db8500-prcmu.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <mach/hardware.h>
  34. #include <mach/irqs.h>
  35. #include <mach/db8500-regs.h>
  36. #include <mach/id.h>
  37. #include "dbx500-prcmu-regs.h"
  38. /* Offset for the firmware version within the TCPM */
  39. #define PRCMU_FW_VERSION_OFFSET 0xA4
  40. /* Index of different voltages to be used when accessing AVSData */
  41. #define PRCM_AVS_BASE 0x2FC
  42. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  43. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  44. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  45. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  46. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  47. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  48. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  49. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  50. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  51. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  52. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  53. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  54. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  55. #define PRCM_AVS_VOLTAGE 0
  56. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  57. #define PRCM_AVS_ISSLOWSTARTUP 6
  58. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  59. #define PRCM_AVS_ISMODEENABLE 7
  60. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  61. #define PRCM_BOOT_STATUS 0xFFF
  62. #define PRCM_ROMCODE_A2P 0xFFE
  63. #define PRCM_ROMCODE_P2A 0xFFD
  64. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  65. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  66. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  67. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  68. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  69. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  70. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  71. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  72. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  73. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  74. /* Req Mailboxes */
  75. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  76. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  77. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  78. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  79. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  80. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  81. /* Ack Mailboxes */
  82. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  83. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  84. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  85. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  86. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  87. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  88. /* Mailbox 0 headers */
  89. #define MB0H_POWER_STATE_TRANS 0
  90. #define MB0H_CONFIG_WAKEUPS_EXE 1
  91. #define MB0H_READ_WAKEUP_ACK 3
  92. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  93. #define MB0H_WAKEUP_EXE 2
  94. #define MB0H_WAKEUP_SLEEP 5
  95. /* Mailbox 0 REQs */
  96. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  97. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  98. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  99. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  100. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  101. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  102. /* Mailbox 0 ACKs */
  103. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  104. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  105. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  106. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  107. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  108. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  109. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  110. /* Mailbox 1 headers */
  111. #define MB1H_ARM_APE_OPP 0x0
  112. #define MB1H_RESET_MODEM 0x2
  113. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  114. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  115. #define MB1H_RELEASE_USB_WAKEUP 0x5
  116. #define MB1H_PLL_ON_OFF 0x6
  117. /* Mailbox 1 Requests */
  118. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  119. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  120. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  121. #define PLL_SOC0_OFF 0x1
  122. #define PLL_SOC0_ON 0x2
  123. #define PLL_SOC1_OFF 0x4
  124. #define PLL_SOC1_ON 0x8
  125. /* Mailbox 1 ACKs */
  126. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  127. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  128. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  129. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  130. /* Mailbox 2 headers */
  131. #define MB2H_DPS 0x0
  132. #define MB2H_AUTO_PWR 0x1
  133. /* Mailbox 2 REQs */
  134. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  135. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  136. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  137. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  138. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  139. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  140. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  141. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  142. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  143. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  144. /* Mailbox 2 ACKs */
  145. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  146. #define HWACC_PWR_ST_OK 0xFE
  147. /* Mailbox 3 headers */
  148. #define MB3H_ANC 0x0
  149. #define MB3H_SIDETONE 0x1
  150. #define MB3H_SYSCLK 0xE
  151. /* Mailbox 3 Requests */
  152. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  153. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  154. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  155. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  156. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  158. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  159. /* Mailbox 4 headers */
  160. #define MB4H_DDR_INIT 0x0
  161. #define MB4H_MEM_ST 0x1
  162. #define MB4H_HOTDOG 0x12
  163. #define MB4H_HOTMON 0x13
  164. #define MB4H_HOT_PERIOD 0x14
  165. #define MB4H_A9WDOG_CONF 0x16
  166. #define MB4H_A9WDOG_EN 0x17
  167. #define MB4H_A9WDOG_DIS 0x18
  168. #define MB4H_A9WDOG_LOAD 0x19
  169. #define MB4H_A9WDOG_KICK 0x20
  170. /* Mailbox 4 Requests */
  171. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  172. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  173. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  174. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  177. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  178. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  179. #define HOTMON_CONFIG_LOW BIT(0)
  180. #define HOTMON_CONFIG_HIGH BIT(1)
  181. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  182. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  183. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  184. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  185. #define A9WDOG_AUTO_OFF_EN BIT(7)
  186. #define A9WDOG_AUTO_OFF_DIS 0
  187. #define A9WDOG_ID_MASK 0xf
  188. /* Mailbox 5 Requests */
  189. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  190. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  191. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  192. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  193. #define PRCMU_I2C_WRITE(slave) \
  194. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  195. #define PRCMU_I2C_READ(slave) \
  196. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  197. #define PRCMU_I2C_STOP_EN BIT(3)
  198. /* Mailbox 5 ACKs */
  199. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  200. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  201. #define I2C_WR_OK 0x1
  202. #define I2C_RD_OK 0x2
  203. #define NUM_MB 8
  204. #define MBOX_BIT BIT
  205. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  206. /*
  207. * Wakeups/IRQs
  208. */
  209. #define WAKEUP_BIT_RTC BIT(0)
  210. #define WAKEUP_BIT_RTT0 BIT(1)
  211. #define WAKEUP_BIT_RTT1 BIT(2)
  212. #define WAKEUP_BIT_HSI0 BIT(3)
  213. #define WAKEUP_BIT_HSI1 BIT(4)
  214. #define WAKEUP_BIT_CA_WAKE BIT(5)
  215. #define WAKEUP_BIT_USB BIT(6)
  216. #define WAKEUP_BIT_ABB BIT(7)
  217. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  218. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  219. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  220. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  221. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  222. #define WAKEUP_BIT_ANC_OK BIT(13)
  223. #define WAKEUP_BIT_SW_ERROR BIT(14)
  224. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  225. #define WAKEUP_BIT_ARM BIT(17)
  226. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  227. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  228. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  229. #define WAKEUP_BIT_GPIO0 BIT(23)
  230. #define WAKEUP_BIT_GPIO1 BIT(24)
  231. #define WAKEUP_BIT_GPIO2 BIT(25)
  232. #define WAKEUP_BIT_GPIO3 BIT(26)
  233. #define WAKEUP_BIT_GPIO4 BIT(27)
  234. #define WAKEUP_BIT_GPIO5 BIT(28)
  235. #define WAKEUP_BIT_GPIO6 BIT(29)
  236. #define WAKEUP_BIT_GPIO7 BIT(30)
  237. #define WAKEUP_BIT_GPIO8 BIT(31)
  238. static struct {
  239. bool valid;
  240. struct prcmu_fw_version version;
  241. } fw_info;
  242. /*
  243. * This vector maps irq numbers to the bits in the bit field used in
  244. * communication with the PRCMU firmware.
  245. *
  246. * The reason for having this is to keep the irq numbers contiguous even though
  247. * the bits in the bit field are not. (The bits also have a tendency to move
  248. * around, to further complicate matters.)
  249. */
  250. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  251. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  252. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  253. IRQ_ENTRY(RTC),
  254. IRQ_ENTRY(RTT0),
  255. IRQ_ENTRY(RTT1),
  256. IRQ_ENTRY(HSI0),
  257. IRQ_ENTRY(HSI1),
  258. IRQ_ENTRY(CA_WAKE),
  259. IRQ_ENTRY(USB),
  260. IRQ_ENTRY(ABB),
  261. IRQ_ENTRY(ABB_FIFO),
  262. IRQ_ENTRY(CA_SLEEP),
  263. IRQ_ENTRY(ARM),
  264. IRQ_ENTRY(HOTMON_LOW),
  265. IRQ_ENTRY(HOTMON_HIGH),
  266. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  267. IRQ_ENTRY(GPIO0),
  268. IRQ_ENTRY(GPIO1),
  269. IRQ_ENTRY(GPIO2),
  270. IRQ_ENTRY(GPIO3),
  271. IRQ_ENTRY(GPIO4),
  272. IRQ_ENTRY(GPIO5),
  273. IRQ_ENTRY(GPIO6),
  274. IRQ_ENTRY(GPIO7),
  275. IRQ_ENTRY(GPIO8)
  276. };
  277. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  278. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  279. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  280. WAKEUP_ENTRY(RTC),
  281. WAKEUP_ENTRY(RTT0),
  282. WAKEUP_ENTRY(RTT1),
  283. WAKEUP_ENTRY(HSI0),
  284. WAKEUP_ENTRY(HSI1),
  285. WAKEUP_ENTRY(USB),
  286. WAKEUP_ENTRY(ABB),
  287. WAKEUP_ENTRY(ABB_FIFO),
  288. WAKEUP_ENTRY(ARM)
  289. };
  290. /*
  291. * mb0_transfer - state needed for mailbox 0 communication.
