intel_display.c 267 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. /**
  58. * find_pll() - Find the best values for the PLL
  59. * @limit: limits for the PLL
  60. * @crtc: current CRTC
  61. * @target: target frequency in kHz
  62. * @refclk: reference clock frequency in kHz
  63. * @match_clock: if provided, @best_clock P divider must
  64. * match the P divider from @match_clock
  65. * used for LVDS downclocking
  66. * @best_clock: best PLL values found
  67. *
  68. * Returns true on success, false on failure.
  69. */
  70. bool (*find_pll)(const intel_limit_t *limit,
  71. struct drm_crtc *crtc,
  72. int target, int refclk,
  73. intel_clock_t *match_clock,
  74. intel_clock_t *best_clock);
  75. };
  76. /* FDI */
  77. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. WARN_ON(!HAS_PCH_SPLIT(dev));
  83. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  84. }
  85. static bool
  86. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static inline u32 /* units of 100MHz */
  98. intel_fdi_link_freq(struct drm_device *dev)
  99. {
  100. if (IS_GEN5(dev)) {
  101. struct drm_i915_private *dev_priv = dev->dev_private;
  102. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  103. } else
  104. return 27;
  105. }
  106. static const intel_limit_t intel_limits_i8xx_dvo = {
  107. .dot = { .min = 25000, .max = 350000 },
  108. .vco = { .min = 930000, .max = 1400000 },
  109. .n = { .min = 3, .max = 16 },
  110. .m = { .min = 96, .max = 140 },
  111. .m1 = { .min = 18, .max = 26 },
  112. .m2 = { .min = 6, .max = 16 },
  113. .p = { .min = 4, .max = 128 },
  114. .p1 = { .min = 2, .max = 33 },
  115. .p2 = { .dot_limit = 165000,
  116. .p2_slow = 4, .p2_fast = 2 },
  117. .find_pll = intel_find_best_PLL,
  118. };
  119. static const intel_limit_t intel_limits_i8xx_lvds = {
  120. .dot = { .min = 25000, .max = 350000 },
  121. .vco = { .min = 930000, .max = 1400000 },
  122. .n = { .min = 3, .max = 16 },
  123. .m = { .min = 96, .max = 140 },
  124. .m1 = { .min = 18, .max = 26 },
  125. .m2 = { .min = 6, .max = 16 },
  126. .p = { .min = 4, .max = 128 },
  127. .p1 = { .min = 1, .max = 6 },
  128. .p2 = { .dot_limit = 165000,
  129. .p2_slow = 14, .p2_fast = 7 },
  130. .find_pll = intel_find_best_PLL,
  131. };
  132. static const intel_limit_t intel_limits_i9xx_sdvo = {
  133. .dot = { .min = 20000, .max = 400000 },
  134. .vco = { .min = 1400000, .max = 2800000 },
  135. .n = { .min = 1, .max = 6 },
  136. .m = { .min = 70, .max = 120 },
  137. .m1 = { .min = 8, .max = 18 },
  138. .m2 = { .min = 3, .max = 7 },
  139. .p = { .min = 5, .max = 80 },
  140. .p1 = { .min = 1, .max = 8 },
  141. .p2 = { .dot_limit = 200000,
  142. .p2_slow = 10, .p2_fast = 5 },
  143. .find_pll = intel_find_best_PLL,
  144. };
  145. static const intel_limit_t intel_limits_i9xx_lvds = {
  146. .dot = { .min = 20000, .max = 400000 },
  147. .vco = { .min = 1400000, .max = 2800000 },
  148. .n = { .min = 1, .max = 6 },
  149. .m = { .min = 70, .max = 120 },
  150. .m1 = { .min = 8, .max = 18 },
  151. .m2 = { .min = 3, .max = 7 },
  152. .p = { .min = 7, .max = 98 },
  153. .p1 = { .min = 1, .max = 8 },
  154. .p2 = { .dot_limit = 112000,
  155. .p2_slow = 14, .p2_fast = 7 },
  156. .find_pll = intel_find_best_PLL,
  157. };
  158. static const intel_limit_t intel_limits_g4x_sdvo = {
  159. .dot = { .min = 25000, .max = 270000 },
  160. .vco = { .min = 1750000, .max = 3500000},
  161. .n = { .min = 1, .max = 4 },
  162. .m = { .min = 104, .max = 138 },
  163. .m1 = { .min = 17, .max = 23 },
  164. .m2 = { .min = 5, .max = 11 },
  165. .p = { .min = 10, .max = 30 },
  166. .p1 = { .min = 1, .max = 3},
  167. .p2 = { .dot_limit = 270000,
  168. .p2_slow = 10,
  169. .p2_fast = 10
  170. },
  171. .find_pll = intel_g4x_find_best_PLL,
  172. };
  173. static const intel_limit_t intel_limits_g4x_hdmi = {
  174. .dot = { .min = 22000, .max = 400000 },
  175. .vco = { .min = 1750000, .max = 3500000},
  176. .n = { .min = 1, .max = 4 },
  177. .m = { .min = 104, .max = 138 },
  178. .m1 = { .min = 16, .max = 23 },
  179. .m2 = { .min = 5, .max = 11 },
  180. .p = { .min = 5, .max = 80 },
  181. .p1 = { .min = 1, .max = 8},
  182. .p2 = { .dot_limit = 165000,
  183. .p2_slow = 10, .p2_fast = 5 },
  184. .find_pll = intel_g4x_find_best_PLL,
  185. };
  186. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  187. .dot = { .min = 20000, .max = 115000 },
  188. .vco = { .min = 1750000, .max = 3500000 },
  189. .n = { .min = 1, .max = 3 },
  190. .m = { .min = 104, .max = 138 },
  191. .m1 = { .min = 17, .max = 23 },
  192. .m2 = { .min = 5, .max = 11 },
  193. .p = { .min = 28, .max = 112 },
  194. .p1 = { .min = 2, .max = 8 },
  195. .p2 = { .dot_limit = 0,
  196. .p2_slow = 14, .p2_fast = 14
  197. },
  198. .find_pll = intel_g4x_find_best_PLL,
  199. };
  200. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  201. .dot = { .min = 80000, .max = 224000 },
  202. .vco = { .min = 1750000, .max = 3500000 },
  203. .n = { .min = 1, .max = 3 },
  204. .m = { .min = 104, .max = 138 },
  205. .m1 = { .min = 17, .max = 23 },
  206. .m2 = { .min = 5, .max = 11 },
  207. .p = { .min = 14, .max = 42 },
  208. .p1 = { .min = 2, .max = 6 },
  209. .p2 = { .dot_limit = 0,
  210. .p2_slow = 7, .p2_fast = 7
  211. },
  212. .find_pll = intel_g4x_find_best_PLL,
  213. };
  214. static const intel_limit_t intel_limits_pineview_sdvo = {
  215. .dot = { .min = 20000, .max = 400000},
  216. .vco = { .min = 1700000, .max = 3500000 },
  217. /* Pineview's Ncounter is a ring counter */
  218. .n = { .min = 3, .max = 6 },
  219. .m = { .min = 2, .max = 256 },
  220. /* Pineview only has one combined m divider, which we treat as m2. */
  221. .m1 = { .min = 0, .max = 0 },
  222. .m2 = { .min = 0, .max = 254 },
  223. .p = { .min = 5, .max = 80 },
  224. .p1 = { .min = 1, .max = 8 },
  225. .p2 = { .dot_limit = 200000,
  226. .p2_slow = 10, .p2_fast = 5 },
  227. .find_pll = intel_find_best_PLL,
  228. };
  229. static const intel_limit_t intel_limits_pineview_lvds = {
  230. .dot = { .min = 20000, .max = 400000 },
  231. .vco = { .min = 1700000, .max = 3500000 },
  232. .n = { .min = 3, .max = 6 },
  233. .m = { .min = 2, .max = 256 },
  234. .m1 = { .min = 0, .max = 0 },
  235. .m2 = { .min = 0, .max = 254 },
  236. .p = { .min = 7, .max = 112 },
  237. .p1 = { .min = 1, .max = 8 },
  238. .p2 = { .dot_limit = 112000,
  239. .p2_slow = 14, .p2_fast = 14 },
  240. .find_pll = intel_find_best_PLL,
  241. };
  242. /* Ironlake / Sandybridge
  243. *
  244. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  245. * the range value for them is (actual_value - 2).
  246. */
  247. static const intel_limit_t intel_limits_ironlake_dac = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 5 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 5, .max = 80 },
  255. .p1 = { .min = 1, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 10, .p2_fast = 5 },
  258. .find_pll = intel_g4x_find_best_PLL,
  259. };
  260. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 118 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. .find_pll = intel_g4x_find_best_PLL,
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 127 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 56 },
  281. .p1 = { .min = 2, .max = 8 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. .find_pll = intel_g4x_find_best_PLL,
  285. };
  286. /* LVDS 100mhz refclk limits. */
  287. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  288. .dot = { .min = 25000, .max = 350000 },
  289. .vco = { .min = 1760000, .max = 3510000 },
  290. .n = { .min = 1, .max = 2 },
  291. .m = { .min = 79, .max = 126 },
  292. .m1 = { .min = 12, .max = 22 },
  293. .m2 = { .min = 5, .max = 9 },
  294. .p = { .min = 28, .max = 112 },
  295. .p1 = { .min = 2, .max = 8 },
  296. .p2 = { .dot_limit = 225000,
  297. .p2_slow = 14, .p2_fast = 14 },
  298. .find_pll = intel_g4x_find_best_PLL,
  299. };
  300. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  301. .dot = { .min = 25000, .max = 350000 },
  302. .vco = { .min = 1760000, .max = 3510000 },
  303. .n = { .min = 1, .max = 3 },
  304. .m = { .min = 79, .max = 126 },
  305. .m1 = { .min = 12, .max = 22 },
  306. .m2 = { .min = 5, .max = 9 },
  307. .p = { .min = 14, .max = 42 },
  308. .p1 = { .min = 2, .max = 6 },
  309. .p2 = { .dot_limit = 225000,
  310. .p2_slow = 7, .p2_fast = 7 },
  311. .find_pll = intel_g4x_find_best_PLL,
  312. };
  313. static const intel_limit_t intel_limits_vlv_dac = {
  314. .dot = { .min = 25000, .max = 270000 },
  315. .vco = { .min = 4000000, .max = 6000000 },
  316. .n = { .min = 1, .max = 7 },
  317. .m = { .min = 22, .max = 450 }, /* guess */
  318. .m1 = { .min = 2, .max = 3 },
  319. .m2 = { .min = 11, .max = 156 },
  320. .p = { .min = 10, .max = 30 },
  321. .p1 = { .min = 1, .max = 3 },
  322. .p2 = { .dot_limit = 270000,
  323. .p2_slow = 2, .p2_fast = 20 },
  324. .find_pll = intel_vlv_find_best_pll,
  325. };
  326. static const intel_limit_t intel_limits_vlv_hdmi = {
  327. .dot = { .min = 25000, .max = 270000 },
  328. .vco = { .min = 4000000, .max = 6000000 },
  329. .n = { .min = 1, .max = 7 },
  330. .m = { .min = 60, .max = 300 }, /* guess */
  331. .m1 = { .min = 2, .max = 3 },
  332. .m2 = { .min = 11, .max = 156 },
  333. .p = { .min = 10, .max = 30 },
  334. .p1 = { .min = 2, .max = 3 },
  335. .p2 = { .dot_limit = 270000,
  336. .p2_slow = 2, .p2_fast = 20 },
  337. .find_pll = intel_vlv_find_best_pll,
  338. };
  339. static const intel_limit_t intel_limits_vlv_dp = {
  340. .dot = { .min = 25000, .max = 270000 },
  341. .vco = { .min = 4000000, .max = 6000000 },
  342. .n = { .min = 1, .max = 7 },
  343. .m = { .min = 22, .max = 450 },
  344. .m1 = { .min = 2, .max = 3 },
  345. .m2 = { .min = 11, .max = 156 },
  346. .p = { .min = 10, .max = 30 },
  347. .p1 = { .min = 1, .max = 3 },
  348. .p2 = { .dot_limit = 270000,
  349. .p2_slow = 2, .p2_fast = 20 },
  350. .find_pll = intel_vlv_find_best_pll,
  351. };
  352. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  353. int refclk)
  354. {
  355. struct drm_device *dev = crtc->dev;
  356. const intel_limit_t *limit;
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  358. if (intel_is_dual_link_lvds(dev)) {
  359. if (refclk == 100000)
  360. limit = &intel_limits_ironlake_dual_lvds_100m;
  361. else
  362. limit = &intel_limits_ironlake_dual_lvds;
  363. } else {
  364. if (refclk == 100000)
  365. limit = &intel_limits_ironlake_single_lvds_100m;
  366. else
  367. limit = &intel_limits_ironlake_single_lvds;
  368. }
  369. } else
  370. limit = &intel_limits_ironlake_dac;
  371. return limit;
  372. }
  373. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  374. {
  375. struct drm_device *dev = crtc->dev;
  376. const intel_limit_t *limit;
  377. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  378. if (intel_is_dual_link_lvds(dev))
  379. limit = &intel_limits_g4x_dual_channel_lvds;
  380. else
  381. limit = &intel_limits_g4x_single_channel_lvds;
  382. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  383. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  384. limit = &intel_limits_g4x_hdmi;
  385. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  386. limit = &intel_limits_g4x_sdvo;
  387. } else /* The option is for other outputs */
  388. limit = &intel_limits_i9xx_sdvo;
  389. return limit;
  390. }
  391. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  392. {
  393. struct drm_device *dev = crtc->dev;
  394. const intel_limit_t *limit;
  395. if (HAS_PCH_SPLIT(dev))
  396. limit = intel_ironlake_limit(crtc, refclk);
  397. else if (IS_G4X(dev)) {
  398. limit = intel_g4x_limit(crtc);
  399. } else if (IS_PINEVIEW(dev)) {
  400. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  401. limit = &intel_limits_pineview_lvds;
  402. else
  403. limit = &intel_limits_pineview_sdvo;
  404. } else if (IS_VALLEYVIEW(dev)) {
  405. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  406. limit = &intel_limits_vlv_dac;
  407. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  408. limit = &intel_limits_vlv_hdmi;
  409. else
  410. limit = &intel_limits_vlv_dp;
  411. } else if (!IS_GEN2(dev)) {
  412. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  413. limit = &intel_limits_i9xx_lvds;
  414. else
  415. limit = &intel_limits_i9xx_sdvo;
  416. } else {
  417. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  418. limit = &intel_limits_i8xx_lvds;
  419. else
  420. limit = &intel_limits_i8xx_dvo;
  421. }
  422. return limit;
  423. }
  424. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  425. static void pineview_clock(int refclk, intel_clock_t *clock)
  426. {
  427. clock->m = clock->m2 + 2;
  428. clock->p = clock->p1 * clock->p2;
  429. clock->vco = refclk * clock->m / clock->n;
  430. clock->dot = clock->vco / clock->p;
  431. }
  432. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  433. {
  434. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  435. }
  436. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  437. {
  438. if (IS_PINEVIEW(dev)) {
  439. pineview_clock(refclk, clock);
  440. return;
  441. }
  442. clock->m = i9xx_dpll_compute_m(clock);
  443. clock->p = clock->p1 * clock->p2;
  444. clock->vco = refclk * clock->m / (clock->n + 2);
  445. clock->dot = clock->vco / clock->p;
  446. }
  447. /**
  448. * Returns whether any output on the specified pipe is of the specified type
  449. */
  450. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  451. {
  452. struct drm_device *dev = crtc->dev;
  453. struct intel_encoder *encoder;
  454. for_each_encoder_on_crtc(dev, crtc, encoder)
  455. if (encoder->type == type)
  456. return true;
  457. return false;
  458. }
  459. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  460. /**
  461. * Returns whether the given set of divisors are valid for a given refclk with
  462. * the given connectors.
  463. */
  464. static bool intel_PLL_is_valid(struct drm_device *dev,
  465. const intel_limit_t *limit,
  466. const intel_clock_t *clock)
  467. {
  468. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  469. INTELPllInvalid("p1 out of range\n");
  470. if (clock->p < limit->p.min || limit->p.max < clock->p)
  471. INTELPllInvalid("p out of range\n");
  472. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  473. INTELPllInvalid("m2 out of range\n");
  474. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  475. INTELPllInvalid("m1 out of range\n");
  476. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  477. INTELPllInvalid("m1 <= m2\n");
  478. if (clock->m < limit->m.min || limit->m.max < clock->m)
  479. INTELPllInvalid("m out of range\n");
  480. if (clock->n < limit->n.min || limit->n.max < clock->n)
  481. INTELPllInvalid("n out of range\n");
  482. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  483. INTELPllInvalid("vco out of range\n");
  484. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  485. * connector, etc., rather than just a single range.
  486. */
  487. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  488. INTELPllInvalid("dot out of range\n");
  489. return true;
  490. }
  491. static bool
  492. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  493. int target, int refclk, intel_clock_t *match_clock,
  494. intel_clock_t *best_clock)
  495. {
  496. struct drm_device *dev = crtc->dev;
  497. intel_clock_t clock;
  498. int err = target;
  499. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  500. /*
  501. * For LVDS just rely on its current settings for dual-channel.
  502. * We haven't figured out how to reliably set up different
  503. * single/dual channel state, if we even can.
  504. */
  505. if (intel_is_dual_link_lvds(dev))
  506. clock.p2 = limit->p2.p2_fast;
  507. else
  508. clock.p2 = limit->p2.p2_slow;
  509. } else {
  510. if (target < limit->p2.dot_limit)
  511. clock.p2 = limit->p2.p2_slow;
  512. else
  513. clock.p2 = limit->p2.p2_fast;
  514. }
  515. memset(best_clock, 0, sizeof(*best_clock));
  516. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  517. clock.m1++) {
  518. for (clock.m2 = limit->m2.min;
  519. clock.m2 <= limit->m2.max; clock.m2++) {
  520. /* m1 is always 0 in Pineview */
  521. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  522. break;
  523. for (clock.n = limit->n.min;
  524. clock.n <= limit->n.max; clock.n++) {
  525. for (clock.p1 = limit->p1.min;
  526. clock.p1 <= limit->p1.max; clock.p1++) {
  527. int this_err;
  528. intel_clock(dev, refclk, &clock);
  529. if (!intel_PLL_is_valid(dev, limit,
  530. &clock))
  531. continue;
  532. if (match_clock &&
  533. clock.p != match_clock->p)
  534. continue;
  535. this_err = abs(clock.dot - target);
  536. if (this_err < err) {
  537. *best_clock = clock;
  538. err = this_err;
  539. }
  540. }
  541. }
  542. }
  543. }
  544. return (err != target);
  545. }
  546. static bool
  547. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  548. int target, int refclk, intel_clock_t *match_clock,
  549. intel_clock_t *best_clock)
  550. {
  551. struct drm_device *dev = crtc->dev;
  552. intel_clock_t clock;
  553. int max_n;
  554. bool found;
  555. /* approximately equals target * 0.00585 */
  556. int err_most = (target >> 8) + (target >> 9);
  557. found = false;
  558. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  559. if (intel_is_dual_link_lvds(dev))
  560. clock.p2 = limit->p2.p2_fast;
  561. else
  562. clock.p2 = limit->p2.p2_slow;
  563. } else {
  564. if (target < limit->p2.dot_limit)
  565. clock.p2 = limit->p2.p2_slow;
  566. else
  567. clock.p2 = limit->p2.p2_fast;
  568. }
  569. memset(best_clock, 0, sizeof(*best_clock));
  570. max_n = limit->n.max;
  571. /* based on hardware requirement, prefer smaller n to precision */
  572. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  573. /* based on hardware requirement, prefere larger m1,m2 */
  574. for (clock.m1 = limit->m1.max;
  575. clock.m1 >= limit->m1.min; clock.m1--) {
  576. for (clock.m2 = limit->m2.max;
  577. clock.m2 >= limit->m2.min; clock.m2--) {
  578. for (clock.p1 = limit->p1.max;
  579. clock.p1 >= limit->p1.min; clock.p1--) {
  580. int this_err;
  581. intel_clock(dev, refclk, &clock);
  582. if (!intel_PLL_is_valid(dev, limit,
  583. &clock))
  584. continue;
  585. this_err = abs(clock.dot - target);
  586. if (this_err < err_most) {
  587. *best_clock = clock;
  588. err_most = this_err;
  589. max_n = clock.n;
  590. found = true;
  591. }
  592. }
  593. }
  594. }
  595. }
  596. return found;
  597. }
  598. static bool
  599. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  600. int target, int refclk, intel_clock_t *match_clock,
  601. intel_clock_t *best_clock)
  602. {
  603. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  604. u32 m, n, fastclk;
  605. u32 updrate, minupdate, fracbits, p;
  606. unsigned long bestppm, ppm, absppm;
  607. int dotclk, flag;
  608. flag = 0;
  609. dotclk = target * 1000;
  610. bestppm = 1000000;
  611. ppm = absppm = 0;
  612. fastclk = dotclk / (2*100);
  613. updrate = 0;
  614. minupdate = 19200;
  615. fracbits = 1;
  616. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  617. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  618. /* based on hardware requirement, prefer smaller n to precision */
  619. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  620. updrate = refclk / n;
  621. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  622. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  623. if (p2 > 10)
  624. p2 = p2 - 1;
  625. p = p1 * p2;
  626. /* based on hardware requirement, prefer bigger m1,m2 values */
  627. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  628. m2 = (((2*(fastclk * p * n / m1 )) +
  629. refclk) / (2*refclk));
  630. m = m1 * m2;
  631. vco = updrate * m;
  632. if (vco >= limit->vco.min && vco < limit->vco.max) {
  633. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  634. absppm = (ppm > 0) ? ppm : (-ppm);
  635. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  636. bestppm = 0;
  637. flag = 1;
  638. }
  639. if (absppm < bestppm - 10) {
  640. bestppm = absppm;
  641. flag = 1;
  642. }
  643. if (flag) {
  644. bestn = n;
  645. bestm1 = m1;
  646. bestm2 = m2;
  647. bestp1 = p1;
  648. bestp2 = p2;
  649. flag = 0;
  650. }
  651. }
  652. }
  653. }
  654. }
  655. }
  656. best_clock->n = bestn;
  657. best_clock->m1 = bestm1;
  658. best_clock->m2 = bestm2;
  659. best_clock->p1 = bestp1;
  660. best_clock->p2 = bestp2;
  661. return true;
  662. }
  663. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  664. enum pipe pipe)
  665. {
  666. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  668. return intel_crtc->config.cpu_transcoder;
  669. }
  670. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  671. {
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. u32 frame, frame_reg = PIPEFRAME(pipe);
  674. frame = I915_READ(frame_reg);
  675. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  676. DRM_DEBUG_KMS("vblank wait timed out\n");
  677. }
  678. /**
  679. * intel_wait_for_vblank - wait for vblank on a given pipe
  680. * @dev: drm device
  681. * @pipe: pipe to wait for
  682. *
  683. * Wait for vblank to occur on a given pipe. Needed for various bits of
  684. * mode setting code.
  685. */
  686. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  687. {
  688. struct drm_i915_private *dev_priv = dev->dev_private;
  689. int pipestat_reg = PIPESTAT(pipe);
  690. if (INTEL_INFO(dev)->gen >= 5) {
  691. ironlake_wait_for_vblank(dev, pipe);
  692. return;
  693. }
  694. /* Clear existing vblank status. Note this will clear any other
  695. * sticky status fields as well.
  696. *
  697. * This races with i915_driver_irq_handler() with the result
  698. * that either function could miss a vblank event. Here it is not
  699. * fatal, as we will either wait upon the next vblank interrupt or
  700. * timeout. Generally speaking intel_wait_for_vblank() is only
  701. * called during modeset at which time the GPU should be idle and
  702. * should *not* be performing page flips and thus not waiting on
  703. * vblanks...
  704. * Currently, the result of us stealing a vblank from the irq
  705. * handler is that a single frame will be skipped during swapbuffers.
  706. */
  707. I915_WRITE(pipestat_reg,
  708. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  709. /* Wait for vblank interrupt bit to set */
  710. if (wait_for(I915_READ(pipestat_reg) &
  711. PIPE_VBLANK_INTERRUPT_STATUS,
  712. 50))
  713. DRM_DEBUG_KMS("vblank wait timed out\n");
  714. }
  715. /*
  716. * intel_wait_for_pipe_off - wait for pipe to turn off
  717. * @dev: drm device
  718. * @pipe: pipe to wait for
  719. *
  720. * After disabling a pipe, we can't wait for vblank in the usual way,
  721. * spinning on the vblank interrupt status bit, since we won't actually
  722. * see an interrupt when the pipe is disabled.
  723. *
  724. * On Gen4 and above:
  725. * wait for the pipe register state bit to turn off
  726. *
  727. * Otherwise:
  728. * wait for the display line value to settle (it usually
  729. * ends up stopping at the start of the next frame).
  730. *
  731. */
  732. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  733. {
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  736. pipe);
  737. if (INTEL_INFO(dev)->gen >= 4) {
  738. int reg = PIPECONF(cpu_transcoder);
  739. /* Wait for the Pipe State to go off */
  740. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  741. 100))
  742. WARN(1, "pipe_off wait timed out\n");
  743. } else {
  744. u32 last_line, line_mask;
  745. int reg = PIPEDSL(pipe);
  746. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  747. if (IS_GEN2(dev))
  748. line_mask = DSL_LINEMASK_GEN2;
  749. else
  750. line_mask = DSL_LINEMASK_GEN3;
  751. /* Wait for the display line to settle */
  752. do {
  753. last_line = I915_READ(reg) & line_mask;
  754. mdelay(5);
  755. } while (((I915_READ(reg) & line_mask) != last_line) &&
  756. time_after(timeout, jiffies));
  757. if (time_after(jiffies, timeout))
  758. WARN(1, "pipe_off wait timed out\n");
  759. }
  760. }
  761. /*
  762. * ibx_digital_port_connected - is the specified port connected?
  763. * @dev_priv: i915 private structure
  764. * @port: the port to test
  765. *
  766. * Returns true if @port is connected, false otherwise.
  767. */
  768. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  769. struct intel_digital_port *port)
  770. {
  771. u32 bit;
  772. if (HAS_PCH_IBX(dev_priv->dev)) {
  773. switch(port->port) {
  774. case PORT_B:
  775. bit = SDE_PORTB_HOTPLUG;
  776. break;
  777. case PORT_C:
  778. bit = SDE_PORTC_HOTPLUG;
  779. break;
  780. case PORT_D:
  781. bit = SDE_PORTD_HOTPLUG;
  782. break;
  783. default:
  784. return true;
  785. }
  786. } else {
  787. switch(port->port) {
  788. case PORT_B:
  789. bit = SDE_PORTB_HOTPLUG_CPT;
  790. break;
  791. case PORT_C:
  792. bit = SDE_PORTC_HOTPLUG_CPT;
  793. break;
  794. case PORT_D:
  795. bit = SDE_PORTD_HOTPLUG_CPT;
  796. break;
  797. default:
  798. return true;
  799. }
  800. }
  801. return I915_READ(SDEISR) & bit;
  802. }
  803. static const char *state_string(bool enabled)
  804. {
  805. return enabled ? "on" : "off";
  806. }
  807. /* Only for pre-ILK configs */
  808. static void assert_pll(struct drm_i915_private *dev_priv,
  809. enum pipe pipe, bool state)
  810. {
  811. int reg;
  812. u32 val;
  813. bool cur_state;
  814. reg = DPLL(pipe);
  815. val = I915_READ(reg);
  816. cur_state = !!(val & DPLL_VCO_ENABLE);
  817. WARN(cur_state != state,
  818. "PLL state assertion failure (expected %s, current %s)\n",
  819. state_string(state), state_string(cur_state));
  820. }
  821. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  822. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  823. /* For ILK+ */
  824. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  825. struct intel_pch_pll *pll,
  826. struct intel_crtc *crtc,
  827. bool state)
  828. {
  829. u32 val;
  830. bool cur_state;
  831. if (HAS_PCH_LPT(dev_priv->dev)) {
  832. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  833. return;
  834. }
  835. if (WARN (!pll,
  836. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  837. return;
  838. val = I915_READ(pll->pll_reg);
  839. cur_state = !!(val & DPLL_VCO_ENABLE);
  840. WARN(cur_state != state,
  841. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  842. pll->pll_reg, state_string(state), state_string(cur_state), val);
  843. /* Make sure the selected PLL is correctly attached to the transcoder */
  844. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  845. u32 pch_dpll;
  846. pch_dpll = I915_READ(PCH_DPLL_SEL);
  847. cur_state = pll->pll_reg == _PCH_DPLL_B;
  848. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  849. "PLL[%d] not attached to this transcoder %c: %08x\n",
  850. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  851. cur_state = !!(val >> (4*crtc->pipe + 3));
  852. WARN(cur_state != state,
  853. "PLL[%d] not %s on this transcoder %c: %08x\n",
  854. pll->pll_reg == _PCH_DPLL_B,
  855. state_string(state),
  856. pipe_name(crtc->pipe),
  857. val);
  858. }
  859. }
  860. }
  861. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  862. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  863. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  864. enum pipe pipe, bool state)
  865. {
  866. int reg;
  867. u32 val;
  868. bool cur_state;
  869. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  870. pipe);
  871. if (HAS_DDI(dev_priv->dev)) {
  872. /* DDI does not have a specific FDI_TX register */
  873. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  874. val = I915_READ(reg);
  875. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  876. } else {
  877. reg = FDI_TX_CTL(pipe);
  878. val = I915_READ(reg);
  879. cur_state = !!(val & FDI_TX_ENABLE);
  880. }
  881. WARN(cur_state != state,
  882. "FDI TX state assertion failure (expected %s, current %s)\n",
  883. state_string(state), state_string(cur_state));
  884. }
  885. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  886. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  887. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  888. enum pipe pipe, bool state)
  889. {
  890. int reg;
  891. u32 val;
  892. bool cur_state;
  893. reg = FDI_RX_CTL(pipe);
  894. val = I915_READ(reg);
  895. cur_state = !!(val & FDI_RX_ENABLE);
  896. WARN(cur_state != state,
  897. "FDI RX state assertion failure (expected %s, current %s)\n",
  898. state_string(state), state_string(cur_state));
  899. }
  900. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  901. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  902. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  903. enum pipe pipe)
  904. {
  905. int reg;
  906. u32 val;
  907. /* ILK FDI PLL is always enabled */
  908. if (dev_priv->info->gen == 5)
  909. return;
  910. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  911. if (HAS_DDI(dev_priv->dev))
  912. return;
  913. reg = FDI_TX_CTL(pipe);
  914. val = I915_READ(reg);
  915. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  916. }
  917. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  918. enum pipe pipe)
  919. {
  920. int reg;
  921. u32 val;
  922. reg = FDI_RX_CTL(pipe);
  923. val = I915_READ(reg);
  924. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  925. }
  926. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  927. enum pipe pipe)
  928. {
  929. int pp_reg, lvds_reg;
  930. u32 val;
  931. enum pipe panel_pipe = PIPE_A;
  932. bool locked = true;
  933. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  934. pp_reg = PCH_PP_CONTROL;
  935. lvds_reg = PCH_LVDS;
  936. } else {
  937. pp_reg = PP_CONTROL;
  938. lvds_reg = LVDS;
  939. }
  940. val = I915_READ(pp_reg);
  941. if (!(val & PANEL_POWER_ON) ||
  942. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  943. locked = false;
  944. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  945. panel_pipe = PIPE_B;
  946. WARN(panel_pipe == pipe && locked,
  947. "panel assertion failure, pipe %c regs locked\n",
  948. pipe_name(pipe));
  949. }
  950. void assert_pipe(struct drm_i915_private *dev_priv,
  951. enum pipe pipe, bool state)
  952. {
  953. int reg;
  954. u32 val;
  955. bool cur_state;
  956. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  957. pipe);
  958. /* if we need the pipe A quirk it must be always on */
  959. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  960. state = true;
  961. if (!intel_display_power_enabled(dev_priv->dev,
  962. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  963. cur_state = false;
  964. } else {
  965. reg = PIPECONF(cpu_transcoder);
  966. val = I915_READ(reg);
  967. cur_state = !!(val & PIPECONF_ENABLE);
  968. }
  969. WARN(cur_state != state,
  970. "pipe %c assertion failure (expected %s, current %s)\n",
  971. pipe_name(pipe), state_string(state), state_string(cur_state));
  972. }
  973. static void assert_plane(struct drm_i915_private *dev_priv,
  974. enum plane plane, bool state)
  975. {
  976. int reg;
  977. u32 val;
  978. bool cur_state;
  979. reg = DSPCNTR(plane);
  980. val = I915_READ(reg);
  981. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  982. WARN(cur_state != state,
  983. "plane %c assertion failure (expected %s, current %s)\n",
  984. plane_name(plane), state_string(state), state_string(cur_state));
  985. }
  986. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  987. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  988. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  989. enum pipe pipe)
  990. {
  991. int reg, i;
  992. u32 val;
  993. int cur_pipe;
  994. /* Planes are fixed to pipes on ILK+ */
  995. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  996. reg = DSPCNTR(pipe);
  997. val = I915_READ(reg);
  998. WARN((val & DISPLAY_PLANE_ENABLE),
  999. "plane %c assertion failure, should be disabled but not\n",
  1000. plane_name(pipe));
  1001. return;
  1002. }
  1003. /* Need to check both planes against the pipe */
  1004. for (i = 0; i < 2; i++) {
  1005. reg = DSPCNTR(i);
  1006. val = I915_READ(reg);
  1007. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1008. DISPPLANE_SEL_PIPE_SHIFT;
  1009. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1010. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1011. plane_name(i), pipe_name(pipe));
  1012. }
  1013. }
  1014. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1015. enum pipe pipe)
  1016. {
  1017. int reg, i;
  1018. u32 val;
  1019. if (!IS_VALLEYVIEW(dev_priv->dev))
  1020. return;
  1021. /* Need to check both planes against the pipe */
  1022. for (i = 0; i < dev_priv->num_plane; i++) {
  1023. reg = SPCNTR(pipe, i);
  1024. val = I915_READ(reg);
  1025. WARN((val & SP_ENABLE),
  1026. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1027. sprite_name(pipe, i), pipe_name(pipe));
  1028. }
  1029. }
  1030. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1031. {
  1032. u32 val;
  1033. bool enabled;
  1034. if (HAS_PCH_LPT(dev_priv->dev)) {
  1035. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1036. return;
  1037. }
  1038. val = I915_READ(PCH_DREF_CONTROL);
  1039. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1040. DREF_SUPERSPREAD_SOURCE_MASK));
  1041. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1042. }
  1043. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1044. enum pipe pipe)
  1045. {
  1046. int reg;
  1047. u32 val;
  1048. bool enabled;
  1049. reg = PCH_TRANSCONF(pipe);
  1050. val = I915_READ(reg);
  1051. enabled = !!(val & TRANS_ENABLE);
  1052. WARN(enabled,
  1053. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1054. pipe_name(pipe));
  1055. }
  1056. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1057. enum pipe pipe, u32 port_sel, u32 val)
  1058. {
  1059. if ((val & DP_PORT_EN) == 0)
  1060. return false;
  1061. if (HAS_PCH_CPT(dev_priv->dev)) {
  1062. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1063. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1064. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1065. return false;
  1066. } else {
  1067. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1068. return false;
  1069. }
  1070. return true;
  1071. }
  1072. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1073. enum pipe pipe, u32 val)
  1074. {
  1075. if ((val & SDVO_ENABLE) == 0)
  1076. return false;
  1077. if (HAS_PCH_CPT(dev_priv->dev)) {
  1078. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1079. return false;
  1080. } else {
  1081. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1082. return false;
  1083. }
  1084. return true;
  1085. }
  1086. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1087. enum pipe pipe, u32 val)
  1088. {
  1089. if ((val & LVDS_PORT_EN) == 0)
  1090. return false;
  1091. if (HAS_PCH_CPT(dev_priv->dev)) {
  1092. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1093. return false;
  1094. } else {
  1095. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1096. return false;
  1097. }
  1098. return true;
  1099. }
  1100. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1101. enum pipe pipe, u32 val)
  1102. {
  1103. if ((val & ADPA_DAC_ENABLE) == 0)
  1104. return false;
  1105. if (HAS_PCH_CPT(dev_priv->dev)) {
  1106. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1107. return false;
  1108. } else {
  1109. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1110. return false;
  1111. }
  1112. return true;
  1113. }
  1114. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1115. enum pipe pipe, int reg, u32 port_sel)
  1116. {
  1117. u32 val = I915_READ(reg);
  1118. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1119. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1120. reg, pipe_name(pipe));
  1121. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1122. && (val & DP_PIPEB_SELECT),
  1123. "IBX PCH dp port still using transcoder B\n");
  1124. }
  1125. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1126. enum pipe pipe, int reg)
  1127. {
  1128. u32 val = I915_READ(reg);
  1129. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1130. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1131. reg, pipe_name(pipe));
  1132. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1133. && (val & SDVO_PIPE_B_SELECT),
  1134. "IBX PCH hdmi port still using transcoder B\n");
  1135. }
  1136. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1137. enum pipe pipe)
  1138. {
  1139. int reg;
  1140. u32 val;
  1141. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1143. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1144. reg = PCH_ADPA;
  1145. val = I915_READ(reg);
  1146. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1147. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1148. pipe_name(pipe));
  1149. reg = PCH_LVDS;
  1150. val = I915_READ(reg);
  1151. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1152. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1153. pipe_name(pipe));
  1154. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1156. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1157. }
  1158. /**
  1159. * intel_enable_pll - enable a PLL
  1160. * @dev_priv: i915 private structure
  1161. * @pipe: pipe PLL to enable
  1162. *
  1163. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1164. * make sure the PLL reg is writable first though, since the panel write
  1165. * protect mechanism may be enabled.
