ide-dma.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032
  1. /*
  2. * linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000
  3. *
  4. * Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org>
  5. * May be copied or modified under the terms of the GNU General Public License
  6. */
  7. /*
  8. * Special Thanks to Mark for his Six years of work.
  9. *
  10. * Copyright (c) 1995-1998 Mark Lord
  11. * May be copied or modified under the terms of the GNU General Public License
  12. */
  13. /*
  14. * This module provides support for the bus-master IDE DMA functions
  15. * of various PCI chipsets, including the Intel PIIX (i82371FB for
  16. * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and
  17. * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset)
  18. * ("PIIX" stands for "PCI ISA IDE Xcellerator").
  19. *
  20. * Pretty much the same code works for other IDE PCI bus-mastering chipsets.
  21. *
  22. * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
  23. *
  24. * By default, DMA support is prepared for use, but is currently enabled only
  25. * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single),
  26. * or which are recognized as "good" (see table below). Drives with only mode0
  27. * or mode1 (multi/single) DMA should also work with this chipset/driver
  28. * (eg. MC2112A) but are not enabled by default.
  29. *
  30. * Use "hdparm -i" to view modes supported by a given drive.
  31. *
  32. * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling
  33. * DMA support, but must be (re-)compiled against this kernel version or later.
  34. *
  35. * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting.
  36. * If problems arise, ide.c will disable DMA operation after a few retries.
  37. * This error recovery mechanism works and has been extremely well exercised.
  38. *
  39. * IDE drives, depending on their vintage, may support several different modes
  40. * of DMA operation. The boot-time modes are indicated with a "*" in
  41. * the "hdparm -i" listing, and can be changed with *knowledgeable* use of
  42. * the "hdparm -X" feature. There is seldom a need to do this, as drives
  43. * normally power-up with their "best" PIO/DMA modes enabled.
  44. *
  45. * Testing has been done with a rather extensive number of drives,
  46. * with Quantum & Western Digital models generally outperforming the pack,
  47. * and Fujitsu & Conner (and some Seagate which are really Conner) drives
  48. * showing more lackluster throughput.
  49. *
  50. * Keep an eye on /var/adm/messages for "DMA disabled" messages.
  51. *
  52. * Some people have reported trouble with Intel Zappa motherboards.
  53. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0,
  54. * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe
  55. * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this).
  56. *
  57. * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
  58. * fixing the problem with the BIOS on some Acer motherboards.
  59. *
  60. * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
  61. * "TX" chipset compatibility and for providing patches for the "TX" chipset.
  62. *
  63. * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
  64. * at generic DMA -- his patches were referred to when preparing this code.
  65. *
  66. * Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
  67. * for supplying a Promise UDMA board & WD UDMA drive for this work!
  68. *
  69. * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports.
  70. *
  71. * ATA-66/100 and recovery functions, I forgot the rest......
  72. *
  73. */
  74. #include <linux/module.h>
  75. #include <linux/types.h>
  76. #include <linux/kernel.h>
  77. #include <linux/timer.h>
  78. #include <linux/mm.h>
  79. #include <linux/interrupt.h>
  80. #include <linux/pci.h>
  81. #include <linux/init.h>
  82. #include <linux/ide.h>
  83. #include <linux/delay.h>
  84. #include <linux/scatterlist.h>
  85. #include <asm/io.h>
  86. #include <asm/irq.h>
  87. static const struct drive_list_entry drive_whitelist [] = {
  88. { "Micropolis 2112A" , NULL },
  89. { "CONNER CTMA 4000" , NULL },
  90. { "CONNER CTT8000-A" , NULL },
  91. { "ST34342A" , NULL },
  92. { NULL , NULL }
  93. };
  94. static const struct drive_list_entry drive_blacklist [] = {
  95. { "WDC AC11000H" , NULL },
