disk-io.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include "compat.h"
  29. #include "crc32c.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "ref-cache.h"
  39. #include "tree-log.h"
  40. static struct extent_io_ops btree_extent_io_ops;
  41. static void end_workqueue_fn(struct btrfs_work *work);
  42. /*
  43. * end_io_wq structs are used to do processing in task context when an IO is
  44. * complete. This is used during reads to verify checksums, and it is used
  45. * by writes to insert metadata for new file extents after IO is complete.
  46. */
  47. struct end_io_wq {
  48. struct bio *bio;
  49. bio_end_io_t *end_io;
  50. void *private;
  51. struct btrfs_fs_info *info;
  52. int error;
  53. int metadata;
  54. struct list_head list;
  55. struct btrfs_work work;
  56. };
  57. /*
  58. * async submit bios are used to offload expensive checksumming
  59. * onto the worker threads. They checksum file and metadata bios
  60. * just before they are sent down the IO stack.
  61. */
  62. struct async_submit_bio {
  63. struct inode *inode;
  64. struct bio *bio;
  65. struct list_head list;
  66. extent_submit_bio_hook_t *submit_bio_start;
  67. extent_submit_bio_hook_t *submit_bio_done;
  68. int rw;
  69. int mirror_num;
  70. unsigned long bio_flags;
  71. struct btrfs_work work;
  72. };
  73. /*
  74. * extents on the btree inode are pretty simple, there's one extent
  75. * that covers the entire device
  76. */
  77. static struct extent_map *btree_get_extent(struct inode *inode,
  78. struct page *page, size_t page_offset, u64 start, u64 len,
  79. int create)
  80. {
  81. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  82. struct extent_map *em;
  83. int ret;
  84. spin_lock(&em_tree->lock);
  85. em = lookup_extent_mapping(em_tree, start, len);
  86. if (em) {
  87. em->bdev =
  88. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  89. spin_unlock(&em_tree->lock);
  90. goto out;
  91. }
  92. spin_unlock(&em_tree->lock);
  93. em = alloc_extent_map(GFP_NOFS);
  94. if (!em) {
  95. em = ERR_PTR(-ENOMEM);
  96. goto out;
  97. }
  98. em->start = 0;
  99. em->len = (u64)-1;
  100. em->block_len = (u64)-1;
  101. em->block_start = 0;
  102. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  103. spin_lock(&em_tree->lock);
  104. ret = add_extent_mapping(em_tree, em);
  105. if (ret == -EEXIST) {
  106. u64 failed_start = em->start;
  107. u64 failed_len = em->len;
  108. free_extent_map(em);
  109. em = lookup_extent_mapping(em_tree, start, len);
  110. if (em) {
  111. ret = 0;
  112. } else {
  113. em = lookup_extent_mapping(em_tree, failed_start,
  114. failed_len);
  115. ret = -EIO;
  116. }
  117. } else if (ret) {
  118. free_extent_map(em);
  119. em = NULL;
  120. }
  121. spin_unlock(&em_tree->lock);
  122. if (ret)
  123. em = ERR_PTR(ret);
  124. out:
  125. return em;
  126. }
  127. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  128. {
  129. return btrfs_crc32c(seed, data, len);
  130. }
  131. void btrfs_csum_final(u32 crc, char *result)
  132. {
  133. *(__le32 *)result = ~cpu_to_le32(crc);
  134. }
  135. /*
  136. * compute the csum for a btree block, and either verify it or write it
  137. * into the csum field of the block.
  138. */
  139. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  140. int verify)
  141. {
  142. u16 csum_size =
  143. btrfs_super_csum_size(&root->fs_info->super_copy);
  144. char *result = NULL;
  145. unsigned long len;
  146. unsigned long cur_len;
  147. unsigned long offset = BTRFS_CSUM_SIZE;
  148. char *map_token = NULL;
  149. char *kaddr;
  150. unsigned long map_start;
  151. unsigned long map_len;
  152. int err;
  153. u32 crc = ~(u32)0;
  154. unsigned long inline_result;
  155. len = buf->len - offset;
  156. while (len > 0) {
  157. err = map_private_extent_buffer(buf, offset, 32,
  158. &map_token, &kaddr,
  159. &map_start, &map_len, KM_USER0);
  160. if (err)
  161. return 1;
  162. cur_len = min(len, map_len - (offset - map_start));
  163. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  164. crc, cur_len);
  165. len -= cur_len;
  166. offset += cur_len;
  167. unmap_extent_buffer(buf, map_token, KM_USER0);
  168. }
  169. if (csum_size > sizeof(inline_result)) {
  170. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  171. if (!result)
  172. return 1;
  173. } else {
  174. result = (char *)&inline_result;
  175. }
  176. btrfs_csum_final(crc, result);
  177. if (verify) {
  178. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  179. u32 val;
  180. u32 found = 0;
  181. memcpy(&found, result, csum_size);
  182. read_extent_buffer(buf, &val, 0, csum_size);
  183. printk(KERN_INFO "btrfs: %s checksum verify failed "
  184. "on %llu wanted %X found %X level %d\n",
  185. root->fs_info->sb->s_id,
  186. buf->start, val, found, btrfs_header_level(buf));
  187. if (result != (char *)&inline_result)
  188. kfree(result);
  189. return 1;
  190. }
  191. } else {
  192. write_extent_buffer(buf, result, 0, csum_size);
  193. }
  194. if (result != (char *)&inline_result)
  195. kfree(result);
  196. return 0;
  197. }
  198. /*
  199. * we can't consider a given block up to date unless the transid of the
  200. * block matches the transid in the parent node's pointer. This is how we
  201. * detect blocks that either didn't get written at all or got written
  202. * in the wrong place.
  203. */
  204. static int verify_parent_transid(struct extent_io_tree *io_tree,
  205. struct extent_buffer *eb, u64 parent_transid)
  206. {
  207. int ret;
  208. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  209. return 0;
  210. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  211. if (extent_buffer_uptodate(io_tree, eb) &&
  212. btrfs_header_generation(eb) == parent_transid) {
  213. ret = 0;
  214. goto out;
  215. }
  216. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  217. (unsigned long long)eb->start,
  218. (unsigned long long)parent_transid,
  219. (unsigned long long)btrfs_header_generation(eb));
  220. ret = 1;
  221. clear_extent_buffer_uptodate(io_tree, eb);
  222. out:
  223. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  224. GFP_NOFS);
  225. return ret;
  226. }
  227. /*
  228. * helper to read a given tree block, doing retries as required when
  229. * the checksums don't match and we have alternate mirrors to try.