  1166. *
  1167. * Note! This is for pre-ILK only.
  1168. *
  1169. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1170. */
  1171. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1172. {
  1173. int reg;
  1174. u32 val;
  1175. assert_pipe_disabled(dev_priv, pipe);
  1176. /* No really, not for ILK+ */
  1177. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1178. /* PLL is protected by panel, make sure we can write it */
  1179. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1180. assert_panel_unlocked(dev_priv, pipe);
  1181. reg = DPLL(pipe);
  1182. val = I915_READ(reg);
  1183. val |= DPLL_VCO_ENABLE;
  1184. /* We do this three times for luck */
  1185. I915_WRITE(reg, val);
  1186. POSTING_READ(reg);
  1187. udelay(150); /* wait for warmup */
  1188. I915_WRITE(reg, val);
  1189. POSTING_READ(reg);
  1190. udelay(150); /* wait for warmup */
  1191. I915_WRITE(reg, val);
  1192. POSTING_READ(reg);
  1193. udelay(150); /* wait for warmup */
  1194. }
  1195. /**
  1196. * intel_disable_pll - disable a PLL
  1197. * @dev_priv: i915 private structure
  1198. * @pipe: pipe PLL to disable
  1199. *
  1200. * Disable the PLL for @pipe, making sure the pipe is off first.
  1201. *
  1202. * Note! This is for pre-ILK only.
  1203. */
  1204. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1205. {
  1206. int reg;
  1207. u32 val;
  1208. /* Don't disable pipe A or pipe A PLLs if needed */
  1209. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1210. return;
  1211. /* Make sure the pipe isn't still relying on us */
  1212. assert_pipe_disabled(dev_priv, pipe);
  1213. reg = DPLL(pipe);
  1214. val = I915_READ(reg);
  1215. val &= ~DPLL_VCO_ENABLE;
  1216. I915_WRITE(reg, val);
  1217. POSTING_READ(reg);
  1218. }
  1219. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1220. {
  1221. u32 port_mask;
  1222. if (!port)
  1223. port_mask = DPLL_PORTB_READY_MASK;
  1224. else
  1225. port_mask = DPLL_PORTC_READY_MASK;
  1226. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1227. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1228. 'B' + port, I915_READ(DPLL(0)));
  1229. }
  1230. /**
  1231. * ironlake_enable_pch_pll - enable PCH PLL
  1232. * @dev_priv: i915 private structure
  1233. * @pipe: pipe PLL to enable
  1234. *
  1235. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1236. * drives the transcoder clock.
  1237. */
  1238. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1239. {
  1240. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1241. struct intel_pch_pll *pll;
  1242. int reg;
  1243. u32 val;
  1244. /* PCH PLLs only available on ILK, SNB and IVB */
  1245. BUG_ON(dev_priv->info->gen < 5);
  1246. pll = intel_crtc->pch_pll;
  1247. if (pll == NULL)
  1248. return;
  1249. if (WARN_ON(pll->refcount == 0))
  1250. return;
  1251. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1252. pll->pll_reg, pll->active, pll->on,
  1253. intel_crtc->base.base.id);
  1254. /* PCH refclock must be enabled first */
  1255. assert_pch_refclk_enabled(dev_priv);
  1256. if (pll->active++ && pll->on) {
  1257. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1258. return;
  1259. }
  1260. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1261. reg = pll->pll_reg;
  1262. val = I915_READ(reg);
  1263. val |= DPLL_VCO_ENABLE;
  1264. I915_WRITE(reg, val);
  1265. POSTING_READ(reg);
  1266. udelay(200);
  1267. pll->on = true;
  1268. }
  1269. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1270. {
  1271. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1272. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1273. int reg;
  1274. u32 val;
  1275. /* PCH only available on ILK+ */
  1276. BUG_ON(dev_priv->info->gen < 5);
  1277. if (pll == NULL)
  1278. return;
  1279. if (WARN_ON(pll->refcount == 0))
  1280. return;
  1281. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1282. pll->pll_reg, pll->active, pll->on,
  1283. intel_crtc->base.base.id);
  1284. if (WARN_ON(pll->active == 0)) {
  1285. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1286. return;
  1287. }
  1288. if (--pll->active) {
  1289. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1290. return;
  1291. }
  1292. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1293. /* Make sure transcoder isn't still depending on us */
  1294. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1295. reg = pll->pll_reg;
  1296. val = I915_READ(reg);
  1297. val &= ~DPLL_VCO_ENABLE;
  1298. I915_WRITE(reg, val);
  1299. POSTING_READ(reg);
  1300. udelay(200);
  1301. pll->on = false;
  1302. }
  1303. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1304. enum pipe pipe)
  1305. {
  1306. struct drm_device *dev = dev_priv->dev;
  1307. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1308. uint32_t reg, val, pipeconf_val;
  1309. /* PCH only available on ILK+ */
  1310. BUG_ON(dev_priv->info->gen < 5);
  1311. /* Make sure PCH DPLL is enabled */
  1312. assert_pch_pll_enabled(dev_priv,
  1313. to_intel_crtc(crtc)->pch_pll,
  1314. to_intel_crtc(crtc));
  1315. /* FDI must be feeding us bits for PCH ports */
  1316. assert_fdi_tx_enabled(dev_priv, pipe);
  1317. assert_fdi_rx_enabled(dev_priv, pipe);
  1318. if (HAS_PCH_CPT(dev)) {
  1319. /* Workaround: Set the timing override bit before enabling the
  1320. * pch transcoder. */
  1321. reg = TRANS_CHICKEN2(pipe);
  1322. val = I915_READ(reg);
  1323. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1324. I915_WRITE(reg, val);
  1325. }
  1326. reg = PCH_TRANSCONF(pipe);
  1327. val = I915_READ(reg);
  1328. pipeconf_val = I915_READ(PIPECONF(pipe));
  1329. if (HAS_PCH_IBX(dev_priv->dev)) {
  1330. /*
  1331. * make the BPC in transcoder be consistent with
  1332. * that in pipeconf reg.
  1333. */
  1334. val &= ~PIPECONF_BPC_MASK;
  1335. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1336. }
  1337. val &= ~TRANS_INTERLACE_MASK;
  1338. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1339. if (HAS_PCH_IBX(dev_priv->dev) &&
  1340. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1341. val |= TRANS_LEGACY_INTERLACED_ILK;
  1342. else
  1343. val |= TRANS_INTERLACED;
  1344. else
  1345. val |= TRANS_PROGRESSIVE;
  1346. I915_WRITE(reg, val | TRANS_ENABLE);
  1347. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1348. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1349. }
  1350. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1351. enum transcoder cpu_transcoder)
  1352. {
  1353. u32 val, pipeconf_val;
  1354. /* PCH only available on ILK+ */
  1355. BUG_ON(dev_priv->info->gen < 5);
  1356. /* FDI must be feeding us bits for PCH ports */
  1357. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1358. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1359. /* Workaround: set timing override bit. */
  1360. val = I915_READ(_TRANSA_CHICKEN2);
  1361. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1362. I915_WRITE(_TRANSA_CHICKEN2, val);
  1363. val = TRANS_ENABLE;
  1364. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1365. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1366. PIPECONF_INTERLACED_ILK)
  1367. val |= TRANS_INTERLACED;
  1368. else
  1369. val |= TRANS_PROGRESSIVE;
  1370. I915_WRITE(LPT_TRANSCONF, val);
  1371. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1372. DRM_ERROR("Failed to enable PCH transcoder\n");
  1373. }
  1374. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1375. enum pipe pipe)
  1376. {
  1377. struct drm_device *dev = dev_priv->dev;
  1378. uint32_t reg, val;
  1379. /* FDI relies on the transcoder */
  1380. assert_fdi_tx_disabled(dev_priv, pipe);
  1381. assert_fdi_rx_disabled(dev_priv, pipe);
  1382. /* Ports must be off as well */
  1383. assert_pch_ports_disabled(dev_priv, pipe);
  1384. reg = PCH_TRANSCONF(pipe);
  1385. val = I915_READ(reg);
  1386. val &= ~TRANS_ENABLE;
  1387. I915_WRITE(reg, val);
  1388. /* wait for PCH transcoder off, transcoder state */
  1389. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1390. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1391. if (!HAS_PCH_IBX(dev)) {
  1392. /* Workaround: Clear the timing override chicken bit again. */
  1393. reg = TRANS_CHICKEN2(pipe);
  1394. val = I915_READ(reg);
  1395. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1396. I915_WRITE(reg, val);
  1397. }
  1398. }
  1399. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1400. {
  1401. u32 val;
  1402. val = I915_READ(LPT_TRANSCONF);
  1403. val &= ~TRANS_ENABLE;
  1404. I915_WRITE(LPT_TRANSCONF, val);
  1405. /* wait for PCH transcoder off, transcoder state */
  1406. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1407. DRM_ERROR("Failed to disable PCH transcoder\n");
  1408. /* Workaround: clear timing override bit. */
  1409. val = I915_READ(_TRANSA_CHICKEN2);
  1410. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1411. I915_WRITE(_TRANSA_CHICKEN2, val);
  1412. }
  1413. /**
  1414. * intel_enable_pipe - enable a pipe, asserting requirements
  1415. * @dev_priv: i915 private structure
  1416. * @pipe: pipe to enable
  1417. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1418. *
  1419. * Enable @pipe, making sure that various hardware specific requirements
  1420. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1421. *
  1422. * @pipe should be %PIPE_A or %PIPE_B.
  1423. *
  1424. * Will wait until the pipe is actually running (i.e. first vblank) before
  1425. * returning.
  1426. */
  1427. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1428. bool pch_port)
  1429. {
  1430. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1431. pipe);
  1432. enum pipe pch_transcoder;
  1433. int reg;
  1434. u32 val;
  1435. assert_planes_disabled(dev_priv, pipe);
  1436. assert_sprites_disabled(dev_priv, pipe);
  1437. if (HAS_PCH_LPT(dev_priv->dev))
  1438. pch_transcoder = TRANSCODER_A;
  1439. else
  1440. pch_transcoder = pipe;
  1441. /*
  1442. * A pipe without a PLL won't actually be able to drive bits from
  1443. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1444. * need the check.
  1445. */
  1446. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1447. assert_pll_enabled(dev_priv, pipe);
  1448. else {
  1449. if (pch_port) {
  1450. /* if driving the PCH, we need FDI enabled */
  1451. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1452. assert_fdi_tx_pll_enabled(dev_priv,
  1453. (enum pipe) cpu_transcoder);
  1454. }
  1455. /* FIXME: assert CPU port conditions for SNB+ */
  1456. }
  1457. reg = PIPECONF(cpu_transcoder);
  1458. val = I915_READ(reg);
  1459. if (val & PIPECONF_ENABLE)
  1460. return;
  1461. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1462. intel_wait_for_vblank(dev_priv->dev, pipe);
  1463. }
  1464. /**
  1465. * intel_disable_pipe - disable a pipe, asserting requirements
  1466. * @dev_priv: i915 private structure
  1467. * @pipe: pipe to disable
  1468. *
  1469. * Disable @pipe, making sure that various hardware specific requirements
  1470. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1471. *
  1472. * @pipe should be %PIPE_A or %PIPE_B.
  1473. *
  1474. * Will wait until the pipe has shut down before returning.
  1475. */
  1476. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1477. enum pipe pipe)
  1478. {
  1479. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1480. pipe);
  1481. int reg;
  1482. u32 val;
  1483. /*
  1484. * Make sure planes won't keep trying to pump pixels to us,
  1485. * or we might hang the display.
  1486. */
  1487. assert_planes_disabled(dev_priv, pipe);
  1488. assert_sprites_disabled(dev_priv, pipe);
  1489. /* Don't disable pipe A or pipe A PLLs if needed */
  1490. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1491. return;
  1492. reg = PIPECONF(cpu_transcoder);
  1493. val = I915_READ(reg);
  1494. if ((val & PIPECONF_ENABLE) == 0)
  1495. return;
  1496. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1497. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1498. }
  1499. /*
  1500. * Plane regs are double buffered, going from enabled->disabled needs a
  1501. * trigger in order to latch. The display address reg provides this.
  1502. */
  1503. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1504. enum plane plane)
  1505. {
  1506. if (dev_priv->info->gen >= 4)
  1507. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1508. else
  1509. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1510. }
  1511. /**
  1512. * intel_enable_plane - enable a display plane on a given pipe
  1513. * @dev_priv: i915 private structure
  1514. * @plane: plane to enable
  1515. * @pipe: pipe being fed
  1516. *
  1517. * Enable @plane on @pipe, making sure that @pipe is running first.
  1518. */
  1519. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1520. enum plane plane, enum pipe pipe)
  1521. {
  1522. int reg;
  1523. u32 val;
  1524. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1525. assert_pipe_enabled(dev_priv, pipe);
  1526. reg = DSPCNTR(plane);
  1527. val = I915_READ(reg);
  1528. if (val & DISPLAY_PLANE_ENABLE)
  1529. return;
  1530. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1531. intel_flush_display_plane(dev_priv, plane);
  1532. intel_wait_for_vblank(dev_priv->dev, pipe);
  1533. }
  1534. /**
  1535. * intel_disable_plane - disable a display plane
  1536. * @dev_priv: i915 private structure
  1537. * @plane: plane to disable
  1538. * @pipe: pipe consuming the data
  1539. *
  1540. * Disable @plane; should be an independent operation.
  1541. */
  1542. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1543. enum plane plane, enum pipe pipe)
  1544. {
  1545. int reg;
  1546. u32 val;
  1547. reg = DSPCNTR(plane);
  1548. val = I915_READ(reg);
  1549. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1550. return;
  1551. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1552. intel_flush_display_plane(dev_priv, plane);
  1553. intel_wait_for_vblank(dev_priv->dev, pipe);
  1554. }
  1555. static bool need_vtd_wa(struct drm_device *dev)
  1556. {
  1557. #ifdef CONFIG_INTEL_IOMMU
  1558. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1559. return true;
  1560. #endif
  1561. return false;
  1562. }
  1563. int
  1564. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1565. struct drm_i915_gem_object *obj,
  1566. struct intel_ring_buffer *pipelined)
  1567. {
  1568. struct drm_i915_private *dev_priv = dev->dev_private;
  1569. u32 alignment;
  1570. int ret;
  1571. switch (obj->tiling_mode) {
  1572. case I915_TILING_NONE:
  1573. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1574. alignment = 128 * 1024;
  1575. else if (INTEL_INFO(dev)->gen >= 4)
  1576. alignment = 4 * 1024;
  1577. else
  1578. alignment = 64 * 1024;
  1579. break;
  1580. case I915_TILING_X:
  1581. /* pin() will align the object as required by fence */
  1582. alignment = 0;
  1583. break;
  1584. case I915_TILING_Y:
  1585. /* Despite that we check this in framebuffer_init userspace can
  1586. * screw us over and change the tiling after the fact. Only
  1587. * pinned buffers can't change their tiling. */
  1588. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1589. return -EINVAL;
  1590. default:
  1591. BUG();
  1592. }
  1593. /* Note that the w/a also requires 64 PTE of padding following the
  1594. * bo. We currently fill all unused PTE with the shadow page and so
  1595. * we should always have valid PTE following the scanout preventing
  1596. * the VT-d warning.
  1597. */
  1598. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1599. alignment = 256 * 1024;
  1600. dev_priv->mm.interruptible = false;
  1601. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1602. if (ret)
  1603. goto err_interruptible;
  1604. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1605. * fence, whereas 965+ only requires a fence if using
  1606. * framebuffer compression. For simplicity, we always install
  1607. * a fence as the cost is not that onerous.
  1608. */
  1609. ret = i915_gem_object_get_fence(obj);
  1610. if (ret)
  1611. goto err_unpin;
  1612. i915_gem_object_pin_fence(obj);
  1613. dev_priv->mm.interruptible = true;
  1614. return 0;
  1615. err_unpin:
  1616. i915_gem_object_unpin(obj);
  1617. err_interruptible:
  1618. dev_priv->mm.interruptible = true;
  1619. return ret;
  1620. }
  1621. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1622. {
  1623. i915_gem_object_unpin_fence(obj);
  1624. i915_gem_object_unpin(obj);
  1625. }
  1626. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1627. * is assumed to be a power-of-two. */
  1628. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1629. unsigned int tiling_mode,
  1630. unsigned int cpp,
  1631. unsigned int pitch)
  1632. {
  1633. if (tiling_mode != I915_TILING_NONE) {
  1634. unsigned int tile_rows, tiles;
  1635. tile_rows = *y / 8;
  1636. *y %= 8;
  1637. tiles = *x / (512/cpp);
  1638. *x %= 512/cpp;
  1639. return tile_rows * pitch * 8 + tiles * 4096;
  1640. } else {
  1641. unsigned int offset;
  1642. offset = *y * pitch + *x * cpp;
  1643. *y = 0;
  1644. *x = (offset & 4095) / cpp;
  1645. return offset & -4096;
  1646. }
  1647. }
  1648. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1649. int x, int y)
  1650. {
  1651. struct drm_device *dev = crtc->dev;
  1652. struct drm_i915_private *dev_priv = dev->dev_private;
  1653. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1654. struct intel_framebuffer *intel_fb;
  1655. struct drm_i915_gem_object *obj;
  1656. int plane = intel_crtc->plane;
  1657. unsigned long linear_offset;
  1658. u32 dspcntr;
  1659. u32 reg;
  1660. switch (plane) {
  1661. case 0:
  1662. case 1:
  1663. break;
  1664. default:
  1665. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1666. return -EINVAL;
  1667. }
  1668. intel_fb = to_intel_framebuffer(fb);
  1669. obj = intel_fb->obj;
  1670. reg = DSPCNTR(plane);
  1671. dspcntr = I915_READ(reg);
  1672. /* Mask out pixel format bits in case we change it */
  1673. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1674. switch (fb->pixel_format) {
  1675. case DRM_FORMAT_C8:
  1676. dspcntr |= DISPPLANE_8BPP;
  1677. break;
  1678. case DRM_FORMAT_XRGB1555:
  1679. case DRM_FORMAT_ARGB1555:
  1680. dspcntr |= DISPPLANE_BGRX555;
  1681. break;
  1682. case DRM_FORMAT_RGB565:
  1683. dspcntr |= DISPPLANE_BGRX565;
  1684. break;
  1685. case DRM_FORMAT_XRGB8888:
  1686. case DRM_FORMAT_ARGB8888:
  1687. dspcntr |= DISPPLANE_BGRX888;
  1688. break;
  1689. case DRM_FORMAT_XBGR8888:
  1690. case DRM_FORMAT_ABGR8888:
  1691. dspcntr |= DISPPLANE_RGBX888;
  1692. break;
  1693. case DRM_FORMAT_XRGB2101010:
  1694. case DRM_FORMAT_ARGB2101010:
  1695. dspcntr |= DISPPLANE_BGRX101010;
  1696. break;
  1697. case DRM_FORMAT_XBGR2101010:
  1698. case DRM_FORMAT_ABGR2101010:
  1699. dspcntr |= DISPPLANE_RGBX101010;
  1700. break;
  1701. default:
  1702. BUG();
  1703. }
  1704. if (INTEL_INFO(dev)->gen >= 4) {
  1705. if (obj->tiling_mode != I915_TILING_NONE)
  1706. dspcntr |= DISPPLANE_TILED;
  1707. else
  1708. dspcntr &= ~DISPPLANE_TILED;
  1709. }
  1710. I915_WRITE(reg, dspcntr);
  1711. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1712. if (INTEL_INFO(dev)->gen >= 4) {
  1713. intel_crtc->dspaddr_offset =
  1714. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1715. fb->bits_per_pixel / 8,
  1716. fb->pitches[0]);
  1717. linear_offset -= intel_crtc->dspaddr_offset;
  1718. } else {
  1719. intel_crtc->dspaddr_offset = linear_offset;
  1720. }
  1721. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1722. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1723. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1724. if (INTEL_INFO(dev)->gen >= 4) {
  1725. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1726. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1727. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1728. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1729. } else
  1730. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1731. POSTING_READ(reg);
  1732. return 0;
  1733. }
  1734. static int ironlake_update_plane(struct drm_crtc *crtc,
  1735. struct drm_framebuffer *fb, int x, int y)
  1736. {
  1737. struct drm_device *dev = crtc->dev;
  1738. struct drm_i915_private *dev_priv = dev->dev_private;
  1739. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1740. struct intel_framebuffer *intel_fb;
  1741. struct drm_i915_gem_object *obj;
  1742. int plane = intel_crtc->plane;
  1743. unsigned long linear_offset;
  1744. u32 dspcntr;
  1745. u32 reg;
  1746. switch (plane) {
  1747. case 0:
  1748. case 1:
  1749. case 2:
  1750. break;
  1751. default:
  1752. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1753. return -EINVAL;
  1754. }
  1755. intel_fb = to_intel_framebuffer(fb);
  1756. obj = intel_fb->obj;
  1757. reg = DSPCNTR(plane);
  1758. dspcntr = I915_READ(reg);
  1759. /* Mask out pixel format bits in case we change it */
  1760. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1761. switch (fb->pixel_format) {
  1762. case DRM_FORMAT_C8:
  1763. dspcntr |= DISPPLANE_8BPP;
  1764. break;
  1765. case DRM_FORMAT_RGB565:
  1766. dspcntr |= DISPPLANE_BGRX565;
  1767. break;
  1768. case DRM_FORMAT_XRGB8888:
  1769. case DRM_FORMAT_ARGB8888:
  1770. dspcntr |= DISPPLANE_BGRX888;
  1771. break;
  1772. case DRM_FORMAT_XBGR8888:
  1773. case DRM_FORMAT_ABGR8888:
  1774. dspcntr |= DISPPLANE_RGBX888;
  1775. break;
  1776. case DRM_FORMAT_XRGB2101010:
  1777. case DRM_FORMAT_ARGB2101010:
  1778. dspcntr |= DISPPLANE_BGRX101010;
  1779. break;
  1780. case DRM_FORMAT_XBGR2101010:
  1781. case DRM_FORMAT_ABGR2101010:
  1782. dspcntr |= DISPPLANE_RGBX101010;
  1783. break;
  1784. default:
  1785. BUG();
  1786. }
  1787. if (obj->tiling_mode != I915_TILING_NONE)
  1788. dspcntr |= DISPPLANE_TILED;
  1789. else
  1790. dspcntr &= ~DISPPLANE_TILED;
  1791. /* must disable */
  1792. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1793. I915_WRITE(reg, dspcntr);
  1794. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1795. intel_crtc->dspaddr_offset =
  1796. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1797. fb->bits_per_pixel / 8,
  1798. fb->pitches[0]);
  1799. linear_offset -= intel_crtc->dspaddr_offset;
  1800. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1801. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1802. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1803. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1804. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1805. if (IS_HASWELL(dev)) {
  1806. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1807. } else {
  1808. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1809. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1810. }
  1811. POSTING_READ(reg);
  1812. return 0;
  1813. }
  1814. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1815. static int
  1816. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1817. int x, int y, enum mode_set_atomic state)
  1818. {
  1819. struct drm_device *dev = crtc->dev;
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. if (dev_priv->display.disable_fbc)
  1822. dev_priv->display.disable_fbc(dev);
  1823. intel_increase_pllclock(crtc);
  1824. return dev_priv->display.update_plane(crtc, fb, x, y);
  1825. }
  1826. void intel_display_handle_reset(struct drm_device *dev)
  1827. {
  1828. struct drm_i915_private *dev_priv = dev->dev_private;
  1829. struct drm_crtc *crtc;
  1830. /*
  1831. * Flips in the rings have been nuked by the reset,
  1832. * so complete all pending flips so that user space
  1833. * will get its events and not get stuck.
  1834. *
  1835. * Also update the base address of all primary
  1836. * planes to the the last fb to make sure we're
  1837. * showing the correct fb after a reset.
  1838. *
  1839. * Need to make two loops over the crtcs so that we
  1840. * don't try to grab a crtc mutex before the
  1841. * pending_flip_queue really got woken up.
  1842. */
  1843. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1845. enum plane plane = intel_crtc->plane;
  1846. intel_prepare_page_flip(dev, plane);
  1847. intel_finish_page_flip_plane(dev, plane);
  1848. }
  1849. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1850. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1851. mutex_lock(&crtc->mutex);
  1852. if (intel_crtc->active)
  1853. dev_priv->display.update_plane(crtc, crtc->fb,
  1854. crtc->x, crtc->y);
  1855. mutex_unlock(&crtc->mutex);
  1856. }
  1857. }
  1858. static int
  1859. intel_finish_fb(struct drm_framebuffer *old_fb)
  1860. {
  1861. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1862. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1863. bool was_interruptible = dev_priv->mm.interruptible;
  1864. int ret;
  1865. /* Big Hammer, we also need to ensure that any pending
  1866. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1867. * current scanout is retired before unpinning the old
  1868. * framebuffer.
  1869. *
  1870. * This should only fail upon a hung GPU, in which case we
  1871. * can safely continue.
  1872. */
  1873. dev_priv->mm.interruptible = false;
  1874. ret = i915_gem_object_finish_gpu(obj);
  1875. dev_priv->mm.interruptible = was_interruptible;
  1876. return ret;
  1877. }
  1878. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1879. {
  1880. struct drm_device *dev = crtc->dev;
  1881. struct drm_i915_master_private *master_priv;
  1882. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1883. if (!dev->primary->master)
  1884. return;
  1885. master_priv = dev->primary->master->driver_priv;
  1886. if (!master_priv->sarea_priv)
  1887. return;
  1888. switch (intel_crtc->pipe) {
  1889. case 0:
  1890. master_priv->sarea_priv->pipeA_x = x;
  1891. master_priv->sarea_priv->pipeA_y = y;
  1892. break;
  1893. case 1:
  1894. master_priv->sarea_priv->pipeB_x = x;
  1895. master_priv->sarea_priv->pipeB_y = y;
  1896. break;
  1897. default:
  1898. break;
  1899. }
  1900. }
  1901. static int
  1902. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1903. struct drm_framebuffer *fb)
  1904. {
  1905. struct drm_device *dev = crtc->dev;
  1906. struct drm_i915_private *dev_priv = dev->dev_private;
  1907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1908. struct drm_framebuffer *old_fb;
  1909. int ret;
  1910. /* no fb bound */
  1911. if (!fb) {
  1912. DRM_ERROR("No FB bound\n");
  1913. return 0;
  1914. }
  1915. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1916. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1917. plane_name(intel_crtc->plane),
  1918. INTEL_INFO(dev)->num_pipes);
  1919. return -EINVAL;
  1920. }
  1921. mutex_lock(&dev->struct_mutex);
  1922. ret = intel_pin_and_fence_fb_obj(dev,
  1923. to_intel_framebuffer(fb)->obj,
  1924. NULL);
  1925. if (ret != 0) {
  1926. mutex_unlock(&dev->struct_mutex);
  1927. DRM_ERROR("pin & fence failed\n");
  1928. return ret;
  1929. }
  1930. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1931. if (ret) {
  1932. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1933. mutex_unlock(&dev->struct_mutex);
  1934. DRM_ERROR("failed to update base address\n");
  1935. return ret;
  1936. }
  1937. old_fb = crtc->fb;
  1938. crtc->fb = fb;
  1939. crtc->x = x;
  1940. crtc->y = y;
  1941. if (old_fb) {
  1942. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1943. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1944. }
  1945. intel_update_fbc(dev);
  1946. mutex_unlock(&dev->struct_mutex);
  1947. intel_crtc_update_sarea_pos(crtc, x, y);
  1948. return 0;
  1949. }
  1950. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1951. {
  1952. struct drm_device *dev = crtc->dev;
  1953. struct drm_i915_private *dev_priv = dev->dev_private;
  1954. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1955. int pipe = intel_crtc->pipe;
  1956. u32 reg, temp;
  1957. /* enable normal train */
  1958. reg = FDI_TX_CTL(pipe);
  1959. temp = I915_READ(reg);
  1960. if (IS_IVYBRIDGE(dev)) {
  1961. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1962. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1963. } else {
  1964. temp &= ~FDI_LINK_TRAIN_NONE;
  1965. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1966. }
  1967. I915_WRITE(reg, temp);
  1968. reg = FDI_RX_CTL(pipe);
  1969. temp = I915_READ(reg);
  1970. if (HAS_PCH_CPT(dev)) {
  1971. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1972. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1973. } else {
  1974. temp &= ~FDI_LINK_TRAIN_NONE;
  1975. temp |= FDI_LINK_TRAIN_NONE;
  1976. }
  1977. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1978. /* wait one idle pattern time */
  1979. POSTING_READ(reg);
  1980. udelay(1000);
  1981. /* IVB wants error correction enabled */
  1982. if (IS_IVYBRIDGE(dev))
  1983. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1984. FDI_FE_ERRC_ENABLE);
  1985. }
  1986. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1987. {
  1988. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  1989. }
  1990. static void ivb_modeset_global_resources(struct drm_device *dev)
  1991. {
  1992. struct drm_i915_private *dev_priv = dev->dev_private;
  1993. struct intel_crtc *pipe_B_crtc =
  1994. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  1995. struct intel_crtc *pipe_C_crtc =
  1996. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  1997. uint32_t temp;
  1998. /*
  1999. * When everything is off disable fdi C so that we could enable fdi B
  2000. * with all lanes. Note that we don't care about enabled pipes without
  2001. * an enabled pch encoder.