  96. { "WDC AC22100H" , NULL },
  97. { "WDC AC32500H" , NULL },
  98. { "WDC AC33100H" , NULL },
  99. { "WDC AC31600H" , NULL },
  100. { "WDC AC32100H" , "24.09P07" },
  101. { "WDC AC23200L" , "21.10N21" },
  102. { "Compaq CRD-8241B" , NULL },
  103. { "CRD-8400B" , NULL },
  104. { "CRD-8480B", NULL },
  105. { "CRD-8482B", NULL },
  106. { "CRD-84" , NULL },
  107. { "SanDisk SDP3B" , NULL },
  108. { "SanDisk SDP3B-64" , NULL },
  109. { "SANYO CD-ROM CRD" , NULL },
  110. { "HITACHI CDR-8" , NULL },
  111. { "HITACHI CDR-8335" , NULL },
  112. { "HITACHI CDR-8435" , NULL },
  113. { "Toshiba CD-ROM XM-6202B" , NULL },
  114. { "TOSHIBA CD-ROM XM-1702BC", NULL },
  115. { "CD-532E-A" , NULL },
  116. { "E-IDE CD-ROM CR-840", NULL },
  117. { "CD-ROM Drive/F5A", NULL },
  118. { "WPI CDD-820", NULL },
  119. { "SAMSUNG CD-ROM SC-148C", NULL },
  120. { "SAMSUNG CD-ROM SC", NULL },
  121. { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL },
  122. { "_NEC DV5800A", NULL },
  123. { "SAMSUNG CD-ROM SN-124", "N001" },
  124. { "Seagate STT20000A", NULL },
  125. { NULL , NULL }
  126. };
  127. /**
  128. * ide_dma_intr - IDE DMA interrupt handler
  129. * @drive: the drive the interrupt is for
  130. *
  131. * Handle an interrupt completing a read/write DMA transfer on an
  132. * IDE device
  133. */
  134. ide_startstop_t ide_dma_intr (ide_drive_t *drive)
  135. {
  136. u8 stat = 0, dma_stat = 0;
  137. dma_stat = HWIF(drive)->ide_dma_end(drive);
  138. stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */
  139. if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {
  140. if (!dma_stat) {
  141. struct request *rq = HWGROUP(drive)->rq;
  142. if (rq->rq_disk) {
  143. ide_driver_t *drv;
  144. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  145. drv->end_request(drive, 1, rq->nr_sectors);
  146. } else
  147. ide_end_request(drive, 1, rq->nr_sectors);
  148. return ide_stopped;
  149. }
  150. printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n",
  151. drive->name, dma_stat);
  152. }
  153. return ide_error(drive, "dma_intr", stat);
  154. }
  155. EXPORT_SYMBOL_GPL(ide_dma_intr);
  156. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  157. /**
  158. * ide_build_sglist - map IDE scatter gather for DMA I/O
  159. * @drive: the drive to build the DMA table for
  160. * @rq: the request holding the sg list
  161. *
  162. * Perform the PCI mapping magic necessary to access the source or
  163. * target buffers of a request via PCI DMA. The lower layers of the
  164. * kernel provide the necessary cache management so that we can
  165. * operate in a portable fashion
  166. */
  167. int ide_build_sglist(ide_drive_t *drive, struct request *rq)
  168. {
  169. ide_hwif_t *hwif = HWIF(drive);
  170. struct scatterlist *sg = hwif->sg_table;
  171. BUG_ON((rq->cmd_type == REQ_TYPE_ATA_TASKFILE) && rq->nr_sectors > 256);
  172. ide_map_sg(drive, rq);
  173. if (rq_data_dir(rq) == READ)
  174. hwif->sg_dma_direction = PCI_DMA_FROMDEVICE;
  175. else
  176. hwif->sg_dma_direction = PCI_DMA_TODEVICE;
  177. return pci_map_sg(hwif->pci_dev, sg, hwif->sg_nents, hwif->sg_dma_direction);
  178. }
  179. EXPORT_SYMBOL_GPL(ide_build_sglist);
  180. /**
  181. * ide_build_dmatable - build IDE DMA table
  182. *
  183. * ide_build_dmatable() prepares a dma request. We map the command
  184. * to get the pci bus addresses of the buffers and then build up
  185. * the PRD table that the IDE layer wants to be fed. The code
  186. * knows about the 64K wrap bug in the CS5530.
  187. *
  188. * Returns the number of built PRD entries if all went okay,
  189. * returns 0 otherwise.
  190. *
  191. * May also be invoked from trm290.c
  192. */
  193. int ide_build_dmatable (ide_drive_t *drive, struct request *rq)
  194. {
  195. ide_hwif_t *hwif = HWIF(drive);
  196. unsigned int *table = hwif->dmatable_cpu;
  197. unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0;
  198. unsigned int count = 0;
  199. int i;
  200. struct scatterlist *sg;
  201. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  202. if (!i)
  203. return 0;
  204. sg = hwif->sg_table;
  205. while (i) {
  206. u32 cur_addr;
  207. u32 cur_len;
  208. cur_addr = sg_dma_address(sg);
  209. cur_len = sg_dma_len(sg);
  210. /*
  211. * Fill in the dma table, without crossing any 64kB boundaries.
