main.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181
  1. /*
  2. * Sonics Silicon Backplane
  3. * Subsystem core
  4. *
  5. * Copyright 2005, Broadcom Corporation
  6. * Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include "ssb_private.h"
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/ssb/ssb.h>
  14. #include <linux/ssb/ssb_regs.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/pci.h>
  17. #include <pcmcia/cs_types.h>
  18. #include <pcmcia/cs.h>
  19. #include <pcmcia/cistpl.h>
  20. #include <pcmcia/ds.h>
  21. MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
  22. MODULE_LICENSE("GPL");
  23. /* Temporary list of yet-to-be-attached buses */
  24. static LIST_HEAD(attach_queue);
  25. /* List if running buses */
  26. static LIST_HEAD(buses);
  27. /* Software ID counter */
  28. static unsigned int next_busnumber;
  29. /* buses_mutes locks the two buslists and the next_busnumber.
  30. * Don't lock this directly, but use ssb_buses_[un]lock() below. */
  31. static DEFINE_MUTEX(buses_mutex);
  32. /* There are differences in the codeflow, if the bus is
  33. * initialized from early boot, as various needed services
  34. * are not available early. This is a mechanism to delay
  35. * these initializations to after early boot has finished.
  36. * It's also used to avoid mutex locking, as that's not
  37. * available and needed early. */
  38. static bool ssb_is_early_boot = 1;
  39. static void ssb_buses_lock(void);
  40. static void ssb_buses_unlock(void);
  41. #ifdef CONFIG_SSB_PCIHOST
  42. struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
  43. {
  44. struct ssb_bus *bus;
  45. ssb_buses_lock();
  46. list_for_each_entry(bus, &buses, list) {
  47. if (bus->bustype == SSB_BUSTYPE_PCI &&
  48. bus->host_pci == pdev)
  49. goto found;
  50. }
  51. bus = NULL;
  52. found:
  53. ssb_buses_unlock();
  54. return bus;
  55. }
  56. #endif /* CONFIG_SSB_PCIHOST */
  57. static struct ssb_device *ssb_device_get(struct ssb_device *dev)
  58. {
  59. if (dev)
  60. get_device(dev->dev);
  61. return dev;
  62. }
  63. static void ssb_device_put(struct ssb_device *dev)
  64. {
  65. if (dev)
  66. put_device(dev->dev);
  67. }
  68. static int ssb_bus_resume(struct ssb_bus *bus)
  69. {
  70. int err;
  71. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  72. err = ssb_pcmcia_init(bus);
  73. if (err) {
  74. /* No need to disable XTAL, as we don't have one on PCMCIA. */
  75. return err;
  76. }
  77. ssb_chipco_resume(&bus->chipco);
  78. return 0;
  79. }
  80. static int ssb_device_resume(struct device *dev)
  81. {
  82. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  83. struct ssb_driver *ssb_drv;
  84. struct ssb_bus *bus;
  85. int err = 0;
  86. bus = ssb_dev->bus;
  87. if (bus->suspend_cnt == bus->nr_devices) {
  88. err = ssb_bus_resume(bus);
  89. if (err)
  90. return err;
  91. }
  92. bus->suspend_cnt--;
  93. if (dev->driver) {
  94. ssb_drv = drv_to_ssb_drv(dev->driver);
  95. if (ssb_drv && ssb_drv->resume)
  96. err = ssb_drv->resume(ssb_dev);
  97. if (err)
  98. goto out;
  99. }
  100. out:
  101. return err;
  102. }
  103. static void ssb_bus_suspend(struct ssb_bus *bus, pm_message_t state)
  104. {
  105. ssb_chipco_suspend(&bus->chipco, state);
  106. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  107. /* Reset HW state information in memory, so that HW is
  108. * completely reinitialized on resume. */
  109. bus->mapped_device = NULL;
  110. #ifdef CONFIG_SSB_DRIVER_PCICORE
  111. bus->pcicore.setup_done = 0;
  112. #endif
  113. #ifdef CONFIG_SSB_DEBUG
  114. bus->powered_up = 0;
  115. #endif
  116. }
  117. static int ssb_device_suspend(struct device *dev, pm_message_t state)
  118. {
  119. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  120. struct ssb_driver *ssb_drv;
  121. struct ssb_bus *bus;
  122. int err = 0;
  123. if (dev->driver) {
  124. ssb_drv = drv_to_ssb_drv(dev->driver);
  125. if (ssb_drv && ssb_drv->suspend)
  126. err = ssb_drv->suspend(ssb_dev, state);
  127. if (err)
  128. goto out;
  129. }