  2002. */
  2003. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2004. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2005. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2006. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2007. temp = I915_READ(SOUTH_CHICKEN1);
  2008. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2009. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2010. I915_WRITE(SOUTH_CHICKEN1, temp);
  2011. }
  2012. }
  2013. /* The FDI link training functions for ILK/Ibexpeak. */
  2014. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2015. {
  2016. struct drm_device *dev = crtc->dev;
  2017. struct drm_i915_private *dev_priv = dev->dev_private;
  2018. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2019. int pipe = intel_crtc->pipe;
  2020. int plane = intel_crtc->plane;
  2021. u32 reg, temp, tries;
  2022. /* FDI needs bits from pipe & plane first */
  2023. assert_pipe_enabled(dev_priv, pipe);
  2024. assert_plane_enabled(dev_priv, plane);
  2025. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2026. for train result */
  2027. reg = FDI_RX_IMR(pipe);
  2028. temp = I915_READ(reg);
  2029. temp &= ~FDI_RX_SYMBOL_LOCK;
  2030. temp &= ~FDI_RX_BIT_LOCK;
  2031. I915_WRITE(reg, temp);
  2032. I915_READ(reg);
  2033. udelay(150);
  2034. /* enable CPU FDI TX and PCH FDI RX */
  2035. reg = FDI_TX_CTL(pipe);
  2036. temp = I915_READ(reg);
  2037. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2038. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2039. temp &= ~FDI_LINK_TRAIN_NONE;
  2040. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2041. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2042. reg = FDI_RX_CTL(pipe);
  2043. temp = I915_READ(reg);
  2044. temp &= ~FDI_LINK_TRAIN_NONE;
  2045. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2046. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2047. POSTING_READ(reg);
  2048. udelay(150);
  2049. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2050. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2051. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2052. FDI_RX_PHASE_SYNC_POINTER_EN);
  2053. reg = FDI_RX_IIR(pipe);
  2054. for (tries = 0; tries < 5; tries++) {
  2055. temp = I915_READ(reg);
  2056. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2057. if ((temp & FDI_RX_BIT_LOCK)) {
  2058. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2059. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2060. break;
  2061. }
  2062. }
  2063. if (tries == 5)
  2064. DRM_ERROR("FDI train 1 fail!\n");
  2065. /* Train 2 */
  2066. reg = FDI_TX_CTL(pipe);
  2067. temp = I915_READ(reg);
  2068. temp &= ~FDI_LINK_TRAIN_NONE;
  2069. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2070. I915_WRITE(reg, temp);
  2071. reg = FDI_RX_CTL(pipe);
  2072. temp = I915_READ(reg);
  2073. temp &= ~FDI_LINK_TRAIN_NONE;
  2074. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2075. I915_WRITE(reg, temp);
  2076. POSTING_READ(reg);
  2077. udelay(150);
  2078. reg = FDI_RX_IIR(pipe);
  2079. for (tries = 0; tries < 5; tries++) {
  2080. temp = I915_READ(reg);
  2081. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2082. if (temp & FDI_RX_SYMBOL_LOCK) {
  2083. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2084. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2085. break;
  2086. }
  2087. }
  2088. if (tries == 5)
  2089. DRM_ERROR("FDI train 2 fail!\n");
  2090. DRM_DEBUG_KMS("FDI train done\n");
  2091. }
  2092. static const int snb_b_fdi_train_param[] = {
  2093. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2094. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2095. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2096. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2097. };
  2098. /* The FDI link training functions for SNB/Cougarpoint. */
  2099. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2100. {
  2101. struct drm_device *dev = crtc->dev;
  2102. struct drm_i915_private *dev_priv = dev->dev_private;
  2103. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2104. int pipe = intel_crtc->pipe;
  2105. u32 reg, temp, i, retry;
  2106. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2107. for train result */
  2108. reg = FDI_RX_IMR(pipe);
  2109. temp = I915_READ(reg);
  2110. temp &= ~FDI_RX_SYMBOL_LOCK;
  2111. temp &= ~FDI_RX_BIT_LOCK;
  2112. I915_WRITE(reg, temp);
  2113. POSTING_READ(reg);
  2114. udelay(150);
  2115. /* enable CPU FDI TX and PCH FDI RX */
  2116. reg = FDI_TX_CTL(pipe);
  2117. temp = I915_READ(reg);
  2118. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2119. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2120. temp &= ~FDI_LINK_TRAIN_NONE;
  2121. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2122. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2123. /* SNB-B */
  2124. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2125. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2126. I915_WRITE(FDI_RX_MISC(pipe),
  2127. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2128. reg = FDI_RX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. if (HAS_PCH_CPT(dev)) {
  2131. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2132. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2133. } else {
  2134. temp &= ~FDI_LINK_TRAIN_NONE;
  2135. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2136. }
  2137. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2138. POSTING_READ(reg);
  2139. udelay(150);
  2140. for (i = 0; i < 4; i++) {
  2141. reg = FDI_TX_CTL(pipe);
  2142. temp = I915_READ(reg);
  2143. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2144. temp |= snb_b_fdi_train_param[i];
  2145. I915_WRITE(reg, temp);
  2146. POSTING_READ(reg);
  2147. udelay(500);
  2148. for (retry = 0; retry < 5; retry++) {
  2149. reg = FDI_RX_IIR(pipe);
  2150. temp = I915_READ(reg);
  2151. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2152. if (temp & FDI_RX_BIT_LOCK) {
  2153. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2154. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2155. break;
  2156. }
  2157. udelay(50);
  2158. }
  2159. if (retry < 5)
  2160. break;
  2161. }
  2162. if (i == 4)
  2163. DRM_ERROR("FDI train 1 fail!\n");
  2164. /* Train 2 */
  2165. reg = FDI_TX_CTL(pipe);
  2166. temp = I915_READ(reg);
  2167. temp &= ~FDI_LINK_TRAIN_NONE;
  2168. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2169. if (IS_GEN6(dev)) {
  2170. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2171. /* SNB-B */
  2172. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2173. }
  2174. I915_WRITE(reg, temp);
  2175. reg = FDI_RX_CTL(pipe);
  2176. temp = I915_READ(reg);
  2177. if (HAS_PCH_CPT(dev)) {
  2178. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2179. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2180. } else {
  2181. temp &= ~FDI_LINK_TRAIN_NONE;
  2182. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2183. }
  2184. I915_WRITE(reg, temp);
  2185. POSTING_READ(reg);
  2186. udelay(150);
  2187. for (i = 0; i < 4; i++) {
  2188. reg = FDI_TX_CTL(pipe);
  2189. temp = I915_READ(reg);
  2190. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2191. temp |= snb_b_fdi_train_param[i];
  2192. I915_WRITE(reg, temp);
  2193. POSTING_READ(reg);
  2194. udelay(500);
  2195. for (retry = 0; retry < 5; retry++) {
  2196. reg = FDI_RX_IIR(pipe);
  2197. temp = I915_READ(reg);
  2198. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2199. if (temp & FDI_RX_SYMBOL_LOCK) {
  2200. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2201. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2202. break;
  2203. }
  2204. udelay(50);
  2205. }
  2206. if (retry < 5)
  2207. break;
  2208. }
  2209. if (i == 4)
  2210. DRM_ERROR("FDI train 2 fail!\n");
  2211. DRM_DEBUG_KMS("FDI train done.\n");
  2212. }
  2213. /* Manual link training for Ivy Bridge A0 parts */
  2214. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2215. {
  2216. struct drm_device *dev = crtc->dev;
  2217. struct drm_i915_private *dev_priv = dev->dev_private;
  2218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2219. int pipe = intel_crtc->pipe;
  2220. u32 reg, temp, i;
  2221. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2222. for train result */
  2223. reg = FDI_RX_IMR(pipe);
  2224. temp = I915_READ(reg);
  2225. temp &= ~FDI_RX_SYMBOL_LOCK;
  2226. temp &= ~FDI_RX_BIT_LOCK;
  2227. I915_WRITE(reg, temp);
  2228. POSTING_READ(reg);
  2229. udelay(150);
  2230. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2231. I915_READ(FDI_RX_IIR(pipe)));
  2232. /* enable CPU FDI TX and PCH FDI RX */
  2233. reg = FDI_TX_CTL(pipe);
  2234. temp = I915_READ(reg);
  2235. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2236. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2237. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2238. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2239. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2240. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2241. temp |= FDI_COMPOSITE_SYNC;
  2242. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2243. I915_WRITE(FDI_RX_MISC(pipe),
  2244. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2245. reg = FDI_RX_CTL(pipe);
  2246. temp = I915_READ(reg);
  2247. temp &= ~FDI_LINK_TRAIN_AUTO;
  2248. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2250. temp |= FDI_COMPOSITE_SYNC;
  2251. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2252. POSTING_READ(reg);
  2253. udelay(150);
  2254. for (i = 0; i < 4; i++) {
  2255. reg = FDI_TX_CTL(pipe);
  2256. temp = I915_READ(reg);
  2257. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2258. temp |= snb_b_fdi_train_param[i];
  2259. I915_WRITE(reg, temp);
  2260. POSTING_READ(reg);
  2261. udelay(500);
  2262. reg = FDI_RX_IIR(pipe);
  2263. temp = I915_READ(reg);
  2264. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2265. if (temp & FDI_RX_BIT_LOCK ||
  2266. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2267. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2269. break;
  2270. }
  2271. }
  2272. if (i == 4)
  2273. DRM_ERROR("FDI train 1 fail!\n");
  2274. /* Train 2 */
  2275. reg = FDI_TX_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2278. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2279. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2280. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2281. I915_WRITE(reg, temp);
  2282. reg = FDI_RX_CTL(pipe);
  2283. temp = I915_READ(reg);
  2284. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2285. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2286. I915_WRITE(reg, temp);
  2287. POSTING_READ(reg);
  2288. udelay(150);
  2289. for (i = 0; i < 4; i++) {
  2290. reg = FDI_TX_CTL(pipe);
  2291. temp = I915_READ(reg);
  2292. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2293. temp |= snb_b_fdi_train_param[i];
  2294. I915_WRITE(reg, temp);
  2295. POSTING_READ(reg);
  2296. udelay(500);
  2297. reg = FDI_RX_IIR(pipe);
  2298. temp = I915_READ(reg);
  2299. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2300. if (temp & FDI_RX_SYMBOL_LOCK) {
  2301. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2302. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2303. break;
  2304. }
  2305. }
  2306. if (i == 4)
  2307. DRM_ERROR("FDI train 2 fail!\n");
  2308. DRM_DEBUG_KMS("FDI train done.\n");
  2309. }
  2310. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2311. {
  2312. struct drm_device *dev = intel_crtc->base.dev;
  2313. struct drm_i915_private *dev_priv = dev->dev_private;
  2314. int pipe = intel_crtc->pipe;
  2315. u32 reg, temp;
  2316. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2317. reg = FDI_RX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2320. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2321. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2322. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2323. POSTING_READ(reg);
  2324. udelay(200);
  2325. /* Switch from Rawclk to PCDclk */
  2326. temp = I915_READ(reg);
  2327. I915_WRITE(reg, temp | FDI_PCDCLK);
  2328. POSTING_READ(reg);
  2329. udelay(200);
  2330. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2331. reg = FDI_TX_CTL(pipe);
  2332. temp = I915_READ(reg);
  2333. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2334. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2335. POSTING_READ(reg);
  2336. udelay(100);
  2337. }
  2338. }
  2339. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2340. {
  2341. struct drm_device *dev = intel_crtc->base.dev;
  2342. struct drm_i915_private *dev_priv = dev->dev_private;
  2343. int pipe = intel_crtc->pipe;
  2344. u32 reg, temp;
  2345. /* Switch from PCDclk to Rawclk */
  2346. reg = FDI_RX_CTL(pipe);
  2347. temp = I915_READ(reg);
  2348. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2349. /* Disable CPU FDI TX PLL */
  2350. reg = FDI_TX_CTL(pipe);
  2351. temp = I915_READ(reg);
  2352. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2353. POSTING_READ(reg);
  2354. udelay(100);
  2355. reg = FDI_RX_CTL(pipe);
  2356. temp = I915_READ(reg);
  2357. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2358. /* Wait for the clocks to turn off. */
  2359. POSTING_READ(reg);
  2360. udelay(100);
  2361. }
  2362. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2363. {
  2364. struct drm_device *dev = crtc->dev;
  2365. struct drm_i915_private *dev_priv = dev->dev_private;
  2366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2367. int pipe = intel_crtc->pipe;
  2368. u32 reg, temp;
  2369. /* disable CPU FDI tx and PCH FDI rx */
  2370. reg = FDI_TX_CTL(pipe);
  2371. temp = I915_READ(reg);
  2372. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2373. POSTING_READ(reg);
  2374. reg = FDI_RX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. temp &= ~(0x7 << 16);
  2377. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2378. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2379. POSTING_READ(reg);
  2380. udelay(100);
  2381. /* Ironlake workaround, disable clock pointer after downing FDI */
  2382. if (HAS_PCH_IBX(dev)) {
  2383. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2384. }
  2385. /* still set train pattern 1 */
  2386. reg = FDI_TX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. temp &= ~FDI_LINK_TRAIN_NONE;
  2389. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2390. I915_WRITE(reg, temp);
  2391. reg = FDI_RX_CTL(pipe);
  2392. temp = I915_READ(reg);
  2393. if (HAS_PCH_CPT(dev)) {
  2394. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2395. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2396. } else {
  2397. temp &= ~FDI_LINK_TRAIN_NONE;
  2398. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2399. }
  2400. /* BPC in FDI rx is consistent with that in PIPECONF */
  2401. temp &= ~(0x07 << 16);
  2402. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2403. I915_WRITE(reg, temp);
  2404. POSTING_READ(reg);
  2405. udelay(100);
  2406. }
  2407. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2408. {
  2409. struct drm_device *dev = crtc->dev;
  2410. struct drm_i915_private *dev_priv = dev->dev_private;
  2411. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2412. unsigned long flags;
  2413. bool pending;
  2414. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2415. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2416. return false;
  2417. spin_lock_irqsave(&dev->event_lock, flags);
  2418. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2419. spin_unlock_irqrestore(&dev->event_lock, flags);
  2420. return pending;
  2421. }
  2422. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2423. {
  2424. struct drm_device *dev = crtc->dev;
  2425. struct drm_i915_private *dev_priv = dev->dev_private;
  2426. if (crtc->fb == NULL)
  2427. return;
  2428. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2429. wait_event(dev_priv->pending_flip_queue,
  2430. !intel_crtc_has_pending_flip(crtc));
  2431. mutex_lock(&dev->struct_mutex);
  2432. intel_finish_fb(crtc->fb);
  2433. mutex_unlock(&dev->struct_mutex);
  2434. }
  2435. /* Program iCLKIP clock to the desired frequency */
  2436. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2437. {
  2438. struct drm_device *dev = crtc->dev;
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2441. u32 temp;
  2442. mutex_lock(&dev_priv->dpio_lock);
  2443. /* It is necessary to ungate the pixclk gate prior to programming
  2444. * the divisors, and gate it back when it is done.
  2445. */
  2446. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2447. /* Disable SSCCTL */
  2448. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2449. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2450. SBI_SSCCTL_DISABLE,
  2451. SBI_ICLK);
  2452. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2453. if (crtc->mode.clock == 20000) {
  2454. auxdiv = 1;
  2455. divsel = 0x41;
  2456. phaseinc = 0x20;
  2457. } else {
  2458. /* The iCLK virtual clock root frequency is in MHz,
  2459. * but the crtc->mode.clock in in KHz. To get the divisors,
  2460. * it is necessary to divide one by another, so we
  2461. * convert the virtual clock precision to KHz here for higher
  2462. * precision.
  2463. */
  2464. u32 iclk_virtual_root_freq = 172800 * 1000;
  2465. u32 iclk_pi_range = 64;
  2466. u32 desired_divisor, msb_divisor_value, pi_value;
  2467. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2468. msb_divisor_value = desired_divisor / iclk_pi_range;
  2469. pi_value = desired_divisor % iclk_pi_range;
  2470. auxdiv = 0;
  2471. divsel = msb_divisor_value - 2;
  2472. phaseinc = pi_value;
  2473. }
  2474. /* This should not happen with any sane values */
  2475. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2476. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2477. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2478. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2479. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2480. crtc->mode.clock,
  2481. auxdiv,
  2482. divsel,
  2483. phasedir,
  2484. phaseinc);
  2485. /* Program SSCDIVINTPHASE6 */
  2486. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2487. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2488. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2489. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2490. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2491. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2492. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2493. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2494. /* Program SSCAUXDIV */
  2495. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2496. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2497. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2498. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2499. /* Enable modulator and associated divider */
  2500. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2501. temp &= ~SBI_SSCCTL_DISABLE;
  2502. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2503. /* Wait for initialization time */
  2504. udelay(24);
  2505. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2506. mutex_unlock(&dev_priv->dpio_lock);
  2507. }
  2508. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2509. enum pipe pch_transcoder)
  2510. {
  2511. struct drm_device *dev = crtc->base.dev;
  2512. struct drm_i915_private *dev_priv = dev->dev_private;
  2513. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2514. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2515. I915_READ(HTOTAL(cpu_transcoder)));
  2516. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2517. I915_READ(HBLANK(cpu_transcoder)));
  2518. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2519. I915_READ(HSYNC(cpu_transcoder)));
  2520. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2521. I915_READ(VTOTAL(cpu_transcoder)));
  2522. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2523. I915_READ(VBLANK(cpu_transcoder)));
  2524. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2525. I915_READ(VSYNC(cpu_transcoder)));
  2526. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2527. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2528. }
  2529. /*
  2530. * Enable PCH resources required for PCH ports:
  2531. * - PCH PLLs
  2532. * - FDI training & RX/TX
  2533. * - update transcoder timings
  2534. * - DP transcoding bits
  2535. * - transcoder
  2536. */
  2537. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2538. {
  2539. struct drm_device *dev = crtc->dev;
  2540. struct drm_i915_private *dev_priv = dev->dev_private;
  2541. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2542. int pipe = intel_crtc->pipe;
  2543. u32 reg, temp;
  2544. assert_pch_transcoder_disabled(dev_priv, pipe);
  2545. /* Write the TU size bits before fdi link training, so that error
  2546. * detection works. */
  2547. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2548. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2549. /* For PCH output, training FDI link */
  2550. dev_priv->display.fdi_link_train(crtc);
  2551. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2552. * transcoder, and we actually should do this to not upset any PCH
  2553. * transcoder that already use the clock when we share it.
  2554. *
  2555. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2556. * unconditionally resets the pll - we need that to have the right LVDS
  2557. * enable sequence. */
  2558. ironlake_enable_pch_pll(intel_crtc);
  2559. if (HAS_PCH_CPT(dev)) {
  2560. u32 sel;
  2561. temp = I915_READ(PCH_DPLL_SEL);
  2562. switch (pipe) {
  2563. default:
  2564. case 0:
  2565. temp |= TRANSA_DPLL_ENABLE;
  2566. sel = TRANSA_DPLLB_SEL;
  2567. break;
  2568. case 1:
  2569. temp |= TRANSB_DPLL_ENABLE;
  2570. sel = TRANSB_DPLLB_SEL;
  2571. break;
  2572. case 2:
  2573. temp |= TRANSC_DPLL_ENABLE;
  2574. sel = TRANSC_DPLLB_SEL;
  2575. break;
  2576. }
  2577. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2578. temp |= sel;
  2579. else
  2580. temp &= ~sel;
  2581. I915_WRITE(PCH_DPLL_SEL, temp);
  2582. }
  2583. /* set transcoder timing, panel must allow it */
  2584. assert_panel_unlocked(dev_priv, pipe);
  2585. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2586. intel_fdi_normal_train(crtc);
  2587. /* For PCH DP, enable TRANS_DP_CTL */
  2588. if (HAS_PCH_CPT(dev) &&
  2589. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2590. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2591. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2592. reg = TRANS_DP_CTL(pipe);
  2593. temp = I915_READ(reg);
  2594. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2595. TRANS_DP_SYNC_MASK |
  2596. TRANS_DP_BPC_MASK);
  2597. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2598. TRANS_DP_ENH_FRAMING);
  2599. temp |= bpc << 9; /* same format but at 11:9 */
  2600. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2601. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2602. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2603. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2604. switch (intel_trans_dp_port_sel(crtc)) {
  2605. case PCH_DP_B:
  2606. temp |= TRANS_DP_PORT_SEL_B;
  2607. break;
  2608. case PCH_DP_C:
  2609. temp |= TRANS_DP_PORT_SEL_C;
  2610. break;
  2611. case PCH_DP_D:
  2612. temp |= TRANS_DP_PORT_SEL_D;
  2613. break;
  2614. default:
  2615. BUG();
  2616. }
  2617. I915_WRITE(reg, temp);
  2618. }
  2619. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2620. }
  2621. static void lpt_pch_enable(struct drm_crtc *crtc)
  2622. {
  2623. struct drm_device *dev = crtc->dev;
  2624. struct drm_i915_private *dev_priv = dev->dev_private;
  2625. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2626. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2627. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2628. lpt_program_iclkip(crtc);
  2629. /* Set transcoder timing. */
  2630. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2631. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2632. }
  2633. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2634. {
  2635. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2636. if (pll == NULL)
  2637. return;
  2638. if (pll->refcount == 0) {
  2639. WARN(1, "bad PCH PLL refcount\n");
  2640. return;
  2641. }
  2642. --pll->refcount;
  2643. intel_crtc->pch_pll = NULL;
  2644. }
  2645. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2646. {
  2647. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2648. struct intel_pch_pll *pll;
  2649. int i;
  2650. pll = intel_crtc->pch_pll;
  2651. if (pll) {
  2652. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2653. intel_crtc->base.base.id, pll->pll_reg);
  2654. goto prepare;
  2655. }
  2656. if (HAS_PCH_IBX(dev_priv->dev)) {
  2657. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2658. i = intel_crtc->pipe;
  2659. pll = &dev_priv->pch_plls[i];
  2660. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2661. intel_crtc->base.base.id, pll->pll_reg);
  2662. goto found;
  2663. }
  2664. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2665. pll = &dev_priv->pch_plls[i];
  2666. /* Only want to check enabled timings first */
  2667. if (pll->refcount == 0)
  2668. continue;
  2669. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2670. fp == I915_READ(pll->fp0_reg)) {
  2671. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2672. intel_crtc->base.base.id,
  2673. pll->pll_reg, pll->refcount, pll->active);
  2674. goto found;
  2675. }
  2676. }
  2677. /* Ok no matching timings, maybe there's a free one? */
  2678. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2679. pll = &dev_priv->pch_plls[i];
  2680. if (pll->refcount == 0) {
  2681. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2682. intel_crtc->base.base.id, pll->pll_reg);
  2683. goto found;
  2684. }
  2685. }
  2686. return NULL;
  2687. found:
  2688. intel_crtc->pch_pll = pll;
  2689. pll->refcount++;
  2690. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2691. prepare: /* separate function? */
  2692. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2693. /* Wait for the clocks to stabilize before rewriting the regs */
  2694. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2695. POSTING_READ(pll->pll_reg);
  2696. udelay(150);
  2697. I915_WRITE(pll->fp0_reg, fp);
  2698. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2699. pll->on = false;
  2700. return pll;
  2701. }
  2702. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2703. {
  2704. struct drm_i915_private *dev_priv = dev->dev_private;
  2705. int dslreg = PIPEDSL(pipe);
  2706. u32 temp;
  2707. temp = I915_READ(dslreg);
  2708. udelay(500);
  2709. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2710. if (wait_for(I915_READ(dslreg) != temp, 5))
  2711. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2712. }
  2713. }
  2714. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2715. {
  2716. struct drm_device *dev = crtc->base.dev;
  2717. struct drm_i915_private *dev_priv = dev->dev_private;
  2718. int pipe = crtc->pipe;
  2719. if (crtc->config.pch_pfit.size) {
  2720. /* Force use of hard-coded filter coefficients
  2721. * as some pre-programmed values are broken,
  2722. * e.g. x201.
  2723. */
  2724. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2725. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2726. PF_PIPE_SEL_IVB(pipe));
  2727. else
  2728. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2729. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2730. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2731. }
  2732. }
  2733. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2734. {
  2735. struct drm_device *dev = crtc->dev;
  2736. struct drm_i915_private *dev_priv = dev->dev_private;
  2737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2738. struct intel_encoder *encoder;
  2739. int pipe = intel_crtc->pipe;
  2740. int plane = intel_crtc->plane;
  2741. u32 temp;
  2742. WARN_ON(!crtc->enabled);
  2743. if (intel_crtc->active)
  2744. return;
  2745. intel_crtc->active = true;
  2746. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2747. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2748. intel_update_watermarks(dev);
  2749. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2750. temp = I915_READ(PCH_LVDS);
  2751. if ((temp & LVDS_PORT_EN) == 0)
  2752. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2753. }
  2754. if (intel_crtc->config.has_pch_encoder) {
  2755. /* Note: FDI PLL enabling _must_ be done before we enable the
  2756. * cpu pipes, hence this is separate from all the other fdi/pch
  2757. * enabling. */
  2758. ironlake_fdi_pll_enable(intel_crtc);
  2759. } else {
  2760. assert_fdi_tx_disabled(dev_priv, pipe);
  2761. assert_fdi_rx_disabled(dev_priv, pipe);
  2762. }
  2763. for_each_encoder_on_crtc(dev, crtc, encoder)
  2764. if (encoder->pre_enable)
  2765. encoder->pre_enable(encoder);
  2766. /* Enable panel fitting for LVDS */
  2767. ironlake_pfit_enable(intel_crtc);
  2768. /*
  2769. * On ILK+ LUT must be loaded before the pipe is running but with
  2770. * clocks enabled
  2771. */
  2772. intel_crtc_load_lut(crtc);
  2773. intel_enable_pipe(dev_priv, pipe,
  2774. intel_crtc->config.has_pch_encoder);
  2775. intel_enable_plane(dev_priv, plane, pipe);
  2776. if (intel_crtc->config.has_pch_encoder)
  2777. ironlake_pch_enable(crtc);
  2778. mutex_lock(&dev->struct_mutex);
  2779. intel_update_fbc(dev);
  2780. mutex_unlock(&dev->struct_mutex);
  2781. intel_crtc_update_cursor(crtc, true);
  2782. for_each_encoder_on_crtc(dev, crtc, encoder)
  2783. encoder->enable(encoder);
  2784. if (HAS_PCH_CPT(dev))
  2785. cpt_verify_modeset(dev, intel_crtc->pipe);
  2786. /*
  2787. * There seems to be a race in PCH platform hw (at least on some
  2788. * outputs) where an enabled pipe still completes any pageflip right
  2789. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2790. * as the first vblank happend, everything works as expected. Hence just
  2791. * wait for one vblank before returning to avoid strange things
  2792. * happening.
  2793. */
  2794. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2795. }
  2796. /* IPS only exists on ULT machines and is tied to pipe A. */
  2797. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2798. {
  2799. return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
  2800. }
  2801. static void hsw_enable_ips(struct intel_crtc *crtc)
  2802. {
  2803. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2804. if (!crtc->config.ips_enabled)
  2805. return;
  2806. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2807. * We guarantee that the plane is enabled by calling intel_enable_ips
  2808. * only after intel_enable_plane. And intel_enable_plane already waits
  2809. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2810. assert_plane_enabled(dev_priv, crtc->plane);
  2811. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2812. }
  2813. static void hsw_disable_ips(struct intel_crtc *crtc)
  2814. {
  2815. struct drm_device *dev = crtc->base.dev;
  2816. struct drm_i915_private *dev_priv = dev->dev_private;
  2817. if (!crtc->config.ips_enabled)
  2818. return;
  2819. assert_plane_enabled(dev_priv, crtc->plane);
  2820. I915_WRITE(IPS_CTL, 0);
  2821. /* We need to wait for a vblank before we can disable the plane. */
  2822. intel_wait_for_vblank(dev, crtc->pipe);
  2823. }
  2824. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2825. {
  2826. struct drm_device *dev = crtc->dev;
  2827. struct drm_i915_private *dev_priv = dev->dev_private;
  2828. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2829. struct intel_encoder *encoder;
  2830. int pipe = intel_crtc->pipe;
  2831. int plane = intel_crtc->plane;
  2832. WARN_ON(!crtc->enabled);
  2833. if (intel_crtc->active)
  2834. return;
  2835. intel_crtc->active = true;
  2836. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2837. if (intel_crtc->config.has_pch_encoder)
  2838. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2839. intel_update_watermarks(dev);
  2840. if (intel_crtc->config.has_pch_encoder)
  2841. dev_priv->display.fdi_link_train(crtc);
  2842. for_each_encoder_on_crtc(dev, crtc, encoder)
  2843. if (encoder->pre_enable)
  2844. encoder->pre_enable(encoder);
  2845. intel_ddi_enable_pipe_clock(intel_crtc);
  2846. /* Enable panel fitting for eDP */
  2847. ironlake_pfit_enable(intel_crtc);
  2848. /*
  2849. * On ILK+ LUT must be loaded before the pipe is running but with
  2850. * clocks enabled
  2851. */
  2852. intel_crtc_load_lut(crtc);
  2853. intel_ddi_set_pipe_settings(crtc);
  2854. intel_ddi_enable_transcoder_func(crtc);
  2855. intel_enable_pipe(dev_priv, pipe,
  2856. intel_crtc->config.has_pch_encoder);
  2857. intel_enable_plane(dev_priv, plane, pipe);
  2858. hsw_enable_ips(intel_crtc);
  2859. if (intel_crtc->config.has_pch_encoder)
  2860. lpt_pch_enable(crtc);
  2861. mutex_lock(&dev->struct_mutex);
  2862. intel_update_fbc(dev);
  2863. mutex_unlock(&dev->struct_mutex);
  2864. intel_crtc_update_cursor(crtc, true);
  2865. for_each_encoder_on_crtc(dev, crtc, encoder)
  2866. encoder->enable(encoder);
  2867. /*
  2868. * There seems to be a race in PCH platform hw (at least on some
  2869. * outputs) where an enabled pipe still completes any pageflip right
  2870. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2871. * as the first vblank happend, everything works as expected. Hence just
  2872. * wait for one vblank before returning to avoid strange things
  2873. * happening.
  2874. */
  2875. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2876. }
  2877. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2878. {
  2879. struct drm_device *dev = crtc->base.dev;
  2880. struct drm_i915_private *dev_priv = dev->dev_private;
  2881. int pipe = crtc->pipe;
  2882. /* To avoid upsetting the power well on haswell only disable the pfit if
  2883. * it's in use. The hw state code will make sure we get this right. */
  2884. if (crtc->config.pch_pfit.size) {
  2885. I915_WRITE(PF_CTL(pipe), 0);
  2886. I915_WRITE(PF_WIN_POS(pipe), 0);
  2887. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2888. }
  2889. }
  2890. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2891. {
  2892. struct drm_device *dev = crtc->dev;
  2893. struct drm_i915_private *dev_priv = dev->dev_private;
  2894. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2895. struct intel_encoder *encoder;
  2896. int pipe = intel_crtc->pipe;
  2897. int plane = intel_crtc->plane;
  2898. u32 reg, temp;
  2899. if (!intel_crtc->active)
  2900. return;
  2901. for_each_encoder_on_crtc(dev, crtc, encoder)
  2902. encoder->disable(encoder);
  2903. intel_crtc_wait_for_pending_flips(crtc);
  2904. drm_vblank_off(dev, pipe);
  2905. intel_crtc_update_cursor(crtc, false);
  2906. intel_disable_plane(dev_priv, plane, pipe);
  2907. if (dev_priv->cfb_plane == plane)
  2908. intel_disable_fbc(dev);
  2909. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2910. intel_disable_pipe(dev_priv, pipe);
  2911. ironlake_pfit_disable(intel_crtc);
  2912. for_each_encoder_on_crtc(dev, crtc, encoder)
  2913. if (encoder->post_disable)
  2914. encoder->post_disable(encoder);
  2915. ironlake_fdi_disable(crtc);
  2916. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2917. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2918. if (HAS_PCH_CPT(dev)) {
  2919. /* disable TRANS_DP_CTL */
  2920. reg = TRANS_DP_CTL(pipe);
  2921. temp = I915_READ(reg);
  2922. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2923. temp |= TRANS_DP_PORT_SEL_NONE;
  2924. I915_WRITE(reg, temp);
  2925. /* disable DPLL_SEL */
  2926. temp = I915_READ(PCH_DPLL_SEL);
  2927. switch (pipe) {
  2928. case 0:
  2929. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2930. break;
  2931. case 1:
  2932. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2933. break;
  2934. case 2:
  2935. /* C shares PLL A or B */
  2936. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2937. break;
  2938. default:
  2939. BUG(); /* wtf */
  2940. }
  2941. I915_WRITE(PCH_DPLL_SEL, temp);
  2942. }
  2943. /* disable PCH DPLL */
  2944. intel_disable_pch_pll(intel_crtc);
  2945. ironlake_fdi_pll_disable(intel_crtc);
  2946. intel_crtc->active = false;
  2947. intel_update_watermarks(dev);
  2948. mutex_lock(&dev->struct_mutex);
  2949. intel_update_fbc(dev);
  2950. mutex_unlock(&dev->struct_mutex);
  2951. }
  2952. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2953. {
  2954. struct drm_device *dev = crtc->dev;
  2955. struct drm_i915_private *dev_priv = dev->dev_private;
  2956. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2957. struct intel_encoder *encoder;
  2958. int pipe = intel_crtc->pipe;
  2959. int plane = intel_crtc->plane;
  2960. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2961. if (!intel_crtc->active)
  2962. return;
  2963. for_each_encoder_on_crtc(dev, crtc, encoder)
  2964. encoder->disable(encoder);
  2965. intel_crtc_wait_for_pending_flips(crtc);
  2966. drm_vblank_off(dev, pipe);
  2967. intel_crtc_update_cursor(crtc, false);
  2968. /* FBC must be disabled before disabling the plane on HSW. */
  2969. if (dev_priv->cfb_plane == plane)
  2970. intel_disable_fbc(dev);
  2971. hsw_disable_ips(intel_crtc);
  2972. intel_disable_plane(dev_priv, plane, pipe);
  2973. if (intel_crtc->config.has_pch_encoder)
  2974. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2975. intel_disable_pipe(dev_priv, pipe);
  2976. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2977. ironlake_pfit_disable(intel_crtc);
  2978. intel_ddi_disable_pipe_clock(intel_crtc);
  2979. for_each_encoder_on_crtc(dev, crtc, encoder)
  2980. if (encoder->post_disable)
  2981. encoder->post_disable(encoder);
  2982. if (intel_crtc->config.has_pch_encoder) {
  2983. lpt_disable_pch_transcoder(dev_priv);
  2984. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2985. intel_ddi_fdi_disable(crtc);
  2986. }
  2987. intel_crtc->active = false;
  2988. intel_update_watermarks(dev);
  2989. mutex_lock(&dev->struct_mutex);
  2990. intel_update_fbc(dev);
  2991. mutex_unlock(&dev->struct_mutex);
  2992. }
  2993. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2994. {
  2995. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2996. intel_put_pch_pll(intel_crtc);
  2997. }
  2998. static void haswell_crtc_off(struct drm_crtc *crtc)
  2999. {
  3000. intel_ddi_put_crtc_pll(crtc);
  3001. }
  3002. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3003. {
  3004. if (!enable && intel_crtc->overlay) {
  3005. struct drm_device *dev = intel_crtc->base.dev;
  3006. struct drm_i915_private *dev_priv = dev->dev_private;
  3007. mutex_lock(&dev->struct_mutex);
  3008. dev_priv->mm.interruptible = false;
  3009. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3010. dev_priv->mm.interruptible = true;
  3011. mutex_unlock(&dev->struct_mutex);
  3012. }
  3013. /* Let userspace switch the overlay on again. In most cases userspace
  3014. * has to recompute where to put it anyway.
  3015. */
  3016. }
  3017. /**
  3018. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3019. * cursor plane briefly if not already running after enabling the display
  3020. * plane.
  3021. * This workaround avoids occasional blank screens when self refresh is
  3022. * enabled.
  3023. */
  3024. static void
  3025. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3026. {
  3027. u32 cntl = I915_READ(CURCNTR(pipe));
  3028. if ((cntl & CURSOR_MODE) == 0) {
  3029. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3030. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3031. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3032. intel_wait_for_vblank(dev_priv->dev, pipe);
  3033. I915_WRITE(CURCNTR(pipe), cntl);
  3034. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3035. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3036. }
  3037. }
  3038. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3039. {
  3040. struct drm_device *dev = crtc->base.dev;
  3041. struct drm_i915_private *dev_priv = dev->dev_private;
  3042. struct intel_crtc_config *pipe_config = &crtc->config;
  3043. if (!crtc->config.gmch_pfit.control)
  3044. return;
  3045. /*
  3046. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3047. * according to register description and PRM.
