sched.c 213 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_CGROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. struct cgroup_subsys_state css;
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* schedulable entities of this group on each cpu */
  211. struct sched_entity **se;
  212. /* runqueue "owned" by this group on each cpu */
  213. struct cfs_rq **cfs_rq;
  214. unsigned long shares;
  215. #endif
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. struct sched_rt_entity **rt_se;
  218. struct rt_rq **rt_rq;
  219. struct rt_bandwidth rt_bandwidth;
  220. #endif
  221. struct rcu_head rcu;
  222. struct list_head list;
  223. struct task_group *parent;
  224. struct list_head siblings;
  225. struct list_head children;
  226. };
  227. #define root_task_group init_task_group
  228. /* task_group_lock serializes add/remove of task groups and also changes to
  229. * a task group's cpu shares.
  230. */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. /* return group to which a task belongs */
  257. static inline struct task_group *task_group(struct task_struct *p)
  258. {
  259. struct task_group *tg;
  260. #ifdef CONFIG_CGROUP_SCHED
  261. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  262. struct task_group, css);
  263. #else
  264. tg = &init_task_group;
  265. #endif
  266. return tg;
  267. }
  268. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  269. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  270. {
  271. /*
  272. * Strictly speaking this rcu_read_lock() is not needed since the
  273. * task_group is tied to the cgroup, which in turn can never go away
  274. * as long as there are tasks attached to it.
  275. *
  276. * However since task_group() uses task_subsys_state() which is an
  277. * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
  278. */
  279. rcu_read_lock();
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  282. p->se.parent = task_group(p)->se[cpu];
  283. #endif
  284. #ifdef CONFIG_RT_GROUP_SCHED
  285. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  286. p->rt.parent = task_group(p)->rt_se[cpu];
  287. #endif
  288. rcu_read_unlock();
  289. }
  290. #else
  291. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  292. static inline struct task_group *task_group(struct task_struct *p)
  293. {
  294. return NULL;
  295. }
  296. #endif /* CONFIG_CGROUP_SCHED */
  297. /* CFS-related fields in a runqueue */
  298. struct cfs_rq {
  299. struct load_weight load;
  300. unsigned long nr_running;
  301. u64 exec_clock;
  302. u64 min_vruntime;
  303. struct rb_root tasks_timeline;
  304. struct rb_node *rb_leftmost;
  305. struct list_head tasks;
  306. struct list_head *balance_iterator;
  307. /*
  308. * 'curr' points to currently running entity on this cfs_rq.
  309. * It is set to NULL otherwise (i.e when none are currently running).
  310. */
  311. struct sched_entity *curr, *next, *last;
  312. unsigned int nr_spread_over;
  313. #ifdef CONFIG_FAIR_GROUP_SCHED
  314. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  315. /*
  316. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  317. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  318. * (like users, containers etc.)
  319. *
  320. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  321. * list is used during load balance.
  322. */
  323. struct list_head leaf_cfs_rq_list;
  324. struct task_group *tg; /* group that "owns" this runqueue */
  325. #ifdef CONFIG_SMP
  326. /*
  327. * the part of load.weight contributed by tasks
  328. */
  329. unsigned long task_weight;
  330. /*
  331. * h_load = weight * f(tg)
  332. *
  333. * Where f(tg) is the recursive weight fraction assigned to
  334. * this group.
  335. */
  336. unsigned long h_load;
  337. /*
  338. * this cpu's part of tg->shares
  339. */
  340. unsigned long shares;
  341. /*
  342. * load.weight at the time we set shares
  343. */
  344. unsigned long rq_weight;
  345. #endif
  346. #endif
  347. };
  348. /* Real-Time classes' related field in a runqueue: */
  349. struct rt_rq {
  350. struct rt_prio_array active;
  351. unsigned long rt_nr_running;
  352. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  353. struct {
  354. int curr; /* highest queued rt task prio */
  355. #ifdef CONFIG_SMP
  356. int next; /* next highest */
  357. #endif
  358. } highest_prio;
  359. #endif
  360. #ifdef CONFIG_SMP
  361. unsigned long rt_nr_migratory;
  362. unsigned long rt_nr_total;
  363. int overloaded;
  364. struct plist_head pushable_tasks;
  365. #endif
  366. int rt_throttled;
  367. u64 rt_time;
  368. u64 rt_runtime;
  369. /* Nests inside the rq lock: */
  370. raw_spinlock_t rt_runtime_lock;
  371. #ifdef CONFIG_RT_GROUP_SCHED
  372. unsigned long rt_nr_boosted;
  373. struct rq *rq;
  374. struct list_head leaf_rt_rq_list;
  375. struct task_group *tg;
  376. #endif
  377. };
  378. #ifdef CONFIG_SMP
  379. /*
  380. * We add the notion of a root-domain which will be used to define per-domain
  381. * variables. Each exclusive cpuset essentially defines an island domain by
  382. * fully partitioning the member cpus from any other cpuset. Whenever a new
  383. * exclusive cpuset is created, we also create and attach a new root-domain
  384. * object.
  385. *
  386. */
  387. struct root_domain {
  388. atomic_t refcount;
  389. cpumask_var_t span;
  390. cpumask_var_t online;
  391. /*
  392. * The "RT overload" flag: it gets set if a CPU has more than
  393. * one runnable RT task.
  394. */
  395. cpumask_var_t rto_mask;
  396. atomic_t rto_count;
  397. #ifdef CONFIG_SMP
  398. struct cpupri cpupri;
  399. #endif
  400. };
  401. /*
  402. * By default the system creates a single root-domain with all cpus as
  403. * members (mimicking the global state we have today).
  404. */
  405. static struct root_domain def_root_domain;
  406. #endif
  407. /*
  408. * This is the main, per-CPU runqueue data structure.
  409. *
  410. * Locking rule: those places that want to lock multiple runqueues
  411. * (such as the load balancing or the thread migration code), lock
  412. * acquire operations must be ordered by ascending &runqueue.
  413. */
  414. struct rq {
  415. /* runqueue lock: */
  416. raw_spinlock_t lock;
  417. /*
  418. * nr_running and cpu_load should be in the same cacheline because
  419. * remote CPUs use both these fields when doing load calculation.
  420. */
  421. unsigned long nr_running;
  422. #define CPU_LOAD_IDX_MAX 5
  423. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  424. #ifdef CONFIG_NO_HZ
  425. u64 nohz_stamp;
  426. unsigned char in_nohz_recently;
  427. #endif
  428. unsigned int skip_clock_update;
  429. /* capture load from *all* tasks on this cpu: */
  430. struct load_weight load;
  431. unsigned long nr_load_updates;
  432. u64 nr_switches;
  433. struct cfs_rq cfs;
  434. struct rt_rq rt;
  435. #ifdef CONFIG_FAIR_GROUP_SCHED
  436. /* list of leaf cfs_rq on this cpu: */
  437. struct list_head leaf_cfs_rq_list;
  438. #endif
  439. #ifdef CONFIG_RT_GROUP_SCHED
  440. struct list_head leaf_rt_rq_list;
  441. #endif
  442. /*
  443. * This is part of a global counter where only the total sum
  444. * over all CPUs matters. A task can increase this counter on
  445. * one CPU and if it got migrated afterwards it may decrease
  446. * it on another CPU. Always updated under the runqueue lock:
  447. */
  448. unsigned long nr_uninterruptible;
  449. struct task_struct *curr, *idle;
  450. unsigned long next_balance;
  451. struct mm_struct *prev_mm;
  452. u64 clock;
  453. atomic_t nr_iowait;
  454. #ifdef CONFIG_SMP
  455. struct root_domain *rd;
  456. struct sched_domain *sd;
  457. unsigned long cpu_power;
  458. unsigned char idle_at_tick;
  459. /* For active balancing */
  460. int post_schedule;
  461. int active_balance;
  462. int push_cpu;
  463. struct cpu_stop_work active_balance_work;
  464. /* cpu of this runqueue: */
  465. int cpu;
  466. int online;
  467. unsigned long avg_load_per_task;
  468. u64 rt_avg;
  469. u64 age_stamp;
  470. u64 idle_stamp;
  471. u64 avg_idle;
  472. #endif
  473. /* calc_load related fields */
  474. unsigned long calc_load_update;
  475. long calc_load_active;
  476. #ifdef CONFIG_SCHED_HRTICK
  477. #ifdef CONFIG_SMP
  478. int hrtick_csd_pending;
  479. struct call_single_data hrtick_csd;
  480. #endif
  481. struct hrtimer hrtick_timer;
  482. #endif
  483. #ifdef CONFIG_SCHEDSTATS
  484. /* latency stats */
  485. struct sched_info rq_sched_info;
  486. unsigned long long rq_cpu_time;
  487. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  488. /* sys_sched_yield() stats */
  489. unsigned int yld_count;
  490. /* schedule() stats */
  491. unsigned int sched_switch;
  492. unsigned int sched_count;
  493. unsigned int sched_goidle;
  494. /* try_to_wake_up() stats */
  495. unsigned int ttwu_count;
  496. unsigned int ttwu_local;
  497. /* BKL stats */
  498. unsigned int bkl_count;
  499. #endif
  500. };
  501. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  502. static inline
  503. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  504. {
  505. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  506. /*
  507. * A queue event has occurred, and we're going to schedule. In
  508. * this case, we can save a useless back to back clock update.
  509. */
  510. if (test_tsk_need_resched(p))
  511. rq->skip_clock_update = 1;
  512. }
  513. static inline int cpu_of(struct rq *rq)
  514. {
  515. #ifdef CONFIG_SMP
  516. return rq->cpu;
  517. #else
  518. return 0;
  519. #endif
  520. }
  521. #define rcu_dereference_check_sched_domain(p) \
  522. rcu_dereference_check((p), \
  523. rcu_read_lock_sched_held() || \
  524. lockdep_is_held(&sched_domains_mutex))
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  539. inline void update_rq_clock(struct rq *rq)
  540. {
  541. if (!rq->skip_clock_update)
  542. rq->clock = sched_clock_cpu(cpu_of(rq));
  543. }
  544. /*
  545. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  546. */
  547. #ifdef CONFIG_SCHED_DEBUG
  548. # define const_debug __read_mostly
  549. #else
  550. # define const_debug static const
  551. #endif
  552. /**
  553. * runqueue_is_locked
  554. * @cpu: the processor in question.
  555. *
  556. * Returns true if the current cpu runqueue is locked.
  557. * This interface allows printk to be called with the runqueue lock
  558. * held and know whether or not it is OK to wake up the klogd.
  559. */
  560. int runqueue_is_locked(int cpu)
  561. {
  562. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  563. }
  564. /*
  565. * Debugging: various feature bits
  566. */
  567. #define SCHED_FEAT(name, enabled) \
  568. __SCHED_FEAT_##name ,
  569. enum {
  570. #include "sched_features.h"
  571. };
  572. #undef SCHED_FEAT
  573. #define SCHED_FEAT(name, enabled) \
  574. (1UL << __SCHED_FEAT_##name) * enabled |
  575. const_debug unsigned int sysctl_sched_features =
  576. #include "sched_features.h"
  577. 0;
  578. #undef SCHED_FEAT
  579. #ifdef CONFIG_SCHED_DEBUG
  580. #define SCHED_FEAT(name, enabled) \
  581. #name ,
  582. static __read_mostly char *sched_feat_names[] = {
  583. #include "sched_features.h"
  584. NULL
  585. };
  586. #undef SCHED_FEAT
  587. static int sched_feat_show(struct seq_file *m, void *v)
  588. {
  589. int i;
  590. for (i = 0; sched_feat_names[i]; i++) {
  591. if (!(sysctl_sched_features & (1UL << i)))
  592. seq_puts(m, "NO_");
  593. seq_printf(m, "%s ", sched_feat_names[i]);
  594. }
  595. seq_puts(m, "\n");
  596. return 0;
  597. }
  598. static ssize_t
  599. sched_feat_write(struct file *filp, const char __user *ubuf,
  600. size_t cnt, loff_t *ppos)
  601. {
  602. char buf[64];
  603. char *cmp = buf;
  604. int neg = 0;
  605. int i;
  606. if (cnt > 63)
  607. cnt = 63;
  608. if (copy_from_user(&buf, ubuf, cnt))
  609. return -EFAULT;
  610. buf[cnt] = 0;
  611. if (strncmp(buf, "NO_", 3) == 0) {
  612. neg = 1;
  613. cmp += 3;
  614. }
  615. for (i = 0; sched_feat_names[i]; i++) {
  616. int len = strlen(sched_feat_names[i]);
  617. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  618. if (neg)
  619. sysctl_sched_features &= ~(1UL << i);
  620. else
  621. sysctl_sched_features |= (1UL << i);
  622. break;
  623. }
  624. }
  625. if (!sched_feat_names[i])
  626. return -EINVAL;
  627. *ppos += cnt;
  628. return cnt;
  629. }
  630. static int sched_feat_open(struct inode *inode, struct file *filp)
  631. {
  632. return single_open(filp, sched_feat_show, NULL);
  633. }
  634. static const struct file_operations sched_feat_fops = {
  635. .open = sched_feat_open,
  636. .write = sched_feat_write,
  637. .read = seq_read,
  638. .llseek = seq_lseek,
  639. .release = single_release,
  640. };
  641. static __init int sched_init_debug(void)
  642. {
  643. debugfs_create_file("sched_features", 0644, NULL, NULL,
  644. &sched_feat_fops);
  645. return 0;
  646. }
  647. late_initcall(sched_init_debug);
  648. #endif
  649. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  650. /*
  651. * Number of tasks to iterate in a single balance run.
  652. * Limited because this is done with IRQs disabled.
  653. */
  654. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  655. /*
  656. * ratelimit for updating the group shares.
  657. * default: 0.25ms
  658. */
  659. unsigned int sysctl_sched_shares_ratelimit = 250000;
  660. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  661. /*
  662. * Inject some fuzzyness into changing the per-cpu group shares
  663. * this avoids remote rq-locks at the expense of fairness.
  664. * default: 4
  665. */
  666. unsigned int sysctl_sched_shares_thresh = 4;
  667. /*
  668. * period over which we average the RT time consumption, measured
  669. * in ms.
  670. *
  671. * default: 1s
  672. */
  673. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  674. /*
  675. * period over which we measure -rt task cpu usage in us.
  676. * default: 1s
  677. */
  678. unsigned int sysctl_sched_rt_period = 1000000;
  679. static __read_mostly int scheduler_running;
  680. /*
  681. * part of the period that we allow rt tasks to run in us.
  682. * default: 0.95s
  683. */
  684. int sysctl_sched_rt_runtime = 950000;
  685. static inline u64 global_rt_period(void)
  686. {
  687. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  688. }
  689. static inline u64 global_rt_runtime(void)
  690. {
  691. if (sysctl_sched_rt_runtime < 0)
  692. return RUNTIME_INF;
  693. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  694. }
  695. #ifndef prepare_arch_switch
  696. # define prepare_arch_switch(next) do { } while (0)
  697. #endif
  698. #ifndef finish_arch_switch
  699. # define finish_arch_switch(prev) do { } while (0)
  700. #endif
  701. static inline int task_current(struct rq *rq, struct task_struct *p)
  702. {
  703. return rq->curr == p;
  704. }
  705. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  706. static inline int task_running(struct rq *rq, struct task_struct *p)
  707. {
  708. return task_current(rq, p);
  709. }
  710. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  711. {
  712. }
  713. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  714. {
  715. #ifdef CONFIG_DEBUG_SPINLOCK
  716. /* this is a valid case when another task releases the spinlock */
  717. rq->lock.owner = current;
  718. #endif
  719. /*
  720. * If we are tracking spinlock dependencies then we have to
  721. * fix up the runqueue lock - which gets 'carried over' from
  722. * prev into current:
  723. */
  724. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  725. raw_spin_unlock_irq(&rq->lock);
  726. }
  727. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  728. static inline int task_running(struct rq *rq, struct task_struct *p)
  729. {
  730. #ifdef CONFIG_SMP
  731. return p->oncpu;
  732. #else
  733. return task_current(rq, p);
  734. #endif
  735. }
  736. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  737. {
  738. #ifdef CONFIG_SMP
  739. /*
  740. * We can optimise this out completely for !SMP, because the
  741. * SMP rebalancing from interrupt is the only thing that cares
  742. * here.
  743. */
  744. next->oncpu = 1;
  745. #endif
  746. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  747. raw_spin_unlock_irq(&rq->lock);
  748. #else
  749. raw_spin_unlock(&rq->lock);
  750. #endif
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_SMP
  755. /*
  756. * After ->oncpu is cleared, the task can be moved to a different CPU.
  757. * We must ensure this doesn't happen until the switch is completely
  758. * finished.
  759. */
  760. smp_wmb();
  761. prev->oncpu = 0;
  762. #endif
  763. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  764. local_irq_enable();
  765. #endif
  766. }
  767. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  768. /*
  769. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  770. * against ttwu().
  771. */
  772. static inline int task_is_waking(struct task_struct *p)
  773. {
  774. return unlikely(p->state == TASK_WAKING);
  775. }
  776. /*
  777. * __task_rq_lock - lock the runqueue a given task resides on.
  778. * Must be called interrupts disabled.
  779. */
  780. static inline struct rq *__task_rq_lock(struct task_struct *p)
  781. __acquires(rq->lock)
  782. {
  783. struct rq *rq;
  784. for (;;) {
  785. rq = task_rq(p);
  786. raw_spin_lock(&rq->lock);
  787. if (likely(rq == task_rq(p)))
  788. return rq;
  789. raw_spin_unlock(&rq->lock);
  790. }
  791. }
  792. /*
  793. * task_rq_lock - lock the runqueue a given task resides on and disable
  794. * interrupts. Note the ordering: we can safely lookup the task_rq without
  795. * explicitly disabling preemption.
  796. */
  797. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  798. __acquires(rq->lock)
  799. {
  800. struct rq *rq;
  801. for (;;) {
  802. local_irq_save(*flags);
  803. rq = task_rq(p);
  804. raw_spin_lock(&rq->lock);
  805. if (likely(rq == task_rq(p)))
  806. return rq;
  807. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  808. }
  809. }
  810. static void __task_rq_unlock(struct rq *rq)
  811. __releases(rq->lock)
  812. {
  813. raw_spin_unlock(&rq->lock);
  814. }
  815. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  816. __releases(rq->lock)
  817. {
  818. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  819. }
  820. /*
  821. * this_rq_lock - lock this runqueue and disable interrupts.
  822. */
  823. static struct rq *this_rq_lock(void)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. local_irq_disable();
  828. rq = this_rq();
  829. raw_spin_lock(&rq->lock);
  830. return rq;
  831. }
  832. #ifdef CONFIG_SCHED_HRTICK
  833. /*
  834. * Use HR-timers to deliver accurate preemption points.
  835. *
  836. * Its all a bit involved since we cannot program an hrt while holding the
  837. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  838. * reschedule event.
  839. *
  840. * When we get rescheduled we reprogram the hrtick_timer outside of the
  841. * rq->lock.
  842. */
  843. /*
  844. * Use hrtick when:
  845. * - enabled by features
  846. * - hrtimer is actually high res
  847. */
  848. static inline int hrtick_enabled(struct rq *rq)
  849. {
  850. if (!sched_feat(HRTICK))
  851. return 0;
  852. if (!cpu_active(cpu_of(rq)))
  853. return 0;
  854. return hrtimer_is_hres_active(&rq->hrtick_timer);
  855. }
  856. static void hrtick_clear(struct rq *rq)
  857. {
  858. if (hrtimer_active(&rq->hrtick_timer))
  859. hrtimer_cancel(&rq->hrtick_timer);
  860. }
  861. /*
  862. * High-resolution timer tick.
  863. * Runs from hardirq context with interrupts disabled.
  864. */
  865. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  866. {
  867. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  868. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  869. raw_spin_lock(&rq->lock);
  870. update_rq_clock(rq);
  871. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  872. raw_spin_unlock(&rq->lock);
  873. return HRTIMER_NORESTART;
  874. }
  875. #ifdef CONFIG_SMP
  876. /*
  877. * called from hardirq (IPI) context
  878. */
  879. static void __hrtick_start(void *arg)
  880. {
  881. struct rq *rq = arg;
  882. raw_spin_lock(&rq->lock);
  883. hrtimer_restart(&rq->hrtick_timer);
  884. rq->hrtick_csd_pending = 0;
  885. raw_spin_unlock(&rq->lock);
  886. }
  887. /*
  888. * Called to set the hrtick timer state.
  889. *
  890. * called with rq->lock held and irqs disabled
  891. */
  892. static void hrtick_start(struct rq *rq, u64 delay)
  893. {
  894. struct hrtimer *timer = &rq->hrtick_timer;
  895. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  896. hrtimer_set_expires(timer, time);
  897. if (rq == this_rq()) {
  898. hrtimer_restart(timer);
  899. } else if (!rq->hrtick_csd_pending) {
  900. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  901. rq->hrtick_csd_pending = 1;
  902. }
  903. }
  904. static int
  905. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  906. {
  907. int cpu = (int)(long)hcpu;
  908. switch (action) {
  909. case CPU_UP_CANCELED:
  910. case CPU_UP_CANCELED_FROZEN:
  911. case CPU_DOWN_PREPARE:
  912. case CPU_DOWN_PREPARE_FROZEN:
  913. case CPU_DEAD:
  914. case CPU_DEAD_FROZEN:
  915. hrtick_clear(cpu_rq(cpu));
  916. return NOTIFY_OK;
  917. }
  918. return NOTIFY_DONE;
  919. }
  920. static __init void init_hrtick(void)
  921. {
  922. hotcpu_notifier(hotplug_hrtick, 0);
  923. }
  924. #else
  925. /*
  926. * Called to set the hrtick timer state.
  927. *
  928. * called with rq->lock held and irqs disabled
  929. */
  930. static void hrtick_start(struct rq *rq, u64 delay)
  931. {
  932. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  933. HRTIMER_MODE_REL_PINNED, 0);
  934. }
  935. static inline void init_hrtick(void)
  936. {
  937. }
  938. #endif /* CONFIG_SMP */
  939. static void init_rq_hrtick(struct rq *rq)
  940. {
  941. #ifdef CONFIG_SMP
  942. rq->hrtick_csd_pending = 0;
  943. rq->hrtick_csd.flags = 0;
  944. rq->hrtick_csd.func = __hrtick_start;
  945. rq->hrtick_csd.info = rq;
  946. #endif
  947. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  948. rq->hrtick_timer.function = hrtick;
  949. }
  950. #else /* CONFIG_SCHED_HRTICK */
  951. static inline void hrtick_clear(struct rq *rq)
  952. {
  953. }
  954. static inline void init_rq_hrtick(struct rq *rq)
  955. {
  956. }
  957. static inline void init_hrtick(void)
  958. {
  959. }
  960. #endif /* CONFIG_SCHED_HRTICK */
  961. /*
  962. * resched_task - mark a task 'to be rescheduled now'.
  963. *
  964. * On UP this means the setting of the need_resched flag, on SMP it
  965. * might also involve a cross-CPU call to trigger the scheduler on
  966. * the target CPU.
  967. */
  968. #ifdef CONFIG_SMP
  969. #ifndef tsk_is_polling
  970. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  971. #endif
  972. static void resched_task(struct task_struct *p)
  973. {
  974. int cpu;
  975. assert_raw_spin_locked(&task_rq(p)->lock);
  976. if (test_tsk_need_resched(p))
  977. return;
  978. set_tsk_need_resched(p);
  979. cpu = task_cpu(p);
  980. if (cpu == smp_processor_id())
  981. return;
  982. /* NEED_RESCHED must be visible before we test polling */
  983. smp_mb();
  984. if (!tsk_is_polling(p))
  985. smp_send_reschedule(cpu);
  986. }
  987. static void resched_cpu(int cpu)
  988. {
  989. struct rq *rq = cpu_rq(cpu);
  990. unsigned long flags;
  991. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  992. return;
  993. resched_task(cpu_curr(cpu));
  994. raw_spin_unlock_irqrestore(&rq->lock, flags);
  995. }
  996. #ifdef CONFIG_NO_HZ
  997. /*
  998. * When add_timer_on() enqueues a timer into the timer wheel of an
  999. * idle CPU then this timer might expire before the next timer event
  1000. * which is scheduled to wake up that CPU. In case of a completely
  1001. * idle system the next event might even be infinite time into the
  1002. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1003. * leaves the inner idle loop so the newly added timer is taken into
  1004. * account when the CPU goes back to idle and evaluates the timer
  1005. * wheel for the next timer event.
  1006. */
  1007. void wake_up_idle_cpu(int cpu)
  1008. {
  1009. struct rq *rq = cpu_rq(cpu);
  1010. if (cpu == smp_processor_id())
  1011. return;
  1012. /*
  1013. * This is safe, as this function is called with the timer
  1014. * wheel base lock of (cpu) held. When the CPU is on the way
  1015. * to idle and has not yet set rq->curr to idle then it will
  1016. * be serialized on the timer wheel base lock and take the new
  1017. * timer into account automatically.
  1018. */
  1019. if (rq->curr != rq->idle)
  1020. return;
  1021. /*
  1022. * We can set TIF_RESCHED on the idle task of the other CPU
  1023. * lockless. The worst case is that the other CPU runs the
  1024. * idle task through an additional NOOP schedule()
  1025. */
  1026. set_tsk_need_resched(rq->idle);
  1027. /* NEED_RESCHED must be visible before we test polling */
  1028. smp_mb();
  1029. if (!tsk_is_polling(rq->idle))
  1030. smp_send_reschedule(cpu);
  1031. }
  1032. int nohz_ratelimit(int cpu)
  1033. {
  1034. struct rq *rq = cpu_rq(cpu);
  1035. u64 diff = rq->clock - rq->nohz_stamp;
  1036. rq->nohz_stamp = rq->clock;
  1037. return diff < (NSEC_PER_SEC / HZ) >> 1;
  1038. }
  1039. #endif /* CONFIG_NO_HZ */
  1040. static u64 sched_avg_period(void)
  1041. {
  1042. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1043. }
  1044. static void sched_avg_update(struct rq *rq)
  1045. {
  1046. s64 period = sched_avg_period();
  1047. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1048. rq->age_stamp += period;
  1049. rq->rt_avg /= 2;
  1050. }
  1051. }
  1052. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1053. {
  1054. rq->rt_avg += rt_delta;
  1055. sched_avg_update(rq);
  1056. }
  1057. #else /* !CONFIG_SMP */
  1058. static void resched_task(struct task_struct *p)
  1059. {
  1060. assert_raw_spin_locked(&task_rq(p)->lock);
  1061. set_tsk_need_resched(p);
  1062. }
  1063. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1064. {
  1065. }
  1066. #endif /* CONFIG_SMP */
  1067. #if BITS_PER_LONG == 32
  1068. # define WMULT_CONST (~0UL)
  1069. #else
  1070. # define WMULT_CONST (1UL << 32)
  1071. #endif
  1072. #define WMULT_SHIFT 32
  1073. /*
  1074. * Shift right and round:
  1075. */
  1076. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1077. /*
  1078. * delta *= weight / lw
  1079. */
  1080. static unsigned long
  1081. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1082. struct load_weight *lw)
  1083. {
  1084. u64 tmp;
  1085. if (!lw->inv_weight) {
  1086. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1087. lw->inv_weight = 1;
  1088. else
  1089. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1090. / (lw->weight+1);
  1091. }
  1092. tmp = (u64)delta_exec * weight;
  1093. /*
  1094. * Check whether we'd overflow the 64-bit multiplication:
  1095. */
  1096. if (unlikely(tmp > WMULT_CONST))
  1097. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1098. WMULT_SHIFT/2);
  1099. else
  1100. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1101. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1102. }
  1103. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1104. {
  1105. lw->weight += inc;
  1106. lw->inv_weight = 0;
  1107. }
  1108. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1109. {
  1110. lw->weight -= dec;
  1111. lw->inv_weight = 0;
  1112. }
  1113. /*
  1114. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1115. * of tasks with abnormal "nice" values across CPUs the contribution that
  1116. * each task makes to its run queue's load is weighted according to its
  1117. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1118. * scaled version of the new time slice allocation that they receive on time
  1119. * slice expiry etc.
  1120. */
  1121. #define WEIGHT_IDLEPRIO 3
  1122. #define WMULT_IDLEPRIO 1431655765
  1123. /*
  1124. * Nice levels are multiplicative, with a gentle 10% change for every
  1125. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1126. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1127. * that remained on nice 0.
  1128. *
  1129. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1130. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1131. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1132. * If a task goes up by ~10% and another task goes down by ~10% then
  1133. * the relative distance between them is ~25%.)
  1134. */
  1135. static const int prio_to_weight[40] = {
  1136. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1137. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1138. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1139. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1140. /* 0 */ 1024, 820, 655, 526, 423,
  1141. /* 5 */ 335, 272, 215, 172, 137,
  1142. /* 10 */ 110, 87, 70, 56, 45,
  1143. /* 15 */ 36, 29, 23, 18, 15,
  1144. };
  1145. /*
  1146. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1147. *
  1148. * In cases where the weight does not change often, we can use the
  1149. * precalculated inverse to speed up arithmetics by turning divisions
  1150. * into multiplications:
  1151. */
  1152. static const u32 prio_to_wmult[40] = {
  1153. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1154. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1155. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1156. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1157. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1158. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1159. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1160. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1161. };
  1162. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1163. enum cpuacct_stat_index {
  1164. CPUACCT_STAT_USER, /* ... user mode */
  1165. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1166. CPUACCT_STAT_NSTATS,
  1167. };
  1168. #ifdef CONFIG_CGROUP_CPUACCT
  1169. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1170. static void cpuacct_update_stats(struct task_struct *tsk,
  1171. enum cpuacct_stat_index idx, cputime_t val);
  1172. #else
  1173. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1174. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1175. enum cpuacct_stat_index idx, cputime_t val) {}
  1176. #endif
  1177. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1178. {
  1179. update_load_add(&rq->load, load);
  1180. }
  1181. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1182. {
  1183. update_load_sub(&rq->load, load);
  1184. }
  1185. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1186. typedef int (*tg_visitor)(struct task_group *, void *);
  1187. /*
  1188. * Iterate the full tree, calling @down when first entering a node and @up when
  1189. * leaving it for the final time.
  1190. */
  1191. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1192. {
  1193. struct task_group *parent, *child;
  1194. int ret;
  1195. rcu_read_lock();
  1196. parent = &root_task_group;
  1197. down:
  1198. ret = (*down)(parent, data);
  1199. if (ret)
  1200. goto out_unlock;
  1201. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1202. parent = child;
  1203. goto down;
  1204. up:
  1205. continue;
  1206. }
  1207. ret = (*up)(parent, data);
  1208. if (ret)
  1209. goto out_unlock;
  1210. child = parent;
  1211. parent = parent->parent;
  1212. if (parent)
  1213. goto up;
  1214. out_unlock:
  1215. rcu_read_unlock();
  1216. return ret;
  1217. }
  1218. static int tg_nop(struct task_group *tg, void *data)
  1219. {
  1220. return 0;
  1221. }
  1222. #endif
  1223. #ifdef CONFIG_SMP
  1224. /* Used instead of source_load when we know the type == 0 */
  1225. static unsigned long weighted_cpuload(const int cpu)
  1226. {
  1227. return cpu_rq(cpu)->load.weight;
  1228. }
  1229. /*
  1230. * Return a low guess at the load of a migration-source cpu weighted
  1231. * according to the scheduling class and "nice" value.
