disk-io.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. static struct extent_io_ops btree_extent_io_ops;
  48. static void end_workqueue_fn(struct btrfs_work *work);
  49. static void free_fs_root(struct btrfs_root *root);
  50. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  51. int read_only);
  52. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  53. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  54. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  55. struct btrfs_root *root);
  56. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  57. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  59. struct extent_io_tree *dirty_pages,
  60. int mark);
  61. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  62. struct extent_io_tree *pinned_extents);
  63. /*
  64. * end_io_wq structs are used to do processing in task context when an IO is
  65. * complete. This is used during reads to verify checksums, and it is used
  66. * by writes to insert metadata for new file extents after IO is complete.
  67. */
  68. struct end_io_wq {
  69. struct bio *bio;
  70. bio_end_io_t *end_io;
  71. void *private;
  72. struct btrfs_fs_info *info;
  73. int error;
  74. int metadata;
  75. struct list_head list;
  76. struct btrfs_work work;
  77. };
  78. /*
  79. * async submit bios are used to offload expensive checksumming
  80. * onto the worker threads. They checksum file and metadata bios
  81. * just before they are sent down the IO stack.
  82. */
  83. struct async_submit_bio {
  84. struct inode *inode;
  85. struct bio *bio;
  86. struct list_head list;
  87. extent_submit_bio_hook_t *submit_bio_start;
  88. extent_submit_bio_hook_t *submit_bio_done;
  89. int rw;
  90. int mirror_num;
  91. unsigned long bio_flags;
  92. /*
  93. * bio_offset is optional, can be used if the pages in the bio
  94. * can't tell us where in the file the bio should go
  95. */
  96. u64 bio_offset;
  97. struct btrfs_work work;
  98. int error;
  99. };
  100. /*
  101. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  102. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  103. * the level the eb occupies in the tree.
  104. *
  105. * Different roots are used for different purposes and may nest inside each
  106. * other and they require separate keysets. As lockdep keys should be
  107. * static, assign keysets according to the purpose of the root as indicated
  108. * by btrfs_root->objectid. This ensures that all special purpose roots
  109. * have separate keysets.
  110. *
  111. * Lock-nesting across peer nodes is always done with the immediate parent
  112. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  113. * subclass to avoid triggering lockdep warning in such cases.
  114. *
  115. * The key is set by the readpage_end_io_hook after the buffer has passed
  116. * csum validation but before the pages are unlocked. It is also set by
  117. * btrfs_init_new_buffer on freshly allocated blocks.
  118. *
  119. * We also add a check to make sure the highest level of the tree is the
  120. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  121. * needs update as well.
  122. */
  123. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  124. # if BTRFS_MAX_LEVEL != 8
  125. # error
  126. # endif
  127. static struct btrfs_lockdep_keyset {
  128. u64 id; /* root objectid */
  129. const char *name_stem; /* lock name stem */
  130. char names[BTRFS_MAX_LEVEL + 1][20];
  131. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  132. } btrfs_lockdep_keysets[] = {
  133. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  134. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  135. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  136. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  137. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  138. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  139. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  140. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  141. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  142. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  143. { .id = 0, .name_stem = "tree" },
  144. };
  145. void __init btrfs_init_lockdep(void)
  146. {
  147. int i, j;
  148. /* initialize lockdep class names */
  149. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  150. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  151. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  152. snprintf(ks->names[j], sizeof(ks->names[j]),
  153. "btrfs-%s-%02d", ks->name_stem, j);
  154. }
  155. }
  156. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  157. int level)
  158. {
  159. struct btrfs_lockdep_keyset *ks;
  160. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  161. /* find the matching keyset, id 0 is the default entry */
  162. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  163. if (ks->id == objectid)
  164. break;
  165. lockdep_set_class_and_name(&eb->lock,
  166. &ks->keys[level], ks->names[level]);
  167. }
  168. #endif
  169. /*
  170. * extents on the btree inode are pretty simple, there's one extent
  171. * that covers the entire device
  172. */
  173. static struct extent_map *btree_get_extent(struct inode *inode,
  174. struct page *page, size_t pg_offset, u64 start, u64 len,
  175. int create)
  176. {
  177. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  178. struct extent_map *em;
  179. int ret;
  180. read_lock(&em_tree->lock);
  181. em = lookup_extent_mapping(em_tree, start, len);
  182. if (em) {
  183. em->bdev =
  184. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  185. read_unlock(&em_tree->lock);
  186. goto out;
  187. }
  188. read_unlock(&em_tree->lock);
  189. em = alloc_extent_map();
  190. if (!em) {
  191. em = ERR_PTR(-ENOMEM);
  192. goto out;
  193. }
  194. em->start = 0;
  195. em->len = (u64)-1;
  196. em->block_len = (u64)-1;
  197. em->block_start = 0;
  198. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  199. write_lock(&em_tree->lock);
  200. ret = add_extent_mapping(em_tree, em);
  201. if (ret == -EEXIST) {
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (!em)
  205. em = ERR_PTR(-EIO);
  206. } else if (ret) {
  207. free_extent_map(em);
  208. em = ERR_PTR(ret);
  209. }
  210. write_unlock(&em_tree->lock);
  211. out:
  212. return em;
  213. }
  214. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  215. {
  216. return crc32c(seed, data, len);
  217. }
  218. void btrfs_csum_final(u32 crc, char *result)
  219. {
  220. put_unaligned_le32(~crc, result);
  221. }
  222. /*
  223. * compute the csum for a btree block, and either verify it or write it
  224. * into the csum field of the block.
  225. */
  226. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  227. int verify)
  228. {
  229. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  230. char *result = NULL;
  231. unsigned long len;
  232. unsigned long cur_len;
  233. unsigned long offset = BTRFS_CSUM_SIZE;
  234. char *kaddr;
  235. unsigned long map_start;
  236. unsigned long map_len;
  237. int err;
  238. u32 crc = ~(u32)0;
  239. unsigned long inline_result;
  240. len = buf->len - offset;
  241. while (len > 0) {
  242. err = map_private_extent_buffer(buf, offset, 32,
  243. &kaddr, &map_start, &map_len);
  244. if (err)
  245. return 1;
  246. cur_len = min(len, map_len - (offset - map_start));
  247. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  248. crc, cur_len);
  249. len -= cur_len;
  250. offset += cur_len;
  251. }
  252. if (csum_size > sizeof(inline_result)) {
  253. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  254. if (!result)
  255. return 1;
  256. } else {
  257. result = (char *)&inline_result;
  258. }
  259. btrfs_csum_final(crc, result);
  260. if (verify) {
  261. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  262. u32 val;
  263. u32 found = 0;
  264. memcpy(&found, result, csum_size);
  265. read_extent_buffer(buf, &val, 0, csum_size);
  266. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  267. "failed on %llu wanted %X found %X "
  268. "level %d\n",
  269. root->fs_info->sb->s_id,
  270. (unsigned long long)buf->start, val, found,
  271. btrfs_header_level(buf));
  272. if (result != (char *)&inline_result)
  273. kfree(result);
  274. return 1;
  275. }
  276. } else {
  277. write_extent_buffer(buf, result, 0, csum_size);
  278. }
  279. if (result != (char *)&inline_result)
  280. kfree(result);
  281. return 0;
  282. }
  283. /*
  284. * we can't consider a given block up to date unless the transid of the
  285. * block matches the transid in the parent node's pointer. This is how we
  286. * detect blocks that either didn't get written at all or got written
  287. * in the wrong place.
  288. */
  289. static int verify_parent_transid(struct extent_io_tree *io_tree,
  290. struct extent_buffer *eb, u64 parent_transid,
  291. int atomic)
  292. {
  293. struct extent_state *cached_state = NULL;
  294. int ret;
  295. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  296. return 0;
  297. if (atomic)
  298. return -EAGAIN;
  299. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  300. 0, &cached_state);
  301. if (extent_buffer_uptodate(eb) &&
  302. btrfs_header_generation(eb) == parent_transid) {
  303. ret = 0;
  304. goto out;
  305. }
  306. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  307. "found %llu\n",
  308. (unsigned long long)eb->start,
  309. (unsigned long long)parent_transid,
  310. (unsigned long long)btrfs_header_generation(eb));
  311. ret = 1;
  312. clear_extent_buffer_uptodate(eb);
  313. out:
  314. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  315. &cached_state, GFP_NOFS);
  316. return ret;
  317. }
  318. /*
  319. * helper to read a given tree block, doing retries as required when
  320. * the checksums don't match and we have alternate mirrors to try.
  321. */
  322. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  323. struct extent_buffer *eb,
  324. u64 start, u64 parent_transid)
  325. {
  326. struct extent_io_tree *io_tree;
  327. int failed = 0;
  328. int ret;
  329. int num_copies = 0;
  330. int mirror_num = 0;
  331. int failed_mirror = 0;
  332. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  333. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  334. while (1) {
  335. ret = read_extent_buffer_pages(io_tree, eb, start,
  336. WAIT_COMPLETE,
  337. btree_get_extent, mirror_num);
  338. if (!ret) {
  339. if (!verify_parent_transid(io_tree, eb,
  340. parent_transid, 0))
  341. break;
  342. else
  343. ret = -EIO;
  344. }
  345. /*
  346. * This buffer's crc is fine, but its contents are corrupted, so
  347. * there is no reason to read the other copies, they won't be
  348. * any less wrong.
  349. */
  350. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  351. break;
  352. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  353. eb->start, eb->len);
  354. if (num_copies == 1)
  355. break;
  356. if (!failed_mirror) {
  357. failed = 1;
  358. failed_mirror = eb->read_mirror;
  359. }
  360. mirror_num++;
  361. if (mirror_num == failed_mirror)
  362. mirror_num++;
  363. if (mirror_num > num_copies)
  364. break;
  365. }
  366. if (failed && !ret && failed_mirror)
  367. repair_eb_io_failure(root, eb, failed_mirror);
  368. return ret;
  369. }
  370. /*
  371. * checksum a dirty tree block before IO. This has extra checks to make sure
  372. * we only fill in the checksum field in the first page of a multi-page block
  373. */
  374. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  375. {
  376. struct extent_io_tree *tree;
  377. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  378. u64 found_start;
  379. struct extent_buffer *eb;
  380. tree = &BTRFS_I(page->mapping->host)->io_tree;
  381. eb = (struct extent_buffer *)page->private;
  382. if (page != eb->pages[0])
  383. return 0;
  384. found_start = btrfs_header_bytenr(eb);
  385. if (found_start != start) {
  386. WARN_ON(1);
  387. return 0;
  388. }
  389. if (eb->pages[0] != page) {
  390. WARN_ON(1);
  391. return 0;
  392. }
  393. if (!PageUptodate(page)) {
  394. WARN_ON(1);
  395. return 0;
  396. }
  397. csum_tree_block(root, eb, 0);
  398. return 0;
  399. }
  400. static int check_tree_block_fsid(struct btrfs_root *root,
  401. struct extent_buffer *eb)
  402. {
  403. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  404. u8 fsid[BTRFS_UUID_SIZE];
  405. int ret = 1;
  406. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  407. BTRFS_FSID_SIZE);
  408. while (fs_devices) {
  409. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  410. ret = 0;
  411. break;
  412. }
  413. fs_devices = fs_devices->seed;
  414. }
  415. return ret;
  416. }
  417. #define CORRUPT(reason, eb, root, slot) \
  418. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  419. "root=%llu, slot=%d\n", reason, \
  420. (unsigned long long)btrfs_header_bytenr(eb), \
  421. (unsigned long long)root->objectid, slot)
  422. static noinline int check_leaf(struct btrfs_root *root,
  423. struct extent_buffer *leaf)
  424. {
  425. struct btrfs_key key;
  426. struct btrfs_key leaf_key;
  427. u32 nritems = btrfs_header_nritems(leaf);
  428. int slot;
  429. if (nritems == 0)
  430. return 0;
  431. /* Check the 0 item */
  432. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  433. BTRFS_LEAF_DATA_SIZE(root)) {
  434. CORRUPT("invalid item offset size pair", leaf, root, 0);
  435. return -EIO;
  436. }
  437. /*
  438. * Check to make sure each items keys are in the correct order and their
  439. * offsets make sense. We only have to loop through nritems-1 because
  440. * we check the current slot against the next slot, which verifies the
  441. * next slot's offset+size makes sense and that the current's slot
  442. * offset is correct.
  443. */
  444. for (slot = 0; slot < nritems - 1; slot++) {
  445. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  446. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  447. /* Make sure the keys are in the right order */
  448. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  449. CORRUPT("bad key order", leaf, root, slot);
  450. return -EIO;
  451. }
  452. /*
  453. * Make sure the offset and ends are right, remember that the
  454. * item data starts at the end of the leaf and grows towards the
  455. * front.
  456. */
  457. if (btrfs_item_offset_nr(leaf, slot) !=
  458. btrfs_item_end_nr(leaf, slot + 1)) {
  459. CORRUPT("slot offset bad", leaf, root, slot);
  460. return -EIO;
  461. }
  462. /*
  463. * Check to make sure that we don't point outside of the leaf,
  464. * just incase all the items are consistent to eachother, but
  465. * all point outside of the leaf.
  466. */
  467. if (btrfs_item_end_nr(leaf, slot) >
  468. BTRFS_LEAF_DATA_SIZE(root)) {
  469. CORRUPT("slot end outside of leaf", leaf, root, slot);
  470. return -EIO;
  471. }
  472. }
  473. return 0;
  474. }
  475. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  476. struct page *page, int max_walk)
  477. {
  478. struct extent_buffer *eb;
  479. u64 start = page_offset(page);
  480. u64 target = start;
  481. u64 min_start;
  482. if (start < max_walk)
  483. min_start = 0;
  484. else
  485. min_start = start - max_walk;
  486. while (start >= min_start) {
  487. eb = find_extent_buffer(tree, start, 0);
  488. if (eb) {
  489. /*
  490. * we found an extent buffer and it contains our page
  491. * horray!