  130. bus = ssb_dev->bus;
  131. bus->suspend_cnt++;
  132. if (bus->suspend_cnt == bus->nr_devices) {
  133. /* All devices suspended. Shutdown the bus. */
  134. ssb_bus_suspend(bus, state);
  135. }
  136. out:
  137. return err;
  138. }
  139. #ifdef CONFIG_SSB_PCIHOST
  140. int ssb_devices_freeze(struct ssb_bus *bus)
  141. {
  142. struct ssb_device *dev;
  143. struct ssb_driver *drv;
  144. int err = 0;
  145. int i;
  146. pm_message_t state = PMSG_FREEZE;
  147. /* First check that we are capable to freeze all devices. */
  148. for (i = 0; i < bus->nr_devices; i++) {
  149. dev = &(bus->devices[i]);
  150. if (!dev->dev ||
  151. !dev->dev->driver ||
  152. !device_is_registered(dev->dev))
  153. continue;
  154. drv = drv_to_ssb_drv(dev->dev->driver);
  155. if (!drv)
  156. continue;
  157. if (!drv->suspend) {
  158. /* Nope, can't suspend this one. */
  159. return -EOPNOTSUPP;
  160. }
  161. }
  162. /* Now suspend all devices */
  163. for (i = 0; i < bus->nr_devices; i++) {
  164. dev = &(bus->devices[i]);
  165. if (!dev->dev ||
  166. !dev->dev->driver ||
  167. !device_is_registered(dev->dev))
  168. continue;
  169. drv = drv_to_ssb_drv(dev->dev->driver);
  170. if (!drv)
  171. continue;
  172. err = drv->suspend(dev, state);
  173. if (err) {
  174. ssb_printk(KERN_ERR PFX "Failed to freeze device %s\n",
  175. dev->dev->bus_id);
  176. goto err_unwind;
  177. }
  178. }
  179. return 0;
  180. err_unwind:
  181. for (i--; i >= 0; i--) {
  182. dev = &(bus->devices[i]);
  183. if (!dev->dev ||
  184. !dev->dev->driver ||
  185. !device_is_registered(dev->dev))
  186. continue;
  187. drv = drv_to_ssb_drv(dev->dev->driver);
  188. if (!drv)
  189. continue;
  190. if (drv->resume)
  191. drv->resume(dev);
  192. }
  193. return err;
  194. }
  195. int ssb_devices_thaw(struct ssb_bus *bus)
  196. {
  197. struct ssb_device *dev;
  198. struct ssb_driver *drv;
  199. int err;
  200. int i;
  201. for (i = 0; i < bus->nr_devices; i++) {
  202. dev = &(bus->devices[i]);
  203. if (!dev->dev ||
  204. !dev->dev->driver ||
  205. !device_is_registered(dev->dev))
  206. continue;
  207. drv = drv_to_ssb_drv(dev->dev->driver);
  208. if (!drv)
  209. continue;
  210. if (SSB_WARN_ON(!drv->resume))
  211. continue;
  212. err = drv->resume(dev);
  213. if (err) {
  214. ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
  215. dev->dev->bus_id);
  216. }
  217. }
  218. return 0;
  219. }
  220. #endif /* CONFIG_SSB_PCIHOST */
  221. static void ssb_device_shutdown(struct device *dev)
  222. {
  223. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  224. struct ssb_driver *ssb_drv;
  225. if (!dev->driver)
  226. return;
  227. ssb_drv = drv_to_ssb_drv(dev->driver);
  228. if (ssb_drv && ssb_drv->shutdown)
  229. ssb_drv->shutdown(ssb_dev);
  230. }
  231. static int ssb_device_remove(struct device *dev)
  232. {
  233. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  234. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  235. if (ssb_drv && ssb_drv->remove)
  236. ssb_drv->remove(ssb_dev);
  237. ssb_device_put(ssb_dev);
  238. return 0;
  239. }
  240. static int ssb_device_probe(struct device *dev)
  241. {
  242. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  243. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  244. int err = 0;
  245. ssb_device_get(ssb_dev);
  246. if (ssb_drv && ssb_drv->probe)
  247. err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
  248. if (err)
  249. ssb_device_put(ssb_dev);
  250. return err;
  251. }
  252. static int ssb_match_devid(const struct ssb_device_id *tabid,
  253. const struct ssb_device_id *devid)
  254. {
  255. if ((tabid->vendor != devid->vendor) &&
  256. tabid->vendor != SSB_ANY_VENDOR)
  257. return 0;
  258. if ((tabid->coreid != devid->coreid) &&
  259. tabid->coreid != SSB_ANY_ID)
  260. return 0;
  261. if ((tabid->revision != devid->revision) &&
  262. tabid->revision != SSB_ANY_REV)
  263. return 0;
  264. return 1;
  265. }
  266. static int ssb_bus_match(struct device *dev, struct device_driver *drv)
  267. {