  3048. */
  3049. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3050. assert_pipe_disabled(dev_priv, crtc->pipe);
  3051. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3052. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3053. /* Border color in case we don't scale up to the full screen. Black by
  3054. * default, change to something else for debugging. */
  3055. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3056. }
  3057. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3058. {
  3059. struct drm_device *dev = crtc->dev;
  3060. struct drm_i915_private *dev_priv = dev->dev_private;
  3061. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3062. struct intel_encoder *encoder;
  3063. int pipe = intel_crtc->pipe;
  3064. int plane = intel_crtc->plane;
  3065. WARN_ON(!crtc->enabled);
  3066. if (intel_crtc->active)
  3067. return;
  3068. intel_crtc->active = true;
  3069. intel_update_watermarks(dev);
  3070. mutex_lock(&dev_priv->dpio_lock);
  3071. for_each_encoder_on_crtc(dev, crtc, encoder)
  3072. if (encoder->pre_pll_enable)
  3073. encoder->pre_pll_enable(encoder);
  3074. intel_enable_pll(dev_priv, pipe);
  3075. for_each_encoder_on_crtc(dev, crtc, encoder)
  3076. if (encoder->pre_enable)
  3077. encoder->pre_enable(encoder);
  3078. /* VLV wants encoder enabling _before_ the pipe is up. */
  3079. for_each_encoder_on_crtc(dev, crtc, encoder)
  3080. encoder->enable(encoder);
  3081. /* Enable panel fitting for eDP */
  3082. i9xx_pfit_enable(intel_crtc);
  3083. intel_enable_pipe(dev_priv, pipe, false);
  3084. intel_enable_plane(dev_priv, plane, pipe);
  3085. intel_crtc_load_lut(crtc);
  3086. intel_update_fbc(dev);
  3087. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3088. intel_crtc_dpms_overlay(intel_crtc, true);
  3089. intel_crtc_update_cursor(crtc, true);
  3090. mutex_unlock(&dev_priv->dpio_lock);
  3091. }
  3092. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3093. {
  3094. struct drm_device *dev = crtc->dev;
  3095. struct drm_i915_private *dev_priv = dev->dev_private;
  3096. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3097. struct intel_encoder *encoder;
  3098. int pipe = intel_crtc->pipe;
  3099. int plane = intel_crtc->plane;
  3100. WARN_ON(!crtc->enabled);
  3101. if (intel_crtc->active)
  3102. return;
  3103. intel_crtc->active = true;
  3104. intel_update_watermarks(dev);
  3105. intel_enable_pll(dev_priv, pipe);
  3106. for_each_encoder_on_crtc(dev, crtc, encoder)
  3107. if (encoder->pre_enable)
  3108. encoder->pre_enable(encoder);
  3109. /* Enable panel fitting for LVDS */
  3110. i9xx_pfit_enable(intel_crtc);
  3111. intel_enable_pipe(dev_priv, pipe, false);
  3112. intel_enable_plane(dev_priv, plane, pipe);
  3113. if (IS_G4X(dev))
  3114. g4x_fixup_plane(dev_priv, pipe);
  3115. intel_crtc_load_lut(crtc);
  3116. intel_update_fbc(dev);
  3117. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3118. intel_crtc_dpms_overlay(intel_crtc, true);
  3119. intel_crtc_update_cursor(crtc, true);
  3120. for_each_encoder_on_crtc(dev, crtc, encoder)
  3121. encoder->enable(encoder);
  3122. }
  3123. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3124. {
  3125. struct drm_device *dev = crtc->base.dev;
  3126. struct drm_i915_private *dev_priv = dev->dev_private;
  3127. if (!crtc->config.gmch_pfit.control)
  3128. return;
  3129. assert_pipe_disabled(dev_priv, crtc->pipe);
  3130. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3131. I915_READ(PFIT_CONTROL));
  3132. I915_WRITE(PFIT_CONTROL, 0);
  3133. }
  3134. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3135. {
  3136. struct drm_device *dev = crtc->dev;
  3137. struct drm_i915_private *dev_priv = dev->dev_private;
  3138. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3139. struct intel_encoder *encoder;
  3140. int pipe = intel_crtc->pipe;
  3141. int plane = intel_crtc->plane;
  3142. if (!intel_crtc->active)
  3143. return;
  3144. for_each_encoder_on_crtc(dev, crtc, encoder)
  3145. encoder->disable(encoder);
  3146. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3147. intel_crtc_wait_for_pending_flips(crtc);
  3148. drm_vblank_off(dev, pipe);
  3149. intel_crtc_dpms_overlay(intel_crtc, false);
  3150. intel_crtc_update_cursor(crtc, false);
  3151. if (dev_priv->cfb_plane == plane)
  3152. intel_disable_fbc(dev);
  3153. intel_disable_plane(dev_priv, plane, pipe);
  3154. intel_disable_pipe(dev_priv, pipe);
  3155. i9xx_pfit_disable(intel_crtc);
  3156. for_each_encoder_on_crtc(dev, crtc, encoder)
  3157. if (encoder->post_disable)
  3158. encoder->post_disable(encoder);
  3159. intel_disable_pll(dev_priv, pipe);
  3160. intel_crtc->active = false;
  3161. intel_update_fbc(dev);
  3162. intel_update_watermarks(dev);
  3163. }
  3164. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3165. {
  3166. }
  3167. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3168. bool enabled)
  3169. {
  3170. struct drm_device *dev = crtc->dev;
  3171. struct drm_i915_master_private *master_priv;
  3172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3173. int pipe = intel_crtc->pipe;
  3174. if (!dev->primary->master)
  3175. return;
  3176. master_priv = dev->primary->master->driver_priv;
  3177. if (!master_priv->sarea_priv)
  3178. return;
  3179. switch (pipe) {
  3180. case 0:
  3181. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3182. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3183. break;
  3184. case 1:
  3185. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3186. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3187. break;
  3188. default:
  3189. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3190. break;
  3191. }
  3192. }
  3193. /**
  3194. * Sets the power management mode of the pipe and plane.
  3195. */
  3196. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3197. {
  3198. struct drm_device *dev = crtc->dev;
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. struct intel_encoder *intel_encoder;
  3201. bool enable = false;
  3202. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3203. enable |= intel_encoder->connectors_active;
  3204. if (enable)
  3205. dev_priv->display.crtc_enable(crtc);
  3206. else
  3207. dev_priv->display.crtc_disable(crtc);
  3208. intel_crtc_update_sarea(crtc, enable);
  3209. }
  3210. static void intel_crtc_disable(struct drm_crtc *crtc)
  3211. {
  3212. struct drm_device *dev = crtc->dev;
  3213. struct drm_connector *connector;
  3214. struct drm_i915_private *dev_priv = dev->dev_private;
  3215. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3216. /* crtc should still be enabled when we disable it. */
  3217. WARN_ON(!crtc->enabled);
  3218. dev_priv->display.crtc_disable(crtc);
  3219. intel_crtc->eld_vld = false;
  3220. intel_crtc_update_sarea(crtc, false);
  3221. dev_priv->display.off(crtc);
  3222. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3223. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3224. if (crtc->fb) {
  3225. mutex_lock(&dev->struct_mutex);
  3226. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3227. mutex_unlock(&dev->struct_mutex);
  3228. crtc->fb = NULL;
  3229. }
  3230. /* Update computed state. */
  3231. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3232. if (!connector->encoder || !connector->encoder->crtc)
  3233. continue;
  3234. if (connector->encoder->crtc != crtc)
  3235. continue;
  3236. connector->dpms = DRM_MODE_DPMS_OFF;
  3237. to_intel_encoder(connector->encoder)->connectors_active = false;
  3238. }
  3239. }
  3240. void intel_modeset_disable(struct drm_device *dev)
  3241. {
  3242. struct drm_crtc *crtc;
  3243. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3244. if (crtc->enabled)
  3245. intel_crtc_disable(crtc);
  3246. }
  3247. }
  3248. void intel_encoder_destroy(struct drm_encoder *encoder)
  3249. {
  3250. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3251. drm_encoder_cleanup(encoder);
  3252. kfree(intel_encoder);
  3253. }
  3254. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3255. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3256. * state of the entire output pipe. */
  3257. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3258. {
  3259. if (mode == DRM_MODE_DPMS_ON) {
  3260. encoder->connectors_active = true;
  3261. intel_crtc_update_dpms(encoder->base.crtc);
  3262. } else {
  3263. encoder->connectors_active = false;
  3264. intel_crtc_update_dpms(encoder->base.crtc);
  3265. }
  3266. }
  3267. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3268. * internal consistency). */
  3269. static void intel_connector_check_state(struct intel_connector *connector)
  3270. {
  3271. if (connector->get_hw_state(connector)) {
  3272. struct intel_encoder *encoder = connector->encoder;
  3273. struct drm_crtc *crtc;
  3274. bool encoder_enabled;
  3275. enum pipe pipe;
  3276. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3277. connector->base.base.id,
  3278. drm_get_connector_name(&connector->base));
  3279. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3280. "wrong connector dpms state\n");
  3281. WARN(connector->base.encoder != &encoder->base,
  3282. "active connector not linked to encoder\n");
  3283. WARN(!encoder->connectors_active,
  3284. "encoder->connectors_active not set\n");
  3285. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3286. WARN(!encoder_enabled, "encoder not enabled\n");
  3287. if (WARN_ON(!encoder->base.crtc))
  3288. return;
  3289. crtc = encoder->base.crtc;
  3290. WARN(!crtc->enabled, "crtc not enabled\n");
  3291. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3292. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3293. "encoder active on the wrong pipe\n");
  3294. }
  3295. }
  3296. /* Even simpler default implementation, if there's really no special case to
  3297. * consider. */
  3298. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3299. {
  3300. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3301. /* All the simple cases only support two dpms states. */
  3302. if (mode != DRM_MODE_DPMS_ON)
  3303. mode = DRM_MODE_DPMS_OFF;
  3304. if (mode == connector->dpms)
  3305. return;
  3306. connector->dpms = mode;
  3307. /* Only need to change hw state when actually enabled */
  3308. if (encoder->base.crtc)
  3309. intel_encoder_dpms(encoder, mode);
  3310. else
  3311. WARN_ON(encoder->connectors_active != false);
  3312. intel_modeset_check_state(connector->dev);
  3313. }
  3314. /* Simple connector->get_hw_state implementation for encoders that support only
  3315. * one connector and no cloning and hence the encoder state determines the state
  3316. * of the connector. */
  3317. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3318. {
  3319. enum pipe pipe = 0;
  3320. struct intel_encoder *encoder = connector->encoder;
  3321. return encoder->get_hw_state(encoder, &pipe);
  3322. }
  3323. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3324. struct intel_crtc_config *pipe_config)
  3325. {
  3326. struct drm_i915_private *dev_priv = dev->dev_private;
  3327. struct intel_crtc *pipe_B_crtc =
  3328. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3329. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3330. pipe_name(pipe), pipe_config->fdi_lanes);
  3331. if (pipe_config->fdi_lanes > 4) {
  3332. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3333. pipe_name(pipe), pipe_config->fdi_lanes);
  3334. return false;
  3335. }
  3336. if (IS_HASWELL(dev)) {
  3337. if (pipe_config->fdi_lanes > 2) {
  3338. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3339. pipe_config->fdi_lanes);
  3340. return false;
  3341. } else {
  3342. return true;
  3343. }
  3344. }
  3345. if (INTEL_INFO(dev)->num_pipes == 2)
  3346. return true;
  3347. /* Ivybridge 3 pipe is really complicated */
  3348. switch (pipe) {
  3349. case PIPE_A:
  3350. return true;
  3351. case PIPE_B:
  3352. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3353. pipe_config->fdi_lanes > 2) {
  3354. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3355. pipe_name(pipe), pipe_config->fdi_lanes);
  3356. return false;
  3357. }
  3358. return true;
  3359. case PIPE_C:
  3360. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3361. pipe_B_crtc->config.fdi_lanes <= 2) {
  3362. if (pipe_config->fdi_lanes > 2) {
  3363. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3364. pipe_name(pipe), pipe_config->fdi_lanes);
  3365. return false;
  3366. }
  3367. } else {
  3368. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3369. return false;
  3370. }
  3371. return true;
  3372. default:
  3373. BUG();
  3374. }
  3375. }
  3376. #define RETRY 1
  3377. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3378. struct intel_crtc_config *pipe_config)
  3379. {
  3380. struct drm_device *dev = intel_crtc->base.dev;
  3381. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3382. int target_clock, lane, link_bw;
  3383. bool setup_ok, needs_recompute = false;
  3384. retry:
  3385. /* FDI is a binary signal running at ~2.7GHz, encoding
  3386. * each output octet as 10 bits. The actual frequency
  3387. * is stored as a divider into a 100MHz clock, and the
  3388. * mode pixel clock is stored in units of 1KHz.
  3389. * Hence the bw of each lane in terms of the mode signal
  3390. * is:
  3391. */
  3392. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3393. if (pipe_config->pixel_target_clock)
  3394. target_clock = pipe_config->pixel_target_clock;
  3395. else
  3396. target_clock = adjusted_mode->clock;
  3397. lane = ironlake_get_lanes_required(target_clock, link_bw,
  3398. pipe_config->pipe_bpp);
  3399. pipe_config->fdi_lanes = lane;
  3400. if (pipe_config->pixel_multiplier > 1)
  3401. link_bw *= pipe_config->pixel_multiplier;
  3402. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
  3403. link_bw, &pipe_config->fdi_m_n);
  3404. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3405. intel_crtc->pipe, pipe_config);
  3406. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3407. pipe_config->pipe_bpp -= 2*3;
  3408. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3409. pipe_config->pipe_bpp);
  3410. needs_recompute = true;
  3411. pipe_config->bw_constrained = true;
  3412. goto retry;
  3413. }
  3414. if (needs_recompute)
  3415. return RETRY;
  3416. return setup_ok ? 0 : -EINVAL;
  3417. }
  3418. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3419. struct intel_crtc_config *pipe_config)
  3420. {
  3421. pipe_config->ips_enabled = i915_enable_ips &&
  3422. hsw_crtc_supports_ips(crtc) &&
  3423. pipe_config->pipe_bpp == 24;
  3424. }
  3425. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3426. struct intel_crtc_config *pipe_config)
  3427. {
  3428. struct drm_device *dev = crtc->dev;
  3429. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3430. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3431. if (HAS_PCH_SPLIT(dev)) {
  3432. /* FDI link clock is fixed at 2.7G */
  3433. if (pipe_config->requested_mode.clock * 3
  3434. > IRONLAKE_FDI_FREQ * 4)
  3435. return -EINVAL;
  3436. }
  3437. /* All interlaced capable intel hw wants timings in frames. Note though
  3438. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3439. * timings, so we need to be careful not to clobber these.*/
  3440. if (!pipe_config->timings_set)
  3441. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3442. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3443. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3444. */
  3445. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3446. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3447. return -EINVAL;
  3448. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3449. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3450. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3451. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3452. * for lvds. */
  3453. pipe_config->pipe_bpp = 8*3;
  3454. }
  3455. if (IS_HASWELL(dev))
  3456. hsw_compute_ips_config(intel_crtc, pipe_config);
  3457. if (pipe_config->has_pch_encoder)
  3458. return ironlake_fdi_compute_config(intel_crtc, pipe_config);
  3459. return 0;
  3460. }
  3461. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3462. {
  3463. return 400000; /* FIXME */
  3464. }
  3465. static int i945_get_display_clock_speed(struct drm_device *dev)
  3466. {
  3467. return 400000;
  3468. }
  3469. static int i915_get_display_clock_speed(struct drm_device *dev)
  3470. {
  3471. return 333000;
  3472. }
  3473. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3474. {
  3475. return 200000;
  3476. }
  3477. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3478. {
  3479. u16 gcfgc = 0;
  3480. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3481. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3482. return 133000;
  3483. else {
  3484. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3485. case GC_DISPLAY_CLOCK_333_MHZ:
  3486. return 333000;
  3487. default:
  3488. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3489. return 190000;
  3490. }
  3491. }
  3492. }
  3493. static int i865_get_display_clock_speed(struct drm_device *dev)
  3494. {
  3495. return 266000;
  3496. }
  3497. static int i855_get_display_clock_speed(struct drm_device *dev)
  3498. {
  3499. u16 hpllcc = 0;
  3500. /* Assume that the hardware is in the high speed state. This
  3501. * should be the default.
  3502. */
  3503. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3504. case GC_CLOCK_133_200:
  3505. case GC_CLOCK_100_200:
  3506. return 200000;
  3507. case GC_CLOCK_166_250:
  3508. return 250000;
  3509. case GC_CLOCK_100_133:
  3510. return 133000;
  3511. }
  3512. /* Shouldn't happen */
  3513. return 0;
  3514. }
  3515. static int i830_get_display_clock_speed(struct drm_device *dev)
  3516. {
  3517. return 133000;
  3518. }
  3519. static void
  3520. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3521. {
  3522. while (*num > DATA_LINK_M_N_MASK ||
  3523. *den > DATA_LINK_M_N_MASK) {
  3524. *num >>= 1;
  3525. *den >>= 1;
  3526. }
  3527. }
  3528. static void compute_m_n(unsigned int m, unsigned int n,
  3529. uint32_t *ret_m, uint32_t *ret_n)
  3530. {
  3531. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3532. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3533. intel_reduce_m_n_ratio(ret_m, ret_n);
  3534. }
  3535. void
  3536. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3537. int pixel_clock, int link_clock,
  3538. struct intel_link_m_n *m_n)
  3539. {
  3540. m_n->tu = 64;
  3541. compute_m_n(bits_per_pixel * pixel_clock,
  3542. link_clock * nlanes * 8,
  3543. &m_n->gmch_m, &m_n->gmch_n);
  3544. compute_m_n(pixel_clock, link_clock,
  3545. &m_n->link_m, &m_n->link_n);
  3546. }
  3547. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3548. {
  3549. if (i915_panel_use_ssc >= 0)
  3550. return i915_panel_use_ssc != 0;
  3551. return dev_priv->vbt.lvds_use_ssc
  3552. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3553. }
  3554. static int vlv_get_refclk(struct drm_crtc *crtc)
  3555. {
  3556. struct drm_device *dev = crtc->dev;
  3557. struct drm_i915_private *dev_priv = dev->dev_private;
  3558. int refclk = 27000; /* for DP & HDMI */
  3559. return 100000; /* only one validated so far */
  3560. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3561. refclk = 96000;
  3562. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3563. if (intel_panel_use_ssc(dev_priv))
  3564. refclk = 100000;
  3565. else
  3566. refclk = 96000;
  3567. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3568. refclk = 100000;
  3569. }
  3570. return refclk;
  3571. }
  3572. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3573. {
  3574. struct drm_device *dev = crtc->dev;
  3575. struct drm_i915_private *dev_priv = dev->dev_private;
  3576. int refclk;
  3577. if (IS_VALLEYVIEW(dev)) {
  3578. refclk = vlv_get_refclk(crtc);
  3579. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3580. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3581. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3582. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3583. refclk / 1000);
  3584. } else if (!IS_GEN2(dev)) {
  3585. refclk = 96000;
  3586. } else {
  3587. refclk = 48000;
  3588. }
  3589. return refclk;
  3590. }
  3591. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3592. {
  3593. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3594. }
  3595. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3596. {
  3597. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3598. }
  3599. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3600. intel_clock_t *reduced_clock)
  3601. {
  3602. struct drm_device *dev = crtc->base.dev;
  3603. struct drm_i915_private *dev_priv = dev->dev_private;
  3604. int pipe = crtc->pipe;
  3605. u32 fp, fp2 = 0;
  3606. if (IS_PINEVIEW(dev)) {
  3607. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3608. if (reduced_clock)
  3609. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3610. } else {
  3611. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3612. if (reduced_clock)
  3613. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3614. }
  3615. I915_WRITE(FP0(pipe), fp);
  3616. crtc->lowfreq_avail = false;
  3617. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3618. reduced_clock && i915_powersave) {
  3619. I915_WRITE(FP1(pipe), fp2);
  3620. crtc->lowfreq_avail = true;
  3621. } else {
  3622. I915_WRITE(FP1(pipe), fp);
  3623. }
  3624. }
  3625. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3626. {
  3627. u32 reg_val;
  3628. /*
  3629. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3630. * and set it to a reasonable value instead.
  3631. */
  3632. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3633. reg_val &= 0xffffff00;
  3634. reg_val |= 0x00000030;
  3635. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3636. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3637. reg_val &= 0x8cffffff;
  3638. reg_val = 0x8c000000;
  3639. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3640. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3641. reg_val &= 0xffffff00;
  3642. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3643. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3644. reg_val &= 0x00ffffff;
  3645. reg_val |= 0xb0000000;
  3646. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3647. }
  3648. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3649. struct intel_link_m_n *m_n)
  3650. {
  3651. struct drm_device *dev = crtc->base.dev;
  3652. struct drm_i915_private *dev_priv = dev->dev_private;
  3653. int pipe = crtc->pipe;
  3654. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3655. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3656. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3657. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3658. }
  3659. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3660. struct intel_link_m_n *m_n)
  3661. {
  3662. struct drm_device *dev = crtc->base.dev;
  3663. struct drm_i915_private *dev_priv = dev->dev_private;
  3664. int pipe = crtc->pipe;
  3665. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3666. if (INTEL_INFO(dev)->gen >= 5) {
  3667. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3668. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3669. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3670. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3671. } else {
  3672. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3673. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3674. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3675. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3676. }
  3677. }
  3678. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3679. {
  3680. if (crtc->config.has_pch_encoder)
  3681. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3682. else
  3683. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3684. }
  3685. static void vlv_update_pll(struct intel_crtc *crtc)
  3686. {
  3687. struct drm_device *dev = crtc->base.dev;
  3688. struct drm_i915_private *dev_priv = dev->dev_private;
  3689. struct drm_display_mode *adjusted_mode =
  3690. &crtc->config.adjusted_mode;
  3691. struct intel_encoder *encoder;
  3692. int pipe = crtc->pipe;
  3693. u32 dpll, mdiv;
  3694. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3695. bool is_hdmi;
  3696. u32 coreclk, reg_val, dpll_md;
  3697. mutex_lock(&dev_priv->dpio_lock);
  3698. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3699. bestn = crtc->config.dpll.n;
  3700. bestm1 = crtc->config.dpll.m1;
  3701. bestm2 = crtc->config.dpll.m2;
  3702. bestp1 = crtc->config.dpll.p1;
  3703. bestp2 = crtc->config.dpll.p2;
  3704. /* See eDP HDMI DPIO driver vbios notes doc */
  3705. /* PLL B needs special handling */
  3706. if (pipe)
  3707. vlv_pllb_recal_opamp(dev_priv);
  3708. /* Set up Tx target for periodic Rcomp update */
  3709. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3710. /* Disable target IRef on PLL */
  3711. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3712. reg_val &= 0x00ffffff;
  3713. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3714. /* Disable fast lock */
  3715. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3716. /* Set idtafcrecal before PLL is enabled */
  3717. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3718. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3719. mdiv |= ((bestn << DPIO_N_SHIFT));
  3720. mdiv |= (1 << DPIO_K_SHIFT);
  3721. /*
  3722. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3723. * but we don't support that).
  3724. * Note: don't use the DAC post divider as it seems unstable.
  3725. */
  3726. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3727. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3728. mdiv |= DPIO_ENABLE_CALIBRATION;
  3729. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3730. /* Set HBR and RBR LPF coefficients */
  3731. if (adjusted_mode->clock == 162000 ||
  3732. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3733. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3734. 0x005f0021);
  3735. else
  3736. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3737. 0x00d0000f);
  3738. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3739. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3740. /* Use SSC source */
  3741. if (!pipe)
  3742. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3743. 0x0df40000);
  3744. else
  3745. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3746. 0x0df70000);
  3747. } else { /* HDMI or VGA */
  3748. /* Use bend source */
  3749. if (!pipe)
  3750. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3751. 0x0df70000);
  3752. else
  3753. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3754. 0x0df40000);
  3755. }
  3756. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3757. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3758. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3759. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3760. coreclk |= 0x01000000;
  3761. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3762. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3763. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3764. if (encoder->pre_pll_enable)
  3765. encoder->pre_pll_enable(encoder);
  3766. /* Enable DPIO clock input */
  3767. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3768. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3769. if (pipe)
  3770. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3771. dpll |= DPLL_VCO_ENABLE;
  3772. I915_WRITE(DPLL(pipe), dpll);
  3773. POSTING_READ(DPLL(pipe));
  3774. udelay(150);
  3775. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3776. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3777. dpll_md = 0;
  3778. if (crtc->config.pixel_multiplier > 1) {
  3779. dpll_md = (crtc->config.pixel_multiplier - 1)
  3780. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3781. }
  3782. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3783. POSTING_READ(DPLL_MD(pipe));
  3784. if (crtc->config.has_dp_encoder)
  3785. intel_dp_set_m_n(crtc);
  3786. mutex_unlock(&dev_priv->dpio_lock);
  3787. }
  3788. static void i9xx_update_pll(struct intel_crtc *crtc,
  3789. intel_clock_t *reduced_clock,
  3790. int num_connectors)
  3791. {
  3792. struct drm_device *dev = crtc->base.dev;
  3793. struct drm_i915_private *dev_priv = dev->dev_private;
  3794. struct intel_encoder *encoder;
  3795. int pipe = crtc->pipe;
  3796. u32 dpll;
  3797. bool is_sdvo;
  3798. struct dpll *clock = &crtc->config.dpll;
  3799. i9xx_update_pll_dividers(crtc, reduced_clock);
  3800. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3801. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3802. dpll = DPLL_VGA_MODE_DIS;
  3803. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3804. dpll |= DPLLB_MODE_LVDS;
  3805. else
  3806. dpll |= DPLLB_MODE_DAC_SERIAL;
  3807. if ((crtc->config.pixel_multiplier > 1) &&
  3808. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3809. dpll |= (crtc->config.pixel_multiplier - 1)
  3810. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3811. }
  3812. if (is_sdvo)
  3813. dpll |= DPLL_DVO_HIGH_SPEED;
  3814. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3815. dpll |= DPLL_DVO_HIGH_SPEED;
  3816. /* compute bitmask from p1 value */
  3817. if (IS_PINEVIEW(dev))
  3818. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3819. else {
  3820. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3821. if (IS_G4X(dev) && reduced_clock)
  3822. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3823. }
  3824. switch (clock->p2) {
  3825. case 5:
  3826. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3827. break;
  3828. case 7:
  3829. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3830. break;
  3831. case 10:
  3832. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3833. break;
  3834. case 14:
  3835. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3836. break;
  3837. }
  3838. if (INTEL_INFO(dev)->gen >= 4)
  3839. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3840. if (crtc->config.sdvo_tv_clock)
  3841. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3842. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3843. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3844. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3845. else
  3846. dpll |= PLL_REF_INPUT_DREFCLK;
  3847. dpll |= DPLL_VCO_ENABLE;
  3848. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3849. POSTING_READ(DPLL(pipe));
  3850. udelay(150);
  3851. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3852. if (encoder->pre_pll_enable)
  3853. encoder->pre_pll_enable(encoder);
  3854. if (crtc->config.has_dp_encoder)
  3855. intel_dp_set_m_n(crtc);
  3856. I915_WRITE(DPLL(pipe), dpll);
  3857. /* Wait for the clocks to stabilize. */
  3858. POSTING_READ(DPLL(pipe));
  3859. udelay(150);
  3860. if (INTEL_INFO(dev)->gen >= 4) {
  3861. u32 dpll_md = 0;
  3862. if (crtc->config.pixel_multiplier > 1) {
  3863. dpll_md = (crtc->config.pixel_multiplier - 1)
  3864. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3865. }
  3866. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3867. } else {
  3868. /* The pixel multiplier can only be updated once the
  3869. * DPLL is enabled and the clocks are stable.
  3870. *
  3871. * So write it again.
  3872. */
  3873. I915_WRITE(DPLL(pipe), dpll);
  3874. }
  3875. }
  3876. static void i8xx_update_pll(struct intel_crtc *crtc,
  3877. struct drm_display_mode *adjusted_mode,
  3878. intel_clock_t *reduced_clock,
  3879. int num_connectors)
  3880. {
  3881. struct drm_device *dev = crtc->base.dev;
  3882. struct drm_i915_private *dev_priv = dev->dev_private;
  3883. struct intel_encoder *encoder;
  3884. int pipe = crtc->pipe;
  3885. u32 dpll;
  3886. struct dpll *clock = &crtc->config.dpll;
  3887. i9xx_update_pll_dividers(crtc, reduced_clock);
  3888. dpll = DPLL_VGA_MODE_DIS;
  3889. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3890. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3891. } else {
  3892. if (clock->p1 == 2)
  3893. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3894. else
  3895. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3896. if (clock->p2 == 4)
  3897. dpll |= PLL_P2_DIVIDE_BY_4;
  3898. }
  3899. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3900. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3901. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3902. else
  3903. dpll |= PLL_REF_INPUT_DREFCLK;
  3904. dpll |= DPLL_VCO_ENABLE;
  3905. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3906. POSTING_READ(DPLL(pipe));
  3907. udelay(150);
  3908. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3909. if (encoder->pre_pll_enable)
  3910. encoder->pre_pll_enable(encoder);
  3911. I915_WRITE(DPLL(pipe), dpll);
  3912. /* Wait for the clocks to stabilize. */
  3913. POSTING_READ(DPLL(pipe));
  3914. udelay(150);
  3915. /* The pixel multiplier can only be updated once the
  3916. * DPLL is enabled and the clocks are stable.
  3917. *
  3918. * So write it again.
  3919. */
  3920. I915_WRITE(DPLL(pipe), dpll);
  3921. }
  3922. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3923. struct drm_display_mode *mode,
  3924. struct drm_display_mode *adjusted_mode)
  3925. {
  3926. struct drm_device *dev = intel_crtc->base.dev;
  3927. struct drm_i915_private *dev_priv = dev->dev_private;
  3928. enum pipe pipe = intel_crtc->pipe;
  3929. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3930. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3931. /* We need to be careful not to changed the adjusted mode, for otherwise
  3932. * the hw state checker will get angry at the mismatch. */
  3933. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3934. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3935. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3936. /* the chip adds 2 halflines automatically */
  3937. crtc_vtotal -= 1;
  3938. crtc_vblank_end -= 1;
  3939. vsyncshift = adjusted_mode->crtc_hsync_start
  3940. - adjusted_mode->crtc_htotal / 2;
  3941. } else {
  3942. vsyncshift = 0;
  3943. }
  3944. if (INTEL_INFO(dev)->gen > 3)
  3945. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3946. I915_WRITE(HTOTAL(cpu_transcoder),
  3947. (adjusted_mode->crtc_hdisplay - 1) |
  3948. ((adjusted_mode->crtc_htotal - 1) << 16));
  3949. I915_WRITE(HBLANK(cpu_transcoder),
  3950. (adjusted_mode->crtc_hblank_start - 1) |
  3951. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3952. I915_WRITE(HSYNC(cpu_transcoder),
  3953. (adjusted_mode->crtc_hsync_start - 1) |
  3954. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3955. I915_WRITE(VTOTAL(cpu_transcoder),
  3956. (adjusted_mode->crtc_vdisplay - 1) |
  3957. ((crtc_vtotal - 1) << 16));
  3958. I915_WRITE(VBLANK(cpu_transcoder),
  3959. (adjusted_mode->crtc_vblank_start - 1) |
  3960. ((crtc_vblank_end - 1) << 16));
  3961. I915_WRITE(VSYNC(cpu_transcoder),
  3962. (adjusted_mode->crtc_vsync_start - 1) |
  3963. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3964. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3965. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3966. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3967. * bits. */
  3968. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3969. (pipe == PIPE_B || pipe == PIPE_C))
  3970. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3971. /* pipesrc controls the size that is scaled from, which should
  3972. * always be the user's requested size.
  3973. */
  3974. I915_WRITE(PIPESRC(pipe),
  3975. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3976. }
  3977. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3978. struct intel_crtc_config *pipe_config)
  3979. {
  3980. struct drm_device *dev = crtc->base.dev;
  3981. struct drm_i915_private *dev_priv = dev->dev_private;
  3982. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3983. uint32_t tmp;
  3984. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3985. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3986. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3987. tmp = I915_READ(HBLANK(cpu_transcoder));
  3988. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3989. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3990. tmp = I915_READ(HSYNC(cpu_transcoder));
  3991. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3992. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3993. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3994. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3995. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3996. tmp = I915_READ(VBLANK(cpu_transcoder));
  3997. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3998. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3999. tmp = I915_READ(VSYNC(cpu_transcoder));
  4000. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4001. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4002. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4003. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4004. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4005. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4006. }
  4007. tmp = I915_READ(PIPESRC(crtc->pipe));
  4008. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4009. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4010. }
  4011. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4012. {
  4013. struct drm_device *dev = intel_crtc->base.dev;
  4014. struct drm_i915_private *dev_priv = dev->dev_private;
  4015. uint32_t pipeconf;
  4016. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4017. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4018. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4019. * core speed.
  4020. *
  4021. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4022. * pipe == 0 check?
  4023. */
  4024. if (intel_crtc->config.requested_mode.clock >
  4025. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4026. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4027. else
  4028. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4029. }
  4030. /* only g4x and later have fancy bpc/dither controls */
  4031. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4032. pipeconf &= ~(PIPECONF_BPC_MASK |
  4033. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4034. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4035. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4036. pipeconf |= PIPECONF_DITHER_EN |
  4037. PIPECONF_DITHER_TYPE_SP;
  4038. switch (intel_crtc->config.pipe_bpp) {
  4039. case 18:
  4040. pipeconf |= PIPECONF_6BPC;
  4041. break;
  4042. case 24:
  4043. pipeconf |= PIPECONF_8BPC;
  4044. break;
  4045. case 30:
  4046. pipeconf |= PIPECONF_10BPC;
  4047. break;
  4048. default:
  4049. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4050. BUG();
  4051. }
  4052. }
  4053. if (HAS_PIPE_CXSR(dev)) {
  4054. if (intel_crtc->lowfreq_avail) {
  4055. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4056. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4057. } else {
  4058. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4059. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4060. }
  4061. }
  4062. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4063. if (!IS_GEN2(dev) &&
  4064. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4065. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4066. else
  4067. pipeconf |= PIPECONF_PROGRESSIVE;
  4068. if (IS_VALLEYVIEW(dev)) {
  4069. if (intel_crtc->config.limited_color_range)
  4070. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4071. else
  4072. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4073. }
  4074. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4075. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4076. }
  4077. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4078. int x, int y,
  4079. struct drm_framebuffer *fb)
  4080. {
  4081. struct drm_device *dev = crtc->dev;
  4082. struct drm_i915_private *dev_priv = dev->dev_private;
  4083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4084. struct drm_display_mode *adjusted_mode =
  4085. &intel_crtc->config.adjusted_mode;
  4086. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4087. int pipe = intel_crtc->pipe;
  4088. int plane = intel_crtc->plane;
  4089. int refclk, num_connectors = 0;
  4090. intel_clock_t clock, reduced_clock;
  4091. u32 dspcntr;
  4092. bool ok, has_reduced_clock = false;
  4093. bool is_lvds = false;
  4094. struct intel_encoder *encoder;
  4095. const intel_limit_t *limit;
  4096. int ret;
  4097. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4098. switch (encoder->type) {
  4099. case INTEL_OUTPUT_LVDS:
  4100. is_lvds = true;
  4101. break;
  4102. }
  4103. num_connectors++;
  4104. }
  4105. refclk = i9xx_get_refclk(crtc, num_connectors);
  4106. /*
  4107. * Returns a set of divisors for the desired target clock with the given
  4108. * refclk, or FALSE. The returned values represent the clock equation:
  4109. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4110. */
  4111. limit = intel_limit(crtc, refclk);
  4112. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4113. &clock);
  4114. if (!ok) {
  4115. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4116. return -EINVAL;
  4117. }
  4118. /* Ensure that the cursor is valid for the new mode before changing... */
  4119. intel_crtc_update_cursor(crtc, true);
  4120. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4121. /*
  4122. * Ensure we match the reduced clock's P to the target clock.
  4123. * If the clocks don't match, we can't switch the display clock
  4124. * by using the FP0/FP1. In such case we will disable the LVDS
  4125. * downclock feature.
