init_64.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_pfn_mapped;
  54. static unsigned long dma_reserve __initdata;
  55. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  56. int direct_gbpages __meminitdata
  57. #ifdef CONFIG_DIRECT_GBPAGES
  58. = 1
  59. #endif
  60. ;
  61. static int __init parse_direct_gbpages_off(char *arg)
  62. {
  63. direct_gbpages = 0;
  64. return 0;
  65. }
  66. early_param("nogbpages", parse_direct_gbpages_off);
  67. static int __init parse_direct_gbpages_on(char *arg)
  68. {
  69. direct_gbpages = 1;
  70. return 0;
  71. }
  72. early_param("gbpages", parse_direct_gbpages_on);
  73. /*
  74. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  75. * physical space so we can cache the place of the first one and move
  76. * around without checking the pgd every time.
  77. */
  78. void show_mem(void)
  79. {
  80. long i, total = 0, reserved = 0;
  81. long shared = 0, cached = 0;
  82. struct page *page;
  83. pg_data_t *pgdat;
  84. printk(KERN_INFO "Mem-info:\n");
  85. show_free_areas();
  86. for_each_online_pgdat(pgdat) {
  87. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  88. /*
  89. * This loop can take a while with 256 GB and
  90. * 4k pages so defer the NMI watchdog:
  91. */
  92. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  93. touch_nmi_watchdog();
  94. if (!pfn_valid(pgdat->node_start_pfn + i))
  95. continue;
  96. page = pfn_to_page(pgdat->node_start_pfn + i);
  97. total++;
  98. if (PageReserved(page))
  99. reserved++;
  100. else if (PageSwapCache(page))
  101. cached++;
  102. else if (page_count(page))
  103. shared += page_count(page) - 1;
  104. }
  105. }
  106. printk(KERN_INFO "%lu pages of RAM\n", total);
  107. printk(KERN_INFO "%lu reserved pages\n", reserved);
  108. printk(KERN_INFO "%lu pages shared\n", shared);
  109. printk(KERN_INFO "%lu pages swap cached\n", cached);
  110. }
  111. int after_bootmem;
  112. static __init void *spp_getpage(void)
  113. {
  114. void *ptr;
  115. if (after_bootmem)
  116. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  117. else
  118. ptr = alloc_bootmem_pages(PAGE_SIZE);
  119. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  120. panic("set_pte_phys: cannot allocate page data %s\n",
  121. after_bootmem ? "after bootmem" : "");
  122. }
  123. pr_debug("spp_getpage %p\n", ptr);
  124. return ptr;
  125. }
  126. void
  127. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  128. {
  129. pud_t *pud;
  130. pmd_t *pmd;
  131. pte_t *pte;
  132. pud = pud_page + pud_index(vaddr);
  133. if (pud_none(*pud)) {
  134. pmd = (pmd_t *) spp_getpage();
  135. pud_populate(&init_mm, pud, pmd);
  136. if (pmd != pmd_offset(pud, 0)) {
  137. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  138. pmd, pmd_offset(pud, 0));
  139. return;
  140. }
  141. }
  142. pmd = pmd_offset(pud, vaddr);
  143. if (pmd_none(*pmd)) {
  144. pte = (pte_t *) spp_getpage();
  145. pmd_populate_kernel(&init_mm, pmd, pte);
  146. if (pte != pte_offset_kernel(pmd, 0)) {
  147. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  148. return;
  149. }
  150. }
  151. pte = pte_offset_kernel(pmd, vaddr);
  152. if (!pte_none(*pte) && pte_val(new_pte) &&
  153. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  154. pte_ERROR(*pte);
  155. set_pte(pte, new_pte);
  156. /*
  157. * It's enough to flush this one mapping.
  158. * (PGE mappings get flushed as well)
  159. */
  160. __flush_tlb_one(vaddr);
  161. }
  162. void
  163. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  164. {
  165. pgd_t *pgd;
  166. pud_t *pud_page;
  167. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  168. pgd = pgd_offset_k(vaddr);
  169. if (pgd_none(*pgd)) {
  170. printk(KERN_ERR
  171. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  172. return;
  173. }
  174. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  175. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  176. }
  177. /*
  178. * Create large page table mappings for a range of physical addresses.