  230. */
  231. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  232. struct extent_buffer *eb,
  233. u64 start, u64 parent_transid)
  234. {
  235. struct extent_io_tree *io_tree;
  236. int ret;
  237. int num_copies = 0;
  238. int mirror_num = 0;
  239. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  240. while (1) {
  241. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  242. btree_get_extent, mirror_num);
  243. if (!ret &&
  244. !verify_parent_transid(io_tree, eb, parent_transid))
  245. return ret;
  246. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  247. eb->start, eb->len);
  248. if (num_copies == 1)
  249. return ret;
  250. mirror_num++;
  251. if (mirror_num > num_copies)
  252. return ret;
  253. }
  254. return -EIO;
  255. }
  256. /*
  257. * checksum a dirty tree block before IO. This has extra checks to make sure
  258. * we only fill in the checksum field in the first page of a multi-page block
  259. */
  260. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  261. {
  262. struct extent_io_tree *tree;
  263. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  264. u64 found_start;
  265. int found_level;
  266. unsigned long len;
  267. struct extent_buffer *eb;
  268. int ret;
  269. tree = &BTRFS_I(page->mapping->host)->io_tree;
  270. if (page->private == EXTENT_PAGE_PRIVATE)
  271. goto out;
  272. if (!page->private)
  273. goto out;
  274. len = page->private >> 2;
  275. WARN_ON(len == 0);
  276. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  277. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  278. btrfs_header_generation(eb));
  279. BUG_ON(ret);
  280. found_start = btrfs_header_bytenr(eb);
  281. if (found_start != start) {
  282. WARN_ON(1);
  283. goto err;
  284. }
  285. if (eb->first_page != page) {
  286. WARN_ON(1);
  287. goto err;
  288. }
  289. if (!PageUptodate(page)) {
  290. WARN_ON(1);
  291. goto err;
  292. }
  293. found_level = btrfs_header_level(eb);
  294. csum_tree_block(root, eb, 0);
  295. err:
  296. free_extent_buffer(eb);
  297. out:
  298. return 0;
  299. }
  300. static int check_tree_block_fsid(struct btrfs_root *root,
  301. struct extent_buffer *eb)
  302. {
  303. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  304. u8 fsid[BTRFS_UUID_SIZE];
  305. int ret = 1;
  306. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  307. BTRFS_FSID_SIZE);
  308. while (fs_devices) {
  309. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  310. ret = 0;
  311. break;
  312. }
  313. fs_devices = fs_devices->seed;
  314. }
  315. return ret;
  316. }
  317. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  318. struct extent_state *state)
  319. {
  320. struct extent_io_tree *tree;
  321. u64 found_start;
  322. int found_level;
  323. unsigned long len;
  324. struct extent_buffer *eb;
  325. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  326. int ret = 0;
  327. tree = &BTRFS_I(page->mapping->host)->io_tree;
  328. if (page->private == EXTENT_PAGE_PRIVATE)
  329. goto out;
  330. if (!page->private)
  331. goto out;
  332. len = page->private >> 2;
  333. WARN_ON(len == 0);
  334. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  335. found_start = btrfs_header_bytenr(eb);
  336. if (found_start != start) {
  337. printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
  338. (unsigned long long)found_start,
  339. (unsigned long long)eb->start);
  340. ret = -EIO;
  341. goto err;
  342. }
  343. if (eb->first_page != page) {
  344. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  345. eb->first_page->index, page->index);
  346. WARN_ON(1);
  347. ret = -EIO;
  348. goto err;
  349. }
  350. if (check_tree_block_fsid(root, eb)) {
  351. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  352. (unsigned long long)eb->start);
  353. ret = -EIO;
  354. goto err;
  355. }
  356. found_level = btrfs_header_level(eb);
  357. ret = csum_tree_block(root, eb, 1);
  358. if (ret)
  359. ret = -EIO;
  360. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  361. end = eb->start + end - 1;
  362. err:
  363. free_extent_buffer(eb);
  364. out:
  365. return ret;
  366. }
  367. static void end_workqueue_bio(struct bio *bio, int err)
  368. {
  369. struct end_io_wq *end_io_wq = bio->bi_private;
  370. struct btrfs_fs_info *fs_info;
  371. fs_info = end_io_wq->info;
  372. end_io_wq->error = err;
  373. end_io_wq->work.func = end_workqueue_fn;
  374. end_io_wq->work.flags = 0;
  375. if (bio->bi_rw & (1 << BIO_RW)) {
  376. if (end_io_wq->metadata)
  377. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  378. &end_io_wq->work);
  379. else
  380. btrfs_queue_worker(&fs_info->endio_write_workers,
  381. &end_io_wq->work);
  382. } else {
  383. if (end_io_wq->metadata)
  384. btrfs_queue_worker(&fs_info->endio_meta_workers,
  385. &end_io_wq->work);
  386. else
  387. btrfs_queue_worker(&fs_info->endio_workers,
  388. &end_io_wq->work);
  389. }
  390. }
  391. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  392. int metadata)
  393. {
  394. struct end_io_wq *end_io_wq;
  395. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  396. if (!end_io_wq)
  397. return -ENOMEM;
  398. end_io_wq->private = bio->bi_private;
  399. end_io_wq->end_io = bio->bi_end_io;
  400. end_io_wq->info = info;
  401. end_io_wq->error = 0;
  402. end_io_wq->bio = bio;
  403. end_io_wq->metadata = metadata;
  404. bio->bi_private = end_io_wq;
  405. bio->bi_end_io = end_workqueue_bio;
  406. return 0;
  407. }
  408. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  409. {
  410. unsigned long limit = min_t(unsigned long,
  411. info->workers.max_workers,
  412. info->fs_devices->open_devices);
  413. return 256 * limit;
  414. }
  415. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  416. {
  417. return atomic_read(&info->nr_async_bios) >
  418. btrfs_async_submit_limit(info);
  419. }
  420. static void run_one_async_start(struct btrfs_work *work)
  421. {
  422. struct btrfs_fs_info *fs_info;
  423. struct async_submit_bio *async;
  424. async = container_of(work, struct async_submit_bio, work);
  425. fs_info = BTRFS_I(async->inode)->root->fs_info;
  426. async->submit_bio_start(async->inode, async->rw, async->bio,
  427. async->mirror_num, async->bio_flags);
  428. }
  429. static void run_one_async_done(struct btrfs_work *work)
  430. {
  431. struct btrfs_fs_info *fs_info;
  432. struct async_submit_bio *async;
  433. int limit;
  434. async = container_of(work, struct async_submit_bio, work);
  435. fs_info = BTRFS_I(async->inode)->root->fs_info;
  436. limit = btrfs_async_submit_limit(fs_info);
  437. limit = limit * 2 / 3;
  438. atomic_dec(&fs_info->nr_async_submits);
  439. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  440. waitqueue_active(&fs_info->async_submit_wait))
  441. wake_up(&fs_info->async_submit_wait);
  442. async->submit_bio_done(async->inode, async->rw, async->bio,
  443. async->mirror_num, async->bio_flags);
  444. }
  445. static void run_one_async_free(struct btrfs_work *work)
  446. {
  447. struct async_submit_bio *async;
  448. async = container_of(work, struct async_submit_bio, work);
  449. kfree(async);
  450. }
  451. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  452. int rw, struct bio *bio, int mirror_num,
  453. unsigned long bio_flags,
  454. extent_submit_bio_hook_t *submit_bio_start,
  455. extent_submit_bio_hook_t *submit_bio_done)
  456. {
  457. struct async_submit_bio *async;
  458. async = kmalloc(sizeof(*async), GFP_NOFS);
  459. if (!async)
  460. return -ENOMEM;
  461. async->inode = inode;
  462. async->rw = rw;
  463. async->bio = bio;
  464. async->mirror_num = mirror_num;
  465. async->submit_bio_start = submit_bio_start;
  466. async->submit_bio_done = submit_bio_done;
  467. async->work.func = run_one_async_start;
  468. async->work.ordered_func = run_one_async_done;
  469. async->work.ordered_free = run_one_async_free;
  470. async->work.flags = 0;
  471. async->bio_flags = bio_flags;
  472. atomic_inc(&fs_info->nr_async_submits);
  473. btrfs_queue_worker(&fs_info->workers, &async->work);
  474. #if 0
  475. int limit = btrfs_async_submit_limit(fs_info);
  476. if (atomic_read(&fs_info->nr_async_submits) > limit) {
  477. wait_event_timeout(fs_info->async_submit_wait,
  478. (atomic_read(&fs_info->nr_async_submits) < limit),
  479. HZ/10);
  480. wait_event_timeout(fs_info->async_submit_wait,
  481. (atomic_read(&fs_info->nr_async_bios) < limit),
  482. HZ/10);
  483. }
  484. #endif
  485. while (atomic_read(&fs_info->async_submit_draining) &&
  486. atomic_read(&fs_info->nr_async_submits)) {
  487. wait_event(fs_info->async_submit_wait,
  488. (atomic_read(&fs_info->nr_async_submits) == 0));
  489. }
  490. return 0;
  491. }
  492. static int btree_csum_one_bio(struct bio *bio)
  493. {
  494. struct bio_vec *bvec = bio->bi_io_vec;
  495. int bio_index = 0;
  496. struct btrfs_root *root;
  497. WARN_ON(bio->bi_vcnt <= 0);
  498. while (bio_index < bio->bi_vcnt) {
  499. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  500. csum_dirty_buffer(root, bvec->bv_page);
  501. bio_index++;
  502. bvec++;
  503. }
  504. return 0;
  505. }
  506. static int __btree_submit_bio_start(struct inode *inode, int rw,
  507. struct bio *bio, int mirror_num,
  508. unsigned long bio_flags)
  509. {
  510. /*
  511. * when we're called for a write, we're already in the async
  512. * submission context. Just jump into btrfs_map_bio
  513. */
  514. btree_csum_one_bio(bio);
  515. return 0;
  516. }
  517. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  518. int mirror_num, unsigned long bio_flags)
  519. {
  520. /*
  521. * when we're called for a write, we're already in the async
  522. * submission context. Just jump into btrfs_map_bio
  523. */
  524. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  525. }
  526. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  527. int mirror_num, unsigned long bio_flags)
  528. {
  529. int ret;
  530. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  531. bio, 1);
  532. BUG_ON(ret);
  533. if (!(rw & (1 << BIO_RW))) {
  534. /*
  535. * called for a read, do the setup so that checksum validation
  536. * can happen in the async kernel threads
  537. */
  538. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  539. mirror_num, 0);
  540. }
  541. /*
  542. * kthread helpers are used to submit writes so that checksumming
  543. * can happen in parallel across all CPUs
  544. */
  545. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  546. inode, rw, bio, mirror_num, 0,
  547. __btree_submit_bio_start,
  548. __btree_submit_bio_done);
