process.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999,2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/smp.h>
  15. #include <linux/slab.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/tick.h>
  18. #include <linux/personality.h>
  19. #include <linux/syscalls.h>
  20. #include <linux/compat.h>
  21. #include <linux/kprobes.h>
  22. #include <linux/random.h>
  23. #include <linux/module.h>
  24. #include <asm/system.h>
  25. #include <asm/io.h>
  26. #include <asm/processor.h>
  27. #include <asm/irq.h>
  28. #include <asm/timer.h>
  29. #include <asm/nmi.h>
  30. #include <asm/compat.h>
  31. #include <asm/smp.h>
  32. #include "entry.h"
  33. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  34. /*
  35. * Return saved PC of a blocked thread. used in kernel/sched.
  36. * resume in entry.S does not create a new stack frame, it
  37. * just stores the registers %r6-%r15 to the frame given by
  38. * schedule. We want to return the address of the caller of
  39. * schedule, so we have to walk the backchain one time to
  40. * find the frame schedule() store its return address.
  41. */
  42. unsigned long thread_saved_pc(struct task_struct *tsk)
  43. {
  44. struct stack_frame *sf, *low, *high;
  45. if (!tsk || !task_stack_page(tsk))
  46. return 0;
  47. low = task_stack_page(tsk);
  48. high = (struct stack_frame *) task_pt_regs(tsk);
  49. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  50. if (sf <= low || sf > high)
  51. return 0;
  52. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  53. if (sf <= low || sf > high)
  54. return 0;
  55. return sf->gprs[8];
  56. }
  57. /*
  58. * The idle loop on a S390...
  59. */
  60. static void default_idle(void)
  61. {
  62. if (cpu_is_offline(smp_processor_id()))
  63. cpu_die();
  64. local_irq_disable();
  65. if (need_resched()) {
  66. local_irq_enable();
  67. return;
  68. }
  69. local_mcck_disable();
  70. if (test_thread_flag(TIF_MCCK_PENDING)) {
  71. local_mcck_enable();
  72. local_irq_enable();
  73. s390_handle_mcck();
  74. return;
  75. }
  76. trace_hardirqs_on();
  77. /* Don't trace preempt off for idle. */
  78. stop_critical_timings();
  79. /* Stop virtual timer and halt the cpu. */
  80. vtime_stop_cpu();
  81. /* Reenable preemption tracer. */
  82. start_critical_timings();
  83. }
  84. void cpu_idle(void)
  85. {
  86. for (;;) {
  87. tick_nohz_stop_sched_tick(1);
  88. while (!need_resched())
  89. default_idle();
  90. tick_nohz_restart_sched_tick();
  91. preempt_enable_no_resched();
  92. schedule();
  93. preempt_disable();
  94. }
  95. }
  96. extern void __kprobes kernel_thread_starter(void);
  97. asm(
  98. ".section .kprobes.text, \"ax\"\n"
  99. ".global kernel_thread_starter\n"
  100. "kernel_thread_starter:\n"
  101. " la 2,0(10)\n"
  102. " basr 14,9\n"
  103. " la 2,0\n"
  104. " br 11\n"
  105. ".previous\n");
  106. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  107. {
  108. struct pt_regs regs;
  109. memset(&regs, 0, sizeof(regs));
  110. regs.psw.mask = psw_kernel_bits |
  111. PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
  112. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  113. regs.gprs[9] = (unsigned long) fn;
  114. regs.gprs[10] = (unsigned long) arg;
  115. regs.gprs[11] = (unsigned long) do_exit;
  116. regs.orig_gpr2 = -1;
  117. /* Ok, create the new process.. */
  118. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  119. 0, &regs, 0, NULL, NULL);
  120. }
  121. EXPORT_SYMBOL(kernel_thread);
  122. /*
  123. * Free current thread data structures etc..
  124. */
  125. void exit_thread(void)
  126. {
  127. }
  128. void flush_thread(void)
  129. {
  130. }
  131. void release_thread(struct task_struct *dead_task)
  132. {
  133. }
  134. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  135. unsigned long unused,
  136. struct task_struct *p, struct pt_regs *regs)
  137. {
  138. struct thread_info *ti;
  139. struct fake_frame
  140. {
  141. struct stack_frame sf;
  142. struct pt_regs childregs;
  143. } *frame;
  144. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  145. p->thread.ksp = (unsigned long) frame;
  146. /* Store access registers to kernel stack of new process. */
  147. frame->childregs = *regs;
  148. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  149. frame->childregs.gprs[15] = new_stackp;
  150. frame->sf.back_chain = 0;
  151. /* new return point is ret_from_fork */
  152. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  153. /* fake return stack for resume(), don't go back to schedule */
  154. frame->sf.gprs[9] = (unsigned long) frame;
  155. /* Save access registers to new thread structure. */
  156. save_access_regs(&p->thread.acrs[0]);
  157. #ifndef CONFIG_64BIT
  158. /*
  159. * save fprs to current->thread.fp_regs to merge them with
  160. * the emulated registers and then copy the result to the child.