  212. * Most hardware requires 16-bit alignment of all blocks,
  213. * but the trm290 requires 32-bit alignment.
  214. */
  215. while (cur_len) {
  216. if (count++ >= PRD_ENTRIES) {
  217. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  218. goto use_pio_instead;
  219. } else {
  220. u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff);
  221. if (bcount > cur_len)
  222. bcount = cur_len;
  223. *table++ = cpu_to_le32(cur_addr);
  224. xcount = bcount & 0xffff;
  225. if (is_trm290)
  226. xcount = ((xcount >> 2) - 1) << 16;
  227. if (xcount == 0x0000) {
  228. /*
  229. * Most chipsets correctly interpret a length of 0x0000 as 64KB,
  230. * but at least one (e.g. CS5530) misinterprets it as zero (!).
  231. * So here we break the 64KB entry into two 32KB entries instead.
  232. */
  233. if (count++ >= PRD_ENTRIES) {
  234. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  235. goto use_pio_instead;
  236. }
  237. *table++ = cpu_to_le32(0x8000);
  238. *table++ = cpu_to_le32(cur_addr + 0x8000);
  239. xcount = 0x8000;
  240. }
  241. *table++ = cpu_to_le32(xcount);
  242. cur_addr += bcount;
  243. cur_len -= bcount;
  244. }
  245. }
  246. sg++;
  247. i--;
  248. }
  249. if (count) {
  250. if (!is_trm290)
  251. *--table |= cpu_to_le32(0x80000000);
  252. return count;
  253. }
  254. printk(KERN_ERR "%s: empty DMA table?\n", drive->name);
  255. use_pio_instead:
  256. pci_unmap_sg(hwif->pci_dev,
  257. hwif->sg_table,
  258. hwif->sg_nents,
  259. hwif->sg_dma_direction);
  260. return 0; /* revert to PIO for this request */
  261. }
  262. EXPORT_SYMBOL_GPL(ide_build_dmatable);
  263. /**
  264. * ide_destroy_dmatable - clean up DMA mapping
  265. * @drive: The drive to unmap
  266. *
  267. * Teardown mappings after DMA has completed. This must be called
  268. * after the completion of each use of ide_build_dmatable and before
  269. * the next use of ide_build_dmatable. Failure to do so will cause
  270. * an oops as only one mapping can be live for each target at a given
  271. * time.
  272. */
  273. void ide_destroy_dmatable (ide_drive_t *drive)
  274. {
  275. struct pci_dev *dev = HWIF(drive)->pci_dev;
  276. struct scatterlist *sg = HWIF(drive)->sg_table;
  277. int nents = HWIF(drive)->sg_nents;
  278. pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction);
  279. }
  280. EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
  281. /**
  282. * config_drive_for_dma - attempt to activate IDE DMA
  283. * @drive: the drive to place in DMA mode
  284. *
  285. * If the drive supports at least mode 2 DMA or UDMA of any kind
  286. * then attempt to place it into DMA mode. Drives that are known to
  287. * support DMA but predate the DMA properties or that are known
  288. * to have DMA handling bugs are also set up appropriately based
  289. * on the good/bad drive lists.
  290. */
  291. static int config_drive_for_dma (ide_drive_t *drive)
  292. {
  293. ide_hwif_t *hwif = drive->hwif;
  294. struct hd_driveid *id = drive->id;
  295. /* consult the list of known "bad" drives */
  296. if (__ide_dma_bad_drive(drive))
  297. return -1;
  298. if (drive->media != ide_disk && hwif->atapi_dma == 0)
  299. return -1;
  300. if ((id->capability & 1) && drive->autodma) {
  301. /*
  302. * Enable DMA on any drive that has
  303. * UltraDMA (mode 0/1/2/3/4/5/6) enabled
  304. */
  305. if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f))
  306. return 0;
  307. /*
  308. * Enable DMA on any drive that has mode2 DMA
  309. * (multi or single) enabled
  310. */
  311. if (id->field_valid & 2) /* regular DMA */
  312. if ((id->dma_mword & 0x404) == 0x404 ||
  313. (id->dma_1word & 0x404) == 0x404)
  314. return 0;
  315. /* Consult the list of known "good" drives */
  316. if (__ide_dma_good_drive(drive))
  317. return 0;
  318. }
  319. return -1;
  320. }
  321. /**
  322. * dma_timer_expiry - handle a DMA timeout
  323. * @drive: Drive that timed out
  324. *
  325. * An IDE DMA transfer timed out. In the event of an error we ask
  326. * the driver to resolve the problem, if a DMA transfer is still
  327. * in progress we continue to wait (arguably we need to add a
  328. * secondary 'I don't care what the drive thinks' timeout here)
  329. * Finally if we have an interrupt we let it complete the I/O.