  268. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  269. struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
  270. const struct ssb_device_id *id;
  271. for (id = ssb_drv->id_table;
  272. id->vendor || id->coreid || id->revision;
  273. id++) {
  274. if (ssb_match_devid(id, &ssb_dev->id))
  275. return 1; /* found */
  276. }
  277. return 0;
  278. }
  279. static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
  280. {
  281. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  282. if (!dev)
  283. return -ENODEV;
  284. return add_uevent_var(env,
  285. "MODALIAS=ssb:v%04Xid%04Xrev%02X",
  286. ssb_dev->id.vendor, ssb_dev->id.coreid,
  287. ssb_dev->id.revision);
  288. }
  289. static struct bus_type ssb_bustype = {
  290. .name = "ssb",
  291. .match = ssb_bus_match,
  292. .probe = ssb_device_probe,
  293. .remove = ssb_device_remove,
  294. .shutdown = ssb_device_shutdown,
  295. .suspend = ssb_device_suspend,
  296. .resume = ssb_device_resume,
  297. .uevent = ssb_device_uevent,
  298. };
  299. static void ssb_buses_lock(void)
  300. {
  301. /* See the comment at the ssb_is_early_boot definition */
  302. if (!ssb_is_early_boot)
  303. mutex_lock(&buses_mutex);
  304. }
  305. static void ssb_buses_unlock(void)
  306. {
  307. /* See the comment at the ssb_is_early_boot definition */
  308. if (!ssb_is_early_boot)
  309. mutex_unlock(&buses_mutex);
  310. }
  311. static void ssb_devices_unregister(struct ssb_bus *bus)
  312. {
  313. struct ssb_device *sdev;
  314. int i;
  315. for (i = bus->nr_devices - 1; i >= 0; i--) {
  316. sdev = &(bus->devices[i]);
  317. if (sdev->dev)
  318. device_unregister(sdev->dev);
  319. }
  320. }
  321. void ssb_bus_unregister(struct ssb_bus *bus)
  322. {
  323. ssb_buses_lock();
  324. ssb_devices_unregister(bus);
  325. list_del(&bus->list);
  326. ssb_buses_unlock();
  327. /* ssb_pcmcia_exit(bus); */
  328. ssb_pci_exit(bus);
  329. ssb_iounmap(bus);
  330. }
  331. EXPORT_SYMBOL(ssb_bus_unregister);
  332. static void ssb_release_dev(struct device *dev)
  333. {
  334. struct __ssb_dev_wrapper *devwrap;
  335. devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
  336. kfree(devwrap);
  337. }
  338. static int ssb_devices_register(struct ssb_bus *bus)
  339. {
  340. struct ssb_device *sdev;
  341. struct device *dev;
  342. struct __ssb_dev_wrapper *devwrap;
  343. int i, err = 0;
  344. int dev_idx = 0;
  345. for (i = 0; i < bus->nr_devices; i++) {
  346. sdev = &(bus->devices[i]);
  347. /* We don't register SSB-system devices to the kernel,
  348. * as the drivers for them are built into SSB. */
  349. switch (sdev->id.coreid) {
  350. case SSB_DEV_CHIPCOMMON:
  351. case SSB_DEV_PCI:
  352. case SSB_DEV_PCIE:
  353. case SSB_DEV_PCMCIA:
  354. case SSB_DEV_MIPS:
  355. case SSB_DEV_MIPS_3302:
  356. case SSB_DEV_EXTIF:
  357. continue;
  358. }
  359. devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
  360. if (!devwrap) {
  361. ssb_printk(KERN_ERR PFX
  362. "Could not allocate device\n");
  363. err = -ENOMEM;
  364. goto error;
  365. }
  366. dev = &devwrap->dev;
  367. devwrap->sdev = sdev;
  368. dev->release = ssb_release_dev;
  369. dev->bus = &ssb_bustype;
  370. snprintf(dev->bus_id, sizeof(dev->bus_id),
  371. "ssb%u:%d", bus->busnumber, dev_idx);
  372. switch (bus->bustype) {
  373. case SSB_BUSTYPE_PCI:
  374. #ifdef CONFIG_SSB_PCIHOST
  375. sdev->irq = bus->host_pci->irq;
  376. dev->parent = &bus->host_pci->dev;
  377. sdev->dma_dev = &bus->host_pci->dev;
  378. #endif
  379. break;
  380. case SSB_BUSTYPE_PCMCIA:
  381. #ifdef CONFIG_SSB_PCMCIAHOST
  382. sdev->irq = bus->host_pcmcia->irq.AssignedIRQ;
  383. dev->parent = &bus->host_pcmcia->dev;
  384. sdev->dma_dev = &bus->host_pcmcia->dev;
  385. #endif
  386. break;
  387. case SSB_BUSTYPE_SSB:
  388. sdev->dma_dev = dev;
  389. break;
  390. }
  391. sdev->dev = dev;
  392. err = device_register(dev);
  393. if (err) {
  394. ssb_printk(KERN_ERR PFX
  395. "Could not register %s\n",
  396. dev->bus_id);
  397. /* Set dev to NULL to not unregister