  1232. *
  1233. * We want to under-estimate the load of migration sources, to
  1234. * balance conservatively.
  1235. */
  1236. static unsigned long source_load(int cpu, int type)
  1237. {
  1238. struct rq *rq = cpu_rq(cpu);
  1239. unsigned long total = weighted_cpuload(cpu);
  1240. if (type == 0 || !sched_feat(LB_BIAS))
  1241. return total;
  1242. return min(rq->cpu_load[type-1], total);
  1243. }
  1244. /*
  1245. * Return a high guess at the load of a migration-target cpu weighted
  1246. * according to the scheduling class and "nice" value.
  1247. */
  1248. static unsigned long target_load(int cpu, int type)
  1249. {
  1250. struct rq *rq = cpu_rq(cpu);
  1251. unsigned long total = weighted_cpuload(cpu);
  1252. if (type == 0 || !sched_feat(LB_BIAS))
  1253. return total;
  1254. return max(rq->cpu_load[type-1], total);
  1255. }
  1256. static unsigned long power_of(int cpu)
  1257. {
  1258. return cpu_rq(cpu)->cpu_power;
  1259. }
  1260. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1261. static unsigned long cpu_avg_load_per_task(int cpu)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1265. if (nr_running)
  1266. rq->avg_load_per_task = rq->load.weight / nr_running;
  1267. else
  1268. rq->avg_load_per_task = 0;
  1269. return rq->avg_load_per_task;
  1270. }
  1271. #ifdef CONFIG_FAIR_GROUP_SCHED
  1272. static __read_mostly unsigned long __percpu *update_shares_data;
  1273. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1274. /*
  1275. * Calculate and set the cpu's group shares.
  1276. */
  1277. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1278. unsigned long sd_shares,
  1279. unsigned long sd_rq_weight,
  1280. unsigned long *usd_rq_weight)
  1281. {
  1282. unsigned long shares, rq_weight;
  1283. int boost = 0;
  1284. rq_weight = usd_rq_weight[cpu];
  1285. if (!rq_weight) {
  1286. boost = 1;
  1287. rq_weight = NICE_0_LOAD;
  1288. }
  1289. /*
  1290. * \Sum_j shares_j * rq_weight_i
  1291. * shares_i = -----------------------------
  1292. * \Sum_j rq_weight_j
  1293. */
  1294. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1295. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1296. if (abs(shares - tg->se[cpu]->load.weight) >
  1297. sysctl_sched_shares_thresh) {
  1298. struct rq *rq = cpu_rq(cpu);
  1299. unsigned long flags;
  1300. raw_spin_lock_irqsave(&rq->lock, flags);
  1301. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1302. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1303. __set_se_shares(tg->se[cpu], shares);
  1304. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1305. }
  1306. }
  1307. /*
  1308. * Re-compute the task group their per cpu shares over the given domain.
  1309. * This needs to be done in a bottom-up fashion because the rq weight of a
  1310. * parent group depends on the shares of its child groups.
  1311. */
  1312. static int tg_shares_up(struct task_group *tg, void *data)
  1313. {
  1314. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1315. unsigned long *usd_rq_weight;
  1316. struct sched_domain *sd = data;
  1317. unsigned long flags;
  1318. int i;
  1319. if (!tg->se[0])
  1320. return 0;
  1321. local_irq_save(flags);
  1322. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1323. for_each_cpu(i, sched_domain_span(sd)) {
  1324. weight = tg->cfs_rq[i]->load.weight;
  1325. usd_rq_weight[i] = weight;
  1326. rq_weight += weight;
  1327. /*
  1328. * If there are currently no tasks on the cpu pretend there
  1329. * is one of average load so that when a new task gets to
  1330. * run here it will not get delayed by group starvation.
  1331. */
  1332. if (!weight)
  1333. weight = NICE_0_LOAD;
  1334. sum_weight += weight;
  1335. shares += tg->cfs_rq[i]->shares;
  1336. }
  1337. if (!rq_weight)
  1338. rq_weight = sum_weight;
  1339. if ((!shares && rq_weight) || shares > tg->shares)
  1340. shares = tg->shares;
  1341. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1342. shares = tg->shares;
  1343. for_each_cpu(i, sched_domain_span(sd))
  1344. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1345. local_irq_restore(flags);
  1346. return 0;
  1347. }
  1348. /*
  1349. * Compute the cpu's hierarchical load factor for each task group.
  1350. * This needs to be done in a top-down fashion because the load of a child
  1351. * group is a fraction of its parents load.
  1352. */
  1353. static int tg_load_down(struct task_group *tg, void *data)
  1354. {
  1355. unsigned long load;
  1356. long cpu = (long)data;
  1357. if (!tg->parent) {
  1358. load = cpu_rq(cpu)->load.weight;
  1359. } else {
  1360. load = tg->parent->cfs_rq[cpu]->h_load;
  1361. load *= tg->cfs_rq[cpu]->shares;
  1362. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1363. }
  1364. tg->cfs_rq[cpu]->h_load = load;
  1365. return 0;
  1366. }
  1367. static void update_shares(struct sched_domain *sd)
  1368. {
  1369. s64 elapsed;
  1370. u64 now;
  1371. if (root_task_group_empty())
  1372. return;
  1373. now = cpu_clock(raw_smp_processor_id());
  1374. elapsed = now - sd->last_update;
  1375. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1376. sd->last_update = now;
  1377. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1378. }
  1379. }
  1380. static void update_h_load(long cpu)
  1381. {
  1382. if (root_task_group_empty())
  1383. return;
  1384. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1385. }
  1386. #else
  1387. static inline void update_shares(struct sched_domain *sd)
  1388. {
  1389. }
  1390. #endif
  1391. #ifdef CONFIG_PREEMPT
  1392. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1393. /*
  1394. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1395. * way at the expense of forcing extra atomic operations in all
  1396. * invocations. This assures that the double_lock is acquired using the
  1397. * same underlying policy as the spinlock_t on this architecture, which
  1398. * reduces latency compared to the unfair variant below. However, it
  1399. * also adds more overhead and therefore may reduce throughput.
  1400. */
  1401. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1402. __releases(this_rq->lock)
  1403. __acquires(busiest->lock)
  1404. __acquires(this_rq->lock)
  1405. {
  1406. raw_spin_unlock(&this_rq->lock);
  1407. double_rq_lock(this_rq, busiest);
  1408. return 1;
  1409. }
  1410. #else
  1411. /*
  1412. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1413. * latency by eliminating extra atomic operations when the locks are
  1414. * already in proper order on entry. This favors lower cpu-ids and will
  1415. * grant the double lock to lower cpus over higher ids under contention,
  1416. * regardless of entry order into the function.
  1417. */
  1418. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1419. __releases(this_rq->lock)
  1420. __acquires(busiest->lock)
  1421. __acquires(this_rq->lock)
  1422. {
  1423. int ret = 0;
  1424. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1425. if (busiest < this_rq) {
  1426. raw_spin_unlock(&this_rq->lock);
  1427. raw_spin_lock(&busiest->lock);
  1428. raw_spin_lock_nested(&this_rq->lock,
  1429. SINGLE_DEPTH_NESTING);
  1430. ret = 1;
  1431. } else
  1432. raw_spin_lock_nested(&busiest->lock,
  1433. SINGLE_DEPTH_NESTING);
  1434. }
  1435. return ret;
  1436. }
  1437. #endif /* CONFIG_PREEMPT */
  1438. /*
  1439. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1440. */
  1441. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1442. {
  1443. if (unlikely(!irqs_disabled())) {
  1444. /* printk() doesn't work good under rq->lock */
  1445. raw_spin_unlock(&this_rq->lock);
  1446. BUG_ON(1);
  1447. }
  1448. return _double_lock_balance(this_rq, busiest);
  1449. }
  1450. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1451. __releases(busiest->lock)
  1452. {
  1453. raw_spin_unlock(&busiest->lock);
  1454. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1455. }
  1456. /*
  1457. * double_rq_lock - safely lock two runqueues
  1458. *
  1459. * Note this does not disable interrupts like task_rq_lock,
  1460. * you need to do so manually before calling.
  1461. */
  1462. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1463. __acquires(rq1->lock)
  1464. __acquires(rq2->lock)
  1465. {
  1466. BUG_ON(!irqs_disabled());
  1467. if (rq1 == rq2) {
  1468. raw_spin_lock(&rq1->lock);
  1469. __acquire(rq2->lock); /* Fake it out ;) */
  1470. } else {
  1471. if (rq1 < rq2) {
  1472. raw_spin_lock(&rq1->lock);
  1473. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1474. } else {
  1475. raw_spin_lock(&rq2->lock);
  1476. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1477. }
  1478. }
  1479. }
  1480. /*
  1481. * double_rq_unlock - safely unlock two runqueues
  1482. *
  1483. * Note this does not restore interrupts like task_rq_unlock,
  1484. * you need to do so manually after calling.
  1485. */
  1486. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1487. __releases(rq1->lock)
  1488. __releases(rq2->lock)
  1489. {
  1490. raw_spin_unlock(&rq1->lock);
  1491. if (rq1 != rq2)
  1492. raw_spin_unlock(&rq2->lock);
  1493. else
  1494. __release(rq2->lock);
  1495. }
  1496. #endif
  1497. #ifdef CONFIG_FAIR_GROUP_SCHED
  1498. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1499. {
  1500. #ifdef CONFIG_SMP
  1501. cfs_rq->shares = shares;
  1502. #endif
  1503. }
  1504. #endif
  1505. static void calc_load_account_idle(struct rq *this_rq);
  1506. static void update_sysctl(void);
  1507. static int get_update_sysctl_factor(void);
  1508. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1509. {
  1510. set_task_rq(p, cpu);
  1511. #ifdef CONFIG_SMP
  1512. /*
  1513. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1514. * successfuly executed on another CPU. We must ensure that updates of
  1515. * per-task data have been completed by this moment.
  1516. */
  1517. smp_wmb();
  1518. task_thread_info(p)->cpu = cpu;
  1519. #endif
  1520. }
  1521. static const struct sched_class rt_sched_class;
  1522. #define sched_class_highest (&rt_sched_class)
  1523. #define for_each_class(class) \
  1524. for (class = sched_class_highest; class; class = class->next)
  1525. #include "sched_stats.h"
  1526. static void inc_nr_running(struct rq *rq)
  1527. {
  1528. rq->nr_running++;
  1529. }
  1530. static void dec_nr_running(struct rq *rq)
  1531. {
  1532. rq->nr_running--;
  1533. }
  1534. static void set_load_weight(struct task_struct *p)
  1535. {
  1536. if (task_has_rt_policy(p)) {
  1537. p->se.load.weight = 0;
  1538. p->se.load.inv_weight = WMULT_CONST;
  1539. return;
  1540. }
  1541. /*
  1542. * SCHED_IDLE tasks get minimal weight:
  1543. */
  1544. if (p->policy == SCHED_IDLE) {
  1545. p->se.load.weight = WEIGHT_IDLEPRIO;
  1546. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1547. return;
  1548. }
  1549. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1550. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1551. }
  1552. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1553. {
  1554. update_rq_clock(rq);
  1555. sched_info_queued(p);
  1556. p->sched_class->enqueue_task(rq, p, flags);
  1557. p->se.on_rq = 1;
  1558. }
  1559. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1560. {
  1561. update_rq_clock(rq);
  1562. sched_info_dequeued(p);
  1563. p->sched_class->dequeue_task(rq, p, flags);
  1564. p->se.on_rq = 0;
  1565. }
  1566. /*
  1567. * activate_task - move a task to the runqueue.
  1568. */
  1569. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1570. {
  1571. if (task_contributes_to_load(p))
  1572. rq->nr_uninterruptible--;
  1573. enqueue_task(rq, p, flags);
  1574. inc_nr_running(rq);
  1575. }
  1576. /*
  1577. * deactivate_task - remove a task from the runqueue.
  1578. */
  1579. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1580. {
  1581. if (task_contributes_to_load(p))
  1582. rq->nr_uninterruptible++;
  1583. dequeue_task(rq, p, flags);
  1584. dec_nr_running(rq);
  1585. }
  1586. #include "sched_idletask.c"
  1587. #include "sched_fair.c"
  1588. #include "sched_rt.c"
  1589. #ifdef CONFIG_SCHED_DEBUG
  1590. # include "sched_debug.c"
  1591. #endif
  1592. /*
  1593. * __normal_prio - return the priority that is based on the static prio
  1594. */
  1595. static inline int __normal_prio(struct task_struct *p)
  1596. {
  1597. return p->static_prio;
  1598. }
  1599. /*
  1600. * Calculate the expected normal priority: i.e. priority
  1601. * without taking RT-inheritance into account. Might be
  1602. * boosted by interactivity modifiers. Changes upon fork,
  1603. * setprio syscalls, and whenever the interactivity
  1604. * estimator recalculates.
  1605. */
  1606. static inline int normal_prio(struct task_struct *p)
  1607. {
  1608. int prio;
  1609. if (task_has_rt_policy(p))
  1610. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1611. else
  1612. prio = __normal_prio(p);
  1613. return prio;
  1614. }
  1615. /*
  1616. * Calculate the current priority, i.e. the priority
  1617. * taken into account by the scheduler. This value might
  1618. * be boosted by RT tasks, or might be boosted by
  1619. * interactivity modifiers. Will be RT if the task got
  1620. * RT-boosted. If not then it returns p->normal_prio.
  1621. */
  1622. static int effective_prio(struct task_struct *p)
  1623. {
  1624. p->normal_prio = normal_prio(p);
  1625. /*
  1626. * If we are RT tasks or we were boosted to RT priority,
  1627. * keep the priority unchanged. Otherwise, update priority
  1628. * to the normal priority:
  1629. */
  1630. if (!rt_prio(p->prio))
  1631. return p->normal_prio;
  1632. return p->prio;
  1633. }
  1634. /**
  1635. * task_curr - is this task currently executing on a CPU?
  1636. * @p: the task in question.
  1637. */
  1638. inline int task_curr(const struct task_struct *p)
  1639. {
  1640. return cpu_curr(task_cpu(p)) == p;
  1641. }
  1642. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1643. const struct sched_class *prev_class,
  1644. int oldprio, int running)
  1645. {
  1646. if (prev_class != p->sched_class) {
  1647. if (prev_class->switched_from)
  1648. prev_class->switched_from(rq, p, running);
  1649. p->sched_class->switched_to(rq, p, running);
  1650. } else
  1651. p->sched_class->prio_changed(rq, p, oldprio, running);
  1652. }
  1653. #ifdef CONFIG_SMP
  1654. /*
  1655. * Is this task likely cache-hot:
  1656. */
  1657. static int
  1658. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1659. {
  1660. s64 delta;
  1661. if (p->sched_class != &fair_sched_class)
  1662. return 0;
  1663. /*
  1664. * Buddy candidates are cache hot:
  1665. */
  1666. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1667. (&p->se == cfs_rq_of(&p->se)->next ||
  1668. &p->se == cfs_rq_of(&p->se)->last))
  1669. return 1;
  1670. if (sysctl_sched_migration_cost == -1)
  1671. return 1;
  1672. if (sysctl_sched_migration_cost == 0)
  1673. return 0;
  1674. delta = now - p->se.exec_start;
  1675. return delta < (s64)sysctl_sched_migration_cost;
  1676. }
  1677. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1678. {
  1679. #ifdef CONFIG_SCHED_DEBUG
  1680. /*
  1681. * We should never call set_task_cpu() on a blocked task,
  1682. * ttwu() will sort out the placement.
  1683. */
  1684. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1685. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1686. #endif
  1687. trace_sched_migrate_task(p, new_cpu);
  1688. if (task_cpu(p) != new_cpu) {
  1689. p->se.nr_migrations++;
  1690. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1691. }
  1692. __set_task_cpu(p, new_cpu);
  1693. }
  1694. struct migration_arg {
  1695. struct task_struct *task;
  1696. int dest_cpu;
  1697. };
  1698. static int migration_cpu_stop(void *data);
  1699. /*
  1700. * The task's runqueue lock must be held.
  1701. * Returns true if you have to wait for migration thread.
  1702. */
  1703. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1704. {
  1705. struct rq *rq = task_rq(p);
  1706. /*
  1707. * If the task is not on a runqueue (and not running), then
  1708. * the next wake-up will properly place the task.
  1709. */
  1710. return p->se.on_rq || task_running(rq, p);
  1711. }
  1712. /*
  1713. * wait_task_inactive - wait for a thread to unschedule.
  1714. *
  1715. * If @match_state is nonzero, it's the @p->state value just checked and
  1716. * not expected to change. If it changes, i.e. @p might have woken up,
  1717. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1718. * we return a positive number (its total switch count). If a second call
  1719. * a short while later returns the same number, the caller can be sure that
  1720. * @p has remained unscheduled the whole time.
  1721. *
  1722. * The caller must ensure that the task *will* unschedule sometime soon,
  1723. * else this function might spin for a *long* time. This function can't
  1724. * be called with interrupts off, or it may introduce deadlock with
  1725. * smp_call_function() if an IPI is sent by the same process we are
  1726. * waiting to become inactive.
  1727. */
  1728. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1729. {
  1730. unsigned long flags;
  1731. int running, on_rq;
  1732. unsigned long ncsw;
  1733. struct rq *rq;
  1734. for (;;) {
  1735. /*
  1736. * We do the initial early heuristics without holding
  1737. * any task-queue locks at all. We'll only try to get
  1738. * the runqueue lock when things look like they will
  1739. * work out!
  1740. */
  1741. rq = task_rq(p);
  1742. /*
  1743. * If the task is actively running on another CPU
  1744. * still, just relax and busy-wait without holding
  1745. * any locks.
  1746. *
  1747. * NOTE! Since we don't hold any locks, it's not
  1748. * even sure that "rq" stays as the right runqueue!
  1749. * But we don't care, since "task_running()" will
  1750. * return false if the runqueue has changed and p
  1751. * is actually now running somewhere else!
  1752. */
  1753. while (task_running(rq, p)) {
  1754. if (match_state && unlikely(p->state != match_state))
  1755. return 0;
  1756. cpu_relax();
  1757. }
  1758. /*
  1759. * Ok, time to look more closely! We need the rq
  1760. * lock now, to be *sure*. If we're wrong, we'll
  1761. * just go back and repeat.
  1762. */
  1763. rq = task_rq_lock(p, &flags);
  1764. trace_sched_wait_task(p);
  1765. running = task_running(rq, p);
  1766. on_rq = p->se.on_rq;
  1767. ncsw = 0;
  1768. if (!match_state || p->state == match_state)
  1769. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1770. task_rq_unlock(rq, &flags);
  1771. /*
  1772. * If it changed from the expected state, bail out now.
  1773. */
  1774. if (unlikely(!ncsw))
  1775. break;
  1776. /*
  1777. * Was it really running after all now that we
  1778. * checked with the proper locks actually held?
  1779. *
  1780. * Oops. Go back and try again..
  1781. */
  1782. if (unlikely(running)) {
  1783. cpu_relax();
  1784. continue;
  1785. }
  1786. /*
  1787. * It's not enough that it's not actively running,
  1788. * it must be off the runqueue _entirely_, and not
  1789. * preempted!
  1790. *
  1791. * So if it was still runnable (but just not actively
  1792. * running right now), it's preempted, and we should
  1793. * yield - it could be a while.
  1794. */
  1795. if (unlikely(on_rq)) {
  1796. schedule_timeout_uninterruptible(1);
  1797. continue;
  1798. }
  1799. /*
  1800. * Ahh, all good. It wasn't running, and it wasn't
  1801. * runnable, which means that it will never become
  1802. * running in the future either. We're all done!
  1803. */
  1804. break;
  1805. }
  1806. return ncsw;
  1807. }
  1808. /***
  1809. * kick_process - kick a running thread to enter/exit the kernel
  1810. * @p: the to-be-kicked thread
  1811. *
  1812. * Cause a process which is running on another CPU to enter
  1813. * kernel-mode, without any delay. (to get signals handled.)
  1814. *
  1815. * NOTE: this function doesnt have to take the runqueue lock,
  1816. * because all it wants to ensure is that the remote task enters
  1817. * the kernel. If the IPI races and the task has been migrated
  1818. * to another CPU then no harm is done and the purpose has been
  1819. * achieved as well.
  1820. */
  1821. void kick_process(struct task_struct *p)
  1822. {
  1823. int cpu;
  1824. preempt_disable();
  1825. cpu = task_cpu(p);
  1826. if ((cpu != smp_processor_id()) && task_curr(p))
  1827. smp_send_reschedule(cpu);
  1828. preempt_enable();
  1829. }
  1830. EXPORT_SYMBOL_GPL(kick_process);
  1831. #endif /* CONFIG_SMP */
  1832. /**
  1833. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1834. * @p: the task to evaluate
  1835. * @func: the function to be called
  1836. * @info: the function call argument
  1837. *
  1838. * Calls the function @func when the task is currently running. This might
  1839. * be on the current CPU, which just calls the function directly
  1840. */
  1841. void task_oncpu_function_call(struct task_struct *p,
  1842. void (*func) (void *info), void *info)
  1843. {
  1844. int cpu;
  1845. preempt_disable();
  1846. cpu = task_cpu(p);
  1847. if (task_curr(p))
  1848. smp_call_function_single(cpu, func, info, 1);
  1849. preempt_enable();
  1850. }
  1851. #ifdef CONFIG_SMP
  1852. /*
  1853. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1854. */
  1855. static int select_fallback_rq(int cpu, struct task_struct *p)
  1856. {
  1857. int dest_cpu;
  1858. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1859. /* Look for allowed, online CPU in same node. */
  1860. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1861. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1862. return dest_cpu;
  1863. /* Any allowed, online CPU? */
  1864. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1865. if (dest_cpu < nr_cpu_ids)
  1866. return dest_cpu;
  1867. /* No more Mr. Nice Guy. */
  1868. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1869. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1870. /*
  1871. * Don't tell them about moving exiting tasks or
  1872. * kernel threads (both mm NULL), since they never
  1873. * leave kernel.
  1874. */
  1875. if (p->mm && printk_ratelimit()) {
  1876. printk(KERN_INFO "process %d (%s) no "
  1877. "longer affine to cpu%d\n",
  1878. task_pid_nr(p), p->comm, cpu);
  1879. }
  1880. }
  1881. return dest_cpu;
  1882. }
  1883. /*
  1884. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1885. */
  1886. static inline
  1887. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1888. {
  1889. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1890. /*
  1891. * In order not to call set_task_cpu() on a blocking task we need
  1892. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1893. * cpu.
  1894. *
  1895. * Since this is common to all placement strategies, this lives here.
  1896. *
  1897. * [ this allows ->select_task() to simply return task_cpu(p) and
  1898. * not worry about this generic constraint ]
  1899. */
  1900. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1901. !cpu_online(cpu)))
  1902. cpu = select_fallback_rq(task_cpu(p), p);
  1903. return cpu;
  1904. }
  1905. static void update_avg(u64 *avg, u64 sample)
  1906. {
  1907. s64 diff = sample - *avg;
  1908. *avg += diff >> 3;
  1909. }
  1910. #endif
  1911. /***
  1912. * try_to_wake_up - wake up a thread
  1913. * @p: the to-be-woken-up thread
  1914. * @state: the mask of task states that can be woken
  1915. * @sync: do a synchronous wakeup?
  1916. *
  1917. * Put it on the run-queue if it's not already there. The "current"
  1918. * thread is always on the run-queue (except when the actual
  1919. * re-schedule is in progress), and as such you're allowed to do
  1920. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1921. * runnable without the overhead of this.
  1922. *
  1923. * returns failure only if the task is already active.
  1924. */
  1925. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1926. int wake_flags)
  1927. {
  1928. int cpu, orig_cpu, this_cpu, success = 0;
  1929. unsigned long flags;
  1930. unsigned long en_flags = ENQUEUE_WAKEUP;
  1931. struct rq *rq;
  1932. this_cpu = get_cpu();
  1933. smp_wmb();
  1934. rq = task_rq_lock(p, &flags);
  1935. if (!(p->state & state))
  1936. goto out;
  1937. if (p->se.on_rq)
  1938. goto out_running;
  1939. cpu = task_cpu(p);
  1940. orig_cpu = cpu;
  1941. #ifdef CONFIG_SMP
  1942. if (unlikely(task_running(rq, p)))
  1943. goto out_activate;
  1944. /*
  1945. * In order to handle concurrent wakeups and release the rq->lock
  1946. * we put the task in TASK_WAKING state.
  1947. *
  1948. * First fix up the nr_uninterruptible count:
  1949. */
  1950. if (task_contributes_to_load(p)) {
  1951. if (likely(cpu_online(orig_cpu)))
  1952. rq->nr_uninterruptible--;
  1953. else
  1954. this_rq()->nr_uninterruptible--;
  1955. }
  1956. p->state = TASK_WAKING;
  1957. if (p->sched_class->task_waking) {
  1958. p->sched_class->task_waking(rq, p);
  1959. en_flags |= ENQUEUE_WAKING;
  1960. }
  1961. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  1962. if (cpu != orig_cpu)
  1963. set_task_cpu(p, cpu);
  1964. __task_rq_unlock(rq);
  1965. rq = cpu_rq(cpu);
  1966. raw_spin_lock(&rq->lock);
  1967. /*
  1968. * We migrated the task without holding either rq->lock, however
  1969. * since the task is not on the task list itself, nobody else
  1970. * will try and migrate the task, hence the rq should match the
  1971. * cpu we just moved it to.
  1972. */
  1973. WARN_ON(task_cpu(p) != cpu);
  1974. WARN_ON(p->state != TASK_WAKING);
  1975. #ifdef CONFIG_SCHEDSTATS
  1976. schedstat_inc(rq, ttwu_count);
  1977. if (cpu == this_cpu)
  1978. schedstat_inc(rq, ttwu_local);
  1979. else {
  1980. struct sched_domain *sd;
  1981. for_each_domain(this_cpu, sd) {
  1982. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1983. schedstat_inc(sd, ttwu_wake_remote);
  1984. break;
  1985. }
  1986. }
  1987. }
  1988. #endif /* CONFIG_SCHEDSTATS */
  1989. out_activate:
  1990. #endif /* CONFIG_SMP */
  1991. schedstat_inc(p, se.statistics.nr_wakeups);
  1992. if (wake_flags & WF_SYNC)
  1993. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1994. if (orig_cpu != cpu)
  1995. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1996. if (cpu == this_cpu)
  1997. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1998. else
  1999. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2000. activate_task(rq, p, en_flags);
  2001. success = 1;
  2002. out_running:
  2003. trace_sched_wakeup(p, success);
  2004. check_preempt_curr(rq, p, wake_flags);
  2005. p->state = TASK_RUNNING;
  2006. #ifdef CONFIG_SMP
  2007. if (p->sched_class->task_woken)
  2008. p->sched_class->task_woken(rq, p);
  2009. if (unlikely(rq->idle_stamp)) {
  2010. u64 delta = rq->clock - rq->idle_stamp;
  2011. u64 max = 2*sysctl_sched_migration_cost;
  2012. if (delta > max)
  2013. rq->avg_idle = max;
  2014. else
  2015. update_avg(&rq->avg_idle, delta);
  2016. rq->idle_stamp = 0;
  2017. }
  2018. #endif
  2019. out:
  2020. task_rq_unlock(rq, &flags);
  2021. put_cpu();
  2022. return success;
  2023. }
  2024. /**
  2025. * wake_up_process - Wake up a specific process
  2026. * @p: The process to be woken up.
  2027. *
  2028. * Attempt to wake up the nominated process and move it to the set of runnable
  2029. * processes. Returns 1 if the process was woken up, 0 if it was already
  2030. * running.
  2031. *
  2032. * It may be assumed that this function implies a write memory barrier before
  2033. * changing the task state if and only if any tasks are woken up.
  2034. */
  2035. int wake_up_process(struct task_struct *p)
  2036. {
  2037. return try_to_wake_up(p, TASK_ALL, 0);
  2038. }
  2039. EXPORT_SYMBOL(wake_up_process);
  2040. int wake_up_state(struct task_struct *p, unsigned int state)
  2041. {
  2042. return try_to_wake_up(p, state, 0);
  2043. }
  2044. /*
  2045. * Perform scheduler related setup for a newly forked process p.
  2046. * p is forked by current.
  2047. *
  2048. * __sched_fork() is basic setup used by init_idle() too:
  2049. */
  2050. static void __sched_fork(struct task_struct *p)
  2051. {
  2052. p->se.exec_start = 0;
  2053. p->se.sum_exec_runtime = 0;
  2054. p->se.prev_sum_exec_runtime = 0;
  2055. p->se.nr_migrations = 0;
  2056. #ifdef CONFIG_SCHEDSTATS
  2057. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2058. #endif
  2059. INIT_LIST_HEAD(&p->rt.run_list);
  2060. p->se.on_rq = 0;
  2061. INIT_LIST_HEAD(&p->se.group_node);
  2062. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2063. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2064. #endif
  2065. }
  2066. /*
  2067. * fork()/clone()-time setup:
  2068. */
  2069. void sched_fork(struct task_struct *p, int clone_flags)
  2070. {
  2071. int cpu = get_cpu();
  2072. __sched_fork(p);
  2073. /*
  2074. * We mark the process as running here. This guarantees that
  2075. * nobody will actually run it, and a signal or other external
  2076. * event cannot wake it up and insert it on the runqueue either.
  2077. */
  2078. p->state = TASK_RUNNING;
  2079. /*
  2080. * Revert to default priority/policy on fork if requested.
  2081. */
  2082. if (unlikely(p->sched_reset_on_fork)) {
  2083. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2084. p->policy = SCHED_NORMAL;
  2085. p->normal_prio = p->static_prio;
  2086. }
  2087. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2088. p->static_prio = NICE_TO_PRIO(0);
  2089. p->normal_prio = p->static_prio;
  2090. set_load_weight(p);
  2091. }
  2092. /*
  2093. * We don't need the reset flag anymore after the fork. It has
  2094. * fulfilled its duty:
  2095. */
  2096. p->sched_reset_on_fork = 0;
  2097. }
  2098. /*
  2099. * Make sure we do not leak PI boosting priority to the child.