  330. * But only one time - we clear expiry and if it's still not
  331. * completed after WAIT_CMD, we error and retry in PIO.
  332. * This can occur if an interrupt is lost or due to hang or bugs.
  333. */
  334. static int dma_timer_expiry (ide_drive_t *drive)
  335. {
  336. ide_hwif_t *hwif = HWIF(drive);
  337. u8 dma_stat = hwif->INB(hwif->dma_status);
  338. printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n",
  339. drive->name, dma_stat);
  340. if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
  341. return WAIT_CMD;
  342. HWGROUP(drive)->expiry = NULL; /* one free ride for now */
  343. /* 1 dmaing, 2 error, 4 intr */
  344. if (dma_stat & 2) /* ERROR */
  345. return -1;
  346. if (dma_stat & 1) /* DMAing */
  347. return WAIT_CMD;
  348. if (dma_stat & 4) /* Got an Interrupt */
  349. return WAIT_CMD;
  350. return 0; /* Status is unknown -- reset the bus */
  351. }
  352. /**
  353. * ide_dma_host_off - Generic DMA kill
  354. * @drive: drive to control
  355. *
  356. * Perform the generic IDE controller DMA off operation. This
  357. * works for most IDE bus mastering controllers
  358. */
  359. void ide_dma_host_off(ide_drive_t *drive)
  360. {
  361. ide_hwif_t *hwif = HWIF(drive);
  362. u8 unit = (drive->select.b.unit & 0x01);
  363. u8 dma_stat = hwif->INB(hwif->dma_status);
  364. hwif->OUTB((dma_stat & ~(1<<(5+unit))), hwif->dma_status);
  365. }
  366. EXPORT_SYMBOL(ide_dma_host_off);
  367. /**
  368. * ide_dma_off_quietly - Generic DMA kill
  369. * @drive: drive to control
  370. *
  371. * Turn off the current DMA on this IDE controller.
  372. */
  373. void ide_dma_off_quietly(ide_drive_t *drive)
  374. {
  375. drive->using_dma = 0;
  376. ide_toggle_bounce(drive, 0);
  377. drive->hwif->dma_host_off(drive);
  378. }
  379. EXPORT_SYMBOL(ide_dma_off_quietly);
  380. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
  381. /**
  382. * ide_dma_off - disable DMA on a device
  383. * @drive: drive to disable DMA on
  384. *
  385. * Disable IDE DMA for a device on this IDE controller.
  386. * Inform the user that DMA has been disabled.
  387. */
  388. void ide_dma_off(ide_drive_t *drive)
  389. {
  390. printk(KERN_INFO "%s: DMA disabled\n", drive->name);
  391. drive->hwif->dma_off_quietly(drive);
  392. }
  393. EXPORT_SYMBOL(ide_dma_off);
  394. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  395. /**
  396. * ide_dma_host_on - Enable DMA on a host
  397. * @drive: drive to enable for DMA
  398. *
  399. * Enable DMA on an IDE controller following generic bus mastering
  400. * IDE controller behaviour
  401. */
  402. void ide_dma_host_on(ide_drive_t *drive)
  403. {
  404. if (drive->using_dma) {
  405. ide_hwif_t *hwif = HWIF(drive);
  406. u8 unit = (drive->select.b.unit & 0x01);
  407. u8 dma_stat = hwif->INB(hwif->dma_status);
  408. hwif->OUTB((dma_stat|(1<<(5+unit))), hwif->dma_status);
  409. }
  410. }
  411. EXPORT_SYMBOL(ide_dma_host_on);
  412. /**
  413. * __ide_dma_on - Enable DMA on a device
  414. * @drive: drive to enable DMA on
  415. *
  416. * Enable IDE DMA for a device on this IDE controller.
  417. */
  418. int __ide_dma_on (ide_drive_t *drive)
  419. {
  420. /* consult the list of known "bad" drives */
  421. if (__ide_dma_bad_drive(drive))
  422. return 1;
  423. drive->using_dma = 1;
  424. ide_toggle_bounce(drive, 1);
  425. drive->hwif->dma_host_on(drive);
  426. return 0;
  427. }
  428. EXPORT_SYMBOL(__ide_dma_on);
  429. /**
  430. * ide_dma_setup - begin a DMA phase
  431. * @drive: target device
  432. *
  433. * Build an IDE DMA PRD (IDE speak for scatter gather table)
  434. * and then set up the DMA transfer registers for a device
  435. * that follows generic IDE PCI DMA behaviour. Controllers can
  436. * override this function if they need to
  437. *
  438. * Returns 0 on success. If a PIO fallback is required then 1
  439. * is returned.
