snapshot.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947
  1. /*
  2. * linux/kernel/power/snapshot.c
  3. *
  4. * This file provides system snapshot/restore functionality for swsusp.
  5. *
  6. * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
  7. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  8. *
  9. * This file is released under the GPLv2.
  10. *
  11. */
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/mm.h>
  15. #include <linux/suspend.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kernel.h>
  20. #include <linux/pm.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/syscalls.h>
  25. #include <linux/console.h>
  26. #include <linux/highmem.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/mmu_context.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/io.h>
  32. #include "power.h"
  33. static int swsusp_page_is_free(struct page *);
  34. static void swsusp_set_page_forbidden(struct page *);
  35. static void swsusp_unset_page_forbidden(struct page *);
  36. /* List of PBEs needed for restoring the pages that were allocated before
  37. * the suspend and included in the suspend image, but have also been
  38. * allocated by the "resume" kernel, so their contents cannot be written
  39. * directly to their "original" page frames.
  40. */
  41. struct pbe *restore_pblist;
  42. /* Pointer to an auxiliary buffer (1 page) */
  43. static void *buffer;
  44. /**
  45. * @safe_needed - on resume, for storing the PBE list and the image,
  46. * we can only use memory pages that do not conflict with the pages
  47. * used before suspend. The unsafe pages have PageNosaveFree set
  48. * and we count them using unsafe_pages.
  49. *
  50. * Each allocated image page is marked as PageNosave and PageNosaveFree
  51. * so that swsusp_free() can release it.
  52. */
  53. #define PG_ANY 0
  54. #define PG_SAFE 1
  55. #define PG_UNSAFE_CLEAR 1
  56. #define PG_UNSAFE_KEEP 0
  57. static unsigned int allocated_unsafe_pages;
  58. static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  59. {
  60. void *res;
  61. res = (void *)get_zeroed_page(gfp_mask);
  62. if (safe_needed)
  63. while (res && swsusp_page_is_free(virt_to_page(res))) {
  64. /* The page is unsafe, mark it for swsusp_free() */
  65. swsusp_set_page_forbidden(virt_to_page(res));
  66. allocated_unsafe_pages++;
  67. res = (void *)get_zeroed_page(gfp_mask);
  68. }
  69. if (res) {
  70. swsusp_set_page_forbidden(virt_to_page(res));
  71. swsusp_set_page_free(virt_to_page(res));
  72. }
  73. return res;
  74. }
  75. unsigned long get_safe_page(gfp_t gfp_mask)
  76. {
  77. return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
  78. }
  79. static struct page *alloc_image_page(gfp_t gfp_mask)
  80. {
  81. struct page *page;
  82. page = alloc_page(gfp_mask);
  83. if (page) {
  84. swsusp_set_page_forbidden(page);
  85. swsusp_set_page_free(page);
  86. }
  87. return page;
  88. }
  89. /**
  90. * free_image_page - free page represented by @addr, allocated with
  91. * get_image_page (page flags set by it must be cleared)
  92. */
  93. static inline void free_image_page(void *addr, int clear_nosave_free)
  94. {
  95. struct page *page;
  96. BUG_ON(!virt_addr_valid(addr));
  97. page = virt_to_page(addr);
  98. swsusp_unset_page_forbidden(page);
  99. if (clear_nosave_free)
  100. swsusp_unset_page_free(page);
  101. __free_page(page);
  102. }
  103. /* struct linked_page is used to build chains of pages */
  104. #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
  105. struct linked_page {
  106. struct linked_page *next;
  107. char data[LINKED_PAGE_DATA_SIZE];
  108. } __attribute__((packed));
  109. static inline void
  110. free_list_of_pages(struct linked_page *list, int clear_page_nosave)
  111. {
  112. while (list) {
  113. struct linked_page *lp = list->next;
  114. free_image_page(list, clear_page_nosave);
  115. list = lp;
  116. }
  117. }
  118. /**
  119. * struct chain_allocator is used for allocating small objects out of
  120. * a linked list of pages called 'the chain'.
  121. *
  122. * The chain grows each time when there is no room for a new object in
  123. * the current page. The allocated objects cannot be freed individually.
  124. * It is only possible to free them all at once, by freeing the entire
  125. * chain.
  126. *
  127. * NOTE: The chain allocator may be inefficient if the allocated objects
  128. * are not much smaller than PAGE_SIZE.
  129. */
  130. struct chain_allocator {
  131. struct linked_page *chain; /* the chain */
  132. unsigned int used_space; /* total size of objects allocated out
  133. * of the current page
  134. */
  135. gfp_t gfp_mask; /* mask for allocating pages */
  136. int safe_needed; /* if set, only "safe" pages are allocated */
  137. };
  138. static void
  139. chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
  140. {
  141. ca->chain = NULL;
  142. ca->used_space = LINKED_PAGE_DATA_SIZE;
  143. ca->gfp_mask = gfp_mask;
  144. ca->safe_needed = safe_needed;
  145. }
  146. static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
  147. {
  148. void *ret;
  149. if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
  150. struct linked_page *lp;
  151. lp = get_image_page(ca->gfp_mask, ca->safe_needed);
  152. if (!lp)
  153. return NULL;
  154. lp->next = ca->chain;
  155. ca->chain = lp;
  156. ca->used_space = 0;
  157. }
  158. ret = ca->chain->data + ca->used_space;
  159. ca->used_space += size;
  160. return ret;
  161. }
  162. static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
  163. {
  164. free_list_of_pages(ca->chain, clear_page_nosave);
  165. memset(ca, 0, sizeof(struct chain_allocator));
  166. }
  167. /**
  168. * Data types related to memory bitmaps.
  169. *
  170. * Memory bitmap is a structure consiting of many linked lists of
  171. * objects. The main list's elements are of type struct zone_bitmap
  172. * and each of them corresonds to one zone. For each zone bitmap
  173. * object there is a list of objects of type struct bm_block that
  174. * represent each blocks of bit chunks in which information is
  175. * stored.
  176. *
  177. * struct memory_bitmap contains a pointer to the main list of zone
  178. * bitmap objects, a struct bm_position used for browsing the bitmap,
  179. * and a pointer to the list of pages used for allocating all of the
  180. * zone bitmap objects and bitmap block objects.
  181. *
  182. * NOTE: It has to be possible to lay out the bitmap in memory
  183. * using only allocations of order 0. Additionally, the bitmap is
  184. * designed to work with arbitrary number of zones (this is over the
  185. * top for now, but let's avoid making unnecessary assumptions ;-).
  186. *
  187. * struct zone_bitmap contains a pointer to a list of bitmap block
  188. * objects and a pointer to the bitmap block object that has been
  189. * most recently used for setting bits. Additionally, it contains the
  190. * pfns that correspond to the start and end of the represented zone.
  191. *
  192. * struct bm_block contains a pointer to the memory page in which
  193. * information is stored (in the form of a block of bit chunks
  194. * of type unsigned long each). It also contains the pfns that
  195. * correspond to the start and end of the represented memory area and
  196. * the number of bit chunks in the block.