  398. * dev on error unwinding. */
  399. sdev->dev = NULL;
  400. kfree(devwrap);
  401. goto error;
  402. }
  403. dev_idx++;
  404. }
  405. return 0;
  406. error:
  407. /* Unwind the already registered devices. */
  408. ssb_devices_unregister(bus);
  409. return err;
  410. }
  411. /* Needs ssb_buses_lock() */
  412. static int ssb_attach_queued_buses(void)
  413. {
  414. struct ssb_bus *bus, *n;
  415. int err = 0;
  416. int drop_them_all = 0;
  417. list_for_each_entry_safe(bus, n, &attach_queue, list) {
  418. if (drop_them_all) {
  419. list_del(&bus->list);
  420. continue;
  421. }
  422. /* Can't init the PCIcore in ssb_bus_register(), as that
  423. * is too early in boot for embedded systems
  424. * (no udelay() available). So do it here in attach stage.
  425. */
  426. err = ssb_bus_powerup(bus, 0);
  427. if (err)
  428. goto error;
  429. ssb_pcicore_init(&bus->pcicore);
  430. ssb_bus_may_powerdown(bus);
  431. err = ssb_devices_register(bus);
  432. error:
  433. if (err) {
  434. drop_them_all = 1;
  435. list_del(&bus->list);
  436. continue;
  437. }
  438. list_move_tail(&bus->list, &buses);
  439. }
  440. return err;
  441. }
  442. static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
  443. {
  444. struct ssb_bus *bus = dev->bus;
  445. offset += dev->core_index * SSB_CORE_SIZE;
  446. return readw(bus->mmio + offset);
  447. }
  448. static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
  449. {
  450. struct ssb_bus *bus = dev->bus;
  451. offset += dev->core_index * SSB_CORE_SIZE;
  452. return readl(bus->mmio + offset);
  453. }
  454. static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
  455. {
  456. struct ssb_bus *bus = dev->bus;
  457. offset += dev->core_index * SSB_CORE_SIZE;
  458. writew(value, bus->mmio + offset);
  459. }
  460. static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
  461. {
  462. struct ssb_bus *bus = dev->bus;
  463. offset += dev->core_index * SSB_CORE_SIZE;
  464. writel(value, bus->mmio + offset);
  465. }
  466. /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
  467. static const struct ssb_bus_ops ssb_ssb_ops = {
  468. .read16 = ssb_ssb_read16,
  469. .read32 = ssb_ssb_read32,
  470. .write16 = ssb_ssb_write16,
  471. .write32 = ssb_ssb_write32,
  472. };
  473. static int ssb_fetch_invariants(struct ssb_bus *bus,
  474. ssb_invariants_func_t get_invariants)
  475. {
  476. struct ssb_init_invariants iv;
  477. int err;
  478. memset(&iv, 0, sizeof(iv));
  479. err = get_invariants(bus, &iv);
  480. if (err)
  481. goto out;
  482. memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
  483. memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
  484. bus->has_cardbus_slot = iv.has_cardbus_slot;
  485. out:
  486. return err;
  487. }
  488. static int ssb_bus_register(struct ssb_bus *bus,
  489. ssb_invariants_func_t get_invariants,
  490. unsigned long baseaddr)
  491. {
  492. int err;
  493. spin_lock_init(&bus->bar_lock);
  494. INIT_LIST_HEAD(&bus->list);
  495. #ifdef CONFIG_SSB_EMBEDDED
  496. spin_lock_init(&bus->gpio_lock);
  497. #endif
  498. /* Powerup the bus */
  499. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  500. if (err)
  501. goto out;
  502. ssb_buses_lock();
  503. bus->busnumber = next_busnumber;
  504. /* Scan for devices (cores) */
  505. err = ssb_bus_scan(bus, baseaddr);
  506. if (err)
  507. goto err_disable_xtal;
  508. /* Init PCI-host device (if any) */
  509. err = ssb_pci_init(bus);
  510. if (err)
  511. goto err_unmap;
  512. /* Init PCMCIA-host device (if any) */
  513. err = ssb_pcmcia_init(bus);
  514. if (err)
  515. goto err_pci_exit;
  516. /* Initialize basic system devices (if available) */
  517. err = ssb_bus_powerup(bus, 0);
  518. if (err)
  519. goto err_pcmcia_exit;
  520. ssb_chipcommon_init(&bus->chipco);
  521. ssb_mipscore_init(&bus->mipscore);
  522. err = ssb_fetch_invariants(bus, get_invariants);
  523. if (err) {
  524. ssb_bus_may_powerdown(bus);
  525. goto err_pcmcia_exit;
  526. }
  527. ssb_bus_may_powerdown(bus);
  528. /* Queue it for attach.