  440. */
  441. int ide_dma_setup(ide_drive_t *drive)
  442. {
  443. ide_hwif_t *hwif = drive->hwif;
  444. struct request *rq = HWGROUP(drive)->rq;
  445. unsigned int reading;
  446. u8 dma_stat;
  447. if (rq_data_dir(rq))
  448. reading = 0;
  449. else
  450. reading = 1 << 3;
  451. /* fall back to pio! */
  452. if (!ide_build_dmatable(drive, rq)) {
  453. ide_map_sg(drive, rq);
  454. return 1;
  455. }
  456. /* PRD table */
  457. if (hwif->mmio)
  458. writel(hwif->dmatable_dma, (void __iomem *)hwif->dma_prdtable);
  459. else
  460. outl(hwif->dmatable_dma, hwif->dma_prdtable);
  461. /* specify r/w */
  462. hwif->OUTB(reading, hwif->dma_command);
  463. /* read dma_status for INTR & ERROR flags */
  464. dma_stat = hwif->INB(hwif->dma_status);
  465. /* clear INTR & ERROR flags */
  466. hwif->OUTB(dma_stat|6, hwif->dma_status);
  467. drive->waiting_for_dma = 1;
  468. return 0;
  469. }
  470. EXPORT_SYMBOL_GPL(ide_dma_setup);
  471. static void ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  472. {
  473. /* issue cmd to drive */
  474. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry);
  475. }
  476. void ide_dma_start(ide_drive_t *drive)
  477. {
  478. ide_hwif_t *hwif = HWIF(drive);
  479. u8 dma_cmd = hwif->INB(hwif->dma_command);
  480. /* Note that this is done *after* the cmd has
  481. * been issued to the drive, as per the BM-IDE spec.
  482. * The Promise Ultra33 doesn't work correctly when
  483. * we do this part before issuing the drive cmd.
  484. */
  485. /* start DMA */
  486. hwif->OUTB(dma_cmd|1, hwif->dma_command);
  487. hwif->dma = 1;
  488. wmb();
  489. }
  490. EXPORT_SYMBOL_GPL(ide_dma_start);
  491. /* returns 1 on error, 0 otherwise */
  492. int __ide_dma_end (ide_drive_t *drive)
  493. {
  494. ide_hwif_t *hwif = HWIF(drive);
  495. u8 dma_stat = 0, dma_cmd = 0;
  496. drive->waiting_for_dma = 0;
  497. /* get dma_command mode */
  498. dma_cmd = hwif->INB(hwif->dma_command);
  499. /* stop DMA */
  500. hwif->OUTB(dma_cmd&~1, hwif->dma_command);
  501. /* get DMA status */
  502. dma_stat = hwif->INB(hwif->dma_status);
  503. /* clear the INTR & ERROR bits */
  504. hwif->OUTB(dma_stat|6, hwif->dma_status);
  505. /* purge DMA mappings */
  506. ide_destroy_dmatable(drive);
  507. /* verify good DMA status */
  508. hwif->dma = 0;
  509. wmb();
  510. return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0;
  511. }
  512. EXPORT_SYMBOL(__ide_dma_end);
  513. /* returns 1 if dma irq issued, 0 otherwise */
  514. static int __ide_dma_test_irq(ide_drive_t *drive)
  515. {
  516. ide_hwif_t *hwif = HWIF(drive);
  517. u8 dma_stat = hwif->INB(hwif->dma_status);
  518. #if 0 /* do not set unless you know what you are doing */
  519. if (dma_stat & 4) {
  520. u8 stat = hwif->INB(IDE_STATUS_REG);
  521. hwif->OUTB(hwif->dma_status, dma_stat & 0xE4);
  522. }
  523. #endif
  524. /* return 1 if INTR asserted */
  525. if ((dma_stat & 4) == 4)
  526. return 1;
  527. if (!drive->waiting_for_dma)
  528. printk(KERN_WARNING "%s: (%s) called while not waiting\n",
  529. drive->name, __FUNCTION__);
  530. return 0;
  531. }
  532. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
  533. int __ide_dma_bad_drive (ide_drive_t *drive)
  534. {
  535. struct hd_driveid *id = drive->id;
  536. int blacklist = ide_in_drive_list(id, drive_blacklist);
  537. if (blacklist) {
  538. printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
  539. drive->name, id->model);
  540. return blacklist;
  541. }
  542. return 0;