  197. */
  198. #define BM_END_OF_MAP (~0UL)
  199. #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
  200. #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
  201. #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
  202. struct bm_block {
  203. struct bm_block *next; /* next element of the list */
  204. unsigned long start_pfn; /* pfn represented by the first bit */
  205. unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
  206. unsigned int size; /* number of bit chunks */
  207. unsigned long *data; /* chunks of bits representing pages */
  208. };
  209. struct zone_bitmap {
  210. struct zone_bitmap *next; /* next element of the list */
  211. unsigned long start_pfn; /* minimal pfn in this zone */
  212. unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
  213. struct bm_block *bm_blocks; /* list of bitmap blocks */
  214. struct bm_block *cur_block; /* recently used bitmap block */
  215. };
  216. /* strcut bm_position is used for browsing memory bitmaps */
  217. struct bm_position {
  218. struct zone_bitmap *zone_bm;
  219. struct bm_block *block;
  220. int chunk;
  221. int bit;
  222. };
  223. struct memory_bitmap {
  224. struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
  225. struct linked_page *p_list; /* list of pages used to store zone
  226. * bitmap objects and bitmap block
  227. * objects
  228. */
  229. struct bm_position cur; /* most recently used bit position */
  230. };
  231. /* Functions that operate on memory bitmaps */
  232. static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
  233. {
  234. bm->cur.chunk = 0;
  235. bm->cur.bit = -1;
  236. }
  237. static void memory_bm_position_reset(struct memory_bitmap *bm)
  238. {
  239. struct zone_bitmap *zone_bm;
  240. zone_bm = bm->zone_bm_list;
  241. bm->cur.zone_bm = zone_bm;
  242. bm->cur.block = zone_bm->bm_blocks;
  243. memory_bm_reset_chunk(bm);
  244. }
  245. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
  246. /**
  247. * create_bm_block_list - create a list of block bitmap objects
  248. */
  249. static inline struct bm_block *
  250. create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
  251. {
  252. struct bm_block *bblist = NULL;
  253. while (nr_blocks-- > 0) {
  254. struct bm_block *bb;
  255. bb = chain_alloc(ca, sizeof(struct bm_block));
  256. if (!bb)
  257. return NULL;
  258. bb->next = bblist;
  259. bblist = bb;
  260. }
  261. return bblist;
  262. }
  263. /**
  264. * create_zone_bm_list - create a list of zone bitmap objects
  265. */
  266. static inline struct zone_bitmap *
  267. create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
  268. {
  269. struct zone_bitmap *zbmlist = NULL;
  270. while (nr_zones-- > 0) {
  271. struct zone_bitmap *zbm;
  272. zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
  273. if (!zbm)
  274. return NULL;
  275. zbm->next = zbmlist;
  276. zbmlist = zbm;
  277. }
  278. return zbmlist;
  279. }
  280. /**
  281. * memory_bm_create - allocate memory for a memory bitmap
  282. */
  283. static int
  284. memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
  285. {
  286. struct chain_allocator ca;
  287. struct zone *zone;
  288. struct zone_bitmap *zone_bm;
  289. struct bm_block *bb;
  290. unsigned int nr;
  291. chain_init(&ca, gfp_mask, safe_needed);
  292. /* Compute the number of zones */
  293. nr = 0;
  294. for_each_zone(zone)
  295. if (populated_zone(zone))
  296. nr++;
  297. /* Allocate the list of zones bitmap objects */
  298. zone_bm = create_zone_bm_list(nr, &ca);
  299. bm->zone_bm_list = zone_bm;
  300. if (!zone_bm) {
  301. chain_free(&ca, PG_UNSAFE_CLEAR);
  302. return -ENOMEM;
  303. }
  304. /* Initialize the zone bitmap objects */
  305. for_each_zone(zone) {
  306. unsigned long pfn;
  307. if (!populated_zone(zone))
  308. continue;
  309. zone_bm->start_pfn = zone->zone_start_pfn;
  310. zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  311. /* Allocate the list of bitmap block objects */
  312. nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  313. bb = create_bm_block_list(nr, &ca);
  314. zone_bm->bm_blocks = bb;
  315. zone_bm->cur_block = bb;
  316. if (!bb)
  317. goto Free;
  318. nr = zone->spanned_pages;
  319. pfn = zone->zone_start_pfn;
  320. /* Initialize the bitmap block objects */
  321. while (bb) {
  322. unsigned long *ptr;
  323. ptr = get_image_page(gfp_mask, safe_needed);
  324. bb->data = ptr;
  325. if (!ptr)
  326. goto Free;
  327. bb->start_pfn = pfn;
  328. if (nr >= BM_BITS_PER_BLOCK) {
  329. pfn += BM_BITS_PER_BLOCK;
  330. bb->size = BM_CHUNKS_PER_BLOCK;
  331. nr -= BM_BITS_PER_BLOCK;
  332. } else {
  333. /* This is executed only once in the loop */
  334. pfn += nr;
  335. bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
  336. }
  337. bb->end_pfn = pfn;
  338. bb = bb->next;
  339. }
  340. zone_bm = zone_bm->next;
  341. }
  342. bm->p_list = ca.chain;
  343. memory_bm_position_reset(bm);
  344. return 0;
  345. Free:
  346. bm->p_list = ca.chain;
  347. memory_bm_free(bm, PG_UNSAFE_CLEAR);
  348. return -ENOMEM;
  349. }
  350. /**
  351. * memory_bm_free - free memory occupied by the memory bitmap @bm
  352. */
  353. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
  354. {
  355. struct zone_bitmap *zone_bm;
  356. /* Free the list of bit blocks for each zone_bitmap object */
  357. zone_bm = bm->zone_bm_list;
  358. while (zone_bm) {
  359. struct bm_block *bb;
  360. bb = zone_bm->bm_blocks;
  361. while (bb) {
  362. if (bb->data)
  363. free_image_page(bb->data, clear_nosave_free);
  364. bb = bb->next;
  365. }
  366. zone_bm = zone_bm->next;
  367. }
  368. free_list_of_pages(bm->p_list, clear_nosave_free);
  369. bm->zone_bm_list = NULL;
  370. }
  371. /**
  372. * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
  373. * to given pfn. The cur_zone_bm member of @bm and the cur_block member
  374. * of @bm->cur_zone_bm are updated.
  375. */
  376. static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
  377. void **addr, unsigned int *bit_nr)
  378. {
  379. struct zone_bitmap *zone_bm;
  380. struct bm_block *bb;
  381. /* Check if the pfn is from the current zone */
  382. zone_bm = bm->cur.zone_bm;
  383. if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
  384. zone_bm = bm->zone_bm_list;
  385. /* We don't assume that the zones are sorted by pfns */
  386. while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
  387. zone_bm = zone_bm->next;
  388. BUG_ON(!zone_bm);
  389. }
  390. bm->cur.zone_bm = zone_bm;
  391. }
  392. /* Check if the pfn corresponds to the current bitmap block */
  393. bb = zone_bm->cur_block;
  394. if (pfn < bb->start_pfn)
  395. bb = zone_bm->bm_blocks;
  396. while (pfn >= bb->end_pfn) {
  397. bb = bb->next;
  398. BUG_ON(!bb);
  399. }
  400. zone_bm->cur_block = bb;
  401. pfn -= bb->start_pfn;
  402. *bit_nr = pfn % BM_BITS_PER_CHUNK;
  403. *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
  404. }
  405. static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
  406. {
  407. void *addr;
  408. unsigned int bit;
  409. memory_bm_find_bit(bm, pfn, &addr, &bit);
  410. set_bit(bit, addr);
  411. }
  412. static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
  413. {
  414. void *addr;
  415. unsigned int bit;
  416. memory_bm_find_bit(bm, pfn, &addr, &bit);
  417. clear_bit(bit, addr);
  418. }
  419. static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
  420. {
  421. void *addr;
  422. unsigned int bit;
  423. memory_bm_find_bit(bm, pfn, &addr, &bit);
  424. return test_bit(bit, addr);
  425. }
  426. /* Two auxiliary functions for memory_bm_next_pfn */
  427. /* Find the first set bit in the given chunk, if there is one */
  428. static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
  429. {
  430. bit++;
  431. while (bit < BM_BITS_PER_CHUNK) {
  432. if (test_bit(bit, chunk_p))
  433. return bit;
  434. bit++;
  435. }
  436. return -1;
  437. }
  438. /* Find a chunk containing some bits set in given block of bits */
  439. static inline int next_chunk_in_block(int n, struct bm_block *bb)
  440. {
  441. n++;
  442. while (n < bb->size) {
  443. if (bb->data[n])
  444. return n;
  445. n++;
  446. }
  447. return -1;
  448. }
  449. /**
  450. * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
  451. * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
  452. * returned.