  529. * See the comment at the ssb_is_early_boot definition. */
  530. list_add_tail(&bus->list, &attach_queue);
  531. if (!ssb_is_early_boot) {
  532. /* This is not early boot, so we must attach the bus now */
  533. err = ssb_attach_queued_buses();
  534. if (err)
  535. goto err_dequeue;
  536. }
  537. next_busnumber++;
  538. ssb_buses_unlock();
  539. out:
  540. return err;
  541. err_dequeue:
  542. list_del(&bus->list);
  543. err_pcmcia_exit:
  544. /* ssb_pcmcia_exit(bus); */
  545. err_pci_exit:
  546. ssb_pci_exit(bus);
  547. err_unmap:
  548. ssb_iounmap(bus);
  549. err_disable_xtal:
  550. ssb_buses_unlock();
  551. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  552. return err;
  553. }
  554. #ifdef CONFIG_SSB_PCIHOST
  555. int ssb_bus_pcibus_register(struct ssb_bus *bus,
  556. struct pci_dev *host_pci)
  557. {
  558. int err;
  559. bus->bustype = SSB_BUSTYPE_PCI;
  560. bus->host_pci = host_pci;
  561. bus->ops = &ssb_pci_ops;
  562. err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
  563. if (!err) {
  564. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  565. "PCI device %s\n", host_pci->dev.bus_id);
  566. }
  567. return err;
  568. }
  569. EXPORT_SYMBOL(ssb_bus_pcibus_register);
  570. #endif /* CONFIG_SSB_PCIHOST */
  571. #ifdef CONFIG_SSB_PCMCIAHOST
  572. int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
  573. struct pcmcia_device *pcmcia_dev,
  574. unsigned long baseaddr)
  575. {
  576. int err;
  577. bus->bustype = SSB_BUSTYPE_PCMCIA;
  578. bus->host_pcmcia = pcmcia_dev;
  579. bus->ops = &ssb_pcmcia_ops;
  580. err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
  581. if (!err) {
  582. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  583. "PCMCIA device %s\n", pcmcia_dev->devname);
  584. }
  585. return err;
  586. }
  587. EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
  588. #endif /* CONFIG_SSB_PCMCIAHOST */
  589. int ssb_bus_ssbbus_register(struct ssb_bus *bus,
  590. unsigned long baseaddr,
  591. ssb_invariants_func_t get_invariants)
  592. {
  593. int err;
  594. bus->bustype = SSB_BUSTYPE_SSB;
  595. bus->ops = &ssb_ssb_ops;
  596. err = ssb_bus_register(bus, get_invariants, baseaddr);
  597. if (!err) {
  598. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
  599. "address 0x%08lX\n", baseaddr);
  600. }
  601. return err;
  602. }
  603. int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
  604. {
  605. drv->drv.name = drv->name;
  606. drv->drv.bus = &ssb_bustype;
  607. drv->drv.owner = owner;
  608. return driver_register(&drv->drv);
  609. }
  610. EXPORT_SYMBOL(__ssb_driver_register);
  611. void ssb_driver_unregister(struct ssb_driver *drv)
  612. {
  613. driver_unregister(&drv->drv);
  614. }
  615. EXPORT_SYMBOL(ssb_driver_unregister);
  616. void ssb_set_devtypedata(struct ssb_device *dev, void *data)
  617. {
  618. struct ssb_bus *bus = dev->bus;
  619. struct ssb_device *ent;
  620. int i;
  621. for (i = 0; i < bus->nr_devices; i++) {
  622. ent = &(bus->devices[i]);
  623. if (ent->id.vendor != dev->id.vendor)
  624. continue;
  625. if (ent->id.coreid != dev->id.coreid)
  626. continue;
  627. ent->devtypedata = data;
  628. }
  629. }
  630. EXPORT_SYMBOL(ssb_set_devtypedata);
  631. static u32 clkfactor_f6_resolve(u32 v)
  632. {
  633. /* map the magic values */
  634. switch (v) {
  635. case SSB_CHIPCO_CLK_F6_2:
  636. return 2;
  637. case SSB_CHIPCO_CLK_F6_3:
  638. return 3;
  639. case SSB_CHIPCO_CLK_F6_4:
  640. return 4;
  641. case SSB_CHIPCO_CLK_F6_5:
  642. return 5;
  643. case SSB_CHIPCO_CLK_F6_6:
  644. return 6;
  645. case SSB_CHIPCO_CLK_F6_7:
  646. return 7;
  647. }
  648. return 0;
  649. }
  650. /* Calculate the speed the backplane would run at a given set of clockcontrol values */
  651. u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
  652. {
  653. u32 n1, n2, clock, m1, m2, m3, mc;
  654. n1 = (n & SSB_CHIPCO_CLK_N1);
  655. n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
  656. switch (plltype) {
  657. case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
  658. if (m & SSB_CHIPCO_CLK_T6_MMASK)