  4126. */
  4127. has_reduced_clock = limit->find_pll(limit, crtc,
  4128. dev_priv->lvds_downclock,
  4129. refclk,
  4130. &clock,
  4131. &reduced_clock);
  4132. }
  4133. /* Compat-code for transition, will disappear. */
  4134. if (!intel_crtc->config.clock_set) {
  4135. intel_crtc->config.dpll.n = clock.n;
  4136. intel_crtc->config.dpll.m1 = clock.m1;
  4137. intel_crtc->config.dpll.m2 = clock.m2;
  4138. intel_crtc->config.dpll.p1 = clock.p1;
  4139. intel_crtc->config.dpll.p2 = clock.p2;
  4140. }
  4141. if (IS_GEN2(dev))
  4142. i8xx_update_pll(intel_crtc, adjusted_mode,
  4143. has_reduced_clock ? &reduced_clock : NULL,
  4144. num_connectors);
  4145. else if (IS_VALLEYVIEW(dev))
  4146. vlv_update_pll(intel_crtc);
  4147. else
  4148. i9xx_update_pll(intel_crtc,
  4149. has_reduced_clock ? &reduced_clock : NULL,
  4150. num_connectors);
  4151. /* Set up the display plane register */
  4152. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4153. if (!IS_VALLEYVIEW(dev)) {
  4154. if (pipe == 0)
  4155. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4156. else
  4157. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4158. }
  4159. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4160. /* pipesrc and dspsize control the size that is scaled from,
  4161. * which should always be the user's requested size.
  4162. */
  4163. I915_WRITE(DSPSIZE(plane),
  4164. ((mode->vdisplay - 1) << 16) |
  4165. (mode->hdisplay - 1));
  4166. I915_WRITE(DSPPOS(plane), 0);
  4167. i9xx_set_pipeconf(intel_crtc);
  4168. I915_WRITE(DSPCNTR(plane), dspcntr);
  4169. POSTING_READ(DSPCNTR(plane));
  4170. ret = intel_pipe_set_base(crtc, x, y, fb);
  4171. intel_update_watermarks(dev);
  4172. return ret;
  4173. }
  4174. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4175. struct intel_crtc_config *pipe_config)
  4176. {
  4177. struct drm_device *dev = crtc->base.dev;
  4178. struct drm_i915_private *dev_priv = dev->dev_private;
  4179. uint32_t tmp;
  4180. tmp = I915_READ(PFIT_CONTROL);
  4181. if (INTEL_INFO(dev)->gen < 4) {
  4182. if (crtc->pipe != PIPE_B)
  4183. return;
  4184. /* gen2/3 store dither state in pfit control, needs to match */
  4185. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4186. } else {
  4187. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4188. return;
  4189. }
  4190. if (!(tmp & PFIT_ENABLE))
  4191. return;
  4192. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4193. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4194. if (INTEL_INFO(dev)->gen < 5)
  4195. pipe_config->gmch_pfit.lvds_border_bits =
  4196. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4197. }
  4198. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4199. struct intel_crtc_config *pipe_config)
  4200. {
  4201. struct drm_device *dev = crtc->base.dev;
  4202. struct drm_i915_private *dev_priv = dev->dev_private;
  4203. uint32_t tmp;
  4204. pipe_config->cpu_transcoder = crtc->pipe;
  4205. tmp = I915_READ(PIPECONF(crtc->pipe));
  4206. if (!(tmp & PIPECONF_ENABLE))
  4207. return false;
  4208. intel_get_pipe_timings(crtc, pipe_config);
  4209. i9xx_get_pfit_config(crtc, pipe_config);
  4210. return true;
  4211. }
  4212. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4213. {
  4214. struct drm_i915_private *dev_priv = dev->dev_private;
  4215. struct drm_mode_config *mode_config = &dev->mode_config;
  4216. struct intel_encoder *encoder;
  4217. u32 val, final;
  4218. bool has_lvds = false;
  4219. bool has_cpu_edp = false;
  4220. bool has_panel = false;
  4221. bool has_ck505 = false;
  4222. bool can_ssc = false;
  4223. /* We need to take the global config into account */
  4224. list_for_each_entry(encoder, &mode_config->encoder_list,
  4225. base.head) {
  4226. switch (encoder->type) {
  4227. case INTEL_OUTPUT_LVDS:
  4228. has_panel = true;
  4229. has_lvds = true;
  4230. break;
  4231. case INTEL_OUTPUT_EDP:
  4232. has_panel = true;
  4233. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4234. has_cpu_edp = true;
  4235. break;
  4236. }
  4237. }
  4238. if (HAS_PCH_IBX(dev)) {
  4239. has_ck505 = dev_priv->vbt.display_clock_mode;
  4240. can_ssc = has_ck505;
  4241. } else {
  4242. has_ck505 = false;
  4243. can_ssc = true;
  4244. }
  4245. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4246. has_panel, has_lvds, has_ck505);
  4247. /* Ironlake: try to setup display ref clock before DPLL
  4248. * enabling. This is only under driver's control after
  4249. * PCH B stepping, previous chipset stepping should be
  4250. * ignoring this setting.
  4251. */
  4252. val = I915_READ(PCH_DREF_CONTROL);
  4253. /* As we must carefully and slowly disable/enable each source in turn,
  4254. * compute the final state we want first and check if we need to
  4255. * make any changes at all.
  4256. */
  4257. final = val;
  4258. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4259. if (has_ck505)
  4260. final |= DREF_NONSPREAD_CK505_ENABLE;
  4261. else
  4262. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4263. final &= ~DREF_SSC_SOURCE_MASK;
  4264. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4265. final &= ~DREF_SSC1_ENABLE;
  4266. if (has_panel) {
  4267. final |= DREF_SSC_SOURCE_ENABLE;
  4268. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4269. final |= DREF_SSC1_ENABLE;
  4270. if (has_cpu_edp) {
  4271. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4272. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4273. else
  4274. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4275. } else
  4276. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4277. } else {
  4278. final |= DREF_SSC_SOURCE_DISABLE;
  4279. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4280. }
  4281. if (final == val)
  4282. return;
  4283. /* Always enable nonspread source */
  4284. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4285. if (has_ck505)
  4286. val |= DREF_NONSPREAD_CK505_ENABLE;
  4287. else
  4288. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4289. if (has_panel) {
  4290. val &= ~DREF_SSC_SOURCE_MASK;
  4291. val |= DREF_SSC_SOURCE_ENABLE;
  4292. /* SSC must be turned on before enabling the CPU output */
  4293. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4294. DRM_DEBUG_KMS("Using SSC on panel\n");
  4295. val |= DREF_SSC1_ENABLE;
  4296. } else
  4297. val &= ~DREF_SSC1_ENABLE;
  4298. /* Get SSC going before enabling the outputs */
  4299. I915_WRITE(PCH_DREF_CONTROL, val);
  4300. POSTING_READ(PCH_DREF_CONTROL);
  4301. udelay(200);
  4302. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4303. /* Enable CPU source on CPU attached eDP */
  4304. if (has_cpu_edp) {
  4305. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4306. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4307. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4308. }
  4309. else
  4310. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4311. } else
  4312. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4313. I915_WRITE(PCH_DREF_CONTROL, val);
  4314. POSTING_READ(PCH_DREF_CONTROL);
  4315. udelay(200);
  4316. } else {
  4317. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4318. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4319. /* Turn off CPU output */
  4320. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4321. I915_WRITE(PCH_DREF_CONTROL, val);
  4322. POSTING_READ(PCH_DREF_CONTROL);
  4323. udelay(200);
  4324. /* Turn off the SSC source */
  4325. val &= ~DREF_SSC_SOURCE_MASK;
  4326. val |= DREF_SSC_SOURCE_DISABLE;
  4327. /* Turn off SSC1 */
  4328. val &= ~DREF_SSC1_ENABLE;
  4329. I915_WRITE(PCH_DREF_CONTROL, val);
  4330. POSTING_READ(PCH_DREF_CONTROL);
  4331. udelay(200);
  4332. }
  4333. BUG_ON(val != final);
  4334. }
  4335. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4336. static void lpt_init_pch_refclk(struct drm_device *dev)
  4337. {
  4338. struct drm_i915_private *dev_priv = dev->dev_private;
  4339. struct drm_mode_config *mode_config = &dev->mode_config;
  4340. struct intel_encoder *encoder;
  4341. bool has_vga = false;
  4342. bool is_sdv = false;
  4343. u32 tmp;
  4344. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4345. switch (encoder->type) {
  4346. case INTEL_OUTPUT_ANALOG:
  4347. has_vga = true;
  4348. break;
  4349. }
  4350. }
  4351. if (!has_vga)
  4352. return;
  4353. mutex_lock(&dev_priv->dpio_lock);
  4354. /* XXX: Rip out SDV support once Haswell ships for real. */
  4355. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4356. is_sdv = true;
  4357. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4358. tmp &= ~SBI_SSCCTL_DISABLE;
  4359. tmp |= SBI_SSCCTL_PATHALT;
  4360. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4361. udelay(24);
  4362. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4363. tmp &= ~SBI_SSCCTL_PATHALT;
  4364. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4365. if (!is_sdv) {
  4366. tmp = I915_READ(SOUTH_CHICKEN2);
  4367. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4368. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4369. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4370. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4371. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4372. tmp = I915_READ(SOUTH_CHICKEN2);
  4373. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4374. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4375. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4376. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4377. 100))
  4378. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4379. }
  4380. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4381. tmp &= ~(0xFF << 24);
  4382. tmp |= (0x12 << 24);
  4383. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4384. if (is_sdv) {
  4385. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4386. tmp |= 0x7FFF;
  4387. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4388. }
  4389. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4390. tmp |= (1 << 11);
  4391. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4392. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4393. tmp |= (1 << 11);
  4394. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4395. if (is_sdv) {
  4396. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4397. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4398. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4399. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4400. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4401. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4402. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4403. tmp |= (0x3F << 8);
  4404. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4405. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4406. tmp |= (0x3F << 8);
  4407. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4408. }
  4409. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4410. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4411. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4412. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4413. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4414. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4415. if (!is_sdv) {
  4416. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4417. tmp &= ~(7 << 13);
  4418. tmp |= (5 << 13);
  4419. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4420. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4421. tmp &= ~(7 << 13);
  4422. tmp |= (5 << 13);
  4423. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4424. }
  4425. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4426. tmp &= ~0xFF;
  4427. tmp |= 0x1C;
  4428. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4429. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4430. tmp &= ~0xFF;
  4431. tmp |= 0x1C;
  4432. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4433. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4434. tmp &= ~(0xFF << 16);
  4435. tmp |= (0x1C << 16);
  4436. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4437. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4438. tmp &= ~(0xFF << 16);
  4439. tmp |= (0x1C << 16);
  4440. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4441. if (!is_sdv) {
  4442. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4443. tmp |= (1 << 27);
  4444. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4445. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4446. tmp |= (1 << 27);
  4447. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4448. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4449. tmp &= ~(0xF << 28);
  4450. tmp |= (4 << 28);
  4451. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4452. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4453. tmp &= ~(0xF << 28);
  4454. tmp |= (4 << 28);
  4455. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4456. }
  4457. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4458. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4459. tmp |= SBI_DBUFF0_ENABLE;
  4460. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4461. mutex_unlock(&dev_priv->dpio_lock);
  4462. }
  4463. /*
  4464. * Initialize reference clocks when the driver loads
  4465. */
  4466. void intel_init_pch_refclk(struct drm_device *dev)
  4467. {
  4468. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4469. ironlake_init_pch_refclk(dev);
  4470. else if (HAS_PCH_LPT(dev))
  4471. lpt_init_pch_refclk(dev);
  4472. }
  4473. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4474. {
  4475. struct drm_device *dev = crtc->dev;
  4476. struct drm_i915_private *dev_priv = dev->dev_private;
  4477. struct intel_encoder *encoder;
  4478. int num_connectors = 0;
  4479. bool is_lvds = false;
  4480. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4481. switch (encoder->type) {
  4482. case INTEL_OUTPUT_LVDS:
  4483. is_lvds = true;
  4484. break;
  4485. }
  4486. num_connectors++;
  4487. }
  4488. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4489. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4490. dev_priv->vbt.lvds_ssc_freq);
  4491. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4492. }
  4493. return 120000;
  4494. }
  4495. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4496. {
  4497. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4498. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4499. int pipe = intel_crtc->pipe;
  4500. uint32_t val;
  4501. val = I915_READ(PIPECONF(pipe));
  4502. val &= ~PIPECONF_BPC_MASK;
  4503. switch (intel_crtc->config.pipe_bpp) {
  4504. case 18:
  4505. val |= PIPECONF_6BPC;
  4506. break;
  4507. case 24:
  4508. val |= PIPECONF_8BPC;
  4509. break;
  4510. case 30:
  4511. val |= PIPECONF_10BPC;
  4512. break;
  4513. case 36:
  4514. val |= PIPECONF_12BPC;
  4515. break;
  4516. default:
  4517. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4518. BUG();
  4519. }
  4520. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4521. if (intel_crtc->config.dither)
  4522. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4523. val &= ~PIPECONF_INTERLACE_MASK;
  4524. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4525. val |= PIPECONF_INTERLACED_ILK;
  4526. else
  4527. val |= PIPECONF_PROGRESSIVE;
  4528. if (intel_crtc->config.limited_color_range)
  4529. val |= PIPECONF_COLOR_RANGE_SELECT;
  4530. else
  4531. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4532. I915_WRITE(PIPECONF(pipe), val);
  4533. POSTING_READ(PIPECONF(pipe));
  4534. }
  4535. /*
  4536. * Set up the pipe CSC unit.
  4537. *
  4538. * Currently only full range RGB to limited range RGB conversion
  4539. * is supported, but eventually this should handle various
  4540. * RGB<->YCbCr scenarios as well.
  4541. */
  4542. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4543. {
  4544. struct drm_device *dev = crtc->dev;
  4545. struct drm_i915_private *dev_priv = dev->dev_private;
  4546. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4547. int pipe = intel_crtc->pipe;
  4548. uint16_t coeff = 0x7800; /* 1.0 */
  4549. /*
  4550. * TODO: Check what kind of values actually come out of the pipe
  4551. * with these coeff/postoff values and adjust to get the best
  4552. * accuracy. Perhaps we even need to take the bpc value into
  4553. * consideration.
  4554. */
  4555. if (intel_crtc->config.limited_color_range)
  4556. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4557. /*
  4558. * GY/GU and RY/RU should be the other way around according
  4559. * to BSpec, but reality doesn't agree. Just set them up in
  4560. * a way that results in the correct picture.
  4561. */
  4562. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4563. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4564. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4565. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4566. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4567. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4568. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4569. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4570. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4571. if (INTEL_INFO(dev)->gen > 6) {
  4572. uint16_t postoff = 0;
  4573. if (intel_crtc->config.limited_color_range)
  4574. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4575. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4576. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4577. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4578. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4579. } else {
  4580. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4581. if (intel_crtc->config.limited_color_range)
  4582. mode |= CSC_BLACK_SCREEN_OFFSET;
  4583. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4584. }
  4585. }
  4586. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4587. {
  4588. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4589. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4590. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4591. uint32_t val;
  4592. val = I915_READ(PIPECONF(cpu_transcoder));
  4593. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4594. if (intel_crtc->config.dither)
  4595. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4596. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4597. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4598. val |= PIPECONF_INTERLACED_ILK;
  4599. else
  4600. val |= PIPECONF_PROGRESSIVE;
  4601. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4602. POSTING_READ(PIPECONF(cpu_transcoder));
  4603. }
  4604. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4605. struct drm_display_mode *adjusted_mode,
  4606. intel_clock_t *clock,
  4607. bool *has_reduced_clock,
  4608. intel_clock_t *reduced_clock)
  4609. {
  4610. struct drm_device *dev = crtc->dev;
  4611. struct drm_i915_private *dev_priv = dev->dev_private;
  4612. struct intel_encoder *intel_encoder;
  4613. int refclk;
  4614. const intel_limit_t *limit;
  4615. bool ret, is_lvds = false;
  4616. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4617. switch (intel_encoder->type) {
  4618. case INTEL_OUTPUT_LVDS:
  4619. is_lvds = true;
  4620. break;
  4621. }
  4622. }
  4623. refclk = ironlake_get_refclk(crtc);
  4624. /*
  4625. * Returns a set of divisors for the desired target clock with the given
  4626. * refclk, or FALSE. The returned values represent the clock equation:
  4627. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4628. */
  4629. limit = intel_limit(crtc, refclk);
  4630. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4631. clock);
  4632. if (!ret)
  4633. return false;
  4634. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4635. /*
  4636. * Ensure we match the reduced clock's P to the target clock.
  4637. * If the clocks don't match, we can't switch the display clock
  4638. * by using the FP0/FP1. In such case we will disable the LVDS
  4639. * downclock feature.
  4640. */
  4641. *has_reduced_clock = limit->find_pll(limit, crtc,
  4642. dev_priv->lvds_downclock,
  4643. refclk,
  4644. clock,
  4645. reduced_clock);
  4646. }
  4647. return true;
  4648. }
  4649. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4650. {
  4651. struct drm_i915_private *dev_priv = dev->dev_private;
  4652. uint32_t temp;
  4653. temp = I915_READ(SOUTH_CHICKEN1);
  4654. if (temp & FDI_BC_BIFURCATION_SELECT)
  4655. return;
  4656. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4657. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4658. temp |= FDI_BC_BIFURCATION_SELECT;
  4659. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4660. I915_WRITE(SOUTH_CHICKEN1, temp);
  4661. POSTING_READ(SOUTH_CHICKEN1);
  4662. }
  4663. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4664. {
  4665. struct drm_device *dev = intel_crtc->base.dev;
  4666. struct drm_i915_private *dev_priv = dev->dev_private;
  4667. switch (intel_crtc->pipe) {
  4668. case PIPE_A:
  4669. break;
  4670. case PIPE_B:
  4671. if (intel_crtc->config.fdi_lanes > 2)
  4672. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4673. else
  4674. cpt_enable_fdi_bc_bifurcation(dev);
  4675. break;
  4676. case PIPE_C:
  4677. cpt_enable_fdi_bc_bifurcation(dev);
  4678. break;
  4679. default:
  4680. BUG();
  4681. }
  4682. }
  4683. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4684. {
  4685. /*
  4686. * Account for spread spectrum to avoid
  4687. * oversubscribing the link. Max center spread
  4688. * is 2.5%; use 5% for safety's sake.
  4689. */
  4690. u32 bps = target_clock * bpp * 21 / 20;
  4691. return bps / (link_bw * 8) + 1;
  4692. }
  4693. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4694. {
  4695. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4696. }
  4697. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4698. u32 *fp,
  4699. intel_clock_t *reduced_clock, u32 *fp2)
  4700. {
  4701. struct drm_crtc *crtc = &intel_crtc->base;
  4702. struct drm_device *dev = crtc->dev;
  4703. struct drm_i915_private *dev_priv = dev->dev_private;
  4704. struct intel_encoder *intel_encoder;
  4705. uint32_t dpll;
  4706. int factor, num_connectors = 0;
  4707. bool is_lvds = false, is_sdvo = false;
  4708. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4709. switch (intel_encoder->type) {
  4710. case INTEL_OUTPUT_LVDS:
  4711. is_lvds = true;
  4712. break;
  4713. case INTEL_OUTPUT_SDVO:
  4714. case INTEL_OUTPUT_HDMI:
  4715. is_sdvo = true;
  4716. break;
  4717. }
  4718. num_connectors++;
  4719. }
  4720. /* Enable autotuning of the PLL clock (if permissible) */
  4721. factor = 21;
  4722. if (is_lvds) {
  4723. if ((intel_panel_use_ssc(dev_priv) &&
  4724. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4725. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4726. factor = 25;
  4727. } else if (intel_crtc->config.sdvo_tv_clock)
  4728. factor = 20;
  4729. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4730. *fp |= FP_CB_TUNE;
  4731. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4732. *fp2 |= FP_CB_TUNE;
  4733. dpll = 0;
  4734. if (is_lvds)
  4735. dpll |= DPLLB_MODE_LVDS;
  4736. else
  4737. dpll |= DPLLB_MODE_DAC_SERIAL;
  4738. if (intel_crtc->config.pixel_multiplier > 1) {
  4739. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4740. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4741. }
  4742. if (is_sdvo)
  4743. dpll |= DPLL_DVO_HIGH_SPEED;
  4744. if (intel_crtc->config.has_dp_encoder)
  4745. dpll |= DPLL_DVO_HIGH_SPEED;
  4746. /* compute bitmask from p1 value */
  4747. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4748. /* also FPA1 */
  4749. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4750. switch (intel_crtc->config.dpll.p2) {
  4751. case 5:
  4752. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4753. break;
  4754. case 7:
  4755. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4756. break;
  4757. case 10:
  4758. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4759. break;
  4760. case 14:
  4761. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4762. break;
  4763. }
  4764. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4765. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4766. else
  4767. dpll |= PLL_REF_INPUT_DREFCLK;
  4768. return dpll;
  4769. }
  4770. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4771. int x, int y,
  4772. struct drm_framebuffer *fb)
  4773. {
  4774. struct drm_device *dev = crtc->dev;
  4775. struct drm_i915_private *dev_priv = dev->dev_private;
  4776. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4777. struct drm_display_mode *adjusted_mode =
  4778. &intel_crtc->config.adjusted_mode;
  4779. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4780. int pipe = intel_crtc->pipe;
  4781. int plane = intel_crtc->plane;
  4782. int num_connectors = 0;
  4783. intel_clock_t clock, reduced_clock;
  4784. u32 dpll = 0, fp = 0, fp2 = 0;
  4785. bool ok, has_reduced_clock = false;
  4786. bool is_lvds = false;
  4787. struct intel_encoder *encoder;
  4788. int ret;
  4789. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4790. switch (encoder->type) {
  4791. case INTEL_OUTPUT_LVDS:
  4792. is_lvds = true;
  4793. break;
  4794. }
  4795. num_connectors++;
  4796. }
  4797. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4798. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4799. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4800. &has_reduced_clock, &reduced_clock);
  4801. if (!ok) {
  4802. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4803. return -EINVAL;
  4804. }
  4805. /* Compat-code for transition, will disappear. */
  4806. if (!intel_crtc->config.clock_set) {
  4807. intel_crtc->config.dpll.n = clock.n;
  4808. intel_crtc->config.dpll.m1 = clock.m1;
  4809. intel_crtc->config.dpll.m2 = clock.m2;
  4810. intel_crtc->config.dpll.p1 = clock.p1;
  4811. intel_crtc->config.dpll.p2 = clock.p2;
  4812. }
  4813. /* Ensure that the cursor is valid for the new mode before changing... */
  4814. intel_crtc_update_cursor(crtc, true);
  4815. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4816. if (intel_crtc->config.has_pch_encoder) {
  4817. struct intel_pch_pll *pll;
  4818. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4819. if (has_reduced_clock)
  4820. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4821. dpll = ironlake_compute_dpll(intel_crtc,
  4822. &fp, &reduced_clock,
  4823. has_reduced_clock ? &fp2 : NULL);
  4824. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4825. if (pll == NULL) {
  4826. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4827. pipe_name(pipe));
  4828. return -EINVAL;
  4829. }
  4830. } else
  4831. intel_put_pch_pll(intel_crtc);
  4832. if (intel_crtc->config.has_dp_encoder)
  4833. intel_dp_set_m_n(intel_crtc);
  4834. for_each_encoder_on_crtc(dev, crtc, encoder)
  4835. if (encoder->pre_pll_enable)
  4836. encoder->pre_pll_enable(encoder);
  4837. if (intel_crtc->pch_pll) {
  4838. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4839. /* Wait for the clocks to stabilize. */
  4840. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4841. udelay(150);
  4842. /* The pixel multiplier can only be updated once the
  4843. * DPLL is enabled and the clocks are stable.
  4844. *
  4845. * So write it again.
  4846. */
  4847. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4848. }
  4849. intel_crtc->lowfreq_avail = false;
  4850. if (intel_crtc->pch_pll) {
  4851. if (is_lvds && has_reduced_clock && i915_powersave) {
  4852. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4853. intel_crtc->lowfreq_avail = true;
  4854. } else {
  4855. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4856. }
  4857. }
  4858. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4859. if (intel_crtc->config.has_pch_encoder) {
  4860. intel_cpu_transcoder_set_m_n(intel_crtc,
  4861. &intel_crtc->config.fdi_m_n);
  4862. }
  4863. if (IS_IVYBRIDGE(dev))
  4864. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4865. ironlake_set_pipeconf(crtc);
  4866. /* Set up the display plane register */
  4867. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4868. POSTING_READ(DSPCNTR(plane));
  4869. ret = intel_pipe_set_base(crtc, x, y, fb);
  4870. intel_update_watermarks(dev);
  4871. return ret;
  4872. }
  4873. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4874. struct intel_crtc_config *pipe_config)
  4875. {
  4876. struct drm_device *dev = crtc->base.dev;
  4877. struct drm_i915_private *dev_priv = dev->dev_private;
  4878. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4879. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4880. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4881. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4882. & ~TU_SIZE_MASK;
  4883. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4884. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4885. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4886. }
  4887. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4888. struct intel_crtc_config *pipe_config)
  4889. {
  4890. struct drm_device *dev = crtc->base.dev;
  4891. struct drm_i915_private *dev_priv = dev->dev_private;
  4892. uint32_t tmp;
  4893. tmp = I915_READ(PF_CTL(crtc->pipe));
  4894. if (tmp & PF_ENABLE) {
  4895. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4896. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4897. }
  4898. }
  4899. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4900. struct intel_crtc_config *pipe_config)
  4901. {
  4902. struct drm_device *dev = crtc->base.dev;
  4903. struct drm_i915_private *dev_priv = dev->dev_private;
  4904. uint32_t tmp;
  4905. pipe_config->cpu_transcoder = crtc->pipe;
  4906. tmp = I915_READ(PIPECONF(crtc->pipe));
  4907. if (!(tmp & PIPECONF_ENABLE))
  4908. return false;
  4909. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4910. pipe_config->has_pch_encoder = true;
  4911. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4912. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4913. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4914. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4915. }
  4916. intel_get_pipe_timings(crtc, pipe_config);
  4917. ironlake_get_pfit_config(crtc, pipe_config);
  4918. return true;
  4919. }
  4920. static void haswell_modeset_global_resources(struct drm_device *dev)
  4921. {
  4922. bool enable = false;
  4923. struct intel_crtc *crtc;
  4924. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4925. if (!crtc->base.enabled)
  4926. continue;
  4927. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4928. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4929. enable = true;
  4930. }
  4931. intel_set_power_well(dev, enable);
  4932. }
  4933. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4934. int x, int y,
  4935. struct drm_framebuffer *fb)
  4936. {
  4937. struct drm_device *dev = crtc->dev;
  4938. struct drm_i915_private *dev_priv = dev->dev_private;
  4939. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4940. struct drm_display_mode *adjusted_mode =
  4941. &intel_crtc->config.adjusted_mode;
  4942. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4943. int pipe = intel_crtc->pipe;
  4944. int plane = intel_crtc->plane;
  4945. int num_connectors = 0;
  4946. bool is_cpu_edp = false;
  4947. struct intel_encoder *encoder;
  4948. int ret;
  4949. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4950. switch (encoder->type) {
  4951. case INTEL_OUTPUT_EDP:
  4952. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4953. is_cpu_edp = true;
  4954. break;
  4955. }
  4956. num_connectors++;
  4957. }
  4958. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4959. num_connectors, pipe_name(pipe));
  4960. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4961. return -EINVAL;
  4962. /* Ensure that the cursor is valid for the new mode before changing... */
  4963. intel_crtc_update_cursor(crtc, true);
  4964. if (intel_crtc->config.has_dp_encoder)
  4965. intel_dp_set_m_n(intel_crtc);
  4966. intel_crtc->lowfreq_avail = false;
  4967. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4968. if (intel_crtc->config.has_pch_encoder) {
  4969. intel_cpu_transcoder_set_m_n(intel_crtc,
  4970. &intel_crtc->config.fdi_m_n);
  4971. }
  4972. haswell_set_pipeconf(crtc);
  4973. intel_set_pipe_csc(crtc);
  4974. /* Set up the display plane register */
  4975. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4976. POSTING_READ(DSPCNTR(plane));
  4977. ret = intel_pipe_set_base(crtc, x, y, fb);
  4978. intel_update_watermarks(dev);
  4979. return ret;
  4980. }
  4981. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4982. struct intel_crtc_config *pipe_config)
  4983. {
  4984. struct drm_device *dev = crtc->base.dev;
  4985. struct drm_i915_private *dev_priv = dev->dev_private;
  4986. enum intel_display_power_domain pfit_domain;
  4987. uint32_t tmp;
  4988. pipe_config->cpu_transcoder = crtc->pipe;
  4989. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4990. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4991. enum pipe trans_edp_pipe;
  4992. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4993. default:
  4994. WARN(1, "unknown pipe linked to edp transcoder\n");
  4995. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  4996. case TRANS_DDI_EDP_INPUT_A_ON:
  4997. trans_edp_pipe = PIPE_A;
  4998. break;
  4999. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5000. trans_edp_pipe = PIPE_B;
  5001. break;
  5002. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5003. trans_edp_pipe = PIPE_C;
  5004. break;
  5005. }
  5006. if (trans_edp_pipe == crtc->pipe)
  5007. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5008. }
  5009. if (!intel_display_power_enabled(dev,
  5010. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5011. return false;
  5012. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5013. if (!(tmp & PIPECONF_ENABLE))
  5014. return false;
  5015. /*
  5016. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5017. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5018. * the PCH transcoder is on.
  5019. */
  5020. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5021. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5022. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5023. pipe_config->has_pch_encoder = true;
  5024. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5025. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5026. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5027. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5028. }
  5029. intel_get_pipe_timings(crtc, pipe_config);
  5030. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5031. if (intel_display_power_enabled(dev, pfit_domain))
  5032. ironlake_get_pfit_config(crtc, pipe_config);
  5033. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5034. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5035. return true;
  5036. }
  5037. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5038. int x, int y,
  5039. struct drm_framebuffer *fb)
  5040. {
  5041. struct drm_device *dev = crtc->dev;
  5042. struct drm_i915_private *dev_priv = dev->dev_private;
  5043. struct drm_encoder_helper_funcs *encoder_funcs;
  5044. struct intel_encoder *encoder;
  5045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5046. struct drm_display_mode *adjusted_mode =
  5047. &intel_crtc->config.adjusted_mode;
  5048. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5049. int pipe = intel_crtc->pipe;
  5050. int ret;
  5051. drm_vblank_pre_modeset(dev, pipe);
  5052. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5053. drm_vblank_post_modeset(dev, pipe);
  5054. if (ret != 0)
  5055. return ret;
  5056. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5057. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5058. encoder->base.base.id,
  5059. drm_get_encoder_name(&encoder->base),
  5060. mode->base.id, mode->name);
  5061. if (encoder->mode_set) {
  5062. encoder->mode_set(encoder);
  5063. } else {
  5064. encoder_funcs = encoder->base.helper_private;
  5065. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5066. }
  5067. }
  5068. return 0;
  5069. }
  5070. static bool intel_eld_uptodate(struct drm_connector *connector,
  5071. int reg_eldv, uint32_t bits_eldv,
  5072. int reg_elda, uint32_t bits_elda,
  5073. int reg_edid)
  5074. {
  5075. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5076. uint8_t *eld = connector->eld;
  5077. uint32_t i;
  5078. i = I915_READ(reg_eldv);
  5079. i &= bits_eldv;
  5080. if (!eld[0])
  5081. return !i;
  5082. if (!i)
  5083. return false;
  5084. i = I915_READ(reg_elda);
  5085. i &= ~bits_elda;
  5086. I915_WRITE(reg_elda, i);
  5087. for (i = 0; i < eld[2]; i++)
  5088. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5089. return false;
  5090. return true;
  5091. }
  5092. static void g4x_write_eld(struct drm_connector *connector,
  5093. struct drm_crtc *crtc)
  5094. {
  5095. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5096. uint8_t *eld = connector->eld;
  5097. uint32_t eldv;
  5098. uint32_t len;
  5099. uint32_t i;
  5100. i = I915_READ(G4X_AUD_VID_DID);
  5101. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5102. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5103. else
  5104. eldv = G4X_ELDV_DEVCTG;
  5105. if (intel_eld_uptodate(connector,
  5106. G4X_AUD_CNTL_ST, eldv,
  5107. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5108. G4X_HDMIW_HDMIEDID))
  5109. return;
  5110. i = I915_READ(G4X_AUD_CNTL_ST);
  5111. i &= ~(eldv | G4X_ELD_ADDR);
  5112. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5113. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5114. if (!eld[0])
  5115. return;
  5116. len = min_t(uint8_t, eld[2], len);
  5117. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5118. for (i = 0; i < len; i++)
  5119. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5120. i = I915_READ(G4X_AUD_CNTL_ST);
  5121. i |= eldv;
  5122. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5123. }
  5124. static void haswell_write_eld(struct drm_connector *connector,
  5125. struct drm_crtc *crtc)
  5126. {
  5127. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5128. uint8_t *eld = connector->eld;
  5129. struct drm_device *dev = crtc->dev;
  5130. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5131. uint32_t eldv;
  5132. uint32_t i;
  5133. int len;
  5134. int pipe = to_intel_crtc(crtc)->pipe;
  5135. int tmp;
  5136. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5137. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5138. int aud_config = HSW_AUD_CFG(pipe);
  5139. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5140. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5141. /* Audio output enable */
  5142. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5143. tmp = I915_READ(aud_cntrl_st2);
  5144. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5145. I915_WRITE(aud_cntrl_st2, tmp);
  5146. /* Wait for 1 vertical blank */
  5147. intel_wait_for_vblank(dev, pipe);
  5148. /* Set ELD valid state */
  5149. tmp = I915_READ(aud_cntrl_st2);
  5150. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5151. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5152. I915_WRITE(aud_cntrl_st2, tmp);
  5153. tmp = I915_READ(aud_cntrl_st2);
  5154. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5155. /* Enable HDMI mode */
  5156. tmp = I915_READ(aud_config);
  5157. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5158. /* clear N_programing_enable and N_value_index */
  5159. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5160. I915_WRITE(aud_config, tmp);
  5161. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5162. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5163. intel_crtc->eld_vld = true;
  5164. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5165. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5166. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5167. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5168. } else
  5169. I915_WRITE(aud_config, 0);
  5170. if (intel_eld_uptodate(connector,
  5171. aud_cntrl_st2, eldv,
  5172. aud_cntl_st, IBX_ELD_ADDRESS,
  5173. hdmiw_hdmiedid))
  5174. return;
  5175. i = I915_READ(aud_cntrl_st2);
  5176. i &= ~eldv;
  5177. I915_WRITE(aud_cntrl_st2, i);
  5178. if (!eld[0])
  5179. return;
  5180. i = I915_READ(aud_cntl_st);
  5181. i &= ~IBX_ELD_ADDRESS;
  5182. I915_WRITE(aud_cntl_st, i);
  5183. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5184. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5185. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5186. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5187. for (i = 0; i < len; i++)
  5188. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5189. i = I915_READ(aud_cntrl_st2);
  5190. i |= eldv;
  5191. I915_WRITE(aud_cntrl_st2, i);
  5192. }
  5193. static void ironlake_write_eld(struct drm_connector *connector,
  5194. struct drm_crtc *crtc)
  5195. {
  5196. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5197. uint8_t *eld = connector->eld;
  5198. uint32_t eldv;
  5199. uint32_t i;
  5200. int len;
  5201. int hdmiw_hdmiedid;
  5202. int aud_config;
  5203. int aud_cntl_st;
  5204. int aud_cntrl_st2;
  5205. int pipe = to_intel_crtc(crtc)->pipe;
  5206. if (HAS_PCH_IBX(connector->dev)) {
  5207. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5208. aud_config = IBX_AUD_CFG(pipe);
  5209. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5210. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5211. } else {
  5212. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5213. aud_config = CPT_AUD_CFG(pipe);
  5214. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5215. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5216. }
  5217. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5218. i = I915_READ(aud_cntl_st);
  5219. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5220. if (!i) {
  5221. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5222. /* operate blindly on all ports */
  5223. eldv = IBX_ELD_VALIDB;
  5224. eldv |= IBX_ELD_VALIDB << 4;
  5225. eldv |= IBX_ELD_VALIDB << 8;
  5226. } else {
  5227. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5228. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5229. }
  5230. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5231. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5232. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5233. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5234. } else
  5235. I915_WRITE(aud_config, 0);
  5236. if (intel_eld_uptodate(connector,
  5237. aud_cntrl_st2, eldv,
  5238. aud_cntl_st, IBX_ELD_ADDRESS,
  5239. hdmiw_hdmiedid))
  5240. return;
  5241. i = I915_READ(aud_cntrl_st2);
  5242. i &= ~eldv;
  5243. I915_WRITE(aud_cntrl_st2, i);
  5244. if (!eld[0])
  5245. return;
  5246. i = I915_READ(aud_cntl_st);
  5247. i &= ~IBX_ELD_ADDRESS;
  5248. I915_WRITE(aud_cntl_st, i);
  5249. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5250. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5251. for (i = 0; i < len; i++)
  5252. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5253. i = I915_READ(aud_cntrl_st2);
  5254. i |= eldv;
  5255. I915_WRITE(aud_cntrl_st2, i);
  5256. }
  5257. void intel_write_eld(struct drm_encoder *encoder,
  5258. struct drm_display_mode *mode)
  5259. {
  5260. struct drm_crtc *crtc = encoder->crtc;
  5261. struct drm_connector *connector;
  5262. struct drm_device *dev = encoder->dev;
  5263. struct drm_i915_private *dev_priv = dev->dev_private;
  5264. connector = drm_select_eld(encoder, mode);
  5265. if (!connector)
  5266. return;
  5267. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5268. connector->base.id,
  5269. drm_get_connector_name(connector),
  5270. connector->encoder->base.id,
  5271. drm_get_encoder_name(connector->encoder));
  5272. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5273. if (dev_priv->display.write_eld)
  5274. dev_priv->display.write_eld(connector, crtc);
  5275. }
  5276. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5277. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5278. {
  5279. struct drm_device *dev = crtc->dev;
  5280. struct drm_i915_private *dev_priv = dev->dev_private;
  5281. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5282. enum pipe pipe = intel_crtc->pipe;
  5283. int palreg = PALETTE(pipe);
  5284. int i;
  5285. bool reenable_ips = false;
  5286. /* The clocks have to be on to load the palette. */
  5287. if (!crtc->enabled || !intel_crtc->active)
  5288. return;
  5289. /* use legacy palette for Ironlake */
  5290. if (HAS_PCH_SPLIT(dev))
  5291. palreg = LGC_PALETTE(pipe);
  5292. /* Workaround : Do not read or write the pipe palette/gamma data while
  5293. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5294. */
  5295. if (intel_crtc->config.ips_enabled &&
  5296. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5297. GAMMA_MODE_MODE_SPLIT)) {
  5298. hsw_disable_ips(intel_crtc);
  5299. reenable_ips = true;
  5300. }
  5301. for (i = 0; i < 256; i++) {
  5302. I915_WRITE(palreg + 4 * i,
  5303. (intel_crtc->lut_r[i] << 16) |
  5304. (intel_crtc->lut_g[i] << 8) |
  5305. intel_crtc->lut_b[i]);
  5306. }
  5307. if (reenable_ips)
  5308. hsw_enable_ips(intel_crtc);
  5309. }
  5310. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5311. {
  5312. struct drm_device *dev = crtc->dev;
  5313. struct drm_i915_private *dev_priv = dev->dev_private;
  5314. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5315. bool visible = base != 0;
  5316. u32 cntl;
  5317. if (intel_crtc->cursor_visible == visible)
  5318. return;
  5319. cntl = I915_READ(_CURACNTR);
  5320. if (visible) {
  5321. /* On these chipsets we can only modify the base whilst
  5322. * the cursor is disabled.