  179. */
  180. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  181. pgprot_t prot)
  182. {
  183. pgd_t *pgd;
  184. pud_t *pud;
  185. pmd_t *pmd;
  186. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  187. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  188. pgd = pgd_offset_k((unsigned long)__va(phys));
  189. if (pgd_none(*pgd)) {
  190. pud = (pud_t *) spp_getpage();
  191. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  192. _PAGE_USER));
  193. }
  194. pud = pud_offset(pgd, (unsigned long)__va(phys));
  195. if (pud_none(*pud)) {
  196. pmd = (pmd_t *) spp_getpage();
  197. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  198. _PAGE_USER));
  199. }
  200. pmd = pmd_offset(pud, phys);
  201. BUG_ON(!pmd_none(*pmd));
  202. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  203. }
  204. }
  205. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  206. {
  207. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  208. }
  209. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  210. {
  211. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  212. }
  213. /*
  214. * The head.S code sets up the kernel high mapping:
  215. *
  216. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  217. *
  218. * phys_addr holds the negative offset to the kernel, which is added
  219. * to the compile time generated pmds. This results in invalid pmds up
  220. * to the point where we hit the physaddr 0 mapping.
  221. *
  222. * We limit the mappings to the region from _text to _end. _end is
  223. * rounded up to the 2MB boundary. This catches the invalid pmds as
  224. * well, as they are located before _text:
  225. */
  226. void __init cleanup_highmap(void)
  227. {
  228. unsigned long vaddr = __START_KERNEL_map;
  229. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  230. pmd_t *pmd = level2_kernel_pgt;
  231. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  232. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  233. if (pmd_none(*pmd))
  234. continue;
  235. if (vaddr < (unsigned long) _text || vaddr > end)
  236. set_pmd(pmd, __pmd(0));
  237. }
  238. }
  239. static unsigned long __initdata table_start;
  240. static unsigned long __meminitdata table_end;
  241. static unsigned long __meminitdata table_top;
  242. static __meminit void *alloc_low_page(unsigned long *phys)
  243. {
  244. unsigned long pfn = table_end++;
  245. void *adr;
  246. if (after_bootmem) {
  247. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  248. *phys = __pa(adr);
  249. return adr;
  250. }
  251. if (pfn >= table_top)
  252. panic("alloc_low_page: ran out of memory");
  253. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  254. memset(adr, 0, PAGE_SIZE);
  255. *phys = pfn * PAGE_SIZE;
  256. return adr;
  257. }
  258. static __meminit void unmap_low_page(void *adr)
  259. {
  260. if (after_bootmem)
  261. return;
  262. early_iounmap(adr, PAGE_SIZE);
  263. }
  264. static void __meminit
  265. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  266. {
  267. unsigned pages = 0;
  268. int i;
  269. pte_t *pte = pte_page + pte_index(addr);
  270. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  271. if (addr >= end) {
  272. if (!after_bootmem) {
  273. for(; i < PTRS_PER_PTE; i++, pte++)
  274. set_pte(pte, __pte(0));
  275. }
  276. break;
  277. }
  278. if (pte_val(*pte))
  279. continue;
  280. if (0)
  281. printk(" pte=%p addr=%lx pte=%016lx\n",
  282. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  283. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  284. pages++;
  285. }
  286. update_page_count(PG_LEVEL_4K, pages);
  287. }
  288. static void __meminit
  289. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  290. {
  291. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  292. phys_pte_init(pte, address, end);
  293. }
  294. static unsigned long __meminit
  295. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  296. unsigned long page_size_mask)
  297. {
  298. unsigned long pages = 0;
  299. int i = pmd_index(address);
  300. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  301. unsigned long pte_phys;
  302. pmd_t *pmd = pmd_page + pmd_index(address);
  303. pte_t *pte;
  304. if (address >= end) {
  305. if (!after_bootmem) {
  306. for (; i < PTRS_PER_PMD; i++, pmd++)
  307. set_pmd(pmd, __pmd(0));
  308. }
  309. break;
  310. }
  311. if (pmd_val(*pmd)) {
  312. if (!pmd_large(*pmd))
  313. phys_pte_update(pmd, address, end);
  314. continue;
  315. }
  316. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  317. pages++;
  318. set_pte((pte_t *)pmd,
  319. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  320. continue;
  321. }
  322. pte = alloc_low_page(&pte_phys);
  323. phys_pte_init(pte, address, end);
  324. unmap_low_page(pte);
  325. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  326. }
  327. update_page_count(PG_LEVEL_2M, pages);
  328. return address;
  329. }
  330. static unsigned long __meminit
  331. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  332. unsigned long page_size_mask)
  333. {
  334. pmd_t *pmd = pmd_offset(pud, 0);
  335. unsigned long last_map_addr;
  336. spin_lock(&init_mm.page_table_lock);
  337. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
  338. spin_unlock(&init_mm.page_table_lock);
  339. __flush_tlb_all();
  340. return last_map_addr;
  341. }
  342. static unsigned long __meminit
  343. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  344. unsigned long page_size_mask)
  345. {
  346. unsigned long pages = 0;
  347. unsigned long last_map_addr = end;
  348. int i = pud_index(addr);
  349. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  350. unsigned long pmd_phys;
  351. pud_t *pud = pud_page + pud_index(addr);
  352. pmd_t *pmd;
  353. if (addr >= end)
  354. break;
  355. if (!after_bootmem &&
  356. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  357. set_pud(pud, __pud(0));
  358. continue;
  359. }
  360. if (pud_val(*pud)) {
  361. if (!pud_large(*pud))
  362. last_map_addr = phys_pmd_update(pud, addr, end,
  363. page_size_mask);
  364. continue;
  365. }
  366. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  367. pages++;
  368. set_pte((pte_t *)pud,
  369. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  370. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  371. continue;
  372. }
  373. pmd = alloc_low_page(&pmd_phys);
  374. spin_lock(&init_mm.page_table_lock);
  375. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
  376. unmap_low_page(pmd);
  377. pud_populate(&init_mm, pud, __va(pmd_phys));
  378. spin_unlock(&init_mm.page_table_lock);
  379. }
  380. __flush_tlb_all();
  381. update_page_count(PG_LEVEL_1G, pages);
  382. return last_map_addr;
  383. }
  384. static unsigned long __meminit
  385. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  386. unsigned long page_size_mask)
  387. {
  388. pud_t *pud;
  389. pud = (pud_t *)pgd_page_vaddr(*pgd);
  390. return phys_pud_init(pud, addr, end, page_size_mask);
  391. }
  392. static void __init find_early_table_space(unsigned long end)
  393. {
  394. unsigned long puds, tables, start;
  395. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  396. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  397. if (!direct_gbpages) {
  398. unsigned long pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  399. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  400. }
  401. if (!cpu_has_pse) {
  402. unsigned long ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  403. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  404. }
  405. /*
  406. * RED-PEN putting page tables only on node 0 could
  407. * cause a hotspot and fill up ZONE_DMA. The page tables
  408. * need roughly 0.5KB per GB.
  409. */
  410. start = 0x8000;
  411. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  412. if (table_start == -1UL)
  413. panic("Cannot find space for the kernel page tables");
  414. table_start >>= PAGE_SHIFT;
  415. table_end = table_start;
  416. table_top = table_start + (tables >> PAGE_SHIFT);
  417. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  418. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  419. }
  420. static void __init init_gbpages(void)
  421. {
  422. if (direct_gbpages && cpu_has_gbpages)
  423. printk(KERN_INFO "Using GB pages for direct mapping\n");
  424. else
  425. direct_gbpages = 0;
  426. }
  427. #ifdef CONFIG_MEMTEST
  428. static void __init memtest(unsigned long start_phys, unsigned long size,
  429. unsigned pattern)
  430. {
  431. unsigned long i;
  432. unsigned long *start;
  433. unsigned long start_bad;