  659. return SSB_CHIPCO_CLK_T6_M0;
  660. return SSB_CHIPCO_CLK_T6_M1;
  661. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  662. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  663. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  664. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  665. n1 = clkfactor_f6_resolve(n1);
  666. n2 += SSB_CHIPCO_CLK_F5_BIAS;
  667. break;
  668. case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
  669. n1 += SSB_CHIPCO_CLK_T2_BIAS;
  670. n2 += SSB_CHIPCO_CLK_T2_BIAS;
  671. SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
  672. SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
  673. break;
  674. case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
  675. return 100000000;
  676. default:
  677. SSB_WARN_ON(1);
  678. }
  679. switch (plltype) {
  680. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  681. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  682. clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
  683. break;
  684. default:
  685. clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
  686. }
  687. if (!clock)
  688. return 0;
  689. m1 = (m & SSB_CHIPCO_CLK_M1);
  690. m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
  691. m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
  692. mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
  693. switch (plltype) {
  694. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  695. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  696. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  697. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  698. m1 = clkfactor_f6_resolve(m1);
  699. if ((plltype == SSB_PLLTYPE_1) ||
  700. (plltype == SSB_PLLTYPE_3))
  701. m2 += SSB_CHIPCO_CLK_F5_BIAS;
  702. else
  703. m2 = clkfactor_f6_resolve(m2);
  704. m3 = clkfactor_f6_resolve(m3);
  705. switch (mc) {
  706. case SSB_CHIPCO_CLK_MC_BYPASS:
  707. return clock;
  708. case SSB_CHIPCO_CLK_MC_M1:
  709. return (clock / m1);
  710. case SSB_CHIPCO_CLK_MC_M1M2:
  711. return (clock / (m1 * m2));
  712. case SSB_CHIPCO_CLK_MC_M1M2M3:
  713. return (clock / (m1 * m2 * m3));
  714. case SSB_CHIPCO_CLK_MC_M1M3:
  715. return (clock / (m1 * m3));
  716. }
  717. return 0;
  718. case SSB_PLLTYPE_2:
  719. m1 += SSB_CHIPCO_CLK_T2_BIAS;
  720. m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
  721. m3 += SSB_CHIPCO_CLK_T2_BIAS;
  722. SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
  723. SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
  724. SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
  725. if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
  726. clock /= m1;
  727. if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
  728. clock /= m2;
  729. if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
  730. clock /= m3;
  731. return clock;
  732. default:
  733. SSB_WARN_ON(1);
  734. }
  735. return 0;
  736. }
  737. /* Get the current speed the backplane is running at */
  738. u32 ssb_clockspeed(struct ssb_bus *bus)
  739. {
  740. u32 rate;
  741. u32 plltype;
  742. u32 clkctl_n, clkctl_m;
  743. if (ssb_extif_available(&bus->extif))
  744. ssb_extif_get_clockcontrol(&bus->extif, &plltype,
  745. &clkctl_n, &clkctl_m);
  746. else if (bus->chipco.dev)
  747. ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
  748. &clkctl_n, &clkctl_m);
  749. else
  750. return 0;
  751. if (bus->chip_id == 0x5365) {
  752. rate = 100000000;
  753. } else {
  754. rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
  755. if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
  756. rate /= 2;
  757. }
  758. return rate;
  759. }
  760. EXPORT_SYMBOL(ssb_clockspeed);
  761. static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
  762. {
  763. u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
  764. /* The REJECT bit changed position in TMSLOW between
  765. * Backplane revisions. */
  766. switch (rev) {
  767. case SSB_IDLOW_SSBREV_22:
  768. return SSB_TMSLOW_REJECT_22;
  769. case SSB_IDLOW_SSBREV_23:
  770. return SSB_TMSLOW_REJECT_23;
  771. case SSB_IDLOW_SSBREV_24: /* TODO - find the proper REJECT bits */
