the list,
  1107. * and not in the prepare
  1108. * list, it means the delayed
  1109. * node is being dealt with
  1110. * by the worker.
  1111. * do delayed items balance
  1112. * the delayed node is being
  1113. * dealt with by the worker
  1114. * now, just wait.
  1115. * the worker goto idle.
  1116. * Task1 will sleep until the transaction is commited.
  1117. */
  1118. mutex_lock(&delayed_node->mutex);
  1119. if (delayed_node->count)
  1120. need_requeue = 1;
  1121. else
  1122. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1123. delayed_node);
  1124. mutex_unlock(&delayed_node->mutex);
  1125. trans->block_rsv = block_rsv;
  1126. btrfs_end_transaction_dmeta(trans, root);
  1127. btrfs_btree_balance_dirty_nodelay(root);
  1128. free_path:
  1129. btrfs_free_path(path);
  1130. out:
  1131. if (need_requeue)
  1132. btrfs_requeue_work(&async_node->work);
  1133. else {
  1134. btrfs_release_prepared_delayed_node(delayed_node);
  1135. kfree(async_node);
  1136. }
  1137. }
  1138. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1139. struct btrfs_root *root, int all)
  1140. {
  1141. struct btrfs_async_delayed_node *async_node;
  1142. struct btrfs_delayed_node *curr;
  1143. int count = 0;
  1144. again:
  1145. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1146. if (!curr)
  1147. return 0;
  1148. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1149. if (!async_node) {
  1150. btrfs_release_prepared_delayed_node(curr);
  1151. return -ENOMEM;
  1152. }
  1153. async_node->root = root;
  1154. async_node->delayed_node = curr;
  1155. async_node->work.func = btrfs_async_run_delayed_node_done;
  1156. async_node->work.flags = 0;
  1157. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1158. count++;
  1159. if (all || count < 4)
  1160. goto again;
  1161. return 0;
  1162. }
  1163. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1164. {
  1165. struct btrfs_delayed_root *delayed_root;
  1166. delayed_root = btrfs_get_delayed_root(root);
  1167. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1168. }
  1169. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1170. {
  1171. struct btrfs_delayed_root *delayed_root;
  1172. delayed_root = btrfs_get_delayed_root(root);
  1173. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1174. return;
  1175. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1176. int ret;
  1177. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1178. if (ret)
  1179. return;
  1180. wait_event_interruptible_timeout(
  1181. delayed_root->wait,
  1182. (atomic_read(&delayed_root->items) <
  1183. BTRFS_DELAYED_BACKGROUND),
  1184. HZ);
  1185. return;
  1186. }
  1187. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1188. }
  1189. /* Will return 0 or -ENOMEM */
  1190. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1191. struct btrfs_root *root, const char *name,
  1192. int name_len, struct inode *dir,
  1193. struct btrfs_disk_key *disk_key, u8 type,
  1194. u64 index)
  1195. {
  1196. struct btrfs_delayed_node *delayed_node;
  1197. struct btrfs_delayed_item *delayed_item;
  1198. struct btrfs_dir_item *dir_item;
  1199. int ret;
  1200. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1201. if (IS_ERR(delayed_node))
  1202. return PTR_ERR(delayed_node);
  1203. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1204. if (!delayed_item) {
  1205. ret = -ENOMEM;
  1206. goto release_node;
  1207. }
  1208. delayed_item->key.objectid = btrfs_ino(dir);
  1209. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1210. delayed_item->key.offset = index;
  1211. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1212. dir_item->location = *disk_key;
  1213. dir_item->transid = cpu_to_le64(trans->transid);
  1214. dir_item->data_len = 0;
  1215. dir_item->name_len = cpu_to_le16(name_len);
  1216. dir_item->type = type;
  1217. memcpy((char *)(dir_item + 1), name, name_len);
  1218. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1219. /*
  1220. * we have reserved enough space when we start a new transaction,
  1221. * so reserving metadata failure is impossible
  1222. */
  1223. BUG_ON(ret);
  1224. mutex_lock(&delayed_node->mutex);
  1225. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1226. if (unlikely(ret)) {
  1227. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1228. "the insertion tree of the delayed node"