  492. */
  493. if (eb->start <= target &&
  494. eb->start + eb->len > target)
  495. return eb;
  496. /* we found an extent buffer that wasn't for us */
  497. free_extent_buffer(eb);
  498. return NULL;
  499. }
  500. if (start == 0)
  501. break;
  502. start -= PAGE_CACHE_SIZE;
  503. }
  504. return NULL;
  505. }
  506. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  507. struct extent_state *state, int mirror)
  508. {
  509. struct extent_io_tree *tree;
  510. u64 found_start;
  511. int found_level;
  512. struct extent_buffer *eb;
  513. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  514. int ret = 0;
  515. int reads_done;
  516. if (!page->private)
  517. goto out;
  518. tree = &BTRFS_I(page->mapping->host)->io_tree;
  519. eb = (struct extent_buffer *)page->private;
  520. /* the pending IO might have been the only thing that kept this buffer
  521. * in memory. Make sure we have a ref for all this other checks
  522. */
  523. extent_buffer_get(eb);
  524. reads_done = atomic_dec_and_test(&eb->io_pages);
  525. if (!reads_done)
  526. goto err;
  527. eb->read_mirror = mirror;
  528. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  529. ret = -EIO;
  530. goto err;
  531. }
  532. found_start = btrfs_header_bytenr(eb);
  533. if (found_start != eb->start) {
  534. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  535. "%llu %llu\n",
  536. (unsigned long long)found_start,
  537. (unsigned long long)eb->start);
  538. ret = -EIO;
  539. goto err;
  540. }
  541. if (check_tree_block_fsid(root, eb)) {
  542. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  543. (unsigned long long)eb->start);
  544. ret = -EIO;
  545. goto err;
  546. }
  547. found_level = btrfs_header_level(eb);
  548. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  549. eb, found_level);
  550. ret = csum_tree_block(root, eb, 1);
  551. if (ret) {
  552. ret = -EIO;
  553. goto err;
  554. }
  555. /*
  556. * If this is a leaf block and it is corrupt, set the corrupt bit so
  557. * that we don't try and read the other copies of this block, just
  558. * return -EIO.
  559. */
  560. if (found_level == 0 && check_leaf(root, eb)) {
  561. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  562. ret = -EIO;
  563. }
  564. if (!ret)
  565. set_extent_buffer_uptodate(eb);
  566. err:
  567. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  568. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  569. btree_readahead_hook(root, eb, eb->start, ret);
  570. }
  571. if (ret)
  572. clear_extent_buffer_uptodate(eb);
  573. free_extent_buffer(eb);
  574. out:
  575. return ret;
  576. }
  577. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  578. {
  579. struct extent_buffer *eb;
  580. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  581. eb = (struct extent_buffer *)page->private;
  582. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  583. eb->read_mirror = failed_mirror;
  584. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, -EIO);
  586. return -EIO; /* we fixed nothing */
  587. }
  588. static void end_workqueue_bio(struct bio *bio, int err)
  589. {
  590. struct end_io_wq *end_io_wq = bio->bi_private;
  591. struct btrfs_fs_info *fs_info;
  592. fs_info = end_io_wq->info;
  593. end_io_wq->error = err;
  594. end_io_wq->work.func = end_workqueue_fn;
  595. end_io_wq->work.flags = 0;
  596. if (bio->bi_rw & REQ_WRITE) {
  597. if (end_io_wq->metadata == 1)
  598. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  599. &end_io_wq->work);
  600. else if (end_io_wq->metadata == 2)
  601. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  602. &end_io_wq->work);
  603. else
  604. btrfs_queue_worker(&fs_info->endio_write_workers,
  605. &end_io_wq->work);
  606. } else {
  607. if (end_io_wq->metadata)
  608. btrfs_queue_worker(&fs_info->endio_meta_workers,
  609. &end_io_wq->work);
  610. else
  611. btrfs_queue_worker(&fs_info->endio_workers,
  612. &end_io_wq->work);
  613. }
  614. }
  615. /*
  616. * For the metadata arg you want
  617. *
  618. * 0 - if data
  619. * 1 - if normal metadta
  620. * 2 - if writing to the free space cache area
  621. */
  622. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  623. int metadata)
  624. {
  625. struct end_io_wq *end_io_wq;
  626. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  627. if (!end_io_wq)
  628. return -ENOMEM;
  629. end_io_wq->private = bio->bi_private;
  630. end_io_wq->end_io = bio->bi_end_io;
  631. end_io_wq->info = info;
  632. end_io_wq->error = 0;
  633. end_io_wq->bio = bio;
  634. end_io_wq->metadata = metadata;
  635. bio->bi_private = end_io_wq;
  636. bio->bi_end_io = end_workqueue_bio;
  637. return 0;
  638. }
  639. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  640. {
  641. unsigned long limit = min_t(unsigned long,
  642. info->workers.max_workers,
  643. info->fs_devices->open_devices);
  644. return 256 * limit;
  645. }
  646. static void run_one_async_start(struct btrfs_work *work)
  647. {
  648. struct async_submit_bio *async;
  649. int ret;
  650. async = container_of(work, struct async_submit_bio, work);
  651. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  652. async->mirror_num, async->bio_flags,
  653. async->bio_offset);
  654. if (ret)
  655. async->error = ret;
  656. }
  657. static void run_one_async_done(struct btrfs_work *work)
  658. {
  659. struct btrfs_fs_info *fs_info;
  660. struct async_submit_bio *async;
  661. int limit;
  662. async = container_of(work, struct async_submit_bio, work);
  663. fs_info = BTRFS_I(async->inode)->root->fs_info;
  664. limit = btrfs_async_submit_limit(fs_info);
  665. limit = limit * 2 / 3;
  666. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  667. waitqueue_active(&fs_info->async_submit_wait))
  668. wake_up(&fs_info->async_submit_wait);
  669. /* If an error occured we just want to clean up the bio and move on */
  670. if (async->error) {
  671. bio_endio(async->bio, async->error);
  672. return;
  673. }
  674. async->submit_bio_done(async->inode, async->rw, async->bio,
  675. async->mirror_num, async->bio_flags,
  676. async->bio_offset);
  677. }
  678. static void run_one_async_free(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. async = container_of(work, struct async_submit_bio, work);
  682. kfree(async);
  683. }
  684. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  685. int rw, struct bio *bio, int mirror_num,
  686. unsigned long bio_flags,
  687. u64 bio_offset,
  688. extent_submit_bio_hook_t *submit_bio_start,
  689. extent_submit_bio_hook_t *submit_bio_done)
  690. {
  691. struct async_submit_bio *async;
  692. async = kmalloc(sizeof(*async), GFP_NOFS);
  693. if (!async)
  694. return -ENOMEM;
  695. async->inode = inode;
  696. async->rw = rw;
  697. async->bio = bio;
  698. async->mirror_num = mirror_num;
  699. async->submit_bio_start = submit_bio_start;
  700. async->submit_bio_done = submit_bio_done;
  701. async->work.func = run_one_async_start;
  702. async->work.ordered_func = run_one_async_done;
  703. async->work.ordered_free = run_one_async_free;
  704. async->work.flags = 0;
  705. async->bio_flags = bio_flags;
  706. async->bio_offset = bio_offset;
  707. async->error = 0;
  708. atomic_inc(&fs_info->nr_async_submits);
  709. if (rw & REQ_SYNC)
  710. btrfs_set_work_high_prio(&async->work);
  711. btrfs_queue_worker(&fs_info->workers, &async->work);
  712. while (atomic_read(&fs_info->async_submit_draining) &&
  713. atomic_read(&fs_info->nr_async_submits)) {
  714. wait_event(fs_info->async_submit_wait,
  715. (atomic_read(&fs_info->nr_async_submits) == 0));
  716. }
  717. return 0;
  718. }
  719. static int btree_csum_one_bio(struct bio *bio)
  720. {
  721. struct bio_vec *bvec = bio->bi_io_vec;
  722. int bio_index = 0;
  723. struct btrfs_root *root;
  724. int ret = 0;
  725. WARN_ON(bio->bi_vcnt <= 0);
  726. while (bio_index < bio->bi_vcnt) {
  727. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  728. ret = csum_dirty_buffer(root, bvec->bv_page);
  729. if (ret)
  730. break;
  731. bio_index++;
  732. bvec++;
  733. }
  734. return ret;
  735. }
  736. static int __btree_submit_bio_start(struct inode *inode, int rw,
  737. struct bio *bio, int mirror_num,
  738. unsigned long bio_flags,
  739. u64 bio_offset)
  740. {
  741. /*
  742. * when we're called for a write, we're already in the async
  743. * submission context. Just jump into btrfs_map_bio
  744. */
  745. return btree_csum_one_bio(bio);
  746. }
  747. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  748. int mirror_num, unsigned long bio_flags,
  749. u64 bio_offset)
  750. {
  751. /*
  752. * when we're called for a write, we're already in the async
  753. * submission context. Just jump into btrfs_map_bio
  754. */
  755. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  756. }
  757. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  758. int mirror_num, unsigned long bio_flags,
  759. u64 bio_offset)
  760. {
  761. int ret;
  762. if (!(rw & REQ_WRITE)) {
  763. /*
  764. * called for a read, do the setup so that checksum validation
  765. * can happen in the async kernel threads
  766. */
  767. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  768. bio, 1);
  769. if (ret)
  770. return ret;
  771. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  772. mirror_num, 0);
  773. }
  774. /*
  775. * kthread helpers are used to submit writes so that checksumming
  776. * can happen in parallel across all CPUs
  777. */
  778. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  779. inode, rw, bio, mirror_num, 0,
  780. bio_offset,
  781. __btree_submit_bio_start,
  782. __btree_submit_bio_done);
  783. }
  784. #ifdef CONFIG_MIGRATION
  785. static int btree_migratepage(struct address_space *mapping,
  786. struct page *newpage, struct page *page,
  787. enum migrate_mode mode)
  788. {
  789. /*
  790. * we can't safely write a btree page from here,
  791. * we haven't done the locking hook
  792. */
  793. if (PageDirty(page))
  794. return -EAGAIN;
  795. /*
  796. * Buffers may be managed in a filesystem specific way.
  797. * We must have no buffers or drop them.
  798. */
  799. if (page_has_private(page) &&
  800. !try_to_release_page(page, GFP_KERNEL))
  801. return -EAGAIN;
  802. return migrate_page(mapping, newpage, page, mode);
  803. }
  804. #endif
  805. static int btree_writepages(struct address_space *mapping,
  806. struct writeback_control *wbc)
  807. {
  808. struct extent_io_tree *tree;
  809. tree = &BTRFS_I(mapping->host)->io_tree;
  810. if (wbc->sync_mode == WB_SYNC_NONE) {
  811. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  812. u64 num_dirty;
  813. unsigned long thresh = 32 * 1024 * 1024;
  814. if (wbc->for_kupdate)
  815. return 0;
  816. /* this is a bit racy, but that's ok */
  817. num_dirty = root->fs_info->dirty_metadata_bytes;
  818. if (num_dirty < thresh)
  819. return 0;
  820. }
  821. return btree_write_cache_pages(mapping, wbc);
  822. }
  823. static int btree_readpage(struct file *file, struct page *page)
  824. {
  825. struct extent_io_tree *tree;
  826. tree = &BTRFS_I(page->mapping->host)->io_tree;
  827. return extent_read_full_page(tree, page, btree_get_extent, 0);
  828. }
  829. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  830. {
  831. if (PageWriteback(page) || PageDirty(page))
  832. return 0;
  833. /*
  834. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  835. * slab allocation from alloc_extent_state down the callchain where
  836. * it'd hit a BUG_ON as those flags are not allowed.
