paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. unsigned max_level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  66. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  67. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  68. unsigned pt_access;
  69. unsigned pte_access;
  70. gfn_t gfn;
  71. struct x86_exception fault;
  72. };
  73. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  74. {
  75. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  76. }
  77. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  78. pt_element_t __user *ptep_user, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. int npages;
  82. pt_element_t ret;
  83. pt_element_t *table;
  84. struct page *page;
  85. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  86. /* Check if the user is doing something meaningless. */
  87. if (unlikely(npages != 1))
  88. return -EFAULT;
  89. table = kmap_atomic(page);
  90. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  91. kunmap_atomic(table);
  92. kvm_release_page_dirty(page);
  93. return (ret != orig_pte);
  94. }
  95. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  96. struct kvm_mmu *mmu,
  97. struct guest_walker *walker,
  98. int write_fault)
  99. {
  100. unsigned level, index;
  101. pt_element_t pte, orig_pte;
  102. pt_element_t __user *ptep_user;
  103. gfn_t table_gfn;
  104. int ret;
  105. for (level = walker->max_level; level >= walker->level; --level) {
  106. pte = orig_pte = walker->ptes[level - 1];
  107. table_gfn = walker->table_gfn[level - 1];
  108. ptep_user = walker->ptep_user[level - 1];
  109. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  110. if (!(pte & PT_ACCESSED_MASK)) {
  111. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  112. pte |= PT_ACCESSED_MASK;
  113. }
  114. if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
  115. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  116. pte |= PT_DIRTY_MASK;
  117. }
  118. if (pte == orig_pte)
  119. continue;
  120. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  121. if (ret)
  122. return ret;
  123. mark_page_dirty(vcpu->kvm, table_gfn);
  124. walker->ptes[level] = pte;
  125. }
  126. return 0;
  127. }
  128. /*
  129. * Fetch a guest pte for a guest virtual address
  130. */
  131. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  132. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  133. gva_t addr, u32 access)
  134. {
  135. int ret;
  136. pt_element_t pte;
  137. pt_element_t __user *uninitialized_var(ptep_user);
  138. gfn_t table_gfn;
  139. unsigned index, pt_access, pte_access, accessed_dirty, shift;
  140. gpa_t pte_gpa;
  141. int offset;
  142. const int write_fault = access & PFERR_WRITE_MASK;
  143. const int user_fault = access & PFERR_USER_MASK;
  144. const int fetch_fault = access & PFERR_FETCH_MASK;
  145. u16 errcode = 0;
  146. gpa_t real_gpa;
  147. gfn_t gfn;
  148. u32 ac;
  149. trace_kvm_mmu_pagetable_walk(addr, access);
  150. retry_walk:
  151. walker->level = mmu->root_level;
  152. pte = mmu->get_cr3(vcpu);
  153. #if PTTYPE == 64
  154. if (walker->level == PT32E_ROOT_LEVEL) {
  155. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  156. trace_kvm_mmu_paging_element(pte, walker->level);
  157. if (!is_present_gpte(pte))
  158. goto error;
  159. --walker->level;
  160. }
  161. #endif
  162. walker->max_level = walker->level;
  163. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  164. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  165. accessed_dirty = PT_ACCESSED_MASK;
  166. pt_access = pte_access = ACC_ALL;
  167. ++walker->level;
  168. do {
  169. gfn_t real_gfn;
  170. unsigned long host_addr;
  171. pt_access &= pte_access;
  172. --walker->level;
  173. index = PT_INDEX(addr, walker->level);
  174. table_gfn = gpte_to_gfn(pte);
  175. offset = index * sizeof(pt_element_t);
  176. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  177. walker->table_gfn[walker->level - 1] = table_gfn;
  178. walker->pte_gpa[walker->level - 1] = pte_gpa;
  179. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  180. PFERR_USER_MASK|PFERR_WRITE_MASK);