  2100. */
  2101. p->prio = current->normal_prio;
  2102. if (!rt_prio(p->prio))
  2103. p->sched_class = &fair_sched_class;
  2104. if (p->sched_class->task_fork)
  2105. p->sched_class->task_fork(p);
  2106. set_task_cpu(p, cpu);
  2107. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2108. if (likely(sched_info_on()))
  2109. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2110. #endif
  2111. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2112. p->oncpu = 0;
  2113. #endif
  2114. #ifdef CONFIG_PREEMPT
  2115. /* Want to start with kernel preemption disabled. */
  2116. task_thread_info(p)->preempt_count = 1;
  2117. #endif
  2118. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2119. put_cpu();
  2120. }
  2121. /*
  2122. * wake_up_new_task - wake up a newly created task for the first time.
  2123. *
  2124. * This function will do some initial scheduler statistics housekeeping
  2125. * that must be done for every newly created context, then puts the task
  2126. * on the runqueue and wakes it.
  2127. */
  2128. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2129. {
  2130. unsigned long flags;
  2131. struct rq *rq;
  2132. int cpu __maybe_unused = get_cpu();
  2133. #ifdef CONFIG_SMP
  2134. rq = task_rq_lock(p, &flags);
  2135. p->state = TASK_WAKING;
  2136. /*
  2137. * Fork balancing, do it here and not earlier because:
  2138. * - cpus_allowed can change in the fork path
  2139. * - any previously selected cpu might disappear through hotplug
  2140. *
  2141. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2142. * without people poking at ->cpus_allowed.
  2143. */
  2144. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2145. set_task_cpu(p, cpu);
  2146. p->state = TASK_RUNNING;
  2147. task_rq_unlock(rq, &flags);
  2148. #endif
  2149. rq = task_rq_lock(p, &flags);
  2150. activate_task(rq, p, 0);
  2151. trace_sched_wakeup_new(p, 1);
  2152. check_preempt_curr(rq, p, WF_FORK);
  2153. #ifdef CONFIG_SMP
  2154. if (p->sched_class->task_woken)
  2155. p->sched_class->task_woken(rq, p);
  2156. #endif
  2157. task_rq_unlock(rq, &flags);
  2158. put_cpu();
  2159. }
  2160. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2161. /**
  2162. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2163. * @notifier: notifier struct to register
  2164. */
  2165. void preempt_notifier_register(struct preempt_notifier *notifier)
  2166. {
  2167. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2168. }
  2169. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2170. /**
  2171. * preempt_notifier_unregister - no longer interested in preemption notifications
  2172. * @notifier: notifier struct to unregister
  2173. *
  2174. * This is safe to call from within a preemption notifier.
  2175. */
  2176. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2177. {
  2178. hlist_del(&notifier->link);
  2179. }
  2180. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2181. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2182. {
  2183. struct preempt_notifier *notifier;
  2184. struct hlist_node *node;
  2185. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2186. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2187. }
  2188. static void
  2189. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2190. struct task_struct *next)
  2191. {
  2192. struct preempt_notifier *notifier;
  2193. struct hlist_node *node;
  2194. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2195. notifier->ops->sched_out(notifier, next);
  2196. }
  2197. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2198. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2199. {
  2200. }
  2201. static void
  2202. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2203. struct task_struct *next)
  2204. {
  2205. }
  2206. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2207. /**
  2208. * prepare_task_switch - prepare to switch tasks
  2209. * @rq: the runqueue preparing to switch
  2210. * @prev: the current task that is being switched out
  2211. * @next: the task we are going to switch to.
  2212. *
  2213. * This is called with the rq lock held and interrupts off. It must
  2214. * be paired with a subsequent finish_task_switch after the context
  2215. * switch.
  2216. *
  2217. * prepare_task_switch sets up locking and calls architecture specific
  2218. * hooks.
  2219. */
  2220. static inline void
  2221. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2222. struct task_struct *next)
  2223. {
  2224. fire_sched_out_preempt_notifiers(prev, next);
  2225. prepare_lock_switch(rq, next);
  2226. prepare_arch_switch(next);
  2227. }
  2228. /**
  2229. * finish_task_switch - clean up after a task-switch
  2230. * @rq: runqueue associated with task-switch
  2231. * @prev: the thread we just switched away from.
  2232. *
  2233. * finish_task_switch must be called after the context switch, paired
  2234. * with a prepare_task_switch call before the context switch.
  2235. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2236. * and do any other architecture-specific cleanup actions.
  2237. *
  2238. * Note that we may have delayed dropping an mm in context_switch(). If
  2239. * so, we finish that here outside of the runqueue lock. (Doing it
  2240. * with the lock held can cause deadlocks; see schedule() for
  2241. * details.)
  2242. */
  2243. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2244. __releases(rq->lock)
  2245. {
  2246. struct mm_struct *mm = rq->prev_mm;
  2247. long prev_state;
  2248. rq->prev_mm = NULL;
  2249. /*
  2250. * A task struct has one reference for the use as "current".
  2251. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2252. * schedule one last time. The schedule call will never return, and
  2253. * the scheduled task must drop that reference.
  2254. * The test for TASK_DEAD must occur while the runqueue locks are
  2255. * still held, otherwise prev could be scheduled on another cpu, die
  2256. * there before we look at prev->state, and then the reference would
  2257. * be dropped twice.
  2258. * Manfred Spraul <manfred@colorfullife.com>
  2259. */
  2260. prev_state = prev->state;
  2261. finish_arch_switch(prev);
  2262. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2263. local_irq_disable();
  2264. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2265. perf_event_task_sched_in(current);
  2266. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2267. local_irq_enable();
  2268. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2269. finish_lock_switch(rq, prev);
  2270. fire_sched_in_preempt_notifiers(current);
  2271. if (mm)
  2272. mmdrop(mm);
  2273. if (unlikely(prev_state == TASK_DEAD)) {
  2274. /*
  2275. * Remove function-return probe instances associated with this
  2276. * task and put them back on the free list.
  2277. */
  2278. kprobe_flush_task(prev);
  2279. put_task_struct(prev);
  2280. }
  2281. }
  2282. #ifdef CONFIG_SMP
  2283. /* assumes rq->lock is held */
  2284. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2285. {
  2286. if (prev->sched_class->pre_schedule)
  2287. prev->sched_class->pre_schedule(rq, prev);
  2288. }
  2289. /* rq->lock is NOT held, but preemption is disabled */
  2290. static inline void post_schedule(struct rq *rq)
  2291. {
  2292. if (rq->post_schedule) {
  2293. unsigned long flags;
  2294. raw_spin_lock_irqsave(&rq->lock, flags);
  2295. if (rq->curr->sched_class->post_schedule)
  2296. rq->curr->sched_class->post_schedule(rq);
  2297. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2298. rq->post_schedule = 0;
  2299. }
  2300. }
  2301. #else
  2302. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2303. {
  2304. }
  2305. static inline void post_schedule(struct rq *rq)
  2306. {
  2307. }
  2308. #endif
  2309. /**
  2310. * schedule_tail - first thing a freshly forked thread must call.
  2311. * @prev: the thread we just switched away from.
  2312. */
  2313. asmlinkage void schedule_tail(struct task_struct *prev)
  2314. __releases(rq->lock)
  2315. {
  2316. struct rq *rq = this_rq();
  2317. finish_task_switch(rq, prev);
  2318. /*
  2319. * FIXME: do we need to worry about rq being invalidated by the
  2320. * task_switch?
  2321. */
  2322. post_schedule(rq);
  2323. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2324. /* In this case, finish_task_switch does not reenable preemption */
  2325. preempt_enable();
  2326. #endif
  2327. if (current->set_child_tid)
  2328. put_user(task_pid_vnr(current), current->set_child_tid);
  2329. }
  2330. /*
  2331. * context_switch - switch to the new MM and the new
  2332. * thread's register state.
  2333. */
  2334. static inline void
  2335. context_switch(struct rq *rq, struct task_struct *prev,
  2336. struct task_struct *next)
  2337. {
  2338. struct mm_struct *mm, *oldmm;
  2339. prepare_task_switch(rq, prev, next);
  2340. trace_sched_switch(prev, next);
  2341. mm = next->mm;
  2342. oldmm = prev->active_mm;
  2343. /*
  2344. * For paravirt, this is coupled with an exit in switch_to to
  2345. * combine the page table reload and the switch backend into
  2346. * one hypercall.
  2347. */
  2348. arch_start_context_switch(prev);
  2349. if (likely(!mm)) {
  2350. next->active_mm = oldmm;
  2351. atomic_inc(&oldmm->mm_count);
  2352. enter_lazy_tlb(oldmm, next);
  2353. } else
  2354. switch_mm(oldmm, mm, next);
  2355. if (likely(!prev->mm)) {
  2356. prev->active_mm = NULL;
  2357. rq->prev_mm = oldmm;
  2358. }
  2359. /*
  2360. * Since the runqueue lock will be released by the next
  2361. * task (which is an invalid locking op but in the case
  2362. * of the scheduler it's an obvious special-case), so we
  2363. * do an early lockdep release here:
  2364. */
  2365. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2366. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2367. #endif
  2368. /* Here we just switch the register state and the stack. */
  2369. switch_to(prev, next, prev);
  2370. barrier();
  2371. /*
  2372. * this_rq must be evaluated again because prev may have moved
  2373. * CPUs since it called schedule(), thus the 'rq' on its stack
  2374. * frame will be invalid.
  2375. */
  2376. finish_task_switch(this_rq(), prev);
  2377. }
  2378. /*
  2379. * nr_running, nr_uninterruptible and nr_context_switches:
  2380. *
  2381. * externally visible scheduler statistics: current number of runnable
  2382. * threads, current number of uninterruptible-sleeping threads, total
  2383. * number of context switches performed since bootup.
  2384. */
  2385. unsigned long nr_running(void)
  2386. {
  2387. unsigned long i, sum = 0;
  2388. for_each_online_cpu(i)
  2389. sum += cpu_rq(i)->nr_running;
  2390. return sum;
  2391. }
  2392. unsigned long nr_uninterruptible(void)
  2393. {
  2394. unsigned long i, sum = 0;
  2395. for_each_possible_cpu(i)
  2396. sum += cpu_rq(i)->nr_uninterruptible;
  2397. /*
  2398. * Since we read the counters lockless, it might be slightly
  2399. * inaccurate. Do not allow it to go below zero though:
  2400. */
  2401. if (unlikely((long)sum < 0))
  2402. sum = 0;
  2403. return sum;
  2404. }
  2405. unsigned long long nr_context_switches(void)
  2406. {
  2407. int i;
  2408. unsigned long long sum = 0;
  2409. for_each_possible_cpu(i)
  2410. sum += cpu_rq(i)->nr_switches;
  2411. return sum;
  2412. }
  2413. unsigned long nr_iowait(void)
  2414. {
  2415. unsigned long i, sum = 0;
  2416. for_each_possible_cpu(i)
  2417. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2418. return sum;
  2419. }
  2420. unsigned long nr_iowait_cpu(void)
  2421. {
  2422. struct rq *this = this_rq();
  2423. return atomic_read(&this->nr_iowait);
  2424. }
  2425. unsigned long this_cpu_load(void)
  2426. {
  2427. struct rq *this = this_rq();
  2428. return this->cpu_load[0];
  2429. }
  2430. /* Variables and functions for calc_load */
  2431. static atomic_long_t calc_load_tasks;
  2432. static unsigned long calc_load_update;
  2433. unsigned long avenrun[3];
  2434. EXPORT_SYMBOL(avenrun);
  2435. static long calc_load_fold_active(struct rq *this_rq)
  2436. {
  2437. long nr_active, delta = 0;
  2438. nr_active = this_rq->nr_running;
  2439. nr_active += (long) this_rq->nr_uninterruptible;
  2440. if (nr_active != this_rq->calc_load_active) {
  2441. delta = nr_active - this_rq->calc_load_active;
  2442. this_rq->calc_load_active = nr_active;
  2443. }
  2444. return delta;
  2445. }
  2446. #ifdef CONFIG_NO_HZ
  2447. /*
  2448. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2449. *
  2450. * When making the ILB scale, we should try to pull this in as well.
  2451. */
  2452. static atomic_long_t calc_load_tasks_idle;
  2453. static void calc_load_account_idle(struct rq *this_rq)
  2454. {
  2455. long delta;
  2456. delta = calc_load_fold_active(this_rq);
  2457. if (delta)
  2458. atomic_long_add(delta, &calc_load_tasks_idle);
  2459. }
  2460. static long calc_load_fold_idle(void)
  2461. {
  2462. long delta = 0;
  2463. /*
  2464. * Its got a race, we don't care...
  2465. */
  2466. if (atomic_long_read(&calc_load_tasks_idle))
  2467. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2468. return delta;
  2469. }
  2470. #else
  2471. static void calc_load_account_idle(struct rq *this_rq)
  2472. {
  2473. }
  2474. static inline long calc_load_fold_idle(void)
  2475. {
  2476. return 0;
  2477. }
  2478. #endif
  2479. /**
  2480. * get_avenrun - get the load average array
  2481. * @loads: pointer to dest load array
  2482. * @offset: offset to add
  2483. * @shift: shift count to shift the result left
  2484. *
  2485. * These values are estimates at best, so no need for locking.
  2486. */
  2487. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2488. {
  2489. loads[0] = (avenrun[0] + offset) << shift;
  2490. loads[1] = (avenrun[1] + offset) << shift;
  2491. loads[2] = (avenrun[2] + offset) << shift;
  2492. }
  2493. static unsigned long
  2494. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2495. {
  2496. load *= exp;
  2497. load += active * (FIXED_1 - exp);
  2498. return load >> FSHIFT;
  2499. }
  2500. /*
  2501. * calc_load - update the avenrun load estimates 10 ticks after the
  2502. * CPUs have updated calc_load_tasks.
  2503. */
  2504. void calc_global_load(void)
  2505. {
  2506. unsigned long upd = calc_load_update + 10;
  2507. long active;
  2508. if (time_before(jiffies, upd))
  2509. return;
  2510. active = atomic_long_read(&calc_load_tasks);
  2511. active = active > 0 ? active * FIXED_1 : 0;
  2512. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2513. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2514. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2515. calc_load_update += LOAD_FREQ;
  2516. }
  2517. /*
  2518. * Called from update_cpu_load() to periodically update this CPU's
  2519. * active count.
  2520. */
  2521. static void calc_load_account_active(struct rq *this_rq)
  2522. {
  2523. long delta;
  2524. if (time_before(jiffies, this_rq->calc_load_update))
  2525. return;
  2526. delta = calc_load_fold_active(this_rq);
  2527. delta += calc_load_fold_idle();
  2528. if (delta)
  2529. atomic_long_add(delta, &calc_load_tasks);
  2530. this_rq->calc_load_update += LOAD_FREQ;
  2531. }
  2532. /*
  2533. * Update rq->cpu_load[] statistics. This function is usually called every
  2534. * scheduler tick (TICK_NSEC).
  2535. */
  2536. static void update_cpu_load(struct rq *this_rq)
  2537. {
  2538. unsigned long this_load = this_rq->load.weight;
  2539. int i, scale;
  2540. this_rq->nr_load_updates++;
  2541. /* Update our load: */
  2542. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2543. unsigned long old_load, new_load;
  2544. /* scale is effectively 1 << i now, and >> i divides by scale */
  2545. old_load = this_rq->cpu_load[i];
  2546. new_load = this_load;
  2547. /*
  2548. * Round up the averaging division if load is increasing. This
  2549. * prevents us from getting stuck on 9 if the load is 10, for
  2550. * example.
  2551. */
  2552. if (new_load > old_load)
  2553. new_load += scale-1;
  2554. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2555. }
  2556. calc_load_account_active(this_rq);
  2557. }
  2558. #ifdef CONFIG_SMP
  2559. /*
  2560. * sched_exec - execve() is a valuable balancing opportunity, because at
  2561. * this point the task has the smallest effective memory and cache footprint.
  2562. */
  2563. void sched_exec(void)
  2564. {
  2565. struct task_struct *p = current;
  2566. unsigned long flags;
  2567. struct rq *rq;
  2568. int dest_cpu;
  2569. rq = task_rq_lock(p, &flags);
  2570. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2571. if (dest_cpu == smp_processor_id())
  2572. goto unlock;
  2573. /*
  2574. * select_task_rq() can race against ->cpus_allowed
  2575. */
  2576. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2577. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2578. struct migration_arg arg = { p, dest_cpu };
  2579. task_rq_unlock(rq, &flags);
  2580. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2581. return;
  2582. }
  2583. unlock:
  2584. task_rq_unlock(rq, &flags);
  2585. }
  2586. #endif
  2587. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2588. EXPORT_PER_CPU_SYMBOL(kstat);
  2589. /*
  2590. * Return any ns on the sched_clock that have not yet been accounted in
  2591. * @p in case that task is currently running.
  2592. *
  2593. * Called with task_rq_lock() held on @rq.
  2594. */
  2595. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2596. {
  2597. u64 ns = 0;
  2598. if (task_current(rq, p)) {
  2599. update_rq_clock(rq);
  2600. ns = rq->clock - p->se.exec_start;
  2601. if ((s64)ns < 0)
  2602. ns = 0;
  2603. }
  2604. return ns;
  2605. }
  2606. unsigned long long task_delta_exec(struct task_struct *p)
  2607. {
  2608. unsigned long flags;
  2609. struct rq *rq;
  2610. u64 ns = 0;
  2611. rq = task_rq_lock(p, &flags);
  2612. ns = do_task_delta_exec(p, rq);
  2613. task_rq_unlock(rq, &flags);
  2614. return ns;
  2615. }
  2616. /*
  2617. * Return accounted runtime for the task.
  2618. * In case the task is currently running, return the runtime plus current's
  2619. * pending runtime that have not been accounted yet.
  2620. */
  2621. unsigned long long task_sched_runtime(struct task_struct *p)
  2622. {
  2623. unsigned long flags;
  2624. struct rq *rq;
  2625. u64 ns = 0;
  2626. rq = task_rq_lock(p, &flags);
  2627. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2628. task_rq_unlock(rq, &flags);
  2629. return ns;
  2630. }
  2631. /*
  2632. * Return sum_exec_runtime for the thread group.
  2633. * In case the task is currently running, return the sum plus current's
  2634. * pending runtime that have not been accounted yet.
  2635. *
  2636. * Note that the thread group might have other running tasks as well,
  2637. * so the return value not includes other pending runtime that other
  2638. * running tasks might have.
  2639. */
  2640. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2641. {
  2642. struct task_cputime totals;
  2643. unsigned long flags;
  2644. struct rq *rq;
  2645. u64 ns;
  2646. rq = task_rq_lock(p, &flags);
  2647. thread_group_cputime(p, &totals);
  2648. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2649. task_rq_unlock(rq, &flags);
  2650. return ns;
  2651. }
  2652. /*
  2653. * Account user cpu time to a process.
  2654. * @p: the process that the cpu time gets accounted to
  2655. * @cputime: the cpu time spent in user space since the last update
  2656. * @cputime_scaled: cputime scaled by cpu frequency
  2657. */
  2658. void account_user_time(struct task_struct *p, cputime_t cputime,
  2659. cputime_t cputime_scaled)
  2660. {
  2661. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2662. cputime64_t tmp;
  2663. /* Add user time to process. */
  2664. p->utime = cputime_add(p->utime, cputime);
  2665. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2666. account_group_user_time(p, cputime);
  2667. /* Add user time to cpustat. */
  2668. tmp = cputime_to_cputime64(cputime);
  2669. if (TASK_NICE(p) > 0)
  2670. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2671. else
  2672. cpustat->user = cputime64_add(cpustat->user, tmp);
  2673. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2674. /* Account for user time used */
  2675. acct_update_integrals(p);
  2676. }
  2677. /*
  2678. * Account guest cpu time to a process.
  2679. * @p: the process that the cpu time gets accounted to
  2680. * @cputime: the cpu time spent in virtual machine since the last update
  2681. * @cputime_scaled: cputime scaled by cpu frequency
  2682. */
  2683. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2684. cputime_t cputime_scaled)
  2685. {
  2686. cputime64_t tmp;
  2687. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2688. tmp = cputime_to_cputime64(cputime);
  2689. /* Add guest time to process. */
  2690. p->utime = cputime_add(p->utime, cputime);
  2691. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2692. account_group_user_time(p, cputime);
  2693. p->gtime = cputime_add(p->gtime, cputime);
  2694. /* Add guest time to cpustat. */
  2695. if (TASK_NICE(p) > 0) {
  2696. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2697. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2698. } else {
  2699. cpustat->user = cputime64_add(cpustat->user, tmp);
  2700. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2701. }
  2702. }
  2703. /*
  2704. * Account system cpu time to a process.
  2705. * @p: the process that the cpu time gets accounted to
  2706. * @hardirq_offset: the offset to subtract from hardirq_count()
  2707. * @cputime: the cpu time spent in kernel space since the last update
  2708. * @cputime_scaled: cputime scaled by cpu frequency
  2709. */
  2710. void account_system_time(struct task_struct *p, int hardirq_offset,
  2711. cputime_t cputime, cputime_t cputime_scaled)
  2712. {
  2713. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2714. cputime64_t tmp;
  2715. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2716. account_guest_time(p, cputime, cputime_scaled);
  2717. return;
  2718. }
  2719. /* Add system time to process. */
  2720. p->stime = cputime_add(p->stime, cputime);
  2721. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2722. account_group_system_time(p, cputime);
  2723. /* Add system time to cpustat. */
  2724. tmp = cputime_to_cputime64(cputime);
  2725. if (hardirq_count() - hardirq_offset)
  2726. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2727. else if (softirq_count())
  2728. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2729. else
  2730. cpustat->system = cputime64_add(cpustat->system, tmp);
  2731. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2732. /* Account for system time used */
  2733. acct_update_integrals(p);
  2734. }
  2735. /*
  2736. * Account for involuntary wait time.
  2737. * @steal: the cpu time spent in involuntary wait
  2738. */
  2739. void account_steal_time(cputime_t cputime)
  2740. {
  2741. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2742. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2743. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2744. }
  2745. /*
  2746. * Account for idle time.
  2747. * @cputime: the cpu time spent in idle wait
  2748. */
  2749. void account_idle_time(cputime_t cputime)
  2750. {
  2751. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2752. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2753. struct rq *rq = this_rq();
  2754. if (atomic_read(&rq->nr_iowait) > 0)
  2755. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2756. else
  2757. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2758. }
  2759. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2760. /*
  2761. * Account a single tick of cpu time.
  2762. * @p: the process that the cpu time gets accounted to
  2763. * @user_tick: indicates if the tick is a user or a system tick
  2764. */
  2765. void account_process_tick(struct task_struct *p, int user_tick)
  2766. {
  2767. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2768. struct rq *rq = this_rq();
  2769. if (user_tick)
  2770. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2771. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2772. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2773. one_jiffy_scaled);
  2774. else
  2775. account_idle_time(cputime_one_jiffy);
  2776. }
  2777. /*
  2778. * Account multiple ticks of steal time.
  2779. * @p: the process from which the cpu time has been stolen
  2780. * @ticks: number of stolen ticks
  2781. */
  2782. void account_steal_ticks(unsigned long ticks)
  2783. {
  2784. account_steal_time(jiffies_to_cputime(ticks));
  2785. }
  2786. /*
  2787. * Account multiple ticks of idle time.
  2788. * @ticks: number of stolen ticks
  2789. */
  2790. void account_idle_ticks(unsigned long ticks)
  2791. {
  2792. account_idle_time(jiffies_to_cputime(ticks));
  2793. }
  2794. #endif
  2795. /*
  2796. * Use precise platform statistics if available:
  2797. */
  2798. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2799. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2800. {
  2801. *ut = p->utime;
  2802. *st = p->stime;
  2803. }
  2804. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2805. {
  2806. struct task_cputime cputime;
  2807. thread_group_cputime(p, &cputime);
  2808. *ut = cputime.utime;
  2809. *st = cputime.stime;
  2810. }
  2811. #else
  2812. #ifndef nsecs_to_cputime
  2813. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2814. #endif
  2815. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2816. {
  2817. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2818. /*
  2819. * Use CFS's precise accounting:
  2820. */
  2821. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2822. if (total) {
  2823. u64 temp;
  2824. temp = (u64)(rtime * utime);
  2825. do_div(temp, total);
  2826. utime = (cputime_t)temp;
  2827. } else
  2828. utime = rtime;
  2829. /*
  2830. * Compare with previous values, to keep monotonicity:
  2831. */
  2832. p->prev_utime = max(p->prev_utime, utime);
  2833. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2834. *ut = p->prev_utime;
  2835. *st = p->prev_stime;
  2836. }
  2837. /*
  2838. * Must be called with siglock held.
  2839. */
  2840. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2841. {
  2842. struct signal_struct *sig = p->signal;
  2843. struct task_cputime cputime;
  2844. cputime_t rtime, utime, total;
  2845. thread_group_cputime(p, &cputime);
  2846. total = cputime_add(cputime.utime, cputime.stime);
  2847. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2848. if (total) {
  2849. u64 temp;
  2850. temp = (u64)(rtime * cputime.utime);
  2851. do_div(temp, total);
  2852. utime = (cputime_t)temp;
  2853. } else
  2854. utime = rtime;
  2855. sig->prev_utime = max(sig->prev_utime, utime);
  2856. sig->prev_stime = max(sig->prev_stime,
  2857. cputime_sub(rtime, sig->prev_utime));
  2858. *ut = sig->prev_utime;
  2859. *st = sig->prev_stime;
  2860. }
  2861. #endif
  2862. /*
  2863. * This function gets called by the timer code, with HZ frequency.
  2864. * We call it with interrupts disabled.
  2865. *
  2866. * It also gets called by the fork code, when changing the parent's
  2867. * timeslices.
  2868. */
  2869. void scheduler_tick(void)
  2870. {
  2871. int cpu = smp_processor_id();
  2872. struct rq *rq = cpu_rq(cpu);
  2873. struct task_struct *curr = rq->curr;
  2874. sched_clock_tick();
  2875. raw_spin_lock(&rq->lock);
  2876. update_rq_clock(rq);
  2877. update_cpu_load(rq);
  2878. curr->sched_class->task_tick(rq, curr, 0);
  2879. raw_spin_unlock(&rq->lock);
  2880. perf_event_task_tick(curr);
  2881. #ifdef CONFIG_SMP
  2882. rq->idle_at_tick = idle_cpu(cpu);
  2883. trigger_load_balance(rq, cpu);
  2884. #endif
  2885. }
  2886. notrace unsigned long get_parent_ip(unsigned long addr)
  2887. {
  2888. if (in_lock_functions(addr)) {
  2889. addr = CALLER_ADDR2;
  2890. if (in_lock_functions(addr))
  2891. addr = CALLER_ADDR3;
  2892. }
  2893. return addr;
  2894. }
  2895. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2896. defined(CONFIG_PREEMPT_TRACER))
  2897. void __kprobes add_preempt_count(int val)
  2898. {
  2899. #ifdef CONFIG_DEBUG_PREEMPT
  2900. /*
  2901. * Underflow?
  2902. */
  2903. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2904. return;
  2905. #endif
  2906. preempt_count() += val;
  2907. #ifdef CONFIG_DEBUG_PREEMPT
  2908. /*
  2909. * Spinlock count overflowing soon?
  2910. */
  2911. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2912. PREEMPT_MASK - 10);
  2913. #endif
  2914. if (preempt_count() == val)
  2915. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2916. }
  2917. EXPORT_SYMBOL(add_preempt_count);
  2918. void __kprobes sub_preempt_count(int val)
  2919. {
  2920. #ifdef CONFIG_DEBUG_PREEMPT
  2921. /*
  2922. * Underflow?
  2923. */
  2924. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2925. return;
  2926. /*
  2927. * Is the spinlock portion underflowing?
  2928. */
  2929. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2930. !(preempt_count() & PREEMPT_MASK)))
  2931. return;
  2932. #endif
  2933. if (preempt_count() == val)
  2934. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2935. preempt_count() -= val;
  2936. }
  2937. EXPORT_SYMBOL(sub_preempt_count);
  2938. #endif
  2939. /*
  2940. * Print scheduling while atomic bug:
  2941. */
  2942. static noinline void __schedule_bug(struct task_struct *prev)
  2943. {
  2944. struct pt_regs *regs = get_irq_regs();
  2945. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2946. prev->comm, prev->pid, preempt_count());
  2947. debug_show_held_locks(prev);
  2948. print_modules();
  2949. if (irqs_disabled())
  2950. print_irqtrace_events(prev);
  2951. if (regs)
  2952. show_regs(regs);
  2953. else
  2954. dump_stack();
  2955. }
  2956. /*
  2957. * Various schedule()-time debugging checks and statistics:
  2958. */
  2959. static inline void schedule_debug(struct task_struct *prev)
  2960. {
  2961. /*
  2962. * Test if we are atomic. Since do_exit() needs to call into
  2963. * schedule() atomically, we ignore that path for now.
  2964. * Otherwise, whine if we are scheduling when we should not be.
  2965. */
  2966. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2967. __schedule_bug(prev);
  2968. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2969. schedstat_inc(this_rq(), sched_count);
  2970. #ifdef CONFIG_SCHEDSTATS
  2971. if (unlikely(prev->lock_depth >= 0)) {
  2972. schedstat_inc(this_rq(), bkl_count);
  2973. schedstat_inc(prev, sched_info.bkl_count);
  2974. }
  2975. #endif
  2976. }
  2977. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2978. {
  2979. if (prev->se.on_rq)
  2980. update_rq_clock(rq);
  2981. rq->skip_clock_update = 0;
  2982. prev->sched_class->put_prev_task(rq, prev);
  2983. }
  2984. /*
  2985. * Pick up the highest-prio task:
  2986. */
  2987. static inline struct task_struct *
  2988. pick_next_task(struct rq *rq)
  2989. {
  2990. const struct sched_class *class;
  2991. struct task_struct *p;
  2992. /*
  2993. * Optimization: we know that if all tasks are in
  2994. * the fair class we can call that function directly:
  2995. */
  2996. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2997. p = fair_sched_class.pick_next_task(rq);
  2998. if (likely(p))
  2999. return p;
  3000. }
  3001. class = sched_class_highest;
  3002. for ( ; ; ) {
  3003. p = class->pick_next_task(rq);
  3004. if (p)
  3005. return p;
  3006. /*
  3007. * Will never be NULL as the idle class always
  3008. * returns a non-NULL p:
  3009. */
  3010. class = class->next;
  3011. }
  3012. }
  3013. /*
  3014. * schedule() is the main scheduler function.