  837. */
  838. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  839. return try_release_extent_buffer(page, gfp_flags);
  840. }
  841. static void btree_invalidatepage(struct page *page, unsigned long offset)
  842. {
  843. struct extent_io_tree *tree;
  844. tree = &BTRFS_I(page->mapping->host)->io_tree;
  845. extent_invalidatepage(tree, page, offset);
  846. btree_releasepage(page, GFP_NOFS);
  847. if (PagePrivate(page)) {
  848. printk(KERN_WARNING "btrfs warning page private not zero "
  849. "on page %llu\n", (unsigned long long)page_offset(page));
  850. ClearPagePrivate(page);
  851. set_page_private(page, 0);
  852. page_cache_release(page);
  853. }
  854. }
  855. static int btree_set_page_dirty(struct page *page)
  856. {
  857. struct extent_buffer *eb;
  858. BUG_ON(!PagePrivate(page));
  859. eb = (struct extent_buffer *)page->private;
  860. BUG_ON(!eb);
  861. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  862. BUG_ON(!atomic_read(&eb->refs));
  863. btrfs_assert_tree_locked(eb);
  864. return __set_page_dirty_nobuffers(page);
  865. }
  866. static const struct address_space_operations btree_aops = {
  867. .readpage = btree_readpage,
  868. .writepages = btree_writepages,
  869. .releasepage = btree_releasepage,
  870. .invalidatepage = btree_invalidatepage,
  871. #ifdef CONFIG_MIGRATION
  872. .migratepage = btree_migratepage,
  873. #endif
  874. .set_page_dirty = btree_set_page_dirty,
  875. };
  876. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  877. u64 parent_transid)
  878. {
  879. struct extent_buffer *buf = NULL;
  880. struct inode *btree_inode = root->fs_info->btree_inode;
  881. int ret = 0;
  882. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  883. if (!buf)
  884. return 0;
  885. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  886. buf, 0, WAIT_NONE, btree_get_extent, 0);
  887. free_extent_buffer(buf);
  888. return ret;
  889. }
  890. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  891. int mirror_num, struct extent_buffer **eb)
  892. {
  893. struct extent_buffer *buf = NULL;
  894. struct inode *btree_inode = root->fs_info->btree_inode;
  895. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  896. int ret;
  897. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  898. if (!buf)
  899. return 0;
  900. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  901. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  902. btree_get_extent, mirror_num);
  903. if (ret) {
  904. free_extent_buffer(buf);
  905. return ret;
  906. }
  907. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  908. free_extent_buffer(buf);
  909. return -EIO;
  910. } else if (extent_buffer_uptodate(buf)) {
  911. *eb = buf;
  912. } else {
  913. free_extent_buffer(buf);
  914. }
  915. return 0;
  916. }
  917. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  918. u64 bytenr, u32 blocksize)
  919. {
  920. struct inode *btree_inode = root->fs_info->btree_inode;
  921. struct extent_buffer *eb;
  922. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  923. bytenr, blocksize);
  924. return eb;
  925. }
  926. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  927. u64 bytenr, u32 blocksize)
  928. {
  929. struct inode *btree_inode = root->fs_info->btree_inode;
  930. struct extent_buffer *eb;
  931. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  932. bytenr, blocksize);
  933. return eb;
  934. }
  935. int btrfs_write_tree_block(struct extent_buffer *buf)
  936. {
  937. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  938. buf->start + buf->len - 1);
  939. }
  940. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  941. {
  942. return filemap_fdatawait_range(buf->pages[0]->mapping,
  943. buf->start, buf->start + buf->len - 1);
  944. }
  945. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  946. u32 blocksize, u64 parent_transid)
  947. {
  948. struct extent_buffer *buf = NULL;
  949. int ret;
  950. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  951. if (!buf)
  952. return NULL;
  953. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  954. return buf;
  955. }
  956. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  957. struct extent_buffer *buf)
  958. {
  959. if (btrfs_header_generation(buf) ==
  960. root->fs_info->running_transaction->transid) {
  961. btrfs_assert_tree_locked(buf);
  962. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  963. spin_lock(&root->fs_info->delalloc_lock);
  964. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  965. root->fs_info->dirty_metadata_bytes -= buf->len;
  966. else {
  967. spin_unlock(&root->fs_info->delalloc_lock);
  968. btrfs_panic(root->fs_info, -EOVERFLOW,
  969. "Can't clear %lu bytes from "
  970. " dirty_mdatadata_bytes (%llu)",
  971. buf->len,
  972. root->fs_info->dirty_metadata_bytes);
  973. }
  974. spin_unlock(&root->fs_info->delalloc_lock);
  975. }
  976. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  977. btrfs_set_lock_blocking(buf);
  978. clear_extent_buffer_dirty(buf);
  979. }
  980. }
  981. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  982. u32 stripesize, struct btrfs_root *root,
  983. struct btrfs_fs_info *fs_info,
  984. u64 objectid)
  985. {
  986. root->node = NULL;
  987. root->commit_root = NULL;
  988. root->sectorsize = sectorsize;
  989. root->nodesize = nodesize;
  990. root->leafsize = leafsize;
  991. root->stripesize = stripesize;
  992. root->ref_cows = 0;
  993. root->track_dirty = 0;
  994. root->in_radix = 0;
  995. root->orphan_item_inserted = 0;
  996. root->orphan_cleanup_state = 0;
  997. root->objectid = objectid;
  998. root->last_trans = 0;
  999. root->highest_objectid = 0;
  1000. root->name = NULL;
  1001. root->inode_tree = RB_ROOT;
  1002. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1003. root->block_rsv = NULL;
  1004. root->orphan_block_rsv = NULL;
  1005. INIT_LIST_HEAD(&root->dirty_list);
  1006. INIT_LIST_HEAD(&root->root_list);
  1007. spin_lock_init(&root->orphan_lock);
  1008. spin_lock_init(&root->inode_lock);
  1009. spin_lock_init(&root->accounting_lock);
  1010. mutex_init(&root->objectid_mutex);
  1011. mutex_init(&root->log_mutex);
  1012. init_waitqueue_head(&root->log_writer_wait);
  1013. init_waitqueue_head(&root->log_commit_wait[0]);
  1014. init_waitqueue_head(&root->log_commit_wait[1]);
  1015. atomic_set(&root->log_commit[0], 0);
  1016. atomic_set(&root->log_commit[1], 0);
  1017. atomic_set(&root->log_writers, 0);
  1018. atomic_set(&root->log_batch, 0);
  1019. atomic_set(&root->orphan_inodes, 0);
  1020. root->log_transid = 0;
  1021. root->last_log_commit = 0;
  1022. extent_io_tree_init(&root->dirty_log_pages,
  1023. fs_info->btree_inode->i_mapping);
  1024. memset(&root->root_key, 0, sizeof(root->root_key));
  1025. memset(&root->root_item, 0, sizeof(root->root_item));
  1026. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1027. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1028. root->defrag_trans_start = fs_info->generation;
  1029. init_completion(&root->kobj_unregister);
  1030. root->defrag_running = 0;
  1031. root->root_key.objectid = objectid;
  1032. root->anon_dev = 0;
  1033. spin_lock_init(&root->root_times_lock);
  1034. }
  1035. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1036. struct btrfs_fs_info *fs_info,
  1037. u64 objectid,
  1038. struct btrfs_root *root)
  1039. {
  1040. int ret;
  1041. u32 blocksize;
  1042. u64 generation;
  1043. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1044. tree_root->sectorsize, tree_root->stripesize,
  1045. root, fs_info, objectid);
  1046. ret = btrfs_find_last_root(tree_root, objectid,
  1047. &root->root_item, &root->root_key);
  1048. if (ret > 0)
  1049. return -ENOENT;
  1050. else if (ret < 0)
  1051. return ret;
  1052. generation = btrfs_root_generation(&root->root_item);
  1053. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1054. root->commit_root = NULL;
  1055. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1056. blocksize, generation);
  1057. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1058. free_extent_buffer(root->node);
  1059. root->node = NULL;
  1060. return -EIO;
  1061. }
  1062. root->commit_root = btrfs_root_node(root);
  1063. return 0;
  1064. }
  1065. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1066. {
  1067. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1068. if (root)
  1069. root->fs_info = fs_info;
  1070. return root;
  1071. }
  1072. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1073. struct btrfs_fs_info *fs_info,
  1074. u64 objectid)
  1075. {
  1076. struct extent_buffer *leaf;
  1077. struct btrfs_root *tree_root = fs_info->tree_root;
  1078. struct btrfs_root *root;
  1079. struct btrfs_key key;
  1080. int ret = 0;
  1081. u64 bytenr;
  1082. root = btrfs_alloc_root(fs_info);
  1083. if (!root)
  1084. return ERR_PTR(-ENOMEM);
  1085. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1086. tree_root->sectorsize, tree_root->stripesize,
  1087. root, fs_info, objectid);
  1088. root->root_key.objectid = objectid;
  1089. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1090. root->root_key.offset = 0;
  1091. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1092. 0, objectid, NULL, 0, 0, 0);
  1093. if (IS_ERR(leaf)) {
  1094. ret = PTR_ERR(leaf);
  1095. goto fail;
  1096. }
  1097. bytenr = leaf->start;
  1098. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1099. btrfs_set_header_bytenr(leaf, leaf->start);
  1100. btrfs_set_header_generation(leaf, trans->transid);
  1101. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1102. btrfs_set_header_owner(leaf, objectid);
  1103. root->node = leaf;
  1104. write_extent_buffer(leaf, fs_info->fsid,
  1105. (unsigned long)btrfs_header_fsid(leaf),
  1106. BTRFS_FSID_SIZE);
  1107. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1108. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1109. BTRFS_UUID_SIZE);
  1110. btrfs_mark_buffer_dirty(leaf);
  1111. root->commit_root = btrfs_root_node(root);
  1112. root->track_dirty = 1;
  1113. root->root_item.flags = 0;
  1114. root->root_item.byte_limit = 0;
  1115. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1116. btrfs_set_root_generation(&root->root_item, trans->transid);
  1117. btrfs_set_root_level(&root->root_item, 0);
  1118. btrfs_set_root_refs(&root->root_item, 1);
  1119. btrfs_set_root_used(&root->root_item, leaf->len);
  1120. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1121. btrfs_set_root_dirid(&root->root_item, 0);
  1122. root->root_item.drop_level = 0;
  1123. key.objectid = objectid;
  1124. key.type = BTRFS_ROOT_ITEM_KEY;
  1125. key.offset = 0;
  1126. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1127. if (ret)
  1128. goto fail;
  1129. btrfs_tree_unlock(leaf);
  1130. fail:
  1131. if (ret)
  1132. return ERR_PTR(ret);
  1133. return root;
  1134. }
  1135. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1136. struct btrfs_fs_info *fs_info)
  1137. {
  1138. struct btrfs_root *root;
  1139. struct btrfs_root *tree_root = fs_info->tree_root;
  1140. struct extent_buffer *leaf;
  1141. root = btrfs_alloc_root(fs_info);
  1142. if (!root)
  1143. return ERR_PTR(-ENOMEM);
  1144. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1145. tree_root->sectorsize, tree_root->stripesize,
  1146. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1147. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1148. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1149. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1150. /*
  1151. * log trees do not get reference counted because they go away
  1152. * before a real commit is actually done. They do store pointers
  1153. * to file data extents, and those reference counts still get
  1154. * updated (along with back refs to the log tree).
  1155. */
  1156. root->ref_cows = 0;
  1157. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1158. BTRFS_TREE_LOG_OBJECTID, NULL,
  1159. 0, 0, 0);
  1160. if (IS_ERR(leaf)) {
  1161. kfree(root);
  1162. return ERR_CAST(leaf);
  1163. }
  1164. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1165. btrfs_set_header_bytenr(leaf, leaf->start);
  1166. btrfs_set_header_generation(leaf, trans->transid);
  1167. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1168. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1169. root->node = leaf;
  1170. write_extent_buffer(root->node, root->fs_info->fsid,
  1171. (unsigned long)btrfs_header_fsid(root->node),
  1172. BTRFS_FSID_SIZE);
  1173. btrfs_mark_buffer_dirty(root->node);
  1174. btrfs_tree_unlock(root->node);
  1175. return root;
  1176. }
  1177. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1178. struct btrfs_fs_info *fs_info)
  1179. {
  1180. struct btrfs_root *log_root;
  1181. log_root = alloc_log_tree(trans, fs_info);
  1182. if (IS_ERR(log_root))
  1183. return PTR_ERR(log_root);
  1184. WARN_ON(fs_info->log_root_tree);
  1185. fs_info->log_root_tree = log_root;
  1186. return 0;
  1187. }
  1188. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1189. struct btrfs_root *root)
  1190. {
  1191. struct btrfs_root *log_root;
  1192. struct btrfs_inode_item *inode_item;
  1193. log_root = alloc_log_tree(trans, root->fs_info);
  1194. if (IS_ERR(log_root))
  1195. return PTR_ERR(log_root);
  1196. log_root->last_trans = trans->transid;
  1197. log_root->root_key.offset = root->root_key.objectid;
  1198. inode_item = &log_root->root_item.inode;
  1199. inode_item->generation = cpu_to_le64(1);
  1200. inode_item->size = cpu_to_le64(3);
  1201. inode_item->nlink = cpu_to_le32(1);
  1202. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1203. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1204. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1205. WARN_ON(root->log_root);
  1206. root->log_root = log_root;
  1207. root->log_transid = 0;
  1208. root->last_log_commit = 0;
  1209. return 0;
  1210. }
  1211. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1212. struct btrfs_key *location)
  1213. {
  1214. struct btrfs_root *root;
  1215. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1216. struct btrfs_path *path;
  1217. struct extent_buffer *l;
  1218. u64 generation;
  1219. u32 blocksize;
  1220. int ret = 0;
  1221. int slot;
  1222. root = btrfs_alloc_root(fs_info);
  1223. if (!root)
  1224. return ERR_PTR(-ENOMEM);
  1225. if (location->offset == (u64)-1) {
  1226. ret = find_and_setup_root(tree_root, fs_info,
  1227. location->objectid, root);
  1228. if (ret) {
  1229. kfree(root);
  1230. return ERR_PTR(ret);
  1231. }
  1232. goto out;
  1233. }
  1234. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1235. tree_root->sectorsize, tree_root->stripesize,
  1236. root, fs_info, location->objectid);
  1237. path = btrfs_alloc_path();
  1238. if (!path) {
  1239. kfree(root);
  1240. return ERR_PTR(-ENOMEM);
  1241. }
  1242. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1243. if (ret == 0) {
  1244. l = path->nodes[0];
  1245. slot = path->slots[0];
  1246. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1247. memcpy(&root->root_key, location, sizeof(*location));
  1248. }
  1249. btrfs_free_path(path);
  1250. if (ret) {
  1251. kfree(root);
  1252. if (ret > 0)
  1253. ret = -ENOENT;
  1254. return ERR_PTR(ret);
  1255. }
  1256. generation = btrfs_root_generation(&root->root_item);
  1257. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1258. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1259. blocksize, generation);
  1260. root->commit_root = btrfs_root_node(root);
  1261. BUG_ON(!root->node); /* -ENOMEM */
  1262. out:
  1263. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1264. root->ref_cows = 1;
  1265. btrfs_check_and_init_root_item(&root->root_item);
  1266. }
  1267. return root;
  1268. }
  1269. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1270. struct btrfs_key *location)
  1271. {
  1272. struct btrfs_root *root;
  1273. int ret;
  1274. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1275. return fs_info->tree_root;
  1276. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1277. return fs_info->extent_root;
  1278. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1279. return fs_info->chunk_root;
  1280. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1281. return fs_info->dev_root;
  1282. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1283. return fs_info->csum_root;
  1284. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1285. return fs_info->quota_root ? fs_info->quota_root :
  1286. ERR_PTR(-ENOENT);
  1287. again:
  1288. spin_lock(&fs_info->fs_roots_radix_lock);
  1289. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1290. (unsigned long)location->objectid);
  1291. spin_unlock(&fs_info->fs_roots_radix_lock);
  1292. if (root)
  1293. return root;
  1294. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1295. if (IS_ERR(root))
  1296. return root;
  1297. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1298. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1299. GFP_NOFS);
  1300. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1301. ret = -ENOMEM;
  1302. goto fail;
  1303. }
  1304. btrfs_init_free_ino_ctl(root);
  1305. mutex_init(&root->fs_commit_mutex);
  1306. spin_lock_init(&root->cache_lock);
  1307. init_waitqueue_head(&root->cache_wait);
  1308. ret = get_anon_bdev(&root->anon_dev);
  1309. if (ret)
  1310. goto fail;
  1311. if (btrfs_root_refs(&root->root_item) == 0) {
  1312. ret = -ENOENT;
  1313. goto fail;
  1314. }
  1315. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1316. if (ret < 0)
  1317. goto fail;
  1318. if (ret == 0)
  1319. root->orphan_item_inserted = 1;
  1320. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1321. if (ret)
  1322. goto fail;
  1323. spin_lock(&fs_info->fs_roots_radix_lock);
  1324. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1325. (unsigned long)root->root_key.objectid,
  1326. root);
  1327. if (ret == 0)
  1328. root->in_radix = 1;
  1329. spin_unlock(&fs_info->fs_roots_radix_lock);
  1330. radix_tree_preload_end();
  1331. if (ret) {
  1332. if (ret == -EEXIST) {
  1333. free_fs_root(root);
  1334. goto again;
  1335. }
  1336. goto fail;
  1337. }
  1338. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1339. root->root_key.objectid);
  1340. WARN_ON(ret);
  1341. return root;
  1342. fail:
  1343. free_fs_root(root);
  1344. return ERR_PTR(ret);
  1345. }
  1346. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1347. {
  1348. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1349. int ret = 0;
  1350. struct btrfs_device *device;
  1351. struct backing_dev_info *bdi;
  1352. rcu_read_lock();
  1353. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1354. if (!device->bdev)
  1355. continue;
  1356. bdi = blk_get_backing_dev_info(device->bdev);
  1357. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1358. ret = 1;
  1359. break;
  1360. }
  1361. }
  1362. rcu_read_unlock();
  1363. return ret;
  1364. }
  1365. /*
  1366. * If this fails, caller must call bdi_destroy() to get rid of the
  1367. * bdi again.