  453. *
  454. * It is required to run memory_bm_position_reset() before the first call to
  455. * this function.
  456. */
  457. static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
  458. {
  459. struct zone_bitmap *zone_bm;
  460. struct bm_block *bb;
  461. int chunk;
  462. int bit;
  463. do {
  464. bb = bm->cur.block;
  465. do {
  466. chunk = bm->cur.chunk;
  467. bit = bm->cur.bit;
  468. do {
  469. bit = next_bit_in_chunk(bit, bb->data + chunk);
  470. if (bit >= 0)
  471. goto Return_pfn;
  472. chunk = next_chunk_in_block(chunk, bb);
  473. bit = -1;
  474. } while (chunk >= 0);
  475. bb = bb->next;
  476. bm->cur.block = bb;
  477. memory_bm_reset_chunk(bm);
  478. } while (bb);
  479. zone_bm = bm->cur.zone_bm->next;
  480. if (zone_bm) {
  481. bm->cur.zone_bm = zone_bm;
  482. bm->cur.block = zone_bm->bm_blocks;
  483. memory_bm_reset_chunk(bm);
  484. }
  485. } while (zone_bm);
  486. memory_bm_position_reset(bm);
  487. return BM_END_OF_MAP;
  488. Return_pfn:
  489. bm->cur.chunk = chunk;
  490. bm->cur.bit = bit;
  491. return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
  492. }
  493. /**
  494. * This structure represents a range of page frames the contents of which
  495. * should not be saved during the suspend.
  496. */
  497. struct nosave_region {
  498. struct list_head list;
  499. unsigned long start_pfn;
  500. unsigned long end_pfn;
  501. };
  502. static LIST_HEAD(nosave_regions);
  503. /**
  504. * register_nosave_region - register a range of page frames the contents
  505. * of which should not be saved during the suspend (to be used in the early
  506. * initialization code)
  507. */
  508. void __init
  509. register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
  510. {
  511. struct nosave_region *region;
  512. if (start_pfn >= end_pfn)
  513. return;
  514. if (!list_empty(&nosave_regions)) {
  515. /* Try to extend the previous region (they should be sorted) */
  516. region = list_entry(nosave_regions.prev,
  517. struct nosave_region, list);
  518. if (region->end_pfn == start_pfn) {
  519. region->end_pfn = end_pfn;
  520. goto Report;
  521. }
  522. }
  523. /* This allocation cannot fail */
  524. region = alloc_bootmem_low(sizeof(struct nosave_region));
  525. region->start_pfn = start_pfn;
  526. region->end_pfn = end_pfn;
  527. list_add_tail(&region->list, &nosave_regions);
  528. Report:
  529. printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
  530. start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  531. }
  532. /*
  533. * Set bits in this map correspond to the page frames the contents of which
  534. * should not be saved during the suspend.
  535. */
  536. static struct memory_bitmap *forbidden_pages_map;
  537. /* Set bits in this map correspond to free page frames. */
  538. static struct memory_bitmap *free_pages_map;
  539. /*
  540. * Each page frame allocated for creating the image is marked by setting the
  541. * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
  542. */
  543. void swsusp_set_page_free(struct page *page)
  544. {
  545. if (free_pages_map)
  546. memory_bm_set_bit(free_pages_map, page_to_pfn(page));
  547. }
  548. static int swsusp_page_is_free(struct page *page)
  549. {
  550. return free_pages_map ?
  551. memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
  552. }
  553. void swsusp_unset_page_free(struct page *page)
  554. {
  555. if (free_pages_map)
  556. memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
  557. }
  558. static void swsusp_set_page_forbidden(struct page *page)
  559. {
  560. if (forbidden_pages_map)
  561. memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
  562. }
  563. int swsusp_page_is_forbidden(struct page *page)
  564. {
  565. return forbidden_pages_map ?
  566. memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
  567. }
  568. static void swsusp_unset_page_forbidden(struct page *page)
  569. {
  570. if (forbidden_pages_map)
  571. memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
  572. }
  573. /**
  574. * mark_nosave_pages - set bits corresponding to the page frames the
  575. * contents of which should not be saved in a given bitmap.
  576. */
  577. static void mark_nosave_pages(struct memory_bitmap *bm)
  578. {
  579. struct nosave_region *region;
  580. if (list_empty(&nosave_regions))
  581. return;
  582. list_for_each_entry(region, &nosave_regions, list) {
  583. unsigned long pfn;
  584. printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
  585. region->start_pfn << PAGE_SHIFT,
  586. region->end_pfn << PAGE_SHIFT);
  587. for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
  588. memory_bm_set_bit(bm, pfn);
  589. }
  590. }
  591. /**
  592. * create_basic_memory_bitmaps - create bitmaps needed for marking page
  593. * frames that should not be saved and free page frames. The pointers
  594. * forbidden_pages_map and free_pages_map are only modified if everything
  595. * goes well, because we don't want the bits to be used before both bitmaps
  596. * are set up.
  597. */
  598. int create_basic_memory_bitmaps(void)
  599. {
  600. struct memory_bitmap *bm1, *bm2;
  601. int error = 0;
  602. BUG_ON(forbidden_pages_map || free_pages_map);
  603. bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  604. if (!bm1)
  605. return -ENOMEM;
  606. error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
  607. if (error)
  608. goto Free_first_object;
  609. bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  610. if (!bm2)
  611. goto Free_first_bitmap;
  612. error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
  613. if (error)
  614. goto Free_second_object;
  615. forbidden_pages_map = bm1;
  616. free_pages_map = bm2;
  617. mark_nosave_pages(forbidden_pages_map);
  618. printk("swsusp: Basic memory bitmaps created\n");
  619. return 0;
  620. Free_second_object:
  621. kfree(bm2);
  622. Free_first_bitmap:
  623. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  624. Free_first_object:
  625. kfree(bm1);
  626. return -ENOMEM;
  627. }
  628. /**
  629. * free_basic_memory_bitmaps - free memory bitmaps allocated by
  630. * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
  631. * so that the bitmaps themselves are not referred to while they are being
  632. * freed.