  543. }
  544. EXPORT_SYMBOL(__ide_dma_bad_drive);
  545. int __ide_dma_good_drive (ide_drive_t *drive)
  546. {
  547. struct hd_driveid *id = drive->id;
  548. return ide_in_drive_list(id, drive_whitelist);
  549. }
  550. EXPORT_SYMBOL(__ide_dma_good_drive);
  551. static const u8 xfer_mode_bases[] = {
  552. XFER_UDMA_0,
  553. XFER_MW_DMA_0,
  554. XFER_SW_DMA_0,
  555. };
  556. static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base)
  557. {
  558. struct hd_driveid *id = drive->id;
  559. ide_hwif_t *hwif = drive->hwif;
  560. unsigned int mask = 0;
  561. switch(base) {
  562. case XFER_UDMA_0:
  563. if ((id->field_valid & 4) == 0)
  564. break;
  565. mask = id->dma_ultra & hwif->ultra_mask;
  566. if (hwif->udma_filter)
  567. mask &= hwif->udma_filter(drive);
  568. if ((mask & 0x78) && (eighty_ninty_three(drive) == 0))
  569. mask &= 0x07;
  570. break;
  571. case XFER_MW_DMA_0:
  572. if ((id->field_valid & 2) == 0)
  573. break;
  574. if (hwif->mdma_filter)
  575. mask = hwif->mdma_filter(drive);
  576. else
  577. mask = hwif->mwdma_mask;
  578. mask &= id->dma_mword;
  579. break;
  580. case XFER_SW_DMA_0:
  581. if (id->field_valid & 2) {
  582. mask = id->dma_1word & hwif->swdma_mask;
  583. } else if (id->tDMA) {
  584. /*
  585. * ide_fix_driveid() doesn't convert ->tDMA to the
  586. * CPU endianness so we need to do it here
  587. */
  588. u8 mode = le16_to_cpu(id->tDMA);
  589. /*
  590. * if the mode is valid convert it to the mask
  591. * (the maximum allowed mode is XFER_SW_DMA_2)
  592. */
  593. if (mode <= 2)
  594. mask = ((2 << mode) - 1) & hwif->swdma_mask;
  595. }
  596. break;
  597. default:
  598. BUG();
  599. break;
  600. }
  601. return mask;
  602. }
  603. /**
  604. * ide_max_dma_mode - compute DMA speed
  605. * @drive: IDE device
  606. *
  607. * Checks the drive capabilities and returns the speed to use
  608. * for the DMA transfer. Returns 0 if the drive is incapable
  609. * of DMA transfers.
  610. */
  611. u8 ide_max_dma_mode(ide_drive_t *drive)
  612. {
  613. ide_hwif_t *hwif = drive->hwif;
  614. unsigned int mask;
  615. int x, i;
  616. u8 mode = 0;
  617. if (drive->media != ide_disk && hwif->atapi_dma == 0)
  618. return 0;
  619. for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) {
  620. mask = ide_get_mode_mask(drive, xfer_mode_bases[i]);
  621. x = fls(mask) - 1;
  622. if (x >= 0) {
  623. mode = xfer_mode_bases[i] + x;
  624. break;
  625. }
  626. }
  627. printk(KERN_DEBUG "%s: selected mode 0x%x\n", drive->name, mode);
  628. return mode;
  629. }
  630. EXPORT_SYMBOL_GPL(ide_max_dma_mode);
  631. int ide_tune_dma(ide_drive_t *drive)
  632. {
  633. u8 speed;
  634. if ((drive->id->capability & 1) == 0 || drive->autodma == 0)
  635. return 0;
  636. /* consult the list of known "bad" drives */
  637. if (__ide_dma_bad_drive(drive))
  638. return 0;
  639. speed = ide_max_dma_mode(drive);
  640. if (!speed)
  641. return 0;
  642. if (drive->hwif->speedproc(drive, speed))
  643. return 0;
  644. return 1;
  645. }
  646. EXPORT_SYMBOL_GPL(ide_tune_dma);
  647. void ide_dma_verbose(ide_drive_t *drive)
  648. {
  649. struct hd_driveid *id = drive->id;
  650. ide_hwif_t *hwif = HWIF(drive);
  651. if (id->field_valid & 4) {
  652. if ((id->dma_ultra >> 8) && (id->dma_mword >> 8))
  653. goto bug_dma_off;
  654. if (id->dma_ultra & ((id->dma_ultra >> 8) & hwif->ultra_mask)) {
  655. if (((id->dma_ultra >> 11) & 0x1F) &&
  656. eighty_ninty_three(drive)) {