  1368. */
  1369. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1370. {
  1371. int err;
  1372. bdi->capabilities = BDI_CAP_MAP_COPY;
  1373. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1374. if (err)
  1375. return err;
  1376. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1377. bdi->congested_fn = btrfs_congested_fn;
  1378. bdi->congested_data = info;
  1379. return 0;
  1380. }
  1381. /*
  1382. * called by the kthread helper functions to finally call the bio end_io
  1383. * functions. This is where read checksum verification actually happens
  1384. */
  1385. static void end_workqueue_fn(struct btrfs_work *work)
  1386. {
  1387. struct bio *bio;
  1388. struct end_io_wq *end_io_wq;
  1389. struct btrfs_fs_info *fs_info;
  1390. int error;
  1391. end_io_wq = container_of(work, struct end_io_wq, work);
  1392. bio = end_io_wq->bio;
  1393. fs_info = end_io_wq->info;
  1394. error = end_io_wq->error;
  1395. bio->bi_private = end_io_wq->private;
  1396. bio->bi_end_io = end_io_wq->end_io;
  1397. kfree(end_io_wq);
  1398. bio_endio(bio, error);
  1399. }
  1400. static int cleaner_kthread(void *arg)
  1401. {
  1402. struct btrfs_root *root = arg;
  1403. do {
  1404. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1405. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1406. btrfs_run_delayed_iputs(root);
  1407. btrfs_clean_old_snapshots(root);
  1408. mutex_unlock(&root->fs_info->cleaner_mutex);
  1409. btrfs_run_defrag_inodes(root->fs_info);
  1410. }
  1411. if (!try_to_freeze()) {
  1412. set_current_state(TASK_INTERRUPTIBLE);
  1413. if (!kthread_should_stop())
  1414. schedule();
  1415. __set_current_state(TASK_RUNNING);
  1416. }
  1417. } while (!kthread_should_stop());
  1418. return 0;
  1419. }
  1420. static int transaction_kthread(void *arg)
  1421. {
  1422. struct btrfs_root *root = arg;
  1423. struct btrfs_trans_handle *trans;
  1424. struct btrfs_transaction *cur;
  1425. u64 transid;
  1426. unsigned long now;
  1427. unsigned long delay;
  1428. bool cannot_commit;
  1429. do {
  1430. cannot_commit = false;
  1431. delay = HZ * 30;
  1432. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1433. spin_lock(&root->fs_info->trans_lock);
  1434. cur = root->fs_info->running_transaction;
  1435. if (!cur) {
  1436. spin_unlock(&root->fs_info->trans_lock);
  1437. goto sleep;
  1438. }
  1439. now = get_seconds();
  1440. if (!cur->blocked &&
  1441. (now < cur->start_time || now - cur->start_time < 30)) {
  1442. spin_unlock(&root->fs_info->trans_lock);
  1443. delay = HZ * 5;
  1444. goto sleep;
  1445. }
  1446. transid = cur->transid;
  1447. spin_unlock(&root->fs_info->trans_lock);
  1448. /* If the file system is aborted, this will always fail. */
  1449. trans = btrfs_join_transaction(root);
  1450. if (IS_ERR(trans)) {
  1451. cannot_commit = true;
  1452. goto sleep;
  1453. }
  1454. if (transid == trans->transid) {
  1455. btrfs_commit_transaction(trans, root);
  1456. } else {
  1457. btrfs_end_transaction(trans, root);
  1458. }
  1459. sleep:
  1460. wake_up_process(root->fs_info->cleaner_kthread);
  1461. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1462. if (!try_to_freeze()) {
  1463. set_current_state(TASK_INTERRUPTIBLE);
  1464. if (!kthread_should_stop() &&
  1465. (!btrfs_transaction_blocked(root->fs_info) ||
  1466. cannot_commit))
  1467. schedule_timeout(delay);
  1468. __set_current_state(TASK_RUNNING);
  1469. }
  1470. } while (!kthread_should_stop());
  1471. return 0;
  1472. }
  1473. /*
  1474. * this will find the highest generation in the array of
  1475. * root backups. The index of the highest array is returned,
  1476. * or -1 if we can't find anything.
  1477. *
  1478. * We check to make sure the array is valid by comparing the
  1479. * generation of the latest root in the array with the generation
  1480. * in the super block. If they don't match we pitch it.
  1481. */
  1482. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1483. {
  1484. u64 cur;
  1485. int newest_index = -1;
  1486. struct btrfs_root_backup *root_backup;
  1487. int i;
  1488. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1489. root_backup = info->super_copy->super_roots + i;
  1490. cur = btrfs_backup_tree_root_gen(root_backup);
  1491. if (cur == newest_gen)
  1492. newest_index = i;
  1493. }
  1494. /* check to see if we actually wrapped around */
  1495. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1496. root_backup = info->super_copy->super_roots;
  1497. cur = btrfs_backup_tree_root_gen(root_backup);
  1498. if (cur == newest_gen)
  1499. newest_index = 0;
  1500. }
  1501. return newest_index;
  1502. }
  1503. /*
  1504. * find the oldest backup so we know where to store new entries
  1505. * in the backup array. This will set the backup_root_index
  1506. * field in the fs_info struct
  1507. */
  1508. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1509. u64 newest_gen)
  1510. {
  1511. int newest_index = -1;
  1512. newest_index = find_newest_super_backup(info, newest_gen);
  1513. /* if there was garbage in there, just move along */
  1514. if (newest_index == -1) {
  1515. info->backup_root_index = 0;
  1516. } else {
  1517. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1518. }
  1519. }
  1520. /*
  1521. * copy all the root pointers into the super backup array.
  1522. * this will bump the backup pointer by one when it is
  1523. * done
  1524. */
  1525. static void backup_super_roots(struct btrfs_fs_info *info)
  1526. {
  1527. int next_backup;
  1528. struct btrfs_root_backup *root_backup;
  1529. int last_backup;
  1530. next_backup = info->backup_root_index;
  1531. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1532. BTRFS_NUM_BACKUP_ROOTS;
  1533. /*
  1534. * just overwrite the last backup if we're at the same generation
  1535. * this happens only at umount
  1536. */
  1537. root_backup = info->super_for_commit->super_roots + last_backup;
  1538. if (btrfs_backup_tree_root_gen(root_backup) ==
  1539. btrfs_header_generation(info->tree_root->node))
  1540. next_backup = last_backup;
  1541. root_backup = info->super_for_commit->super_roots + next_backup;
  1542. /*
  1543. * make sure all of our padding and empty slots get zero filled
  1544. * regardless of which ones we use today
  1545. */
  1546. memset(root_backup, 0, sizeof(*root_backup));
  1547. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1548. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1549. btrfs_set_backup_tree_root_gen(root_backup,
  1550. btrfs_header_generation(info->tree_root->node));
  1551. btrfs_set_backup_tree_root_level(root_backup,
  1552. btrfs_header_level(info->tree_root->node));
  1553. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1554. btrfs_set_backup_chunk_root_gen(root_backup,
  1555. btrfs_header_generation(info->chunk_root->node));
  1556. btrfs_set_backup_chunk_root_level(root_backup,
  1557. btrfs_header_level(info->chunk_root->node));
  1558. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1559. btrfs_set_backup_extent_root_gen(root_backup,
  1560. btrfs_header_generation(info->extent_root->node));
  1561. btrfs_set_backup_extent_root_level(root_backup,
  1562. btrfs_header_level(info->extent_root->node));
  1563. /*
  1564. * we might commit during log recovery, which happens before we set
  1565. * the fs_root. Make sure it is valid before we fill it in.
  1566. */
  1567. if (info->fs_root && info->fs_root->node) {
  1568. btrfs_set_backup_fs_root(root_backup,
  1569. info->fs_root->node->start);
  1570. btrfs_set_backup_fs_root_gen(root_backup,
  1571. btrfs_header_generation(info->fs_root->node));
  1572. btrfs_set_backup_fs_root_level(root_backup,
  1573. btrfs_header_level(info->fs_root->node));
  1574. }
  1575. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1576. btrfs_set_backup_dev_root_gen(root_backup,
  1577. btrfs_header_generation(info->dev_root->node));
  1578. btrfs_set_backup_dev_root_level(root_backup,
  1579. btrfs_header_level(info->dev_root->node));
  1580. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1581. btrfs_set_backup_csum_root_gen(root_backup,
  1582. btrfs_header_generation(info->csum_root->node));
  1583. btrfs_set_backup_csum_root_level(root_backup,
  1584. btrfs_header_level(info->csum_root->node));
  1585. btrfs_set_backup_total_bytes(root_backup,
  1586. btrfs_super_total_bytes(info->super_copy));
  1587. btrfs_set_backup_bytes_used(root_backup,
  1588. btrfs_super_bytes_used(info->super_copy));
  1589. btrfs_set_backup_num_devices(root_backup,
  1590. btrfs_super_num_devices(info->super_copy));
  1591. /*
  1592. * if we don't copy this out to the super_copy, it won't get remembered
  1593. * for the next commit
  1594. */
  1595. memcpy(&info->super_copy->super_roots,
  1596. &info->super_for_commit->super_roots,
  1597. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1598. }
  1599. /*
  1600. * this copies info out of the root backup array and back into
  1601. * the in-memory super block. It is meant to help iterate through
  1602. * the array, so you send it the number of backups you've already
  1603. * tried and the last backup index you used.