  3015. */
  3016. asmlinkage void __sched schedule(void)
  3017. {
  3018. struct task_struct *prev, *next;
  3019. unsigned long *switch_count;
  3020. struct rq *rq;
  3021. int cpu;
  3022. need_resched:
  3023. preempt_disable();
  3024. cpu = smp_processor_id();
  3025. rq = cpu_rq(cpu);
  3026. rcu_note_context_switch(cpu);
  3027. prev = rq->curr;
  3028. switch_count = &prev->nivcsw;
  3029. release_kernel_lock(prev);
  3030. need_resched_nonpreemptible:
  3031. schedule_debug(prev);
  3032. if (sched_feat(HRTICK))
  3033. hrtick_clear(rq);
  3034. raw_spin_lock_irq(&rq->lock);
  3035. clear_tsk_need_resched(prev);
  3036. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3037. if (unlikely(signal_pending_state(prev->state, prev)))
  3038. prev->state = TASK_RUNNING;
  3039. else
  3040. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3041. switch_count = &prev->nvcsw;
  3042. }
  3043. pre_schedule(rq, prev);
  3044. if (unlikely(!rq->nr_running))
  3045. idle_balance(cpu, rq);
  3046. put_prev_task(rq, prev);
  3047. next = pick_next_task(rq);
  3048. if (likely(prev != next)) {
  3049. sched_info_switch(prev, next);
  3050. perf_event_task_sched_out(prev, next);
  3051. rq->nr_switches++;
  3052. rq->curr = next;
  3053. ++*switch_count;
  3054. context_switch(rq, prev, next); /* unlocks the rq */
  3055. /*
  3056. * the context switch might have flipped the stack from under
  3057. * us, hence refresh the local variables.
  3058. */
  3059. cpu = smp_processor_id();
  3060. rq = cpu_rq(cpu);
  3061. } else
  3062. raw_spin_unlock_irq(&rq->lock);
  3063. post_schedule(rq);
  3064. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3065. prev = rq->curr;
  3066. switch_count = &prev->nivcsw;
  3067. goto need_resched_nonpreemptible;
  3068. }
  3069. preempt_enable_no_resched();
  3070. if (need_resched())
  3071. goto need_resched;
  3072. }
  3073. EXPORT_SYMBOL(schedule);
  3074. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3075. /*
  3076. * Look out! "owner" is an entirely speculative pointer
  3077. * access and not reliable.
  3078. */
  3079. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3080. {
  3081. unsigned int cpu;
  3082. struct rq *rq;
  3083. if (!sched_feat(OWNER_SPIN))
  3084. return 0;
  3085. #ifdef CONFIG_DEBUG_PAGEALLOC
  3086. /*
  3087. * Need to access the cpu field knowing that
  3088. * DEBUG_PAGEALLOC could have unmapped it if
  3089. * the mutex owner just released it and exited.
  3090. */
  3091. if (probe_kernel_address(&owner->cpu, cpu))
  3092. return 0;
  3093. #else
  3094. cpu = owner->cpu;
  3095. #endif
  3096. /*
  3097. * Even if the access succeeded (likely case),
  3098. * the cpu field may no longer be valid.
  3099. */
  3100. if (cpu >= nr_cpumask_bits)
  3101. return 0;
  3102. /*
  3103. * We need to validate that we can do a
  3104. * get_cpu() and that we have the percpu area.
  3105. */
  3106. if (!cpu_online(cpu))
  3107. return 0;
  3108. rq = cpu_rq(cpu);
  3109. for (;;) {
  3110. /*
  3111. * Owner changed, break to re-assess state.
  3112. */
  3113. if (lock->owner != owner)
  3114. break;
  3115. /*
  3116. * Is that owner really running on that cpu?
  3117. */
  3118. if (task_thread_info(rq->curr) != owner || need_resched())
  3119. return 0;
  3120. cpu_relax();
  3121. }
  3122. return 1;
  3123. }
  3124. #endif
  3125. #ifdef CONFIG_PREEMPT
  3126. /*
  3127. * this is the entry point to schedule() from in-kernel preemption
  3128. * off of preempt_enable. Kernel preemptions off return from interrupt
  3129. * occur there and call schedule directly.
  3130. */
  3131. asmlinkage void __sched preempt_schedule(void)
  3132. {
  3133. struct thread_info *ti = current_thread_info();
  3134. /*
  3135. * If there is a non-zero preempt_count or interrupts are disabled,
  3136. * we do not want to preempt the current task. Just return..
  3137. */
  3138. if (likely(ti->preempt_count || irqs_disabled()))
  3139. return;
  3140. do {
  3141. add_preempt_count(PREEMPT_ACTIVE);
  3142. schedule();
  3143. sub_preempt_count(PREEMPT_ACTIVE);
  3144. /*
  3145. * Check again in case we missed a preemption opportunity
  3146. * between schedule and now.
  3147. */
  3148. barrier();
  3149. } while (need_resched());
  3150. }
  3151. EXPORT_SYMBOL(preempt_schedule);
  3152. /*
  3153. * this is the entry point to schedule() from kernel preemption
  3154. * off of irq context.
  3155. * Note, that this is called and return with irqs disabled. This will
  3156. * protect us against recursive calling from irq.
  3157. */
  3158. asmlinkage void __sched preempt_schedule_irq(void)
  3159. {
  3160. struct thread_info *ti = current_thread_info();
  3161. /* Catch callers which need to be fixed */
  3162. BUG_ON(ti->preempt_count || !irqs_disabled());
  3163. do {
  3164. add_preempt_count(PREEMPT_ACTIVE);
  3165. local_irq_enable();
  3166. schedule();
  3167. local_irq_disable();
  3168. sub_preempt_count(PREEMPT_ACTIVE);
  3169. /*
  3170. * Check again in case we missed a preemption opportunity
  3171. * between schedule and now.
  3172. */
  3173. barrier();
  3174. } while (need_resched());
  3175. }
  3176. #endif /* CONFIG_PREEMPT */
  3177. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3178. void *key)
  3179. {
  3180. return try_to_wake_up(curr->private, mode, wake_flags);
  3181. }
  3182. EXPORT_SYMBOL(default_wake_function);
  3183. /*
  3184. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3185. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3186. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3187. *
  3188. * There are circumstances in which we can try to wake a task which has already
  3189. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3190. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3191. */
  3192. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3193. int nr_exclusive, int wake_flags, void *key)
  3194. {
  3195. wait_queue_t *curr, *next;
  3196. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3197. unsigned flags = curr->flags;
  3198. if (curr->func(curr, mode, wake_flags, key) &&
  3199. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3200. break;
  3201. }
  3202. }
  3203. /**
  3204. * __wake_up - wake up threads blocked on a waitqueue.
  3205. * @q: the waitqueue
  3206. * @mode: which threads
  3207. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3208. * @key: is directly passed to the wakeup function
  3209. *
  3210. * It may be assumed that this function implies a write memory barrier before
  3211. * changing the task state if and only if any tasks are woken up.
  3212. */
  3213. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3214. int nr_exclusive, void *key)
  3215. {
  3216. unsigned long flags;
  3217. spin_lock_irqsave(&q->lock, flags);
  3218. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3219. spin_unlock_irqrestore(&q->lock, flags);
  3220. }
  3221. EXPORT_SYMBOL(__wake_up);
  3222. /*
  3223. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3224. */
  3225. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3226. {
  3227. __wake_up_common(q, mode, 1, 0, NULL);
  3228. }
  3229. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3230. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3231. {
  3232. __wake_up_common(q, mode, 1, 0, key);
  3233. }
  3234. /**
  3235. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3236. * @q: the waitqueue
  3237. * @mode: which threads
  3238. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3239. * @key: opaque value to be passed to wakeup targets
  3240. *
  3241. * The sync wakeup differs that the waker knows that it will schedule
  3242. * away soon, so while the target thread will be woken up, it will not
  3243. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3244. * with each other. This can prevent needless bouncing between CPUs.
  3245. *
  3246. * On UP it can prevent extra preemption.
  3247. *
  3248. * It may be assumed that this function implies a write memory barrier before
  3249. * changing the task state if and only if any tasks are woken up.
  3250. */
  3251. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3252. int nr_exclusive, void *key)
  3253. {
  3254. unsigned long flags;
  3255. int wake_flags = WF_SYNC;
  3256. if (unlikely(!q))
  3257. return;
  3258. if (unlikely(!nr_exclusive))
  3259. wake_flags = 0;
  3260. spin_lock_irqsave(&q->lock, flags);
  3261. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3262. spin_unlock_irqrestore(&q->lock, flags);
  3263. }
  3264. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3265. /*
  3266. * __wake_up_sync - see __wake_up_sync_key()
  3267. */
  3268. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3269. {
  3270. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3271. }
  3272. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3273. /**
  3274. * complete: - signals a single thread waiting on this completion
  3275. * @x: holds the state of this particular completion
  3276. *
  3277. * This will wake up a single thread waiting on this completion. Threads will be
  3278. * awakened in the same order in which they were queued.
  3279. *
  3280. * See also complete_all(), wait_for_completion() and related routines.
  3281. *
  3282. * It may be assumed that this function implies a write memory barrier before
  3283. * changing the task state if and only if any tasks are woken up.
  3284. */
  3285. void complete(struct completion *x)
  3286. {
  3287. unsigned long flags;
  3288. spin_lock_irqsave(&x->wait.lock, flags);
  3289. x->done++;
  3290. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3291. spin_unlock_irqrestore(&x->wait.lock, flags);
  3292. }
  3293. EXPORT_SYMBOL(complete);
  3294. /**
  3295. * complete_all: - signals all threads waiting on this completion
  3296. * @x: holds the state of this particular completion
  3297. *
  3298. * This will wake up all threads waiting on this particular completion event.
  3299. *
  3300. * It may be assumed that this function implies a write memory barrier before
  3301. * changing the task state if and only if any tasks are woken up.
  3302. */
  3303. void complete_all(struct completion *x)
  3304. {
  3305. unsigned long flags;
  3306. spin_lock_irqsave(&x->wait.lock, flags);
  3307. x->done += UINT_MAX/2;
  3308. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3309. spin_unlock_irqrestore(&x->wait.lock, flags);
  3310. }
  3311. EXPORT_SYMBOL(complete_all);
  3312. static inline long __sched
  3313. do_wait_for_common(struct completion *x, long timeout, int state)
  3314. {
  3315. if (!x->done) {
  3316. DECLARE_WAITQUEUE(wait, current);
  3317. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3318. do {
  3319. if (signal_pending_state(state, current)) {
  3320. timeout = -ERESTARTSYS;
  3321. break;
  3322. }
  3323. __set_current_state(state);
  3324. spin_unlock_irq(&x->wait.lock);
  3325. timeout = schedule_timeout(timeout);
  3326. spin_lock_irq(&x->wait.lock);
  3327. } while (!x->done && timeout);
  3328. __remove_wait_queue(&x->wait, &wait);
  3329. if (!x->done)
  3330. return timeout;
  3331. }
  3332. x->done--;
  3333. return timeout ?: 1;
  3334. }
  3335. static long __sched
  3336. wait_for_common(struct completion *x, long timeout, int state)
  3337. {
  3338. might_sleep();
  3339. spin_lock_irq(&x->wait.lock);
  3340. timeout = do_wait_for_common(x, timeout, state);
  3341. spin_unlock_irq(&x->wait.lock);
  3342. return timeout;
  3343. }
  3344. /**
  3345. * wait_for_completion: - waits for completion of a task
  3346. * @x: holds the state of this particular completion
  3347. *
  3348. * This waits to be signaled for completion of a specific task. It is NOT
  3349. * interruptible and there is no timeout.
  3350. *
  3351. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3352. * and interrupt capability. Also see complete().
  3353. */
  3354. void __sched wait_for_completion(struct completion *x)
  3355. {
  3356. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3357. }
  3358. EXPORT_SYMBOL(wait_for_completion);
  3359. /**
  3360. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3361. * @x: holds the state of this particular completion
  3362. * @timeout: timeout value in jiffies
  3363. *
  3364. * This waits for either a completion of a specific task to be signaled or for a
  3365. * specified timeout to expire. The timeout is in jiffies. It is not
  3366. * interruptible.
  3367. */
  3368. unsigned long __sched
  3369. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3370. {
  3371. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3372. }
  3373. EXPORT_SYMBOL(wait_for_completion_timeout);
  3374. /**
  3375. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3376. * @x: holds the state of this particular completion
  3377. *
  3378. * This waits for completion of a specific task to be signaled. It is
  3379. * interruptible.
  3380. */
  3381. int __sched wait_for_completion_interruptible(struct completion *x)
  3382. {
  3383. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3384. if (t == -ERESTARTSYS)
  3385. return t;
  3386. return 0;
  3387. }
  3388. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3389. /**
  3390. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3391. * @x: holds the state of this particular completion
  3392. * @timeout: timeout value in jiffies
  3393. *
  3394. * This waits for either a completion of a specific task to be signaled or for a
  3395. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3396. */
  3397. unsigned long __sched
  3398. wait_for_completion_interruptible_timeout(struct completion *x,
  3399. unsigned long timeout)
  3400. {
  3401. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3402. }
  3403. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3404. /**
  3405. * wait_for_completion_killable: - waits for completion of a task (killable)
  3406. * @x: holds the state of this particular completion
  3407. *
  3408. * This waits to be signaled for completion of a specific task. It can be
  3409. * interrupted by a kill signal.
  3410. */
  3411. int __sched wait_for_completion_killable(struct completion *x)
  3412. {
  3413. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3414. if (t == -ERESTARTSYS)
  3415. return t;
  3416. return 0;
  3417. }
  3418. EXPORT_SYMBOL(wait_for_completion_killable);
  3419. /**
  3420. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3421. * @x: holds the state of this particular completion
  3422. * @timeout: timeout value in jiffies
  3423. *
  3424. * This waits for either a completion of a specific task to be
  3425. * signaled or for a specified timeout to expire. It can be
  3426. * interrupted by a kill signal. The timeout is in jiffies.
  3427. */
  3428. unsigned long __sched
  3429. wait_for_completion_killable_timeout(struct completion *x,
  3430. unsigned long timeout)
  3431. {
  3432. return wait_for_common(x, timeout, TASK_KILLABLE);
  3433. }
  3434. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3435. /**
  3436. * try_wait_for_completion - try to decrement a completion without blocking
  3437. * @x: completion structure
  3438. *
  3439. * Returns: 0 if a decrement cannot be done without blocking
  3440. * 1 if a decrement succeeded.
  3441. *
  3442. * If a completion is being used as a counting completion,
  3443. * attempt to decrement the counter without blocking. This
  3444. * enables us to avoid waiting if the resource the completion
  3445. * is protecting is not available.
  3446. */
  3447. bool try_wait_for_completion(struct completion *x)
  3448. {
  3449. unsigned long flags;
  3450. int ret = 1;
  3451. spin_lock_irqsave(&x->wait.lock, flags);
  3452. if (!x->done)
  3453. ret = 0;
  3454. else
  3455. x->done--;
  3456. spin_unlock_irqrestore(&x->wait.lock, flags);
  3457. return ret;
  3458. }
  3459. EXPORT_SYMBOL(try_wait_for_completion);
  3460. /**
  3461. * completion_done - Test to see if a completion has any waiters
  3462. * @x: completion structure
  3463. *
  3464. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3465. * 1 if there are no waiters.
  3466. *
  3467. */
  3468. bool completion_done(struct completion *x)
  3469. {
  3470. unsigned long flags;
  3471. int ret = 1;
  3472. spin_lock_irqsave(&x->wait.lock, flags);
  3473. if (!x->done)
  3474. ret = 0;
  3475. spin_unlock_irqrestore(&x->wait.lock, flags);
  3476. return ret;
  3477. }
  3478. EXPORT_SYMBOL(completion_done);
  3479. static long __sched
  3480. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3481. {
  3482. unsigned long flags;
  3483. wait_queue_t wait;
  3484. init_waitqueue_entry(&wait, current);
  3485. __set_current_state(state);
  3486. spin_lock_irqsave(&q->lock, flags);
  3487. __add_wait_queue(q, &wait);
  3488. spin_unlock(&q->lock);
  3489. timeout = schedule_timeout(timeout);
  3490. spin_lock_irq(&q->lock);
  3491. __remove_wait_queue(q, &wait);
  3492. spin_unlock_irqrestore(&q->lock, flags);
  3493. return timeout;
  3494. }
  3495. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3496. {
  3497. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3498. }
  3499. EXPORT_SYMBOL(interruptible_sleep_on);
  3500. long __sched
  3501. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3502. {
  3503. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3504. }
  3505. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3506. void __sched sleep_on(wait_queue_head_t *q)
  3507. {
  3508. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3509. }
  3510. EXPORT_SYMBOL(sleep_on);
  3511. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3512. {
  3513. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3514. }
  3515. EXPORT_SYMBOL(sleep_on_timeout);
  3516. #ifdef CONFIG_RT_MUTEXES
  3517. /*
  3518. * rt_mutex_setprio - set the current priority of a task
  3519. * @p: task
  3520. * @prio: prio value (kernel-internal form)
  3521. *
  3522. * This function changes the 'effective' priority of a task. It does
  3523. * not touch ->normal_prio like __setscheduler().
  3524. *
  3525. * Used by the rt_mutex code to implement priority inheritance logic.
  3526. */
  3527. void rt_mutex_setprio(struct task_struct *p, int prio)
  3528. {
  3529. unsigned long flags;
  3530. int oldprio, on_rq, running;
  3531. struct rq *rq;
  3532. const struct sched_class *prev_class;
  3533. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3534. rq = task_rq_lock(p, &flags);
  3535. oldprio = p->prio;
  3536. prev_class = p->sched_class;
  3537. on_rq = p->se.on_rq;
  3538. running = task_current(rq, p);
  3539. if (on_rq)
  3540. dequeue_task(rq, p, 0);
  3541. if (running)
  3542. p->sched_class->put_prev_task(rq, p);
  3543. if (rt_prio(prio))
  3544. p->sched_class = &rt_sched_class;
  3545. else
  3546. p->sched_class = &fair_sched_class;
  3547. p->prio = prio;
  3548. if (running)
  3549. p->sched_class->set_curr_task(rq);
  3550. if (on_rq) {
  3551. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3552. check_class_changed(rq, p, prev_class, oldprio, running);
  3553. }
  3554. task_rq_unlock(rq, &flags);
  3555. }
  3556. #endif
  3557. void set_user_nice(struct task_struct *p, long nice)
  3558. {
  3559. int old_prio, delta, on_rq;
  3560. unsigned long flags;
  3561. struct rq *rq;
  3562. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3563. return;
  3564. /*
  3565. * We have to be careful, if called from sys_setpriority(),
  3566. * the task might be in the middle of scheduling on another CPU.
  3567. */
  3568. rq = task_rq_lock(p, &flags);
  3569. /*
  3570. * The RT priorities are set via sched_setscheduler(), but we still
  3571. * allow the 'normal' nice value to be set - but as expected
  3572. * it wont have any effect on scheduling until the task is
  3573. * SCHED_FIFO/SCHED_RR:
  3574. */
  3575. if (task_has_rt_policy(p)) {
  3576. p->static_prio = NICE_TO_PRIO(nice);
  3577. goto out_unlock;
  3578. }
  3579. on_rq = p->se.on_rq;
  3580. if (on_rq)
  3581. dequeue_task(rq, p, 0);
  3582. p->static_prio = NICE_TO_PRIO(nice);
  3583. set_load_weight(p);
  3584. old_prio = p->prio;
  3585. p->prio = effective_prio(p);
  3586. delta = p->prio - old_prio;
  3587. if (on_rq) {
  3588. enqueue_task(rq, p, 0);
  3589. /*
  3590. * If the task increased its priority or is running and
  3591. * lowered its priority, then reschedule its CPU:
  3592. */
  3593. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3594. resched_task(rq->curr);
  3595. }
  3596. out_unlock:
  3597. task_rq_unlock(rq, &flags);
  3598. }
  3599. EXPORT_SYMBOL(set_user_nice);
  3600. /*
  3601. * can_nice - check if a task can reduce its nice value
  3602. * @p: task
  3603. * @nice: nice value
  3604. */
  3605. int can_nice(const struct task_struct *p, const int nice)
  3606. {
  3607. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3608. int nice_rlim = 20 - nice;
  3609. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3610. capable(CAP_SYS_NICE));
  3611. }
  3612. #ifdef __ARCH_WANT_SYS_NICE
  3613. /*
  3614. * sys_nice - change the priority of the current process.
  3615. * @increment: priority increment
  3616. *
  3617. * sys_setpriority is a more generic, but much slower function that
  3618. * does similar things.
  3619. */
  3620. SYSCALL_DEFINE1(nice, int, increment)
  3621. {
  3622. long nice, retval;
  3623. /*
  3624. * Setpriority might change our priority at the same moment.
  3625. * We don't have to worry. Conceptually one call occurs first
  3626. * and we have a single winner.
  3627. */
  3628. if (increment < -40)
  3629. increment = -40;
  3630. if (increment > 40)
  3631. increment = 40;
  3632. nice = TASK_NICE(current) + increment;
  3633. if (nice < -20)
  3634. nice = -20;
  3635. if (nice > 19)
  3636. nice = 19;
  3637. if (increment < 0 && !can_nice(current, nice))
  3638. return -EPERM;
  3639. retval = security_task_setnice(current, nice);
  3640. if (retval)
  3641. return retval;
  3642. set_user_nice(current, nice);
  3643. return 0;
  3644. }
  3645. #endif
  3646. /**
  3647. * task_prio - return the priority value of a given task.
  3648. * @p: the task in question.
  3649. *
  3650. * This is the priority value as seen by users in /proc.
  3651. * RT tasks are offset by -200. Normal tasks are centered
  3652. * around 0, value goes from -16 to +15.
  3653. */
  3654. int task_prio(const struct task_struct *p)
  3655. {
  3656. return p->prio - MAX_RT_PRIO;
  3657. }
  3658. /**
  3659. * task_nice - return the nice value of a given task.
  3660. * @p: the task in question.
  3661. */
  3662. int task_nice(const struct task_struct *p)
  3663. {
  3664. return TASK_NICE(p);
  3665. }
  3666. EXPORT_SYMBOL(task_nice);
  3667. /**
  3668. * idle_cpu - is a given cpu idle currently?
  3669. * @cpu: the processor in question.
  3670. */
  3671. int idle_cpu(int cpu)
  3672. {
  3673. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3674. }
  3675. /**
  3676. * idle_task - return the idle task for a given cpu.
  3677. * @cpu: the processor in question.
  3678. */
  3679. struct task_struct *idle_task(int cpu)
  3680. {
  3681. return cpu_rq(cpu)->idle;
  3682. }
  3683. /**
  3684. * find_process_by_pid - find a process with a matching PID value.
  3685. * @pid: the pid in question.
  3686. */
  3687. static struct task_struct *find_process_by_pid(pid_t pid)
  3688. {
  3689. return pid ? find_task_by_vpid(pid) : current;
  3690. }
  3691. /* Actually do priority change: must hold rq lock. */
  3692. static void
  3693. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3694. {
  3695. BUG_ON(p->se.on_rq);
  3696. p->policy = policy;
  3697. p->rt_priority = prio;
  3698. p->normal_prio = normal_prio(p);
  3699. /* we are holding p->pi_lock already */
  3700. p->prio = rt_mutex_getprio(p);
  3701. if (rt_prio(p->prio))
  3702. p->sched_class = &rt_sched_class;
  3703. else
  3704. p->sched_class = &fair_sched_class;
  3705. set_load_weight(p);
  3706. }
  3707. /*
  3708. * check the target process has a UID that matches the current process's
  3709. */
  3710. static bool check_same_owner(struct task_struct *p)
  3711. {
  3712. const struct cred *cred = current_cred(), *pcred;
  3713. bool match;
  3714. rcu_read_lock();
  3715. pcred = __task_cred(p);
  3716. match = (cred->euid == pcred->euid ||
  3717. cred->euid == pcred->uid);
  3718. rcu_read_unlock();
  3719. return match;
  3720. }
  3721. static int __sched_setscheduler(struct task_struct *p, int policy,
  3722. struct sched_param *param, bool user)
  3723. {
  3724. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3725. unsigned long flags;
  3726. const struct sched_class *prev_class;
  3727. struct rq *rq;
  3728. int reset_on_fork;
  3729. /* may grab non-irq protected spin_locks */
  3730. BUG_ON(in_interrupt());
  3731. recheck:
  3732. /* double check policy once rq lock held */
  3733. if (policy < 0) {
  3734. reset_on_fork = p->sched_reset_on_fork;
  3735. policy = oldpolicy = p->policy;
  3736. } else {
  3737. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3738. policy &= ~SCHED_RESET_ON_FORK;
  3739. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3740. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3741. policy != SCHED_IDLE)
  3742. return -EINVAL;
  3743. }
  3744. /*
  3745. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3746. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3747. * SCHED_BATCH and SCHED_IDLE is 0.
  3748. */
  3749. if (param->sched_priority < 0 ||
  3750. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3751. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3752. return -EINVAL;
  3753. if (rt_policy(policy) != (param->sched_priority != 0))
  3754. return -EINVAL;
  3755. /*
  3756. * Allow unprivileged RT tasks to decrease priority:
  3757. */
  3758. if (user && !capable(CAP_SYS_NICE)) {
  3759. if (rt_policy(policy)) {
  3760. unsigned long rlim_rtprio;
  3761. if (!lock_task_sighand(p, &flags))
  3762. return -ESRCH;
  3763. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3764. unlock_task_sighand(p, &flags);
  3765. /* can't set/change the rt policy */
  3766. if (policy != p->policy && !rlim_rtprio)
  3767. return -EPERM;
  3768. /* can't increase priority */
  3769. if (param->sched_priority > p->rt_priority &&
  3770. param->sched_priority > rlim_rtprio)
  3771. return -EPERM;
  3772. }
  3773. /*
  3774. * Like positive nice levels, dont allow tasks to
  3775. * move out of SCHED_IDLE either:
  3776. */
  3777. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3778. return -EPERM;
  3779. /* can't change other user's priorities */
  3780. if (!check_same_owner(p))
  3781. return -EPERM;
  3782. /* Normal users shall not reset the sched_reset_on_fork flag */
  3783. if (p->sched_reset_on_fork && !reset_on_fork)
  3784. return -EPERM;
  3785. }
  3786. if (user) {
  3787. #ifdef CONFIG_RT_GROUP_SCHED
  3788. /*
  3789. * Do not allow realtime tasks into groups that have no runtime
  3790. * assigned.
  3791. */
  3792. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3793. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3794. return -EPERM;
  3795. #endif
  3796. retval = security_task_setscheduler(p, policy, param);
  3797. if (retval)
  3798. return retval;
  3799. }
  3800. /*
  3801. * make sure no PI-waiters arrive (or leave) while we are
  3802. * changing the priority of the task:
  3803. */
  3804. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3805. /*
  3806. * To be able to change p->policy safely, the apropriate
  3807. * runqueue lock must be held.
  3808. */
  3809. rq = __task_rq_lock(p);
  3810. /* recheck policy now with rq lock held */
  3811. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3812. policy = oldpolicy = -1;
  3813. __task_rq_unlock(rq);
  3814. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3815. goto recheck;
  3816. }
  3817. on_rq = p->se.on_rq;
  3818. running = task_current(rq, p);
  3819. if (on_rq)
  3820. deactivate_task(rq, p, 0);
  3821. if (running)
  3822. p->sched_class->put_prev_task(rq, p);
  3823. p->sched_reset_on_fork = reset_on_fork;
  3824. oldprio = p->prio;
  3825. prev_class = p->sched_class;
  3826. __setscheduler(rq, p, policy, param->sched_priority);
  3827. if (running)
  3828. p->sched_class->set_curr_task(rq);
  3829. if (on_rq) {
  3830. activate_task(rq, p, 0);
  3831. check_class_changed(rq, p, prev_class, oldprio, running);
  3832. }
  3833. __task_rq_unlock(rq);
  3834. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3835. rt_mutex_adjust_pi(p);
  3836. return 0;
  3837. }
  3838. /**
  3839. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3840. * @p: the task in question.
  3841. * @policy: new policy.
  3842. * @param: structure containing the new RT priority.
  3843. *
  3844. * NOTE that the task may be already dead.
  3845. */
  3846. int sched_setscheduler(struct task_struct *p, int policy,
  3847. struct sched_param *param)
  3848. {
  3849. return __sched_setscheduler(p, policy, param, true);
  3850. }
  3851. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3852. /**
  3853. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3854. * @p: the task in question.
  3855. * @policy: new policy.
  3856. * @param: structure containing the new RT priority.
  3857. *
  3858. * Just like sched_setscheduler, only don't bother checking if the
  3859. * current context has permission. For example, this is needed in
  3860. * stop_machine(): we create temporary high priority worker threads,
  3861. * but our caller might not have that capability.
  3862. */
  3863. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3864. struct sched_param *param)
  3865. {
  3866. return __sched_setscheduler(p, policy, param, false);
  3867. }
  3868. static int
  3869. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3870. {
  3871. struct sched_param lparam;
  3872. struct task_struct *p;
  3873. int retval;
  3874. if (!param || pid < 0)
  3875. return -EINVAL;
  3876. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3877. return -EFAULT;
  3878. rcu_read_lock();
  3879. retval = -ESRCH;
  3880. p = find_process_by_pid(pid);
  3881. if (p != NULL)
  3882. retval = sched_setscheduler(p, policy, &lparam);
  3883. rcu_read_unlock();
  3884. return retval;
  3885. }
  3886. /**
  3887. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3888. * @pid: the pid in question.
  3889. * @policy: new policy.
  3890. * @param: structure containing the new RT priority.
  3891. */
  3892. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3893. struct sched_param __user *, param)
  3894. {
  3895. /* negative values for policy are not valid */
  3896. if (policy < 0)
  3897. return -EINVAL;
  3898. return do_sched_setscheduler(pid, policy, param);
  3899. }
  3900. /**
  3901. * sys_sched_setparam - set/change the RT priority of a thread
  3902. * @pid: the pid in question.
  3903. * @param: structure containing the new RT priority.
  3904. */
  3905. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3906. {
  3907. return do_sched_setscheduler(pid, -1, param);
  3908. }
  3909. /**
  3910. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3911. * @pid: the pid in question.
  3912. */
  3913. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3914. {
  3915. struct task_struct *p;
  3916. int retval;
  3917. if (pid < 0)
  3918. return -EINVAL;
  3919. retval = -ESRCH;
  3920. rcu_read_lock();
  3921. p = find_process_by_pid(pid);
  3922. if (p) {
  3923. retval = security_task_getscheduler(p);
  3924. if (!retval)
  3925. retval = p->policy
  3926. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3927. }
  3928. rcu_read_unlock();
  3929. return retval;
  3930. }
  3931. /**
  3932. * sys_sched_getparam - get the RT priority of a thread
  3933. * @pid: the pid in question.
  3934. * @param: structure containing the RT priority.
  3935. */
  3936. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3937. {
  3938. struct sched_param lp;
  3939. struct task_struct *p;
  3940. int retval;
  3941. if (!param || pid < 0)
  3942. return -EINVAL;
  3943. rcu_read_lock();
  3944. p = find_process_by_pid(pid);
  3945. retval = -ESRCH;
  3946. if (!p)
  3947. goto out_unlock;
  3948. retval = security_task_getscheduler(p);
  3949. if (retval)
  3950. goto out_unlock;
  3951. lp.sched_priority = p->rt_priority;
  3952. rcu_read_unlock();
  3953. /*
  3954. * This one might sleep, we cannot do it with a spinlock held ...