  772. case SSB_IDLOW_SSBREV_25: /* same here */
  773. case SSB_IDLOW_SSBREV_26: /* same here */
  774. case SSB_IDLOW_SSBREV_27: /* same here */
  775. return SSB_TMSLOW_REJECT_23; /* this is a guess */
  776. default:
  777. printk(KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
  778. WARN_ON(1);
  779. }
  780. return (SSB_TMSLOW_REJECT_22 | SSB_TMSLOW_REJECT_23);
  781. }
  782. int ssb_device_is_enabled(struct ssb_device *dev)
  783. {
  784. u32 val;
  785. u32 reject;
  786. reject = ssb_tmslow_reject_bitmask(dev);
  787. val = ssb_read32(dev, SSB_TMSLOW);
  788. val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
  789. return (val == SSB_TMSLOW_CLOCK);
  790. }
  791. EXPORT_SYMBOL(ssb_device_is_enabled);
  792. static void ssb_flush_tmslow(struct ssb_device *dev)
  793. {
  794. /* Make _really_ sure the device has finished the TMSLOW
  795. * register write transaction, as we risk running into
  796. * a machine check exception otherwise.
  797. * Do this by reading the register back to commit the
  798. * PCI write and delay an additional usec for the device
  799. * to react to the change. */
  800. ssb_read32(dev, SSB_TMSLOW);
  801. udelay(1);
  802. }
  803. void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
  804. {
  805. u32 val;
  806. ssb_device_disable(dev, core_specific_flags);
  807. ssb_write32(dev, SSB_TMSLOW,
  808. SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
  809. SSB_TMSLOW_FGC | core_specific_flags);
  810. ssb_flush_tmslow(dev);
  811. /* Clear SERR if set. This is a hw bug workaround. */
  812. if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
  813. ssb_write32(dev, SSB_TMSHIGH, 0);
  814. val = ssb_read32(dev, SSB_IMSTATE);
  815. if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  816. val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  817. ssb_write32(dev, SSB_IMSTATE, val);
  818. }
  819. ssb_write32(dev, SSB_TMSLOW,
  820. SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
  821. core_specific_flags);
  822. ssb_flush_tmslow(dev);
  823. ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
  824. core_specific_flags);
  825. ssb_flush_tmslow(dev);
  826. }
  827. EXPORT_SYMBOL(ssb_device_enable);
  828. /* Wait for a bit in a register to get set or unset.
  829. * timeout is in units of ten-microseconds */
  830. static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
  831. int timeout, int set)
  832. {
  833. int i;
  834. u32 val;
  835. for (i = 0; i < timeout; i++) {
  836. val = ssb_read32(dev, reg);
  837. if (set) {
  838. if (val & bitmask)
  839. return 0;
  840. } else {
  841. if (!(val & bitmask))
  842. return 0;
  843. }
  844. udelay(10);
  845. }
  846. printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
  847. "register %04X to %s.\n",
  848. bitmask, reg, (set ? "set" : "clear"));
  849. return -ETIMEDOUT;
  850. }
  851. void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
  852. {
  853. u32 reject;
  854. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
  855. return;
  856. reject = ssb_tmslow_reject_bitmask(dev);
  857. ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
  858. ssb_wait_bit(dev, SSB_TMSLOW, reject, 1000, 1);
  859. ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
  860. ssb_write32(dev, SSB_TMSLOW,
  861. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  862. reject | SSB_TMSLOW_RESET |
  863. core_specific_flags);
  864. ssb_flush_tmslow(dev);
  865. ssb_write32(dev, SSB_TMSLOW,
  866. reject | SSB_TMSLOW_RESET |
  867. core_specific_flags);
  868. ssb_flush_tmslow(dev);
  869. }
  870. EXPORT_SYMBOL(ssb_device_disable);
  871. u32 ssb_dma_translation(struct ssb_device *dev)
  872. {
  873. switch (dev->bus->bustype) {
  874. case SSB_BUSTYPE_SSB:
  875. return 0;
  876. case SSB_BUSTYPE_PCI:
  877. case SSB_BUSTYPE_PCMCIA:
  878. return SSB_PCI_DMA;
  879. }
  880. return 0;
  881. }
  882. EXPORT_SYMBOL(ssb_dma_translation);
  883. int ssb_dma_set_mask(struct ssb_device *ssb_dev, u64 mask)
  884. {
  885. struct device *dma_dev = ssb_dev->dma_dev;
  886. #ifdef CONFIG_SSB_PCIHOST