  1604. *
  1605. * this returns -1 when it has tried all the backups
  1606. */
  1607. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1608. struct btrfs_super_block *super,
  1609. int *num_backups_tried, int *backup_index)
  1610. {
  1611. struct btrfs_root_backup *root_backup;
  1612. int newest = *backup_index;
  1613. if (*num_backups_tried == 0) {
  1614. u64 gen = btrfs_super_generation(super);
  1615. newest = find_newest_super_backup(info, gen);
  1616. if (newest == -1)
  1617. return -1;
  1618. *backup_index = newest;
  1619. *num_backups_tried = 1;
  1620. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1621. /* we've tried all the backups, all done */
  1622. return -1;
  1623. } else {
  1624. /* jump to the next oldest backup */
  1625. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1626. BTRFS_NUM_BACKUP_ROOTS;
  1627. *backup_index = newest;
  1628. *num_backups_tried += 1;
  1629. }
  1630. root_backup = super->super_roots + newest;
  1631. btrfs_set_super_generation(super,
  1632. btrfs_backup_tree_root_gen(root_backup));
  1633. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1634. btrfs_set_super_root_level(super,
  1635. btrfs_backup_tree_root_level(root_backup));
  1636. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1637. /*
  1638. * fixme: the total bytes and num_devices need to match or we should
  1639. * need a fsck
  1640. */
  1641. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1642. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1643. return 0;
  1644. }
  1645. /* helper to cleanup tree roots */
  1646. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1647. {
  1648. free_extent_buffer(info->tree_root->node);
  1649. free_extent_buffer(info->tree_root->commit_root);
  1650. free_extent_buffer(info->dev_root->node);
  1651. free_extent_buffer(info->dev_root->commit_root);
  1652. free_extent_buffer(info->extent_root->node);
  1653. free_extent_buffer(info->extent_root->commit_root);
  1654. free_extent_buffer(info->csum_root->node);
  1655. free_extent_buffer(info->csum_root->commit_root);
  1656. if (info->quota_root) {
  1657. free_extent_buffer(info->quota_root->node);
  1658. free_extent_buffer(info->quota_root->commit_root);
  1659. }
  1660. info->tree_root->node = NULL;
  1661. info->tree_root->commit_root = NULL;
  1662. info->dev_root->node = NULL;
  1663. info->dev_root->commit_root = NULL;
  1664. info->extent_root->node = NULL;
  1665. info->extent_root->commit_root = NULL;
  1666. info->csum_root->node = NULL;
  1667. info->csum_root->commit_root = NULL;
  1668. if (info->quota_root) {
  1669. info->quota_root->node = NULL;
  1670. info->quota_root->commit_root = NULL;
  1671. }
  1672. if (chunk_root) {
  1673. free_extent_buffer(info->chunk_root->node);
  1674. free_extent_buffer(info->chunk_root->commit_root);
  1675. info->chunk_root->node = NULL;
  1676. info->chunk_root->commit_root = NULL;
  1677. }
  1678. }
  1679. int open_ctree(struct super_block *sb,
  1680. struct btrfs_fs_devices *fs_devices,
  1681. char *options)
  1682. {
  1683. u32 sectorsize;
  1684. u32 nodesize;
  1685. u32 leafsize;
  1686. u32 blocksize;
  1687. u32 stripesize;
  1688. u64 generation;
  1689. u64 features;
  1690. struct btrfs_key location;
  1691. struct buffer_head *bh;
  1692. struct btrfs_super_block *disk_super;
  1693. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1694. struct btrfs_root *tree_root;
  1695. struct btrfs_root *extent_root;
  1696. struct btrfs_root *csum_root;
  1697. struct btrfs_root *chunk_root;
  1698. struct btrfs_root *dev_root;
  1699. struct btrfs_root *quota_root;
  1700. struct btrfs_root *log_tree_root;
  1701. int ret;
  1702. int err = -EINVAL;
  1703. int num_backups_tried = 0;
  1704. int backup_index = 0;
  1705. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1706. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1707. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1708. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1709. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1710. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1711. if (!tree_root || !extent_root || !csum_root ||
  1712. !chunk_root || !dev_root || !quota_root) {
  1713. err = -ENOMEM;
  1714. goto fail;
  1715. }
  1716. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1717. if (ret) {
  1718. err = ret;
  1719. goto fail;
  1720. }
  1721. ret = setup_bdi(fs_info, &fs_info->bdi);
  1722. if (ret) {
  1723. err = ret;
  1724. goto fail_srcu;
  1725. }
  1726. fs_info->btree_inode = new_inode(sb);
  1727. if (!fs_info->btree_inode) {
  1728. err = -ENOMEM;
  1729. goto fail_bdi;
  1730. }
  1731. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1732. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1733. INIT_LIST_HEAD(&fs_info->trans_list);
  1734. INIT_LIST_HEAD(&fs_info->dead_roots);
  1735. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1736. INIT_LIST_HEAD(&fs_info->hashers);
  1737. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1738. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1739. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1740. spin_lock_init(&fs_info->delalloc_lock);
  1741. spin_lock_init(&fs_info->trans_lock);
  1742. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1743. spin_lock_init(&fs_info->delayed_iput_lock);
  1744. spin_lock_init(&fs_info->defrag_inodes_lock);
  1745. spin_lock_init(&fs_info->free_chunk_lock);
  1746. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1747. rwlock_init(&fs_info->tree_mod_log_lock);
  1748. mutex_init(&fs_info->reloc_mutex);
  1749. init_completion(&fs_info->kobj_unregister);
  1750. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1751. INIT_LIST_HEAD(&fs_info->space_info);
  1752. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1753. btrfs_mapping_init(&fs_info->mapping_tree);
  1754. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1755. BTRFS_BLOCK_RSV_GLOBAL);
  1756. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1757. BTRFS_BLOCK_RSV_DELALLOC);
  1758. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1759. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1760. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1761. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1762. BTRFS_BLOCK_RSV_DELOPS);
  1763. atomic_set(&fs_info->nr_async_submits, 0);
  1764. atomic_set(&fs_info->async_delalloc_pages, 0);
  1765. atomic_set(&fs_info->async_submit_draining, 0);
  1766. atomic_set(&fs_info->nr_async_bios, 0);
  1767. atomic_set(&fs_info->defrag_running, 0);
  1768. atomic_set(&fs_info->tree_mod_seq, 0);
  1769. fs_info->sb = sb;
  1770. fs_info->max_inline = 8192 * 1024;
  1771. fs_info->metadata_ratio = 0;
  1772. fs_info->defrag_inodes = RB_ROOT;
  1773. fs_info->trans_no_join = 0;
  1774. fs_info->free_chunk_space = 0;
  1775. fs_info->tree_mod_log = RB_ROOT;
  1776. /* readahead state */
  1777. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1778. spin_lock_init(&fs_info->reada_lock);
  1779. fs_info->thread_pool_size = min_t(unsigned long,
  1780. num_online_cpus() + 2, 8);
  1781. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1782. spin_lock_init(&fs_info->ordered_extent_lock);
  1783. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1784. GFP_NOFS);
  1785. if (!fs_info->delayed_root) {
  1786. err = -ENOMEM;
  1787. goto fail_iput;
  1788. }
  1789. btrfs_init_delayed_root(fs_info->delayed_root);
  1790. mutex_init(&fs_info->scrub_lock);
  1791. atomic_set(&fs_info->scrubs_running, 0);
  1792. atomic_set(&fs_info->scrub_pause_req, 0);
  1793. atomic_set(&fs_info->scrubs_paused, 0);
  1794. atomic_set(&fs_info->scrub_cancel_req, 0);
  1795. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1796. init_rwsem(&fs_info->scrub_super_lock);
  1797. fs_info->scrub_workers_refcnt = 0;
  1798. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1799. fs_info->check_integrity_print_mask = 0;
  1800. #endif
  1801. spin_lock_init(&fs_info->balance_lock);
  1802. mutex_init(&fs_info->balance_mutex);
  1803. atomic_set(&fs_info->balance_running, 0);
  1804. atomic_set(&fs_info->balance_pause_req, 0);
  1805. atomic_set(&fs_info->balance_cancel_req, 0);
  1806. fs_info->balance_ctl = NULL;
  1807. init_waitqueue_head(&fs_info->balance_wait_q);
  1808. sb->s_blocksize = 4096;
  1809. sb->s_blocksize_bits = blksize_bits(4096);
  1810. sb->s_bdi = &fs_info->bdi;
  1811. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1812. set_nlink(fs_info->btree_inode, 1);
  1813. /*
  1814. * we set the i_size on the btree inode to the max possible int.
  1815. * the real end of the address space is determined by all of
  1816. * the devices in the system
  1817. */
  1818. fs_info->btree_inode->i_size = OFFSET_MAX;
  1819. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1820. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1821. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1822. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1823. fs_info->btree_inode->i_mapping);
  1824. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1825. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1826. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1827. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1828. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1829. sizeof(struct btrfs_key));
  1830. set_bit(BTRFS_INODE_DUMMY,
  1831. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1832. insert_inode_hash(fs_info->btree_inode);
  1833. spin_lock_init(&fs_info->block_group_cache_lock);
  1834. fs_info->block_group_cache_tree = RB_ROOT;
  1835. extent_io_tree_init(&fs_info->freed_extents[0],
  1836. fs_info->btree_inode->i_mapping);
  1837. extent_io_tree_init(&fs_info->freed_extents[1],
  1838. fs_info->btree_inode->i_mapping);
  1839. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1840. fs_info->do_barriers = 1;
  1841. mutex_init(&fs_info->ordered_operations_mutex);
  1842. mutex_init(&fs_info->tree_log_mutex);
  1843. mutex_init(&fs_info->chunk_mutex);
  1844. mutex_init(&fs_info->transaction_kthread_mutex);
  1845. mutex_init(&fs_info->cleaner_mutex);
  1846. mutex_init(&fs_info->volume_mutex);
  1847. init_rwsem(&fs_info->extent_commit_sem);
  1848. init_rwsem(&fs_info->cleanup_work_sem);
  1849. init_rwsem(&fs_info->subvol_sem);
  1850. spin_lock_init(&fs_info->qgroup_lock);
  1851. fs_info->qgroup_tree = RB_ROOT;
  1852. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1853. fs_info->qgroup_seq = 1;
  1854. fs_info->quota_enabled = 0;
  1855. fs_info->pending_quota_state = 0;
  1856. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1857. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1858. init_waitqueue_head(&fs_info->transaction_throttle);
  1859. init_waitqueue_head(&fs_info->transaction_wait);
  1860. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1861. init_waitqueue_head(&fs_info->async_submit_wait);
  1862. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1863. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1864. invalidate_bdev(fs_devices->latest_bdev);
  1865. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1866. if (!bh) {
  1867. err = -EINVAL;
  1868. goto fail_alloc;
  1869. }
  1870. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1871. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1872. sizeof(*fs_info->super_for_commit));
  1873. brelse(bh);
  1874. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1875. disk_super = fs_info->super_copy;
  1876. if (!btrfs_super_root(disk_super))
  1877. goto fail_alloc;
  1878. /* check FS state, whether FS is broken. */
  1879. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1880. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1881. if (ret) {
  1882. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1883. err = ret;
  1884. goto fail_alloc;
  1885. }
  1886. /*
  1887. * run through our array of backup supers and setup
  1888. * our ring pointer to the oldest one
  1889. */
  1890. generation = btrfs_super_generation(disk_super);
  1891. find_oldest_super_backup(fs_info, generation);
  1892. /*
  1893. * In the long term, we'll store the compression type in the super
  1894. * block, and it'll be used for per file compression control.
  1895. */
  1896. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1897. ret = btrfs_parse_options(tree_root, options);
  1898. if (ret) {
  1899. err = ret;
  1900. goto fail_alloc;
  1901. }
  1902. features = btrfs_super_incompat_flags(disk_super) &
  1903. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1904. if (features) {
  1905. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1906. "unsupported optional features (%Lx).\n",
  1907. (unsigned long long)features);
  1908. err = -EINVAL;
  1909. goto fail_alloc;
  1910. }
  1911. if (btrfs_super_leafsize(disk_super) !=
  1912. btrfs_super_nodesize(disk_super)) {
  1913. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1914. "blocksizes don't match. node %d leaf %d\n",
  1915. btrfs_super_nodesize(disk_super),
  1916. btrfs_super_leafsize(disk_super));
  1917. err = -EINVAL;
  1918. goto fail_alloc;
  1919. }
  1920. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1921. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1922. "blocksize (%d) was too large\n",
  1923. btrfs_super_leafsize(disk_super));
  1924. err = -EINVAL;
  1925. goto fail_alloc;
  1926. }
  1927. features = btrfs_super_incompat_flags(disk_super);
  1928. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1929. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1930. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1931. /*
  1932. * flag our filesystem as having big metadata blocks if
  1933. * they are bigger than the page size
  1934. */
  1935. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1936. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1937. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1938. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1939. }
  1940. nodesize = btrfs_super_nodesize(disk_super);
  1941. leafsize = btrfs_super_leafsize(disk_super);
  1942. sectorsize = btrfs_super_sectorsize(disk_super);
  1943. stripesize = btrfs_super_stripesize(disk_super);
  1944. /*
  1945. * mixed block groups end up with duplicate but slightly offset
  1946. * extent buffers for the same range. It leads to corruptions
  1947. */
  1948. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1949. (sectorsize != leafsize)) {
  1950. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1951. "are not allowed for mixed block groups on %s\n",
  1952. sb->s_id);
  1953. goto fail_alloc;
  1954. }
  1955. btrfs_set_super_incompat_flags(disk_super, features);
  1956. features = btrfs_super_compat_ro_flags(disk_super) &
  1957. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1958. if (!(sb->s_flags & MS_RDONLY) && features) {
  1959. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1960. "unsupported option features (%Lx).\n",
  1961. (unsigned long long)features);
  1962. err = -EINVAL;
  1963. goto fail_alloc;
  1964. }
  1965. btrfs_init_workers(&fs_info->generic_worker,
  1966. "genwork", 1, NULL);
  1967. btrfs_init_workers(&fs_info->workers, "worker",
  1968. fs_info->thread_pool_size,
  1969. &fs_info->generic_worker);
  1970. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1971. fs_info->thread_pool_size,
  1972. &fs_info->generic_worker);
  1973. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1974. min_t(u64, fs_devices->num_devices,
  1975. fs_info->thread_pool_size),
  1976. &fs_info->generic_worker);
  1977. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1978. 2, &fs_info->generic_worker);
  1979. /* a higher idle thresh on the submit workers makes it much more
  1980. * likely that bios will be send down in a sane order to the
  1981. * devices
  1982. */
  1983. fs_info->submit_workers.idle_thresh = 64;
  1984. fs_info->workers.idle_thresh = 16;
  1985. fs_info->workers.ordered = 1;
  1986. fs_info->delalloc_workers.idle_thresh = 2;
  1987. fs_info->delalloc_workers.ordered = 1;
  1988. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1989. &fs_info->generic_worker);
  1990. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1991. fs_info->thread_pool_size,
  1992. &fs_info->generic_worker);
  1993. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1994. fs_info->thread_pool_size,
  1995. &fs_info->generic_worker);
  1996. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1997. "endio-meta-write", fs_info->thread_pool_size,
  1998. &fs_info->generic_worker);
  1999. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2000. fs_info->thread_pool_size,
  2001. &fs_info->generic_worker);
  2002. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2003. 1, &fs_info->generic_worker);
  2004. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2005. fs_info->thread_pool_size,
  2006. &fs_info->generic_worker);
  2007. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2008. fs_info->thread_pool_size,
  2009. &fs_info->generic_worker);
  2010. /*
  2011. * endios are largely parallel and should have a very
  2012. * low idle thresh
  2013. */
  2014. fs_info->endio_workers.idle_thresh = 4;
  2015. fs_info->endio_meta_workers.idle_thresh = 4;
  2016. fs_info->endio_write_workers.idle_thresh = 2;
  2017. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2018. fs_info->readahead_workers.idle_thresh = 2;
  2019. /*
  2020. * btrfs_start_workers can really only fail because of ENOMEM so just
  2021. * return -ENOMEM if any of these fail.