  549. }
  550. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  551. {
  552. struct extent_io_tree *tree;
  553. tree = &BTRFS_I(page->mapping->host)->io_tree;
  554. if (current->flags & PF_MEMALLOC) {
  555. redirty_page_for_writepage(wbc, page);
  556. unlock_page(page);
  557. return 0;
  558. }
  559. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  560. }
  561. static int btree_writepages(struct address_space *mapping,
  562. struct writeback_control *wbc)
  563. {
  564. struct extent_io_tree *tree;
  565. tree = &BTRFS_I(mapping->host)->io_tree;
  566. if (wbc->sync_mode == WB_SYNC_NONE) {
  567. u64 num_dirty;
  568. u64 start = 0;
  569. unsigned long thresh = 32 * 1024 * 1024;
  570. if (wbc->for_kupdate)
  571. return 0;
  572. num_dirty = count_range_bits(tree, &start, (u64)-1,
  573. thresh, EXTENT_DIRTY);
  574. if (num_dirty < thresh)
  575. return 0;
  576. }
  577. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  578. }
  579. static int btree_readpage(struct file *file, struct page *page)
  580. {
  581. struct extent_io_tree *tree;
  582. tree = &BTRFS_I(page->mapping->host)->io_tree;
  583. return extent_read_full_page(tree, page, btree_get_extent);
  584. }
  585. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  586. {
  587. struct extent_io_tree *tree;
  588. struct extent_map_tree *map;
  589. int ret;
  590. if (PageWriteback(page) || PageDirty(page))
  591. return 0;
  592. tree = &BTRFS_I(page->mapping->host)->io_tree;
  593. map = &BTRFS_I(page->mapping->host)->extent_tree;
  594. ret = try_release_extent_state(map, tree, page, gfp_flags);
  595. if (!ret)
  596. return 0;
  597. ret = try_release_extent_buffer(tree, page);
  598. if (ret == 1) {
  599. ClearPagePrivate(page);
  600. set_page_private(page, 0);
  601. page_cache_release(page);
  602. }
  603. return ret;
  604. }
  605. static void btree_invalidatepage(struct page *page, unsigned long offset)
  606. {
  607. struct extent_io_tree *tree;
  608. tree = &BTRFS_I(page->mapping->host)->io_tree;
  609. extent_invalidatepage(tree, page, offset);
  610. btree_releasepage(page, GFP_NOFS);
  611. if (PagePrivate(page)) {
  612. printk(KERN_WARNING "btrfs warning page private not zero "
  613. "on page %llu\n", (unsigned long long)page_offset(page));
  614. ClearPagePrivate(page);
  615. set_page_private(page, 0);
  616. page_cache_release(page);
  617. }
  618. }
  619. #if 0
  620. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  621. {
  622. struct buffer_head *bh;
  623. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  624. struct buffer_head *head;
  625. if (!page_has_buffers(page)) {
  626. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  627. (1 << BH_Dirty)|(1 << BH_Uptodate));
  628. }
  629. head = page_buffers(page);
  630. bh = head;
  631. do {
  632. if (buffer_dirty(bh))
  633. csum_tree_block(root, bh, 0);
  634. bh = bh->b_this_page;
  635. } while (bh != head);
  636. return block_write_full_page(page, btree_get_block, wbc);
  637. }
  638. #endif
  639. static struct address_space_operations btree_aops = {
  640. .readpage = btree_readpage,
  641. .writepage = btree_writepage,
  642. .writepages = btree_writepages,
  643. .releasepage = btree_releasepage,
  644. .invalidatepage = btree_invalidatepage,
  645. .sync_page = block_sync_page,
  646. };
  647. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  648. u64 parent_transid)
  649. {
  650. struct extent_buffer *buf = NULL;
  651. struct inode *btree_inode = root->fs_info->btree_inode;
  652. int ret = 0;
  653. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  654. if (!buf)
  655. return 0;
  656. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  657. buf, 0, 0, btree_get_extent, 0);
  658. free_extent_buffer(buf);
  659. return ret;
  660. }
  661. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  662. u64 bytenr, u32 blocksize)
  663. {
  664. struct inode *btree_inode = root->fs_info->btree_inode;
  665. struct extent_buffer *eb;
  666. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  667. bytenr, blocksize, GFP_NOFS);
  668. return eb;
  669. }
  670. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  671. u64 bytenr, u32 blocksize)
  672. {
  673. struct inode *btree_inode = root->fs_info->btree_inode;
  674. struct extent_buffer *eb;
  675. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  676. bytenr, blocksize, NULL, GFP_NOFS);
  677. return eb;
  678. }
  679. int btrfs_write_tree_block(struct extent_buffer *buf)
  680. {
  681. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  682. buf->start + buf->len - 1, WB_SYNC_ALL);
  683. }
  684. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  685. {
  686. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  687. buf->start, buf->start + buf->len - 1);
  688. }
  689. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  690. u32 blocksize, u64 parent_transid)
  691. {
  692. struct extent_buffer *buf = NULL;
  693. struct inode *btree_inode = root->fs_info->btree_inode;
  694. struct extent_io_tree *io_tree;
  695. int ret;
  696. io_tree = &BTRFS_I(btree_inode)->io_tree;
  697. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  698. if (!buf)
  699. return NULL;
  700. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  701. if (ret == 0)
  702. buf->flags |= EXTENT_UPTODATE;
  703. else
  704. WARN_ON(1);
  705. return buf;
  706. }
  707. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  708. struct extent_buffer *buf)
  709. {
  710. struct inode *btree_inode = root->fs_info->btree_inode;
  711. if (btrfs_header_generation(buf) ==
  712. root->fs_info->running_transaction->transid) {
  713. WARN_ON(!btrfs_tree_locked(buf));
  714. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  715. buf);
  716. }
  717. return 0;
  718. }
  719. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  720. u32 stripesize, struct btrfs_root *root,
  721. struct btrfs_fs_info *fs_info,
  722. u64 objectid)
  723. {
  724. root->node = NULL;
  725. root->commit_root = NULL;
  726. root->ref_tree = NULL;
  727. root->sectorsize = sectorsize;
  728. root->nodesize = nodesize;
  729. root->leafsize = leafsize;
  730. root->stripesize = stripesize;
  731. root->ref_cows = 0;
  732. root->track_dirty = 0;
  733. root->fs_info = fs_info;
  734. root->objectid = objectid;
  735. root->last_trans = 0;
  736. root->highest_inode = 0;
  737. root->last_inode_alloc = 0;
  738. root->name = NULL;
  739. root->in_sysfs = 0;
  740. INIT_LIST_HEAD(&root->dirty_list);
  741. INIT_LIST_HEAD(&root->orphan_list);
  742. INIT_LIST_HEAD(&root->dead_list);
  743. spin_lock_init(&root->node_lock);
  744. spin_lock_init(&root->list_lock);
  745. mutex_init(&root->objectid_mutex);
  746. mutex_init(&root->log_mutex);
  747. init_waitqueue_head(&root->log_writer_wait);
  748. init_waitqueue_head(&root->log_commit_wait[0]);
  749. init_waitqueue_head(&root->log_commit_wait[1]);
  750. atomic_set(&root->log_commit[0], 0);
  751. atomic_set(&root->log_commit[1], 0);
  752. atomic_set(&root->log_writers, 0);
  753. root->log_batch = 0;
  754. root->log_transid = 0;
  755. extent_io_tree_init(&root->dirty_log_pages,
  756. fs_info->btree_inode->i_mapping, GFP_NOFS);
  757. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  758. root->ref_tree = &root->ref_tree_struct;
  759. memset(&root->root_key, 0, sizeof(root->root_key));
  760. memset(&root->root_item, 0, sizeof(root->root_item));
  761. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  762. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  763. root->defrag_trans_start = fs_info->generation;
  764. init_completion(&root->kobj_unregister);
  765. root->defrag_running = 0;
  766. root->defrag_level = 0;
  767. root->root_key.objectid = objectid;
  768. root->anon_super.s_root = NULL;
  769. root->anon_super.s_dev = 0;
  770. INIT_LIST_HEAD(&root->anon_super.s_list);
  771. INIT_LIST_HEAD(&root->anon_super.s_instances);
  772. init_rwsem(&root->anon_super.s_umount);
  773. return 0;
  774. }
  775. static int find_and_setup_root(struct btrfs_root *tree_root,
  776. struct btrfs_fs_info *fs_info,
  777. u64 objectid,
  778. struct btrfs_root *root)
  779. {
  780. int ret;
  781. u32 blocksize;
  782. u64 generation;
  783. __setup_root(tree_root->nodesize, tree_root->leafsize,
  784. tree_root->sectorsize, tree_root->stripesize,
  785. root, fs_info, objectid);
  786. ret = btrfs_find_last_root(tree_root, objectid,
  787. &root->root_item, &root->root_key);
  788. BUG_ON(ret);
  789. generation = btrfs_root_generation(&root->root_item);
  790. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  791. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  792. blocksize, generation);
  793. BUG_ON(!root->node);
  794. return 0;
  795. }
  796. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  797. struct btrfs_fs_info *fs_info)
  798. {
  799. struct extent_buffer *eb;
  800. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  801. u64 start = 0;
  802. u64 end = 0;
  803. int ret;
  804. if (!log_root_tree)
  805. return 0;
  806. while (1) {
  807. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  808. 0, &start, &end, EXTENT_DIRTY);
  809. if (ret)
  810. break;
  811. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  812. start, end, GFP_NOFS);
  813. }
  814. eb = fs_info->log_root_tree->node;
  815. WARN_ON(btrfs_header_level(eb) != 0);
  816. WARN_ON(btrfs_header_nritems(eb) != 0);
  817. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  818. eb->start, eb->len);
  819. BUG_ON(ret);
  820. free_extent_buffer(eb);
  821. kfree(fs_info->log_root_tree);
  822. fs_info->log_root_tree = NULL;
  823. return 0;
  824. }
  825. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  826. struct btrfs_fs_info *fs_info)
  827. {
  828. struct btrfs_root *root;
  829. struct btrfs_root *tree_root = fs_info->tree_root;
  830. struct extent_buffer *leaf;
  831. root = kzalloc(sizeof(*root), GFP_NOFS);
  832. if (!root)
  833. return ERR_PTR(-ENOMEM);
  834. __setup_root(tree_root->nodesize, tree_root->leafsize,
  835. tree_root->sectorsize, tree_root->stripesize,
  836. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  837. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  838. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  839. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  840. /*
  841. * log trees do not get reference counted because they go away
  842. * before a real commit is actually done. They do store pointers
  843. * to file data extents, and those reference counts still get
  844. * updated (along with back refs to the log tree).