  657. if ((id->dma_ultra >> 15) & 1) {
  658. printk(", UDMA(mode 7)");
  659. } else if ((id->dma_ultra >> 14) & 1) {
  660. printk(", UDMA(133)");
  661. } else if ((id->dma_ultra >> 13) & 1) {
  662. printk(", UDMA(100)");
  663. } else if ((id->dma_ultra >> 12) & 1) {
  664. printk(", UDMA(66)");
  665. } else if ((id->dma_ultra >> 11) & 1) {
  666. printk(", UDMA(44)");
  667. } else
  668. goto mode_two;
  669. } else {
  670. mode_two:
  671. if ((id->dma_ultra >> 10) & 1) {
  672. printk(", UDMA(33)");
  673. } else if ((id->dma_ultra >> 9) & 1) {
  674. printk(", UDMA(25)");
  675. } else if ((id->dma_ultra >> 8) & 1) {
  676. printk(", UDMA(16)");
  677. }
  678. }
  679. } else {
  680. printk(", (U)DMA"); /* Can be BIOS-enabled! */
  681. }
  682. } else if (id->field_valid & 2) {
  683. if ((id->dma_mword >> 8) && (id->dma_1word >> 8))
  684. goto bug_dma_off;
  685. printk(", DMA");
  686. } else if (id->field_valid & 1) {
  687. goto bug_dma_off;
  688. }
  689. return;
  690. bug_dma_off:
  691. printk(", BUG DMA OFF");
  692. hwif->dma_off_quietly(drive);
  693. return;
  694. }
  695. EXPORT_SYMBOL(ide_dma_verbose);
  696. int ide_set_dma(ide_drive_t *drive)
  697. {
  698. ide_hwif_t *hwif = drive->hwif;
  699. int rc;
  700. rc = hwif->ide_dma_check(drive);
  701. switch(rc) {
  702. case -1: /* DMA needs to be disabled */
  703. hwif->dma_off_quietly(drive);
  704. return -1;
  705. case 0: /* DMA needs to be enabled */
  706. return hwif->ide_dma_on(drive);
  707. case 1: /* DMA setting cannot be changed */
  708. break;
  709. default:
  710. BUG();
  711. break;
  712. }
  713. return rc;
  714. }
  715. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  716. void ide_dma_lost_irq (ide_drive_t *drive)
  717. {
  718. printk("%s: DMA interrupt recovery\n", drive->name);
  719. }
  720. EXPORT_SYMBOL(ide_dma_lost_irq);
  721. void ide_dma_timeout (ide_drive_t *drive)
  722. {
  723. ide_hwif_t *hwif = HWIF(drive);
  724. printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
  725. if (hwif->ide_dma_test_irq(drive))
  726. return;
  727. hwif->ide_dma_end(drive);
  728. }
  729. EXPORT_SYMBOL(ide_dma_timeout);
  730. /*
  731. * Needed for allowing full modular support of ide-driver
  732. */
  733. static int ide_release_dma_engine(ide_hwif_t *hwif)
  734. {
  735. if (hwif->dmatable_cpu) {
  736. pci_free_consistent(hwif->pci_dev,
  737. PRD_ENTRIES * PRD_BYTES,
  738. hwif->dmatable_cpu,
  739. hwif->dmatable_dma);
  740. hwif->dmatable_cpu = NULL;
  741. }
  742. return 1;
  743. }
  744. static int ide_release_iomio_dma(ide_hwif_t *hwif)
  745. {
  746. release_region(hwif->dma_base, 8);
  747. if (hwif->extra_ports)
  748. release_region(hwif->extra_base, hwif->extra_ports);
  749. return 1;
  750. }
  751. /*
  752. * Needed for allowing full modular support of ide-driver
  753. */
  754. int ide_release_dma(ide_hwif_t *hwif)
  755. {
  756. ide_release_dma_engine(hwif);
  757. if (hwif->mmio)
  758. return 1;
  759. else
  760. return ide_release_iomio_dma(hwif);
  761. }
  762. static int ide_allocate_dma_engine(ide_hwif_t *hwif)
  763. {
  764. hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev,
  765. PRD_ENTRIES * PRD_BYTES,
  766. &hwif->dmatable_dma);
  767. if (hwif->dmatable_cpu)
  768. return 0;
  769. printk(KERN_ERR "%s: -- Error, unable to allocate DMA table.\n",
  770. hwif->cds->name);
  771. return 1;
  772. }
  773. static int ide_mapped_mmio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
  774. {