  181. if (unlikely(real_gfn == UNMAPPED_GVA))
  182. goto error;
  183. real_gfn = gpa_to_gfn(real_gfn);
  184. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  185. if (unlikely(kvm_is_error_hva(host_addr)))
  186. goto error;
  187. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  188. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  189. goto error;
  190. walker->ptep_user[walker->level - 1] = ptep_user;
  191. trace_kvm_mmu_paging_element(pte, walker->level);
  192. if (unlikely(!is_present_gpte(pte)))
  193. goto error;
  194. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  195. walker->level))) {
  196. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  197. goto error;
  198. }
  199. accessed_dirty &= pte;
  200. pte_access = pt_access & gpte_access(vcpu, pte);
  201. walker->ptes[walker->level - 1] = pte;
  202. } while (!is_last_gpte(mmu, walker->level, pte));
  203. if (unlikely(permission_fault(mmu, pte_access, access))) {
  204. errcode |= PFERR_PRESENT_MASK;
  205. goto error;
  206. }
  207. gfn = gpte_to_gfn_lvl(pte, walker->level);
  208. gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
  209. if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
  210. gfn += pse36_gfn_delta(pte);
  211. ac = write_fault | fetch_fault | user_fault;
  212. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), ac);
  213. if (real_gpa == UNMAPPED_GVA)
  214. return 0;
  215. walker->gfn = real_gpa >> PAGE_SHIFT;
  216. if (!write_fault)
  217. protect_clean_gpte(&pte_access, pte);
  218. /*
  219. * On a write fault, fold the dirty bit into accessed_dirty by shifting it one
  220. * place right.
  221. *
  222. * On a read fault, do nothing.
  223. */
  224. shift = write_fault >> ilog2(PFERR_WRITE_MASK);
  225. shift *= PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT;
  226. accessed_dirty &= pte >> shift;
  227. if (unlikely(!accessed_dirty)) {
  228. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  229. if (unlikely(ret < 0))
  230. goto error;
  231. else if (ret)
  232. goto retry_walk;
  233. }
  234. walker->pt_access = pt_access;
  235. walker->pte_access = pte_access;
  236. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  237. __func__, (u64)pte, pte_access, pt_access);
  238. return 1;
  239. error:
  240. errcode |= write_fault | user_fault;
  241. if (fetch_fault && (mmu->nx ||
  242. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  243. errcode |= PFERR_FETCH_MASK;
  244. walker->fault.vector = PF_VECTOR;
  245. walker->fault.error_code_valid = true;
  246. walker->fault.error_code = errcode;
  247. walker->fault.address = addr;
  248. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  249. trace_kvm_mmu_walker_error(walker->fault.error_code);
  250. return 0;
  251. }
  252. static int FNAME(walk_addr)(struct guest_walker *walker,
  253. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  254. {
  255. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  256. access);
  257. }
  258. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  259. struct kvm_vcpu *vcpu, gva_t addr,
  260. u32 access)
  261. {
  262. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  263. addr, access);
  264. }
  265. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  266. struct kvm_mmu_page *sp, u64 *spte,
  267. pt_element_t gpte)
  268. {
  269. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  270. goto no_present;
  271. if (!is_present_gpte(gpte))
  272. goto no_present;
  273. if (!(gpte & PT_ACCESSED_MASK))
  274. goto no_present;
  275. return false;
  276. no_present:
  277. drop_spte(vcpu->kvm, spte);
  278. return true;
  279. }
  280. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  281. u64 *spte, const void *pte)
  282. {
  283. pt_element_t gpte;
  284. unsigned pte_access;
  285. pfn_t pfn;
  286. gpte = *(const pt_element_t *)pte;
  287. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  288. return;
  289. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  290. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  291. protect_clean_gpte(&pte_access, gpte);
  292. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  293. if (mmu_invalid_pfn(pfn))
  294. return;
  295. /*
  296. * we call mmu_set_spte() with host_writable = true because that
  297. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  298. */
  299. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  300. NULL, PT_PAGE_TABLE_LEVEL,
  301. gpte_to_gfn(gpte), pfn, true, true);
  302. }
  303. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  304. struct guest_walker *gw, int level)
  305. {
  306. pt_element_t curr_pte;
  307. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  308. u64 mask;
  309. int r, index;
  310. if (level == PT_PAGE_TABLE_LEVEL) {
  311. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  312. base_gpa = pte_gpa & ~mask;
  313. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  314. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  315. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  316. curr_pte = gw->prefetch_ptes[index];
  317. } else
  318. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  319. &curr_pte, sizeof(curr_pte));
  320. return r || curr_pte != gw->ptes[level - 1];
  321. }
  322. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  323. u64 *sptep)
  324. {
  325. struct kvm_mmu_page *sp;
  326. pt_element_t *gptep = gw->prefetch_ptes;
  327. u64 *spte;
  328. int i;
  329. sp = page_header(__pa(sptep));
  330. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  331. return;
  332. if (sp->role.direct)
  333. return __direct_pte_prefetch(vcpu, sp, sptep);
  334. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  335. spte = sp->spt + i;
  336. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  337. pt_element_t gpte;
  338. unsigned pte_access;
  339. gfn_t gfn;
  340. pfn_t pfn;
  341. if (spte == sptep)
  342. continue;
  343. if (is_shadow_present_pte(*spte))
  344. continue;
  345. gpte = gptep[i];
  346. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  347. continue;
  348. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  349. protect_clean_gpte(&pte_access, gpte);
  350. gfn = gpte_to_gfn(gpte);
  351. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  352. pte_access & ACC_WRITE_MASK);
  353. if (mmu_invalid_pfn(pfn))
  354. break;
  355. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  356. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  357. pfn, true, true);
  358. }
  359. }
  360. /*
  361. * Fetch a shadow pte for a specific level in the paging hierarchy.
  362. */
  363. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  364. struct guest_walker *gw,
  365. int user_fault, int write_fault, int hlevel,
  366. int *emulate, pfn_t pfn, bool map_writable,
  367. bool prefault)
  368. {
  369. unsigned access = gw->pt_access;
  370. struct kvm_mmu_page *sp = NULL;
  371. int top_level;
  372. unsigned direct_access;
  373. struct kvm_shadow_walk_iterator it;
  374. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  375. return NULL;
  376. direct_access = gw->pte_access;
  377. top_level = vcpu->arch.mmu.root_level;
  378. if (top_level == PT32E_ROOT_LEVEL)
  379. top_level = PT32_ROOT_LEVEL;
  380. /*
  381. * Verify that the top-level gpte is still there. Since the page
  382. * is a root page, it is either write protected (and cannot be
  383. * changed from now on) or it is invalid (in which case, we don't
  384. * really care if it changes underneath us after this point).
  385. */
  386. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  387. goto out_gpte_changed;
  388. for (shadow_walk_init(&it, vcpu, addr);
  389. shadow_walk_okay(&it) && it.level > gw->level;
  390. shadow_walk_next(&it)) {
  391. gfn_t table_gfn;
  392. clear_sp_write_flooding_count(it.sptep);
  393. drop_large_spte(vcpu, it.sptep);
  394. sp = NULL;
  395. if (!is_shadow_present_pte(*it.sptep)) {
  396. table_gfn = gw->table_gfn[it.level - 2];
  397. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  398. false, access, it.sptep);
  399. }
  400. /*
  401. * Verify that the gpte in the page we've just write
  402. * protected is still there.
  403. */
  404. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  405. goto out_gpte_changed;
  406. if (sp)
  407. link_shadow_page(it.sptep, sp);
  408. }
  409. for (;
  410. shadow_walk_okay(&it) && it.level > hlevel;
  411. shadow_walk_next(&it)) {
  412. gfn_t direct_gfn;
  413. clear_sp_write_flooding_count(it.sptep);
  414. validate_direct_spte(vcpu, it.sptep, direct_access);
  415. drop_large_spte(vcpu, it.sptep);
  416. if (is_shadow_present_pte(*it.sptep))
  417. continue;
  418. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  419. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  420. true, direct_access, it.sptep);
  421. link_shadow_page(it.sptep, sp);
  422. }
  423. clear_sp_write_flooding_count(it.sptep);
  424. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  425. user_fault, write_fault, emulate, it.level,
  426. gw->gfn, pfn, prefault, map_writable);
  427. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  428. return it.sptep;
  429. out_gpte_changed:
  430. if (sp)
  431. kvm_mmu_put_page(sp, it.sptep);
  432. kvm_release_pfn_clean(pfn);
  433. return NULL;
  434. }
  435. /*
  436. * Page fault handler. There are several causes for a page fault:
  437. * - there is no shadow pte for the guest pte
  438. * - write access through a shadow pte marked read only so that we can set
  439. * the dirty bit
  440. * - write access to a shadow pte marked read only so we can update the page
  441. * dirty bitmap, when userspace requests it
  442. * - mmio access; in this case we will never install a present shadow pte
  443. * - normal guest page fault due to the guest pte marked not present, not
  444. * writable, or not executable
  445. *
  446. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  447. * a negative value on error.
  448. */
  449. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  450. bool prefault)
  451. {
  452. int write_fault = error_code & PFERR_WRITE_MASK;
  453. int user_fault = error_code & PFERR_USER_MASK;
  454. struct guest_walker walker;
  455. u64 *sptep;
  456. int emulate = 0;
  457. int r;
  458. pfn_t pfn;
  459. int level = PT_PAGE_TABLE_LEVEL;
  460. int force_pt_level;
  461. unsigned long mmu_seq;
  462. bool map_writable;
  463. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  464. if (unlikely(error_code & PFERR_RSVD_MASK))
  465. return handle_mmio_page_fault(vcpu, addr, error_code,
  466. mmu_is_nested(vcpu));
  467. r = mmu_topup_memory_caches(vcpu);
  468. if (r)
  469. return r;
  470. /*
  471. * Look up the guest pte for the faulting address.
  472. */
  473. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  474. /*
  475. * The page is not mapped by the guest. Let the guest handle it.
  476. */
  477. if (!r) {
  478. pgprintk("%s: guest page fault\n", __func__);
  479. if (!prefault)
  480. inject_page_fault(vcpu, &walker.fault);
  481. return 0;
  482. }
  483. if (walker.level >= PT_DIRECTORY_LEVEL)
  484. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  485. else
  486. force_pt_level = 1;
  487. if (!force_pt_level) {
  488. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  489. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  490. }
  491. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  492. smp_rmb();
  493. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  494. &map_writable))
  495. return 0;
  496. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  497. walker.gfn, pfn, walker.pte_access, &r))
  498. return r;
  499. spin_lock(&vcpu->kvm->mmu_lock);
  500. if (mmu_notifier_retry(vcpu, mmu_seq))
  501. goto out_unlock;
  502. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  503. kvm_mmu_free_some_pages(vcpu);
  504. if (!force_pt_level)
  505. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  506. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  507. level, &emulate, pfn, map_writable, prefault);
  508. (void)sptep;
  509. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  510. sptep, *sptep, emulate);
  511. ++vcpu->stat.pf_fixed;
  512. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  513. spin_unlock(&vcpu->kvm->mmu_lock);
  514. return emulate;
  515. out_unlock:
  516. spin_unlock(&vcpu->kvm->mmu_lock);
  517. kvm_release_pfn_clean(pfn);
  518. return 0;
  519. }
  520. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  521. {
  522. int offset = 0;
  523. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  524. if (PTTYPE == 32)
  525. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  526. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  527. }
  528. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  529. {
  530. struct kvm_shadow_walk_iterator iterator;
  531. struct kvm_mmu_page *sp;
  532. int level;
  533. u64 *sptep;
  534. vcpu_clear_mmio_info(vcpu, gva);
  535. /*
  536. * No need to check return value here, rmap_can_add() can
  537. * help us to skip pte prefetch later.
  538. */
  539. mmu_topup_memory_caches(vcpu);
  540. spin_lock(&vcpu->kvm->mmu_lock);
  541. for_each_shadow_entry(vcpu, gva, iterator) {
  542. level = iterator.level;
  543. sptep = iterator.sptep;
  544. sp = page_header(__pa(sptep));
  545. if (is_last_spte(*sptep, level)) {
  546. pt_element_t gpte;
  547. gpa_t pte_gpa;
  548. if (!sp->unsync)
  549. break;
  550. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  551. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  552. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  553. kvm_flush_remote_tlbs(vcpu->kvm);
  554. if (!rmap_can_add(vcpu))
  555. break;
  556. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  557. sizeof(pt_element_t)))
  558. break;
  559. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  560. }
  561. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  562. break;
  563. }
  564. spin_unlock(&vcpu->kvm->mmu_lock);
  565. }
  566. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  567. struct x86_exception *exception)
  568. {
  569. struct guest_walker walker;
  570. gpa_t gpa = UNMAPPED_GVA;
  571. int r;
  572. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  573. if (r) {
  574. gpa = gfn_to_gpa(walker.gfn);
  575. gpa |= vaddr & ~PAGE_MASK;
  576. } else if (exception)
  577. *exception = walker.fault;
  578. return gpa;
  579. }
  580. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  581. u32 access,
  582. struct x86_exception *exception)
  583. {
  584. struct guest_walker walker;
  585. gpa_t gpa = UNMAPPED_GVA;
  586. int r;
  587. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  588. if (r) {
  589. gpa = gfn_to_gpa(walker.gfn);
  590. gpa |= vaddr & ~PAGE_MASK;
  591. } else if (exception)
  592. *exception = walker.fault;
  593. return gpa;
  594. }
  595. /*
  596. * Using the cached information from sp->gfns is safe because:
  597. * - The spte has a reference to the struct page, so the pfn for a given gfn
  598. * can't change unless all sptes pointing to it are nuked first.
  599. *
  600. * Note:
  601. * We should flush all tlbs if spte is dropped even though guest is
  602. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  603. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  604. * used by guest then tlbs are not flushed, so guest is allowed to access the
  605. * freed pages.
  606. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  607. */
  608. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  609. {
  610. int i, nr_present = 0;
  611. bool host_writable;
  612. gpa_t first_pte_gpa;
  613. /* direct kvm_mmu_page can not be unsync. */
  614. BUG_ON(sp->role.direct);
  615. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  616. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  617. unsigned pte_access;
  618. pt_element_t gpte;
  619. gpa_t pte_gpa;
  620. gfn_t gfn;
  621. if (!sp->spt[i])
  622. continue;
  623. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  624. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  625. sizeof(pt_element_t)))
  626. return -EINVAL;
  627. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  628. vcpu->kvm->tlbs_dirty++;
  629. continue;
  630. }
  631. gfn = gpte_to_gfn(gpte);
  632. pte_access = sp->role.access;
  633. pte_access &= gpte_access(vcpu, gpte);
  634. protect_clean_gpte(&pte_access, gpte);
  635. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  636. continue;
  637. if (gfn != sp->gfns[i]) {
  638. drop_spte(vcpu->kvm, &sp->spt[i]);
  639. vcpu->kvm->tlbs_dirty++;
  640. continue;
  641. }
  642. nr_present++;
  643. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  644. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  645. PT_PAGE_TABLE_LEVEL, gfn,
  646. spte_to_pfn(sp->spt[i]), true, false,
  647. host_writable);
  648. }
  649. return !nr_present;
  650. }
  651. #undef pt_element_t
  652. #undef guest_walker
  653. #undef FNAME
  654. #undef PT_BASE_ADDR_MASK
  655. #undef PT_INDEX
  656. #undef PT_LVL_ADDR_MASK
  657. #undef PT_LVL_OFFSET_MASK
  658. #undef PT_LEVEL_BITS
  659. #undef PT_MAX_FULL_LEVELS
  660. #undef gpte_to_gfn
  661. #undef gpte_to_gfn_lvl
  662. #undef CMPXCHG