  845. */
  846. root->ref_cows = 0;
  847. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  848. 0, BTRFS_TREE_LOG_OBJECTID,
  849. trans->transid, 0, 0, 0);
  850. if (IS_ERR(leaf)) {
  851. kfree(root);
  852. return ERR_CAST(leaf);
  853. }
  854. root->node = leaf;
  855. btrfs_set_header_nritems(root->node, 0);
  856. btrfs_set_header_level(root->node, 0);
  857. btrfs_set_header_bytenr(root->node, root->node->start);
  858. btrfs_set_header_generation(root->node, trans->transid);
  859. btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
  860. write_extent_buffer(root->node, root->fs_info->fsid,
  861. (unsigned long)btrfs_header_fsid(root->node),
  862. BTRFS_FSID_SIZE);
  863. btrfs_mark_buffer_dirty(root->node);
  864. btrfs_tree_unlock(root->node);
  865. return root;
  866. }
  867. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  868. struct btrfs_fs_info *fs_info)
  869. {
  870. struct btrfs_root *log_root;
  871. log_root = alloc_log_tree(trans, fs_info);
  872. if (IS_ERR(log_root))
  873. return PTR_ERR(log_root);
  874. WARN_ON(fs_info->log_root_tree);
  875. fs_info->log_root_tree = log_root;
  876. return 0;
  877. }
  878. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  879. struct btrfs_root *root)
  880. {
  881. struct btrfs_root *log_root;
  882. struct btrfs_inode_item *inode_item;
  883. log_root = alloc_log_tree(trans, root->fs_info);
  884. if (IS_ERR(log_root))
  885. return PTR_ERR(log_root);
  886. log_root->last_trans = trans->transid;
  887. log_root->root_key.offset = root->root_key.objectid;
  888. inode_item = &log_root->root_item.inode;
  889. inode_item->generation = cpu_to_le64(1);
  890. inode_item->size = cpu_to_le64(3);
  891. inode_item->nlink = cpu_to_le32(1);
  892. inode_item->nbytes = cpu_to_le64(root->leafsize);
  893. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  894. btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
  895. btrfs_set_root_generation(&log_root->root_item, trans->transid);
  896. WARN_ON(root->log_root);
  897. root->log_root = log_root;
  898. root->log_transid = 0;
  899. return 0;
  900. }
  901. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  902. struct btrfs_key *location)
  903. {
  904. struct btrfs_root *root;
  905. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  906. struct btrfs_path *path;
  907. struct extent_buffer *l;
  908. u64 highest_inode;
  909. u64 generation;
  910. u32 blocksize;
  911. int ret = 0;
  912. root = kzalloc(sizeof(*root), GFP_NOFS);
  913. if (!root)
  914. return ERR_PTR(-ENOMEM);
  915. if (location->offset == (u64)-1) {
  916. ret = find_and_setup_root(tree_root, fs_info,
  917. location->objectid, root);
  918. if (ret) {
  919. kfree(root);
  920. return ERR_PTR(ret);
  921. }
  922. goto insert;
  923. }
  924. __setup_root(tree_root->nodesize, tree_root->leafsize,
  925. tree_root->sectorsize, tree_root->stripesize,
  926. root, fs_info, location->objectid);
  927. path = btrfs_alloc_path();
  928. BUG_ON(!path);
  929. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  930. if (ret != 0) {
  931. if (ret > 0)
  932. ret = -ENOENT;
  933. goto out;
  934. }
  935. l = path->nodes[0];
  936. read_extent_buffer(l, &root->root_item,
  937. btrfs_item_ptr_offset(l, path->slots[0]),
  938. sizeof(root->root_item));
  939. memcpy(&root->root_key, location, sizeof(*location));
  940. ret = 0;
  941. out:
  942. btrfs_release_path(root, path);
  943. btrfs_free_path(path);
  944. if (ret) {
  945. kfree(root);
  946. return ERR_PTR(ret);
  947. }
  948. generation = btrfs_root_generation(&root->root_item);
  949. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  950. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  951. blocksize, generation);
  952. BUG_ON(!root->node);
  953. insert:
  954. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  955. root->ref_cows = 1;
  956. ret = btrfs_find_highest_inode(root, &highest_inode);
  957. if (ret == 0) {
  958. root->highest_inode = highest_inode;
  959. root->last_inode_alloc = highest_inode;
  960. }
  961. }
  962. return root;
  963. }
  964. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  965. u64 root_objectid)
  966. {
  967. struct btrfs_root *root;
  968. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  969. return fs_info->tree_root;
  970. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  971. return fs_info->extent_root;
  972. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  973. (unsigned long)root_objectid);
  974. return root;
  975. }
  976. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  977. struct btrfs_key *location)
  978. {
  979. struct btrfs_root *root;
  980. int ret;
  981. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  982. return fs_info->tree_root;
  983. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  984. return fs_info->extent_root;
  985. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  986. return fs_info->chunk_root;
  987. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  988. return fs_info->dev_root;
  989. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  990. return fs_info->csum_root;
  991. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  992. (unsigned long)location->objectid);
  993. if (root)
  994. return root;
  995. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  996. if (IS_ERR(root))
  997. return root;
  998. set_anon_super(&root->anon_super, NULL);
  999. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1000. (unsigned long)root->root_key.objectid,
  1001. root);
  1002. if (ret) {
  1003. free_extent_buffer(root->node);
  1004. kfree(root);
  1005. return ERR_PTR(ret);
  1006. }
  1007. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1008. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1009. root->root_key.objectid, root);
  1010. BUG_ON(ret);
  1011. btrfs_orphan_cleanup(root);
  1012. }
  1013. return root;
  1014. }
  1015. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1016. struct btrfs_key *location,
  1017. const char *name, int namelen)
  1018. {
  1019. struct btrfs_root *root;
  1020. int ret;
  1021. root = btrfs_read_fs_root_no_name(fs_info, location);
  1022. if (!root)
  1023. return NULL;
  1024. if (root->in_sysfs)
  1025. return root;
  1026. ret = btrfs_set_root_name(root, name, namelen);
  1027. if (ret) {
  1028. free_extent_buffer(root->node);
  1029. kfree(root);
  1030. return ERR_PTR(ret);
  1031. }
  1032. #if 0
  1033. ret = btrfs_sysfs_add_root(root);
  1034. if (ret) {
  1035. free_extent_buffer(root->node);
  1036. kfree(root->name);
  1037. kfree(root);
  1038. return ERR_PTR(ret);
  1039. }
  1040. #endif
  1041. root->in_sysfs = 1;
  1042. return root;
  1043. }
  1044. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1045. {
  1046. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1047. int ret = 0;
  1048. struct btrfs_device *device;
  1049. struct backing_dev_info *bdi;
  1050. #if 0
  1051. if ((bdi_bits & (1 << BDI_write_congested)) &&
  1052. btrfs_congested_async(info, 0))
  1053. return 1;
  1054. #endif
  1055. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1056. if (!device->bdev)
  1057. continue;
  1058. bdi = blk_get_backing_dev_info(device->bdev);
  1059. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1060. ret = 1;
  1061. break;
  1062. }
  1063. }
  1064. return ret;
  1065. }
  1066. /*
  1067. * this unplugs every device on the box, and it is only used when page
  1068. * is null
  1069. */
  1070. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1071. {
  1072. struct btrfs_device *device;
  1073. struct btrfs_fs_info *info;
  1074. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1075. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1076. if (!device->bdev)
  1077. continue;
  1078. bdi = blk_get_backing_dev_info(device->bdev);
  1079. if (bdi->unplug_io_fn)
  1080. bdi->unplug_io_fn(bdi, page);
  1081. }
  1082. }
  1083. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1084. {
  1085. struct inode *inode;
  1086. struct extent_map_tree *em_tree;
  1087. struct extent_map *em;
  1088. struct address_space *mapping;
  1089. u64 offset;
  1090. /* the generic O_DIRECT read code does this */
  1091. if (1 || !page) {
  1092. __unplug_io_fn(bdi, page);
  1093. return;
  1094. }
  1095. /*
  1096. * page->mapping may change at any time. Get a consistent copy
  1097. * and use that for everything below
  1098. */
  1099. smp_mb();
  1100. mapping = page->mapping;
  1101. if (!mapping)
  1102. return;
  1103. inode = mapping->host;
  1104. /*
  1105. * don't do the expensive searching for a small number of
  1106. * devices
  1107. */
  1108. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1109. __unplug_io_fn(bdi, page);