  434. unsigned long last_bad;
  435. unsigned long val;
  436. unsigned long start_phys_aligned;
  437. unsigned long count;
  438. unsigned long incr;
  439. switch (pattern) {
  440. case 0:
  441. val = 0UL;
  442. break;
  443. case 1:
  444. val = -1UL;
  445. break;
  446. case 2:
  447. val = 0x5555555555555555UL;
  448. break;
  449. case 3:
  450. val = 0xaaaaaaaaaaaaaaaaUL;
  451. break;
  452. default:
  453. return;
  454. }
  455. incr = sizeof(unsigned long);
  456. start_phys_aligned = ALIGN(start_phys, incr);
  457. count = (size - (start_phys_aligned - start_phys))/incr;
  458. start = __va(start_phys_aligned);
  459. start_bad = 0;
  460. last_bad = 0;
  461. for (i = 0; i < count; i++)
  462. start[i] = val;
  463. for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
  464. if (*start != val) {
  465. if (start_phys_aligned == last_bad + incr) {
  466. last_bad += incr;
  467. } else {
  468. if (start_bad) {
  469. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  470. val, start_bad, last_bad + incr);
  471. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  472. }
  473. start_bad = last_bad = start_phys_aligned;
  474. }
  475. }
  476. }
  477. if (start_bad) {
  478. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  479. val, start_bad, last_bad + incr);
  480. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  481. }
  482. }
  483. /* default is disabled */
  484. static int memtest_pattern __initdata;
  485. static int __init parse_memtest(char *arg)
  486. {
  487. if (arg)
  488. memtest_pattern = simple_strtoul(arg, NULL, 0);
  489. return 0;
  490. }
  491. early_param("memtest", parse_memtest);
  492. static void __init early_memtest(unsigned long start, unsigned long end)
  493. {
  494. u64 t_start, t_size;
  495. unsigned pattern;
  496. if (!memtest_pattern)
  497. return;
  498. printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
  499. for (pattern = 0; pattern < memtest_pattern; pattern++) {
  500. t_start = start;
  501. t_size = 0;
  502. while (t_start < end) {
  503. t_start = find_e820_area_size(t_start, &t_size, 1);
  504. /* done ? */
  505. if (t_start >= end)
  506. break;
  507. if (t_start + t_size > end)
  508. t_size = end - t_start;
  509. printk(KERN_CONT "\n %016llx - %016llx pattern %d",
  510. (unsigned long long)t_start,
  511. (unsigned long long)t_start + t_size, pattern);
  512. memtest(t_start, t_size, pattern);
  513. t_start += t_size;
  514. }
  515. }
  516. printk(KERN_CONT "\n");
  517. }
  518. #else
  519. static void __init early_memtest(unsigned long start, unsigned long end)
  520. {
  521. }
  522. #endif
  523. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  524. unsigned long end,
  525. unsigned long page_size_mask)
  526. {
  527. unsigned long next, last_map_addr = end;
  528. start = (unsigned long)__va(start);
  529. end = (unsigned long)__va(end);
  530. for (; start < end; start = next) {
  531. pgd_t *pgd = pgd_offset_k(start);
  532. unsigned long pud_phys;
  533. pud_t *pud;
  534. next = start + PGDIR_SIZE;
  535. if (next > end)
  536. next = end;
  537. if (pgd_val(*pgd)) {
  538. last_map_addr = phys_pud_update(pgd, __pa(start),
  539. __pa(end), page_size_mask);
  540. continue;
  541. }
  542. if (after_bootmem)
  543. pud = pud_offset(pgd, start & PGDIR_MASK);
  544. else
  545. pud = alloc_low_page(&pud_phys);
  546. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  547. page_size_mask);
  548. unmap_low_page(pud);
  549. pgd_populate(&init_mm, pgd_offset_k(start),
  550. __va(pud_phys));
  551. }
  552. return last_map_addr;
  553. }
  554. /*
  555. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  556. * This runs before bootmem is initialized and gets pages directly from
  557. * the physical memory. To access them they are temporarily mapped.
  558. */
  559. unsigned long __init_refok init_memory_mapping(unsigned long start,
  560. unsigned long end)
  561. {
  562. unsigned long last_map_addr;
  563. unsigned long page_size_mask = 0;
  564. printk(KERN_INFO "init_memory_mapping\n");
  565. /*
  566. * Find space for the kernel direct mapping tables.
  567. *
  568. * Later we should allocate these tables in the local node of the
  569. * memory mapped. Unfortunately this is done currently before the
  570. * nodes are discovered.
  571. */
  572. if (!after_bootmem) {
  573. init_gbpages();
  574. find_early_table_space(end);
  575. }
  576. if (direct_gbpages)
  577. page_size_mask |= 1 << PG_LEVEL_1G;
  578. if (cpu_has_pse)
  579. page_size_mask |= 1 << PG_LEVEL_2M;
  580. last_map_addr = kernel_physical_mapping_init(start, end,
  581. page_size_mask);
  582. if (!after_bootmem)
  583. mmu_cr4_features = read_cr4();
  584. __flush_tlb_all();
  585. if (!after_bootmem && table_end > table_start)
  586. reserve_early(table_start << PAGE_SHIFT,
  587. table_end << PAGE_SHIFT, "PGTABLE");
  588. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  589. last_map_addr, end);
  590. if (!after_bootmem)
  591. early_memtest(start, end);
  592. return last_map_addr >> PAGE_SHIFT;
  593. }
  594. #ifndef CONFIG_NUMA
  595. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  596. {
  597. unsigned long bootmap_size, bootmap;
  598. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  599. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  600. PAGE_SIZE);
  601. if (bootmap == -1L)
  602. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  603. /* don't touch min_low_pfn */
  604. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  605. 0, end_pfn);
  606. e820_register_active_regions(0, start_pfn, end_pfn);
  607. free_bootmem_with_active_regions(0, end_pfn);
  608. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  609. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  610. }
  611. void __init paging_init(void)
  612. {
  613. unsigned long max_zone_pfns[MAX_NR_ZONES];
  614. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  615. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  616. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  617. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  618. memory_present(0, 0, max_pfn);
  619. sparse_init();
  620. free_area_init_nodes(max_zone_pfns);
  621. }
  622. #endif
  623. /*
  624. * Memory hotplug specific functions
  625. */
  626. #ifdef CONFIG_MEMORY_HOTPLUG
  627. /*
  628. * Memory is added always to NORMAL zone. This means you will never get
  629. * additional DMA/DMA32 memory.
  630. */
  631. int arch_add_memory(int nid, u64 start, u64 size)
  632. {
  633. struct pglist_data *pgdat = NODE_DATA(nid);
  634. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  635. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  636. unsigned long nr_pages = size >> PAGE_SHIFT;
  637. int ret;
  638. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  639. if (last_mapped_pfn > max_pfn_mapped)
  640. max_pfn_mapped = last_mapped_pfn;
  641. ret = __add_pages(zone, start_pfn, nr_pages);
  642. WARN_ON(1);
  643. return ret;
  644. }
  645. EXPORT_SYMBOL_GPL(arch_add_memory);
  646. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  647. int memory_add_physaddr_to_nid(u64 start)
  648. {
  649. return 0;
  650. }
  651. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  652. #endif
  653. #endif /* CONFIG_MEMORY_HOTPLUG */
  654. /*
  655. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  656. * is valid. The argument is a physical page number.
  657. *
  658. *
  659. * On x86, access has to be given to the first megabyte of ram because that area
  660. * contains bios code and data regions used by X and dosemu and similar apps.
  661. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  662. * mmio resources as well as potential bios/acpi data regions.
  663. */
  664. int devmem_is_allowed(unsigned long pagenr)
  665. {
  666. if (pagenr <= 256)
  667. return 1;
  668. if (!page_is_ram(pagenr))
  669. return 1;
  670. return 0;
  671. }
  672. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  673. kcore_modules, kcore_vsyscall;
  674. void __init mem_init(void)
  675. {
  676. long codesize, reservedpages, datasize, initsize;
  677. pci_iommu_alloc();
  678. /* clear_bss() already clear the empty_zero_page */
  679. reservedpages = 0;
  680. /* this will put all low memory onto the freelists */
  681. #ifdef CONFIG_NUMA
  682. totalram_pages = numa_free_all_bootmem();
  683. #else
  684. totalram_pages = free_all_bootmem();
  685. #endif
  686. reservedpages = max_pfn - totalram_pages -
  687. absent_pages_in_range(0, max_pfn);
  688. after_bootmem = 1;
  689. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  690. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  691. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  692. /* Register memory areas for /proc/kcore */
  693. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  694. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  695. VMALLOC_END-VMALLOC_START);
  696. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  697. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  698. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  699. VSYSCALL_END - VSYSCALL_START);
  700. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  701. "%ldk reserved, %ldk data, %ldk init)\n",
  702. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  703. max_pfn << (PAGE_SHIFT-10),
  704. codesize >> 10,
  705. reservedpages << (PAGE_SHIFT-10),
  706. datasize >> 10,
  707. initsize >> 10);
  708. cpa_init();
  709. }
  710. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  711. {
  712. unsigned long addr = begin;
  713. if (addr >= end)
  714. return;
  715. /*
  716. * If debugging page accesses then do not free this memory but
  717. * mark them not present - any buggy init-section access will
  718. * create a kernel page fault:
  719. */
  720. #ifdef CONFIG_DEBUG_PAGEALLOC
  721. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  722. begin, PAGE_ALIGN(end));
  723. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  724. #else
  725. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  726. for (; addr < end; addr += PAGE_SIZE) {
  727. ClearPageReserved(virt_to_page(addr));
  728. init_page_count(virt_to_page(addr));
  729. memset((void *)(addr & ~(PAGE_SIZE-1)),
  730. POISON_FREE_INITMEM, PAGE_SIZE);
  731. free_page(addr);
  732. totalram_pages++;
  733. }
  734. #endif
  735. }
  736. void free_initmem(void)
  737. {
  738. free_init_pages("unused kernel memory",
  739. (unsigned long)(&__init_begin),
  740. (unsigned long)(&__init_end));
  741. }
  742. #ifdef CONFIG_DEBUG_RODATA
  743. const int rodata_test_data = 0xC3;
  744. EXPORT_SYMBOL_GPL(rodata_test_data);
  745. void mark_rodata_ro(void)
  746. {
  747. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  748. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  749. (end - start) >> 10);
  750. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  751. /*
  752. * The rodata section (but not the kernel text!) should also be
  753. * not-executable.
  754. */
  755. start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  756. set_memory_nx(start, (end - start) >> PAGE_SHIFT);
  757. rodata_test();
  758. #ifdef CONFIG_CPA_DEBUG
  759. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  760. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  761. printk(KERN_INFO "Testing CPA: again\n");
  762. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  763. #endif
  764. }
  765. #endif
  766. #ifdef CONFIG_BLK_DEV_INITRD
  767. void free_initrd_mem(unsigned long start, unsigned long end)
  768. {
  769. free_init_pages("initrd memory", start, end);
  770. }
  771. #endif
  772. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  773. int flags)
  774. {
  775. #ifdef CONFIG_NUMA
  776. int nid, next_nid;
  777. int ret;
  778. #endif
  779. unsigned long pfn = phys >> PAGE_SHIFT;
  780. if (pfn >= max_pfn) {
  781. /*
  782. * This can happen with kdump kernels when accessing
  783. * firmware tables:
  784. */
  785. if (pfn < max_pfn_mapped)
  786. return -EFAULT;
  787. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  788. phys, len);
  789. return -EFAULT;
  790. }
  791. /* Should check here against the e820 map to avoid double free */
  792. #ifdef CONFIG_NUMA
  793. nid = phys_to_nid(phys);
  794. next_nid = phys_to_nid(phys + len - 1);
  795. if (nid == next_nid)
  796. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  797. else
  798. ret = reserve_bootmem(phys, len, flags);
  799. if (ret != 0)
  800. return ret;
  801. #else
  802. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  803. #endif
  804. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  805. dma_reserve += len / PAGE_SIZE;
  806. set_dma_reserve(dma_reserve);
  807. }
  808. return 0;
  809. }
  810. int kern_addr_valid(unsigned long addr)
  811. {
  812. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  813. pgd_t *pgd;
  814. pud_t *pud;
  815. pmd_t *pmd;
  816. pte_t *pte;
  817. if (above != 0 && above != -1UL)
  818. return 0;
  819. pgd = pgd_offset_k(addr);
  820. if (pgd_none(*pgd))
  821. return 0;
  822. pud = pud_offset(pgd, addr);
  823. if (pud_none(*pud))
  824. return 0;
  825. pmd = pmd_offset(pud, addr);
  826. if (pmd_none(*pmd))
  827. return 0;
  828. if (pmd_large(*pmd))
  829. return pfn_valid(pmd_pfn(*pmd));
  830. pte = pte_offset_kernel(pmd, addr);
  831. if (pte_none(*pte))
  832. return 0;
  833. return pfn_valid(pte_pfn(*pte));
  834. }
  835. /*
  836. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  837. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  838. * not need special handling anymore:
  839. */
  840. static struct vm_area_struct gate_vma = {
  841. .vm_start = VSYSCALL_START,
  842. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  843. .vm_page_prot = PAGE_READONLY_EXEC,
  844. .vm_flags = VM_READ | VM_EXEC
  845. };
  846. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  847. {
  848. #ifdef CONFIG_IA32_EMULATION
  849. if (test_tsk_thread_flag(tsk, TIF_IA32))
  850. return NULL;
  851. #endif
  852. return &gate_vma;
  853. }
  854. int in_gate_area(struct task_struct *task, unsigned long addr)
  855. {
  856. struct vm_area_struct *vma = get_gate_vma(task);
  857. if (!vma)
  858. return 0;
  859. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  860. }
  861. /*
  862. * Use this when you have no reliable task/vma, typically from interrupt
  863. * context. It is less reliable than using the task's vma and may give
  864. * false positives:
  865. */
  866. int in_gate_area_no_task(unsigned long addr)
  867. {
  868. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  869. }
  870. const char *arch_vma_name(struct vm_area_struct *vma)
  871. {
  872. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  873. return "[vdso]";
  874. if (vma == &gate_vma)
  875. return "[vsyscall]";
  876. return NULL;
  877. }
  878. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  879. /*
  880. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  881. */
  882. static long __meminitdata addr_start, addr_end;
  883. static void __meminitdata *p_start, *p_end;
  884. static int __meminitdata node_start;
  885. int __meminit
  886. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  887. {
  888. unsigned long addr = (unsigned long)start_page;
  889. unsigned long end = (unsigned long)(start_page + size);
  890. unsigned long next;
  891. pgd_t *pgd;
  892. pud_t *pud;
  893. pmd_t *pmd;
  894. for (; addr < end; addr = next) {
  895. void *p = NULL;
  896. pgd = vmemmap_pgd_populate(addr, node);
  897. if (!pgd)
  898. return -ENOMEM;
  899. pud = vmemmap_pud_populate(pgd, addr, node);
  900. if (!pud)
  901. return -ENOMEM;
  902. if (!cpu_has_pse) {
  903. next = (addr + PAGE_SIZE) & PAGE_MASK;
  904. pmd = vmemmap_pmd_populate(pud, addr, node);
  905. if (!pmd)
  906. return -ENOMEM;
  907. p = vmemmap_pte_populate(pmd, addr, node);
  908. if (!p)
  909. return -ENOMEM;
  910. addr_end = addr + PAGE_SIZE;
  911. p_end = p + PAGE_SIZE;
  912. } else {
  913. next = pmd_addr_end(addr, end);
  914. pmd = pmd_offset(pud, addr);
  915. if (pmd_none(*pmd)) {
  916. pte_t entry;
  917. p = vmemmap_alloc_block(PMD_SIZE, node);
  918. if (!p)
  919. return -ENOMEM;
  920. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  921. PAGE_KERNEL_LARGE);
  922. set_pmd(pmd, __pmd(pte_val(entry)));
  923. addr_end = addr + PMD_SIZE;
  924. p_end = p + PMD_SIZE;
  925. /* check to see if we have contiguous blocks */
  926. if (p_end != p || node_start != node) {
  927. if (p_start)
  928. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  929. addr_start, addr_end-1, p_start, p_end-1, node_start);
  930. addr_start = addr;
  931. node_start = node;
  932. p_start = p;
  933. }
  934. } else
  935. vmemmap_verify((pte_t *)pmd, node, addr, next);
  936. }
  937. }
  938. return 0;
  939. }
  940. void __meminit vmemmap_populate_print_last(void)
  941. {
  942. if (p_start) {
  943. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  944. addr_start, addr_end-1, p_start, p_end-1, node_start);
  945. p_start = NULL;
  946. p_end = NULL;
  947. node_start = 0;
  948. }
  949. }
  950. #endif