  5323. */
  5324. I915_WRITE(_CURABASE, base);
  5325. cntl &= ~(CURSOR_FORMAT_MASK);
  5326. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5327. cntl |= CURSOR_ENABLE |
  5328. CURSOR_GAMMA_ENABLE |
  5329. CURSOR_FORMAT_ARGB;
  5330. } else
  5331. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5332. I915_WRITE(_CURACNTR, cntl);
  5333. intel_crtc->cursor_visible = visible;
  5334. }
  5335. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5336. {
  5337. struct drm_device *dev = crtc->dev;
  5338. struct drm_i915_private *dev_priv = dev->dev_private;
  5339. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5340. int pipe = intel_crtc->pipe;
  5341. bool visible = base != 0;
  5342. if (intel_crtc->cursor_visible != visible) {
  5343. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5344. if (base) {
  5345. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5346. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5347. cntl |= pipe << 28; /* Connect to correct pipe */
  5348. } else {
  5349. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5350. cntl |= CURSOR_MODE_DISABLE;
  5351. }
  5352. I915_WRITE(CURCNTR(pipe), cntl);
  5353. intel_crtc->cursor_visible = visible;
  5354. }
  5355. /* and commit changes on next vblank */
  5356. I915_WRITE(CURBASE(pipe), base);
  5357. }
  5358. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5359. {
  5360. struct drm_device *dev = crtc->dev;
  5361. struct drm_i915_private *dev_priv = dev->dev_private;
  5362. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5363. int pipe = intel_crtc->pipe;
  5364. bool visible = base != 0;
  5365. if (intel_crtc->cursor_visible != visible) {
  5366. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5367. if (base) {
  5368. cntl &= ~CURSOR_MODE;
  5369. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5370. } else {
  5371. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5372. cntl |= CURSOR_MODE_DISABLE;
  5373. }
  5374. if (IS_HASWELL(dev))
  5375. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5376. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5377. intel_crtc->cursor_visible = visible;
  5378. }
  5379. /* and commit changes on next vblank */
  5380. I915_WRITE(CURBASE_IVB(pipe), base);
  5381. }
  5382. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5383. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5384. bool on)
  5385. {
  5386. struct drm_device *dev = crtc->dev;
  5387. struct drm_i915_private *dev_priv = dev->dev_private;
  5388. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5389. int pipe = intel_crtc->pipe;
  5390. int x = intel_crtc->cursor_x;
  5391. int y = intel_crtc->cursor_y;
  5392. u32 base, pos;
  5393. bool visible;
  5394. pos = 0;
  5395. if (on && crtc->enabled && crtc->fb) {
  5396. base = intel_crtc->cursor_addr;
  5397. if (x > (int) crtc->fb->width)
  5398. base = 0;
  5399. if (y > (int) crtc->fb->height)
  5400. base = 0;
  5401. } else
  5402. base = 0;
  5403. if (x < 0) {
  5404. if (x + intel_crtc->cursor_width < 0)
  5405. base = 0;
  5406. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5407. x = -x;
  5408. }
  5409. pos |= x << CURSOR_X_SHIFT;
  5410. if (y < 0) {
  5411. if (y + intel_crtc->cursor_height < 0)
  5412. base = 0;
  5413. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5414. y = -y;
  5415. }
  5416. pos |= y << CURSOR_Y_SHIFT;
  5417. visible = base != 0;
  5418. if (!visible && !intel_crtc->cursor_visible)
  5419. return;
  5420. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5421. I915_WRITE(CURPOS_IVB(pipe), pos);
  5422. ivb_update_cursor(crtc, base);
  5423. } else {
  5424. I915_WRITE(CURPOS(pipe), pos);
  5425. if (IS_845G(dev) || IS_I865G(dev))
  5426. i845_update_cursor(crtc, base);
  5427. else
  5428. i9xx_update_cursor(crtc, base);
  5429. }
  5430. }
  5431. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5432. struct drm_file *file,
  5433. uint32_t handle,
  5434. uint32_t width, uint32_t height)
  5435. {
  5436. struct drm_device *dev = crtc->dev;
  5437. struct drm_i915_private *dev_priv = dev->dev_private;
  5438. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5439. struct drm_i915_gem_object *obj;
  5440. uint32_t addr;
  5441. int ret;
  5442. /* if we want to turn off the cursor ignore width and height */
  5443. if (!handle) {
  5444. DRM_DEBUG_KMS("cursor off\n");
  5445. addr = 0;
  5446. obj = NULL;
  5447. mutex_lock(&dev->struct_mutex);
  5448. goto finish;
  5449. }
  5450. /* Currently we only support 64x64 cursors */
  5451. if (width != 64 || height != 64) {
  5452. DRM_ERROR("we currently only support 64x64 cursors\n");
  5453. return -EINVAL;
  5454. }
  5455. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5456. if (&obj->base == NULL)
  5457. return -ENOENT;
  5458. if (obj->base.size < width * height * 4) {
  5459. DRM_ERROR("buffer is to small\n");
  5460. ret = -ENOMEM;
  5461. goto fail;
  5462. }
  5463. /* we only need to pin inside GTT if cursor is non-phy */
  5464. mutex_lock(&dev->struct_mutex);
  5465. if (!dev_priv->info->cursor_needs_physical) {
  5466. unsigned alignment;
  5467. if (obj->tiling_mode) {
  5468. DRM_ERROR("cursor cannot be tiled\n");
  5469. ret = -EINVAL;
  5470. goto fail_locked;
  5471. }
  5472. /* Note that the w/a also requires 2 PTE of padding following
  5473. * the bo. We currently fill all unused PTE with the shadow
  5474. * page and so we should always have valid PTE following the
  5475. * cursor preventing the VT-d warning.
  5476. */
  5477. alignment = 0;
  5478. if (need_vtd_wa(dev))
  5479. alignment = 64*1024;
  5480. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5481. if (ret) {
  5482. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5483. goto fail_locked;
  5484. }
  5485. ret = i915_gem_object_put_fence(obj);
  5486. if (ret) {
  5487. DRM_ERROR("failed to release fence for cursor");
  5488. goto fail_unpin;
  5489. }
  5490. addr = obj->gtt_offset;
  5491. } else {
  5492. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5493. ret = i915_gem_attach_phys_object(dev, obj,
  5494. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5495. align);
  5496. if (ret) {
  5497. DRM_ERROR("failed to attach phys object\n");
  5498. goto fail_locked;
  5499. }
  5500. addr = obj->phys_obj->handle->busaddr;
  5501. }
  5502. if (IS_GEN2(dev))
  5503. I915_WRITE(CURSIZE, (height << 12) | width);
  5504. finish:
  5505. if (intel_crtc->cursor_bo) {
  5506. if (dev_priv->info->cursor_needs_physical) {
  5507. if (intel_crtc->cursor_bo != obj)
  5508. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5509. } else
  5510. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5511. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5512. }
  5513. mutex_unlock(&dev->struct_mutex);
  5514. intel_crtc->cursor_addr = addr;
  5515. intel_crtc->cursor_bo = obj;
  5516. intel_crtc->cursor_width = width;
  5517. intel_crtc->cursor_height = height;
  5518. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5519. return 0;
  5520. fail_unpin:
  5521. i915_gem_object_unpin(obj);
  5522. fail_locked:
  5523. mutex_unlock(&dev->struct_mutex);
  5524. fail:
  5525. drm_gem_object_unreference_unlocked(&obj->base);
  5526. return ret;
  5527. }
  5528. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5529. {
  5530. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5531. intel_crtc->cursor_x = x;
  5532. intel_crtc->cursor_y = y;
  5533. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5534. return 0;
  5535. }
  5536. /** Sets the color ramps on behalf of RandR */
  5537. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5538. u16 blue, int regno)
  5539. {
  5540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5541. intel_crtc->lut_r[regno] = red >> 8;
  5542. intel_crtc->lut_g[regno] = green >> 8;
  5543. intel_crtc->lut_b[regno] = blue >> 8;
  5544. }
  5545. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5546. u16 *blue, int regno)
  5547. {
  5548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5549. *red = intel_crtc->lut_r[regno] << 8;
  5550. *green = intel_crtc->lut_g[regno] << 8;
  5551. *blue = intel_crtc->lut_b[regno] << 8;
  5552. }
  5553. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5554. u16 *blue, uint32_t start, uint32_t size)
  5555. {
  5556. int end = (start + size > 256) ? 256 : start + size, i;
  5557. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5558. for (i = start; i < end; i++) {
  5559. intel_crtc->lut_r[i] = red[i] >> 8;
  5560. intel_crtc->lut_g[i] = green[i] >> 8;
  5561. intel_crtc->lut_b[i] = blue[i] >> 8;
  5562. }
  5563. intel_crtc_load_lut(crtc);
  5564. }
  5565. /* VESA 640x480x72Hz mode to set on the pipe */
  5566. static struct drm_display_mode load_detect_mode = {
  5567. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5568. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5569. };
  5570. static struct drm_framebuffer *
  5571. intel_framebuffer_create(struct drm_device *dev,
  5572. struct drm_mode_fb_cmd2 *mode_cmd,
  5573. struct drm_i915_gem_object *obj)
  5574. {
  5575. struct intel_framebuffer *intel_fb;
  5576. int ret;
  5577. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5578. if (!intel_fb) {
  5579. drm_gem_object_unreference_unlocked(&obj->base);
  5580. return ERR_PTR(-ENOMEM);
  5581. }
  5582. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5583. if (ret) {
  5584. drm_gem_object_unreference_unlocked(&obj->base);
  5585. kfree(intel_fb);
  5586. return ERR_PTR(ret);
  5587. }
  5588. return &intel_fb->base;
  5589. }
  5590. static u32
  5591. intel_framebuffer_pitch_for_width(int width, int bpp)
  5592. {
  5593. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5594. return ALIGN(pitch, 64);
  5595. }
  5596. static u32
  5597. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5598. {
  5599. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5600. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5601. }
  5602. static struct drm_framebuffer *
  5603. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5604. struct drm_display_mode *mode,
  5605. int depth, int bpp)
  5606. {
  5607. struct drm_i915_gem_object *obj;
  5608. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5609. obj = i915_gem_alloc_object(dev,
  5610. intel_framebuffer_size_for_mode(mode, bpp));
  5611. if (obj == NULL)
  5612. return ERR_PTR(-ENOMEM);
  5613. mode_cmd.width = mode->hdisplay;
  5614. mode_cmd.height = mode->vdisplay;
  5615. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5616. bpp);
  5617. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5618. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5619. }
  5620. static struct drm_framebuffer *
  5621. mode_fits_in_fbdev(struct drm_device *dev,
  5622. struct drm_display_mode *mode)
  5623. {
  5624. struct drm_i915_private *dev_priv = dev->dev_private;
  5625. struct drm_i915_gem_object *obj;
  5626. struct drm_framebuffer *fb;
  5627. if (dev_priv->fbdev == NULL)
  5628. return NULL;
  5629. obj = dev_priv->fbdev->ifb.obj;
  5630. if (obj == NULL)
  5631. return NULL;
  5632. fb = &dev_priv->fbdev->ifb.base;
  5633. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5634. fb->bits_per_pixel))
  5635. return NULL;
  5636. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5637. return NULL;
  5638. return fb;
  5639. }
  5640. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5641. struct drm_display_mode *mode,
  5642. struct intel_load_detect_pipe *old)
  5643. {
  5644. struct intel_crtc *intel_crtc;
  5645. struct intel_encoder *intel_encoder =
  5646. intel_attached_encoder(connector);
  5647. struct drm_crtc *possible_crtc;
  5648. struct drm_encoder *encoder = &intel_encoder->base;
  5649. struct drm_crtc *crtc = NULL;
  5650. struct drm_device *dev = encoder->dev;
  5651. struct drm_framebuffer *fb;
  5652. int i = -1;
  5653. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5654. connector->base.id, drm_get_connector_name(connector),
  5655. encoder->base.id, drm_get_encoder_name(encoder));
  5656. /*
  5657. * Algorithm gets a little messy:
  5658. *
  5659. * - if the connector already has an assigned crtc, use it (but make
  5660. * sure it's on first)
  5661. *
  5662. * - try to find the first unused crtc that can drive this connector,
  5663. * and use that if we find one
  5664. */
  5665. /* See if we already have a CRTC for this connector */
  5666. if (encoder->crtc) {
  5667. crtc = encoder->crtc;
  5668. mutex_lock(&crtc->mutex);
  5669. old->dpms_mode = connector->dpms;
  5670. old->load_detect_temp = false;
  5671. /* Make sure the crtc and connector are running */
  5672. if (connector->dpms != DRM_MODE_DPMS_ON)
  5673. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5674. return true;
  5675. }
  5676. /* Find an unused one (if possible) */
  5677. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5678. i++;
  5679. if (!(encoder->possible_crtcs & (1 << i)))
  5680. continue;
  5681. if (!possible_crtc->enabled) {
  5682. crtc = possible_crtc;
  5683. break;
  5684. }
  5685. }
  5686. /*
  5687. * If we didn't find an unused CRTC, don't use any.
  5688. */
  5689. if (!crtc) {
  5690. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5691. return false;
  5692. }
  5693. mutex_lock(&crtc->mutex);
  5694. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5695. to_intel_connector(connector)->new_encoder = intel_encoder;
  5696. intel_crtc = to_intel_crtc(crtc);
  5697. old->dpms_mode = connector->dpms;
  5698. old->load_detect_temp = true;
  5699. old->release_fb = NULL;
  5700. if (!mode)
  5701. mode = &load_detect_mode;
  5702. /* We need a framebuffer large enough to accommodate all accesses
  5703. * that the plane may generate whilst we perform load detection.
  5704. * We can not rely on the fbcon either being present (we get called
  5705. * during its initialisation to detect all boot displays, or it may
  5706. * not even exist) or that it is large enough to satisfy the
  5707. * requested mode.
  5708. */
  5709. fb = mode_fits_in_fbdev(dev, mode);
  5710. if (fb == NULL) {
  5711. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5712. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5713. old->release_fb = fb;
  5714. } else
  5715. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5716. if (IS_ERR(fb)) {
  5717. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5718. mutex_unlock(&crtc->mutex);
  5719. return false;
  5720. }
  5721. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5722. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5723. if (old->release_fb)
  5724. old->release_fb->funcs->destroy(old->release_fb);
  5725. mutex_unlock(&crtc->mutex);
  5726. return false;
  5727. }
  5728. /* let the connector get through one full cycle before testing */
  5729. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5730. return true;
  5731. }
  5732. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5733. struct intel_load_detect_pipe *old)
  5734. {
  5735. struct intel_encoder *intel_encoder =
  5736. intel_attached_encoder(connector);
  5737. struct drm_encoder *encoder = &intel_encoder->base;
  5738. struct drm_crtc *crtc = encoder->crtc;
  5739. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5740. connector->base.id, drm_get_connector_name(connector),
  5741. encoder->base.id, drm_get_encoder_name(encoder));
  5742. if (old->load_detect_temp) {
  5743. to_intel_connector(connector)->new_encoder = NULL;
  5744. intel_encoder->new_crtc = NULL;
  5745. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5746. if (old->release_fb) {
  5747. drm_framebuffer_unregister_private(old->release_fb);
  5748. drm_framebuffer_unreference(old->release_fb);
  5749. }
  5750. mutex_unlock(&crtc->mutex);
  5751. return;
  5752. }
  5753. /* Switch crtc and encoder back off if necessary */
  5754. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5755. connector->funcs->dpms(connector, old->dpms_mode);
  5756. mutex_unlock(&crtc->mutex);
  5757. }
  5758. /* Returns the clock of the currently programmed mode of the given pipe. */
  5759. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5760. {
  5761. struct drm_i915_private *dev_priv = dev->dev_private;
  5762. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5763. int pipe = intel_crtc->pipe;
  5764. u32 dpll = I915_READ(DPLL(pipe));
  5765. u32 fp;
  5766. intel_clock_t clock;
  5767. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5768. fp = I915_READ(FP0(pipe));
  5769. else
  5770. fp = I915_READ(FP1(pipe));
  5771. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5772. if (IS_PINEVIEW(dev)) {
  5773. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5774. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5775. } else {
  5776. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5777. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5778. }
  5779. if (!IS_GEN2(dev)) {
  5780. if (IS_PINEVIEW(dev))
  5781. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5782. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5783. else
  5784. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5785. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5786. switch (dpll & DPLL_MODE_MASK) {
  5787. case DPLLB_MODE_DAC_SERIAL:
  5788. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5789. 5 : 10;
  5790. break;
  5791. case DPLLB_MODE_LVDS:
  5792. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5793. 7 : 14;
  5794. break;
  5795. default:
  5796. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5797. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5798. return 0;
  5799. }
  5800. /* XXX: Handle the 100Mhz refclk */
  5801. intel_clock(dev, 96000, &clock);
  5802. } else {
  5803. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5804. if (is_lvds) {
  5805. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5806. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5807. clock.p2 = 14;
  5808. if ((dpll & PLL_REF_INPUT_MASK) ==
  5809. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5810. /* XXX: might not be 66MHz */
  5811. intel_clock(dev, 66000, &clock);
  5812. } else
  5813. intel_clock(dev, 48000, &clock);
  5814. } else {
  5815. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5816. clock.p1 = 2;
  5817. else {
  5818. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5819. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5820. }
  5821. if (dpll & PLL_P2_DIVIDE_BY_4)
  5822. clock.p2 = 4;
  5823. else
  5824. clock.p2 = 2;
  5825. intel_clock(dev, 48000, &clock);
  5826. }
  5827. }
  5828. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5829. * i830PllIsValid() because it relies on the xf86_config connector
  5830. * configuration being accurate, which it isn't necessarily.
  5831. */
  5832. return clock.dot;
  5833. }
  5834. /** Returns the currently programmed mode of the given pipe. */
  5835. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5836. struct drm_crtc *crtc)
  5837. {
  5838. struct drm_i915_private *dev_priv = dev->dev_private;
  5839. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5840. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5841. struct drm_display_mode *mode;
  5842. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5843. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5844. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5845. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5846. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5847. if (!mode)
  5848. return NULL;
  5849. mode->clock = intel_crtc_clock_get(dev, crtc);
  5850. mode->hdisplay = (htot & 0xffff) + 1;
  5851. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5852. mode->hsync_start = (hsync & 0xffff) + 1;
  5853. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5854. mode->vdisplay = (vtot & 0xffff) + 1;
  5855. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5856. mode->vsync_start = (vsync & 0xffff) + 1;
  5857. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5858. drm_mode_set_name(mode);
  5859. return mode;
  5860. }
  5861. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5862. {
  5863. struct drm_device *dev = crtc->dev;
  5864. drm_i915_private_t *dev_priv = dev->dev_private;
  5865. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5866. int pipe = intel_crtc->pipe;
  5867. int dpll_reg = DPLL(pipe);
  5868. int dpll;
  5869. if (HAS_PCH_SPLIT(dev))
  5870. return;
  5871. if (!dev_priv->lvds_downclock_avail)
  5872. return;
  5873. dpll = I915_READ(dpll_reg);
  5874. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5875. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5876. assert_panel_unlocked(dev_priv, pipe);
  5877. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5878. I915_WRITE(dpll_reg, dpll);
  5879. intel_wait_for_vblank(dev, pipe);
  5880. dpll = I915_READ(dpll_reg);
  5881. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5882. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5883. }
  5884. }
  5885. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5886. {
  5887. struct drm_device *dev = crtc->dev;
  5888. drm_i915_private_t *dev_priv = dev->dev_private;
  5889. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5890. if (HAS_PCH_SPLIT(dev))
  5891. return;
  5892. if (!dev_priv->lvds_downclock_avail)
  5893. return;
  5894. /*
  5895. * Since this is called by a timer, we should never get here in
  5896. * the manual case.
  5897. */
  5898. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5899. int pipe = intel_crtc->pipe;
  5900. int dpll_reg = DPLL(pipe);
  5901. int dpll;
  5902. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5903. assert_panel_unlocked(dev_priv, pipe);
  5904. dpll = I915_READ(dpll_reg);
  5905. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5906. I915_WRITE(dpll_reg, dpll);
  5907. intel_wait_for_vblank(dev, pipe);
  5908. dpll = I915_READ(dpll_reg);
  5909. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5910. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5911. }
  5912. }
  5913. void intel_mark_busy(struct drm_device *dev)
  5914. {
  5915. i915_update_gfx_val(dev->dev_private);
  5916. }
  5917. void intel_mark_idle(struct drm_device *dev)
  5918. {
  5919. struct drm_crtc *crtc;
  5920. if (!i915_powersave)
  5921. return;
  5922. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5923. if (!crtc->fb)
  5924. continue;
  5925. intel_decrease_pllclock(crtc);
  5926. }
  5927. }
  5928. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5929. {
  5930. struct drm_device *dev = obj->base.dev;
  5931. struct drm_crtc *crtc;
  5932. if (!i915_powersave)
  5933. return;
  5934. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5935. if (!crtc->fb)
  5936. continue;
  5937. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5938. intel_increase_pllclock(crtc);
  5939. }
  5940. }
  5941. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5942. {
  5943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5944. struct drm_device *dev = crtc->dev;
  5945. struct intel_unpin_work *work;
  5946. unsigned long flags;
  5947. spin_lock_irqsave(&dev->event_lock, flags);
  5948. work = intel_crtc->unpin_work;
  5949. intel_crtc->unpin_work = NULL;
  5950. spin_unlock_irqrestore(&dev->event_lock, flags);
  5951. if (work) {
  5952. cancel_work_sync(&work->work);
  5953. kfree(work);
  5954. }
  5955. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5956. drm_crtc_cleanup(crtc);
  5957. kfree(intel_crtc);
  5958. }
  5959. static void intel_unpin_work_fn(struct work_struct *__work)
  5960. {
  5961. struct intel_unpin_work *work =
  5962. container_of(__work, struct intel_unpin_work, work);
  5963. struct drm_device *dev = work->crtc->dev;
  5964. mutex_lock(&dev->struct_mutex);
  5965. intel_unpin_fb_obj(work->old_fb_obj);
  5966. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5967. drm_gem_object_unreference(&work->old_fb_obj->base);
  5968. intel_update_fbc(dev);
  5969. mutex_unlock(&dev->struct_mutex);
  5970. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5971. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5972. kfree(work);
  5973. }
  5974. static void do_intel_finish_page_flip(struct drm_device *dev,
  5975. struct drm_crtc *crtc)
  5976. {
  5977. drm_i915_private_t *dev_priv = dev->dev_private;
  5978. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5979. struct intel_unpin_work *work;
  5980. unsigned long flags;
  5981. /* Ignore early vblank irqs */
  5982. if (intel_crtc == NULL)
  5983. return;
  5984. spin_lock_irqsave(&dev->event_lock, flags);
  5985. work = intel_crtc->unpin_work;
  5986. /* Ensure we don't miss a work->pending update ... */
  5987. smp_rmb();
  5988. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5989. spin_unlock_irqrestore(&dev->event_lock, flags);
  5990. return;
  5991. }
  5992. /* and that the unpin work is consistent wrt ->pending. */
  5993. smp_rmb();
  5994. intel_crtc->unpin_work = NULL;
  5995. if (work->event)
  5996. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5997. drm_vblank_put(dev, intel_crtc->pipe);
  5998. spin_unlock_irqrestore(&dev->event_lock, flags);
  5999. wake_up_all(&dev_priv->pending_flip_queue);
  6000. queue_work(dev_priv->wq, &work->work);
  6001. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6002. }
  6003. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6004. {
  6005. drm_i915_private_t *dev_priv = dev->dev_private;
  6006. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6007. do_intel_finish_page_flip(dev, crtc);
  6008. }
  6009. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6010. {
  6011. drm_i915_private_t *dev_priv = dev->dev_private;
  6012. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6013. do_intel_finish_page_flip(dev, crtc);
  6014. }
  6015. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6016. {
  6017. drm_i915_private_t *dev_priv = dev->dev_private;
  6018. struct intel_crtc *intel_crtc =
  6019. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6020. unsigned long flags;
  6021. /* NB: An MMIO update of the plane base pointer will also
  6022. * generate a page-flip completion irq, i.e. every modeset
  6023. * is also accompanied by a spurious intel_prepare_page_flip().
  6024. */
  6025. spin_lock_irqsave(&dev->event_lock, flags);
  6026. if (intel_crtc->unpin_work)
  6027. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6028. spin_unlock_irqrestore(&dev->event_lock, flags);
  6029. }
  6030. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6031. {
  6032. /* Ensure that the work item is consistent when activating it ... */
  6033. smp_wmb();
  6034. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6035. /* and that it is marked active as soon as the irq could fire. */
  6036. smp_wmb();
  6037. }
  6038. static int intel_gen2_queue_flip(struct drm_device *dev,
  6039. struct drm_crtc *crtc,
  6040. struct drm_framebuffer *fb,
  6041. struct drm_i915_gem_object *obj)
  6042. {
  6043. struct drm_i915_private *dev_priv = dev->dev_private;
  6044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6045. u32 flip_mask;
  6046. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6047. int ret;
  6048. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6049. if (ret)
  6050. goto err;
  6051. ret = intel_ring_begin(ring, 6);
  6052. if (ret)
  6053. goto err_unpin;
  6054. /* Can't queue multiple flips, so wait for the previous
  6055. * one to finish before executing the next.
  6056. */
  6057. if (intel_crtc->plane)
  6058. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6059. else
  6060. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6061. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6062. intel_ring_emit(ring, MI_NOOP);
  6063. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6064. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6065. intel_ring_emit(ring, fb->pitches[0]);
  6066. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6067. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6068. intel_mark_page_flip_active(intel_crtc);
  6069. intel_ring_advance(ring);
  6070. return 0;
  6071. err_unpin:
  6072. intel_unpin_fb_obj(obj);
  6073. err:
  6074. return ret;
  6075. }
  6076. static int intel_gen3_queue_flip(struct drm_device *dev,
  6077. struct drm_crtc *crtc,
  6078. struct drm_framebuffer *fb,
  6079. struct drm_i915_gem_object *obj)
  6080. {
  6081. struct drm_i915_private *dev_priv = dev->dev_private;
  6082. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6083. u32 flip_mask;
  6084. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6085. int ret;
  6086. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6087. if (ret)
  6088. goto err;
  6089. ret = intel_ring_begin(ring, 6);
  6090. if (ret)
  6091. goto err_unpin;
  6092. if (intel_crtc->plane)
  6093. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6094. else
  6095. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6096. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6097. intel_ring_emit(ring, MI_NOOP);
  6098. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6099. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6100. intel_ring_emit(ring, fb->pitches[0]);
  6101. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6102. intel_ring_emit(ring, MI_NOOP);
  6103. intel_mark_page_flip_active(intel_crtc);
  6104. intel_ring_advance(ring);
  6105. return 0;
  6106. err_unpin:
  6107. intel_unpin_fb_obj(obj);
  6108. err:
  6109. return ret;
  6110. }
  6111. static int intel_gen4_queue_flip(struct drm_device *dev,
  6112. struct drm_crtc *crtc,
  6113. struct drm_framebuffer *fb,
  6114. struct drm_i915_gem_object *obj)
  6115. {
  6116. struct drm_i915_private *dev_priv = dev->dev_private;
  6117. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6118. uint32_t pf, pipesrc;
  6119. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6120. int ret;
  6121. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6122. if (ret)
  6123. goto err;
  6124. ret = intel_ring_begin(ring, 4);
  6125. if (ret)
  6126. goto err_unpin;
  6127. /* i965+ uses the linear or tiled offsets from the
  6128. * Display Registers (which do not change across a page-flip)
  6129. * so we need only reprogram the base address.
  6130. */
  6131. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6132. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6133. intel_ring_emit(ring, fb->pitches[0]);
  6134. intel_ring_emit(ring,
  6135. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6136. obj->tiling_mode);
  6137. /* XXX Enabling the panel-fitter across page-flip is so far
  6138. * untested on non-native modes, so ignore it for now.
  6139. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6140. */
  6141. pf = 0;
  6142. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6143. intel_ring_emit(ring, pf | pipesrc);
  6144. intel_mark_page_flip_active(intel_crtc);
  6145. intel_ring_advance(ring);
  6146. return 0;
  6147. err_unpin:
  6148. intel_unpin_fb_obj(obj);
  6149. err:
  6150. return ret;
  6151. }
  6152. static int intel_gen6_queue_flip(struct drm_device *dev,
  6153. struct drm_crtc *crtc,
  6154. struct drm_framebuffer *fb,
  6155. struct drm_i915_gem_object *obj)
  6156. {
  6157. struct drm_i915_private *dev_priv = dev->dev_private;
  6158. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6159. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6160. uint32_t pf, pipesrc;
  6161. int ret;
  6162. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6163. if (ret)
  6164. goto err;
  6165. ret = intel_ring_begin(ring, 4);
  6166. if (ret)
  6167. goto err_unpin;
  6168. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6169. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6170. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6171. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6172. /* Contrary to the suggestions in the documentation,
  6173. * "Enable Panel Fitter" does not seem to be required when page
  6174. * flipping with a non-native mode, and worse causes a normal
  6175. * modeset to fail.
  6176. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6177. */
  6178. pf = 0;
  6179. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6180. intel_ring_emit(ring, pf | pipesrc);
  6181. intel_mark_page_flip_active(intel_crtc);
  6182. intel_ring_advance(ring);
  6183. return 0;
  6184. err_unpin:
  6185. intel_unpin_fb_obj(obj);
  6186. err:
  6187. return ret;
  6188. }
  6189. /*
  6190. * On gen7 we currently use the blit ring because (in early silicon at least)
  6191. * the render ring doesn't give us interrpts for page flip completion, which
  6192. * means clients will hang after the first flip is queued. Fortunately the
  6193. * blit ring generates interrupts properly, so use it instead.
  6194. */
  6195. static int intel_gen7_queue_flip(struct drm_device *dev,
  6196. struct drm_crtc *crtc,
  6197. struct drm_framebuffer *fb,
  6198. struct drm_i915_gem_object *obj)
  6199. {
  6200. struct drm_i915_private *dev_priv = dev->dev_private;
  6201. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6202. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6203. uint32_t plane_bit = 0;
  6204. int ret;
  6205. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6206. if (ret)
  6207. goto err;
  6208. switch(intel_crtc->plane) {
  6209. case PLANE_A:
  6210. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6211. break;
  6212. case PLANE_B:
  6213. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6214. break;
  6215. case PLANE_C:
  6216. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6217. break;
  6218. default:
  6219. WARN_ONCE(1, "unknown plane in flip command\n");
  6220. ret = -ENODEV;
  6221. goto err_unpin;
  6222. }
  6223. ret = intel_ring_begin(ring, 4);
  6224. if (ret)
  6225. goto err_unpin;
  6226. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6227. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6228. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6229. intel_ring_emit(ring, (MI_NOOP));
  6230. intel_mark_page_flip_active(intel_crtc);
  6231. intel_ring_advance(ring);
  6232. return 0;
  6233. err_unpin:
  6234. intel_unpin_fb_obj(obj);
  6235. err:
  6236. return ret;
  6237. }
  6238. static int intel_default_queue_flip(struct drm_device *dev,
  6239. struct drm_crtc *crtc,
  6240. struct drm_framebuffer *fb,
  6241. struct drm_i915_gem_object *obj)
  6242. {
  6243. return -ENODEV;
  6244. }
  6245. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6246. struct drm_framebuffer *fb,
  6247. struct drm_pending_vblank_event *event)
  6248. {
  6249. struct drm_device *dev = crtc->dev;
  6250. struct drm_i915_private *dev_priv = dev->dev_private;
  6251. struct drm_framebuffer *old_fb = crtc->fb;
  6252. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6253. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6254. struct intel_unpin_work *work;
  6255. unsigned long flags;
  6256. int ret;
  6257. /* Can't change pixel format via MI display flips. */
  6258. if (fb->pixel_format != crtc->fb->pixel_format)
  6259. return -EINVAL;
  6260. /*
  6261. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6262. * Note that pitch changes could also affect these register.
  6263. */
  6264. if (INTEL_INFO(dev)->gen > 3 &&
  6265. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6266. fb->pitches[0] != crtc->fb->pitches[0]))
  6267. return -EINVAL;
  6268. work = kzalloc(sizeof *work, GFP_KERNEL);
  6269. if (work == NULL)
  6270. return -ENOMEM;
  6271. work->event = event;
  6272. work->crtc = crtc;
  6273. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6274. INIT_WORK(&work->work, intel_unpin_work_fn);
  6275. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6276. if (ret)
  6277. goto free_work;
  6278. /* We borrow the event spin lock for protecting unpin_work */
  6279. spin_lock_irqsave(&dev->event_lock, flags);
  6280. if (intel_crtc->unpin_work) {
  6281. spin_unlock_irqrestore(&dev->event_lock, flags);
  6282. kfree(work);
  6283. drm_vblank_put(dev, intel_crtc->pipe);
  6284. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6285. return -EBUSY;
  6286. }
  6287. intel_crtc->unpin_work = work;
  6288. spin_unlock_irqrestore(&dev->event_lock, flags);
  6289. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6290. flush_workqueue(dev_priv->wq);
  6291. ret = i915_mutex_lock_interruptible(dev);
  6292. if (ret)
  6293. goto cleanup;
  6294. /* Reference the objects for the scheduled work. */
  6295. drm_gem_object_reference(&work->old_fb_obj->base);
  6296. drm_gem_object_reference(&obj->base);
  6297. crtc->fb = fb;
  6298. work->pending_flip_obj = obj;
  6299. work->enable_stall_check = true;
  6300. atomic_inc(&intel_crtc->unpin_work_count);
  6301. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6302. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6303. if (ret)
  6304. goto cleanup_pending;
  6305. intel_disable_fbc(dev);
  6306. intel_mark_fb_busy(obj);
  6307. mutex_unlock(&dev->struct_mutex);
  6308. trace_i915_flip_request(intel_crtc->plane, obj);
  6309. return 0;
  6310. cleanup_pending:
  6311. atomic_dec(&intel_crtc->unpin_work_count);
  6312. crtc->fb = old_fb;
  6313. drm_gem_object_unreference(&work->old_fb_obj->base);
  6314. drm_gem_object_unreference(&obj->base);
  6315. mutex_unlock(&dev->struct_mutex);
  6316. cleanup:
  6317. spin_lock_irqsave(&dev->event_lock, flags);
  6318. intel_crtc->unpin_work = NULL;
  6319. spin_unlock_irqrestore(&dev->event_lock, flags);
  6320. drm_vblank_put(dev, intel_crtc->pipe);
  6321. free_work:
  6322. kfree(work);
  6323. return ret;
  6324. }
  6325. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6326. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6327. .load_lut = intel_crtc_load_lut,
  6328. };
  6329. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6330. {
  6331. struct intel_encoder *other_encoder;
  6332. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6333. if (WARN_ON(!crtc))
  6334. return false;
  6335. list_for_each_entry(other_encoder,
  6336. &crtc->dev->mode_config.encoder_list,
  6337. base.head) {
  6338. if (&other_encoder->new_crtc->base != crtc ||
  6339. encoder == other_encoder)
  6340. continue;
  6341. else
  6342. return true;
  6343. }
  6344. return false;
  6345. }
  6346. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6347. struct drm_crtc *crtc)
  6348. {
  6349. struct drm_device *dev;
  6350. struct drm_crtc *tmp;
  6351. int crtc_mask = 1;
  6352. WARN(!crtc, "checking null crtc?\n");
  6353. dev = crtc->dev;
  6354. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6355. if (tmp == crtc)
  6356. break;
  6357. crtc_mask <<= 1;
  6358. }
  6359. if (encoder->possible_crtcs & crtc_mask)
  6360. return true;
  6361. return false;
  6362. }
  6363. /**
  6364. * intel_modeset_update_staged_output_state
  6365. *
  6366. * Updates the staged output configuration state, e.g. after we've read out the
  6367. * current hw state.
  6368. */
  6369. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6370. {
  6371. struct intel_encoder *encoder;
  6372. struct intel_connector *connector;
  6373. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6374. base.head) {
  6375. connector->new_encoder =
  6376. to_intel_encoder(connector->base.encoder);
  6377. }
  6378. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6379. base.head) {
  6380. encoder->new_crtc =
  6381. to_intel_crtc(encoder->base.crtc);
  6382. }
  6383. }
  6384. /**
  6385. * intel_modeset_commit_output_state
  6386. *
  6387. * This function copies the stage display pipe configuration to the real one.
  6388. */
  6389. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6390. {
  6391. struct intel_encoder *encoder;
  6392. struct intel_connector *connector;
  6393. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6394. base.head) {
  6395. connector->base.encoder = &connector->new_encoder->base;
  6396. }
  6397. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6398. base.head) {
  6399. encoder->base.crtc = &encoder->new_crtc->base;
  6400. }
  6401. }
  6402. static int
  6403. pipe_config_set_bpp(struct drm_crtc *crtc,
  6404. struct drm_framebuffer *fb,
  6405. struct intel_crtc_config *pipe_config)
  6406. {
  6407. struct drm_device *dev = crtc->dev;
  6408. struct drm_connector *connector;
  6409. int bpp;
  6410. switch (fb->pixel_format) {
  6411. case DRM_FORMAT_C8:
  6412. bpp = 8*3; /* since we go through a colormap */
  6413. break;
  6414. case DRM_FORMAT_XRGB1555:
  6415. case DRM_FORMAT_ARGB1555:
  6416. /* checked in intel_framebuffer_init already */
  6417. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6418. return -EINVAL;
  6419. case DRM_FORMAT_RGB565:
  6420. bpp = 6*3; /* min is 18bpp */
  6421. break;
  6422. case DRM_FORMAT_XBGR8888:
  6423. case DRM_FORMAT_ABGR8888:
  6424. /* checked in intel_framebuffer_init already */
  6425. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6426. return -EINVAL;
  6427. case DRM_FORMAT_XRGB8888:
  6428. case DRM_FORMAT_ARGB8888:
  6429. bpp = 8*3;
  6430. break;
  6431. case DRM_FORMAT_XRGB2101010:
  6432. case DRM_FORMAT_ARGB2101010:
  6433. case DRM_FORMAT_XBGR2101010:
  6434. case DRM_FORMAT_ABGR2101010:
  6435. /* checked in intel_framebuffer_init already */
  6436. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6437. return -EINVAL;
  6438. bpp = 10*3;
  6439. break;
  6440. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6441. default:
  6442. DRM_DEBUG_KMS("unsupported depth\n");
  6443. return -EINVAL;
  6444. }
  6445. pipe_config->pipe_bpp = bpp;
  6446. /* Clamp display bpp to EDID value */
  6447. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6448. head) {
  6449. if (connector->encoder && connector->encoder->crtc != crtc)
  6450. continue;
  6451. /* Don't use an invalid EDID bpc value */
  6452. if (connector->display_info.bpc &&
  6453. connector->display_info.bpc * 3 < bpp) {
  6454. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6455. bpp, connector->display_info.bpc*3);
  6456. pipe_config->pipe_bpp = connector->display_info.bpc*3;
  6457. }
  6458. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6459. if (connector->display_info.bpc == 0 && bpp > 24) {
  6460. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6461. bpp);
  6462. pipe_config->pipe_bpp = 24;
  6463. }
  6464. }
  6465. return bpp;
  6466. }
  6467. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6468. struct intel_crtc_config *pipe_config,
  6469. const char *context)
  6470. {
  6471. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6472. context, pipe_name(crtc->pipe));
  6473. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6474. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6475. pipe_config->pipe_bpp, pipe_config->dither);
  6476. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6477. pipe_config->has_pch_encoder,
  6478. pipe_config->fdi_lanes,
  6479. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6480. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6481. pipe_config->fdi_m_n.tu);
  6482. DRM_DEBUG_KMS("requested mode:\n");
  6483. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6484. DRM_DEBUG_KMS("adjusted mode:\n");
  6485. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6486. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6487. pipe_config->gmch_pfit.control,
  6488. pipe_config->gmch_pfit.pgm_ratios,
  6489. pipe_config->gmch_pfit.lvds_border_bits);
  6490. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6491. pipe_config->pch_pfit.pos,
  6492. pipe_config->pch_pfit.size);
  6493. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6494. }
  6495. static struct intel_crtc_config *
  6496. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6497. struct drm_framebuffer *fb,
  6498. struct drm_display_mode *mode)
  6499. {
  6500. struct drm_device *dev = crtc->dev;
  6501. struct drm_encoder_helper_funcs *encoder_funcs;
  6502. struct intel_encoder *encoder;
  6503. struct intel_crtc_config *pipe_config;
  6504. int plane_bpp, ret = -EINVAL;
  6505. bool retry = true;
  6506. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6507. if (!pipe_config)
  6508. return ERR_PTR(-ENOMEM);
  6509. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6510. drm_mode_copy(&pipe_config->requested_mode, mode);
  6511. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6512. plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
  6513. if (plane_bpp < 0)
  6514. goto fail;
  6515. encoder_retry:
  6516. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6517. * adjust it according to limitations or connector properties, and also
  6518. * a chance to reject the mode entirely.
  6519. */
  6520. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6521. base.head) {
  6522. if (&encoder->new_crtc->base != crtc)
  6523. continue;
  6524. if (encoder->compute_config) {
  6525. if (!(encoder->compute_config(encoder, pipe_config))) {
  6526. DRM_DEBUG_KMS("Encoder config failure\n");
  6527. goto fail;
  6528. }
  6529. continue;
  6530. }
  6531. encoder_funcs = encoder->base.helper_private;
  6532. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6533. &pipe_config->requested_mode,
  6534. &pipe_config->adjusted_mode))) {
  6535. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6536. goto fail;
  6537. }
  6538. }
  6539. ret = intel_crtc_compute_config(crtc, pipe_config);
  6540. if (ret < 0) {
  6541. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6542. goto fail;
  6543. }
  6544. if (ret == RETRY) {
  6545. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6546. ret = -EINVAL;
  6547. goto fail;
  6548. }
  6549. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6550. retry = false;
  6551. goto encoder_retry;
  6552. }
  6553. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6554. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6555. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6556. return pipe_config;
  6557. fail:
  6558. kfree(pipe_config);
  6559. return ERR_PTR(ret);
  6560. }
  6561. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6562. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6563. static void
  6564. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6565. unsigned *prepare_pipes, unsigned *disable_pipes)
  6566. {
  6567. struct intel_crtc *intel_crtc;
  6568. struct drm_device *dev = crtc->dev;
  6569. struct intel_encoder *encoder;
  6570. struct intel_connector *connector;
  6571. struct drm_crtc *tmp_crtc;
  6572. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6573. /* Check which crtcs have changed outputs connected to them, these need
  6574. * to be part of the prepare_pipes mask. We don't (yet) support global
  6575. * modeset across multiple crtcs, so modeset_pipes will only have one
  6576. * bit set at most. */
  6577. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6578. base.head) {
  6579. if (connector->base.encoder == &connector->new_encoder->base)
  6580. continue;
  6581. if (connector->base.encoder) {
  6582. tmp_crtc = connector->base.encoder->crtc;
  6583. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6584. }
  6585. if (connector->new_encoder)
  6586. *prepare_pipes |=
  6587. 1 << connector->new_encoder->new_crtc->pipe;
  6588. }
  6589. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6590. base.head) {
  6591. if (encoder->base.crtc == &encoder->new_crtc->base)
  6592. continue;
  6593. if (encoder->base.crtc) {
  6594. tmp_crtc = encoder->base.crtc;
  6595. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6596. }
  6597. if (encoder->new_crtc)
  6598. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6599. }
  6600. /* Check for any pipes that will be fully disabled ... */
  6601. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6602. base.head) {
  6603. bool used = false;
  6604. /* Don't try to disable disabled crtcs. */
  6605. if (!intel_crtc->base.enabled)
  6606. continue;
  6607. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6608. base.head) {
  6609. if (encoder->new_crtc == intel_crtc)
  6610. used = true;
  6611. }
  6612. if (!used)
  6613. *disable_pipes |= 1 << intel_crtc->pipe;
  6614. }
  6615. /* set_mode is also used to update properties on life display pipes. */
  6616. intel_crtc = to_intel_crtc(crtc);
  6617. if (crtc->enabled)
  6618. *prepare_pipes |= 1 << intel_crtc->pipe;
  6619. /*
  6620. * For simplicity do a full modeset on any pipe where the output routing
  6621. * changed. We could be more clever, but that would require us to be
  6622. * more careful with calling the relevant encoder->mode_set functions.
  6623. */
  6624. if (*prepare_pipes)
  6625. *modeset_pipes = *prepare_pipes;
  6626. /* ... and mask these out. */
  6627. *modeset_pipes &= ~(*disable_pipes);
  6628. *prepare_pipes &= ~(*disable_pipes);
  6629. /*
  6630. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6631. * obies this rule, but the modeset restore mode of
  6632. * intel_modeset_setup_hw_state does not.
  6633. */
  6634. *modeset_pipes &= 1 << intel_crtc->pipe;
  6635. *prepare_pipes &= 1 << intel_crtc->pipe;
  6636. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6637. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6638. }
  6639. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6640. {
  6641. struct drm_encoder *encoder;
  6642. struct drm_device *dev = crtc->dev;
  6643. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6644. if (encoder->crtc == crtc)
  6645. return true;
  6646. return false;
  6647. }
  6648. static void
  6649. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6650. {
  6651. struct intel_encoder *intel_encoder;
  6652. struct intel_crtc *intel_crtc;
  6653. struct drm_connector *connector;
  6654. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6655. base.head) {
  6656. if (!intel_encoder->base.crtc)
  6657. continue;
  6658. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6659. if (prepare_pipes & (1 << intel_crtc->pipe))
  6660. intel_encoder->connectors_active = false;
  6661. }
  6662. intel_modeset_commit_output_state(dev);
  6663. /* Update computed state. */
  6664. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6665. base.head) {
  6666. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6667. }
  6668. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6669. if (!connector->encoder || !connector->encoder->crtc)
  6670. continue;
  6671. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6672. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6673. struct drm_property *dpms_property =
  6674. dev->mode_config.dpms_property;
  6675. connector->dpms = DRM_MODE_DPMS_ON;
  6676. drm_object_property_set_value(&connector->base,
  6677. dpms_property,
  6678. DRM_MODE_DPMS_ON);
  6679. intel_encoder = to_intel_encoder(connector->encoder);
  6680. intel_encoder->connectors_active = true;
  6681. }
  6682. }
  6683. }
  6684. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6685. list_for_each_entry((intel_crtc), \
  6686. &(dev)->mode_config.crtc_list, \
  6687. base.head) \
  6688. if (mask & (1 <<(intel_crtc)->pipe))
  6689. static bool
  6690. intel_pipe_config_compare(struct drm_device *dev,
  6691. struct intel_crtc_config *current_config,
  6692. struct intel_crtc_config *pipe_config)
  6693. {
  6694. #define PIPE_CONF_CHECK_I(name) \
  6695. if (current_config->name != pipe_config->name) { \
  6696. DRM_ERROR("mismatch in " #name " " \
  6697. "(expected %i, found %i)\n", \
  6698. current_config->name, \
  6699. pipe_config->name); \
  6700. return false; \
  6701. }
  6702. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6703. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6704. DRM_ERROR("mismatch in " #name " " \
  6705. "(expected %i, found %i)\n", \
  6706. current_config->name & (mask), \
  6707. pipe_config->name & (mask)); \
  6708. return false; \
  6709. }
  6710. PIPE_CONF_CHECK_I(cpu_transcoder);
  6711. PIPE_CONF_CHECK_I(has_pch_encoder);
  6712. PIPE_CONF_CHECK_I(fdi_lanes);
  6713. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6714. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6715. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6716. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6717. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6718. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6719. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6720. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6721. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6722. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6723. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6724. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6725. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6726. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6727. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6728. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6729. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6730. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6731. DRM_MODE_FLAG_INTERLACE);
  6732. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6733. DRM_MODE_FLAG_PHSYNC);
  6734. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6735. DRM_MODE_FLAG_NHSYNC);
  6736. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6737. DRM_MODE_FLAG_PVSYNC);
  6738. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6739. DRM_MODE_FLAG_NVSYNC);
  6740. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6741. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6742. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6743. /* pfit ratios are autocomputed by the hw on gen4+ */
  6744. if (INTEL_INFO(dev)->gen < 4)
  6745. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6746. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6747. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6748. PIPE_CONF_CHECK_I(pch_pfit.size);
  6749. PIPE_CONF_CHECK_I(ips_enabled);
  6750. #undef PIPE_CONF_CHECK_I
  6751. #undef PIPE_CONF_CHECK_FLAGS
  6752. return true;
  6753. }
  6754. void
  6755. intel_modeset_check_state(struct drm_device *dev)
  6756. {
  6757. drm_i915_private_t *dev_priv = dev->dev_private;
  6758. struct intel_crtc *crtc;
  6759. struct intel_encoder *encoder;
  6760. struct intel_connector *connector;
  6761. struct intel_crtc_config pipe_config;
  6762. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6763. base.head) {
  6764. /* This also checks the encoder/connector hw state with the
  6765. * ->get_hw_state callbacks. */
  6766. intel_connector_check_state(connector);
  6767. WARN(&connector->new_encoder->base != connector->base.encoder,
  6768. "connector's staged encoder doesn't match current encoder\n");
  6769. }
  6770. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6771. base.head) {
  6772. bool enabled = false;
  6773. bool active = false;
  6774. enum pipe pipe, tracked_pipe;
  6775. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6776. encoder->base.base.id,
  6777. drm_get_encoder_name(&encoder->base));
  6778. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6779. "encoder's stage crtc doesn't match current crtc\n");
  6780. WARN(encoder->connectors_active && !encoder->base.crtc,
  6781. "encoder's active_connectors set, but no crtc\n");
  6782. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6783. base.head) {
  6784. if (connector->base.encoder != &encoder->base)
  6785. continue;
  6786. enabled = true;
  6787. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6788. active = true;
  6789. }
  6790. WARN(!!encoder->base.crtc != enabled,
  6791. "encoder's enabled state mismatch "
  6792. "(expected %i, found %i)\n",
  6793. !!encoder->base.crtc, enabled);
  6794. WARN(active && !encoder->base.crtc,
  6795. "active encoder with no crtc\n");
  6796. WARN(encoder->connectors_active != active,
  6797. "encoder's computed active state doesn't match tracked active state "
  6798. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6799. active = encoder->get_hw_state(encoder, &pipe);
  6800. WARN(active != encoder->connectors_active,
  6801. "encoder's hw state doesn't match sw tracking "
  6802. "(expected %i, found %i)\n",
  6803. encoder->connectors_active, active);
  6804. if (!encoder->base.crtc)
  6805. continue;
  6806. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6807. WARN(active && pipe != tracked_pipe,
  6808. "active encoder's pipe doesn't match"
  6809. "(expected %i, found %i)\n",
  6810. tracked_pipe, pipe);
  6811. }
  6812. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6813. base.head) {
  6814. bool enabled = false;
  6815. bool active = false;
  6816. memset(&pipe_config, 0, sizeof(pipe_config));
  6817. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6818. crtc->base.base.id);
  6819. WARN(crtc->active && !crtc->base.enabled,
  6820. "active crtc, but not enabled in sw tracking\n");
  6821. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6822. base.head) {
  6823. if (encoder->base.crtc != &crtc->base)
  6824. continue;
  6825. enabled = true;
  6826. if (encoder->connectors_active)
  6827. active = true;
  6828. if (encoder->get_config)
  6829. encoder->get_config(encoder, &pipe_config);
  6830. }
  6831. WARN(active != crtc->active,
  6832. "crtc's computed active state doesn't match tracked active state "
  6833. "(expected %i, found %i)\n", active, crtc->active);
  6834. WARN(enabled != crtc->base.enabled,
  6835. "crtc's computed enabled state doesn't match tracked enabled state "
  6836. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6837. active = dev_priv->display.get_pipe_config(crtc,
  6838. &pipe_config);
  6839. WARN(crtc->active != active,
  6840. "crtc active state doesn't match with hw state "
  6841. "(expected %i, found %i)\n", crtc->active, active);
  6842. if (active &&
  6843. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6844. WARN(1, "pipe state doesn't match!\n");
  6845. intel_dump_pipe_config(crtc, &pipe_config,
  6846. "[hw state]");
  6847. intel_dump_pipe_config(crtc, &crtc->config,
  6848. "[sw state]");
  6849. }
  6850. }
  6851. }
  6852. static int __intel_set_mode(struct drm_crtc *crtc,
  6853. struct drm_display_mode *mode,
  6854. int x, int y, struct drm_framebuffer *fb)
  6855. {
  6856. struct drm_device *dev = crtc->dev;
  6857. drm_i915_private_t *dev_priv = dev->dev_private;
  6858. struct drm_display_mode *saved_mode, *saved_hwmode;
  6859. struct intel_crtc_config *pipe_config = NULL;
  6860. struct intel_crtc *intel_crtc;
  6861. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6862. int ret = 0;
  6863. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6864. if (!saved_mode)
  6865. return -ENOMEM;
  6866. saved_hwmode = saved_mode + 1;
  6867. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6868. &prepare_pipes, &disable_pipes);
  6869. *saved_hwmode = crtc->hwmode;
  6870. *saved_mode = crtc->mode;
  6871. /* Hack: Because we don't (yet) support global modeset on multiple
  6872. * crtcs, we don't keep track of the new mode for more than one crtc.
  6873. * Hence simply check whether any bit is set in modeset_pipes in all the
  6874. * pieces of code that are not yet converted to deal with mutliple crtcs
  6875. * changing their mode at the same time. */
  6876. if (modeset_pipes) {
  6877. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6878. if (IS_ERR(pipe_config)) {
  6879. ret = PTR_ERR(pipe_config);
  6880. pipe_config = NULL;
  6881. goto out;
  6882. }
  6883. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6884. "[modeset]");
  6885. }
  6886. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6887. intel_crtc_disable(&intel_crtc->base);
  6888. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6889. if (intel_crtc->base.enabled)
  6890. dev_priv->display.crtc_disable(&intel_crtc->base);
  6891. }
  6892. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6893. * to set it here already despite that we pass it down the callchain.
  6894. */
  6895. if (modeset_pipes) {
  6896. crtc->mode = *mode;
  6897. /* mode_set/enable/disable functions rely on a correct pipe
  6898. * config. */
  6899. to_intel_crtc(crtc)->config = *pipe_config;
  6900. }
  6901. /* Only after disabling all output pipelines that will be changed can we
  6902. * update the the output configuration. */
  6903. intel_modeset_update_state(dev, prepare_pipes);
  6904. if (dev_priv->display.modeset_global_resources)
  6905. dev_priv->display.modeset_global_resources(dev);
  6906. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6907. * on the DPLL.
  6908. */
  6909. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6910. ret = intel_crtc_mode_set(&intel_crtc->base,
  6911. x, y, fb);
  6912. if (ret)
  6913. goto done;
  6914. }
  6915. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6916. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6917. dev_priv->display.crtc_enable(&intel_crtc->base);
  6918. if (modeset_pipes) {
  6919. /* Store real post-adjustment hardware mode. */
  6920. crtc->hwmode = pipe_config->adjusted_mode;
  6921. /* Calculate and store various constants which
  6922. * are later needed by vblank and swap-completion
  6923. * timestamping. They are derived from true hwmode.
  6924. */
  6925. drm_calc_timestamping_constants(crtc);
  6926. }
  6927. /* FIXME: add subpixel order */
  6928. done:
  6929. if (ret && crtc->enabled) {
  6930. crtc->hwmode = *saved_hwmode;
  6931. crtc->mode = *saved_mode;
  6932. }
  6933. out:
  6934. kfree(pipe_config);
  6935. kfree(saved_mode);
  6936. return ret;
  6937. }
  6938. int intel_set_mode(struct drm_crtc *crtc,
  6939. struct drm_display_mode *mode,
  6940. int x, int y, struct drm_framebuffer *fb)
  6941. {
  6942. int ret;
  6943. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6944. if (ret == 0)
  6945. intel_modeset_check_state(crtc->dev);
  6946. return ret;
  6947. }
  6948. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6949. {
  6950. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6951. }
  6952. #undef for_each_intel_crtc_masked
  6953. static void intel_set_config_free(struct intel_set_config *config)
  6954. {
  6955. if (!config)
  6956. return;
  6957. kfree(config->save_connector_encoders);
  6958. kfree(config->save_encoder_crtcs);
  6959. kfree(config);
  6960. }
  6961. static int intel_set_config_save_state(struct drm_device *dev,
  6962. struct intel_set_config *config)
  6963. {
  6964. struct drm_encoder *encoder;
  6965. struct drm_connector *connector;
  6966. int count;
  6967. config->save_encoder_crtcs =
  6968. kcalloc(dev->mode_config.num_encoder,
  6969. sizeof(struct drm_crtc *), GFP_KERNEL);
  6970. if (!config->save_encoder_crtcs)
  6971. return -ENOMEM;
  6972. config->save_connector_encoders =
  6973. kcalloc(dev->mode_config.num_connector,
  6974. sizeof(struct drm_encoder *), GFP_KERNEL);
  6975. if (!config->save_connector_encoders)
  6976. return -ENOMEM;
  6977. /* Copy data. Note that driver private data is not affected.
  6978. * Should anything bad happen only the expected state is
  6979. * restored, not the drivers personal bookkeeping.