  2022. */
  2023. ret = btrfs_start_workers(&fs_info->workers);
  2024. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2025. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2026. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2027. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2028. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2029. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2030. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2031. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2032. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2033. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2034. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2035. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2036. if (ret) {
  2037. err = -ENOMEM;
  2038. goto fail_sb_buffer;
  2039. }
  2040. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2041. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2042. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2043. tree_root->nodesize = nodesize;
  2044. tree_root->leafsize = leafsize;
  2045. tree_root->sectorsize = sectorsize;
  2046. tree_root->stripesize = stripesize;
  2047. sb->s_blocksize = sectorsize;
  2048. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2049. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2050. sizeof(disk_super->magic))) {
  2051. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2052. goto fail_sb_buffer;
  2053. }
  2054. if (sectorsize != PAGE_SIZE) {
  2055. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2056. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2057. goto fail_sb_buffer;
  2058. }
  2059. mutex_lock(&fs_info->chunk_mutex);
  2060. ret = btrfs_read_sys_array(tree_root);
  2061. mutex_unlock(&fs_info->chunk_mutex);
  2062. if (ret) {
  2063. printk(KERN_WARNING "btrfs: failed to read the system "
  2064. "array on %s\n", sb->s_id);
  2065. goto fail_sb_buffer;
  2066. }
  2067. blocksize = btrfs_level_size(tree_root,
  2068. btrfs_super_chunk_root_level(disk_super));
  2069. generation = btrfs_super_chunk_root_generation(disk_super);
  2070. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2071. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2072. chunk_root->node = read_tree_block(chunk_root,
  2073. btrfs_super_chunk_root(disk_super),
  2074. blocksize, generation);
  2075. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2076. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2077. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2078. sb->s_id);
  2079. goto fail_tree_roots;
  2080. }
  2081. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2082. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2083. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2084. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2085. BTRFS_UUID_SIZE);
  2086. ret = btrfs_read_chunk_tree(chunk_root);
  2087. if (ret) {
  2088. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2089. sb->s_id);
  2090. goto fail_tree_roots;
  2091. }
  2092. btrfs_close_extra_devices(fs_devices);
  2093. if (!fs_devices->latest_bdev) {
  2094. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2095. sb->s_id);
  2096. goto fail_tree_roots;
  2097. }
  2098. retry_root_backup:
  2099. blocksize = btrfs_level_size(tree_root,
  2100. btrfs_super_root_level(disk_super));
  2101. generation = btrfs_super_generation(disk_super);
  2102. tree_root->node = read_tree_block(tree_root,
  2103. btrfs_super_root(disk_super),
  2104. blocksize, generation);
  2105. if (!tree_root->node ||
  2106. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2107. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2108. sb->s_id);
  2109. goto recovery_tree_root;
  2110. }
  2111. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2112. tree_root->commit_root = btrfs_root_node(tree_root);
  2113. ret = find_and_setup_root(tree_root, fs_info,
  2114. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2115. if (ret)
  2116. goto recovery_tree_root;
  2117. extent_root->track_dirty = 1;
  2118. ret = find_and_setup_root(tree_root, fs_info,
  2119. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2120. if (ret)
  2121. goto recovery_tree_root;
  2122. dev_root->track_dirty = 1;
  2123. ret = find_and_setup_root(tree_root, fs_info,
  2124. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2125. if (ret)
  2126. goto recovery_tree_root;
  2127. csum_root->track_dirty = 1;
  2128. ret = find_and_setup_root(tree_root, fs_info,
  2129. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2130. if (ret) {
  2131. kfree(quota_root);
  2132. quota_root = fs_info->quota_root = NULL;
  2133. } else {
  2134. quota_root->track_dirty = 1;
  2135. fs_info->quota_enabled = 1;
  2136. fs_info->pending_quota_state = 1;
  2137. }
  2138. fs_info->generation = generation;
  2139. fs_info->last_trans_committed = generation;
  2140. ret = btrfs_recover_balance(fs_info);
  2141. if (ret) {
  2142. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2143. goto fail_block_groups;
  2144. }
  2145. ret = btrfs_init_dev_stats(fs_info);
  2146. if (ret) {
  2147. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2148. ret);
  2149. goto fail_block_groups;
  2150. }
  2151. ret = btrfs_init_space_info(fs_info);
  2152. if (ret) {
  2153. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2154. goto fail_block_groups;
  2155. }
  2156. ret = btrfs_read_block_groups(extent_root);
  2157. if (ret) {
  2158. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2159. goto fail_block_groups;
  2160. }
  2161. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2162. "btrfs-cleaner");
  2163. if (IS_ERR(fs_info->cleaner_kthread))
  2164. goto fail_block_groups;
  2165. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2166. tree_root,
  2167. "btrfs-transaction");
  2168. if (IS_ERR(fs_info->transaction_kthread))
  2169. goto fail_cleaner;
  2170. if (!btrfs_test_opt(tree_root, SSD) &&
  2171. !btrfs_test_opt(tree_root, NOSSD) &&
  2172. !fs_info->fs_devices->rotating) {
  2173. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2174. "mode\n");
  2175. btrfs_set_opt(fs_info->mount_opt, SSD);
  2176. }
  2177. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2178. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2179. ret = btrfsic_mount(tree_root, fs_devices,
  2180. btrfs_test_opt(tree_root,
  2181. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2182. 1 : 0,
  2183. fs_info->check_integrity_print_mask);
  2184. if (ret)
  2185. printk(KERN_WARNING "btrfs: failed to initialize"
  2186. " integrity check module %s\n", sb->s_id);
  2187. }
  2188. #endif
  2189. ret = btrfs_read_qgroup_config(fs_info);
  2190. if (ret)
  2191. goto fail_trans_kthread;
  2192. /* do not make disk changes in broken FS */
  2193. if (btrfs_super_log_root(disk_super) != 0) {
  2194. u64 bytenr = btrfs_super_log_root(disk_super);
  2195. if (fs_devices->rw_devices == 0) {
  2196. printk(KERN_WARNING "Btrfs log replay required "
  2197. "on RO media\n");
  2198. err = -EIO;
  2199. goto fail_qgroup;
  2200. }
  2201. blocksize =
  2202. btrfs_level_size(tree_root,
  2203. btrfs_super_log_root_level(disk_super));
  2204. log_tree_root = btrfs_alloc_root(fs_info);
  2205. if (!log_tree_root) {
  2206. err = -ENOMEM;
  2207. goto fail_qgroup;
  2208. }
  2209. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2210. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2211. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2212. blocksize,
  2213. generation + 1);
  2214. /* returns with log_tree_root freed on success */
  2215. ret = btrfs_recover_log_trees(log_tree_root);
  2216. if (ret) {
  2217. btrfs_error(tree_root->fs_info, ret,
  2218. "Failed to recover log tree");
  2219. free_extent_buffer(log_tree_root->node);
  2220. kfree(log_tree_root);
  2221. goto fail_trans_kthread;
  2222. }
  2223. if (sb->s_flags & MS_RDONLY) {
  2224. ret = btrfs_commit_super(tree_root);
  2225. if (ret)
  2226. goto fail_trans_kthread;
  2227. }
  2228. }
  2229. ret = btrfs_find_orphan_roots(tree_root);
  2230. if (ret)
  2231. goto fail_trans_kthread;
  2232. if (!(sb->s_flags & MS_RDONLY)) {
  2233. ret = btrfs_cleanup_fs_roots(fs_info);
  2234. if (ret)
  2235. goto fail_trans_kthread;
  2236. ret = btrfs_recover_relocation(tree_root);
  2237. if (ret < 0) {
  2238. printk(KERN_WARNING
  2239. "btrfs: failed to recover relocation\n");
  2240. err = -EINVAL;
  2241. goto fail_qgroup;
  2242. }
  2243. }
  2244. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2245. location.type = BTRFS_ROOT_ITEM_KEY;
  2246. location.offset = (u64)-1;
  2247. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2248. if (!fs_info->fs_root)
  2249. goto fail_qgroup;
  2250. if (IS_ERR(fs_info->fs_root)) {
  2251. err = PTR_ERR(fs_info->fs_root);
  2252. goto fail_qgroup;
  2253. }
  2254. if (sb->s_flags & MS_RDONLY)
  2255. return 0;
  2256. down_read(&fs_info->cleanup_work_sem);
  2257. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2258. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2259. up_read(&fs_info->cleanup_work_sem);
  2260. close_ctree(tree_root);
  2261. return ret;
  2262. }
  2263. up_read(&fs_info->cleanup_work_sem);
  2264. ret = btrfs_resume_balance_async(fs_info);
  2265. if (ret) {
  2266. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2267. close_ctree(tree_root);
  2268. return ret;
  2269. }
  2270. return 0;
  2271. fail_qgroup:
  2272. btrfs_free_qgroup_config(fs_info);
  2273. fail_trans_kthread:
  2274. kthread_stop(fs_info->transaction_kthread);
  2275. fail_cleaner:
  2276. kthread_stop(fs_info->cleaner_kthread);
  2277. /*
  2278. * make sure we're done with the btree inode before we stop our
  2279. * kthreads
  2280. */
  2281. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2282. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2283. fail_block_groups:
  2284. btrfs_free_block_groups(fs_info);
  2285. fail_tree_roots:
  2286. free_root_pointers(fs_info, 1);
  2287. fail_sb_buffer:
  2288. btrfs_stop_workers(&fs_info->generic_worker);
  2289. btrfs_stop_workers(&fs_info->readahead_workers);
  2290. btrfs_stop_workers(&fs_info->fixup_workers);
  2291. btrfs_stop_workers(&fs_info->delalloc_workers);
  2292. btrfs_stop_workers(&fs_info->workers);
  2293. btrfs_stop_workers(&fs_info->endio_workers);
  2294. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2295. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2296. btrfs_stop_workers(&fs_info->endio_write_workers);
  2297. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2298. btrfs_stop_workers(&fs_info->submit_workers);
  2299. btrfs_stop_workers(&fs_info->delayed_workers);
  2300. btrfs_stop_workers(&fs_info->caching_workers);
  2301. fail_alloc:
  2302. fail_iput:
  2303. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2304. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2305. iput(fs_info->btree_inode);
  2306. fail_bdi:
  2307. bdi_destroy(&fs_info->bdi);
  2308. fail_srcu:
  2309. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2310. fail:
  2311. btrfs_close_devices(fs_info->fs_devices);
  2312. return err;
  2313. recovery_tree_root:
  2314. if (!btrfs_test_opt(tree_root, RECOVERY))
  2315. goto fail_tree_roots;
  2316. free_root_pointers(fs_info, 0);
  2317. /* don't use the log in recovery mode, it won't be valid */
  2318. btrfs_set_super_log_root(disk_super, 0);
  2319. /* we can't trust the free space cache either */
  2320. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2321. ret = next_root_backup(fs_info, fs_info->super_copy,
  2322. &num_backups_tried, &backup_index);
  2323. if (ret == -1)
  2324. goto fail_block_groups;
  2325. goto retry_root_backup;
  2326. }
  2327. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2328. {
  2329. if (uptodate) {
  2330. set_buffer_uptodate(bh);
  2331. } else {
  2332. struct btrfs_device *device = (struct btrfs_device *)
  2333. bh->b_private;
  2334. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2335. "I/O error on %s\n",
  2336. rcu_str_deref(device->name));
  2337. /* note, we dont' set_buffer_write_io_error because we have
  2338. * our own ways of dealing with the IO errors
  2339. */
  2340. clear_buffer_uptodate(bh);
  2341. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2342. }
  2343. unlock_buffer(bh);
  2344. put_bh(bh);
  2345. }
  2346. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2347. {
  2348. struct buffer_head *bh;
  2349. struct buffer_head *latest = NULL;
  2350. struct btrfs_super_block *super;
  2351. int i;
  2352. u64 transid = 0;
  2353. u64 bytenr;
  2354. /* we would like to check all the supers, but that would make
  2355. * a btrfs mount succeed after a mkfs from a different FS.
  2356. * So, we need to add a special mount option to scan for
  2357. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2358. */
  2359. for (i = 0; i < 1; i++) {
  2360. bytenr = btrfs_sb_offset(i);
  2361. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2362. break;
  2363. bh = __bread(bdev, bytenr / 4096, 4096);
  2364. if (!bh)
  2365. continue;
  2366. super = (struct btrfs_super_block *)bh->b_data;
  2367. if (btrfs_super_bytenr(super) != bytenr ||
  2368. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2369. sizeof(super->magic))) {
  2370. brelse(bh);
  2371. continue;
  2372. }
  2373. if (!latest || btrfs_super_generation(super) > transid) {
  2374. brelse(latest);
  2375. latest = bh;
  2376. transid = btrfs_super_generation(super);
  2377. } else {
  2378. brelse(bh);
  2379. }
  2380. }
  2381. return latest;
  2382. }
  2383. /*
  2384. * this should be called twice, once with wait == 0 and
  2385. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2386. * we write are pinned.
  2387. *
  2388. * They are released when wait == 1 is done.
  2389. * max_mirrors must be the same for both runs, and it indicates how
  2390. * many supers on this one device should be written.
  2391. *
  2392. * max_mirrors == 0 means to write them all.
  2393. */
  2394. static int write_dev_supers(struct btrfs_device *device,
  2395. struct btrfs_super_block *sb,
  2396. int do_barriers, int wait, int max_mirrors)
  2397. {
  2398. struct buffer_head *bh;
  2399. int i;
  2400. int ret;
  2401. int errors = 0;
  2402. u32 crc;
  2403. u64 bytenr;
  2404. if (max_mirrors == 0)
  2405. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2406. for (i = 0; i < max_mirrors; i++) {
  2407. bytenr = btrfs_sb_offset(i);
  2408. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2409. break;
  2410. if (wait) {
  2411. bh = __find_get_block(device->bdev, bytenr / 4096,
  2412. BTRFS_SUPER_INFO_SIZE);
  2413. BUG_ON(!bh);
  2414. wait_on_buffer(bh);
  2415. if (!buffer_uptodate(bh))
  2416. errors++;
  2417. /* drop our reference */
  2418. brelse(bh);
  2419. /* drop the reference from the wait == 0 run */
  2420. brelse(bh);
  2421. continue;
  2422. } else {
  2423. btrfs_set_super_bytenr(sb, bytenr);
  2424. crc = ~(u32)0;
  2425. crc = btrfs_csum_data(NULL, (char *)sb +
  2426. BTRFS_CSUM_SIZE, crc,
  2427. BTRFS_SUPER_INFO_SIZE -
  2428. BTRFS_CSUM_SIZE);
  2429. btrfs_csum_final(crc, sb->csum);
  2430. /*
  2431. * one reference for us, and we leave it for the
  2432. * caller
  2433. */
  2434. bh = __getblk(device->bdev, bytenr / 4096,
  2435. BTRFS_SUPER_INFO_SIZE);
  2436. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2437. /* one reference for submit_bh */
  2438. get_bh(bh);
  2439. set_buffer_uptodate(bh);
  2440. lock_buffer(bh);
  2441. bh->b_end_io = btrfs_end_buffer_write_sync;
  2442. bh->b_private = device;
  2443. }
  2444. /*
  2445. * we fua the first super. The others we allow
  2446. * to go down lazy.
  2447. */
  2448. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2449. if (ret)
  2450. errors++;
  2451. }
  2452. return errors < i ? 0 : -1;
  2453. }
  2454. /*
  2455. * endio for the write_dev_flush, this will wake anyone waiting
  2456. * for the barrier when it is done
  2457. */
  2458. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2459. {
  2460. if (err) {
  2461. if (err == -EOPNOTSUPP)
  2462. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2463. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2464. }
  2465. if (bio->bi_private)
  2466. complete(bio->bi_private);
  2467. bio_put(bio);
  2468. }
  2469. /*
  2470. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2471. * sent down. With wait == 1, it waits for the previous flush.