  3955. */
  3956. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3957. return retval;
  3958. out_unlock:
  3959. rcu_read_unlock();
  3960. return retval;
  3961. }
  3962. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3963. {
  3964. cpumask_var_t cpus_allowed, new_mask;
  3965. struct task_struct *p;
  3966. int retval;
  3967. get_online_cpus();
  3968. rcu_read_lock();
  3969. p = find_process_by_pid(pid);
  3970. if (!p) {
  3971. rcu_read_unlock();
  3972. put_online_cpus();
  3973. return -ESRCH;
  3974. }
  3975. /* Prevent p going away */
  3976. get_task_struct(p);
  3977. rcu_read_unlock();
  3978. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3979. retval = -ENOMEM;
  3980. goto out_put_task;
  3981. }
  3982. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3983. retval = -ENOMEM;
  3984. goto out_free_cpus_allowed;
  3985. }
  3986. retval = -EPERM;
  3987. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  3988. goto out_unlock;
  3989. retval = security_task_setscheduler(p, 0, NULL);
  3990. if (retval)
  3991. goto out_unlock;
  3992. cpuset_cpus_allowed(p, cpus_allowed);
  3993. cpumask_and(new_mask, in_mask, cpus_allowed);
  3994. again:
  3995. retval = set_cpus_allowed_ptr(p, new_mask);
  3996. if (!retval) {
  3997. cpuset_cpus_allowed(p, cpus_allowed);
  3998. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3999. /*
  4000. * We must have raced with a concurrent cpuset
  4001. * update. Just reset the cpus_allowed to the
  4002. * cpuset's cpus_allowed
  4003. */
  4004. cpumask_copy(new_mask, cpus_allowed);
  4005. goto again;
  4006. }
  4007. }
  4008. out_unlock:
  4009. free_cpumask_var(new_mask);
  4010. out_free_cpus_allowed:
  4011. free_cpumask_var(cpus_allowed);
  4012. out_put_task:
  4013. put_task_struct(p);
  4014. put_online_cpus();
  4015. return retval;
  4016. }
  4017. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4018. struct cpumask *new_mask)
  4019. {
  4020. if (len < cpumask_size())
  4021. cpumask_clear(new_mask);
  4022. else if (len > cpumask_size())
  4023. len = cpumask_size();
  4024. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4025. }
  4026. /**
  4027. * sys_sched_setaffinity - set the cpu affinity of a process
  4028. * @pid: pid of the process
  4029. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4030. * @user_mask_ptr: user-space pointer to the new cpu mask
  4031. */
  4032. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4033. unsigned long __user *, user_mask_ptr)
  4034. {
  4035. cpumask_var_t new_mask;
  4036. int retval;
  4037. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4038. return -ENOMEM;
  4039. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4040. if (retval == 0)
  4041. retval = sched_setaffinity(pid, new_mask);
  4042. free_cpumask_var(new_mask);
  4043. return retval;
  4044. }
  4045. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4046. {
  4047. struct task_struct *p;
  4048. unsigned long flags;
  4049. struct rq *rq;
  4050. int retval;
  4051. get_online_cpus();
  4052. rcu_read_lock();
  4053. retval = -ESRCH;
  4054. p = find_process_by_pid(pid);
  4055. if (!p)
  4056. goto out_unlock;
  4057. retval = security_task_getscheduler(p);
  4058. if (retval)
  4059. goto out_unlock;
  4060. rq = task_rq_lock(p, &flags);
  4061. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4062. task_rq_unlock(rq, &flags);
  4063. out_unlock:
  4064. rcu_read_unlock();
  4065. put_online_cpus();
  4066. return retval;
  4067. }
  4068. /**
  4069. * sys_sched_getaffinity - get the cpu affinity of a process
  4070. * @pid: pid of the process
  4071. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4072. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4073. */
  4074. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4075. unsigned long __user *, user_mask_ptr)
  4076. {
  4077. int ret;
  4078. cpumask_var_t mask;
  4079. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4080. return -EINVAL;
  4081. if (len & (sizeof(unsigned long)-1))
  4082. return -EINVAL;
  4083. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4084. return -ENOMEM;
  4085. ret = sched_getaffinity(pid, mask);
  4086. if (ret == 0) {
  4087. size_t retlen = min_t(size_t, len, cpumask_size());
  4088. if (copy_to_user(user_mask_ptr, mask, retlen))
  4089. ret = -EFAULT;
  4090. else
  4091. ret = retlen;
  4092. }
  4093. free_cpumask_var(mask);
  4094. return ret;
  4095. }
  4096. /**
  4097. * sys_sched_yield - yield the current processor to other threads.
  4098. *
  4099. * This function yields the current CPU to other tasks. If there are no
  4100. * other threads running on this CPU then this function will return.
  4101. */
  4102. SYSCALL_DEFINE0(sched_yield)
  4103. {
  4104. struct rq *rq = this_rq_lock();
  4105. schedstat_inc(rq, yld_count);
  4106. current->sched_class->yield_task(rq);
  4107. /*
  4108. * Since we are going to call schedule() anyway, there's
  4109. * no need to preempt or enable interrupts:
  4110. */
  4111. __release(rq->lock);
  4112. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4113. do_raw_spin_unlock(&rq->lock);
  4114. preempt_enable_no_resched();
  4115. schedule();
  4116. return 0;
  4117. }
  4118. static inline int should_resched(void)
  4119. {
  4120. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4121. }
  4122. static void __cond_resched(void)
  4123. {
  4124. add_preempt_count(PREEMPT_ACTIVE);
  4125. schedule();
  4126. sub_preempt_count(PREEMPT_ACTIVE);
  4127. }
  4128. int __sched _cond_resched(void)
  4129. {
  4130. if (should_resched()) {
  4131. __cond_resched();
  4132. return 1;
  4133. }
  4134. return 0;
  4135. }
  4136. EXPORT_SYMBOL(_cond_resched);
  4137. /*
  4138. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4139. * call schedule, and on return reacquire the lock.
  4140. *
  4141. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4142. * operations here to prevent schedule() from being called twice (once via
  4143. * spin_unlock(), once by hand).
  4144. */
  4145. int __cond_resched_lock(spinlock_t *lock)
  4146. {
  4147. int resched = should_resched();
  4148. int ret = 0;
  4149. lockdep_assert_held(lock);
  4150. if (spin_needbreak(lock) || resched) {
  4151. spin_unlock(lock);
  4152. if (resched)
  4153. __cond_resched();
  4154. else
  4155. cpu_relax();
  4156. ret = 1;
  4157. spin_lock(lock);
  4158. }
  4159. return ret;
  4160. }
  4161. EXPORT_SYMBOL(__cond_resched_lock);
  4162. int __sched __cond_resched_softirq(void)
  4163. {
  4164. BUG_ON(!in_softirq());
  4165. if (should_resched()) {
  4166. local_bh_enable();
  4167. __cond_resched();
  4168. local_bh_disable();
  4169. return 1;
  4170. }
  4171. return 0;
  4172. }
  4173. EXPORT_SYMBOL(__cond_resched_softirq);
  4174. /**
  4175. * yield - yield the current processor to other threads.
  4176. *
  4177. * This is a shortcut for kernel-space yielding - it marks the
  4178. * thread runnable and calls sys_sched_yield().
  4179. */
  4180. void __sched yield(void)
  4181. {
  4182. set_current_state(TASK_RUNNING);
  4183. sys_sched_yield();
  4184. }
  4185. EXPORT_SYMBOL(yield);
  4186. /*
  4187. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4188. * that process accounting knows that this is a task in IO wait state.
  4189. */
  4190. void __sched io_schedule(void)
  4191. {
  4192. struct rq *rq = raw_rq();
  4193. delayacct_blkio_start();
  4194. atomic_inc(&rq->nr_iowait);
  4195. current->in_iowait = 1;
  4196. schedule();
  4197. current->in_iowait = 0;
  4198. atomic_dec(&rq->nr_iowait);
  4199. delayacct_blkio_end();
  4200. }
  4201. EXPORT_SYMBOL(io_schedule);
  4202. long __sched io_schedule_timeout(long timeout)
  4203. {
  4204. struct rq *rq = raw_rq();
  4205. long ret;
  4206. delayacct_blkio_start();
  4207. atomic_inc(&rq->nr_iowait);
  4208. current->in_iowait = 1;
  4209. ret = schedule_timeout(timeout);
  4210. current->in_iowait = 0;
  4211. atomic_dec(&rq->nr_iowait);
  4212. delayacct_blkio_end();
  4213. return ret;
  4214. }
  4215. /**
  4216. * sys_sched_get_priority_max - return maximum RT priority.
  4217. * @policy: scheduling class.
  4218. *
  4219. * this syscall returns the maximum rt_priority that can be used
  4220. * by a given scheduling class.
  4221. */
  4222. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4223. {
  4224. int ret = -EINVAL;
  4225. switch (policy) {
  4226. case SCHED_FIFO:
  4227. case SCHED_RR:
  4228. ret = MAX_USER_RT_PRIO-1;
  4229. break;
  4230. case SCHED_NORMAL:
  4231. case SCHED_BATCH:
  4232. case SCHED_IDLE:
  4233. ret = 0;
  4234. break;
  4235. }
  4236. return ret;
  4237. }
  4238. /**
  4239. * sys_sched_get_priority_min - return minimum RT priority.
  4240. * @policy: scheduling class.
  4241. *
  4242. * this syscall returns the minimum rt_priority that can be used
  4243. * by a given scheduling class.
  4244. */
  4245. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4246. {
  4247. int ret = -EINVAL;
  4248. switch (policy) {
  4249. case SCHED_FIFO:
  4250. case SCHED_RR:
  4251. ret = 1;
  4252. break;
  4253. case SCHED_NORMAL:
  4254. case SCHED_BATCH:
  4255. case SCHED_IDLE:
  4256. ret = 0;
  4257. }
  4258. return ret;
  4259. }
  4260. /**
  4261. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4262. * @pid: pid of the process.
  4263. * @interval: userspace pointer to the timeslice value.
  4264. *
  4265. * this syscall writes the default timeslice value of a given process
  4266. * into the user-space timespec buffer. A value of '0' means infinity.
  4267. */
  4268. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4269. struct timespec __user *, interval)
  4270. {
  4271. struct task_struct *p;
  4272. unsigned int time_slice;
  4273. unsigned long flags;
  4274. struct rq *rq;
  4275. int retval;
  4276. struct timespec t;
  4277. if (pid < 0)
  4278. return -EINVAL;
  4279. retval = -ESRCH;
  4280. rcu_read_lock();
  4281. p = find_process_by_pid(pid);
  4282. if (!p)
  4283. goto out_unlock;
  4284. retval = security_task_getscheduler(p);
  4285. if (retval)
  4286. goto out_unlock;
  4287. rq = task_rq_lock(p, &flags);
  4288. time_slice = p->sched_class->get_rr_interval(rq, p);
  4289. task_rq_unlock(rq, &flags);
  4290. rcu_read_unlock();
  4291. jiffies_to_timespec(time_slice, &t);
  4292. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4293. return retval;
  4294. out_unlock:
  4295. rcu_read_unlock();
  4296. return retval;
  4297. }
  4298. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4299. void sched_show_task(struct task_struct *p)
  4300. {
  4301. unsigned long free = 0;
  4302. unsigned state;
  4303. state = p->state ? __ffs(p->state) + 1 : 0;
  4304. printk(KERN_INFO "%-13.13s %c", p->comm,
  4305. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4306. #if BITS_PER_LONG == 32
  4307. if (state == TASK_RUNNING)
  4308. printk(KERN_CONT " running ");
  4309. else
  4310. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4311. #else
  4312. if (state == TASK_RUNNING)
  4313. printk(KERN_CONT " running task ");
  4314. else
  4315. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4316. #endif
  4317. #ifdef CONFIG_DEBUG_STACK_USAGE
  4318. free = stack_not_used(p);
  4319. #endif
  4320. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4321. task_pid_nr(p), task_pid_nr(p->real_parent),
  4322. (unsigned long)task_thread_info(p)->flags);
  4323. show_stack(p, NULL);
  4324. }
  4325. void show_state_filter(unsigned long state_filter)
  4326. {
  4327. struct task_struct *g, *p;
  4328. #if BITS_PER_LONG == 32
  4329. printk(KERN_INFO
  4330. " task PC stack pid father\n");
  4331. #else
  4332. printk(KERN_INFO
  4333. " task PC stack pid father\n");
  4334. #endif
  4335. read_lock(&tasklist_lock);
  4336. do_each_thread(g, p) {
  4337. /*
  4338. * reset the NMI-timeout, listing all files on a slow
  4339. * console might take alot of time:
  4340. */
  4341. touch_nmi_watchdog();
  4342. if (!state_filter || (p->state & state_filter))
  4343. sched_show_task(p);
  4344. } while_each_thread(g, p);
  4345. touch_all_softlockup_watchdogs();
  4346. #ifdef CONFIG_SCHED_DEBUG
  4347. sysrq_sched_debug_show();
  4348. #endif
  4349. read_unlock(&tasklist_lock);
  4350. /*
  4351. * Only show locks if all tasks are dumped:
  4352. */
  4353. if (!state_filter)
  4354. debug_show_all_locks();
  4355. }
  4356. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4357. {
  4358. idle->sched_class = &idle_sched_class;
  4359. }
  4360. /**
  4361. * init_idle - set up an idle thread for a given CPU
  4362. * @idle: task in question
  4363. * @cpu: cpu the idle task belongs to
  4364. *
  4365. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4366. * flag, to make booting more robust.
  4367. */
  4368. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4369. {
  4370. struct rq *rq = cpu_rq(cpu);
  4371. unsigned long flags;
  4372. raw_spin_lock_irqsave(&rq->lock, flags);
  4373. __sched_fork(idle);
  4374. idle->state = TASK_RUNNING;
  4375. idle->se.exec_start = sched_clock();
  4376. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4377. __set_task_cpu(idle, cpu);
  4378. rq->curr = rq->idle = idle;
  4379. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4380. idle->oncpu = 1;
  4381. #endif
  4382. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4383. /* Set the preempt count _outside_ the spinlocks! */
  4384. #if defined(CONFIG_PREEMPT)
  4385. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4386. #else
  4387. task_thread_info(idle)->preempt_count = 0;
  4388. #endif
  4389. /*
  4390. * The idle tasks have their own, simple scheduling class:
  4391. */
  4392. idle->sched_class = &idle_sched_class;
  4393. ftrace_graph_init_task(idle);
  4394. }
  4395. /*
  4396. * In a system that switches off the HZ timer nohz_cpu_mask
  4397. * indicates which cpus entered this state. This is used
  4398. * in the rcu update to wait only for active cpus. For system
  4399. * which do not switch off the HZ timer nohz_cpu_mask should
  4400. * always be CPU_BITS_NONE.
  4401. */
  4402. cpumask_var_t nohz_cpu_mask;
  4403. /*
  4404. * Increase the granularity value when there are more CPUs,
  4405. * because with more CPUs the 'effective latency' as visible
  4406. * to users decreases. But the relationship is not linear,
  4407. * so pick a second-best guess by going with the log2 of the
  4408. * number of CPUs.
  4409. *
  4410. * This idea comes from the SD scheduler of Con Kolivas:
  4411. */
  4412. static int get_update_sysctl_factor(void)
  4413. {
  4414. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4415. unsigned int factor;
  4416. switch (sysctl_sched_tunable_scaling) {
  4417. case SCHED_TUNABLESCALING_NONE:
  4418. factor = 1;
  4419. break;
  4420. case SCHED_TUNABLESCALING_LINEAR:
  4421. factor = cpus;
  4422. break;
  4423. case SCHED_TUNABLESCALING_LOG:
  4424. default:
  4425. factor = 1 + ilog2(cpus);
  4426. break;
  4427. }
  4428. return factor;
  4429. }
  4430. static void update_sysctl(void)
  4431. {
  4432. unsigned int factor = get_update_sysctl_factor();
  4433. #define SET_SYSCTL(name) \
  4434. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4435. SET_SYSCTL(sched_min_granularity);
  4436. SET_SYSCTL(sched_latency);
  4437. SET_SYSCTL(sched_wakeup_granularity);
  4438. SET_SYSCTL(sched_shares_ratelimit);
  4439. #undef SET_SYSCTL
  4440. }
  4441. static inline void sched_init_granularity(void)
  4442. {
  4443. update_sysctl();
  4444. }
  4445. #ifdef CONFIG_SMP
  4446. /*
  4447. * This is how migration works:
  4448. *
  4449. * 1) we invoke migration_cpu_stop() on the target CPU using
  4450. * stop_one_cpu().
  4451. * 2) stopper starts to run (implicitly forcing the migrated thread
  4452. * off the CPU)
  4453. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4454. * 4) if it's in the wrong runqueue then the migration thread removes
  4455. * it and puts it into the right queue.
  4456. * 5) stopper completes and stop_one_cpu() returns and the migration
  4457. * is done.
  4458. */
  4459. /*
  4460. * Change a given task's CPU affinity. Migrate the thread to a
  4461. * proper CPU and schedule it away if the CPU it's executing on
  4462. * is removed from the allowed bitmask.
  4463. *
  4464. * NOTE: the caller must have a valid reference to the task, the
  4465. * task must not exit() & deallocate itself prematurely. The
  4466. * call is not atomic; no spinlocks may be held.
  4467. */
  4468. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4469. {
  4470. unsigned long flags;
  4471. struct rq *rq;
  4472. unsigned int dest_cpu;
  4473. int ret = 0;
  4474. /*
  4475. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4476. * drop the rq->lock and still rely on ->cpus_allowed.
  4477. */
  4478. again:
  4479. while (task_is_waking(p))
  4480. cpu_relax();
  4481. rq = task_rq_lock(p, &flags);
  4482. if (task_is_waking(p)) {
  4483. task_rq_unlock(rq, &flags);
  4484. goto again;
  4485. }
  4486. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4487. ret = -EINVAL;
  4488. goto out;
  4489. }
  4490. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4491. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4492. ret = -EINVAL;
  4493. goto out;
  4494. }
  4495. if (p->sched_class->set_cpus_allowed)
  4496. p->sched_class->set_cpus_allowed(p, new_mask);
  4497. else {
  4498. cpumask_copy(&p->cpus_allowed, new_mask);
  4499. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4500. }
  4501. /* Can the task run on the task's current CPU? If so, we're done */
  4502. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4503. goto out;
  4504. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4505. if (migrate_task(p, dest_cpu)) {
  4506. struct migration_arg arg = { p, dest_cpu };
  4507. /* Need help from migration thread: drop lock and wait. */
  4508. task_rq_unlock(rq, &flags);
  4509. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4510. tlb_migrate_finish(p->mm);
  4511. return 0;
  4512. }
  4513. out:
  4514. task_rq_unlock(rq, &flags);
  4515. return ret;
  4516. }
  4517. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4518. /*
  4519. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4520. * this because either it can't run here any more (set_cpus_allowed()
  4521. * away from this CPU, or CPU going down), or because we're
  4522. * attempting to rebalance this task on exec (sched_exec).
  4523. *
  4524. * So we race with normal scheduler movements, but that's OK, as long
  4525. * as the task is no longer on this CPU.
  4526. *
  4527. * Returns non-zero if task was successfully migrated.
  4528. */
  4529. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4530. {
  4531. struct rq *rq_dest, *rq_src;
  4532. int ret = 0;
  4533. if (unlikely(!cpu_active(dest_cpu)))
  4534. return ret;
  4535. rq_src = cpu_rq(src_cpu);
  4536. rq_dest = cpu_rq(dest_cpu);
  4537. double_rq_lock(rq_src, rq_dest);
  4538. /* Already moved. */
  4539. if (task_cpu(p) != src_cpu)
  4540. goto done;
  4541. /* Affinity changed (again). */
  4542. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4543. goto fail;
  4544. /*
  4545. * If we're not on a rq, the next wake-up will ensure we're
  4546. * placed properly.
  4547. */
  4548. if (p->se.on_rq) {
  4549. deactivate_task(rq_src, p, 0);
  4550. set_task_cpu(p, dest_cpu);
  4551. activate_task(rq_dest, p, 0);
  4552. check_preempt_curr(rq_dest, p, 0);
  4553. }
  4554. done:
  4555. ret = 1;
  4556. fail:
  4557. double_rq_unlock(rq_src, rq_dest);
  4558. return ret;
  4559. }
  4560. /*
  4561. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4562. * and performs thread migration by bumping thread off CPU then
  4563. * 'pushing' onto another runqueue.
  4564. */
  4565. static int migration_cpu_stop(void *data)
  4566. {
  4567. struct migration_arg *arg = data;
  4568. /*
  4569. * The original target cpu might have gone down and we might
  4570. * be on another cpu but it doesn't matter.
  4571. */
  4572. local_irq_disable();
  4573. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4574. local_irq_enable();
  4575. return 0;
  4576. }
  4577. #ifdef CONFIG_HOTPLUG_CPU
  4578. /*
  4579. * Figure out where task on dead CPU should go, use force if necessary.
  4580. */
  4581. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4582. {
  4583. struct rq *rq = cpu_rq(dead_cpu);
  4584. int needs_cpu, uninitialized_var(dest_cpu);
  4585. unsigned long flags;
  4586. local_irq_save(flags);
  4587. raw_spin_lock(&rq->lock);
  4588. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4589. if (needs_cpu)
  4590. dest_cpu = select_fallback_rq(dead_cpu, p);
  4591. raw_spin_unlock(&rq->lock);
  4592. /*
  4593. * It can only fail if we race with set_cpus_allowed(),
  4594. * in the racer should migrate the task anyway.
  4595. */
  4596. if (needs_cpu)
  4597. __migrate_task(p, dead_cpu, dest_cpu);
  4598. local_irq_restore(flags);
  4599. }
  4600. /*
  4601. * While a dead CPU has no uninterruptible tasks queued at this point,
  4602. * it might still have a nonzero ->nr_uninterruptible counter, because
  4603. * for performance reasons the counter is not stricly tracking tasks to
  4604. * their home CPUs. So we just add the counter to another CPU's counter,
  4605. * to keep the global sum constant after CPU-down:
  4606. */
  4607. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4608. {
  4609. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4610. unsigned long flags;
  4611. local_irq_save(flags);
  4612. double_rq_lock(rq_src, rq_dest);
  4613. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4614. rq_src->nr_uninterruptible = 0;
  4615. double_rq_unlock(rq_src, rq_dest);
  4616. local_irq_restore(flags);
  4617. }
  4618. /* Run through task list and migrate tasks from the dead cpu. */
  4619. static void migrate_live_tasks(int src_cpu)
  4620. {
  4621. struct task_struct *p, *t;
  4622. read_lock(&tasklist_lock);
  4623. do_each_thread(t, p) {
  4624. if (p == current)
  4625. continue;
  4626. if (task_cpu(p) == src_cpu)
  4627. move_task_off_dead_cpu(src_cpu, p);
  4628. } while_each_thread(t, p);
  4629. read_unlock(&tasklist_lock);
  4630. }
  4631. /*
  4632. * Schedules idle task to be the next runnable task on current CPU.
  4633. * It does so by boosting its priority to highest possible.
  4634. * Used by CPU offline code.
  4635. */
  4636. void sched_idle_next(void)
  4637. {
  4638. int this_cpu = smp_processor_id();
  4639. struct rq *rq = cpu_rq(this_cpu);
  4640. struct task_struct *p = rq->idle;
  4641. unsigned long flags;
  4642. /* cpu has to be offline */
  4643. BUG_ON(cpu_online(this_cpu));
  4644. /*
  4645. * Strictly not necessary since rest of the CPUs are stopped by now
  4646. * and interrupts disabled on the current cpu.
  4647. */
  4648. raw_spin_lock_irqsave(&rq->lock, flags);
  4649. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4650. activate_task(rq, p, 0);
  4651. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4652. }
  4653. /*
  4654. * Ensures that the idle task is using init_mm right before its cpu goes
  4655. * offline.
  4656. */
  4657. void idle_task_exit(void)
  4658. {
  4659. struct mm_struct *mm = current->active_mm;
  4660. BUG_ON(cpu_online(smp_processor_id()));
  4661. if (mm != &init_mm)
  4662. switch_mm(mm, &init_mm, current);
  4663. mmdrop(mm);
  4664. }
  4665. /* called under rq->lock with disabled interrupts */
  4666. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4667. {
  4668. struct rq *rq = cpu_rq(dead_cpu);
  4669. /* Must be exiting, otherwise would be on tasklist. */
  4670. BUG_ON(!p->exit_state);
  4671. /* Cannot have done final schedule yet: would have vanished. */
  4672. BUG_ON(p->state == TASK_DEAD);
  4673. get_task_struct(p);
  4674. /*
  4675. * Drop lock around migration; if someone else moves it,
  4676. * that's OK. No task can be added to this CPU, so iteration is
  4677. * fine.
  4678. */
  4679. raw_spin_unlock_irq(&rq->lock);
  4680. move_task_off_dead_cpu(dead_cpu, p);
  4681. raw_spin_lock_irq(&rq->lock);
  4682. put_task_struct(p);
  4683. }
  4684. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4685. static void migrate_dead_tasks(unsigned int dead_cpu)
  4686. {
  4687. struct rq *rq = cpu_rq(dead_cpu);
  4688. struct task_struct *next;
  4689. for ( ; ; ) {
  4690. if (!rq->nr_running)
  4691. break;
  4692. next = pick_next_task(rq);
  4693. if (!next)
  4694. break;
  4695. next->sched_class->put_prev_task(rq, next);
  4696. migrate_dead(dead_cpu, next);
  4697. }
  4698. }
  4699. /*
  4700. * remove the tasks which were accounted by rq from calc_load_tasks.
  4701. */
  4702. static void calc_global_load_remove(struct rq *rq)
  4703. {
  4704. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4705. rq->calc_load_active = 0;
  4706. }
  4707. #endif /* CONFIG_HOTPLUG_CPU */
  4708. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4709. static struct ctl_table sd_ctl_dir[] = {
  4710. {
  4711. .procname = "sched_domain",
  4712. .mode = 0555,
  4713. },
  4714. {}
  4715. };
  4716. static struct ctl_table sd_ctl_root[] = {
  4717. {
  4718. .procname = "kernel",
  4719. .mode = 0555,
  4720. .child = sd_ctl_dir,
  4721. },
  4722. {}
  4723. };
  4724. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4725. {
  4726. struct ctl_table *entry =
  4727. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4728. return entry;
  4729. }
  4730. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4731. {
  4732. struct ctl_table *entry;
  4733. /*
  4734. * In the intermediate directories, both the child directory and
  4735. * procname are dynamically allocated and could fail but the mode
  4736. * will always be set. In the lowest directory the names are
  4737. * static strings and all have proc handlers.
  4738. */
  4739. for (entry = *tablep; entry->mode; entry++) {
  4740. if (entry->child)
  4741. sd_free_ctl_entry(&entry->child);
  4742. if (entry->proc_handler == NULL)
  4743. kfree(entry->procname);
  4744. }
  4745. kfree(*tablep);
  4746. *tablep = NULL;
  4747. }
  4748. static void
  4749. set_table_entry(struct ctl_table *entry,
  4750. const char *procname, void *data, int maxlen,
  4751. mode_t mode, proc_handler *proc_handler)
  4752. {
  4753. entry->procname = procname;
  4754. entry->data = data;
  4755. entry->maxlen = maxlen;
  4756. entry->mode = mode;
  4757. entry->proc_handler = proc_handler;
  4758. }
  4759. static struct ctl_table *
  4760. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4761. {
  4762. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4763. if (table == NULL)
  4764. return NULL;
  4765. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4766. sizeof(long), 0644, proc_doulongvec_minmax);
  4767. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4768. sizeof(long), 0644, proc_doulongvec_minmax);
  4769. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4770. sizeof(int), 0644, proc_dointvec_minmax);
  4771. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4772. sizeof(int), 0644, proc_dointvec_minmax);
  4773. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4774. sizeof(int), 0644, proc_dointvec_minmax);
  4775. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4776. sizeof(int), 0644, proc_dointvec_minmax);
  4777. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4778. sizeof(int), 0644, proc_dointvec_minmax);
  4779. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4780. sizeof(int), 0644, proc_dointvec_minmax);
  4781. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4782. sizeof(int), 0644, proc_dointvec_minmax);
  4783. set_table_entry(&table[9], "cache_nice_tries",
  4784. &sd->cache_nice_tries,
  4785. sizeof(int), 0644, proc_dointvec_minmax);
  4786. set_table_entry(&table[10], "flags", &sd->flags,
  4787. sizeof(int), 0644, proc_dointvec_minmax);
  4788. set_table_entry(&table[11], "name", sd->name,
  4789. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4790. /* &table[12] is terminator */
  4791. return table;
  4792. }
  4793. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4794. {
  4795. struct ctl_table *entry, *table;
  4796. struct sched_domain *sd;
  4797. int domain_num = 0, i;
  4798. char buf[32];
  4799. for_each_domain(cpu, sd)
  4800. domain_num++;
  4801. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4802. if (table == NULL)
  4803. return NULL;
  4804. i = 0;
  4805. for_each_domain(cpu, sd) {
  4806. snprintf(buf, 32, "domain%d", i);
  4807. entry->procname = kstrdup(buf, GFP_KERNEL);
  4808. entry->mode = 0555;
  4809. entry->child = sd_alloc_ctl_domain_table(sd);
  4810. entry++;
  4811. i++;
  4812. }
  4813. return table;
  4814. }
  4815. static struct ctl_table_header *sd_sysctl_header;
  4816. static void register_sched_domain_sysctl(void)
  4817. {
  4818. int i, cpu_num = num_possible_cpus();
  4819. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4820. char buf[32];
  4821. WARN_ON(sd_ctl_dir[0].child);
  4822. sd_ctl_dir[0].child = entry;
  4823. if (entry == NULL)
  4824. return;
  4825. for_each_possible_cpu(i) {
  4826. snprintf(buf, 32, "cpu%d", i);
  4827. entry->procname = kstrdup(buf, GFP_KERNEL);
  4828. entry->mode = 0555;
  4829. entry->child = sd_alloc_ctl_cpu_table(i);
  4830. entry++;
  4831. }
  4832. WARN_ON(sd_sysctl_header);
  4833. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4834. }
  4835. /* may be called multiple times per register */
  4836. static void unregister_sched_domain_sysctl(void)
  4837. {
  4838. if (sd_sysctl_header)
  4839. unregister_sysctl_table(sd_sysctl_header);
  4840. sd_sysctl_header = NULL;
  4841. if (sd_ctl_dir[0].child)
  4842. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4843. }
  4844. #else
  4845. static void register_sched_domain_sysctl(void)
  4846. {
  4847. }
  4848. static void unregister_sched_domain_sysctl(void)
  4849. {
  4850. }
  4851. #endif
  4852. static void set_rq_online(struct rq *rq)
  4853. {
  4854. if (!rq->online) {
  4855. const struct sched_class *class;
  4856. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4857. rq->online = 1;
  4858. for_each_class(class) {
  4859. if (class->rq_online)
  4860. class->rq_online(rq);
  4861. }
  4862. }
  4863. }
  4864. static void set_rq_offline(struct rq *rq)
  4865. {
  4866. if (rq->online) {
  4867. const struct sched_class *class;
  4868. for_each_class(class) {
  4869. if (class->rq_offline)
  4870. class->rq_offline(rq);
  4871. }
  4872. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4873. rq->online = 0;
  4874. }
  4875. }
  4876. /*
  4877. * migration_call - callback that gets triggered when a CPU is added.