  1229. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1230. name,
  1231. (unsigned long long)delayed_node->root->objectid,
  1232. (unsigned long long)delayed_node->inode_id,
  1233. ret);
  1234. BUG();
  1235. }
  1236. mutex_unlock(&delayed_node->mutex);
  1237. release_node:
  1238. btrfs_release_delayed_node(delayed_node);
  1239. return ret;
  1240. }
  1241. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1242. struct btrfs_delayed_node *node,
  1243. struct btrfs_key *key)
  1244. {
  1245. struct btrfs_delayed_item *item;
  1246. mutex_lock(&node->mutex);
  1247. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1248. if (!item) {
  1249. mutex_unlock(&node->mutex);
  1250. return 1;
  1251. }
  1252. btrfs_delayed_item_release_metadata(root, item);
  1253. btrfs_release_delayed_item(item);
  1254. mutex_unlock(&node->mutex);
  1255. return 0;
  1256. }
  1257. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1258. struct btrfs_root *root, struct inode *dir,
  1259. u64 index)
  1260. {
  1261. struct btrfs_delayed_node *node;
  1262. struct btrfs_delayed_item *item;
  1263. struct btrfs_key item_key;
  1264. int ret;
  1265. node = btrfs_get_or_create_delayed_node(dir);
  1266. if (IS_ERR(node))
  1267. return PTR_ERR(node);
  1268. item_key.objectid = btrfs_ino(dir);
  1269. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1270. item_key.offset = index;
  1271. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1272. if (!ret)
  1273. goto end;
  1274. item = btrfs_alloc_delayed_item(0);
  1275. if (!item) {
  1276. ret = -ENOMEM;
  1277. goto end;
  1278. }
  1279. item->key = item_key;
  1280. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1281. /*
  1282. * we have reserved enough space when we start a new transaction,
  1283. * so reserving metadata failure is impossible.
  1284. */
  1285. BUG_ON(ret);
  1286. mutex_lock(&node->mutex);
  1287. ret = __btrfs_add_delayed_deletion_item(node, item);
  1288. if (unlikely(ret)) {
  1289. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1290. "into the deletion tree of the delayed node"
  1291. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1292. (unsigned long long)index,
  1293. (unsigned long long)node->root->objectid,
  1294. (unsigned long long)node->inode_id,
  1295. ret);
  1296. BUG();
  1297. }
  1298. mutex_unlock(&node->mutex);
  1299. end:
  1300. btrfs_release_delayed_node(node);
  1301. return ret;
  1302. }
  1303. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1304. {
  1305. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1306. if (!delayed_node)
  1307. return -ENOENT;
  1308. /*
  1309. * Since we have held i_mutex of this directory, it is impossible that
  1310. * a new directory index is added into the delayed node and index_cnt
  1311. * is updated now. So we needn't lock the delayed node.
  1312. */
  1313. if (!delayed_node->index_cnt) {
  1314. btrfs_release_delayed_node(delayed_node);
  1315. return -EINVAL;
  1316. }
  1317. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1318. btrfs_release_delayed_node(delayed_node);
  1319. return 0;
  1320. }
  1321. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1322. struct list_head *del_list)
  1323. {
  1324. struct btrfs_delayed_node *delayed_node;
  1325. struct btrfs_delayed_item *item;
  1326. delayed_node = btrfs_get_delayed_node(inode);
  1327. if (!delayed_node)
  1328. return;
  1329. mutex_lock(&delayed_node->mutex);
  1330. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1331. while (item) {
  1332. atomic_inc(&item->refs);
  1333. list_add_tail(&item->readdir_list, ins_list);
  1334. item = __btrfs_next_delayed_item(item);
  1335. }
  1336. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1337. while (item) {
  1338. atomic_inc(&item->refs);
  1339. list_add_tail(&item->readdir_list, del_list);
  1340. item = __btrfs_next_delayed_item(item);
  1341. }
  1342. mutex_unlock(&delayed_node->mutex);
  1343. /*
  1344. * This delayed node is still cached in the btrfs inode, so refs
  1345. * must be > 1 now, and we needn't check it is going to be freed
  1346. * or not.
  1347. *
  1348. * Besides that, this function is used to read dir, we do not
  1349. * insert/delete delayed items in this period. So we also needn't
  1350. * requeue or dequeue this delayed node.
  1351. */
  1352. atomic_dec(&delayed_node->refs);
  1353. }
  1354. void btrfs_put_delayed_items(struct list_head *ins_list,
  1355. struct list_head *del_list)
  1356. {
  1357. struct btrfs_delayed_item *curr, *next;
  1358. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1359. list_del(&curr->readdir_list);
  1360. if (atomic_dec_and_test(&curr->refs))
  1361. kfree(curr);
  1362. }
  1363. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1364. list_del(&curr->readdir_list);
  1365. if (atomic_dec_and_test(&curr->refs))
  1366. kfree(curr);
  1367. }
  1368. }
  1369. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1370. u64 index)
  1371. {
  1372. struct btrfs_delayed_item *curr, *next;
  1373. int ret;
  1374. if (list_empty(del_list))
  1375. return 0;
  1376. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1377. if (curr->key.offset > index)
  1378. break;
  1379. list_del(&curr->readdir_list);
  1380. ret = (curr->key.offset == index);
  1381. if (atomic_dec_and_test(&curr->refs))
  1382. kfree(curr);
  1383. if (ret)
  1384. return 1;
  1385. else
  1386. continue;
  1387. }
  1388. return 0;
  1389. }
  1390. /*
  1391. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1392. *
  1393. */
  1394. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1395. filldir_t filldir,
  1396. struct list_head *ins_list)
  1397. {
  1398. struct btrfs_dir_item *di;
  1399. struct btrfs_delayed_item *curr, *next;
  1400. struct btrfs_key location;
  1401. char *name;
  1402. int name_len;
  1403. int over = 0;
  1404. unsigned char d_type;
  1405. if (list_empty(ins_list))
  1406. return 0;
  1407. /*
  1408. * Changing the data of the delayed item is impossible. So
  1409. * we needn't lock them. And we have held i_mutex of the
  1410. * directory, nobody can delete any directory indexes now.
  1411. */
  1412. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1413. list_del(&curr->readdir_list);
  1414. if (curr->key.offset < filp->f_pos) {
  1415. if (atomic_dec_and_test(&curr->refs))
  1416. kfree(curr);
  1417. continue;
  1418. }
  1419. filp->f_pos = curr->key.offset;
  1420. di = (struct btrfs_dir_item *)curr->data;
  1421. name = (char *)(di + 1);
  1422. name_len = le16_to_cpu(di->name_len);
  1423. d_type = btrfs_filetype_table[di->type];
  1424. btrfs_disk_key_to_cpu(&location, &di->location);
  1425. over = filldir(dirent, name, name_len, curr->key.offset,
  1426. location.objectid, d_type);
  1427. if (atomic_dec_and_test(&curr->refs))
  1428. kfree(curr);
  1429. if (over)
  1430. return 1;
  1431. }
  1432. return 0;
  1433. }
  1434. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1435. generation, 64);
  1436. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1437. sequence, 64);
  1438. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1439. transid, 64);
  1440. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1441. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1442. nbytes, 64);
  1443. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1444. block_group, 64);
  1445. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1446. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1447. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1448. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1449. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1450. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1451. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1452. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1453. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1454. struct btrfs_inode_item *inode_item,
  1455. struct inode *inode)
  1456. {
  1457. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1458. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1459. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1460. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1461. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1462. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1463. btrfs_set_stack_inode_generation(inode_item,
  1464. BTRFS_I(inode)->generation);
  1465. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1466. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1467. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1468. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1469. btrfs_set_stack_inode_block_group(inode_item, 0);
  1470. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1471. inode->i_atime.tv_sec);
  1472. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1473. inode->i_atime.tv_nsec);
  1474. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1475. inode->i_mtime.tv_sec);
  1476. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1477. inode->i_mtime.tv_nsec);
  1478. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1479. inode->i_ctime.tv_sec);
  1480. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1481. inode->i_ctime.tv_nsec);
  1482. }
  1483. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1484. {
  1485. struct btrfs_delayed_node *delayed_node;
  1486. struct btrfs_inode_item *inode_item;
  1487. struct btrfs_timespec *tspec;
  1488. delayed_node = btrfs_get_delayed_node(inode);
  1489. if (!delayed_node)
  1490. return -ENOENT;
  1491. mutex_lock(&delayed_node->mutex);
  1492. if (!delayed_node->inode_dirty) {
  1493. mutex_unlock(&delayed_node->mutex);
  1494. btrfs_release_delayed_node(delayed_node);
  1495. return -ENOENT;
  1496. }
  1497. inode_item = &delayed_node->inode_item;
  1498. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1499. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1500. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1501. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1502. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1503. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1504. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1505. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1506. inode->i_rdev = 0;
  1507. *rdev = btrfs_stack_inode_rdev(inode_item);
  1508. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1509. tspec = btrfs_inode_atime(inode_item);
  1510. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1511. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1512. tspec = btrfs_inode_mtime(inode_item);
  1513. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1514. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1515. tspec = btrfs_inode_ctime(inode_item);
  1516. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1517. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1518. inode->i_generation = BTRFS_I(inode)->generation;
  1519. BTRFS_I(inode)->index_cnt = (u64)-1;
  1520. mutex_unlock(&delayed_node->mutex);
  1521. btrfs_release_delayed_node(delayed_node);
  1522. return 0;
  1523. }
  1524. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1525. struct btrfs_root *root, struct inode *inode)
  1526. {
  1527. struct btrfs_delayed_node *delayed_node;
  1528. int ret = 0;
  1529. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1530. if (IS_ERR(delayed_node))
  1531. return PTR_ERR(delayed_node);
  1532. mutex_lock(&delayed_node->mutex);
  1533. if (delayed_node->inode_dirty) {
  1534. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1535. goto release_node;
  1536. }
  1537. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1538. delayed_node);
  1539. if (ret)
  1540. goto release_node;
  1541. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1542. delayed_node->inode_dirty = 1;
  1543. delayed_node->count++;
  1544. atomic_inc(&root->fs_info->delayed_root->items);
  1545. release_node:
  1546. mutex_unlock(&delayed_node->mutex);
  1547. btrfs_release_delayed_node(delayed_node);
  1548. return ret;
  1549. }
  1550. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1551. {
  1552. struct btrfs_root *root = delayed_node->root;
  1553. struct btrfs_delayed_item *curr_item, *prev_item;
  1554. mutex_lock(&delayed_node->mutex);
  1555. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1556. while (curr_item) {
  1557. btrfs_delayed_item_release_metadata(root, curr_item);
  1558. prev_item = curr_item;
  1559. curr_item = __btrfs_next_delayed_item(prev_item);
  1560. btrfs_release_delayed_item(prev_item);
  1561. }
  1562. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1563. while (curr_item) {
  1564. btrfs_delayed_item_release_metadata(root, curr_item);
  1565. prev_item = curr_item;
  1566. curr_item = __btrfs_next_delayed_item(prev_item);
  1567. btrfs_release_delayed_item(prev_item);
  1568. }
  1569. if (delayed_node->inode_dirty) {
  1570. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1571. btrfs_release_delayed_inode(delayed_node);
  1572. }
  1573. mutex_unlock(&delayed_node->mutex);
  1574. }
  1575. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1576. {
  1577. struct btrfs_delayed_node *delayed_node;
  1578. delayed_node = btrfs_get_delayed_node(inode);
  1579. if (!delayed_node)
  1580. return;
  1581. __btrfs_kill_delayed_node(delayed_node);
  1582. btrfs_release_delayed_node(delayed_node);
  1583. }
  1584. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1585. {
  1586. u64 inode_id = 0;
  1587. struct btrfs_delayed_node *delayed_nodes[8];
  1588. int i, n;
  1589. while (1) {
  1590. spin_lock(&root->inode_lock);
  1591. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1592. (void **)delayed_nodes, inode_id,
  1593. ARRAY_SIZE(delayed_nodes));
  1594. if (!n) {
  1595. spin_unlock(&root->inode_lock);
  1596. break;
  1597. }
  1598. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1599. for (i = 0; i < n; i++)
  1600. atomic_inc(&delayed_nodes[i]->refs);
  1601. spin_unlock(&root->inode_lock);
  1602. for (i = 0; i < n; i++) {
  1603. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1604. btrfs_release_delayed_node(delayed_nodes[i]);
  1605. }
  1606. }
  1607. }
  1608. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1609. {
  1610. struct btrfs_delayed_root *delayed_root;
  1611. struct btrfs_delayed_node *curr_node, *prev_node;
  1612. delayed_root = btrfs_get_delayed_root(root);
  1613. curr_node = btrfs_first_delayed_node(delayed_root);
  1614. while (curr_node) {
  1615. __btrfs_kill_delayed_node(curr_node);
  1616. prev_node = curr_node;
  1617. curr_node = btrfs_next_delayed_node(curr_node);
  1618. btrfs_release_delayed_node(prev_node);
  1619. }
  1620. }