  633. */
  634. void free_basic_memory_bitmaps(void)
  635. {
  636. struct memory_bitmap *bm1, *bm2;
  637. BUG_ON(!(forbidden_pages_map && free_pages_map));
  638. bm1 = forbidden_pages_map;
  639. bm2 = free_pages_map;
  640. forbidden_pages_map = NULL;
  641. free_pages_map = NULL;
  642. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  643. kfree(bm1);
  644. memory_bm_free(bm2, PG_UNSAFE_CLEAR);
  645. kfree(bm2);
  646. printk("swsusp: Basic memory bitmaps freed\n");
  647. }
  648. /**
  649. * snapshot_additional_pages - estimate the number of additional pages
  650. * be needed for setting up the suspend image data structures for given
  651. * zone (usually the returned value is greater than the exact number)
  652. */
  653. unsigned int snapshot_additional_pages(struct zone *zone)
  654. {
  655. unsigned int res;
  656. res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  657. res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
  658. return 2 * res;
  659. }
  660. #ifdef CONFIG_HIGHMEM
  661. /**
  662. * count_free_highmem_pages - compute the total number of free highmem
  663. * pages, system-wide.
  664. */
  665. static unsigned int count_free_highmem_pages(void)
  666. {
  667. struct zone *zone;
  668. unsigned int cnt = 0;
  669. for_each_zone(zone)
  670. if (populated_zone(zone) && is_highmem(zone))
  671. cnt += zone_page_state(zone, NR_FREE_PAGES);
  672. return cnt;
  673. }
  674. /**
  675. * saveable_highmem_page - Determine whether a highmem page should be
  676. * included in the suspend image.
  677. *
  678. * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
  679. * and it isn't a part of a free chunk of pages.
  680. */
  681. static struct page *saveable_highmem_page(unsigned long pfn)
  682. {
  683. struct page *page;
  684. if (!pfn_valid(pfn))
  685. return NULL;
  686. page = pfn_to_page(pfn);
  687. BUG_ON(!PageHighMem(page));
  688. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
  689. PageReserved(page))
  690. return NULL;
  691. return page;
  692. }
  693. /**
  694. * count_highmem_pages - compute the total number of saveable highmem
  695. * pages.
  696. */
  697. unsigned int count_highmem_pages(void)
  698. {
  699. struct zone *zone;
  700. unsigned int n = 0;
  701. for_each_zone(zone) {
  702. unsigned long pfn, max_zone_pfn;
  703. if (!is_highmem(zone))
  704. continue;
  705. mark_free_pages(zone);
  706. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  707. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  708. if (saveable_highmem_page(pfn))
  709. n++;
  710. }
  711. return n;
  712. }
  713. #else
  714. static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
  715. static inline unsigned int count_highmem_pages(void) { return 0; }
  716. #endif /* CONFIG_HIGHMEM */
  717. /**
  718. * saveable - Determine whether a non-highmem page should be included in
  719. * the suspend image.
  720. *
  721. * We should save the page if it isn't Nosave, and is not in the range
  722. * of pages statically defined as 'unsaveable', and it isn't a part of
  723. * a free chunk of pages.
  724. */
  725. static struct page *saveable_page(unsigned long pfn)
  726. {
  727. struct page *page;
  728. if (!pfn_valid(pfn))
  729. return NULL;
  730. page = pfn_to_page(pfn);
  731. BUG_ON(PageHighMem(page));
  732. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
  733. return NULL;
  734. if (PageReserved(page) && pfn_is_nosave(pfn))
  735. return NULL;
  736. return page;
  737. }
  738. /**
  739. * count_data_pages - compute the total number of saveable non-highmem
  740. * pages.
  741. */
  742. unsigned int count_data_pages(void)
  743. {
  744. struct zone *zone;
  745. unsigned long pfn, max_zone_pfn;
  746. unsigned int n = 0;
  747. for_each_zone(zone) {
  748. if (is_highmem(zone))
  749. continue;
  750. mark_free_pages(zone);
  751. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  752. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  753. if(saveable_page(pfn))
  754. n++;
  755. }
  756. return n;
  757. }
  758. /* This is needed, because copy_page and memcpy are not usable for copying
  759. * task structs.
  760. */
  761. static inline void do_copy_page(long *dst, long *src)
  762. {
  763. int n;
  764. for (n = PAGE_SIZE / sizeof(long); n; n--)
  765. *dst++ = *src++;
  766. }
  767. #ifdef CONFIG_HIGHMEM
  768. static inline struct page *
  769. page_is_saveable(struct zone *zone, unsigned long pfn)
  770. {
  771. return is_highmem(zone) ?
  772. saveable_highmem_page(pfn) : saveable_page(pfn);
  773. }
  774. static inline void
  775. copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  776. {
  777. struct page *s_page, *d_page;
  778. void *src, *dst;
  779. s_page = pfn_to_page(src_pfn);
  780. d_page = pfn_to_page(dst_pfn);
  781. if (PageHighMem(s_page)) {
  782. src = kmap_atomic(s_page, KM_USER0);
  783. dst = kmap_atomic(d_page, KM_USER1);
  784. do_copy_page(dst, src);
  785. kunmap_atomic(src, KM_USER0);
  786. kunmap_atomic(dst, KM_USER1);
  787. } else {
  788. src = page_address(s_page);
  789. if (PageHighMem(d_page)) {
  790. /* Page pointed to by src may contain some kernel
  791. * data modified by kmap_atomic()
  792. */
  793. do_copy_page(buffer, src);
  794. dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
  795. memcpy(dst, buffer, PAGE_SIZE);
  796. kunmap_atomic(dst, KM_USER0);
  797. } else {
  798. dst = page_address(d_page);
  799. do_copy_page(dst, src);
  800. }
  801. }
  802. }
  803. #else
  804. #define page_is_saveable(zone, pfn) saveable_page(pfn)
  805. static inline void
  806. copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  807. {
  808. do_copy_page(page_address(pfn_to_page(dst_pfn)),
  809. page_address(pfn_to_page(src_pfn)));
  810. }
  811. #endif /* CONFIG_HIGHMEM */
  812. static void
  813. copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
  814. {
  815. struct zone *zone;
  816. unsigned long pfn;
  817. for_each_zone(zone) {
  818. unsigned long max_zone_pfn;
  819. mark_free_pages(zone);
  820. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  821. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  822. if (page_is_saveable(zone, pfn))
  823. memory_bm_set_bit(orig_bm, pfn);
  824. }
  825. memory_bm_position_reset(orig_bm);
  826. memory_bm_position_reset(copy_bm);
  827. do {
  828. pfn = memory_bm_next_pfn(orig_bm);
  829. if (likely(pfn != BM_END_OF_MAP))
  830. copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
  831. } while (pfn != BM_END_OF_MAP);
  832. }
  833. /* Total number of image pages */
  834. static unsigned int nr_copy_pages;
  835. /* Number of pages needed for saving the original pfns of the image pages */
  836. static unsigned int nr_meta_pages;
  837. /**
  838. * swsusp_free - free pages allocated for the suspend.
  839. *
  840. * Suspend pages are alocated before the atomic copy is made, so we
  841. * need to release them after the resume.
  842. */
  843. void swsusp_free(void)
  844. {
  845. struct zone *zone;
  846. unsigned long pfn, max_zone_pfn;
  847. for_each_zone(zone) {
  848. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  849. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  850. if (pfn_valid(pfn)) {
  851. struct page *page = pfn_to_page(pfn);
  852. if (swsusp_page_is_forbidden(page) &&
  853. swsusp_page_is_free(page)) {
  854. swsusp_unset_page_forbidden(page);
  855. swsusp_unset_page_free(page);
  856. __free_page(page);
  857. }
  858. }
  859. }
  860. nr_copy_pages = 0;
  861. nr_meta_pages = 0;
  862. restore_pblist = NULL;
  863. buffer = NULL;
  864. }
  865. #ifdef CONFIG_HIGHMEM
  866. /**
  867. * count_pages_for_highmem - compute the number of non-highmem pages
  868. * that will be necessary for creating copies of highmem pages.
  869. */
  870. static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
  871. {
  872. unsigned int free_highmem = count_free_highmem_pages();
  873. if (free_highmem >= nr_highmem)
  874. nr_highmem = 0;
  875. else
  876. nr_highmem -= free_highmem;
  877. return nr_highmem;
  878. }
  879. #else
  880. static unsigned int
  881. count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
  882. #endif /* CONFIG_HIGHMEM */
  883. /**
  884. * enough_free_mem - Make sure we have enough free memory for the
  885. * snapshot image.
  886. */
  887. static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
  888. {
  889. struct zone *zone;
  890. unsigned int free = 0, meta = 0;
  891. for_each_zone(zone) {
  892. meta += snapshot_additional_pages(zone);
  893. if (!is_highmem(zone))
  894. free += zone_page_state(zone, NR_FREE_PAGES);
  895. }
  896. nr_pages += count_pages_for_highmem(nr_highmem);
  897. pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
  898. nr_pages, PAGES_FOR_IO, meta, free);
  899. return free > nr_pages + PAGES_FOR_IO + meta;
  900. }
  901. #ifdef CONFIG_HIGHMEM
  902. /**
  903. * get_highmem_buffer - if there are some highmem pages in the suspend
  904. * image, we may need the buffer to copy them and/or load their data.
  905. */
  906. static inline int get_highmem_buffer(int safe_needed)
  907. {
  908. buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
  909. return buffer ? 0 : -ENOMEM;
  910. }
  911. /**
  912. * alloc_highmem_image_pages - allocate some highmem pages for the image.
  913. * Try to allocate as many pages as needed, but if the number of free
  914. * highmem pages is lesser than that, allocate them all.
  915. */
  916. static inline unsigned int
  917. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
  918. {
  919. unsigned int to_alloc = count_free_highmem_pages();
  920. if (to_alloc > nr_highmem)
  921. to_alloc = nr_highmem;
  922. nr_highmem -= to_alloc;
  923. while (to_alloc-- > 0) {
  924. struct page *page;
  925. page = alloc_image_page(__GFP_HIGHMEM);
  926. memory_bm_set_bit(bm, page_to_pfn(page));
  927. }
  928. return nr_highmem;
  929. }
  930. #else
  931. static inline int get_highmem_buffer(int safe_needed) { return 0; }
  932. static inline unsigned int
  933. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
  934. #endif /* CONFIG_HIGHMEM */
  935. /**
  936. * swsusp_alloc - allocate memory for the suspend image
  937. *
  938. * We first try to allocate as many highmem pages as there are
  939. * saveable highmem pages in the system. If that fails, we allocate
  940. * non-highmem pages for the copies of the remaining highmem ones.
  941. *
  942. * In this approach it is likely that the copies of highmem pages will
  943. * also be located in the high memory, because of the way in which
  944. * copy_data_pages() works.
  945. */
  946. static int
  947. swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
  948. unsigned int nr_pages, unsigned int nr_highmem)
  949. {
  950. int error;
  951. error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  952. if (error)
  953. goto Free;
  954. error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  955. if (error)
  956. goto Free;
  957. if (nr_highmem > 0) {
  958. error = get_highmem_buffer(PG_ANY);
  959. if (error)
  960. goto Free;
  961. nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
  962. }
  963. while (nr_pages-- > 0) {
  964. struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
  965. if (!page)
  966. goto Free;
  967. memory_bm_set_bit(copy_bm, page_to_pfn(page));
  968. }
  969. return 0;
  970. Free:
  971. swsusp_free();
  972. return -ENOMEM;
  973. }
  974. /* Memory bitmap used for marking saveable pages (during suspend) or the
  975. * suspend image pages (during resume)
  976. */
  977. static struct memory_bitmap orig_bm;
  978. /* Memory bitmap used on suspend for marking allocated pages that will contain
  979. * the copies of saveable pages. During resume it is initially used for
  980. * marking the suspend image pages, but then its set bits are duplicated in
  981. * @orig_bm and it is released. Next, on systems with high memory, it may be
  982. * used for marking "safe" highmem pages, but it has to be reinitialized for
  983. * this purpose.
  984. */
  985. static struct memory_bitmap copy_bm;
  986. asmlinkage int swsusp_save(void)
  987. {
  988. unsigned int nr_pages, nr_highmem;
  989. printk("swsusp: critical section: \n");
  990. drain_local_pages();
  991. nr_pages = count_data_pages();
  992. nr_highmem = count_highmem_pages();
  993. printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
  994. if (!enough_free_mem(nr_pages, nr_highmem)) {
  995. printk(KERN_ERR "swsusp: Not enough free memory\n");
  996. return -ENOMEM;
  997. }
  998. if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
  999. printk(KERN_ERR "swsusp: Memory allocation failed\n");
  1000. return -ENOMEM;
  1001. }
  1002. /* During allocating of suspend pagedir, new cold pages may appear.
  1003. * Kill them.
  1004. */
  1005. drain_local_pages();
  1006. copy_data_pages(&copy_bm, &orig_bm);
  1007. /*
  1008. * End of critical section. From now on, we can write to memory,
  1009. * but we should not touch disk. This specially means we must _not_
  1010. * touch swap space! Except we must write out our image of course.
  1011. */
  1012. nr_pages += nr_highmem;
  1013. nr_copy_pages = nr_pages;
  1014. nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
  1015. printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
  1016. return 0;
  1017. }
  1018. static void init_header(struct swsusp_info *info)
  1019. {
  1020. memset(info, 0, sizeof(struct swsusp_info));
  1021. info->version_code = LINUX_VERSION_CODE;
  1022. info->num_physpages = num_physpages;
  1023. memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
  1024. info->cpus = num_online_cpus();
  1025. info->image_pages = nr_copy_pages;
  1026. info->pages = nr_copy_pages + nr_meta_pages + 1;
  1027. info->size = info->pages;
  1028. info->size <<= PAGE_SHIFT;
  1029. }
  1030. /**
  1031. * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
  1032. * are stored in the array @buf[] (1 page at a time)
  1033. */
  1034. static inline void
  1035. pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1036. {
  1037. int j;
  1038. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1039. buf[j] = memory_bm_next_pfn(bm);
  1040. if (unlikely(buf[j] == BM_END_OF_MAP))
  1041. break;
  1042. }
  1043. }
  1044. /**
  1045. * snapshot_read_next - used for reading the system memory snapshot.
  1046. *
  1047. * On the first call to it @handle should point to a zeroed
  1048. * snapshot_handle structure. The structure gets updated and a pointer
  1049. * to it should be passed to this function every next time.
  1050. *
  1051. * The @count parameter should contain the number of bytes the caller
  1052. * wants to read from the snapshot. It must not be zero.
  1053. *
  1054. * On success the function returns a positive number. Then, the caller
  1055. * is allowed to read up to the returned number of bytes from the memory
  1056. * location computed by the data_of() macro. The number returned
  1057. * may be smaller than @count, but this only happens if the read would
  1058. * cross a page boundary otherwise.
  1059. *
  1060. * The function returns 0 to indicate the end of data stream condition,
  1061. * and a negative number is returned on error. In such cases the
  1062. * structure pointed to by @handle is not updated and should not be used
  1063. * any more.
  1064. */
  1065. int snapshot_read_next(struct snapshot_handle *handle, size_t count)
  1066. {
  1067. if (handle->cur > nr_meta_pages + nr_copy_pages)
  1068. return 0;
  1069. if (!buffer) {
  1070. /* This makes the buffer be freed by swsusp_free() */
  1071. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1072. if (!buffer)
  1073. return -ENOMEM;
  1074. }
  1075. if (!handle->offset) {
  1076. init_header((struct swsusp_info *)buffer);
  1077. handle->buffer = buffer;
  1078. memory_bm_position_reset(&orig_bm);
  1079. memory_bm_position_reset(&copy_bm);
  1080. }
  1081. if (handle->prev < handle->cur) {
  1082. if (handle->cur <= nr_meta_pages) {
  1083. memset(buffer, 0, PAGE_SIZE);
  1084. pack_pfns(buffer, &orig_bm);
  1085. } else {
  1086. struct page *page;
  1087. page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
  1088. if (PageHighMem(page)) {
  1089. /* Highmem pages are copied to the buffer,
  1090. * because we can't return with a kmapped
  1091. * highmem page (we may not be called again).
  1092. */
  1093. void *kaddr;
  1094. kaddr = kmap_atomic(page, KM_USER0);
  1095. memcpy(buffer, kaddr, PAGE_SIZE);
  1096. kunmap_atomic(kaddr, KM_USER0);
  1097. handle->buffer = buffer;
  1098. } else {
  1099. handle->buffer = page_address(page);
  1100. }
  1101. }
  1102. handle->prev = handle->cur;
  1103. }
  1104. handle->buf_offset = handle->cur_offset;
  1105. if (handle->cur_offset + count >= PAGE_SIZE) {
  1106. count = PAGE_SIZE - handle->cur_offset;
  1107. handle->cur_offset = 0;
  1108. handle->cur++;
  1109. } else {
  1110. handle->cur_offset += count;
  1111. }
  1112. handle->offset += count;
  1113. return count;
  1114. }
  1115. /**
  1116. * mark_unsafe_pages - mark the pages that cannot be used for storing
  1117. * the image during resume, because they conflict with the pages that
  1118. * had been used before suspend
  1119. */
  1120. static int mark_unsafe_pages(struct memory_bitmap *bm)
  1121. {
  1122. struct zone *zone;
  1123. unsigned long pfn, max_zone_pfn;
  1124. /* Clear page flags */
  1125. for_each_zone(zone) {
  1126. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1127. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1128. if (pfn_valid(pfn))
  1129. swsusp_unset_page_free(pfn_to_page(pfn));
  1130. }
  1131. /* Mark pages that correspond to the "original" pfns as "unsafe" */
  1132. memory_bm_position_reset(bm);
  1133. do {
  1134. pfn = memory_bm_next_pfn(bm);
  1135. if (likely(pfn != BM_END_OF_MAP)) {
  1136. if (likely(pfn_valid(pfn)))
  1137. swsusp_set_page_free(pfn_to_page(pfn));
  1138. else
  1139. return -EFAULT;
  1140. }
  1141. } while (pfn != BM_END_OF_MAP);
  1142. allocated_unsafe_pages = 0;
  1143. return 0;
  1144. }
  1145. static void
  1146. duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
  1147. {
  1148. unsigned long pfn;
  1149. memory_bm_position_reset(src);
  1150. pfn = memory_bm_next_pfn(src);
  1151. while (pfn != BM_END_OF_MAP) {
  1152. memory_bm_set_bit(dst, pfn);
  1153. pfn = memory_bm_next_pfn(src);
  1154. }
  1155. }
  1156. static inline int check_header(struct swsusp_info *info)
  1157. {
  1158. char *reason = NULL;
  1159. if (info->version_code != LINUX_VERSION_CODE)
  1160. reason = "kernel version";
  1161. if (info->num_physpages != num_physpages)
  1162. reason = "memory size";
  1163. if (strcmp(info->uts.sysname,init_utsname()->sysname))
  1164. reason = "system type";
  1165. if (strcmp(info->uts.release,init_utsname()->release))
  1166. reason = "kernel release";
  1167. if (strcmp(info->uts.version,init_utsname()->version))
  1168. reason = "version";
  1169. if (strcmp(info->uts.machine,init_utsname()->machine))
  1170. reason = "machine";
  1171. if (reason) {
  1172. printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
  1173. return -EPERM;
  1174. }
  1175. return 0;
  1176. }
  1177. /**
  1178. * load header - check the image header and copy data from it
  1179. */
  1180. static int
  1181. load_header(struct swsusp_info *info)
  1182. {
  1183. int error;
  1184. restore_pblist = NULL;
  1185. error = check_header(info);
  1186. if (!error) {
  1187. nr_copy_pages = info->image_pages;
  1188. nr_meta_pages = info->pages - info->image_pages - 1;
  1189. }
  1190. return error;
  1191. }
  1192. /**
  1193. * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
  1194. * the corresponding bit in the memory bitmap @bm
  1195. */
  1196. static inline void
  1197. unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1198. {
  1199. int j;
  1200. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1201. if (unlikely(buf[j] == BM_END_OF_MAP))
  1202. break;
  1203. memory_bm_set_bit(bm, buf[j]);
  1204. }
  1205. }
  1206. /* List of "safe" pages that may be used to store data loaded from the suspend
  1207. * image
  1208. */
  1209. static struct linked_page *safe_pages_list;
  1210. #ifdef CONFIG_HIGHMEM
  1211. /* struct highmem_pbe is used for creating the list of highmem pages that
  1212. * should be restored atomically during the resume from disk, because the page
  1213. * frames they have occupied before the suspend are in use.
  1214. */
  1215. struct highmem_pbe {
  1216. struct page *copy_page; /* data is here now */
  1217. struct page *orig_page; /* data was here before the suspend */
  1218. struct highmem_pbe *next;
  1219. };
  1220. /* List of highmem PBEs needed for restoring the highmem pages that were
  1221. * allocated before the suspend and included in the suspend image, but have
  1222. * also been allocated by the "resume" kernel, so their contents cannot be
  1223. * written directly to their "original" page frames.
  1224. */
  1225. static struct highmem_pbe *highmem_pblist;
  1226. /**
  1227. * count_highmem_image_pages - compute the number of highmem pages in the
  1228. * suspend image. The bits in the memory bitmap @bm that correspond to the
  1229. * image pages are assumed to be set.
  1230. */
  1231. static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
  1232. {
  1233. unsigned long pfn;
  1234. unsigned int cnt = 0;
  1235. memory_bm_position_reset(bm);
  1236. pfn = memory_bm_next_pfn(bm);
  1237. while (pfn != BM_END_OF_MAP) {
  1238. if (PageHighMem(pfn_to_page(pfn)))
  1239. cnt++;
  1240. pfn = memory_bm_next_pfn(bm);
  1241. }
  1242. return cnt;
  1243. }
  1244. /**
  1245. * prepare_highmem_image - try to allocate as many highmem pages as
  1246. * there are highmem image pages (@nr_highmem_p points to the variable
  1247. * containing the number of highmem image pages). The pages that are
  1248. * "safe" (ie. will not be overwritten when the suspend image is
  1249. * restored) have the corresponding bits set in @bm (it must be
  1250. * unitialized).
  1251. *
  1252. * NOTE: This function should not be called if there are no highmem
  1253. * image pages.