  4878. * Here we can start up the necessary migration thread for the new CPU.
  4879. */
  4880. static int __cpuinit
  4881. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4882. {
  4883. int cpu = (long)hcpu;
  4884. unsigned long flags;
  4885. struct rq *rq = cpu_rq(cpu);
  4886. switch (action) {
  4887. case CPU_UP_PREPARE:
  4888. case CPU_UP_PREPARE_FROZEN:
  4889. rq->calc_load_update = calc_load_update;
  4890. break;
  4891. case CPU_ONLINE:
  4892. case CPU_ONLINE_FROZEN:
  4893. /* Update our root-domain */
  4894. raw_spin_lock_irqsave(&rq->lock, flags);
  4895. if (rq->rd) {
  4896. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4897. set_rq_online(rq);
  4898. }
  4899. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4900. break;
  4901. #ifdef CONFIG_HOTPLUG_CPU
  4902. case CPU_DEAD:
  4903. case CPU_DEAD_FROZEN:
  4904. migrate_live_tasks(cpu);
  4905. /* Idle task back to normal (off runqueue, low prio) */
  4906. raw_spin_lock_irq(&rq->lock);
  4907. deactivate_task(rq, rq->idle, 0);
  4908. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4909. rq->idle->sched_class = &idle_sched_class;
  4910. migrate_dead_tasks(cpu);
  4911. raw_spin_unlock_irq(&rq->lock);
  4912. migrate_nr_uninterruptible(rq);
  4913. BUG_ON(rq->nr_running != 0);
  4914. calc_global_load_remove(rq);
  4915. break;
  4916. case CPU_DYING:
  4917. case CPU_DYING_FROZEN:
  4918. /* Update our root-domain */
  4919. raw_spin_lock_irqsave(&rq->lock, flags);
  4920. if (rq->rd) {
  4921. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4922. set_rq_offline(rq);
  4923. }
  4924. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4925. break;
  4926. #endif
  4927. }
  4928. return NOTIFY_OK;
  4929. }
  4930. /*
  4931. * Register at high priority so that task migration (migrate_all_tasks)
  4932. * happens before everything else. This has to be lower priority than
  4933. * the notifier in the perf_event subsystem, though.
  4934. */
  4935. static struct notifier_block __cpuinitdata migration_notifier = {
  4936. .notifier_call = migration_call,
  4937. .priority = 10
  4938. };
  4939. static int __init migration_init(void)
  4940. {
  4941. void *cpu = (void *)(long)smp_processor_id();
  4942. int err;
  4943. /* Start one for the boot CPU: */
  4944. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4945. BUG_ON(err == NOTIFY_BAD);
  4946. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4947. register_cpu_notifier(&migration_notifier);
  4948. return 0;
  4949. }
  4950. early_initcall(migration_init);
  4951. #endif
  4952. #ifdef CONFIG_SMP
  4953. #ifdef CONFIG_SCHED_DEBUG
  4954. static __read_mostly int sched_domain_debug_enabled;
  4955. static int __init sched_domain_debug_setup(char *str)
  4956. {
  4957. sched_domain_debug_enabled = 1;
  4958. return 0;
  4959. }
  4960. early_param("sched_debug", sched_domain_debug_setup);
  4961. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4962. struct cpumask *groupmask)
  4963. {
  4964. struct sched_group *group = sd->groups;
  4965. char str[256];
  4966. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4967. cpumask_clear(groupmask);
  4968. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4969. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4970. printk("does not load-balance\n");
  4971. if (sd->parent)
  4972. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4973. " has parent");
  4974. return -1;
  4975. }
  4976. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4977. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4978. printk(KERN_ERR "ERROR: domain->span does not contain "
  4979. "CPU%d\n", cpu);
  4980. }
  4981. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4982. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4983. " CPU%d\n", cpu);
  4984. }
  4985. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4986. do {
  4987. if (!group) {
  4988. printk("\n");
  4989. printk(KERN_ERR "ERROR: group is NULL\n");
  4990. break;
  4991. }
  4992. if (!group->cpu_power) {
  4993. printk(KERN_CONT "\n");
  4994. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4995. "set\n");
  4996. break;
  4997. }
  4998. if (!cpumask_weight(sched_group_cpus(group))) {
  4999. printk(KERN_CONT "\n");
  5000. printk(KERN_ERR "ERROR: empty group\n");
  5001. break;
  5002. }
  5003. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5004. printk(KERN_CONT "\n");
  5005. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5006. break;
  5007. }
  5008. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5009. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5010. printk(KERN_CONT " %s", str);
  5011. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5012. printk(KERN_CONT " (cpu_power = %d)",
  5013. group->cpu_power);
  5014. }
  5015. group = group->next;
  5016. } while (group != sd->groups);
  5017. printk(KERN_CONT "\n");
  5018. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5019. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5020. if (sd->parent &&
  5021. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5022. printk(KERN_ERR "ERROR: parent span is not a superset "
  5023. "of domain->span\n");
  5024. return 0;
  5025. }
  5026. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5027. {
  5028. cpumask_var_t groupmask;
  5029. int level = 0;
  5030. if (!sched_domain_debug_enabled)
  5031. return;
  5032. if (!sd) {
  5033. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5034. return;
  5035. }
  5036. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5037. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5038. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5039. return;
  5040. }
  5041. for (;;) {
  5042. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5043. break;
  5044. level++;
  5045. sd = sd->parent;
  5046. if (!sd)
  5047. break;
  5048. }
  5049. free_cpumask_var(groupmask);
  5050. }
  5051. #else /* !CONFIG_SCHED_DEBUG */
  5052. # define sched_domain_debug(sd, cpu) do { } while (0)
  5053. #endif /* CONFIG_SCHED_DEBUG */
  5054. static int sd_degenerate(struct sched_domain *sd)
  5055. {
  5056. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5057. return 1;
  5058. /* Following flags need at least 2 groups */
  5059. if (sd->flags & (SD_LOAD_BALANCE |
  5060. SD_BALANCE_NEWIDLE |
  5061. SD_BALANCE_FORK |
  5062. SD_BALANCE_EXEC |
  5063. SD_SHARE_CPUPOWER |
  5064. SD_SHARE_PKG_RESOURCES)) {
  5065. if (sd->groups != sd->groups->next)
  5066. return 0;
  5067. }
  5068. /* Following flags don't use groups */
  5069. if (sd->flags & (SD_WAKE_AFFINE))
  5070. return 0;
  5071. return 1;
  5072. }
  5073. static int
  5074. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5075. {
  5076. unsigned long cflags = sd->flags, pflags = parent->flags;
  5077. if (sd_degenerate(parent))
  5078. return 1;
  5079. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5080. return 0;
  5081. /* Flags needing groups don't count if only 1 group in parent */
  5082. if (parent->groups == parent->groups->next) {
  5083. pflags &= ~(SD_LOAD_BALANCE |
  5084. SD_BALANCE_NEWIDLE |
  5085. SD_BALANCE_FORK |
  5086. SD_BALANCE_EXEC |
  5087. SD_SHARE_CPUPOWER |
  5088. SD_SHARE_PKG_RESOURCES);
  5089. if (nr_node_ids == 1)
  5090. pflags &= ~SD_SERIALIZE;
  5091. }
  5092. if (~cflags & pflags)
  5093. return 0;
  5094. return 1;
  5095. }
  5096. static void free_rootdomain(struct root_domain *rd)
  5097. {
  5098. synchronize_sched();
  5099. cpupri_cleanup(&rd->cpupri);
  5100. free_cpumask_var(rd->rto_mask);
  5101. free_cpumask_var(rd->online);
  5102. free_cpumask_var(rd->span);
  5103. kfree(rd);
  5104. }
  5105. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5106. {
  5107. struct root_domain *old_rd = NULL;
  5108. unsigned long flags;
  5109. raw_spin_lock_irqsave(&rq->lock, flags);
  5110. if (rq->rd) {
  5111. old_rd = rq->rd;
  5112. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5113. set_rq_offline(rq);
  5114. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5115. /*
  5116. * If we dont want to free the old_rt yet then
  5117. * set old_rd to NULL to skip the freeing later
  5118. * in this function:
  5119. */
  5120. if (!atomic_dec_and_test(&old_rd->refcount))
  5121. old_rd = NULL;
  5122. }
  5123. atomic_inc(&rd->refcount);
  5124. rq->rd = rd;
  5125. cpumask_set_cpu(rq->cpu, rd->span);
  5126. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5127. set_rq_online(rq);
  5128. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5129. if (old_rd)
  5130. free_rootdomain(old_rd);
  5131. }
  5132. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5133. {
  5134. gfp_t gfp = GFP_KERNEL;
  5135. memset(rd, 0, sizeof(*rd));
  5136. if (bootmem)
  5137. gfp = GFP_NOWAIT;
  5138. if (!alloc_cpumask_var(&rd->span, gfp))
  5139. goto out;
  5140. if (!alloc_cpumask_var(&rd->online, gfp))
  5141. goto free_span;
  5142. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5143. goto free_online;
  5144. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5145. goto free_rto_mask;
  5146. return 0;
  5147. free_rto_mask:
  5148. free_cpumask_var(rd->rto_mask);
  5149. free_online:
  5150. free_cpumask_var(rd->online);
  5151. free_span:
  5152. free_cpumask_var(rd->span);
  5153. out:
  5154. return -ENOMEM;
  5155. }
  5156. static void init_defrootdomain(void)
  5157. {
  5158. init_rootdomain(&def_root_domain, true);
  5159. atomic_set(&def_root_domain.refcount, 1);
  5160. }
  5161. static struct root_domain *alloc_rootdomain(void)
  5162. {
  5163. struct root_domain *rd;
  5164. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5165. if (!rd)
  5166. return NULL;
  5167. if (init_rootdomain(rd, false) != 0) {
  5168. kfree(rd);
  5169. return NULL;
  5170. }
  5171. return rd;
  5172. }
  5173. /*
  5174. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5175. * hold the hotplug lock.
  5176. */
  5177. static void
  5178. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5179. {
  5180. struct rq *rq = cpu_rq(cpu);
  5181. struct sched_domain *tmp;
  5182. for (tmp = sd; tmp; tmp = tmp->parent)
  5183. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5184. /* Remove the sched domains which do not contribute to scheduling. */
  5185. for (tmp = sd; tmp; ) {
  5186. struct sched_domain *parent = tmp->parent;
  5187. if (!parent)
  5188. break;
  5189. if (sd_parent_degenerate(tmp, parent)) {
  5190. tmp->parent = parent->parent;
  5191. if (parent->parent)
  5192. parent->parent->child = tmp;
  5193. } else
  5194. tmp = tmp->parent;
  5195. }
  5196. if (sd && sd_degenerate(sd)) {
  5197. sd = sd->parent;
  5198. if (sd)
  5199. sd->child = NULL;
  5200. }
  5201. sched_domain_debug(sd, cpu);
  5202. rq_attach_root(rq, rd);
  5203. rcu_assign_pointer(rq->sd, sd);
  5204. }
  5205. /* cpus with isolated domains */
  5206. static cpumask_var_t cpu_isolated_map;
  5207. /* Setup the mask of cpus configured for isolated domains */
  5208. static int __init isolated_cpu_setup(char *str)
  5209. {
  5210. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5211. cpulist_parse(str, cpu_isolated_map);
  5212. return 1;
  5213. }
  5214. __setup("isolcpus=", isolated_cpu_setup);
  5215. /*
  5216. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5217. * to a function which identifies what group(along with sched group) a CPU
  5218. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5219. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5220. *
  5221. * init_sched_build_groups will build a circular linked list of the groups
  5222. * covered by the given span, and will set each group's ->cpumask correctly,
  5223. * and ->cpu_power to 0.
  5224. */
  5225. static void
  5226. init_sched_build_groups(const struct cpumask *span,
  5227. const struct cpumask *cpu_map,
  5228. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5229. struct sched_group **sg,
  5230. struct cpumask *tmpmask),
  5231. struct cpumask *covered, struct cpumask *tmpmask)
  5232. {
  5233. struct sched_group *first = NULL, *last = NULL;
  5234. int i;
  5235. cpumask_clear(covered);
  5236. for_each_cpu(i, span) {
  5237. struct sched_group *sg;
  5238. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5239. int j;
  5240. if (cpumask_test_cpu(i, covered))
  5241. continue;
  5242. cpumask_clear(sched_group_cpus(sg));
  5243. sg->cpu_power = 0;
  5244. for_each_cpu(j, span) {
  5245. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5246. continue;
  5247. cpumask_set_cpu(j, covered);
  5248. cpumask_set_cpu(j, sched_group_cpus(sg));
  5249. }
  5250. if (!first)
  5251. first = sg;
  5252. if (last)
  5253. last->next = sg;
  5254. last = sg;
  5255. }
  5256. last->next = first;
  5257. }
  5258. #define SD_NODES_PER_DOMAIN 16
  5259. #ifdef CONFIG_NUMA
  5260. /**
  5261. * find_next_best_node - find the next node to include in a sched_domain
  5262. * @node: node whose sched_domain we're building
  5263. * @used_nodes: nodes already in the sched_domain
  5264. *
  5265. * Find the next node to include in a given scheduling domain. Simply
  5266. * finds the closest node not already in the @used_nodes map.
  5267. *
  5268. * Should use nodemask_t.
  5269. */
  5270. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5271. {
  5272. int i, n, val, min_val, best_node = 0;
  5273. min_val = INT_MAX;
  5274. for (i = 0; i < nr_node_ids; i++) {
  5275. /* Start at @node */
  5276. n = (node + i) % nr_node_ids;
  5277. if (!nr_cpus_node(n))
  5278. continue;
  5279. /* Skip already used nodes */
  5280. if (node_isset(n, *used_nodes))
  5281. continue;
  5282. /* Simple min distance search */
  5283. val = node_distance(node, n);
  5284. if (val < min_val) {
  5285. min_val = val;
  5286. best_node = n;
  5287. }
  5288. }
  5289. node_set(best_node, *used_nodes);
  5290. return best_node;
  5291. }
  5292. /**
  5293. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5294. * @node: node whose cpumask we're constructing
  5295. * @span: resulting cpumask
  5296. *
  5297. * Given a node, construct a good cpumask for its sched_domain to span. It
  5298. * should be one that prevents unnecessary balancing, but also spreads tasks
  5299. * out optimally.
  5300. */
  5301. static void sched_domain_node_span(int node, struct cpumask *span)
  5302. {
  5303. nodemask_t used_nodes;
  5304. int i;
  5305. cpumask_clear(span);
  5306. nodes_clear(used_nodes);
  5307. cpumask_or(span, span, cpumask_of_node(node));
  5308. node_set(node, used_nodes);
  5309. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5310. int next_node = find_next_best_node(node, &used_nodes);
  5311. cpumask_or(span, span, cpumask_of_node(next_node));
  5312. }
  5313. }
  5314. #endif /* CONFIG_NUMA */
  5315. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5316. /*
  5317. * The cpus mask in sched_group and sched_domain hangs off the end.
  5318. *
  5319. * ( See the the comments in include/linux/sched.h:struct sched_group
  5320. * and struct sched_domain. )
  5321. */
  5322. struct static_sched_group {
  5323. struct sched_group sg;
  5324. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5325. };
  5326. struct static_sched_domain {
  5327. struct sched_domain sd;
  5328. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5329. };
  5330. struct s_data {
  5331. #ifdef CONFIG_NUMA
  5332. int sd_allnodes;
  5333. cpumask_var_t domainspan;
  5334. cpumask_var_t covered;
  5335. cpumask_var_t notcovered;
  5336. #endif
  5337. cpumask_var_t nodemask;
  5338. cpumask_var_t this_sibling_map;
  5339. cpumask_var_t this_core_map;
  5340. cpumask_var_t send_covered;
  5341. cpumask_var_t tmpmask;
  5342. struct sched_group **sched_group_nodes;
  5343. struct root_domain *rd;
  5344. };
  5345. enum s_alloc {
  5346. sa_sched_groups = 0,
  5347. sa_rootdomain,
  5348. sa_tmpmask,
  5349. sa_send_covered,
  5350. sa_this_core_map,
  5351. sa_this_sibling_map,
  5352. sa_nodemask,
  5353. sa_sched_group_nodes,
  5354. #ifdef CONFIG_NUMA
  5355. sa_notcovered,
  5356. sa_covered,
  5357. sa_domainspan,
  5358. #endif
  5359. sa_none,
  5360. };
  5361. /*
  5362. * SMT sched-domains:
  5363. */
  5364. #ifdef CONFIG_SCHED_SMT
  5365. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5366. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5367. static int
  5368. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5369. struct sched_group **sg, struct cpumask *unused)
  5370. {
  5371. if (sg)
  5372. *sg = &per_cpu(sched_groups, cpu).sg;
  5373. return cpu;
  5374. }
  5375. #endif /* CONFIG_SCHED_SMT */
  5376. /*
  5377. * multi-core sched-domains:
  5378. */
  5379. #ifdef CONFIG_SCHED_MC
  5380. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5381. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5382. #endif /* CONFIG_SCHED_MC */
  5383. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5384. static int
  5385. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5386. struct sched_group **sg, struct cpumask *mask)
  5387. {
  5388. int group;
  5389. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5390. group = cpumask_first(mask);
  5391. if (sg)
  5392. *sg = &per_cpu(sched_group_core, group).sg;
  5393. return group;
  5394. }
  5395. #elif defined(CONFIG_SCHED_MC)
  5396. static int
  5397. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5398. struct sched_group **sg, struct cpumask *unused)
  5399. {
  5400. if (sg)
  5401. *sg = &per_cpu(sched_group_core, cpu).sg;
  5402. return cpu;
  5403. }
  5404. #endif
  5405. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5406. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5407. static int
  5408. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5409. struct sched_group **sg, struct cpumask *mask)
  5410. {
  5411. int group;
  5412. #ifdef CONFIG_SCHED_MC
  5413. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5414. group = cpumask_first(mask);
  5415. #elif defined(CONFIG_SCHED_SMT)
  5416. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5417. group = cpumask_first(mask);
  5418. #else
  5419. group = cpu;
  5420. #endif
  5421. if (sg)
  5422. *sg = &per_cpu(sched_group_phys, group).sg;
  5423. return group;
  5424. }
  5425. #ifdef CONFIG_NUMA
  5426. /*
  5427. * The init_sched_build_groups can't handle what we want to do with node
  5428. * groups, so roll our own. Now each node has its own list of groups which
  5429. * gets dynamically allocated.
  5430. */
  5431. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5432. static struct sched_group ***sched_group_nodes_bycpu;
  5433. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5434. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5435. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5436. struct sched_group **sg,
  5437. struct cpumask *nodemask)
  5438. {
  5439. int group;
  5440. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5441. group = cpumask_first(nodemask);
  5442. if (sg)
  5443. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5444. return group;
  5445. }
  5446. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5447. {
  5448. struct sched_group *sg = group_head;
  5449. int j;
  5450. if (!sg)
  5451. return;
  5452. do {
  5453. for_each_cpu(j, sched_group_cpus(sg)) {
  5454. struct sched_domain *sd;
  5455. sd = &per_cpu(phys_domains, j).sd;
  5456. if (j != group_first_cpu(sd->groups)) {
  5457. /*
  5458. * Only add "power" once for each
  5459. * physical package.
  5460. */
  5461. continue;
  5462. }
  5463. sg->cpu_power += sd->groups->cpu_power;
  5464. }
  5465. sg = sg->next;
  5466. } while (sg != group_head);
  5467. }
  5468. static int build_numa_sched_groups(struct s_data *d,
  5469. const struct cpumask *cpu_map, int num)
  5470. {
  5471. struct sched_domain *sd;
  5472. struct sched_group *sg, *prev;
  5473. int n, j;
  5474. cpumask_clear(d->covered);
  5475. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5476. if (cpumask_empty(d->nodemask)) {
  5477. d->sched_group_nodes[num] = NULL;
  5478. goto out;
  5479. }
  5480. sched_domain_node_span(num, d->domainspan);
  5481. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5482. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5483. GFP_KERNEL, num);
  5484. if (!sg) {
  5485. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5486. num);
  5487. return -ENOMEM;
  5488. }
  5489. d->sched_group_nodes[num] = sg;
  5490. for_each_cpu(j, d->nodemask) {
  5491. sd = &per_cpu(node_domains, j).sd;
  5492. sd->groups = sg;
  5493. }
  5494. sg->cpu_power = 0;
  5495. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5496. sg->next = sg;
  5497. cpumask_or(d->covered, d->covered, d->nodemask);
  5498. prev = sg;
  5499. for (j = 0; j < nr_node_ids; j++) {
  5500. n = (num + j) % nr_node_ids;
  5501. cpumask_complement(d->notcovered, d->covered);
  5502. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5503. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5504. if (cpumask_empty(d->tmpmask))
  5505. break;
  5506. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5507. if (cpumask_empty(d->tmpmask))
  5508. continue;
  5509. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5510. GFP_KERNEL, num);
  5511. if (!sg) {
  5512. printk(KERN_WARNING
  5513. "Can not alloc domain group for node %d\n", j);
  5514. return -ENOMEM;
  5515. }
  5516. sg->cpu_power = 0;
  5517. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5518. sg->next = prev->next;
  5519. cpumask_or(d->covered, d->covered, d->tmpmask);
  5520. prev->next = sg;
  5521. prev = sg;
  5522. }
  5523. out:
  5524. return 0;
  5525. }
  5526. #endif /* CONFIG_NUMA */
  5527. #ifdef CONFIG_NUMA
  5528. /* Free memory allocated for various sched_group structures */
  5529. static void free_sched_groups(const struct cpumask *cpu_map,
  5530. struct cpumask *nodemask)
  5531. {
  5532. int cpu, i;
  5533. for_each_cpu(cpu, cpu_map) {
  5534. struct sched_group **sched_group_nodes
  5535. = sched_group_nodes_bycpu[cpu];
  5536. if (!sched_group_nodes)
  5537. continue;
  5538. for (i = 0; i < nr_node_ids; i++) {
  5539. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5540. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5541. if (cpumask_empty(nodemask))
  5542. continue;
  5543. if (sg == NULL)
  5544. continue;
  5545. sg = sg->next;
  5546. next_sg:
  5547. oldsg = sg;
  5548. sg = sg->next;
  5549. kfree(oldsg);
  5550. if (oldsg != sched_group_nodes[i])
  5551. goto next_sg;
  5552. }
  5553. kfree(sched_group_nodes);
  5554. sched_group_nodes_bycpu[cpu] = NULL;
  5555. }
  5556. }
  5557. #else /* !CONFIG_NUMA */
  5558. static void free_sched_groups(const struct cpumask *cpu_map,
  5559. struct cpumask *nodemask)
  5560. {
  5561. }
  5562. #endif /* CONFIG_NUMA */
  5563. /*
  5564. * Initialize sched groups cpu_power.
  5565. *
  5566. * cpu_power indicates the capacity of sched group, which is used while
  5567. * distributing the load between different sched groups in a sched domain.
  5568. * Typically cpu_power for all the groups in a sched domain will be same unless
  5569. * there are asymmetries in the topology. If there are asymmetries, group
  5570. * having more cpu_power will pickup more load compared to the group having
  5571. * less cpu_power.
  5572. */
  5573. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5574. {
  5575. struct sched_domain *child;
  5576. struct sched_group *group;
  5577. long power;
  5578. int weight;
  5579. WARN_ON(!sd || !sd->groups);
  5580. if (cpu != group_first_cpu(sd->groups))
  5581. return;
  5582. child = sd->child;
  5583. sd->groups->cpu_power = 0;
  5584. if (!child) {
  5585. power = SCHED_LOAD_SCALE;
  5586. weight = cpumask_weight(sched_domain_span(sd));
  5587. /*
  5588. * SMT siblings share the power of a single core.
  5589. * Usually multiple threads get a better yield out of
  5590. * that one core than a single thread would have,
  5591. * reflect that in sd->smt_gain.
  5592. */
  5593. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5594. power *= sd->smt_gain;
  5595. power /= weight;
  5596. power >>= SCHED_LOAD_SHIFT;
  5597. }
  5598. sd->groups->cpu_power += power;
  5599. return;
  5600. }
  5601. /*
  5602. * Add cpu_power of each child group to this groups cpu_power.
  5603. */
  5604. group = child->groups;
  5605. do {
  5606. sd->groups->cpu_power += group->cpu_power;
  5607. group = group->next;
  5608. } while (group != child->groups);
  5609. }
  5610. /*
  5611. * Initializers for schedule domains
  5612. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5613. */
  5614. #ifdef CONFIG_SCHED_DEBUG
  5615. # define SD_INIT_NAME(sd, type) sd->name = #type
  5616. #else
  5617. # define SD_INIT_NAME(sd, type) do { } while (0)
  5618. #endif
  5619. #define SD_INIT(sd, type) sd_init_##type(sd)
  5620. #define SD_INIT_FUNC(type) \
  5621. static noinline void sd_init_##type(struct sched_domain *sd) \
  5622. { \
  5623. memset(sd, 0, sizeof(*sd)); \
  5624. *sd = SD_##type##_INIT; \
  5625. sd->level = SD_LV_##type; \
  5626. SD_INIT_NAME(sd, type); \
  5627. }
  5628. SD_INIT_FUNC(CPU)
  5629. #ifdef CONFIG_NUMA
  5630. SD_INIT_FUNC(ALLNODES)
  5631. SD_INIT_FUNC(NODE)
  5632. #endif
  5633. #ifdef CONFIG_SCHED_SMT
  5634. SD_INIT_FUNC(SIBLING)
  5635. #endif
  5636. #ifdef CONFIG_SCHED_MC
  5637. SD_INIT_FUNC(MC)
  5638. #endif
  5639. static int default_relax_domain_level = -1;
  5640. static int __init setup_relax_domain_level(char *str)
  5641. {
  5642. unsigned long val;
  5643. val = simple_strtoul(str, NULL, 0);
  5644. if (val < SD_LV_MAX)
  5645. default_relax_domain_level = val;
  5646. return 1;
  5647. }
  5648. __setup("relax_domain_level=", setup_relax_domain_level);
  5649. static void set_domain_attribute(struct sched_domain *sd,
  5650. struct sched_domain_attr *attr)
  5651. {
  5652. int request;
  5653. if (!attr || attr->relax_domain_level < 0) {
  5654. if (default_relax_domain_level < 0)
  5655. return;
  5656. else
  5657. request = default_relax_domain_level;
  5658. } else
  5659. request = attr->relax_domain_level;
  5660. if (request < sd->level) {
  5661. /* turn off idle balance on this domain */
  5662. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5663. } else {
  5664. /* turn on idle balance on this domain */
  5665. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5666. }
  5667. }
  5668. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5669. const struct cpumask *cpu_map)
  5670. {
  5671. switch (what) {
  5672. case sa_sched_groups:
  5673. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5674. d->sched_group_nodes = NULL;
  5675. case sa_rootdomain:
  5676. free_rootdomain(d->rd); /* fall through */
  5677. case sa_tmpmask:
  5678. free_cpumask_var(d->tmpmask); /* fall through */
  5679. case sa_send_covered:
  5680. free_cpumask_var(d->send_covered); /* fall through */
  5681. case sa_this_core_map:
  5682. free_cpumask_var(d->this_core_map); /* fall through */
  5683. case sa_this_sibling_map:
  5684. free_cpumask_var(d->this_sibling_map); /* fall through */
  5685. case sa_nodemask:
  5686. free_cpumask_var(d->nodemask); /* fall through */
  5687. case sa_sched_group_nodes:
  5688. #ifdef CONFIG_NUMA
  5689. kfree(d->sched_group_nodes); /* fall through */
  5690. case sa_notcovered:
  5691. free_cpumask_var(d->notcovered); /* fall through */
  5692. case sa_covered:
  5693. free_cpumask_var(d->covered); /* fall through */
  5694. case sa_domainspan:
  5695. free_cpumask_var(d->domainspan); /* fall through */
  5696. #endif
  5697. case sa_none:
  5698. break;
  5699. }
  5700. }
  5701. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5702. const struct cpumask *cpu_map)
  5703. {
  5704. #ifdef CONFIG_NUMA
  5705. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5706. return sa_none;
  5707. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5708. return sa_domainspan;
  5709. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5710. return sa_covered;
  5711. /* Allocate the per-node list of sched groups */
  5712. d->sched_group_nodes = kcalloc(nr_node_ids,
  5713. sizeof(struct sched_group *), GFP_KERNEL);
  5714. if (!d->sched_group_nodes) {
  5715. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5716. return sa_notcovered;
  5717. }
  5718. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5719. #endif
  5720. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5721. return sa_sched_group_nodes;
  5722. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5723. return sa_nodemask;
  5724. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5725. return sa_this_sibling_map;
  5726. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5727. return sa_this_core_map;
  5728. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5729. return sa_send_covered;
  5730. d->rd = alloc_rootdomain();
  5731. if (!d->rd) {
  5732. printk(KERN_WARNING "Cannot alloc root domain\n");
  5733. return sa_tmpmask;
  5734. }
  5735. return sa_rootdomain;
  5736. }
  5737. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5738. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5739. {
  5740. struct sched_domain *sd = NULL;
  5741. #ifdef CONFIG_NUMA
  5742. struct sched_domain *parent;
  5743. d->sd_allnodes = 0;
  5744. if (cpumask_weight(cpu_map) >
  5745. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5746. sd = &per_cpu(allnodes_domains, i).sd;
  5747. SD_INIT(sd, ALLNODES);
  5748. set_domain_attribute(sd, attr);
  5749. cpumask_copy(sched_domain_span(sd), cpu_map);
  5750. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5751. d->sd_allnodes = 1;
  5752. }
  5753. parent = sd;
  5754. sd = &per_cpu(node_domains, i).sd;
  5755. SD_INIT(sd, NODE);
  5756. set_domain_attribute(sd, attr);
  5757. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5758. sd->parent = parent;
  5759. if (parent)
  5760. parent->child = sd;
  5761. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5762. #endif
  5763. return sd;
  5764. }
  5765. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5766. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5767. struct sched_domain *parent, int i)
  5768. {
  5769. struct sched_domain *sd;
  5770. sd = &per_cpu(phys_domains, i).sd;
  5771. SD_INIT(sd, CPU);
  5772. set_domain_attribute(sd, attr);
  5773. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5774. sd->parent = parent;
  5775. if (parent)
  5776. parent->child = sd;
  5777. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5778. return sd;
  5779. }
  5780. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5781. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5782. struct sched_domain *parent, int i)
  5783. {
  5784. struct sched_domain *sd = parent;
  5785. #ifdef CONFIG_SCHED_MC
  5786. sd = &per_cpu(core_domains, i).sd;
  5787. SD_INIT(sd, MC);
  5788. set_domain_attribute(sd, attr);
  5789. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5790. sd->parent = parent;
  5791. parent->child = sd;
  5792. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5793. #endif
  5794. return sd;
  5795. }
  5796. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5797. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5798. struct sched_domain *parent, int i)
  5799. {
  5800. struct sched_domain *sd = parent;
  5801. #ifdef CONFIG_SCHED_SMT
  5802. sd = &per_cpu(cpu_domains, i).sd;
  5803. SD_INIT(sd, SIBLING);
  5804. set_domain_attribute(sd, attr);
  5805. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5806. sd->parent = parent;
  5807. parent->child = sd;
  5808. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5809. #endif
  5810. return sd;
  5811. }
  5812. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5813. const struct cpumask *cpu_map, int cpu)
  5814. {
  5815. switch (l) {
  5816. #ifdef CONFIG_SCHED_SMT
  5817. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5818. cpumask_and(d->this_sibling_map, cpu_map,
  5819. topology_thread_cpumask(cpu));
  5820. if (cpu == cpumask_first(d->this_sibling_map))
  5821. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5822. &cpu_to_cpu_group,
  5823. d->send_covered, d->tmpmask);
  5824. break;
  5825. #endif
  5826. #ifdef CONFIG_SCHED_MC
  5827. case SD_LV_MC: /* set up multi-core groups */
  5828. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5829. if (cpu == cpumask_first(d->this_core_map))
  5830. init_sched_build_groups(d->this_core_map, cpu_map,
  5831. &cpu_to_core_group,
  5832. d->send_covered, d->tmpmask);
  5833. break;
  5834. #endif
  5835. case SD_LV_CPU: /* set up physical groups */
  5836. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5837. if (!cpumask_empty(d->nodemask))
  5838. init_sched_build_groups(d->nodemask, cpu_map,
  5839. &cpu_to_phys_group,
  5840. d->send_covered, d->tmpmask);
  5841. break;
  5842. #ifdef CONFIG_NUMA
  5843. case SD_LV_ALLNODES:
  5844. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5845. d->send_covered, d->tmpmask);
  5846. break;
  5847. #endif
  5848. default:
  5849. break;
  5850. }
  5851. }
  5852. /*
  5853. * Build sched domains for a given set of cpus and attach the sched domains
  5854. * to the individual cpus
  5855. */
  5856. static int __build_sched_domains(const struct cpumask *cpu_map,
  5857. struct sched_domain_attr *attr)
  5858. {
  5859. enum s_alloc alloc_state = sa_none;
  5860. struct s_data d;
  5861. struct sched_domain *sd;
  5862. int i;
  5863. #ifdef CONFIG_NUMA
  5864. d.sd_allnodes = 0;
  5865. #endif
  5866. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5867. if (alloc_state != sa_rootdomain)
  5868. goto error;
  5869. alloc_state = sa_sched_groups;
  5870. /*
  5871. * Set up domains for cpus specified by the cpu_map.