  2472. *
  2473. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2474. * capable
  2475. */
  2476. static int write_dev_flush(struct btrfs_device *device, int wait)
  2477. {
  2478. struct bio *bio;
  2479. int ret = 0;
  2480. if (device->nobarriers)
  2481. return 0;
  2482. if (wait) {
  2483. bio = device->flush_bio;
  2484. if (!bio)
  2485. return 0;
  2486. wait_for_completion(&device->flush_wait);
  2487. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2488. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2489. rcu_str_deref(device->name));
  2490. device->nobarriers = 1;
  2491. }
  2492. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2493. ret = -EIO;
  2494. if (!bio_flagged(bio, BIO_EOPNOTSUPP))
  2495. btrfs_dev_stat_inc_and_print(device,
  2496. BTRFS_DEV_STAT_FLUSH_ERRS);
  2497. }
  2498. /* drop the reference from the wait == 0 run */
  2499. bio_put(bio);
  2500. device->flush_bio = NULL;
  2501. return ret;
  2502. }
  2503. /*
  2504. * one reference for us, and we leave it for the
  2505. * caller
  2506. */
  2507. device->flush_bio = NULL;
  2508. bio = bio_alloc(GFP_NOFS, 0);
  2509. if (!bio)
  2510. return -ENOMEM;
  2511. bio->bi_end_io = btrfs_end_empty_barrier;
  2512. bio->bi_bdev = device->bdev;
  2513. init_completion(&device->flush_wait);
  2514. bio->bi_private = &device->flush_wait;
  2515. device->flush_bio = bio;
  2516. bio_get(bio);
  2517. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2518. return 0;
  2519. }
  2520. /*
  2521. * send an empty flush down to each device in parallel,
  2522. * then wait for them
  2523. */
  2524. static int barrier_all_devices(struct btrfs_fs_info *info)
  2525. {
  2526. struct list_head *head;
  2527. struct btrfs_device *dev;
  2528. int errors = 0;
  2529. int ret;
  2530. /* send down all the barriers */
  2531. head = &info->fs_devices->devices;
  2532. list_for_each_entry_rcu(dev, head, dev_list) {
  2533. if (!dev->bdev) {
  2534. errors++;
  2535. continue;
  2536. }
  2537. if (!dev->in_fs_metadata || !dev->writeable)
  2538. continue;
  2539. ret = write_dev_flush(dev, 0);
  2540. if (ret)
  2541. errors++;
  2542. }
  2543. /* wait for all the barriers */
  2544. list_for_each_entry_rcu(dev, head, dev_list) {
  2545. if (!dev->bdev) {
  2546. errors++;
  2547. continue;
  2548. }
  2549. if (!dev->in_fs_metadata || !dev->writeable)
  2550. continue;
  2551. ret = write_dev_flush(dev, 1);
  2552. if (ret)
  2553. errors++;
  2554. }
  2555. if (errors)
  2556. return -EIO;
  2557. return 0;
  2558. }
  2559. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2560. {
  2561. struct list_head *head;
  2562. struct btrfs_device *dev;
  2563. struct btrfs_super_block *sb;
  2564. struct btrfs_dev_item *dev_item;
  2565. int ret;
  2566. int do_barriers;
  2567. int max_errors;
  2568. int total_errors = 0;
  2569. u64 flags;
  2570. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2571. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2572. backup_super_roots(root->fs_info);
  2573. sb = root->fs_info->super_for_commit;
  2574. dev_item = &sb->dev_item;
  2575. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2576. head = &root->fs_info->fs_devices->devices;
  2577. if (do_barriers)
  2578. barrier_all_devices(root->fs_info);
  2579. list_for_each_entry_rcu(dev, head, dev_list) {
  2580. if (!dev->bdev) {
  2581. total_errors++;
  2582. continue;
  2583. }
  2584. if (!dev->in_fs_metadata || !dev->writeable)
  2585. continue;
  2586. btrfs_set_stack_device_generation(dev_item, 0);
  2587. btrfs_set_stack_device_type(dev_item, dev->type);
  2588. btrfs_set_stack_device_id(dev_item, dev->devid);
  2589. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2590. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2591. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2592. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2593. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2594. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2595. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2596. flags = btrfs_super_flags(sb);
  2597. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2598. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2599. if (ret)
  2600. total_errors++;
  2601. }
  2602. if (total_errors > max_errors) {
  2603. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2604. total_errors);
  2605. /* This shouldn't happen. FUA is masked off if unsupported */
  2606. BUG();
  2607. }
  2608. total_errors = 0;
  2609. list_for_each_entry_rcu(dev, head, dev_list) {
  2610. if (!dev->bdev)
  2611. continue;
  2612. if (!dev->in_fs_metadata || !dev->writeable)
  2613. continue;
  2614. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2615. if (ret)
  2616. total_errors++;
  2617. }
  2618. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2619. if (total_errors > max_errors) {
  2620. btrfs_error(root->fs_info, -EIO,
  2621. "%d errors while writing supers", total_errors);
  2622. return -EIO;
  2623. }
  2624. return 0;
  2625. }
  2626. int write_ctree_super(struct btrfs_trans_handle *trans,
  2627. struct btrfs_root *root, int max_mirrors)
  2628. {
  2629. int ret;
  2630. ret = write_all_supers(root, max_mirrors);
  2631. return ret;
  2632. }
  2633. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2634. {
  2635. spin_lock(&fs_info->fs_roots_radix_lock);
  2636. radix_tree_delete(&fs_info->fs_roots_radix,
  2637. (unsigned long)root->root_key.objectid);
  2638. spin_unlock(&fs_info->fs_roots_radix_lock);
  2639. if (btrfs_root_refs(&root->root_item) == 0)
  2640. synchronize_srcu(&fs_info->subvol_srcu);
  2641. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2642. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2643. free_fs_root(root);
  2644. }
  2645. static void free_fs_root(struct btrfs_root *root)
  2646. {
  2647. iput(root->cache_inode);
  2648. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2649. if (root->anon_dev)
  2650. free_anon_bdev(root->anon_dev);
  2651. free_extent_buffer(root->node);
  2652. free_extent_buffer(root->commit_root);
  2653. kfree(root->free_ino_ctl);
  2654. kfree(root->free_ino_pinned);
  2655. kfree(root->name);
  2656. kfree(root);
  2657. }
  2658. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2659. {
  2660. int ret;
  2661. struct btrfs_root *gang[8];
  2662. int i;
  2663. while (!list_empty(&fs_info->dead_roots)) {
  2664. gang[0] = list_entry(fs_info->dead_roots.next,
  2665. struct btrfs_root, root_list);
  2666. list_del(&gang[0]->root_list);
  2667. if (gang[0]->in_radix) {
  2668. btrfs_free_fs_root(fs_info, gang[0]);
  2669. } else {
  2670. free_extent_buffer(gang[0]->node);
  2671. free_extent_buffer(gang[0]->commit_root);
  2672. kfree(gang[0]);
  2673. }
  2674. }
  2675. while (1) {
  2676. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2677. (void **)gang, 0,
  2678. ARRAY_SIZE(gang));
  2679. if (!ret)
  2680. break;
  2681. for (i = 0; i < ret; i++)
  2682. btrfs_free_fs_root(fs_info, gang[i]);
  2683. }
  2684. }
  2685. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2686. {
  2687. u64 root_objectid = 0;
  2688. struct btrfs_root *gang[8];
  2689. int i;
  2690. int ret;
  2691. while (1) {
  2692. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2693. (void **)gang, root_objectid,
  2694. ARRAY_SIZE(gang));
  2695. if (!ret)
  2696. break;
  2697. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2698. for (i = 0; i < ret; i++) {
  2699. int err;
  2700. root_objectid = gang[i]->root_key.objectid;
  2701. err = btrfs_orphan_cleanup(gang[i]);
  2702. if (err)
  2703. return err;
  2704. }
  2705. root_objectid++;
  2706. }
  2707. return 0;
  2708. }
  2709. int btrfs_commit_super(struct btrfs_root *root)
  2710. {
  2711. struct btrfs_trans_handle *trans;
  2712. int ret;
  2713. mutex_lock(&root->fs_info->cleaner_mutex);
  2714. btrfs_run_delayed_iputs(root);
  2715. btrfs_clean_old_snapshots(root);
  2716. mutex_unlock(&root->fs_info->cleaner_mutex);
  2717. /* wait until ongoing cleanup work done */
  2718. down_write(&root->fs_info->cleanup_work_sem);
  2719. up_write(&root->fs_info->cleanup_work_sem);
  2720. trans = btrfs_join_transaction(root);
  2721. if (IS_ERR(trans))
  2722. return PTR_ERR(trans);
  2723. ret = btrfs_commit_transaction(trans, root);
  2724. if (ret)
  2725. return ret;
  2726. /* run commit again to drop the original snapshot */
  2727. trans = btrfs_join_transaction(root);
  2728. if (IS_ERR(trans))
  2729. return PTR_ERR(trans);
  2730. ret = btrfs_commit_transaction(trans, root);
  2731. if (ret)
  2732. return ret;
  2733. ret = btrfs_write_and_wait_transaction(NULL, root);
  2734. if (ret) {
  2735. btrfs_error(root->fs_info, ret,
  2736. "Failed to sync btree inode to disk.");
  2737. return ret;
  2738. }
  2739. ret = write_ctree_super(NULL, root, 0);
  2740. return ret;
  2741. }
  2742. int close_ctree(struct btrfs_root *root)
  2743. {
  2744. struct btrfs_fs_info *fs_info = root->fs_info;
  2745. int ret;
  2746. fs_info->closing = 1;
  2747. smp_mb();
  2748. /* pause restriper - we want to resume on mount */
  2749. btrfs_pause_balance(root->fs_info);
  2750. btrfs_scrub_cancel(root);
  2751. /* wait for any defraggers to finish */
  2752. wait_event(fs_info->transaction_wait,
  2753. (atomic_read(&fs_info->defrag_running) == 0));
  2754. /* clear out the rbtree of defraggable inodes */
  2755. btrfs_run_defrag_inodes(fs_info);
  2756. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2757. ret = btrfs_commit_super(root);
  2758. if (ret)
  2759. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2760. }
  2761. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2762. btrfs_error_commit_super(root);
  2763. btrfs_put_block_group_cache(fs_info);
  2764. kthread_stop(fs_info->transaction_kthread);
  2765. kthread_stop(fs_info->cleaner_kthread);
  2766. fs_info->closing = 2;
  2767. smp_mb();
  2768. btrfs_free_qgroup_config(root->fs_info);
  2769. if (fs_info->delalloc_bytes) {
  2770. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2771. (unsigned long long)fs_info->delalloc_bytes);
  2772. }
  2773. free_extent_buffer(fs_info->extent_root->node);
  2774. free_extent_buffer(fs_info->extent_root->commit_root);
  2775. free_extent_buffer(fs_info->tree_root->node);
  2776. free_extent_buffer(fs_info->tree_root->commit_root);
  2777. free_extent_buffer(fs_info->chunk_root->node);
  2778. free_extent_buffer(fs_info->chunk_root->commit_root);
  2779. free_extent_buffer(fs_info->dev_root->node);
  2780. free_extent_buffer(fs_info->dev_root->commit_root);
  2781. free_extent_buffer(fs_info->csum_root->node);
  2782. free_extent_buffer(fs_info->csum_root->commit_root);
  2783. if (fs_info->quota_root) {
  2784. free_extent_buffer(fs_info->quota_root->node);
  2785. free_extent_buffer(fs_info->quota_root->commit_root);
  2786. }
  2787. btrfs_free_block_groups(fs_info);
  2788. del_fs_roots(fs_info);
  2789. iput(fs_info->btree_inode);
  2790. btrfs_stop_workers(&fs_info->generic_worker);
  2791. btrfs_stop_workers(&fs_info->fixup_workers);
  2792. btrfs_stop_workers(&fs_info->delalloc_workers);
  2793. btrfs_stop_workers(&fs_info->workers);
  2794. btrfs_stop_workers(&fs_info->endio_workers);
  2795. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2796. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2797. btrfs_stop_workers(&fs_info->endio_write_workers);
  2798. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2799. btrfs_stop_workers(&fs_info->submit_workers);
  2800. btrfs_stop_workers(&fs_info->delayed_workers);
  2801. btrfs_stop_workers(&fs_info->caching_workers);
  2802. btrfs_stop_workers(&fs_info->readahead_workers);
  2803. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2804. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2805. btrfsic_unmount(root, fs_info->fs_devices);
  2806. #endif
  2807. btrfs_close_devices(fs_info->fs_devices);
  2808. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2809. bdi_destroy(&fs_info->bdi);
  2810. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2811. return 0;
  2812. }
  2813. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2814. int atomic)
  2815. {
  2816. int ret;
  2817. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2818. ret = extent_buffer_uptodate(buf);
  2819. if (!ret)
  2820. return ret;
  2821. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2822. parent_transid, atomic);
  2823. if (ret == -EAGAIN)
  2824. return ret;
  2825. return !ret;
  2826. }
  2827. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2828. {
  2829. return set_extent_buffer_uptodate(buf);
  2830. }
  2831. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2832. {
  2833. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2834. u64 transid = btrfs_header_generation(buf);
  2835. int was_dirty;
  2836. btrfs_assert_tree_locked(buf);
  2837. if (transid != root->fs_info->generation) {
  2838. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2839. "found %llu running %llu\n",
  2840. (unsigned long long)buf->start,
  2841. (unsigned long long)transid,
  2842. (unsigned long long)root->fs_info->generation);
  2843. WARN_ON(1);
  2844. }
  2845. was_dirty = set_extent_buffer_dirty(buf);
  2846. if (!was_dirty) {
  2847. spin_lock(&root->fs_info->delalloc_lock);
  2848. root->fs_info->dirty_metadata_bytes += buf->len;
  2849. spin_unlock(&root->fs_info->delalloc_lock);
  2850. }
  2851. }
  2852. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2853. {
  2854. /*
  2855. * looks as though older kernels can get into trouble with
  2856. * this code, they end up stuck in balance_dirty_pages forever
  2857. */
  2858. u64 num_dirty;
  2859. unsigned long thresh = 32 * 1024 * 1024;
  2860. if (current->flags & PF_MEMALLOC)
  2861. return;
  2862. btrfs_balance_delayed_items(root);
  2863. num_dirty = root->fs_info->dirty_metadata_bytes;
  2864. if (num_dirty > thresh) {
  2865. balance_dirty_pages_ratelimited_nr(
  2866. root->fs_info->btree_inode->i_mapping, 1);
  2867. }
  2868. return;
  2869. }
  2870. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2871. {
  2872. /*
  2873. * looks as though older kernels can get into trouble with
  2874. * this code, they end up stuck in balance_dirty_pages forever
  2875. */
  2876. u64 num_dirty;
  2877. unsigned long thresh = 32 * 1024 * 1024;
  2878. if (current->flags & PF_MEMALLOC)
  2879. return;
  2880. num_dirty = root->fs_info->dirty_metadata_bytes;
  2881. if (num_dirty > thresh) {
  2882. balance_dirty_pages_ratelimited_nr(
  2883. root->fs_info->btree_inode->i_mapping, 1);
  2884. }
  2885. return;
  2886. }
  2887. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2888. {
  2889. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2890. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2891. }
  2892. int btree_lock_page_hook(struct page *page, void *data,
  2893. void (*flush_fn)(void *))
  2894. {
  2895. struct inode *inode = page->mapping->host;
  2896. struct btrfs_root *root = BTRFS_I(inode)->root;
  2897. struct extent_buffer *eb;
  2898. /*
  2899. * We culled this eb but the page is still hanging out on the mapping,
  2900. * carry on.