  1110. return;
  1111. }
  1112. offset = page_offset(page);
  1113. em_tree = &BTRFS_I(inode)->extent_tree;
  1114. spin_lock(&em_tree->lock);
  1115. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1116. spin_unlock(&em_tree->lock);
  1117. if (!em) {
  1118. __unplug_io_fn(bdi, page);
  1119. return;
  1120. }
  1121. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1122. free_extent_map(em);
  1123. __unplug_io_fn(bdi, page);
  1124. return;
  1125. }
  1126. offset = offset - em->start;
  1127. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1128. em->block_start + offset, page);
  1129. free_extent_map(em);
  1130. }
  1131. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1132. {
  1133. bdi_init(bdi);
  1134. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1135. bdi->state = 0;
  1136. bdi->capabilities = default_backing_dev_info.capabilities;
  1137. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1138. bdi->unplug_io_data = info;
  1139. bdi->congested_fn = btrfs_congested_fn;
  1140. bdi->congested_data = info;
  1141. return 0;
  1142. }
  1143. static int bio_ready_for_csum(struct bio *bio)
  1144. {
  1145. u64 length = 0;
  1146. u64 buf_len = 0;
  1147. u64 start = 0;
  1148. struct page *page;
  1149. struct extent_io_tree *io_tree = NULL;
  1150. struct btrfs_fs_info *info = NULL;
  1151. struct bio_vec *bvec;
  1152. int i;
  1153. int ret;
  1154. bio_for_each_segment(bvec, bio, i) {
  1155. page = bvec->bv_page;
  1156. if (page->private == EXTENT_PAGE_PRIVATE) {
  1157. length += bvec->bv_len;
  1158. continue;
  1159. }
  1160. if (!page->private) {
  1161. length += bvec->bv_len;
  1162. continue;
  1163. }
  1164. length = bvec->bv_len;
  1165. buf_len = page->private >> 2;
  1166. start = page_offset(page) + bvec->bv_offset;
  1167. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1168. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1169. }
  1170. /* are we fully contained in this bio? */
  1171. if (buf_len <= length)
  1172. return 1;
  1173. ret = extent_range_uptodate(io_tree, start + length,
  1174. start + buf_len - 1);
  1175. if (ret == 1)
  1176. return ret;
  1177. return ret;
  1178. }
  1179. /*
  1180. * called by the kthread helper functions to finally call the bio end_io
  1181. * functions. This is where read checksum verification actually happens
  1182. */
  1183. static void end_workqueue_fn(struct btrfs_work *work)
  1184. {
  1185. struct bio *bio;
  1186. struct end_io_wq *end_io_wq;
  1187. struct btrfs_fs_info *fs_info;
  1188. int error;
  1189. end_io_wq = container_of(work, struct end_io_wq, work);
  1190. bio = end_io_wq->bio;
  1191. fs_info = end_io_wq->info;
  1192. /* metadata bio reads are special because the whole tree block must
  1193. * be checksummed at once. This makes sure the entire block is in
  1194. * ram and up to date before trying to verify things. For
  1195. * blocksize <= pagesize, it is basically a noop
  1196. */
  1197. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1198. !bio_ready_for_csum(bio)) {
  1199. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1200. &end_io_wq->work);
  1201. return;
  1202. }
  1203. error = end_io_wq->error;
  1204. bio->bi_private = end_io_wq->private;
  1205. bio->bi_end_io = end_io_wq->end_io;
  1206. kfree(end_io_wq);
  1207. bio_endio(bio, error);
  1208. }
  1209. static int cleaner_kthread(void *arg)
  1210. {
  1211. struct btrfs_root *root = arg;
  1212. do {
  1213. smp_mb();
  1214. if (root->fs_info->closing)
  1215. break;
  1216. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1217. mutex_lock(&root->fs_info->cleaner_mutex);
  1218. btrfs_clean_old_snapshots(root);
  1219. mutex_unlock(&root->fs_info->cleaner_mutex);
  1220. if (freezing(current)) {
  1221. refrigerator();
  1222. } else {
  1223. smp_mb();
  1224. if (root->fs_info->closing)
  1225. break;
  1226. set_current_state(TASK_INTERRUPTIBLE);
  1227. schedule();
  1228. __set_current_state(TASK_RUNNING);
  1229. }
  1230. } while (!kthread_should_stop());
  1231. return 0;
  1232. }
  1233. static int transaction_kthread(void *arg)
  1234. {
  1235. struct btrfs_root *root = arg;
  1236. struct btrfs_trans_handle *trans;
  1237. struct btrfs_transaction *cur;
  1238. unsigned long now;
  1239. unsigned long delay;
  1240. int ret;
  1241. do {
  1242. smp_mb();
  1243. if (root->fs_info->closing)
  1244. break;
  1245. delay = HZ * 30;
  1246. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1247. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1248. if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
  1249. printk(KERN_INFO "btrfs: total reference cache "
  1250. "size %llu\n",
  1251. root->fs_info->total_ref_cache_size);
  1252. }
  1253. mutex_lock(&root->fs_info->trans_mutex);
  1254. cur = root->fs_info->running_transaction;
  1255. if (!cur) {
  1256. mutex_unlock(&root->fs_info->trans_mutex);
  1257. goto sleep;
  1258. }
  1259. now = get_seconds();
  1260. if (now < cur->start_time || now - cur->start_time < 30) {
  1261. mutex_unlock(&root->fs_info->trans_mutex);
  1262. delay = HZ * 5;
  1263. goto sleep;
  1264. }
  1265. mutex_unlock(&root->fs_info->trans_mutex);
  1266. trans = btrfs_start_transaction(root, 1);
  1267. ret = btrfs_commit_transaction(trans, root);
  1268. sleep:
  1269. wake_up_process(root->fs_info->cleaner_kthread);
  1270. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1271. if (freezing(current)) {
  1272. refrigerator();
  1273. } else {
  1274. if (root->fs_info->closing)
  1275. break;
  1276. set_current_state(TASK_INTERRUPTIBLE);
  1277. schedule_timeout(delay);
  1278. __set_current_state(TASK_RUNNING);
  1279. }
  1280. } while (!kthread_should_stop());
  1281. return 0;
  1282. }
  1283. struct btrfs_root *open_ctree(struct super_block *sb,
  1284. struct btrfs_fs_devices *fs_devices,
  1285. char *options)
  1286. {
  1287. u32 sectorsize;
  1288. u32 nodesize;
  1289. u32 leafsize;
  1290. u32 blocksize;
  1291. u32 stripesize;
  1292. u64 generation;
  1293. u64 features;
  1294. struct btrfs_key location;
  1295. struct buffer_head *bh;
  1296. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1297. GFP_NOFS);
  1298. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1299. GFP_NOFS);
  1300. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1301. GFP_NOFS);
  1302. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1303. GFP_NOFS);
  1304. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1305. GFP_NOFS);
  1306. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1307. GFP_NOFS);
  1308. struct btrfs_root *log_tree_root;
  1309. int ret;
  1310. int err = -EINVAL;
  1311. struct btrfs_super_block *disk_super;
  1312. if (!extent_root || !tree_root || !fs_info ||
  1313. !chunk_root || !dev_root || !csum_root) {
  1314. err = -ENOMEM;
  1315. goto fail;
  1316. }
  1317. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1318. INIT_LIST_HEAD(&fs_info->trans_list);
  1319. INIT_LIST_HEAD(&fs_info->dead_roots);
  1320. INIT_LIST_HEAD(&fs_info->hashers);
  1321. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1322. spin_lock_init(&fs_info->hash_lock);
  1323. spin_lock_init(&fs_info->delalloc_lock);
  1324. spin_lock_init(&fs_info->new_trans_lock);
  1325. spin_lock_init(&fs_info->ref_cache_lock);
  1326. init_completion(&fs_info->kobj_unregister);
  1327. fs_info->tree_root = tree_root;
  1328. fs_info->extent_root = extent_root;
  1329. fs_info->csum_root = csum_root;
  1330. fs_info->chunk_root = chunk_root;
  1331. fs_info->dev_root = dev_root;
  1332. fs_info->fs_devices = fs_devices;
  1333. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1334. INIT_LIST_HEAD(&fs_info->space_info);
  1335. btrfs_mapping_init(&fs_info->mapping_tree);
  1336. atomic_set(&fs_info->nr_async_submits, 0);
  1337. atomic_set(&fs_info->async_delalloc_pages, 0);
  1338. atomic_set(&fs_info->async_submit_draining, 0);
  1339. atomic_set(&fs_info->nr_async_bios, 0);
  1340. atomic_set(&fs_info->throttles, 0);
  1341. atomic_set(&fs_info->throttle_gen, 0);
  1342. fs_info->sb = sb;
  1343. fs_info->max_extent = (u64)-1;
  1344. fs_info->max_inline = 8192 * 1024;
  1345. setup_bdi(fs_info, &fs_info->bdi);
  1346. fs_info->btree_inode = new_inode(sb);
  1347. fs_info->btree_inode->i_ino = 1;
  1348. fs_info->btree_inode->i_nlink = 1;
  1349. fs_info->thread_pool_size = min_t(unsigned long,
  1350. num_online_cpus() + 2, 8);
  1351. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1352. spin_lock_init(&fs_info->ordered_extent_lock);
  1353. sb->s_blocksize = 4096;
  1354. sb->s_blocksize_bits = blksize_bits(4096);
  1355. /*
  1356. * we set the i_size on the btree inode to the max possible int.