  6980. */
  6981. count = 0;
  6982. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6983. config->save_encoder_crtcs[count++] = encoder->crtc;
  6984. }
  6985. count = 0;
  6986. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6987. config->save_connector_encoders[count++] = connector->encoder;
  6988. }
  6989. return 0;
  6990. }
  6991. static void intel_set_config_restore_state(struct drm_device *dev,
  6992. struct intel_set_config *config)
  6993. {
  6994. struct intel_encoder *encoder;
  6995. struct intel_connector *connector;
  6996. int count;
  6997. count = 0;
  6998. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6999. encoder->new_crtc =
  7000. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7001. }
  7002. count = 0;
  7003. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7004. connector->new_encoder =
  7005. to_intel_encoder(config->save_connector_encoders[count++]);
  7006. }
  7007. }
  7008. static void
  7009. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7010. struct intel_set_config *config)
  7011. {
  7012. /* We should be able to check here if the fb has the same properties
  7013. * and then just flip_or_move it */
  7014. if (set->crtc->fb != set->fb) {
  7015. /* If we have no fb then treat it as a full mode set */
  7016. if (set->crtc->fb == NULL) {
  7017. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7018. config->mode_changed = true;
  7019. } else if (set->fb == NULL) {
  7020. config->mode_changed = true;
  7021. } else if (set->fb->pixel_format !=
  7022. set->crtc->fb->pixel_format) {
  7023. config->mode_changed = true;
  7024. } else
  7025. config->fb_changed = true;
  7026. }
  7027. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7028. config->fb_changed = true;
  7029. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7030. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7031. drm_mode_debug_printmodeline(&set->crtc->mode);
  7032. drm_mode_debug_printmodeline(set->mode);
  7033. config->mode_changed = true;
  7034. }
  7035. }
  7036. static int
  7037. intel_modeset_stage_output_state(struct drm_device *dev,
  7038. struct drm_mode_set *set,
  7039. struct intel_set_config *config)
  7040. {
  7041. struct drm_crtc *new_crtc;
  7042. struct intel_connector *connector;
  7043. struct intel_encoder *encoder;
  7044. int count, ro;
  7045. /* The upper layers ensure that we either disable a crtc or have a list
  7046. * of connectors. For paranoia, double-check this. */
  7047. WARN_ON(!set->fb && (set->num_connectors != 0));
  7048. WARN_ON(set->fb && (set->num_connectors == 0));
  7049. count = 0;
  7050. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7051. base.head) {
  7052. /* Otherwise traverse passed in connector list and get encoders
  7053. * for them. */
  7054. for (ro = 0; ro < set->num_connectors; ro++) {
  7055. if (set->connectors[ro] == &connector->base) {
  7056. connector->new_encoder = connector->encoder;
  7057. break;
  7058. }
  7059. }
  7060. /* If we disable the crtc, disable all its connectors. Also, if
  7061. * the connector is on the changing crtc but not on the new
  7062. * connector list, disable it. */
  7063. if ((!set->fb || ro == set->num_connectors) &&
  7064. connector->base.encoder &&
  7065. connector->base.encoder->crtc == set->crtc) {
  7066. connector->new_encoder = NULL;
  7067. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7068. connector->base.base.id,
  7069. drm_get_connector_name(&connector->base));
  7070. }
  7071. if (&connector->new_encoder->base != connector->base.encoder) {
  7072. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7073. config->mode_changed = true;
  7074. }
  7075. }
  7076. /* connector->new_encoder is now updated for all connectors. */
  7077. /* Update crtc of enabled connectors. */
  7078. count = 0;
  7079. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7080. base.head) {
  7081. if (!connector->new_encoder)
  7082. continue;
  7083. new_crtc = connector->new_encoder->base.crtc;
  7084. for (ro = 0; ro < set->num_connectors; ro++) {
  7085. if (set->connectors[ro] == &connector->base)
  7086. new_crtc = set->crtc;
  7087. }
  7088. /* Make sure the new CRTC will work with the encoder */
  7089. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7090. new_crtc)) {
  7091. return -EINVAL;
  7092. }
  7093. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7094. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7095. connector->base.base.id,
  7096. drm_get_connector_name(&connector->base),
  7097. new_crtc->base.id);
  7098. }
  7099. /* Check for any encoders that needs to be disabled. */
  7100. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7101. base.head) {
  7102. list_for_each_entry(connector,
  7103. &dev->mode_config.connector_list,
  7104. base.head) {
  7105. if (connector->new_encoder == encoder) {
  7106. WARN_ON(!connector->new_encoder->new_crtc);
  7107. goto next_encoder;
  7108. }
  7109. }
  7110. encoder->new_crtc = NULL;
  7111. next_encoder:
  7112. /* Only now check for crtc changes so we don't miss encoders
  7113. * that will be disabled. */
  7114. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7115. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7116. config->mode_changed = true;
  7117. }
  7118. }
  7119. /* Now we've also updated encoder->new_crtc for all encoders. */
  7120. return 0;
  7121. }
  7122. static int intel_crtc_set_config(struct drm_mode_set *set)
  7123. {
  7124. struct drm_device *dev;
  7125. struct drm_mode_set save_set;
  7126. struct intel_set_config *config;
  7127. int ret;
  7128. BUG_ON(!set);
  7129. BUG_ON(!set->crtc);
  7130. BUG_ON(!set->crtc->helper_private);
  7131. /* Enforce sane interface api - has been abused by the fb helper. */
  7132. BUG_ON(!set->mode && set->fb);
  7133. BUG_ON(set->fb && set->num_connectors == 0);
  7134. if (set->fb) {
  7135. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7136. set->crtc->base.id, set->fb->base.id,
  7137. (int)set->num_connectors, set->x, set->y);
  7138. } else {
  7139. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7140. }
  7141. dev = set->crtc->dev;
  7142. ret = -ENOMEM;
  7143. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7144. if (!config)
  7145. goto out_config;
  7146. ret = intel_set_config_save_state(dev, config);
  7147. if (ret)
  7148. goto out_config;
  7149. save_set.crtc = set->crtc;
  7150. save_set.mode = &set->crtc->mode;
  7151. save_set.x = set->crtc->x;
  7152. save_set.y = set->crtc->y;
  7153. save_set.fb = set->crtc->fb;
  7154. /* Compute whether we need a full modeset, only an fb base update or no
  7155. * change at all. In the future we might also check whether only the
  7156. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7157. * such cases. */
  7158. intel_set_config_compute_mode_changes(set, config);
  7159. ret = intel_modeset_stage_output_state(dev, set, config);
  7160. if (ret)
  7161. goto fail;
  7162. if (config->mode_changed) {
  7163. ret = intel_set_mode(set->crtc, set->mode,
  7164. set->x, set->y, set->fb);
  7165. if (ret) {
  7166. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7167. set->crtc->base.id, ret);
  7168. goto fail;
  7169. }
  7170. } else if (config->fb_changed) {
  7171. intel_crtc_wait_for_pending_flips(set->crtc);
  7172. ret = intel_pipe_set_base(set->crtc,
  7173. set->x, set->y, set->fb);
  7174. }
  7175. intel_set_config_free(config);
  7176. return 0;
  7177. fail:
  7178. intel_set_config_restore_state(dev, config);
  7179. /* Try to restore the config */
  7180. if (config->mode_changed &&
  7181. intel_set_mode(save_set.crtc, save_set.mode,
  7182. save_set.x, save_set.y, save_set.fb))
  7183. DRM_ERROR("failed to restore config after modeset failure\n");
  7184. out_config:
  7185. intel_set_config_free(config);
  7186. return ret;
  7187. }
  7188. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7189. .cursor_set = intel_crtc_cursor_set,
  7190. .cursor_move = intel_crtc_cursor_move,
  7191. .gamma_set = intel_crtc_gamma_set,
  7192. .set_config = intel_crtc_set_config,
  7193. .destroy = intel_crtc_destroy,
  7194. .page_flip = intel_crtc_page_flip,
  7195. };
  7196. static void intel_cpu_pll_init(struct drm_device *dev)
  7197. {
  7198. if (HAS_DDI(dev))
  7199. intel_ddi_pll_init(dev);
  7200. }
  7201. static void intel_pch_pll_init(struct drm_device *dev)
  7202. {
  7203. drm_i915_private_t *dev_priv = dev->dev_private;
  7204. int i;
  7205. if (dev_priv->num_pch_pll == 0) {
  7206. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7207. return;
  7208. }
  7209. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7210. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7211. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7212. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7213. }
  7214. }
  7215. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7216. {
  7217. drm_i915_private_t *dev_priv = dev->dev_private;
  7218. struct intel_crtc *intel_crtc;
  7219. int i;
  7220. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7221. if (intel_crtc == NULL)
  7222. return;
  7223. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7224. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7225. for (i = 0; i < 256; i++) {
  7226. intel_crtc->lut_r[i] = i;
  7227. intel_crtc->lut_g[i] = i;
  7228. intel_crtc->lut_b[i] = i;
  7229. }
  7230. /* Swap pipes & planes for FBC on pre-965 */
  7231. intel_crtc->pipe = pipe;
  7232. intel_crtc->plane = pipe;
  7233. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7234. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7235. intel_crtc->plane = !pipe;
  7236. }
  7237. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7238. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7239. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7240. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7241. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7242. }
  7243. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7244. struct drm_file *file)
  7245. {
  7246. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7247. struct drm_mode_object *drmmode_obj;
  7248. struct intel_crtc *crtc;
  7249. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7250. return -ENODEV;
  7251. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7252. DRM_MODE_OBJECT_CRTC);
  7253. if (!drmmode_obj) {
  7254. DRM_ERROR("no such CRTC id\n");
  7255. return -EINVAL;
  7256. }
  7257. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7258. pipe_from_crtc_id->pipe = crtc->pipe;
  7259. return 0;
  7260. }
  7261. static int intel_encoder_clones(struct intel_encoder *encoder)
  7262. {
  7263. struct drm_device *dev = encoder->base.dev;
  7264. struct intel_encoder *source_encoder;
  7265. int index_mask = 0;
  7266. int entry = 0;
  7267. list_for_each_entry(source_encoder,
  7268. &dev->mode_config.encoder_list, base.head) {
  7269. if (encoder == source_encoder)
  7270. index_mask |= (1 << entry);
  7271. /* Intel hw has only one MUX where enocoders could be cloned. */
  7272. if (encoder->cloneable && source_encoder->cloneable)
  7273. index_mask |= (1 << entry);
  7274. entry++;
  7275. }
  7276. return index_mask;
  7277. }
  7278. static bool has_edp_a(struct drm_device *dev)
  7279. {
  7280. struct drm_i915_private *dev_priv = dev->dev_private;
  7281. if (!IS_MOBILE(dev))
  7282. return false;
  7283. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7284. return false;
  7285. if (IS_GEN5(dev) &&
  7286. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7287. return false;
  7288. return true;
  7289. }
  7290. static void intel_setup_outputs(struct drm_device *dev)
  7291. {
  7292. struct drm_i915_private *dev_priv = dev->dev_private;
  7293. struct intel_encoder *encoder;
  7294. bool dpd_is_edp = false;
  7295. bool has_lvds;
  7296. has_lvds = intel_lvds_init(dev);
  7297. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7298. /* disable the panel fitter on everything but LVDS */
  7299. I915_WRITE(PFIT_CONTROL, 0);
  7300. }
  7301. if (!IS_ULT(dev))
  7302. intel_crt_init(dev);
  7303. if (HAS_DDI(dev)) {
  7304. int found;
  7305. /* Haswell uses DDI functions to detect digital outputs */
  7306. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7307. /* DDI A only supports eDP */
  7308. if (found)
  7309. intel_ddi_init(dev, PORT_A);
  7310. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7311. * register */
  7312. found = I915_READ(SFUSE_STRAP);
  7313. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7314. intel_ddi_init(dev, PORT_B);
  7315. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7316. intel_ddi_init(dev, PORT_C);
  7317. if (found & SFUSE_STRAP_DDID_DETECTED)
  7318. intel_ddi_init(dev, PORT_D);
  7319. } else if (HAS_PCH_SPLIT(dev)) {
  7320. int found;
  7321. dpd_is_edp = intel_dpd_is_edp(dev);
  7322. if (has_edp_a(dev))
  7323. intel_dp_init(dev, DP_A, PORT_A);
  7324. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7325. /* PCH SDVOB multiplex with HDMIB */
  7326. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7327. if (!found)
  7328. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7329. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7330. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7331. }
  7332. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7333. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7334. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7335. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7336. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7337. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7338. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7339. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7340. } else if (IS_VALLEYVIEW(dev)) {
  7341. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7342. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7343. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7344. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7345. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7346. PORT_B);
  7347. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7348. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7349. }
  7350. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7351. bool found = false;
  7352. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7353. DRM_DEBUG_KMS("probing SDVOB\n");
  7354. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7355. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7356. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7357. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7358. }
  7359. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7360. intel_dp_init(dev, DP_B, PORT_B);
  7361. }
  7362. /* Before G4X SDVOC doesn't have its own detect register */
  7363. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7364. DRM_DEBUG_KMS("probing SDVOC\n");
  7365. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7366. }
  7367. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7368. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7369. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7370. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7371. }
  7372. if (SUPPORTS_INTEGRATED_DP(dev))
  7373. intel_dp_init(dev, DP_C, PORT_C);
  7374. }
  7375. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7376. (I915_READ(DP_D) & DP_DETECTED))
  7377. intel_dp_init(dev, DP_D, PORT_D);
  7378. } else if (IS_GEN2(dev))
  7379. intel_dvo_init(dev);
  7380. if (SUPPORTS_TV(dev))
  7381. intel_tv_init(dev);
  7382. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7383. encoder->base.possible_crtcs = encoder->crtc_mask;
  7384. encoder->base.possible_clones =
  7385. intel_encoder_clones(encoder);
  7386. }
  7387. intel_init_pch_refclk(dev);
  7388. drm_helper_move_panel_connectors_to_head(dev);
  7389. }
  7390. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7391. {
  7392. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7393. drm_framebuffer_cleanup(fb);
  7394. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7395. kfree(intel_fb);
  7396. }
  7397. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7398. struct drm_file *file,
  7399. unsigned int *handle)
  7400. {
  7401. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7402. struct drm_i915_gem_object *obj = intel_fb->obj;
  7403. return drm_gem_handle_create(file, &obj->base, handle);
  7404. }
  7405. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7406. .destroy = intel_user_framebuffer_destroy,
  7407. .create_handle = intel_user_framebuffer_create_handle,
  7408. };
  7409. int intel_framebuffer_init(struct drm_device *dev,
  7410. struct intel_framebuffer *intel_fb,
  7411. struct drm_mode_fb_cmd2 *mode_cmd,
  7412. struct drm_i915_gem_object *obj)
  7413. {
  7414. int ret;
  7415. if (obj->tiling_mode == I915_TILING_Y) {
  7416. DRM_DEBUG("hardware does not support tiling Y\n");
  7417. return -EINVAL;
  7418. }
  7419. if (mode_cmd->pitches[0] & 63) {
  7420. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7421. mode_cmd->pitches[0]);
  7422. return -EINVAL;
  7423. }
  7424. /* FIXME <= Gen4 stride limits are bit unclear */
  7425. if (mode_cmd->pitches[0] > 32768) {
  7426. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7427. mode_cmd->pitches[0]);
  7428. return -EINVAL;
  7429. }
  7430. if (obj->tiling_mode != I915_TILING_NONE &&
  7431. mode_cmd->pitches[0] != obj->stride) {
  7432. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7433. mode_cmd->pitches[0], obj->stride);
  7434. return -EINVAL;
  7435. }
  7436. /* Reject formats not supported by any plane early. */
  7437. switch (mode_cmd->pixel_format) {
  7438. case DRM_FORMAT_C8:
  7439. case DRM_FORMAT_RGB565:
  7440. case DRM_FORMAT_XRGB8888:
  7441. case DRM_FORMAT_ARGB8888:
  7442. break;
  7443. case DRM_FORMAT_XRGB1555:
  7444. case DRM_FORMAT_ARGB1555:
  7445. if (INTEL_INFO(dev)->gen > 3) {
  7446. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7447. return -EINVAL;
  7448. }
  7449. break;
  7450. case DRM_FORMAT_XBGR8888:
  7451. case DRM_FORMAT_ABGR8888:
  7452. case DRM_FORMAT_XRGB2101010:
  7453. case DRM_FORMAT_ARGB2101010:
  7454. case DRM_FORMAT_XBGR2101010:
  7455. case DRM_FORMAT_ABGR2101010:
  7456. if (INTEL_INFO(dev)->gen < 4) {
  7457. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7458. return -EINVAL;
  7459. }
  7460. break;
  7461. case DRM_FORMAT_YUYV:
  7462. case DRM_FORMAT_UYVY:
  7463. case DRM_FORMAT_YVYU:
  7464. case DRM_FORMAT_VYUY:
  7465. if (INTEL_INFO(dev)->gen < 5) {
  7466. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7467. return -EINVAL;
  7468. }
  7469. break;
  7470. default:
  7471. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7472. return -EINVAL;
  7473. }
  7474. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7475. if (mode_cmd->offsets[0] != 0)
  7476. return -EINVAL;
  7477. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7478. intel_fb->obj = obj;
  7479. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7480. if (ret) {
  7481. DRM_ERROR("framebuffer init failed %d\n", ret);
  7482. return ret;
  7483. }
  7484. return 0;
  7485. }
  7486. static struct drm_framebuffer *
  7487. intel_user_framebuffer_create(struct drm_device *dev,
  7488. struct drm_file *filp,
  7489. struct drm_mode_fb_cmd2 *mode_cmd)
  7490. {
  7491. struct drm_i915_gem_object *obj;
  7492. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7493. mode_cmd->handles[0]));
  7494. if (&obj->base == NULL)
  7495. return ERR_PTR(-ENOENT);
  7496. return intel_framebuffer_create(dev, mode_cmd, obj);
  7497. }
  7498. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7499. .fb_create = intel_user_framebuffer_create,
  7500. .output_poll_changed = intel_fb_output_poll_changed,
  7501. };
  7502. /* Set up chip specific display functions */
  7503. static void intel_init_display(struct drm_device *dev)
  7504. {
  7505. struct drm_i915_private *dev_priv = dev->dev_private;
  7506. if (HAS_DDI(dev)) {
  7507. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7508. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7509. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7510. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7511. dev_priv->display.off = haswell_crtc_off;
  7512. dev_priv->display.update_plane = ironlake_update_plane;
  7513. } else if (HAS_PCH_SPLIT(dev)) {
  7514. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7515. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7516. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7517. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7518. dev_priv->display.off = ironlake_crtc_off;
  7519. dev_priv->display.update_plane = ironlake_update_plane;
  7520. } else if (IS_VALLEYVIEW(dev)) {
  7521. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7522. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7523. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7524. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7525. dev_priv->display.off = i9xx_crtc_off;
  7526. dev_priv->display.update_plane = i9xx_update_plane;
  7527. } else {
  7528. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7529. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7530. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7531. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7532. dev_priv->display.off = i9xx_crtc_off;
  7533. dev_priv->display.update_plane = i9xx_update_plane;
  7534. }
  7535. /* Returns the core display clock speed */
  7536. if (IS_VALLEYVIEW(dev))
  7537. dev_priv->display.get_display_clock_speed =
  7538. valleyview_get_display_clock_speed;
  7539. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7540. dev_priv->display.get_display_clock_speed =
  7541. i945_get_display_clock_speed;
  7542. else if (IS_I915G(dev))
  7543. dev_priv->display.get_display_clock_speed =
  7544. i915_get_display_clock_speed;
  7545. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7546. dev_priv->display.get_display_clock_speed =
  7547. i9xx_misc_get_display_clock_speed;
  7548. else if (IS_I915GM(dev))
  7549. dev_priv->display.get_display_clock_speed =
  7550. i915gm_get_display_clock_speed;
  7551. else if (IS_I865G(dev))
  7552. dev_priv->display.get_display_clock_speed =
  7553. i865_get_display_clock_speed;
  7554. else if (IS_I85X(dev))
  7555. dev_priv->display.get_display_clock_speed =
  7556. i855_get_display_clock_speed;
  7557. else /* 852, 830 */
  7558. dev_priv->display.get_display_clock_speed =
  7559. i830_get_display_clock_speed;
  7560. if (HAS_PCH_SPLIT(dev)) {
  7561. if (IS_GEN5(dev)) {
  7562. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7563. dev_priv->display.write_eld = ironlake_write_eld;
  7564. } else if (IS_GEN6(dev)) {
  7565. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7566. dev_priv->display.write_eld = ironlake_write_eld;
  7567. } else if (IS_IVYBRIDGE(dev)) {
  7568. /* FIXME: detect B0+ stepping and use auto training */
  7569. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7570. dev_priv->display.write_eld = ironlake_write_eld;
  7571. dev_priv->display.modeset_global_resources =
  7572. ivb_modeset_global_resources;
  7573. } else if (IS_HASWELL(dev)) {
  7574. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7575. dev_priv->display.write_eld = haswell_write_eld;
  7576. dev_priv->display.modeset_global_resources =
  7577. haswell_modeset_global_resources;
  7578. }
  7579. } else if (IS_G4X(dev)) {
  7580. dev_priv->display.write_eld = g4x_write_eld;
  7581. }
  7582. /* Default just returns -ENODEV to indicate unsupported */
  7583. dev_priv->display.queue_flip = intel_default_queue_flip;
  7584. switch (INTEL_INFO(dev)->gen) {
  7585. case 2:
  7586. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7587. break;
  7588. case 3:
  7589. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7590. break;
  7591. case 4:
  7592. case 5:
  7593. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7594. break;
  7595. case 6:
  7596. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7597. break;
  7598. case 7:
  7599. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7600. break;
  7601. }
  7602. }
  7603. /*
  7604. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7605. * resume, or other times. This quirk makes sure that's the case for
  7606. * affected systems.
  7607. */
  7608. static void quirk_pipea_force(struct drm_device *dev)
  7609. {
  7610. struct drm_i915_private *dev_priv = dev->dev_private;
  7611. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7612. DRM_INFO("applying pipe a force quirk\n");
  7613. }
  7614. /*
  7615. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7616. */
  7617. static void quirk_ssc_force_disable(struct drm_device *dev)
  7618. {
  7619. struct drm_i915_private *dev_priv = dev->dev_private;
  7620. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7621. DRM_INFO("applying lvds SSC disable quirk\n");
  7622. }
  7623. /*
  7624. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7625. * brightness value
  7626. */
  7627. static void quirk_invert_brightness(struct drm_device *dev)
  7628. {
  7629. struct drm_i915_private *dev_priv = dev->dev_private;
  7630. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7631. DRM_INFO("applying inverted panel brightness quirk\n");
  7632. }
  7633. struct intel_quirk {
  7634. int device;
  7635. int subsystem_vendor;
  7636. int subsystem_device;
  7637. void (*hook)(struct drm_device *dev);
  7638. };
  7639. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7640. struct intel_dmi_quirk {
  7641. void (*hook)(struct drm_device *dev);
  7642. const struct dmi_system_id (*dmi_id_list)[];
  7643. };
  7644. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7645. {
  7646. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7647. return 1;
  7648. }
  7649. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7650. {
  7651. .dmi_id_list = &(const struct dmi_system_id[]) {
  7652. {
  7653. .callback = intel_dmi_reverse_brightness,
  7654. .ident = "NCR Corporation",
  7655. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7656. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7657. },
  7658. },
  7659. { } /* terminating entry */
  7660. },
  7661. .hook = quirk_invert_brightness,
  7662. },
  7663. };
  7664. static struct intel_quirk intel_quirks[] = {
  7665. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7666. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7667. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7668. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7669. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7670. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7671. /* 830/845 need to leave pipe A & dpll A up */
  7672. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7673. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7674. /* Lenovo U160 cannot use SSC on LVDS */
  7675. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7676. /* Sony Vaio Y cannot use SSC on LVDS */
  7677. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7678. /* Acer Aspire 5734Z must invert backlight brightness */
  7679. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7680. /* Acer/eMachines G725 */
  7681. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7682. /* Acer/eMachines e725 */
  7683. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7684. /* Acer/Packard Bell NCL20 */
  7685. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7686. /* Acer Aspire 4736Z */
  7687. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7688. };
  7689. static void intel_init_quirks(struct drm_device *dev)
  7690. {
  7691. struct pci_dev *d = dev->pdev;
  7692. int i;
  7693. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7694. struct intel_quirk *q = &intel_quirks[i];
  7695. if (d->device == q->device &&
  7696. (d->subsystem_vendor == q->subsystem_vendor ||
  7697. q->subsystem_vendor == PCI_ANY_ID) &&
  7698. (d->subsystem_device == q->subsystem_device ||
  7699. q->subsystem_device == PCI_ANY_ID))
  7700. q->hook(dev);
  7701. }
  7702. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7703. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7704. intel_dmi_quirks[i].hook(dev);
  7705. }
  7706. }
  7707. /* Disable the VGA plane that we never use */
  7708. static void i915_disable_vga(struct drm_device *dev)
  7709. {
  7710. struct drm_i915_private *dev_priv = dev->dev_private;
  7711. u8 sr1;
  7712. u32 vga_reg = i915_vgacntrl_reg(dev);
  7713. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7714. outb(SR01, VGA_SR_INDEX);
  7715. sr1 = inb(VGA_SR_DATA);
  7716. outb(sr1 | 1<<5, VGA_SR_DATA);
  7717. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7718. udelay(300);
  7719. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7720. POSTING_READ(vga_reg);
  7721. }
  7722. void intel_modeset_init_hw(struct drm_device *dev)
  7723. {
  7724. intel_init_power_well(dev);
  7725. intel_prepare_ddi(dev);
  7726. intel_init_clock_gating(dev);
  7727. mutex_lock(&dev->struct_mutex);
  7728. intel_enable_gt_powersave(dev);
  7729. mutex_unlock(&dev->struct_mutex);
  7730. }
  7731. void intel_modeset_suspend_hw(struct drm_device *dev)
  7732. {
  7733. intel_suspend_hw(dev);
  7734. }
  7735. void intel_modeset_init(struct drm_device *dev)
  7736. {
  7737. struct drm_i915_private *dev_priv = dev->dev_private;
  7738. int i, j, ret;
  7739. drm_mode_config_init(dev);
  7740. dev->mode_config.min_width = 0;
  7741. dev->mode_config.min_height = 0;
  7742. dev->mode_config.preferred_depth = 24;
  7743. dev->mode_config.prefer_shadow = 1;
  7744. dev->mode_config.funcs = &intel_mode_funcs;
  7745. intel_init_quirks(dev);
  7746. intel_init_pm(dev);
  7747. if (INTEL_INFO(dev)->num_pipes == 0)
  7748. return;
  7749. intel_init_display(dev);
  7750. if (IS_GEN2(dev)) {
  7751. dev->mode_config.max_width = 2048;
  7752. dev->mode_config.max_height = 2048;
  7753. } else if (IS_GEN3(dev)) {
  7754. dev->mode_config.max_width = 4096;
  7755. dev->mode_config.max_height = 4096;
  7756. } else {
  7757. dev->mode_config.max_width = 8192;
  7758. dev->mode_config.max_height = 8192;
  7759. }
  7760. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7761. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7762. INTEL_INFO(dev)->num_pipes,
  7763. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7764. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7765. intel_crtc_init(dev, i);
  7766. for (j = 0; j < dev_priv->num_plane; j++) {
  7767. ret = intel_plane_init(dev, i, j);
  7768. if (ret)
  7769. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7770. pipe_name(i), sprite_name(i, j), ret);
  7771. }
  7772. }
  7773. intel_cpu_pll_init(dev);
  7774. intel_pch_pll_init(dev);
  7775. /* Just disable it once at startup */
  7776. i915_disable_vga(dev);
  7777. intel_setup_outputs(dev);
  7778. /* Just in case the BIOS is doing something questionable. */
  7779. intel_disable_fbc(dev);
  7780. }
  7781. static void
  7782. intel_connector_break_all_links(struct intel_connector *connector)
  7783. {
  7784. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7785. connector->base.encoder = NULL;
  7786. connector->encoder->connectors_active = false;
  7787. connector->encoder->base.crtc = NULL;
  7788. }
  7789. static void intel_enable_pipe_a(struct drm_device *dev)
  7790. {
  7791. struct intel_connector *connector;
  7792. struct drm_connector *crt = NULL;
  7793. struct intel_load_detect_pipe load_detect_temp;
  7794. /* We can't just switch on the pipe A, we need to set things up with a
  7795. * proper mode and output configuration. As a gross hack, enable pipe A
  7796. * by enabling the load detect pipe once. */
  7797. list_for_each_entry(connector,
  7798. &dev->mode_config.connector_list,
  7799. base.head) {
  7800. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7801. crt = &connector->base;
  7802. break;
  7803. }
  7804. }
  7805. if (!crt)
  7806. return;
  7807. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7808. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7809. }
  7810. static bool
  7811. intel_check_plane_mapping(struct intel_crtc *crtc)
  7812. {
  7813. struct drm_device *dev = crtc->base.dev;
  7814. struct drm_i915_private *dev_priv = dev->dev_private;
  7815. u32 reg, val;
  7816. if (INTEL_INFO(dev)->num_pipes == 1)
  7817. return true;
  7818. reg = DSPCNTR(!crtc->plane);
  7819. val = I915_READ(reg);
  7820. if ((val & DISPLAY_PLANE_ENABLE) &&
  7821. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7822. return false;
  7823. return true;
  7824. }
  7825. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7826. {
  7827. struct drm_device *dev = crtc->base.dev;
  7828. struct drm_i915_private *dev_priv = dev->dev_private;
  7829. u32 reg;
  7830. /* Clear any frame start delays used for debugging left by the BIOS */
  7831. reg = PIPECONF(crtc->config.cpu_transcoder);
  7832. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7833. /* We need to sanitize the plane -> pipe mapping first because this will
  7834. * disable the crtc (and hence change the state) if it is wrong. Note
  7835. * that gen4+ has a fixed plane -> pipe mapping. */
  7836. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7837. struct intel_connector *connector;
  7838. bool plane;
  7839. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7840. crtc->base.base.id);
  7841. /* Pipe has the wrong plane attached and the plane is active.
  7842. * Temporarily change the plane mapping and disable everything
  7843. * ... */
  7844. plane = crtc->plane;
  7845. crtc->plane = !plane;
  7846. dev_priv->display.crtc_disable(&crtc->base);
  7847. crtc->plane = plane;
  7848. /* ... and break all links. */
  7849. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7850. base.head) {
  7851. if (connector->encoder->base.crtc != &crtc->base)
  7852. continue;
  7853. intel_connector_break_all_links(connector);
  7854. }
  7855. WARN_ON(crtc->active);
  7856. crtc->base.enabled = false;
  7857. }
  7858. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7859. crtc->pipe == PIPE_A && !crtc->active) {
  7860. /* BIOS forgot to enable pipe A, this mostly happens after
  7861. * resume. Force-enable the pipe to fix this, the update_dpms
  7862. * call below we restore the pipe to the right state, but leave
  7863. * the required bits on. */
  7864. intel_enable_pipe_a(dev);
  7865. }
  7866. /* Adjust the state of the output pipe according to whether we
  7867. * have active connectors/encoders. */
  7868. intel_crtc_update_dpms(&crtc->base);
  7869. if (crtc->active != crtc->base.enabled) {
  7870. struct intel_encoder *encoder;
  7871. /* This can happen either due to bugs in the get_hw_state
  7872. * functions or because the pipe is force-enabled due to the
  7873. * pipe A quirk. */
  7874. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7875. crtc->base.base.id,
  7876. crtc->base.enabled ? "enabled" : "disabled",
  7877. crtc->active ? "enabled" : "disabled");
  7878. crtc->base.enabled = crtc->active;
  7879. /* Because we only establish the connector -> encoder ->
  7880. * crtc links if something is active, this means the
  7881. * crtc is now deactivated. Break the links. connector
  7882. * -> encoder links are only establish when things are
  7883. * actually up, hence no need to break them. */
  7884. WARN_ON(crtc->active);
  7885. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7886. WARN_ON(encoder->connectors_active);
  7887. encoder->base.crtc = NULL;
  7888. }
  7889. }
  7890. }
  7891. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7892. {
  7893. struct intel_connector *connector;
  7894. struct drm_device *dev = encoder->base.dev;
  7895. /* We need to check both for a crtc link (meaning that the
  7896. * encoder is active and trying to read from a pipe) and the
  7897. * pipe itself being active. */
  7898. bool has_active_crtc = encoder->base.crtc &&
  7899. to_intel_crtc(encoder->base.crtc)->active;
  7900. if (encoder->connectors_active && !has_active_crtc) {
  7901. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7902. encoder->base.base.id,
  7903. drm_get_encoder_name(&encoder->base));
  7904. /* Connector is active, but has no active pipe. This is
  7905. * fallout from our resume register restoring. Disable
  7906. * the encoder manually again. */
  7907. if (encoder->base.crtc) {
  7908. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7909. encoder->base.base.id,
  7910. drm_get_encoder_name(&encoder->base));
  7911. encoder->disable(encoder);
  7912. }
  7913. /* Inconsistent output/port/pipe state happens presumably due to
  7914. * a bug in one of the get_hw_state functions. Or someplace else
  7915. * in our code, like the register restore mess on resume. Clamp
  7916. * things to off as a safer default. */
  7917. list_for_each_entry(connector,
  7918. &dev->mode_config.connector_list,
  7919. base.head) {
  7920. if (connector->encoder != encoder)
  7921. continue;
  7922. intel_connector_break_all_links(connector);
  7923. }
  7924. }
  7925. /* Enabled encoders without active connectors will be fixed in
  7926. * the crtc fixup. */
  7927. }
  7928. void i915_redisable_vga(struct drm_device *dev)
  7929. {
  7930. struct drm_i915_private *dev_priv = dev->dev_private;
  7931. u32 vga_reg = i915_vgacntrl_reg(dev);
  7932. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7933. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7934. i915_disable_vga(dev);
  7935. }
  7936. }
  7937. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7938. * and i915 state tracking structures. */
  7939. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7940. bool force_restore)
  7941. {
  7942. struct drm_i915_private *dev_priv = dev->dev_private;
  7943. enum pipe pipe;
  7944. struct drm_plane *plane;
  7945. struct intel_crtc *crtc;
  7946. struct intel_encoder *encoder;
  7947. struct intel_connector *connector;
  7948. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7949. base.head) {
  7950. memset(&crtc->config, 0, sizeof(crtc->config));
  7951. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7952. &crtc->config);
  7953. crtc->base.enabled = crtc->active;
  7954. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7955. crtc->base.base.id,
  7956. crtc->active ? "enabled" : "disabled");
  7957. }
  7958. if (HAS_DDI(dev))
  7959. intel_ddi_setup_hw_pll_state(dev);
  7960. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7961. base.head) {
  7962. pipe = 0;
  7963. if (encoder->get_hw_state(encoder, &pipe)) {
  7964. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7965. encoder->base.crtc = &crtc->base;
  7966. if (encoder->get_config)
  7967. encoder->get_config(encoder, &crtc->config);
  7968. } else {
  7969. encoder->base.crtc = NULL;
  7970. }
  7971. encoder->connectors_active = false;
  7972. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7973. encoder->base.base.id,
  7974. drm_get_encoder_name(&encoder->base),
  7975. encoder->base.crtc ? "enabled" : "disabled",
  7976. pipe);
  7977. }
  7978. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7979. base.head) {
  7980. if (connector->get_hw_state(connector)) {
  7981. connector->base.dpms = DRM_MODE_DPMS_ON;
  7982. connector->encoder->connectors_active = true;
  7983. connector->base.encoder = &connector->encoder->base;
  7984. } else {
  7985. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7986. connector->base.encoder = NULL;
  7987. }
  7988. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7989. connector->base.base.id,
  7990. drm_get_connector_name(&connector->base),
  7991. connector->base.encoder ? "enabled" : "disabled");
  7992. }
  7993. /* HW state is read out, now we need to sanitize this mess. */
  7994. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7995. base.head) {
  7996. intel_sanitize_encoder(encoder);
  7997. }
  7998. for_each_pipe(pipe) {
  7999. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8000. intel_sanitize_crtc(crtc);
  8001. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8002. }
  8003. if (force_restore) {
  8004. /*
  8005. * We need to use raw interfaces for restoring state to avoid
  8006. * checking (bogus) intermediate states.
  8007. */
  8008. for_each_pipe(pipe) {
  8009. struct drm_crtc *crtc =
  8010. dev_priv->pipe_to_crtc_mapping[pipe];
  8011. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8012. crtc->fb);
  8013. }
  8014. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8015. intel_plane_restore(plane);
  8016. i915_redisable_vga(dev);
  8017. } else {
  8018. intel_modeset_update_staged_output_state(dev);
  8019. }
  8020. intel_modeset_check_state(dev);
  8021. drm_mode_config_reset(dev);
  8022. }
  8023. void intel_modeset_gem_init(struct drm_device *dev)
  8024. {
  8025. intel_modeset_init_hw(dev);
  8026. intel_setup_overlay(dev);
  8027. intel_modeset_setup_hw_state(dev, false);
  8028. }
  8029. void intel_modeset_cleanup(struct drm_device *dev)
  8030. {
  8031. struct drm_i915_private *dev_priv = dev->dev_private;
  8032. struct drm_crtc *crtc;
  8033. struct intel_crtc *intel_crtc;
  8034. /*
  8035. * Interrupts and polling as the first thing to avoid creating havoc.
  8036. * Too much stuff here (turning of rps, connectors, ...) would
  8037. * experience fancy races otherwise.
  8038. */
  8039. drm_irq_uninstall(dev);
  8040. cancel_work_sync(&dev_priv->hotplug_work);
  8041. /*
  8042. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8043. * poll handlers. Hence disable polling after hpd handling is shut down.
  8044. */
  8045. drm_kms_helper_poll_fini(dev);
  8046. mutex_lock(&dev->struct_mutex);
  8047. intel_unregister_dsm_handler();
  8048. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8049. /* Skip inactive CRTCs */
  8050. if (!crtc->fb)
  8051. continue;
  8052. intel_crtc = to_intel_crtc(crtc);
  8053. intel_increase_pllclock(crtc);
  8054. }
  8055. intel_disable_fbc(dev);
  8056. intel_disable_gt_powersave(dev);
  8057. ironlake_teardown_rc6(dev);
  8058. mutex_unlock(&dev->struct_mutex);
  8059. /* flush any delayed tasks or pending work */
  8060. flush_scheduled_work();
  8061. /* destroy backlight, if any, before the connectors */
  8062. intel_panel_destroy_backlight(dev);
  8063. drm_mode_config_cleanup(dev);
  8064. intel_cleanup_overlay(dev);
  8065. }
  8066. /*
  8067. * Return which encoder is currently attached for connector.
  8068. */
  8069. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8070. {
  8071. return &intel_attached_encoder(connector)->base;
  8072. }
  8073. void intel_connector_attach_encoder(struct intel_connector *connector,
  8074. struct intel_encoder *encoder)
  8075. {
  8076. connector->encoder = encoder;
  8077. drm_mode_connector_attach_encoder(&connector->base,
  8078. &encoder->base);
  8079. }
  8080. /*
  8081. * set vga decode state - true == enable VGA decode
  8082. */
  8083. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8084. {
  8085. struct drm_i915_private *dev_priv = dev->dev_private;
  8086. u16 gmch_ctrl;
  8087. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8088. if (state)
  8089. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8090. else
  8091. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8092. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8093. return 0;
  8094. }
  8095. #ifdef CONFIG_DEBUG_FS
  8096. #include <linux/seq_file.h>
  8097. struct intel_display_error_state {
  8098. u32 power_well_driver;
  8099. struct intel_cursor_error_state {
  8100. u32 control;
  8101. u32 position;
  8102. u32 base;
  8103. u32 size;
  8104. } cursor[I915_MAX_PIPES];
  8105. struct intel_pipe_error_state {
  8106. enum transcoder cpu_transcoder;
  8107. u32 conf;
  8108. u32 source;
  8109. u32 htotal;
  8110. u32 hblank;
  8111. u32 hsync;
  8112. u32 vtotal;
  8113. u32 vblank;
  8114. u32 vsync;
  8115. } pipe[I915_MAX_PIPES];
  8116. struct intel_plane_error_state {
  8117. u32 control;
  8118. u32 stride;
  8119. u32 size;
  8120. u32 pos;
  8121. u32 addr;
  8122. u32 surface;
  8123. u32 tile_offset;
  8124. } plane[I915_MAX_PIPES];
  8125. };
  8126. struct intel_display_error_state *
  8127. intel_display_capture_error_state(struct drm_device *dev)
  8128. {
  8129. drm_i915_private_t *dev_priv = dev->dev_private;
  8130. struct intel_display_error_state *error;
  8131. enum transcoder cpu_transcoder;
  8132. int i;
  8133. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8134. if (error == NULL)
  8135. return NULL;
  8136. if (HAS_POWER_WELL(dev))
  8137. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8138. for_each_pipe(i) {
  8139. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8140. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8141. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8142. error->cursor[i].control = I915_READ(CURCNTR(i));
  8143. error->cursor[i].position = I915_READ(CURPOS(i));
  8144. error->cursor[i].base = I915_READ(CURBASE(i));
  8145. } else {
  8146. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8147. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8148. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8149. }
  8150. error->plane[i].control = I915_READ(DSPCNTR(i));
  8151. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8152. if (INTEL_INFO(dev)->gen <= 3) {
  8153. error->plane[i].size = I915_READ(DSPSIZE(i));
  8154. error->plane[i].pos = I915_READ(DSPPOS(i));
  8155. }
  8156. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8157. error->plane[i].addr = I915_READ(DSPADDR(i));
  8158. if (INTEL_INFO(dev)->gen >= 4) {
  8159. error->plane[i].surface = I915_READ(DSPSURF(i));
  8160. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8161. }
  8162. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8163. error->pipe[i].source = I915_READ(PIPESRC(i));
  8164. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8165. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8166. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8167. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8168. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8169. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8170. }
  8171. /* In the code above we read the registers without checking if the power
  8172. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8173. * prevent the next I915_WRITE from detecting it and printing an error
  8174. * message. */
  8175. if (HAS_POWER_WELL(dev))
  8176. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8177. return error;
  8178. }
  8179. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8180. void
  8181. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8182. struct drm_device *dev,
  8183. struct intel_display_error_state *error)
  8184. {
  8185. int i;
  8186. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8187. if (HAS_POWER_WELL(dev))
  8188. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8189. error->power_well_driver);
  8190. for_each_pipe(i) {
  8191. err_printf(m, "Pipe [%d]:\n", i);
  8192. err_printf(m, " CPU transcoder: %c\n",
  8193. transcoder_name(error->pipe[i].cpu_transcoder));
  8194. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8195. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8196. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8197. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8198. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8199. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8200. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8201. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8202. err_printf(m, "Plane [%d]:\n", i);
  8203. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8204. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8205. if (INTEL_INFO(dev)->gen <= 3) {
  8206. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8207. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8208. }
  8209. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8210. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8211. if (INTEL_INFO(dev)->gen >= 4) {
  8212. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8213. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8214. }
  8215. err_printf(m, "Cursor [%d]:\n", i);
  8216. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8217. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8218. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8219. }
  8220. }
  8221. #endif