  5872. */
  5873. for_each_cpu(i, cpu_map) {
  5874. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  5875. cpu_map);
  5876. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  5877. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  5878. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  5879. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  5880. }
  5881. for_each_cpu(i, cpu_map) {
  5882. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  5883. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  5884. }
  5885. /* Set up physical groups */
  5886. for (i = 0; i < nr_node_ids; i++)
  5887. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  5888. #ifdef CONFIG_NUMA
  5889. /* Set up node groups */
  5890. if (d.sd_allnodes)
  5891. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  5892. for (i = 0; i < nr_node_ids; i++)
  5893. if (build_numa_sched_groups(&d, cpu_map, i))
  5894. goto error;
  5895. #endif
  5896. /* Calculate CPU power for physical packages and nodes */
  5897. #ifdef CONFIG_SCHED_SMT
  5898. for_each_cpu(i, cpu_map) {
  5899. sd = &per_cpu(cpu_domains, i).sd;
  5900. init_sched_groups_power(i, sd);
  5901. }
  5902. #endif
  5903. #ifdef CONFIG_SCHED_MC
  5904. for_each_cpu(i, cpu_map) {
  5905. sd = &per_cpu(core_domains, i).sd;
  5906. init_sched_groups_power(i, sd);
  5907. }
  5908. #endif
  5909. for_each_cpu(i, cpu_map) {
  5910. sd = &per_cpu(phys_domains, i).sd;
  5911. init_sched_groups_power(i, sd);
  5912. }
  5913. #ifdef CONFIG_NUMA
  5914. for (i = 0; i < nr_node_ids; i++)
  5915. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  5916. if (d.sd_allnodes) {
  5917. struct sched_group *sg;
  5918. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  5919. d.tmpmask);
  5920. init_numa_sched_groups_power(sg);
  5921. }
  5922. #endif
  5923. /* Attach the domains */
  5924. for_each_cpu(i, cpu_map) {
  5925. #ifdef CONFIG_SCHED_SMT
  5926. sd = &per_cpu(cpu_domains, i).sd;
  5927. #elif defined(CONFIG_SCHED_MC)
  5928. sd = &per_cpu(core_domains, i).sd;
  5929. #else
  5930. sd = &per_cpu(phys_domains, i).sd;
  5931. #endif
  5932. cpu_attach_domain(sd, d.rd, i);
  5933. }
  5934. d.sched_group_nodes = NULL; /* don't free this we still need it */
  5935. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  5936. return 0;
  5937. error:
  5938. __free_domain_allocs(&d, alloc_state, cpu_map);
  5939. return -ENOMEM;
  5940. }
  5941. static int build_sched_domains(const struct cpumask *cpu_map)
  5942. {
  5943. return __build_sched_domains(cpu_map, NULL);
  5944. }
  5945. static cpumask_var_t *doms_cur; /* current sched domains */
  5946. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5947. static struct sched_domain_attr *dattr_cur;
  5948. /* attribues of custom domains in 'doms_cur' */
  5949. /*
  5950. * Special case: If a kmalloc of a doms_cur partition (array of
  5951. * cpumask) fails, then fallback to a single sched domain,
  5952. * as determined by the single cpumask fallback_doms.
  5953. */
  5954. static cpumask_var_t fallback_doms;
  5955. /*
  5956. * arch_update_cpu_topology lets virtualized architectures update the
  5957. * cpu core maps. It is supposed to return 1 if the topology changed
  5958. * or 0 if it stayed the same.
  5959. */
  5960. int __attribute__((weak)) arch_update_cpu_topology(void)
  5961. {
  5962. return 0;
  5963. }
  5964. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5965. {
  5966. int i;
  5967. cpumask_var_t *doms;
  5968. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5969. if (!doms)
  5970. return NULL;
  5971. for (i = 0; i < ndoms; i++) {
  5972. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5973. free_sched_domains(doms, i);
  5974. return NULL;
  5975. }
  5976. }
  5977. return doms;
  5978. }
  5979. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5980. {
  5981. unsigned int i;
  5982. for (i = 0; i < ndoms; i++)
  5983. free_cpumask_var(doms[i]);
  5984. kfree(doms);
  5985. }
  5986. /*
  5987. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5988. * For now this just excludes isolated cpus, but could be used to
  5989. * exclude other special cases in the future.
  5990. */
  5991. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  5992. {
  5993. int err;
  5994. arch_update_cpu_topology();
  5995. ndoms_cur = 1;
  5996. doms_cur = alloc_sched_domains(ndoms_cur);
  5997. if (!doms_cur)
  5998. doms_cur = &fallback_doms;
  5999. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6000. dattr_cur = NULL;
  6001. err = build_sched_domains(doms_cur[0]);
  6002. register_sched_domain_sysctl();
  6003. return err;
  6004. }
  6005. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6006. struct cpumask *tmpmask)
  6007. {
  6008. free_sched_groups(cpu_map, tmpmask);
  6009. }
  6010. /*
  6011. * Detach sched domains from a group of cpus specified in cpu_map
  6012. * These cpus will now be attached to the NULL domain
  6013. */
  6014. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6015. {
  6016. /* Save because hotplug lock held. */
  6017. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6018. int i;
  6019. for_each_cpu(i, cpu_map)
  6020. cpu_attach_domain(NULL, &def_root_domain, i);
  6021. synchronize_sched();
  6022. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6023. }
  6024. /* handle null as "default" */
  6025. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6026. struct sched_domain_attr *new, int idx_new)
  6027. {
  6028. struct sched_domain_attr tmp;
  6029. /* fast path */
  6030. if (!new && !cur)
  6031. return 1;
  6032. tmp = SD_ATTR_INIT;
  6033. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6034. new ? (new + idx_new) : &tmp,
  6035. sizeof(struct sched_domain_attr));
  6036. }
  6037. /*
  6038. * Partition sched domains as specified by the 'ndoms_new'
  6039. * cpumasks in the array doms_new[] of cpumasks. This compares
  6040. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6041. * It destroys each deleted domain and builds each new domain.
  6042. *
  6043. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6044. * The masks don't intersect (don't overlap.) We should setup one
  6045. * sched domain for each mask. CPUs not in any of the cpumasks will
  6046. * not be load balanced. If the same cpumask appears both in the
  6047. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6048. * it as it is.
  6049. *
  6050. * The passed in 'doms_new' should be allocated using
  6051. * alloc_sched_domains. This routine takes ownership of it and will
  6052. * free_sched_domains it when done with it. If the caller failed the
  6053. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6054. * and partition_sched_domains() will fallback to the single partition
  6055. * 'fallback_doms', it also forces the domains to be rebuilt.
  6056. *
  6057. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6058. * ndoms_new == 0 is a special case for destroying existing domains,
  6059. * and it will not create the default domain.
  6060. *
  6061. * Call with hotplug lock held
  6062. */
  6063. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6064. struct sched_domain_attr *dattr_new)
  6065. {
  6066. int i, j, n;
  6067. int new_topology;
  6068. mutex_lock(&sched_domains_mutex);
  6069. /* always unregister in case we don't destroy any domains */
  6070. unregister_sched_domain_sysctl();
  6071. /* Let architecture update cpu core mappings. */
  6072. new_topology = arch_update_cpu_topology();
  6073. n = doms_new ? ndoms_new : 0;
  6074. /* Destroy deleted domains */
  6075. for (i = 0; i < ndoms_cur; i++) {
  6076. for (j = 0; j < n && !new_topology; j++) {
  6077. if (cpumask_equal(doms_cur[i], doms_new[j])
  6078. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6079. goto match1;
  6080. }
  6081. /* no match - a current sched domain not in new doms_new[] */
  6082. detach_destroy_domains(doms_cur[i]);
  6083. match1:
  6084. ;
  6085. }
  6086. if (doms_new == NULL) {
  6087. ndoms_cur = 0;
  6088. doms_new = &fallback_doms;
  6089. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6090. WARN_ON_ONCE(dattr_new);
  6091. }
  6092. /* Build new domains */
  6093. for (i = 0; i < ndoms_new; i++) {
  6094. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6095. if (cpumask_equal(doms_new[i], doms_cur[j])
  6096. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6097. goto match2;
  6098. }
  6099. /* no match - add a new doms_new */
  6100. __build_sched_domains(doms_new[i],
  6101. dattr_new ? dattr_new + i : NULL);
  6102. match2:
  6103. ;
  6104. }
  6105. /* Remember the new sched domains */
  6106. if (doms_cur != &fallback_doms)
  6107. free_sched_domains(doms_cur, ndoms_cur);
  6108. kfree(dattr_cur); /* kfree(NULL) is safe */
  6109. doms_cur = doms_new;
  6110. dattr_cur = dattr_new;
  6111. ndoms_cur = ndoms_new;
  6112. register_sched_domain_sysctl();
  6113. mutex_unlock(&sched_domains_mutex);
  6114. }
  6115. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6116. static void arch_reinit_sched_domains(void)
  6117. {
  6118. get_online_cpus();
  6119. /* Destroy domains first to force the rebuild */
  6120. partition_sched_domains(0, NULL, NULL);
  6121. rebuild_sched_domains();
  6122. put_online_cpus();
  6123. }
  6124. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6125. {
  6126. unsigned int level = 0;
  6127. if (sscanf(buf, "%u", &level) != 1)
  6128. return -EINVAL;
  6129. /*
  6130. * level is always be positive so don't check for
  6131. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6132. * What happens on 0 or 1 byte write,
  6133. * need to check for count as well?
  6134. */
  6135. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6136. return -EINVAL;
  6137. if (smt)
  6138. sched_smt_power_savings = level;
  6139. else
  6140. sched_mc_power_savings = level;
  6141. arch_reinit_sched_domains();
  6142. return count;
  6143. }
  6144. #ifdef CONFIG_SCHED_MC
  6145. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6146. struct sysdev_class_attribute *attr,
  6147. char *page)
  6148. {
  6149. return sprintf(page, "%u\n", sched_mc_power_savings);
  6150. }
  6151. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6152. struct sysdev_class_attribute *attr,
  6153. const char *buf, size_t count)
  6154. {
  6155. return sched_power_savings_store(buf, count, 0);
  6156. }
  6157. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6158. sched_mc_power_savings_show,
  6159. sched_mc_power_savings_store);
  6160. #endif
  6161. #ifdef CONFIG_SCHED_SMT
  6162. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6163. struct sysdev_class_attribute *attr,
  6164. char *page)
  6165. {
  6166. return sprintf(page, "%u\n", sched_smt_power_savings);
  6167. }
  6168. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6169. struct sysdev_class_attribute *attr,
  6170. const char *buf, size_t count)
  6171. {
  6172. return sched_power_savings_store(buf, count, 1);
  6173. }
  6174. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6175. sched_smt_power_savings_show,
  6176. sched_smt_power_savings_store);
  6177. #endif
  6178. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6179. {
  6180. int err = 0;
  6181. #ifdef CONFIG_SCHED_SMT
  6182. if (smt_capable())
  6183. err = sysfs_create_file(&cls->kset.kobj,
  6184. &attr_sched_smt_power_savings.attr);
  6185. #endif
  6186. #ifdef CONFIG_SCHED_MC
  6187. if (!err && mc_capable())
  6188. err = sysfs_create_file(&cls->kset.kobj,
  6189. &attr_sched_mc_power_savings.attr);
  6190. #endif
  6191. return err;
  6192. }
  6193. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6194. #ifndef CONFIG_CPUSETS
  6195. /*
  6196. * Add online and remove offline CPUs from the scheduler domains.
  6197. * When cpusets are enabled they take over this function.
  6198. */
  6199. static int update_sched_domains(struct notifier_block *nfb,
  6200. unsigned long action, void *hcpu)
  6201. {
  6202. switch (action) {
  6203. case CPU_ONLINE:
  6204. case CPU_ONLINE_FROZEN:
  6205. case CPU_DOWN_PREPARE:
  6206. case CPU_DOWN_PREPARE_FROZEN:
  6207. case CPU_DOWN_FAILED:
  6208. case CPU_DOWN_FAILED_FROZEN:
  6209. partition_sched_domains(1, NULL, NULL);
  6210. return NOTIFY_OK;
  6211. default:
  6212. return NOTIFY_DONE;
  6213. }
  6214. }
  6215. #endif
  6216. static int update_runtime(struct notifier_block *nfb,
  6217. unsigned long action, void *hcpu)
  6218. {
  6219. int cpu = (int)(long)hcpu;
  6220. switch (action) {
  6221. case CPU_DOWN_PREPARE:
  6222. case CPU_DOWN_PREPARE_FROZEN:
  6223. disable_runtime(cpu_rq(cpu));
  6224. return NOTIFY_OK;
  6225. case CPU_DOWN_FAILED:
  6226. case CPU_DOWN_FAILED_FROZEN:
  6227. case CPU_ONLINE:
  6228. case CPU_ONLINE_FROZEN:
  6229. enable_runtime(cpu_rq(cpu));
  6230. return NOTIFY_OK;
  6231. default:
  6232. return NOTIFY_DONE;
  6233. }
  6234. }
  6235. void __init sched_init_smp(void)
  6236. {
  6237. cpumask_var_t non_isolated_cpus;
  6238. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6239. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6240. #if defined(CONFIG_NUMA)
  6241. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6242. GFP_KERNEL);
  6243. BUG_ON(sched_group_nodes_bycpu == NULL);
  6244. #endif
  6245. get_online_cpus();
  6246. mutex_lock(&sched_domains_mutex);
  6247. arch_init_sched_domains(cpu_active_mask);
  6248. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6249. if (cpumask_empty(non_isolated_cpus))
  6250. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6251. mutex_unlock(&sched_domains_mutex);
  6252. put_online_cpus();
  6253. #ifndef CONFIG_CPUSETS
  6254. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6255. hotcpu_notifier(update_sched_domains, 0);
  6256. #endif
  6257. /* RT runtime code needs to handle some hotplug events */
  6258. hotcpu_notifier(update_runtime, 0);
  6259. init_hrtick();
  6260. /* Move init over to a non-isolated CPU */
  6261. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6262. BUG();
  6263. sched_init_granularity();
  6264. free_cpumask_var(non_isolated_cpus);
  6265. init_sched_rt_class();
  6266. }
  6267. #else
  6268. void __init sched_init_smp(void)
  6269. {
  6270. sched_init_granularity();
  6271. }
  6272. #endif /* CONFIG_SMP */
  6273. const_debug unsigned int sysctl_timer_migration = 1;
  6274. int in_sched_functions(unsigned long addr)
  6275. {
  6276. return in_lock_functions(addr) ||
  6277. (addr >= (unsigned long)__sched_text_start
  6278. && addr < (unsigned long)__sched_text_end);
  6279. }
  6280. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6281. {
  6282. cfs_rq->tasks_timeline = RB_ROOT;
  6283. INIT_LIST_HEAD(&cfs_rq->tasks);
  6284. #ifdef CONFIG_FAIR_GROUP_SCHED
  6285. cfs_rq->rq = rq;
  6286. #endif
  6287. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6288. }
  6289. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6290. {
  6291. struct rt_prio_array *array;
  6292. int i;
  6293. array = &rt_rq->active;
  6294. for (i = 0; i < MAX_RT_PRIO; i++) {
  6295. INIT_LIST_HEAD(array->queue + i);
  6296. __clear_bit(i, array->bitmap);
  6297. }
  6298. /* delimiter for bitsearch: */
  6299. __set_bit(MAX_RT_PRIO, array->bitmap);
  6300. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6301. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6302. #ifdef CONFIG_SMP
  6303. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6304. #endif
  6305. #endif
  6306. #ifdef CONFIG_SMP
  6307. rt_rq->rt_nr_migratory = 0;
  6308. rt_rq->overloaded = 0;
  6309. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6310. #endif
  6311. rt_rq->rt_time = 0;
  6312. rt_rq->rt_throttled = 0;
  6313. rt_rq->rt_runtime = 0;
  6314. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6315. #ifdef CONFIG_RT_GROUP_SCHED
  6316. rt_rq->rt_nr_boosted = 0;
  6317. rt_rq->rq = rq;
  6318. #endif
  6319. }
  6320. #ifdef CONFIG_FAIR_GROUP_SCHED
  6321. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6322. struct sched_entity *se, int cpu, int add,
  6323. struct sched_entity *parent)
  6324. {
  6325. struct rq *rq = cpu_rq(cpu);
  6326. tg->cfs_rq[cpu] = cfs_rq;
  6327. init_cfs_rq(cfs_rq, rq);
  6328. cfs_rq->tg = tg;
  6329. if (add)
  6330. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6331. tg->se[cpu] = se;
  6332. /* se could be NULL for init_task_group */
  6333. if (!se)
  6334. return;
  6335. if (!parent)
  6336. se->cfs_rq = &rq->cfs;
  6337. else
  6338. se->cfs_rq = parent->my_q;
  6339. se->my_q = cfs_rq;
  6340. se->load.weight = tg->shares;
  6341. se->load.inv_weight = 0;
  6342. se->parent = parent;
  6343. }
  6344. #endif
  6345. #ifdef CONFIG_RT_GROUP_SCHED
  6346. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6347. struct sched_rt_entity *rt_se, int cpu, int add,
  6348. struct sched_rt_entity *parent)
  6349. {
  6350. struct rq *rq = cpu_rq(cpu);
  6351. tg->rt_rq[cpu] = rt_rq;
  6352. init_rt_rq(rt_rq, rq);
  6353. rt_rq->tg = tg;
  6354. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6355. if (add)
  6356. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6357. tg->rt_se[cpu] = rt_se;
  6358. if (!rt_se)
  6359. return;
  6360. if (!parent)
  6361. rt_se->rt_rq = &rq->rt;
  6362. else
  6363. rt_se->rt_rq = parent->my_q;
  6364. rt_se->my_q = rt_rq;
  6365. rt_se->parent = parent;
  6366. INIT_LIST_HEAD(&rt_se->run_list);
  6367. }
  6368. #endif
  6369. void __init sched_init(void)
  6370. {
  6371. int i, j;
  6372. unsigned long alloc_size = 0, ptr;
  6373. #ifdef CONFIG_FAIR_GROUP_SCHED
  6374. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6375. #endif
  6376. #ifdef CONFIG_RT_GROUP_SCHED
  6377. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6378. #endif
  6379. #ifdef CONFIG_CPUMASK_OFFSTACK
  6380. alloc_size += num_possible_cpus() * cpumask_size();
  6381. #endif
  6382. if (alloc_size) {
  6383. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6384. #ifdef CONFIG_FAIR_GROUP_SCHED
  6385. init_task_group.se = (struct sched_entity **)ptr;
  6386. ptr += nr_cpu_ids * sizeof(void **);
  6387. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6388. ptr += nr_cpu_ids * sizeof(void **);
  6389. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6390. #ifdef CONFIG_RT_GROUP_SCHED
  6391. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6392. ptr += nr_cpu_ids * sizeof(void **);
  6393. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6394. ptr += nr_cpu_ids * sizeof(void **);
  6395. #endif /* CONFIG_RT_GROUP_SCHED */
  6396. #ifdef CONFIG_CPUMASK_OFFSTACK
  6397. for_each_possible_cpu(i) {
  6398. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6399. ptr += cpumask_size();
  6400. }
  6401. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6402. }
  6403. #ifdef CONFIG_SMP
  6404. init_defrootdomain();
  6405. #endif
  6406. init_rt_bandwidth(&def_rt_bandwidth,
  6407. global_rt_period(), global_rt_runtime());
  6408. #ifdef CONFIG_RT_GROUP_SCHED
  6409. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6410. global_rt_period(), global_rt_runtime());
  6411. #endif /* CONFIG_RT_GROUP_SCHED */
  6412. #ifdef CONFIG_CGROUP_SCHED
  6413. list_add(&init_task_group.list, &task_groups);
  6414. INIT_LIST_HEAD(&init_task_group.children);
  6415. #endif /* CONFIG_CGROUP_SCHED */
  6416. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6417. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6418. __alignof__(unsigned long));
  6419. #endif
  6420. for_each_possible_cpu(i) {
  6421. struct rq *rq;
  6422. rq = cpu_rq(i);
  6423. raw_spin_lock_init(&rq->lock);
  6424. rq->nr_running = 0;
  6425. rq->calc_load_active = 0;
  6426. rq->calc_load_update = jiffies + LOAD_FREQ;
  6427. init_cfs_rq(&rq->cfs, rq);
  6428. init_rt_rq(&rq->rt, rq);
  6429. #ifdef CONFIG_FAIR_GROUP_SCHED
  6430. init_task_group.shares = init_task_group_load;
  6431. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6432. #ifdef CONFIG_CGROUP_SCHED
  6433. /*
  6434. * How much cpu bandwidth does init_task_group get?
  6435. *
  6436. * In case of task-groups formed thr' the cgroup filesystem, it
  6437. * gets 100% of the cpu resources in the system. This overall
  6438. * system cpu resource is divided among the tasks of
  6439. * init_task_group and its child task-groups in a fair manner,
  6440. * based on each entity's (task or task-group's) weight
  6441. * (se->load.weight).
  6442. *
  6443. * In other words, if init_task_group has 10 tasks of weight
  6444. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6445. * then A0's share of the cpu resource is:
  6446. *
  6447. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6448. *
  6449. * We achieve this by letting init_task_group's tasks sit
  6450. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6451. */
  6452. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6453. #endif
  6454. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6455. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6456. #ifdef CONFIG_RT_GROUP_SCHED
  6457. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6458. #ifdef CONFIG_CGROUP_SCHED
  6459. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6460. #endif
  6461. #endif
  6462. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6463. rq->cpu_load[j] = 0;
  6464. #ifdef CONFIG_SMP
  6465. rq->sd = NULL;
  6466. rq->rd = NULL;
  6467. rq->cpu_power = SCHED_LOAD_SCALE;
  6468. rq->post_schedule = 0;
  6469. rq->active_balance = 0;
  6470. rq->next_balance = jiffies;
  6471. rq->push_cpu = 0;
  6472. rq->cpu = i;
  6473. rq->online = 0;
  6474. rq->idle_stamp = 0;
  6475. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6476. rq_attach_root(rq, &def_root_domain);
  6477. #endif
  6478. init_rq_hrtick(rq);
  6479. atomic_set(&rq->nr_iowait, 0);
  6480. }
  6481. set_load_weight(&init_task);
  6482. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6483. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6484. #endif
  6485. #ifdef CONFIG_SMP
  6486. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6487. #endif
  6488. #ifdef CONFIG_RT_MUTEXES
  6489. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6490. #endif
  6491. /*
  6492. * The boot idle thread does lazy MMU switching as well:
  6493. */
  6494. atomic_inc(&init_mm.mm_count);
  6495. enter_lazy_tlb(&init_mm, current);
  6496. /*
  6497. * Make us the idle thread. Technically, schedule() should not be
  6498. * called from this thread, however somewhere below it might be,
  6499. * but because we are the idle thread, we just pick up running again
  6500. * when this runqueue becomes "idle".
  6501. */
  6502. init_idle(current, smp_processor_id());
  6503. calc_load_update = jiffies + LOAD_FREQ;
  6504. /*
  6505. * During early bootup we pretend to be a normal task:
  6506. */
  6507. current->sched_class = &fair_sched_class;
  6508. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6509. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6510. #ifdef CONFIG_SMP
  6511. #ifdef CONFIG_NO_HZ
  6512. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6513. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6514. #endif
  6515. /* May be allocated at isolcpus cmdline parse time */
  6516. if (cpu_isolated_map == NULL)
  6517. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6518. #endif /* SMP */
  6519. perf_event_init();
  6520. scheduler_running = 1;
  6521. }
  6522. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6523. static inline int preempt_count_equals(int preempt_offset)
  6524. {
  6525. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6526. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6527. }
  6528. void __might_sleep(const char *file, int line, int preempt_offset)
  6529. {
  6530. #ifdef in_atomic
  6531. static unsigned long prev_jiffy; /* ratelimiting */
  6532. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6533. system_state != SYSTEM_RUNNING || oops_in_progress)
  6534. return;
  6535. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6536. return;
  6537. prev_jiffy = jiffies;
  6538. printk(KERN_ERR
  6539. "BUG: sleeping function called from invalid context at %s:%d\n",
  6540. file, line);
  6541. printk(KERN_ERR
  6542. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6543. in_atomic(), irqs_disabled(),
  6544. current->pid, current->comm);
  6545. debug_show_held_locks(current);
  6546. if (irqs_disabled())
  6547. print_irqtrace_events(current);
  6548. dump_stack();
  6549. #endif
  6550. }
  6551. EXPORT_SYMBOL(__might_sleep);
  6552. #endif
  6553. #ifdef CONFIG_MAGIC_SYSRQ
  6554. static void normalize_task(struct rq *rq, struct task_struct *p)
  6555. {
  6556. int on_rq;
  6557. on_rq = p->se.on_rq;
  6558. if (on_rq)
  6559. deactivate_task(rq, p, 0);
  6560. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6561. if (on_rq) {
  6562. activate_task(rq, p, 0);
  6563. resched_task(rq->curr);
  6564. }
  6565. }
  6566. void normalize_rt_tasks(void)
  6567. {
  6568. struct task_struct *g, *p;
  6569. unsigned long flags;
  6570. struct rq *rq;
  6571. read_lock_irqsave(&tasklist_lock, flags);
  6572. do_each_thread(g, p) {
  6573. /*
  6574. * Only normalize user tasks:
  6575. */
  6576. if (!p->mm)
  6577. continue;
  6578. p->se.exec_start = 0;
  6579. #ifdef CONFIG_SCHEDSTATS
  6580. p->se.statistics.wait_start = 0;
  6581. p->se.statistics.sleep_start = 0;
  6582. p->se.statistics.block_start = 0;
  6583. #endif
  6584. if (!rt_task(p)) {
  6585. /*
  6586. * Renice negative nice level userspace
  6587. * tasks back to 0:
  6588. */
  6589. if (TASK_NICE(p) < 0 && p->mm)
  6590. set_user_nice(p, 0);
  6591. continue;
  6592. }
  6593. raw_spin_lock(&p->pi_lock);
  6594. rq = __task_rq_lock(p);
  6595. normalize_task(rq, p);
  6596. __task_rq_unlock(rq);
  6597. raw_spin_unlock(&p->pi_lock);
  6598. } while_each_thread(g, p);
  6599. read_unlock_irqrestore(&tasklist_lock, flags);
  6600. }
  6601. #endif /* CONFIG_MAGIC_SYSRQ */
  6602. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6603. /*
  6604. * These functions are only useful for the IA64 MCA handling, or kdb.
  6605. *
  6606. * They can only be called when the whole system has been
  6607. * stopped - every CPU needs to be quiescent, and no scheduling
  6608. * activity can take place. Using them for anything else would
  6609. * be a serious bug, and as a result, they aren't even visible
  6610. * under any other configuration.
  6611. */
  6612. /**
  6613. * curr_task - return the current task for a given cpu.
  6614. * @cpu: the processor in question.
  6615. *
  6616. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6617. */
  6618. struct task_struct *curr_task(int cpu)
  6619. {
  6620. return cpu_curr(cpu);
  6621. }
  6622. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6623. #ifdef CONFIG_IA64
  6624. /**
  6625. * set_curr_task - set the current task for a given cpu.
  6626. * @cpu: the processor in question.
  6627. * @p: the task pointer to set.
  6628. *
  6629. * Description: This function must only be used when non-maskable interrupts
  6630. * are serviced on a separate stack. It allows the architecture to switch the
  6631. * notion of the current task on a cpu in a non-blocking manner. This function
  6632. * must be called with all CPU's synchronized, and interrupts disabled, the
  6633. * and caller must save the original value of the current task (see
  6634. * curr_task() above) and restore that value before reenabling interrupts and
  6635. * re-starting the system.
  6636. *
  6637. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6638. */
  6639. void set_curr_task(int cpu, struct task_struct *p)
  6640. {
  6641. cpu_curr(cpu) = p;
  6642. }
  6643. #endif
  6644. #ifdef CONFIG_FAIR_GROUP_SCHED
  6645. static void free_fair_sched_group(struct task_group *tg)
  6646. {
  6647. int i;
  6648. for_each_possible_cpu(i) {
  6649. if (tg->cfs_rq)
  6650. kfree(tg->cfs_rq[i]);
  6651. if (tg->se)
  6652. kfree(tg->se[i]);
  6653. }
  6654. kfree(tg->cfs_rq);
  6655. kfree(tg->se);
  6656. }
  6657. static
  6658. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6659. {
  6660. struct cfs_rq *cfs_rq;
  6661. struct sched_entity *se;
  6662. struct rq *rq;
  6663. int i;
  6664. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6665. if (!tg->cfs_rq)
  6666. goto err;
  6667. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6668. if (!tg->se)
  6669. goto err;
  6670. tg->shares = NICE_0_LOAD;
  6671. for_each_possible_cpu(i) {
  6672. rq = cpu_rq(i);
  6673. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6674. GFP_KERNEL, cpu_to_node(i));
  6675. if (!cfs_rq)
  6676. goto err;
  6677. se = kzalloc_node(sizeof(struct sched_entity),
  6678. GFP_KERNEL, cpu_to_node(i));
  6679. if (!se)
  6680. goto err_free_rq;
  6681. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6682. }
  6683. return 1;
  6684. err_free_rq:
  6685. kfree(cfs_rq);
  6686. err:
  6687. return 0;
  6688. }
  6689. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6690. {
  6691. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6692. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6693. }
  6694. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6695. {
  6696. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6697. }
  6698. #else /* !CONFG_FAIR_GROUP_SCHED */
  6699. static inline void free_fair_sched_group(struct task_group *tg)
  6700. {
  6701. }
  6702. static inline
  6703. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6704. {
  6705. return 1;
  6706. }
  6707. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6708. {
  6709. }
  6710. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6711. {
  6712. }
  6713. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6714. #ifdef CONFIG_RT_GROUP_SCHED
  6715. static void free_rt_sched_group(struct task_group *tg)
  6716. {
  6717. int i;
  6718. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6719. for_each_possible_cpu(i) {
  6720. if (tg->rt_rq)
  6721. kfree(tg->rt_rq[i]);
  6722. if (tg->rt_se)
  6723. kfree(tg->rt_se[i]);
  6724. }
  6725. kfree(tg->rt_rq);
  6726. kfree(tg->rt_se);
  6727. }
  6728. static
  6729. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6730. {
  6731. struct rt_rq *rt_rq;
  6732. struct sched_rt_entity *rt_se;
  6733. struct rq *rq;
  6734. int i;
  6735. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6736. if (!tg->rt_rq)
  6737. goto err;
  6738. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6739. if (!tg->rt_se)
  6740. goto err;
  6741. init_rt_bandwidth(&tg->rt_bandwidth,
  6742. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6743. for_each_possible_cpu(i) {
  6744. rq = cpu_rq(i);
  6745. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6746. GFP_KERNEL, cpu_to_node(i));
  6747. if (!rt_rq)
  6748. goto err;
  6749. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6750. GFP_KERNEL, cpu_to_node(i));
  6751. if (!rt_se)
  6752. goto err_free_rq;
  6753. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6754. }
  6755. return 1;
  6756. err_free_rq:
  6757. kfree(rt_rq);
  6758. err:
  6759. return 0;
  6760. }
  6761. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6762. {
  6763. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6764. &cpu_rq(cpu)->leaf_rt_rq_list);
  6765. }
  6766. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6767. {
  6768. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6769. }
  6770. #else /* !CONFIG_RT_GROUP_SCHED */
  6771. static inline void free_rt_sched_group(struct task_group *tg)
  6772. {
  6773. }
  6774. static inline
  6775. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6776. {
  6777. return 1;
  6778. }
  6779. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6780. {
  6781. }
  6782. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6783. {
  6784. }
  6785. #endif /* CONFIG_RT_GROUP_SCHED */
  6786. #ifdef CONFIG_CGROUP_SCHED
  6787. static void free_sched_group(struct task_group *tg)
  6788. {
  6789. free_fair_sched_group(tg);
  6790. free_rt_sched_group(tg);
  6791. kfree(tg);
  6792. }
  6793. /* allocate runqueue etc for a new task group */
  6794. struct task_group *sched_create_group(struct task_group *parent)
  6795. {
  6796. struct task_group *tg;
  6797. unsigned long flags;
  6798. int i;
  6799. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6800. if (!tg)
  6801. return ERR_PTR(-ENOMEM);
  6802. if (!alloc_fair_sched_group(tg, parent))
  6803. goto err;
  6804. if (!alloc_rt_sched_group(tg, parent))
  6805. goto err;
  6806. spin_lock_irqsave(&task_group_lock, flags);
  6807. for_each_possible_cpu(i) {
  6808. register_fair_sched_group(tg, i);
  6809. register_rt_sched_group(tg, i);
  6810. }
  6811. list_add_rcu(&tg->list, &task_groups);
  6812. WARN_ON(!parent); /* root should already exist */
  6813. tg->parent = parent;
  6814. INIT_LIST_HEAD(&tg->children);
  6815. list_add_rcu(&tg->siblings, &parent->children);
  6816. spin_unlock_irqrestore(&task_group_lock, flags);
  6817. return tg;
  6818. err:
  6819. free_sched_group(tg);
  6820. return ERR_PTR(-ENOMEM);
  6821. }
  6822. /* rcu callback to free various structures associated with a task group */
  6823. static void free_sched_group_rcu(struct rcu_head *rhp)
  6824. {
  6825. /* now it should be safe to free those cfs_rqs */
  6826. free_sched_group(container_of(rhp, struct task_group, rcu));
  6827. }
  6828. /* Destroy runqueue etc associated with a task group */
  6829. void sched_destroy_group(struct task_group *tg)
  6830. {
  6831. unsigned long flags;
  6832. int i;
  6833. spin_lock_irqsave(&task_group_lock, flags);
  6834. for_each_possible_cpu(i) {
  6835. unregister_fair_sched_group(tg, i);
  6836. unregister_rt_sched_group(tg, i);
  6837. }
  6838. list_del_rcu(&tg->list);
  6839. list_del_rcu(&tg->siblings);
  6840. spin_unlock_irqrestore(&task_group_lock, flags);
  6841. /* wait for possible concurrent references to cfs_rqs complete */
  6842. call_rcu(&tg->rcu, free_sched_group_rcu);
  6843. }
  6844. /* change task's runqueue when it moves between groups.
  6845. * The caller of this function should have put the task in its new group
  6846. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6847. * reflect its new group.
  6848. */
  6849. void sched_move_task(struct task_struct *tsk)
  6850. {
  6851. int on_rq, running;
  6852. unsigned long flags;
  6853. struct rq *rq;
  6854. rq = task_rq_lock(tsk, &flags);
  6855. running = task_current(rq, tsk);
  6856. on_rq = tsk->se.on_rq;
  6857. if (on_rq)
  6858. dequeue_task(rq, tsk, 0);
  6859. if (unlikely(running))
  6860. tsk->sched_class->put_prev_task(rq, tsk);
  6861. set_task_rq(tsk, task_cpu(tsk));
  6862. #ifdef CONFIG_FAIR_GROUP_SCHED
  6863. if (tsk->sched_class->moved_group)
  6864. tsk->sched_class->moved_group(tsk, on_rq);
  6865. #endif
  6866. if (unlikely(running))
  6867. tsk->sched_class->set_curr_task(rq);
  6868. if (on_rq)
  6869. enqueue_task(rq, tsk, 0);
  6870. task_rq_unlock(rq, &flags);
  6871. }
  6872. #endif /* CONFIG_CGROUP_SCHED */
  6873. #ifdef CONFIG_FAIR_GROUP_SCHED
  6874. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  6875. {
  6876. struct cfs_rq *cfs_rq = se->cfs_rq;
  6877. int on_rq;
  6878. on_rq = se->on_rq;
  6879. if (on_rq)
  6880. dequeue_entity(cfs_rq, se, 0);
  6881. se->load.weight = shares;
  6882. se->load.inv_weight = 0;
  6883. if (on_rq)
  6884. enqueue_entity(cfs_rq, se, 0);
  6885. }
  6886. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6887. {
  6888. struct cfs_rq *cfs_rq = se->cfs_rq;
  6889. struct rq *rq = cfs_rq->rq;
  6890. unsigned long flags;
  6891. raw_spin_lock_irqsave(&rq->lock, flags);
  6892. __set_se_shares(se, shares);
  6893. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6894. }
  6895. static DEFINE_MUTEX(shares_mutex);
  6896. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6897. {
  6898. int i;
  6899. unsigned long flags;
  6900. /*
  6901. * We can't change the weight of the root cgroup.
  6902. */
  6903. if (!tg->se[0])
  6904. return -EINVAL;
  6905. if (shares < MIN_SHARES)
  6906. shares = MIN_SHARES;
  6907. else if (shares > MAX_SHARES)
  6908. shares = MAX_SHARES;
  6909. mutex_lock(&shares_mutex);
  6910. if (tg->shares == shares)
  6911. goto done;
  6912. spin_lock_irqsave(&task_group_lock, flags);
  6913. for_each_possible_cpu(i)
  6914. unregister_fair_sched_group(tg, i);
  6915. list_del_rcu(&tg->siblings);
  6916. spin_unlock_irqrestore(&task_group_lock, flags);
  6917. /* wait for any ongoing reference to this group to finish */
  6918. synchronize_sched();
  6919. /*
  6920. * Now we are free to modify the group's share on each cpu
  6921. * w/o tripping rebalance_share or load_balance_fair.
  6922. */
  6923. tg->shares = shares;
  6924. for_each_possible_cpu(i) {
  6925. /*
  6926. * force a rebalance
  6927. */
  6928. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  6929. set_se_shares(tg->se[i], shares);
  6930. }
  6931. /*
  6932. * Enable load balance activity on this group, by inserting it back on
  6933. * each cpu's rq->leaf_cfs_rq_list.
  6934. */
  6935. spin_lock_irqsave(&task_group_lock, flags);
  6936. for_each_possible_cpu(i)
  6937. register_fair_sched_group(tg, i);
  6938. list_add_rcu(&tg->siblings, &tg->parent->children);
  6939. spin_unlock_irqrestore(&task_group_lock, flags);
  6940. done:
  6941. mutex_unlock(&shares_mutex);
  6942. return 0;
  6943. }
  6944. unsigned long sched_group_shares(struct task_group *tg)
  6945. {
  6946. return tg->shares;
  6947. }
  6948. #endif
  6949. #ifdef CONFIG_RT_GROUP_SCHED
  6950. /*
  6951. * Ensure that the real time constraints are schedulable.
  6952. */
  6953. static DEFINE_MUTEX(rt_constraints_mutex);
  6954. static unsigned long to_ratio(u64 period, u64 runtime)
  6955. {
  6956. if (runtime == RUNTIME_INF)
  6957. return 1ULL << 20;
  6958. return div64_u64(runtime << 20, period);
  6959. }
  6960. /* Must be called with tasklist_lock held */
  6961. static inline int tg_has_rt_tasks(struct task_group *tg)
  6962. {
  6963. struct task_struct *g, *p;
  6964. do_each_thread(g, p) {
  6965. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6966. return 1;
  6967. } while_each_thread(g, p);
  6968. return 0;
  6969. }
  6970. struct rt_schedulable_data {
  6971. struct task_group *tg;
  6972. u64 rt_period;
  6973. u64 rt_runtime;
  6974. };
  6975. static int tg_schedulable(struct task_group *tg, void *data)
  6976. {
  6977. struct rt_schedulable_data *d = data;
  6978. struct task_group *child;
  6979. unsigned long total, sum = 0;
  6980. u64 period, runtime;
  6981. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6982. runtime = tg->rt_bandwidth.rt_runtime;
  6983. if (tg == d->tg) {
  6984. period = d->rt_period;
  6985. runtime = d->rt_runtime;
  6986. }
  6987. /*
  6988. * Cannot have more runtime than the period.
  6989. */
  6990. if (runtime > period && runtime != RUNTIME_INF)
  6991. return -EINVAL;
  6992. /*
  6993. * Ensure we don't starve existing RT tasks.
  6994. */
  6995. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6996. return -EBUSY;
  6997. total = to_ratio(period, runtime);
  6998. /*
  6999. * Nobody can have more than the global setting allows.
  7000. */
  7001. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7002. return -EINVAL;
  7003. /*
  7004. * The sum of our children's runtime should not exceed our own.
  7005. */
  7006. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7007. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7008. runtime = child->rt_bandwidth.rt_runtime;
  7009. if (child == d->tg) {
  7010. period = d->rt_period;
  7011. runtime = d->rt_runtime;
  7012. }
  7013. sum += to_ratio(period, runtime);
  7014. }
  7015. if (sum > total)
  7016. return -EINVAL;
  7017. return 0;
  7018. }
  7019. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7020. {
  7021. struct rt_schedulable_data data = {
  7022. .tg = tg,
  7023. .rt_period = period,
  7024. .rt_runtime = runtime,
  7025. };
  7026. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7027. }
  7028. static int tg_set_bandwidth(struct task_group *tg,
  7029. u64 rt_period, u64 rt_runtime)
  7030. {
  7031. int i, err = 0;
  7032. mutex_lock(&rt_constraints_mutex);
  7033. read_lock(&tasklist_lock);
  7034. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7035. if (err)
  7036. goto unlock;
  7037. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7038. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7039. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7040. for_each_possible_cpu(i) {
  7041. struct rt_rq *rt_rq = tg->rt_rq[i];
  7042. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7043. rt_rq->rt_runtime = rt_runtime;
  7044. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7045. }
  7046. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7047. unlock:
  7048. read_unlock(&tasklist_lock);
  7049. mutex_unlock(&rt_constraints_mutex);
  7050. return err;
  7051. }
  7052. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7053. {
  7054. u64 rt_runtime, rt_period;
  7055. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7056. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7057. if (rt_runtime_us < 0)
  7058. rt_runtime = RUNTIME_INF;
  7059. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7060. }
  7061. long sched_group_rt_runtime(struct task_group *tg)
  7062. {
  7063. u64 rt_runtime_us;
  7064. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7065. return -1;
  7066. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7067. do_div(rt_runtime_us, NSEC_PER_USEC);
  7068. return rt_runtime_us;
  7069. }
  7070. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7071. {
  7072. u64 rt_runtime, rt_period;
  7073. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7074. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7075. if (rt_period == 0)
  7076. return -EINVAL;
  7077. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7078. }
  7079. long sched_group_rt_period(struct task_group *tg)
  7080. {
  7081. u64 rt_period_us;
  7082. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7083. do_div(rt_period_us, NSEC_PER_USEC);
  7084. return rt_period_us;
  7085. }
  7086. static int sched_rt_global_constraints(void)
  7087. {
  7088. u64 runtime, period;
  7089. int ret = 0;
  7090. if (sysctl_sched_rt_period <= 0)
  7091. return -EINVAL;
  7092. runtime = global_rt_runtime();
  7093. period = global_rt_period();
  7094. /*
  7095. * Sanity check on the sysctl variables.
  7096. */
  7097. if (runtime > period && runtime != RUNTIME_INF)
  7098. return -EINVAL;
  7099. mutex_lock(&rt_constraints_mutex);
  7100. read_lock(&tasklist_lock);
  7101. ret = __rt_schedulable(NULL, 0, 0);
  7102. read_unlock(&tasklist_lock);
  7103. mutex_unlock(&rt_constraints_mutex);
  7104. return ret;
  7105. }
  7106. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7107. {
  7108. /* Don't accept realtime tasks when there is no way for them to run */
  7109. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7110. return 0;
  7111. return 1;
  7112. }
  7113. #else /* !CONFIG_RT_GROUP_SCHED */
  7114. static int sched_rt_global_constraints(void)
  7115. {
  7116. unsigned long flags;
  7117. int i;
  7118. if (sysctl_sched_rt_period <= 0)
  7119. return -EINVAL;
  7120. /*
  7121. * There's always some RT tasks in the root group
  7122. * -- migration, kstopmachine etc..
  7123. */
  7124. if (sysctl_sched_rt_runtime == 0)
  7125. return -EBUSY;
  7126. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7127. for_each_possible_cpu(i) {
  7128. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7129. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7130. rt_rq->rt_runtime = global_rt_runtime();
  7131. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7132. }
  7133. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7134. return 0;
  7135. }
  7136. #endif /* CONFIG_RT_GROUP_SCHED */
  7137. int sched_rt_handler(struct ctl_table *table, int write,
  7138. void __user *buffer, size_t *lenp,
  7139. loff_t *ppos)
  7140. {
  7141. int ret;
  7142. int old_period, old_runtime;
  7143. static DEFINE_MUTEX(mutex);
  7144. mutex_lock(&mutex);
  7145. old_period = sysctl_sched_rt_period;
  7146. old_runtime = sysctl_sched_rt_runtime;
  7147. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7148. if (!ret && write) {
  7149. ret = sched_rt_global_constraints();
  7150. if (ret) {
  7151. sysctl_sched_rt_period = old_period;
  7152. sysctl_sched_rt_runtime = old_runtime;
  7153. } else {
  7154. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7155. def_rt_bandwidth.rt_period =
  7156. ns_to_ktime(global_rt_period());
  7157. }
  7158. }
  7159. mutex_unlock(&mutex);
  7160. return ret;
  7161. }
  7162. #ifdef CONFIG_CGROUP_SCHED
  7163. /* return corresponding task_group object of a cgroup */
  7164. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7165. {
  7166. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7167. struct task_group, css);
  7168. }
  7169. static struct cgroup_subsys_state *
  7170. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7171. {
  7172. struct task_group *tg, *parent;
  7173. if (!cgrp->parent) {
  7174. /* This is early initialization for the top cgroup */
  7175. return &init_task_group.css;
  7176. }
  7177. parent = cgroup_tg(cgrp->parent);
  7178. tg = sched_create_group(parent);
  7179. if (IS_ERR(tg))
  7180. return ERR_PTR(-ENOMEM);
  7181. return &tg->css;
  7182. }
  7183. static void
  7184. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7185. {
  7186. struct task_group *tg = cgroup_tg(cgrp);
  7187. sched_destroy_group(tg);
  7188. }
  7189. static int
  7190. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7191. {
  7192. #ifdef CONFIG_RT_GROUP_SCHED
  7193. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7194. return -EINVAL;
  7195. #else
  7196. /* We don't support RT-tasks being in separate groups */
  7197. if (tsk->sched_class != &fair_sched_class)
  7198. return -EINVAL;
  7199. #endif
  7200. return 0;
  7201. }
  7202. static int
  7203. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7204. struct task_struct *tsk, bool threadgroup)
  7205. {
  7206. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7207. if (retval)
  7208. return retval;
  7209. if (threadgroup) {
  7210. struct task_struct *c;
  7211. rcu_read_lock();
  7212. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7213. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7214. if (retval) {
  7215. rcu_read_unlock();
  7216. return retval;
  7217. }
  7218. }
  7219. rcu_read_unlock();
  7220. }
  7221. return 0;
  7222. }
  7223. static void
  7224. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7225. struct cgroup *old_cont, struct task_struct *tsk,
  7226. bool threadgroup)
  7227. {
  7228. sched_move_task(tsk);
  7229. if (threadgroup) {
  7230. struct task_struct *c;
  7231. rcu_read_lock();
  7232. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7233. sched_move_task(c);
  7234. }
  7235. rcu_read_unlock();
  7236. }
  7237. }
  7238. #ifdef CONFIG_FAIR_GROUP_SCHED
  7239. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7240. u64 shareval)
  7241. {
  7242. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7243. }
  7244. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7245. {
  7246. struct task_group *tg = cgroup_tg(cgrp);
  7247. return (u64) tg->shares;
  7248. }
  7249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7250. #ifdef CONFIG_RT_GROUP_SCHED
  7251. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7252. s64 val)
  7253. {
  7254. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7255. }
  7256. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7257. {
  7258. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7259. }
  7260. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7261. u64 rt_period_us)
  7262. {
  7263. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7264. }
  7265. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7266. {
  7267. return sched_group_rt_period(cgroup_tg(cgrp));
  7268. }
  7269. #endif /* CONFIG_RT_GROUP_SCHED */
  7270. static struct cftype cpu_files[] = {
  7271. #ifdef CONFIG_FAIR_GROUP_SCHED
  7272. {
  7273. .name = "shares",
  7274. .read_u64 = cpu_shares_read_u64,
  7275. .write_u64 = cpu_shares_write_u64,
  7276. },
  7277. #endif
  7278. #ifdef CONFIG_RT_GROUP_SCHED
  7279. {
  7280. .name = "rt_runtime_us",
  7281. .read_s64 = cpu_rt_runtime_read,
  7282. .write_s64 = cpu_rt_runtime_write,
  7283. },
  7284. {
  7285. .name = "rt_period_us",
  7286. .read_u64 = cpu_rt_period_read_uint,
  7287. .write_u64 = cpu_rt_period_write_uint,
  7288. },
  7289. #endif
  7290. };
  7291. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7292. {
  7293. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7294. }
  7295. struct cgroup_subsys cpu_cgroup_subsys = {
  7296. .name = "cpu",
  7297. .create = cpu_cgroup_create,
  7298. .destroy = cpu_cgroup_destroy,
  7299. .can_attach = cpu_cgroup_can_attach,
  7300. .attach = cpu_cgroup_attach,
  7301. .populate = cpu_cgroup_populate,
  7302. .subsys_id = cpu_cgroup_subsys_id,
  7303. .early_init = 1,
  7304. };
  7305. #endif /* CONFIG_CGROUP_SCHED */
  7306. #ifdef CONFIG_CGROUP_CPUACCT
  7307. /*
  7308. * CPU accounting code for task groups.
  7309. *
  7310. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7311. * (balbir@in.ibm.com).
  7312. */
  7313. /* track cpu usage of a group of tasks and its child groups */
  7314. struct cpuacct {
  7315. struct cgroup_subsys_state css;
  7316. /* cpuusage holds pointer to a u64-type object on every cpu */
  7317. u64 __percpu *cpuusage;
  7318. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7319. struct cpuacct *parent;
  7320. };
  7321. struct cgroup_subsys cpuacct_subsys;
  7322. /* return cpu accounting group corresponding to this container */
  7323. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7324. {
  7325. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7326. struct cpuacct, css);
  7327. }
  7328. /* return cpu accounting group to which this task belongs */
  7329. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7330. {
  7331. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7332. struct cpuacct, css);
  7333. }
  7334. /* create a new cpu accounting group */
  7335. static struct cgroup_subsys_state *cpuacct_create(
  7336. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7337. {
  7338. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7339. int i;
  7340. if (!ca)
  7341. goto out;
  7342. ca->cpuusage = alloc_percpu(u64);
  7343. if (!ca->cpuusage)
  7344. goto out_free_ca;
  7345. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7346. if (percpu_counter_init(&ca->cpustat[i], 0))
  7347. goto out_free_counters;
  7348. if (cgrp->parent)
  7349. ca->parent = cgroup_ca(cgrp->parent);
  7350. return &ca->css;
  7351. out_free_counters:
  7352. while (--i >= 0)
  7353. percpu_counter_destroy(&ca->cpustat[i]);
  7354. free_percpu(ca->cpuusage);
  7355. out_free_ca:
  7356. kfree(ca);
  7357. out:
  7358. return ERR_PTR(-ENOMEM);
  7359. }
  7360. /* destroy an existing cpu accounting group */
  7361. static void
  7362. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7363. {
  7364. struct cpuacct *ca = cgroup_ca(cgrp);
  7365. int i;
  7366. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7367. percpu_counter_destroy(&ca->cpustat[i]);
  7368. free_percpu(ca->cpuusage);
  7369. kfree(ca);
  7370. }
  7371. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7372. {
  7373. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7374. u64 data;
  7375. #ifndef CONFIG_64BIT
  7376. /*
  7377. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7378. */
  7379. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7380. data = *cpuusage;
  7381. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7382. #else
  7383. data = *cpuusage;
  7384. #endif
  7385. return data;
  7386. }
  7387. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7388. {
  7389. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7390. #ifndef CONFIG_64BIT
  7391. /*
  7392. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7393. */
  7394. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7395. *cpuusage = val;
  7396. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7397. #else
  7398. *cpuusage = val;
  7399. #endif
  7400. }
  7401. /* return total cpu usage (in nanoseconds) of a group */
  7402. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7403. {
  7404. struct cpuacct *ca = cgroup_ca(cgrp);
  7405. u64 totalcpuusage = 0;
  7406. int i;
  7407. for_each_present_cpu(i)
  7408. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7409. return totalcpuusage;
  7410. }
  7411. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7412. u64 reset)
  7413. {
  7414. struct cpuacct *ca = cgroup_ca(cgrp);
  7415. int err = 0;
  7416. int i;
  7417. if (reset) {
  7418. err = -EINVAL;
  7419. goto out;
  7420. }
  7421. for_each_present_cpu(i)
  7422. cpuacct_cpuusage_write(ca, i, 0);
  7423. out:
  7424. return err;
  7425. }
  7426. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7427. struct seq_file *m)
  7428. {
  7429. struct cpuacct *ca = cgroup_ca(cgroup);
  7430. u64 percpu;
  7431. int i;
  7432. for_each_present_cpu(i) {
  7433. percpu = cpuacct_cpuusage_read(ca, i);
  7434. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7435. }
  7436. seq_printf(m, "\n");
  7437. return 0;
  7438. }
  7439. static const char *cpuacct_stat_desc[] = {
  7440. [CPUACCT_STAT_USER] = "user",
  7441. [CPUACCT_STAT_SYSTEM] = "system",
  7442. };
  7443. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7444. struct cgroup_map_cb *cb)
  7445. {
  7446. struct cpuacct *ca = cgroup_ca(cgrp);
  7447. int i;
  7448. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7449. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7450. val = cputime64_to_clock_t(val);
  7451. cb->fill(cb, cpuacct_stat_desc[i], val);
  7452. }
  7453. return 0;
  7454. }
  7455. static struct cftype files[] = {
  7456. {
  7457. .name = "usage",
  7458. .read_u64 = cpuusage_read,
  7459. .write_u64 = cpuusage_write,
  7460. },
  7461. {
  7462. .name = "usage_percpu",
  7463. .read_seq_string = cpuacct_percpu_seq_read,
  7464. },
  7465. {
  7466. .name = "stat",
  7467. .read_map = cpuacct_stats_show,
  7468. },
  7469. };
  7470. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7471. {
  7472. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7473. }
  7474. /*
  7475. * charge this task's execution time to its accounting group.
  7476. *
  7477. * called with rq->lock held.
  7478. */
  7479. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7480. {
  7481. struct cpuacct *ca;
  7482. int cpu;
  7483. if (unlikely(!cpuacct_subsys.active))
  7484. return;
  7485. cpu = task_cpu(tsk);
  7486. rcu_read_lock();
  7487. ca = task_ca(tsk);
  7488. for (; ca; ca = ca->parent) {
  7489. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7490. *cpuusage += cputime;
  7491. }
  7492. rcu_read_unlock();
  7493. }
  7494. /*
  7495. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7496. * in cputime_t units. As a result, cpuacct_update_stats calls
  7497. * percpu_counter_add with values large enough to always overflow the
  7498. * per cpu batch limit causing bad SMP scalability.
  7499. *
  7500. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7501. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7502. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7503. */
  7504. #ifdef CONFIG_SMP
  7505. #define CPUACCT_BATCH \
  7506. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7507. #else
  7508. #define CPUACCT_BATCH 0
  7509. #endif
  7510. /*
  7511. * Charge the system/user time to the task's accounting group.
  7512. */
  7513. static void cpuacct_update_stats(struct task_struct *tsk,
  7514. enum cpuacct_stat_index idx, cputime_t val)
  7515. {
  7516. struct cpuacct *ca;
  7517. int batch = CPUACCT_BATCH;
  7518. if (unlikely(!cpuacct_subsys.active))
  7519. return;
  7520. rcu_read_lock();
  7521. ca = task_ca(tsk);
  7522. do {
  7523. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7524. ca = ca->parent;
  7525. } while (ca);
  7526. rcu_read_unlock();
  7527. }
  7528. struct cgroup_subsys cpuacct_subsys = {
  7529. .name = "cpuacct",
  7530. .create = cpuacct_create,
  7531. .destroy = cpuacct_destroy,
  7532. .populate = cpuacct_populate,
  7533. .subsys_id = cpuacct_subsys_id,
  7534. };
  7535. #endif /* CONFIG_CGROUP_CPUACCT */
  7536. #ifndef CONFIG_SMP
  7537. void synchronize_sched_expedited(void)
  7538. {
  7539. barrier();
  7540. }
  7541. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7542. #else /* #ifndef CONFIG_SMP */
  7543. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7544. static int synchronize_sched_expedited_cpu_stop(void *data)
  7545. {
  7546. /*
  7547. * There must be a full memory barrier on each affected CPU
  7548. * between the time that try_stop_cpus() is called and the
  7549. * time that it returns.
  7550. *
  7551. * In the current initial implementation of cpu_stop, the
  7552. * above condition is already met when the control reaches
  7553. * this point and the following smp_mb() is not strictly
  7554. * necessary. Do smp_mb() anyway for documentation and
  7555. * robustness against future implementation changes.
  7556. */
  7557. smp_mb(); /* See above comment block. */
  7558. return 0;
  7559. }
  7560. /*
  7561. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7562. * approach to force grace period to end quickly. This consumes
  7563. * significant time on all CPUs, and is thus not recommended for
  7564. * any sort of common-case code.
  7565. *
  7566. * Note that it is illegal to call this function while holding any
  7567. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7568. * observe this restriction will result in deadlock.
  7569. */
  7570. void synchronize_sched_expedited(void)
  7571. {
  7572. int snap, trycount = 0;
  7573. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7574. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7575. get_online_cpus();
  7576. while (try_stop_cpus(cpu_online_mask,
  7577. synchronize_sched_expedited_cpu_stop,
  7578. NULL) == -EAGAIN) {
  7579. put_online_cpus();
  7580. if (trycount++ < 10)
  7581. udelay(trycount * num_online_cpus());
  7582. else {
  7583. synchronize_sched();
  7584. return;
  7585. }
  7586. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7587. smp_mb(); /* ensure test happens before caller kfree */
  7588. return;
  7589. }
  7590. get_online_cpus();
  7591. }
  7592. atomic_inc(&synchronize_sched_expedited_count);
  7593. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7594. put_online_cpus();
  7595. }
  7596. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7597. #endif /* #else #ifndef CONFIG_SMP */