  2901. */
  2902. if (!PagePrivate(page))
  2903. goto out;
  2904. eb = (struct extent_buffer *)page->private;
  2905. if (!eb) {
  2906. WARN_ON(1);
  2907. goto out;
  2908. }
  2909. if (page != eb->pages[0])
  2910. goto out;
  2911. if (!btrfs_try_tree_write_lock(eb)) {
  2912. flush_fn(data);
  2913. btrfs_tree_lock(eb);
  2914. }
  2915. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2916. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2917. spin_lock(&root->fs_info->delalloc_lock);
  2918. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2919. root->fs_info->dirty_metadata_bytes -= eb->len;
  2920. else
  2921. WARN_ON(1);
  2922. spin_unlock(&root->fs_info->delalloc_lock);
  2923. }
  2924. btrfs_tree_unlock(eb);
  2925. out:
  2926. if (!trylock_page(page)) {
  2927. flush_fn(data);
  2928. lock_page(page);
  2929. }
  2930. return 0;
  2931. }
  2932. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2933. int read_only)
  2934. {
  2935. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2936. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2937. return -EINVAL;
  2938. }
  2939. if (read_only)
  2940. return 0;
  2941. return 0;
  2942. }
  2943. void btrfs_error_commit_super(struct btrfs_root *root)
  2944. {
  2945. mutex_lock(&root->fs_info->cleaner_mutex);
  2946. btrfs_run_delayed_iputs(root);
  2947. mutex_unlock(&root->fs_info->cleaner_mutex);
  2948. down_write(&root->fs_info->cleanup_work_sem);
  2949. up_write(&root->fs_info->cleanup_work_sem);
  2950. /* cleanup FS via transaction */
  2951. btrfs_cleanup_transaction(root);
  2952. }
  2953. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2954. {
  2955. struct btrfs_inode *btrfs_inode;
  2956. struct list_head splice;
  2957. INIT_LIST_HEAD(&splice);
  2958. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2959. spin_lock(&root->fs_info->ordered_extent_lock);
  2960. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2961. while (!list_empty(&splice)) {
  2962. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2963. ordered_operations);
  2964. list_del_init(&btrfs_inode->ordered_operations);
  2965. btrfs_invalidate_inodes(btrfs_inode->root);
  2966. }
  2967. spin_unlock(&root->fs_info->ordered_extent_lock);
  2968. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2969. }
  2970. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2971. {
  2972. struct list_head splice;
  2973. struct btrfs_ordered_extent *ordered;
  2974. struct inode *inode;
  2975. INIT_LIST_HEAD(&splice);
  2976. spin_lock(&root->fs_info->ordered_extent_lock);
  2977. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2978. while (!list_empty(&splice)) {
  2979. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2980. root_extent_list);
  2981. list_del_init(&ordered->root_extent_list);
  2982. atomic_inc(&ordered->refs);
  2983. /* the inode may be getting freed (in sys_unlink path). */
  2984. inode = igrab(ordered->inode);
  2985. spin_unlock(&root->fs_info->ordered_extent_lock);
  2986. if (inode)
  2987. iput(inode);
  2988. atomic_set(&ordered->refs, 1);
  2989. btrfs_put_ordered_extent(ordered);
  2990. spin_lock(&root->fs_info->ordered_extent_lock);
  2991. }
  2992. spin_unlock(&root->fs_info->ordered_extent_lock);
  2993. }
  2994. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2995. struct btrfs_root *root)
  2996. {
  2997. struct rb_node *node;
  2998. struct btrfs_delayed_ref_root *delayed_refs;
  2999. struct btrfs_delayed_ref_node *ref;
  3000. int ret = 0;
  3001. delayed_refs = &trans->delayed_refs;
  3002. spin_lock(&delayed_refs->lock);
  3003. if (delayed_refs->num_entries == 0) {
  3004. spin_unlock(&delayed_refs->lock);
  3005. printk(KERN_INFO "delayed_refs has NO entry\n");
  3006. return ret;
  3007. }
  3008. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3009. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3010. atomic_set(&ref->refs, 1);
  3011. if (btrfs_delayed_ref_is_head(ref)) {
  3012. struct btrfs_delayed_ref_head *head;
  3013. head = btrfs_delayed_node_to_head(ref);
  3014. if (!mutex_trylock(&head->mutex)) {
  3015. atomic_inc(&ref->refs);
  3016. spin_unlock(&delayed_refs->lock);
  3017. /* Need to wait for the delayed ref to run */
  3018. mutex_lock(&head->mutex);
  3019. mutex_unlock(&head->mutex);
  3020. btrfs_put_delayed_ref(ref);
  3021. spin_lock(&delayed_refs->lock);
  3022. continue;
  3023. }
  3024. kfree(head->extent_op);
  3025. delayed_refs->num_heads--;
  3026. if (list_empty(&head->cluster))
  3027. delayed_refs->num_heads_ready--;
  3028. list_del_init(&head->cluster);
  3029. }
  3030. ref->in_tree = 0;
  3031. rb_erase(&ref->rb_node, &delayed_refs->root);
  3032. delayed_refs->num_entries--;
  3033. spin_unlock(&delayed_refs->lock);
  3034. btrfs_put_delayed_ref(ref);
  3035. cond_resched();
  3036. spin_lock(&delayed_refs->lock);
  3037. }
  3038. spin_unlock(&delayed_refs->lock);
  3039. return ret;
  3040. }
  3041. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3042. {
  3043. struct btrfs_pending_snapshot *snapshot;
  3044. struct list_head splice;
  3045. INIT_LIST_HEAD(&splice);
  3046. list_splice_init(&t->pending_snapshots, &splice);
  3047. while (!list_empty(&splice)) {
  3048. snapshot = list_entry(splice.next,
  3049. struct btrfs_pending_snapshot,
  3050. list);
  3051. list_del_init(&snapshot->list);
  3052. kfree(snapshot);
  3053. }
  3054. }
  3055. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3056. {
  3057. struct btrfs_inode *btrfs_inode;
  3058. struct list_head splice;
  3059. INIT_LIST_HEAD(&splice);
  3060. spin_lock(&root->fs_info->delalloc_lock);
  3061. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3062. while (!list_empty(&splice)) {
  3063. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3064. delalloc_inodes);
  3065. list_del_init(&btrfs_inode->delalloc_inodes);
  3066. btrfs_invalidate_inodes(btrfs_inode->root);
  3067. }
  3068. spin_unlock(&root->fs_info->delalloc_lock);
  3069. }
  3070. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3071. struct extent_io_tree *dirty_pages,
  3072. int mark)
  3073. {
  3074. int ret;
  3075. struct page *page;
  3076. struct inode *btree_inode = root->fs_info->btree_inode;
  3077. struct extent_buffer *eb;
  3078. u64 start = 0;
  3079. u64 end;
  3080. u64 offset;
  3081. unsigned long index;
  3082. while (1) {
  3083. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3084. mark);
  3085. if (ret)
  3086. break;
  3087. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3088. while (start <= end) {
  3089. index = start >> PAGE_CACHE_SHIFT;
  3090. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3091. page = find_get_page(btree_inode->i_mapping, index);
  3092. if (!page)
  3093. continue;
  3094. offset = page_offset(page);
  3095. spin_lock(&dirty_pages->buffer_lock);
  3096. eb = radix_tree_lookup(
  3097. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3098. offset >> PAGE_CACHE_SHIFT);
  3099. spin_unlock(&dirty_pages->buffer_lock);
  3100. if (eb)
  3101. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3102. &eb->bflags);
  3103. if (PageWriteback(page))
  3104. end_page_writeback(page);
  3105. lock_page(page);
  3106. if (PageDirty(page)) {
  3107. clear_page_dirty_for_io(page);
  3108. spin_lock_irq(&page->mapping->tree_lock);
  3109. radix_tree_tag_clear(&page->mapping->page_tree,
  3110. page_index(page),
  3111. PAGECACHE_TAG_DIRTY);
  3112. spin_unlock_irq(&page->mapping->tree_lock);
  3113. }
  3114. unlock_page(page);
  3115. page_cache_release(page);
  3116. }
  3117. }
  3118. return ret;
  3119. }
  3120. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3121. struct extent_io_tree *pinned_extents)
  3122. {
  3123. struct extent_io_tree *unpin;
  3124. u64 start;
  3125. u64 end;
  3126. int ret;
  3127. bool loop = true;
  3128. unpin = pinned_extents;
  3129. again:
  3130. while (1) {
  3131. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3132. EXTENT_DIRTY);
  3133. if (ret)
  3134. break;
  3135. /* opt_discard */
  3136. if (btrfs_test_opt(root, DISCARD))
  3137. ret = btrfs_error_discard_extent(root, start,
  3138. end + 1 - start,
  3139. NULL);
  3140. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3141. btrfs_error_unpin_extent_range(root, start, end);
  3142. cond_resched();
  3143. }
  3144. if (loop) {
  3145. if (unpin == &root->fs_info->freed_extents[0])
  3146. unpin = &root->fs_info->freed_extents[1];
  3147. else
  3148. unpin = &root->fs_info->freed_extents[0];
  3149. loop = false;
  3150. goto again;
  3151. }
  3152. return 0;
  3153. }
  3154. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3155. struct btrfs_root *root)
  3156. {
  3157. btrfs_destroy_delayed_refs(cur_trans, root);
  3158. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3159. cur_trans->dirty_pages.dirty_bytes);
  3160. /* FIXME: cleanup wait for commit */
  3161. cur_trans->in_commit = 1;
  3162. cur_trans->blocked = 1;
  3163. wake_up(&root->fs_info->transaction_blocked_wait);
  3164. cur_trans->blocked = 0;
  3165. wake_up(&root->fs_info->transaction_wait);
  3166. cur_trans->commit_done = 1;
  3167. wake_up(&cur_trans->commit_wait);
  3168. btrfs_destroy_delayed_inodes(root);
  3169. btrfs_assert_delayed_root_empty(root);
  3170. btrfs_destroy_pending_snapshots(cur_trans);
  3171. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3172. EXTENT_DIRTY);
  3173. btrfs_destroy_pinned_extent(root,
  3174. root->fs_info->pinned_extents);
  3175. /*
  3176. memset(cur_trans, 0, sizeof(*cur_trans));
  3177. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3178. */
  3179. }
  3180. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3181. {
  3182. struct btrfs_transaction *t;
  3183. LIST_HEAD(list);
  3184. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3185. spin_lock(&root->fs_info->trans_lock);
  3186. list_splice_init(&root->fs_info->trans_list, &list);
  3187. root->fs_info->trans_no_join = 1;
  3188. spin_unlock(&root->fs_info->trans_lock);
  3189. while (!list_empty(&list)) {
  3190. t = list_entry(list.next, struct btrfs_transaction, list);
  3191. if (!t)
  3192. break;
  3193. btrfs_destroy_ordered_operations(root);
  3194. btrfs_destroy_ordered_extents(root);
  3195. btrfs_destroy_delayed_refs(t, root);
  3196. btrfs_block_rsv_release(root,
  3197. &root->fs_info->trans_block_rsv,
  3198. t->dirty_pages.dirty_bytes);
  3199. /* FIXME: cleanup wait for commit */
  3200. t->in_commit = 1;
  3201. t->blocked = 1;
  3202. smp_mb();
  3203. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3204. wake_up(&root->fs_info->transaction_blocked_wait);
  3205. t->blocked = 0;
  3206. smp_mb();
  3207. if (waitqueue_active(&root->fs_info->transaction_wait))
  3208. wake_up(&root->fs_info->transaction_wait);
  3209. t->commit_done = 1;
  3210. smp_mb();
  3211. if (waitqueue_active(&t->commit_wait))
  3212. wake_up(&t->commit_wait);
  3213. btrfs_destroy_delayed_inodes(root);
  3214. btrfs_assert_delayed_root_empty(root);
  3215. btrfs_destroy_pending_snapshots(t);
  3216. btrfs_destroy_delalloc_inodes(root);
  3217. spin_lock(&root->fs_info->trans_lock);
  3218. root->fs_info->running_transaction = NULL;
  3219. spin_unlock(&root->fs_info->trans_lock);
  3220. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3221. EXTENT_DIRTY);
  3222. btrfs_destroy_pinned_extent(root,
  3223. root->fs_info->pinned_extents);
  3224. atomic_set(&t->use_count, 0);
  3225. list_del_init(&t->list);
  3226. memset(t, 0, sizeof(*t));
  3227. kmem_cache_free(btrfs_transaction_cachep, t);
  3228. }
  3229. spin_lock(&root->fs_info->trans_lock);
  3230. root->fs_info->trans_no_join = 0;
  3231. spin_unlock(&root->fs_info->trans_lock);
  3232. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3233. return 0;
  3234. }
  3235. static struct extent_io_ops btree_extent_io_ops = {
  3236. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3237. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3238. .readpage_io_failed_hook = btree_io_failed_hook,
  3239. .submit_bio_hook = btree_submit_bio_hook,
  3240. /* note we're sharing with inode.c for the merge bio hook */
  3241. .merge_bio_hook = btrfs_merge_bio_hook,
  3242. };