  1254. */
  1255. static unsigned int safe_highmem_pages;
  1256. static struct memory_bitmap *safe_highmem_bm;
  1257. static int
  1258. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1259. {
  1260. unsigned int to_alloc;
  1261. if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
  1262. return -ENOMEM;
  1263. if (get_highmem_buffer(PG_SAFE))
  1264. return -ENOMEM;
  1265. to_alloc = count_free_highmem_pages();
  1266. if (to_alloc > *nr_highmem_p)
  1267. to_alloc = *nr_highmem_p;
  1268. else
  1269. *nr_highmem_p = to_alloc;
  1270. safe_highmem_pages = 0;
  1271. while (to_alloc-- > 0) {
  1272. struct page *page;
  1273. page = alloc_page(__GFP_HIGHMEM);
  1274. if (!swsusp_page_is_free(page)) {
  1275. /* The page is "safe", set its bit the bitmap */
  1276. memory_bm_set_bit(bm, page_to_pfn(page));
  1277. safe_highmem_pages++;
  1278. }
  1279. /* Mark the page as allocated */
  1280. swsusp_set_page_forbidden(page);
  1281. swsusp_set_page_free(page);
  1282. }
  1283. memory_bm_position_reset(bm);
  1284. safe_highmem_bm = bm;
  1285. return 0;
  1286. }
  1287. /**
  1288. * get_highmem_page_buffer - for given highmem image page find the buffer
  1289. * that suspend_write_next() should set for its caller to write to.
  1290. *
  1291. * If the page is to be saved to its "original" page frame or a copy of
  1292. * the page is to be made in the highmem, @buffer is returned. Otherwise,
  1293. * the copy of the page is to be made in normal memory, so the address of
  1294. * the copy is returned.
  1295. *
  1296. * If @buffer is returned, the caller of suspend_write_next() will write
  1297. * the page's contents to @buffer, so they will have to be copied to the
  1298. * right location on the next call to suspend_write_next() and it is done
  1299. * with the help of copy_last_highmem_page(). For this purpose, if
  1300. * @buffer is returned, @last_highmem page is set to the page to which
  1301. * the data will have to be copied from @buffer.
  1302. */
  1303. static struct page *last_highmem_page;
  1304. static void *
  1305. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1306. {
  1307. struct highmem_pbe *pbe;
  1308. void *kaddr;
  1309. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
  1310. /* We have allocated the "original" page frame and we can
  1311. * use it directly to store the loaded page.
  1312. */
  1313. last_highmem_page = page;
  1314. return buffer;
  1315. }
  1316. /* The "original" page frame has not been allocated and we have to
  1317. * use a "safe" page frame to store the loaded page.
  1318. */
  1319. pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
  1320. if (!pbe) {
  1321. swsusp_free();
  1322. return NULL;
  1323. }
  1324. pbe->orig_page = page;
  1325. if (safe_highmem_pages > 0) {
  1326. struct page *tmp;
  1327. /* Copy of the page will be stored in high memory */
  1328. kaddr = buffer;
  1329. tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
  1330. safe_highmem_pages--;
  1331. last_highmem_page = tmp;
  1332. pbe->copy_page = tmp;
  1333. } else {
  1334. /* Copy of the page will be stored in normal memory */
  1335. kaddr = safe_pages_list;
  1336. safe_pages_list = safe_pages_list->next;
  1337. pbe->copy_page = virt_to_page(kaddr);
  1338. }
  1339. pbe->next = highmem_pblist;
  1340. highmem_pblist = pbe;
  1341. return kaddr;
  1342. }
  1343. /**
  1344. * copy_last_highmem_page - copy the contents of a highmem image from
  1345. * @buffer, where the caller of snapshot_write_next() has place them,
  1346. * to the right location represented by @last_highmem_page .
  1347. */
  1348. static void copy_last_highmem_page(void)
  1349. {
  1350. if (last_highmem_page) {
  1351. void *dst;
  1352. dst = kmap_atomic(last_highmem_page, KM_USER0);
  1353. memcpy(dst, buffer, PAGE_SIZE);
  1354. kunmap_atomic(dst, KM_USER0);
  1355. last_highmem_page = NULL;
  1356. }
  1357. }
  1358. static inline int last_highmem_page_copied(void)
  1359. {
  1360. return !last_highmem_page;
  1361. }
  1362. static inline void free_highmem_data(void)
  1363. {
  1364. if (safe_highmem_bm)
  1365. memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
  1366. if (buffer)
  1367. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1368. }
  1369. #else
  1370. static inline int get_safe_write_buffer(void) { return 0; }
  1371. static unsigned int
  1372. count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
  1373. static inline int
  1374. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1375. {
  1376. return 0;
  1377. }
  1378. static inline void *
  1379. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1380. {
  1381. return NULL;
  1382. }
  1383. static inline void copy_last_highmem_page(void) {}
  1384. static inline int last_highmem_page_copied(void) { return 1; }
  1385. static inline void free_highmem_data(void) {}
  1386. #endif /* CONFIG_HIGHMEM */
  1387. /**
  1388. * prepare_image - use the memory bitmap @bm to mark the pages that will
  1389. * be overwritten in the process of restoring the system memory state
  1390. * from the suspend image ("unsafe" pages) and allocate memory for the
  1391. * image.
  1392. *
  1393. * The idea is to allocate a new memory bitmap first and then allocate
  1394. * as many pages as needed for the image data, but not to assign these
  1395. * pages to specific tasks initially. Instead, we just mark them as
  1396. * allocated and create a lists of "safe" pages that will be used
  1397. * later. On systems with high memory a list of "safe" highmem pages is
  1398. * also created.
  1399. */
  1400. #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
  1401. static int
  1402. prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
  1403. {
  1404. unsigned int nr_pages, nr_highmem;
  1405. struct linked_page *sp_list, *lp;
  1406. int error;
  1407. /* If there is no highmem, the buffer will not be necessary */
  1408. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1409. buffer = NULL;
  1410. nr_highmem = count_highmem_image_pages(bm);
  1411. error = mark_unsafe_pages(bm);
  1412. if (error)
  1413. goto Free;
  1414. error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
  1415. if (error)
  1416. goto Free;
  1417. duplicate_memory_bitmap(new_bm, bm);
  1418. memory_bm_free(bm, PG_UNSAFE_KEEP);
  1419. if (nr_highmem > 0) {
  1420. error = prepare_highmem_image(bm, &nr_highmem);
  1421. if (error)
  1422. goto Free;
  1423. }
  1424. /* Reserve some safe pages for potential later use.
  1425. *
  1426. * NOTE: This way we make sure there will be enough safe pages for the
  1427. * chain_alloc() in get_buffer(). It is a bit wasteful, but
  1428. * nr_copy_pages cannot be greater than 50% of the memory anyway.
  1429. */
  1430. sp_list = NULL;
  1431. /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
  1432. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1433. nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
  1434. while (nr_pages > 0) {
  1435. lp = get_image_page(GFP_ATOMIC, PG_SAFE);
  1436. if (!lp) {
  1437. error = -ENOMEM;
  1438. goto Free;
  1439. }
  1440. lp->next = sp_list;
  1441. sp_list = lp;
  1442. nr_pages--;
  1443. }
  1444. /* Preallocate memory for the image */
  1445. safe_pages_list = NULL;
  1446. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1447. while (nr_pages > 0) {
  1448. lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
  1449. if (!lp) {
  1450. error = -ENOMEM;
  1451. goto Free;
  1452. }
  1453. if (!swsusp_page_is_free(virt_to_page(lp))) {
  1454. /* The page is "safe", add it to the list */
  1455. lp->next = safe_pages_list;
  1456. safe_pages_list = lp;
  1457. }
  1458. /* Mark the page as allocated */
  1459. swsusp_set_page_forbidden(virt_to_page(lp));
  1460. swsusp_set_page_free(virt_to_page(lp));
  1461. nr_pages--;
  1462. }
  1463. /* Free the reserved safe pages so that chain_alloc() can use them */
  1464. while (sp_list) {
  1465. lp = sp_list->next;
  1466. free_image_page(sp_list, PG_UNSAFE_CLEAR);
  1467. sp_list = lp;
  1468. }
  1469. return 0;
  1470. Free:
  1471. swsusp_free();
  1472. return error;
  1473. }
  1474. /**
  1475. * get_buffer - compute the address that snapshot_write_next() should
  1476. * set for its caller to write to.