  1357. * the real end of the address space is determined by all of
  1358. * the devices in the system
  1359. */
  1360. fs_info->btree_inode->i_size = OFFSET_MAX;
  1361. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1362. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1363. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1364. fs_info->btree_inode->i_mapping,
  1365. GFP_NOFS);
  1366. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1367. GFP_NOFS);
  1368. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1369. spin_lock_init(&fs_info->block_group_cache_lock);
  1370. fs_info->block_group_cache_tree.rb_node = NULL;
  1371. extent_io_tree_init(&fs_info->pinned_extents,
  1372. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1373. extent_io_tree_init(&fs_info->pending_del,
  1374. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1375. extent_io_tree_init(&fs_info->extent_ins,
  1376. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1377. fs_info->do_barriers = 1;
  1378. INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
  1379. btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
  1380. btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
  1381. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1382. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1383. sizeof(struct btrfs_key));
  1384. insert_inode_hash(fs_info->btree_inode);
  1385. mutex_init(&fs_info->trans_mutex);
  1386. mutex_init(&fs_info->tree_log_mutex);
  1387. mutex_init(&fs_info->drop_mutex);
  1388. mutex_init(&fs_info->extent_ins_mutex);
  1389. mutex_init(&fs_info->pinned_mutex);
  1390. mutex_init(&fs_info->chunk_mutex);
  1391. mutex_init(&fs_info->transaction_kthread_mutex);
  1392. mutex_init(&fs_info->cleaner_mutex);
  1393. mutex_init(&fs_info->volume_mutex);
  1394. mutex_init(&fs_info->tree_reloc_mutex);
  1395. init_waitqueue_head(&fs_info->transaction_throttle);
  1396. init_waitqueue_head(&fs_info->transaction_wait);
  1397. init_waitqueue_head(&fs_info->async_submit_wait);
  1398. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1399. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1400. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1401. if (!bh)
  1402. goto fail_iput;
  1403. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1404. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1405. sizeof(fs_info->super_for_commit));
  1406. brelse(bh);
  1407. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1408. disk_super = &fs_info->super_copy;
  1409. if (!btrfs_super_root(disk_super))
  1410. goto fail_iput;
  1411. ret = btrfs_parse_options(tree_root, options);
  1412. if (ret) {
  1413. err = ret;
  1414. goto fail_iput;
  1415. }
  1416. features = btrfs_super_incompat_flags(disk_super) &
  1417. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1418. if (features) {
  1419. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1420. "unsupported optional features (%Lx).\n",
  1421. features);
  1422. err = -EINVAL;
  1423. goto fail_iput;
  1424. }
  1425. features = btrfs_super_compat_ro_flags(disk_super) &
  1426. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1427. if (!(sb->s_flags & MS_RDONLY) && features) {
  1428. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1429. "unsupported option features (%Lx).\n",
  1430. features);
  1431. err = -EINVAL;
  1432. goto fail_iput;
  1433. }
  1434. /*
  1435. * we need to start all the end_io workers up front because the
  1436. * queue work function gets called at interrupt time, and so it
  1437. * cannot dynamically grow.
  1438. */
  1439. btrfs_init_workers(&fs_info->workers, "worker",
  1440. fs_info->thread_pool_size);
  1441. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1442. fs_info->thread_pool_size);
  1443. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1444. min_t(u64, fs_devices->num_devices,
  1445. fs_info->thread_pool_size));
  1446. /* a higher idle thresh on the submit workers makes it much more
  1447. * likely that bios will be send down in a sane order to the
  1448. * devices
  1449. */
  1450. fs_info->submit_workers.idle_thresh = 64;
  1451. fs_info->workers.idle_thresh = 16;
  1452. fs_info->workers.ordered = 1;
  1453. fs_info->delalloc_workers.idle_thresh = 2;
  1454. fs_info->delalloc_workers.ordered = 1;
  1455. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1456. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1457. fs_info->thread_pool_size);
  1458. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1459. fs_info->thread_pool_size);
  1460. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1461. "endio-meta-write", fs_info->thread_pool_size);
  1462. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1463. fs_info->thread_pool_size);
  1464. /*
  1465. * endios are largely parallel and should have a very
  1466. * low idle thresh
  1467. */
  1468. fs_info->endio_workers.idle_thresh = 4;
  1469. fs_info->endio_meta_workers.idle_thresh = 4;
  1470. fs_info->endio_write_workers.idle_thresh = 64;
  1471. fs_info->endio_meta_write_workers.idle_thresh = 64;
  1472. btrfs_start_workers(&fs_info->workers, 1);
  1473. btrfs_start_workers(&fs_info->submit_workers, 1);
  1474. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1475. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1476. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1477. btrfs_start_workers(&fs_info->endio_meta_workers,
  1478. fs_info->thread_pool_size);
  1479. btrfs_start_workers(&fs_info->endio_meta_write_workers,
  1480. fs_info->thread_pool_size);
  1481. btrfs_start_workers(&fs_info->endio_write_workers,
  1482. fs_info->thread_pool_size);
  1483. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1484. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1485. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1486. nodesize = btrfs_super_nodesize(disk_super);
  1487. leafsize = btrfs_super_leafsize(disk_super);
  1488. sectorsize = btrfs_super_sectorsize(disk_super);
  1489. stripesize = btrfs_super_stripesize(disk_super);
  1490. tree_root->nodesize = nodesize;
  1491. tree_root->leafsize = leafsize;
  1492. tree_root->sectorsize = sectorsize;
  1493. tree_root->stripesize = stripesize;
  1494. sb->s_blocksize = sectorsize;
  1495. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1496. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1497. sizeof(disk_super->magic))) {
  1498. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1499. goto fail_sb_buffer;
  1500. }
  1501. mutex_lock(&fs_info->chunk_mutex);
  1502. ret = btrfs_read_sys_array(tree_root);
  1503. mutex_unlock(&fs_info->chunk_mutex);
  1504. if (ret) {
  1505. printk(KERN_WARNING "btrfs: failed to read the system "
  1506. "array on %s\n", sb->s_id);
  1507. goto fail_sys_array;
  1508. }
  1509. blocksize = btrfs_level_size(tree_root,
  1510. btrfs_super_chunk_root_level(disk_super));
  1511. generation = btrfs_super_chunk_root_generation(disk_super);
  1512. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1513. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1514. chunk_root->node = read_tree_block(chunk_root,
  1515. btrfs_super_chunk_root(disk_super),
  1516. blocksize, generation);
  1517. BUG_ON(!chunk_root->node);
  1518. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1519. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1520. BTRFS_UUID_SIZE);
  1521. mutex_lock(&fs_info->chunk_mutex);
  1522. ret = btrfs_read_chunk_tree(chunk_root);
  1523. mutex_unlock(&fs_info->chunk_mutex);
  1524. if (ret) {
  1525. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1526. sb->s_id);
  1527. goto fail_chunk_root;
  1528. }
  1529. btrfs_close_extra_devices(fs_devices);
  1530. blocksize = btrfs_level_size(tree_root,
  1531. btrfs_super_root_level(disk_super));
  1532. generation = btrfs_super_generation(disk_super);
  1533. tree_root->node = read_tree_block(tree_root,
  1534. btrfs_super_root(disk_super),
  1535. blocksize, generation);
  1536. if (!tree_root->node)
  1537. goto fail_chunk_root;
  1538. ret = find_and_setup_root(tree_root, fs_info,
  1539. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1540. if (ret)
  1541. goto fail_tree_root;
  1542. extent_root->track_dirty = 1;
  1543. ret = find_and_setup_root(tree_root, fs_info,
  1544. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1545. dev_root->track_dirty = 1;
  1546. if (ret)
  1547. goto fail_extent_root;
  1548. ret = find_and_setup_root(tree_root, fs_info,
  1549. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1550. if (ret)
  1551. goto fail_extent_root;
  1552. csum_root->track_dirty = 1;
  1553. btrfs_read_block_groups(extent_root);
  1554. fs_info->generation = generation;
  1555. fs_info->last_trans_committed = generation;
  1556. fs_info->data_alloc_profile = (u64)-1;
  1557. fs_info->metadata_alloc_profile = (u64)-1;
  1558. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1559. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1560. "btrfs-cleaner");
  1561. if (IS_ERR(fs_info->cleaner_kthread))
  1562. goto fail_csum_root;
  1563. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1564. tree_root,
  1565. "btrfs-transaction");
  1566. if (IS_ERR(fs_info->transaction_kthread))
  1567. goto fail_cleaner;
  1568. if (btrfs_super_log_root(disk_super) != 0) {
  1569. u64 bytenr = btrfs_super_log_root(disk_super);
  1570. if (fs_devices->rw_devices == 0) {
  1571. printk(KERN_WARNING "Btrfs log replay required "
  1572. "on RO media\n");
  1573. err = -EIO;
  1574. goto fail_trans_kthread;
  1575. }
  1576. blocksize =
  1577. btrfs_level_size(tree_root,
  1578. btrfs_super_log_root_level(disk_super));
  1579. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1580. GFP_NOFS);
  1581. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1582. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1583. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1584. blocksize,
  1585. generation + 1);
  1586. ret = btrfs_recover_log_trees(log_tree_root);
  1587. BUG_ON(ret);
  1588. if (sb->s_flags & MS_RDONLY) {
  1589. ret = btrfs_commit_super(tree_root);
  1590. BUG_ON(ret);
  1591. }
  1592. }
  1593. if (!(sb->s_flags & MS_RDONLY)) {
  1594. ret = btrfs_cleanup_reloc_trees(tree_root);
  1595. BUG_ON(ret);
  1596. }
  1597. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1598. location.type = BTRFS_ROOT_ITEM_KEY;
  1599. location.offset = (u64)-1;
  1600. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1601. if (!fs_info->fs_root)
  1602. goto fail_trans_kthread;
  1603. return tree_root;
  1604. fail_trans_kthread:
  1605. kthread_stop(fs_info->transaction_kthread);
  1606. fail_cleaner:
  1607. kthread_stop(fs_info->cleaner_kthread);
  1608. /*
  1609. * make sure we're done with the btree inode before we stop our
  1610. * kthreads
  1611. */
  1612. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1613. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1614. fail_csum_root:
  1615. free_extent_buffer(csum_root->node);
  1616. fail_extent_root:
  1617. free_extent_buffer(extent_root->node);
  1618. fail_tree_root:
  1619. free_extent_buffer(tree_root->node);
  1620. fail_chunk_root:
  1621. free_extent_buffer(chunk_root->node);
  1622. fail_sys_array:
  1623. free_extent_buffer(dev_root->node);
  1624. fail_sb_buffer:
  1625. btrfs_stop_workers(&fs_info->fixup_workers);
  1626. btrfs_stop_workers(&fs_info->delalloc_workers);
  1627. btrfs_stop_workers(&fs_info->workers);
  1628. btrfs_stop_workers(&fs_info->endio_workers);
  1629. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1630. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1631. btrfs_stop_workers(&fs_info->endio_write_workers);
  1632. btrfs_stop_workers(&fs_info->submit_workers);
  1633. fail_iput:
  1634. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1635. iput(fs_info->btree_inode);
  1636. btrfs_close_devices(fs_info->fs_devices);
  1637. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1638. bdi_destroy(&fs_info->bdi);
  1639. fail:
  1640. kfree(extent_root);
  1641. kfree(tree_root);
  1642. kfree(fs_info);
  1643. kfree(chunk_root);
  1644. kfree(dev_root);
  1645. kfree(csum_root);
  1646. return ERR_PTR(err);
  1647. }
  1648. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1649. {
  1650. char b[BDEVNAME_SIZE];
  1651. if (uptodate) {
  1652. set_buffer_uptodate(bh);
  1653. } else {
  1654. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1655. printk(KERN_WARNING "lost page write due to "
  1656. "I/O error on %s\n",
  1657. bdevname(bh->b_bdev, b));
  1658. }
  1659. /* note, we dont' set_buffer_write_io_error because we have
  1660. * our own ways of dealing with the IO errors
  1661. */
  1662. clear_buffer_uptodate(bh);
  1663. }
  1664. unlock_buffer(bh);
  1665. put_bh(bh);
  1666. }
  1667. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1668. {
  1669. struct buffer_head *bh;
  1670. struct buffer_head *latest = NULL;
  1671. struct btrfs_super_block *super;
  1672. int i;
  1673. u64 transid = 0;
  1674. u64 bytenr;
  1675. /* we would like to check all the supers, but that would make
  1676. * a btrfs mount succeed after a mkfs from a different FS.
  1677. * So, we need to add a special mount option to scan for
  1678. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1679. */
  1680. for (i = 0; i < 1; i++) {
  1681. bytenr = btrfs_sb_offset(i);
  1682. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1683. break;
  1684. bh = __bread(bdev, bytenr / 4096, 4096);
  1685. if (!bh)
  1686. continue;
  1687. super = (struct btrfs_super_block *)bh->b_data;
  1688. if (btrfs_super_bytenr(super) != bytenr ||
  1689. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1690. sizeof(super->magic))) {
  1691. brelse(bh);
  1692. continue;
  1693. }
  1694. if (!latest || btrfs_super_generation(super) > transid) {
  1695. brelse(latest);
  1696. latest = bh;
  1697. transid = btrfs_super_generation(super);
  1698. } else {
  1699. brelse(bh);
  1700. }
  1701. }
  1702. return latest;
  1703. }
  1704. static int write_dev_supers(struct btrfs_device *device,
  1705. struct btrfs_super_block *sb,
  1706. int do_barriers, int wait, int max_mirrors)
  1707. {
  1708. struct buffer_head *bh;
  1709. int i;
  1710. int ret;
  1711. int errors = 0;
  1712. u32 crc;
  1713. u64 bytenr;
  1714. int last_barrier = 0;
  1715. if (max_mirrors == 0)
  1716. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1717. /* make sure only the last submit_bh does a barrier */
  1718. if (do_barriers) {
  1719. for (i = 0; i < max_mirrors; i++) {
  1720. bytenr = btrfs_sb_offset(i);
  1721. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1722. device->total_bytes)
  1723. break;
  1724. last_barrier = i;
  1725. }
  1726. }
  1727. for (i = 0; i < max_mirrors; i++) {
  1728. bytenr = btrfs_sb_offset(i);
  1729. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1730. break;
  1731. if (wait) {
  1732. bh = __find_get_block(device->bdev, bytenr / 4096,
  1733. BTRFS_SUPER_INFO_SIZE);
  1734. BUG_ON(!bh);
  1735. brelse(bh);
  1736. wait_on_buffer(bh);
  1737. if (buffer_uptodate(bh)) {
  1738. brelse(bh);
  1739. continue;
  1740. }
  1741. } else {
  1742. btrfs_set_super_bytenr(sb, bytenr);
  1743. crc = ~(u32)0;
  1744. crc = btrfs_csum_data(NULL, (char *)sb +
  1745. BTRFS_CSUM_SIZE, crc,
  1746. BTRFS_SUPER_INFO_SIZE -
  1747. BTRFS_CSUM_SIZE);
  1748. btrfs_csum_final(crc, sb->csum);
  1749. bh = __getblk(device->bdev, bytenr / 4096,
  1750. BTRFS_SUPER_INFO_SIZE);
  1751. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1752. set_buffer_uptodate(bh);
  1753. get_bh(bh);
  1754. lock_buffer(bh);
  1755. bh->b_end_io = btrfs_end_buffer_write_sync;
  1756. }
  1757. if (i == last_barrier && do_barriers && device->barriers) {
  1758. ret = submit_bh(WRITE_BARRIER, bh);
  1759. if (ret == -EOPNOTSUPP) {
  1760. printk("btrfs: disabling barriers on dev %s\n",
  1761. device->name);
  1762. set_buffer_uptodate(bh);
  1763. device->barriers = 0;
  1764. get_bh(bh);
  1765. lock_buffer(bh);
  1766. ret = submit_bh(WRITE, bh);
  1767. }
  1768. } else {
  1769. ret = submit_bh(WRITE, bh);
  1770. }
  1771. if (!ret && wait) {
  1772. wait_on_buffer(bh);
  1773. if (!buffer_uptodate(bh))
  1774. errors++;
  1775. } else if (ret) {
  1776. errors++;
  1777. }
  1778. if (wait)
  1779. brelse(bh);
  1780. }
  1781. return errors < i ? 0 : -1;
  1782. }
  1783. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1784. {
  1785. struct list_head *head = &root->fs_info->fs_devices->devices;
  1786. struct btrfs_device *dev;
  1787. struct btrfs_super_block *sb;
  1788. struct btrfs_dev_item *dev_item;
  1789. int ret;
  1790. int do_barriers;
  1791. int max_errors;
  1792. int total_errors = 0;
  1793. u64 flags;
  1794. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1795. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1796. sb = &root->fs_info->super_for_commit;
  1797. dev_item = &sb->dev_item;
  1798. list_for_each_entry(dev, head, dev_list) {
  1799. if (!dev->bdev) {
  1800. total_errors++;
  1801. continue;
  1802. }
  1803. if (!dev->in_fs_metadata || !dev->writeable)
  1804. continue;
  1805. btrfs_set_stack_device_generation(dev_item, 0);
  1806. btrfs_set_stack_device_type(dev_item, dev->type);
  1807. btrfs_set_stack_device_id(dev_item, dev->devid);
  1808. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1809. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1810. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1811. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1812. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1813. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1814. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1815. flags = btrfs_super_flags(sb);
  1816. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1817. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1818. if (ret)
  1819. total_errors++;
  1820. }
  1821. if (total_errors > max_errors) {
  1822. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1823. total_errors);
  1824. BUG();
  1825. }
  1826. total_errors = 0;
  1827. list_for_each_entry(dev, head, dev_list) {
  1828. if (!dev->bdev)
  1829. continue;
  1830. if (!dev->in_fs_metadata || !dev->writeable)
  1831. continue;
  1832. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1833. if (ret)
  1834. total_errors++;
  1835. }
  1836. if (total_errors > max_errors) {
  1837. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1838. total_errors);
  1839. BUG();
  1840. }
  1841. return 0;
  1842. }
  1843. int write_ctree_super(struct btrfs_trans_handle *trans,
  1844. struct btrfs_root *root, int max_mirrors)
  1845. {
  1846. int ret;
  1847. ret = write_all_supers(root, max_mirrors);
  1848. return ret;
  1849. }
  1850. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1851. {
  1852. radix_tree_delete(&fs_info->fs_roots_radix,
  1853. (unsigned long)root->root_key.objectid);
  1854. if (root->anon_super.s_dev) {
  1855. down_write(&root->anon_super.s_umount);
  1856. kill_anon_super(&root->anon_super);
  1857. }
  1858. if (root->node)
  1859. free_extent_buffer(root->node);
  1860. if (root->commit_root)
  1861. free_extent_buffer(root->commit_root);
  1862. kfree(root->name);
  1863. kfree(root);
  1864. return 0;
  1865. }
  1866. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1867. {
  1868. int ret;
  1869. struct btrfs_root *gang[8];
  1870. int i;
  1871. while (1) {
  1872. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1873. (void **)gang, 0,
  1874. ARRAY_SIZE(gang));
  1875. if (!ret)
  1876. break;
  1877. for (i = 0; i < ret; i++)
  1878. btrfs_free_fs_root(fs_info, gang[i]);
  1879. }
  1880. return 0;
  1881. }
  1882. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1883. {
  1884. u64 root_objectid = 0;
  1885. struct btrfs_root *gang[8];
  1886. int i;
  1887. int ret;
  1888. while (1) {
  1889. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1890. (void **)gang, root_objectid,
  1891. ARRAY_SIZE(gang));
  1892. if (!ret)
  1893. break;
  1894. for (i = 0; i < ret; i++) {
  1895. root_objectid = gang[i]->root_key.objectid;
  1896. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1897. root_objectid, gang[i]);
  1898. BUG_ON(ret);
  1899. btrfs_orphan_cleanup(gang[i]);
  1900. }
  1901. root_objectid++;
  1902. }
  1903. return 0;
  1904. }
  1905. int btrfs_commit_super(struct btrfs_root *root)
  1906. {
  1907. struct btrfs_trans_handle *trans;
  1908. int ret;
  1909. mutex_lock(&root->fs_info->cleaner_mutex);
  1910. btrfs_clean_old_snapshots(root);
  1911. mutex_unlock(&root->fs_info->cleaner_mutex);
  1912. trans = btrfs_start_transaction(root, 1);
  1913. ret = btrfs_commit_transaction(trans, root);
  1914. BUG_ON(ret);
  1915. /* run commit again to drop the original snapshot */
  1916. trans = btrfs_start_transaction(root, 1);
  1917. btrfs_commit_transaction(trans, root);
  1918. ret = btrfs_write_and_wait_transaction(NULL, root);
  1919. BUG_ON(ret);
  1920. ret = write_ctree_super(NULL, root, 0);
  1921. return ret;
  1922. }
  1923. int close_ctree(struct btrfs_root *root)
  1924. {
  1925. struct btrfs_fs_info *fs_info = root->fs_info;
  1926. int ret;
  1927. fs_info->closing = 1;
  1928. smp_mb();
  1929. kthread_stop(root->fs_info->transaction_kthread);
  1930. kthread_stop(root->fs_info->cleaner_kthread);
  1931. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1932. ret = btrfs_commit_super(root);
  1933. if (ret)
  1934. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  1935. }
  1936. if (fs_info->delalloc_bytes) {
  1937. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  1938. fs_info->delalloc_bytes);
  1939. }
  1940. if (fs_info->total_ref_cache_size) {
  1941. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  1942. (unsigned long long)fs_info->total_ref_cache_size);
  1943. }
  1944. if (fs_info->extent_root->node)
  1945. free_extent_buffer(fs_info->extent_root->node);
  1946. if (fs_info->tree_root->node)
  1947. free_extent_buffer(fs_info->tree_root->node);
  1948. if (root->fs_info->chunk_root->node)
  1949. free_extent_buffer(root->fs_info->chunk_root->node);
  1950. if (root->fs_info->dev_root->node)
  1951. free_extent_buffer(root->fs_info->dev_root->node);
  1952. if (root->fs_info->csum_root->node)
  1953. free_extent_buffer(root->fs_info->csum_root->node);
  1954. btrfs_free_block_groups(root->fs_info);
  1955. del_fs_roots(fs_info);
  1956. iput(fs_info->btree_inode);
  1957. btrfs_stop_workers(&fs_info->fixup_workers);
  1958. btrfs_stop_workers(&fs_info->delalloc_workers);
  1959. btrfs_stop_workers(&fs_info->workers);
  1960. btrfs_stop_workers(&fs_info->endio_workers);
  1961. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1962. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1963. btrfs_stop_workers(&fs_info->endio_write_workers);
  1964. btrfs_stop_workers(&fs_info->submit_workers);
  1965. #if 0
  1966. while (!list_empty(&fs_info->hashers)) {
  1967. struct btrfs_hasher *hasher;
  1968. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1969. hashers);
  1970. list_del(&hasher->hashers);
  1971. crypto_free_hash(&fs_info->hash_tfm);
  1972. kfree(hasher);
  1973. }
  1974. #endif
  1975. btrfs_close_devices(fs_info->fs_devices);
  1976. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1977. bdi_destroy(&fs_info->bdi);
  1978. kfree(fs_info->extent_root);
  1979. kfree(fs_info->tree_root);
  1980. kfree(fs_info->chunk_root);
  1981. kfree(fs_info->dev_root);
  1982. kfree(fs_info->csum_root);
  1983. return 0;
  1984. }
  1985. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1986. {
  1987. int ret;
  1988. struct inode *btree_inode = buf->first_page->mapping->host;
  1989. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1990. if (!ret)
  1991. return ret;
  1992. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1993. parent_transid);
  1994. return !ret;
  1995. }
  1996. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1997. {
  1998. struct inode *btree_inode = buf->first_page->mapping->host;
  1999. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2000. buf);
  2001. }
  2002. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2003. {
  2004. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2005. u64 transid = btrfs_header_generation(buf);
  2006. struct inode *btree_inode = root->fs_info->btree_inode;
  2007. WARN_ON(!btrfs_tree_locked(buf));
  2008. if (transid != root->fs_info->generation) {
  2009. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2010. "found %llu running %llu\n",
  2011. (unsigned long long)buf->start,
  2012. (unsigned long long)transid,
  2013. (unsigned long long)root->fs_info->generation);
  2014. WARN_ON(1);
  2015. }
  2016. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  2017. }
  2018. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2019. {
  2020. /*
  2021. * looks as though older kernels can get into trouble with
  2022. * this code, they end up stuck in balance_dirty_pages forever
  2023. */
  2024. struct extent_io_tree *tree;
  2025. u64 num_dirty;
  2026. u64 start = 0;
  2027. unsigned long thresh = 32 * 1024 * 1024;
  2028. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  2029. if (current_is_pdflush() || current->flags & PF_MEMALLOC)
  2030. return;
  2031. num_dirty = count_range_bits(tree, &start, (u64)-1,
  2032. thresh, EXTENT_DIRTY);
  2033. if (num_dirty > thresh) {
  2034. balance_dirty_pages_ratelimited_nr(
  2035. root->fs_info->btree_inode->i_mapping, 1);
  2036. }
  2037. return;
  2038. }
  2039. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2040. {
  2041. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2042. int ret;
  2043. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2044. if (ret == 0)
  2045. buf->flags |= EXTENT_UPTODATE;
  2046. return ret;
  2047. }
  2048. int btree_lock_page_hook(struct page *page)
  2049. {
  2050. struct inode *inode = page->mapping->host;
  2051. struct btrfs_root *root = BTRFS_I(inode)->root;
  2052. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2053. struct extent_buffer *eb;
  2054. unsigned long len;
  2055. u64 bytenr = page_offset(page);
  2056. if (page->private == EXTENT_PAGE_PRIVATE)
  2057. goto out;
  2058. len = page->private >> 2;
  2059. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2060. if (!eb)
  2061. goto out;
  2062. btrfs_tree_lock(eb);
  2063. spin_lock(&root->fs_info->hash_lock);
  2064. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2065. spin_unlock(&root->fs_info->hash_lock);
  2066. btrfs_tree_unlock(eb);
  2067. free_extent_buffer(eb);
  2068. out:
  2069. lock_page(page);
  2070. return 0;
  2071. }
  2072. static struct extent_io_ops btree_extent_io_ops = {
  2073. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2074. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2075. .submit_bio_hook = btree_submit_bio_hook,
  2076. /* note we're sharing with inode.c for the merge bio hook */
  2077. .merge_bio_hook = btrfs_merge_bio_hook,
  2078. };