  775. printk(KERN_INFO " %s: MMIO-DMA ", hwif->name);
  776. hwif->dma_base = base;
  777. if(hwif->mate)
  778. hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base;
  779. else
  780. hwif->dma_master = base;
  781. return 0;
  782. }
  783. static int ide_iomio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
  784. {
  785. printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx",
  786. hwif->name, base, base + ports - 1);
  787. if (!request_region(base, ports, hwif->name)) {
  788. printk(" -- Error, ports in use.\n");
  789. return 1;
  790. }
  791. hwif->dma_base = base;
  792. if (hwif->cds->extra) {
  793. hwif->extra_base = base + (hwif->channel ? 8 : 16);
  794. if (!hwif->mate || !hwif->mate->extra_ports) {
  795. if (!request_region(hwif->extra_base,
  796. hwif->cds->extra, hwif->cds->name)) {
  797. printk(" -- Error, extra ports in use.\n");
  798. release_region(base, ports);
  799. return 1;
  800. }
  801. hwif->extra_ports = hwif->cds->extra;
  802. }
  803. }
  804. if(hwif->mate)
  805. hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base:base;
  806. else
  807. hwif->dma_master = base;
  808. return 0;
  809. }
  810. static int ide_dma_iobase(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
  811. {
  812. if (hwif->mmio)
  813. return ide_mapped_mmio_dma(hwif, base,ports);
  814. return ide_iomio_dma(hwif, base, ports);
  815. }
  816. /*
  817. * This can be called for a dynamically installed interface. Don't __init it
  818. */
  819. void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports)
  820. {
  821. if (ide_dma_iobase(hwif, dma_base, num_ports))
  822. return;
  823. if (ide_allocate_dma_engine(hwif)) {
  824. ide_release_dma(hwif);
  825. return;
  826. }
  827. if (!(hwif->dma_command))
  828. hwif->dma_command = hwif->dma_base;
  829. if (!(hwif->dma_vendor1))
  830. hwif->dma_vendor1 = (hwif->dma_base + 1);
  831. if (!(hwif->dma_status))
  832. hwif->dma_status = (hwif->dma_base + 2);
  833. if (!(hwif->dma_vendor3))
  834. hwif->dma_vendor3 = (hwif->dma_base + 3);
  835. if (!(hwif->dma_prdtable))
  836. hwif->dma_prdtable = (hwif->dma_base + 4);
  837. if (!hwif->dma_off_quietly)
  838. hwif->dma_off_quietly = &ide_dma_off_quietly;
  839. if (!hwif->dma_host_off)
  840. hwif->dma_host_off = &ide_dma_host_off;
  841. if (!hwif->ide_dma_on)
  842. hwif->ide_dma_on = &__ide_dma_on;
  843. if (!hwif->dma_host_on)
  844. hwif->dma_host_on = &ide_dma_host_on;
  845. if (!hwif->ide_dma_check)
  846. hwif->ide_dma_check = &config_drive_for_dma;
  847. if (!hwif->dma_setup)
  848. hwif->dma_setup = &ide_dma_setup;
  849. if (!hwif->dma_exec_cmd)
  850. hwif->dma_exec_cmd = &ide_dma_exec_cmd;
  851. if (!hwif->dma_start)
  852. hwif->dma_start = &ide_dma_start;
  853. if (!hwif->ide_dma_end)
  854. hwif->ide_dma_end = &__ide_dma_end;
  855. if (!hwif->ide_dma_test_irq)
  856. hwif->ide_dma_test_irq = &__ide_dma_test_irq;
  857. if (!hwif->dma_timeout)
  858. hwif->dma_timeout = &ide_dma_timeout;
  859. if (!hwif->dma_lost_irq)
  860. hwif->dma_lost_irq = &ide_dma_lost_irq;
  861. if (hwif->chipset != ide_trm290) {
  862. u8 dma_stat = hwif->INB(hwif->dma_status);
  863. printk(", BIOS settings: %s:%s, %s:%s",
  864. hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio",
  865. hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio");
  866. }
  867. printk("\n");
  868. BUG_ON(!hwif->dma_master);
  869. }
  870. EXPORT_SYMBOL_GPL(ide_setup_dma);
  871. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */