time.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. *
  14. * Support the cycle counter clocksource and tile timer clock event device.
  15. */
  16. #include <linux/time.h>
  17. #include <linux/timex.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/clockchips.h>
  20. #include <linux/hardirq.h>
  21. #include <linux/sched.h>
  22. #include <linux/smp.h>
  23. #include <linux/delay.h>
  24. #include <asm/irq_regs.h>
  25. #include <hv/hypervisor.h>
  26. #include <arch/interrupts.h>
  27. #include <arch/spr_def.h>
  28. /*
  29. * Define the cycle counter clock source.
  30. */
  31. /* How many cycles per second we are running at. */
  32. static cycles_t cycles_per_sec __write_once;
  33. /*
  34. * We set up shift and multiply values with a minsec of five seconds,
  35. * since our timer counter counts down 31 bits at a frequency of
  36. * no less than 500 MHz. See @minsec for clocks_calc_mult_shift().
  37. * We could use a different value for the 64-bit free-running
  38. * cycle counter, but we use the same one for consistency, and since
  39. * we will be reasonably precise with this value anyway.
  40. */
  41. #define TILE_MINSEC 5
  42. cycles_t get_clock_rate()
  43. {
  44. return cycles_per_sec;
  45. }
  46. #if CHIP_HAS_SPLIT_CYCLE()
  47. cycles_t get_cycles()
  48. {
  49. unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
  50. unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
  51. unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  52. while (unlikely(high != high2)) {
  53. low = __insn_mfspr(SPR_CYCLE_LOW);
  54. high = high2;
  55. high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  56. }
  57. return (((cycles_t)high) << 32) | low;
  58. }
  59. #endif
  60. cycles_t clocksource_get_cycles(struct clocksource *cs)
  61. {
  62. return get_cycles();
  63. }
  64. static struct clocksource cycle_counter_cs = {
  65. .name = "cycle counter",
  66. .rating = 300,
  67. .read = clocksource_get_cycles,
  68. .mask = CLOCKSOURCE_MASK(64),
  69. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  70. };
  71. /*
  72. * Called very early from setup_arch() to set cycles_per_sec.
  73. * We initialize it early so we can use it to set up loops_per_jiffy.
  74. */
  75. void __init setup_clock(void)
  76. {
  77. cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
  78. clocksource_calc_mult_shift(&cycle_counter_cs, cycles_per_sec,
  79. TILE_MINSEC);
  80. }
  81. void __init calibrate_delay(void)
  82. {
  83. loops_per_jiffy = get_clock_rate() / HZ;
  84. pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
  85. loops_per_jiffy/(500000/HZ),
  86. (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
  87. }
  88. /* Called fairly late in init/main.c, but before we go smp. */
  89. void __init time_init(void)
  90. {
  91. /* Initialize and register the clock source. */
  92. clocksource_register(&cycle_counter_cs);
  93. /* Start up the tile-timer interrupt source on the boot cpu. */
  94. setup_tile_timer();
  95. }
  96. /*
  97. * Define the tile timer clock event device. The timer is driven by
  98. * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
  99. * counter, plus bit 31, which signifies that the counter has wrapped
  100. * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be
  101. * raised as long as bit 31 is set.
  102. */
  103. #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */
  104. static int tile_timer_set_next_event(unsigned long ticks,
  105. struct clock_event_device *evt)
  106. {
  107. BUG_ON(ticks > MAX_TICK);
  108. __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
  109. raw_local_irq_unmask_now(INT_TILE_TIMER);
  110. return 0;
  111. }
  112. /*
  113. * Whenever anyone tries to change modes, we just mask interrupts
  114. * and wait for the next event to get set.
  115. */
  116. static void tile_timer_set_mode(enum clock_event_mode mode,
  117. struct clock_event_device *evt)
  118. {
  119. raw_local_irq_mask_now(INT_TILE_TIMER);
  120. }
  121. /*
  122. * Set min_delta_ns to 1 microsecond, since it takes about
  123. * that long to fire the interrupt.
  124. */
  125. static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
  126. .name = "tile timer",
  127. .features = CLOCK_EVT_FEAT_ONESHOT,
  128. .min_delta_ns = 1000,
  129. .rating = 100,
  130. .irq = -1,
  131. .set_next_event = tile_timer_set_next_event,
  132. .set_mode = tile_timer_set_mode,
  133. };
  134. void __cpuinit setup_tile_timer(void)
  135. {
  136. struct clock_event_device *evt = &__get_cpu_var(tile_timer);
  137. /* Fill in fields that are speed-specific. */
  138. clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
  139. evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
  140. /* Mark as being for this cpu only. */
  141. evt->cpumask = cpumask_of(smp_processor_id());
  142. /* Start out with timer not firing. */
  143. raw_local_irq_mask_now(INT_TILE_TIMER);
  144. /* Register tile timer. */
  145. clockevents_register_device(evt);
  146. }
  147. /* Called from the interrupt vector. */
  148. void do_timer_interrupt(struct pt_regs *regs, int fault_num)
  149. {
  150. struct pt_regs *old_regs = set_irq_regs(regs);
  151. struct clock_event_device *evt = &__get_cpu_var(tile_timer);
  152. /*
  153. * Mask the timer interrupt here, since we are a oneshot timer
  154. * and there are now by definition no events pending.
  155. */
  156. raw_local_irq_mask(INT_TILE_TIMER);
  157. /* Track time spent here in an interrupt context */
  158. irq_enter();
  159. /* Track interrupt count. */
  160. __get_cpu_var(irq_stat).irq_timer_count++;
  161. /* Call the generic timer handler */
  162. evt->event_handler(evt);
  163. /*
  164. * Track time spent against the current process again and
  165. * process any softirqs if they are waiting.
  166. */
  167. irq_exit();
  168. set_irq_regs(old_regs);
  169. }
  170. /*
  171. * Scheduler clock - returns current time in nanosec units.
  172. * Note that with LOCKDEP, this is called during lockdep_init(), and
  173. * we will claim that sched_clock() is zero for a little while, until
  174. * we run setup_clock(), above.
  175. */
  176. unsigned long long sched_clock(void)
  177. {
  178. return clocksource_cyc2ns(get_cycles(),
  179. cycle_counter_cs.mult,
  180. cycle_counter_cs.shift);
  181. }
  182. int setup_profiling_timer(unsigned int multiplier)
  183. {
  184. return -EINVAL;
  185. }