  887. if (ssb_dev->bus->bustype == SSB_BUSTYPE_PCI)
  888. return dma_set_mask(dma_dev, mask);
  889. #endif
  890. dma_dev->coherent_dma_mask = mask;
  891. dma_dev->dma_mask = &dma_dev->coherent_dma_mask;
  892. return 0;
  893. }
  894. EXPORT_SYMBOL(ssb_dma_set_mask);
  895. int ssb_bus_may_powerdown(struct ssb_bus *bus)
  896. {
  897. struct ssb_chipcommon *cc;
  898. int err = 0;
  899. /* On buses where more than one core may be working
  900. * at a time, we must not powerdown stuff if there are
  901. * still cores that may want to run. */
  902. if (bus->bustype == SSB_BUSTYPE_SSB)
  903. goto out;
  904. cc = &bus->chipco;
  905. if (!cc->dev)
  906. goto out;
  907. if (cc->dev->id.revision < 5)
  908. goto out;
  909. ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
  910. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  911. if (err)
  912. goto error;
  913. out:
  914. #ifdef CONFIG_SSB_DEBUG
  915. bus->powered_up = 0;
  916. #endif
  917. return err;
  918. error:
  919. ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
  920. goto out;
  921. }
  922. EXPORT_SYMBOL(ssb_bus_may_powerdown);
  923. int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
  924. {
  925. struct ssb_chipcommon *cc;
  926. int err;
  927. enum ssb_clkmode mode;
  928. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  929. if (err)
  930. goto error;
  931. cc = &bus->chipco;
  932. mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
  933. ssb_chipco_set_clockmode(cc, mode);
  934. #ifdef CONFIG_SSB_DEBUG
  935. bus->powered_up = 1;
  936. #endif
  937. return 0;
  938. error:
  939. ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
  940. return err;
  941. }
  942. EXPORT_SYMBOL(ssb_bus_powerup);
  943. u32 ssb_admatch_base(u32 adm)
  944. {
  945. u32 base = 0;
  946. switch (adm & SSB_ADM_TYPE) {
  947. case SSB_ADM_TYPE0:
  948. base = (adm & SSB_ADM_BASE0);
  949. break;
  950. case SSB_ADM_TYPE1:
  951. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  952. base = (adm & SSB_ADM_BASE1);
  953. break;
  954. case SSB_ADM_TYPE2:
  955. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  956. base = (adm & SSB_ADM_BASE2);
  957. break;
  958. default:
  959. SSB_WARN_ON(1);
  960. }
  961. return base;
  962. }
  963. EXPORT_SYMBOL(ssb_admatch_base);
  964. u32 ssb_admatch_size(u32 adm)
  965. {
  966. u32 size = 0;
  967. switch (adm & SSB_ADM_TYPE) {
  968. case SSB_ADM_TYPE0:
  969. size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
  970. break;
  971. case SSB_ADM_TYPE1:
  972. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  973. size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
  974. break;
  975. case SSB_ADM_TYPE2:
  976. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  977. size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
  978. break;
  979. default:
  980. SSB_WARN_ON(1);
  981. }
  982. size = (1 << (size + 1));
  983. return size;
  984. }
  985. EXPORT_SYMBOL(ssb_admatch_size);
  986. static int __init ssb_modinit(void)
  987. {
  988. int err;
  989. /* See the comment at the ssb_is_early_boot definition */
  990. ssb_is_early_boot = 0;
  991. err = bus_register(&ssb_bustype);
  992. if (err)
  993. return err;
  994. /* Maybe we already registered some buses at early boot.
  995. * Check for this and attach them
  996. */
  997. ssb_buses_lock();
  998. err = ssb_attach_queued_buses();
  999. ssb_buses_unlock();
  1000. if (err)
  1001. bus_unregister(&ssb_bustype);
  1002. err = b43_pci_ssb_bridge_init();
  1003. if (err) {
  1004. ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
  1005. "initialization failed");
  1006. /* don't fail SSB init because of this */
  1007. err = 0;
  1008. }
  1009. return err;
  1010. }
  1011. /* ssb must be initialized after PCI but before the ssb drivers.
  1012. * That means we must use some initcall between subsys_initcall
  1013. * and device_initcall. */
  1014. fs_initcall(ssb_modinit);
  1015. static void __exit ssb_modexit(void)
  1016. {
  1017. b43_pci_ssb_bridge_exit();
  1018. bus_unregister(&ssb_bustype);
  1019. }
  1020. module_exit(ssb_modexit)