  161. */
  162. save_fp_regs(&current->thread.fp_regs);
  163. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  164. sizeof(s390_fp_regs));
  165. /* Set a new TLS ? */
  166. if (clone_flags & CLONE_SETTLS)
  167. p->thread.acrs[0] = regs->gprs[6];
  168. #else /* CONFIG_64BIT */
  169. /* Save the fpu registers to new thread structure. */
  170. save_fp_regs(&p->thread.fp_regs);
  171. /* Set a new TLS ? */
  172. if (clone_flags & CLONE_SETTLS) {
  173. if (is_compat_task()) {
  174. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  175. } else {
  176. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  177. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  178. }
  179. }
  180. #endif /* CONFIG_64BIT */
  181. /* start new process with ar4 pointing to the correct address space */
  182. p->thread.mm_segment = get_fs();
  183. /* Don't copy debug registers */
  184. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  185. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  186. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  187. clear_tsk_thread_flag(p, TIF_PER_TRAP);
  188. /* Initialize per thread user and system timer values */
  189. ti = task_thread_info(p);
  190. ti->user_timer = 0;
  191. ti->system_timer = 0;
  192. return 0;
  193. }
  194. SYSCALL_DEFINE0(fork)
  195. {
  196. struct pt_regs *regs = task_pt_regs(current);
  197. return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
  198. }
  199. SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
  200. int __user *, parent_tidptr, int __user *, child_tidptr)
  201. {
  202. struct pt_regs *regs = task_pt_regs(current);
  203. if (!newsp)
  204. newsp = regs->gprs[15];
  205. return do_fork(clone_flags, newsp, regs, 0,
  206. parent_tidptr, child_tidptr);
  207. }
  208. /*
  209. * This is trivial, and on the face of it looks like it
  210. * could equally well be done in user mode.
  211. *
  212. * Not so, for quite unobvious reasons - register pressure.
  213. * In user mode vfork() cannot have a stack frame, and if
  214. * done by calling the "clone()" system call directly, you
  215. * do not have enough call-clobbered registers to hold all
  216. * the information you need.
  217. */
  218. SYSCALL_DEFINE0(vfork)
  219. {
  220. struct pt_regs *regs = task_pt_regs(current);
  221. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  222. regs->gprs[15], regs, 0, NULL, NULL);
  223. }
  224. asmlinkage void execve_tail(void)
  225. {
  226. current->thread.fp_regs.fpc = 0;
  227. if (MACHINE_HAS_IEEE)
  228. asm volatile("sfpc %0,%0" : : "d" (0));
  229. }
  230. /*
  231. * sys_execve() executes a new program.
  232. */
  233. SYSCALL_DEFINE3(execve, const char __user *, name,
  234. const char __user *const __user *, argv,
  235. const char __user *const __user *, envp)
  236. {
  237. struct pt_regs *regs = task_pt_regs(current);
  238. char *filename;
  239. long rc;
  240. filename = getname(name);
  241. rc = PTR_ERR(filename);
  242. if (IS_ERR(filename))
  243. return rc;
  244. rc = do_execve(filename, argv, envp, regs);
  245. if (rc)
  246. goto out;
  247. execve_tail();
  248. rc = regs->gprs[2];
  249. out:
  250. putname(filename);
  251. return rc;
  252. }
  253. /*
  254. * fill in the FPU structure for a core dump.
  255. */
  256. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  257. {
  258. #ifndef CONFIG_64BIT
  259. /*
  260. * save fprs to current->thread.fp_regs to merge them with
  261. * the emulated registers and then copy the result to the dump.
  262. */
  263. save_fp_regs(&current->thread.fp_regs);
  264. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  265. #else /* CONFIG_64BIT */
  266. save_fp_regs(fpregs);
  267. #endif /* CONFIG_64BIT */
  268. return 1;
  269. }
  270. EXPORT_SYMBOL(dump_fpu);
  271. unsigned long get_wchan(struct task_struct *p)
  272. {
  273. struct stack_frame *sf, *low, *high;
  274. unsigned long return_address;
  275. int count;
  276. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  277. return 0;
  278. low = task_stack_page(p);
  279. high = (struct stack_frame *) task_pt_regs(p);
  280. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  281. if (sf <= low || sf > high)
  282. return 0;
  283. for (count = 0; count < 16; count++) {
  284. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  285. if (sf <= low || sf > high)
  286. return 0;
  287. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  288. if (!in_sched_functions(return_address))
  289. return return_address;
  290. }
  291. return 0;
  292. }
  293. unsigned long arch_align_stack(unsigned long sp)
  294. {
  295. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  296. sp -= get_random_int() & ~PAGE_MASK;
  297. return sp & ~0xf;
  298. }
  299. static inline unsigned long brk_rnd(void)
  300. {
  301. /* 8MB for 32bit, 1GB for 64bit */
  302. if (is_32bit_task())
  303. return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
  304. else
  305. return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
  306. }
  307. unsigned long arch_randomize_brk(struct mm_struct *mm)
  308. {
  309. unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
  310. if (ret < mm->brk)
  311. return mm->brk;
  312. return ret;
  313. }
  314. unsigned long randomize_et_dyn(unsigned long base)
  315. {
  316. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  317. if (!(current->flags & PF_RANDOMIZE))
  318. return base;
  319. if (ret < base)
  320. return base;
  321. return ret;
  322. }