  1477. */
  1478. static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
  1479. {
  1480. struct pbe *pbe;
  1481. struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
  1482. if (PageHighMem(page))
  1483. return get_highmem_page_buffer(page, ca);
  1484. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
  1485. /* We have allocated the "original" page frame and we can
  1486. * use it directly to store the loaded page.
  1487. */
  1488. return page_address(page);
  1489. /* The "original" page frame has not been allocated and we have to
  1490. * use a "safe" page frame to store the loaded page.
  1491. */
  1492. pbe = chain_alloc(ca, sizeof(struct pbe));
  1493. if (!pbe) {
  1494. swsusp_free();
  1495. return NULL;
  1496. }
  1497. pbe->orig_address = page_address(page);
  1498. pbe->address = safe_pages_list;
  1499. safe_pages_list = safe_pages_list->next;
  1500. pbe->next = restore_pblist;
  1501. restore_pblist = pbe;
  1502. return pbe->address;
  1503. }
  1504. /**
  1505. * snapshot_write_next - used for writing the system memory snapshot.
  1506. *
  1507. * On the first call to it @handle should point to a zeroed
  1508. * snapshot_handle structure. The structure gets updated and a pointer
  1509. * to it should be passed to this function every next time.
  1510. *
  1511. * The @count parameter should contain the number of bytes the caller
  1512. * wants to write to the image. It must not be zero.
  1513. *
  1514. * On success the function returns a positive number. Then, the caller
  1515. * is allowed to write up to the returned number of bytes to the memory
  1516. * location computed by the data_of() macro. The number returned
  1517. * may be smaller than @count, but this only happens if the write would
  1518. * cross a page boundary otherwise.
  1519. *
  1520. * The function returns 0 to indicate the "end of file" condition,
  1521. * and a negative number is returned on error. In such cases the
  1522. * structure pointed to by @handle is not updated and should not be used
  1523. * any more.
  1524. */
  1525. int snapshot_write_next(struct snapshot_handle *handle, size_t count)
  1526. {
  1527. static struct chain_allocator ca;
  1528. int error = 0;
  1529. /* Check if we have already loaded the entire image */
  1530. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
  1531. return 0;
  1532. if (handle->offset == 0) {
  1533. if (!buffer)
  1534. /* This makes the buffer be freed by swsusp_free() */
  1535. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1536. if (!buffer)
  1537. return -ENOMEM;
  1538. handle->buffer = buffer;
  1539. }
  1540. handle->sync_read = 1;
  1541. if (handle->prev < handle->cur) {
  1542. if (handle->prev == 0) {
  1543. error = load_header(buffer);
  1544. if (error)
  1545. return error;
  1546. error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
  1547. if (error)
  1548. return error;
  1549. } else if (handle->prev <= nr_meta_pages) {
  1550. unpack_orig_pfns(buffer, &copy_bm);
  1551. if (handle->prev == nr_meta_pages) {
  1552. error = prepare_image(&orig_bm, &copy_bm);
  1553. if (error)
  1554. return error;
  1555. chain_init(&ca, GFP_ATOMIC, PG_SAFE);
  1556. memory_bm_position_reset(&orig_bm);
  1557. restore_pblist = NULL;
  1558. handle->buffer = get_buffer(&orig_bm, &ca);
  1559. handle->sync_read = 0;
  1560. if (!handle->buffer)
  1561. return -ENOMEM;
  1562. }
  1563. } else {
  1564. copy_last_highmem_page();
  1565. handle->buffer = get_buffer(&orig_bm, &ca);
  1566. if (handle->buffer != buffer)
  1567. handle->sync_read = 0;
  1568. }
  1569. handle->prev = handle->cur;
  1570. }
  1571. handle->buf_offset = handle->cur_offset;
  1572. if (handle->cur_offset + count >= PAGE_SIZE) {
  1573. count = PAGE_SIZE - handle->cur_offset;
  1574. handle->cur_offset = 0;
  1575. handle->cur++;
  1576. } else {
  1577. handle->cur_offset += count;
  1578. }
  1579. handle->offset += count;
  1580. return count;
  1581. }
  1582. /**
  1583. * snapshot_write_finalize - must be called after the last call to
  1584. * snapshot_write_next() in case the last page in the image happens
  1585. * to be a highmem page and its contents should be stored in the
  1586. * highmem. Additionally, it releases the memory that will not be
  1587. * used any more.
  1588. */
  1589. void snapshot_write_finalize(struct snapshot_handle *handle)
  1590. {
  1591. copy_last_highmem_page();
  1592. /* Free only if we have loaded the image entirely */
  1593. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
  1594. memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
  1595. free_highmem_data();
  1596. }
  1597. }
  1598. int snapshot_image_loaded(struct snapshot_handle *handle)
  1599. {
  1600. return !(!nr_copy_pages || !last_highmem_page_copied() ||
  1601. handle->cur <= nr_meta_pages + nr_copy_pages);
  1602. }
  1603. #ifdef CONFIG_HIGHMEM
  1604. /* Assumes that @buf is ready and points to a "safe" page */
  1605. static inline void
  1606. swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
  1607. {
  1608. void *kaddr1, *kaddr2;
  1609. kaddr1 = kmap_atomic(p1, KM_USER0);
  1610. kaddr2 = kmap_atomic(p2, KM_USER1);
  1611. memcpy(buf, kaddr1, PAGE_SIZE);
  1612. memcpy(kaddr1, kaddr2, PAGE_SIZE);
  1613. memcpy(kaddr2, buf, PAGE_SIZE);
  1614. kunmap_atomic(kaddr1, KM_USER0);
  1615. kunmap_atomic(kaddr2, KM_USER1);
  1616. }
  1617. /**
  1618. * restore_highmem - for each highmem page that was allocated before
  1619. * the suspend and included in the suspend image, and also has been
  1620. * allocated by the "resume" kernel swap its current (ie. "before
  1621. * resume") contents with the previous (ie. "before suspend") one.
  1622. *
  1623. * If the resume eventually fails, we can call this function once
  1624. * again and restore the "before resume" highmem state.
  1625. */
  1626. int restore_highmem(void)
  1627. {
  1628. struct highmem_pbe *pbe = highmem_pblist;
  1629. void *buf;
  1630. if (!pbe)
  1631. return 0;
  1632. buf = get_image_page(GFP_ATOMIC, PG_SAFE);
  1633. if (!buf)
  1634. return -ENOMEM;
  1635. while (pbe) {
  1636. swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
  1637. pbe = pbe->next;
  1638. }
  1639. free_image_page(buf, PG_UNSAFE_CLEAR);
  1640. return 0;
  1641. }
  1642. #endif /* CONFIG_HIGHMEM */