  292. * @lock: The transaction lock.
  293. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  294. * the request data.
  295. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  296. * @req: Request data that need to persist between requests.
  297. */
  298. static struct {
  299. spinlock_t lock;
  300. spinlock_t dbb_irqs_lock;
  301. struct work_struct mask_work;
  302. struct mutex ac_wake_lock;
  303. struct completion ac_wake_work;
  304. struct {
  305. u32 dbb_irqs;
  306. u32 dbb_wakeups;
  307. u32 abb_events;
  308. } req;
  309. } mb0_transfer;
  310. /*
  311. * mb1_transfer - state needed for mailbox 1 communication.
  312. * @lock: The transaction lock.
  313. * @work: The transaction completion structure.
  314. * @ape_opp: The current APE OPP.
  315. * @ack: Reply ("acknowledge") data.
  316. */
  317. static struct {
  318. struct mutex lock;
  319. struct completion work;
  320. u8 ape_opp;
  321. struct {
  322. u8 header;
  323. u8 arm_opp;
  324. u8 ape_opp;
  325. u8 ape_voltage_status;
  326. } ack;
  327. } mb1_transfer;
  328. /*
  329. * mb2_transfer - state needed for mailbox 2 communication.
  330. * @lock: The transaction lock.
  331. * @work: The transaction completion structure.
  332. * @auto_pm_lock: The autonomous power management configuration lock.
  333. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  334. * @req: Request data that need to persist between requests.
  335. * @ack: Reply ("acknowledge") data.
  336. */
  337. static struct {
  338. struct mutex lock;
  339. struct completion work;
  340. spinlock_t auto_pm_lock;
  341. bool auto_pm_enabled;
  342. struct {
  343. u8 status;
  344. } ack;
  345. } mb2_transfer;
  346. /*
  347. * mb3_transfer - state needed for mailbox 3 communication.
  348. * @lock: The request lock.
  349. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  350. * @sysclk_work: Work structure used for sysclk requests.
  351. */
  352. static struct {
  353. spinlock_t lock;
  354. struct mutex sysclk_lock;
  355. struct completion sysclk_work;
  356. } mb3_transfer;
  357. /*
  358. * mb4_transfer - state needed for mailbox 4 communication.
  359. * @lock: The transaction lock.
  360. * @work: The transaction completion structure.
  361. */
  362. static struct {
  363. struct mutex lock;
  364. struct completion work;
  365. } mb4_transfer;
  366. /*
  367. * mb5_transfer - state needed for mailbox 5 communication.
  368. * @lock: The transaction lock.
  369. * @work: The transaction completion structure.
  370. * @ack: Reply ("acknowledge") data.
  371. */
  372. static struct {
  373. struct mutex lock;
  374. struct completion work;
  375. struct {
  376. u8 status;
  377. u8 value;
  378. } ack;
  379. } mb5_transfer;
  380. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  381. /* Spinlocks */
  382. static DEFINE_SPINLOCK(prcmu_lock);
  383. static DEFINE_SPINLOCK(clkout_lock);
  384. /* Global var to runtime determine TCDM base for v2 or v1 */
  385. static __iomem void *tcdm_base;
  386. struct clk_mgt {
  387. void __iomem *reg;
  388. u32 pllsw;
  389. int branch;
  390. bool clk38div;
  391. };
  392. enum {
  393. PLL_RAW,
  394. PLL_FIX,
  395. PLL_DIV
  396. };
  397. static DEFINE_SPINLOCK(clk_mgt_lock);
  398. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  399. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  400. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  401. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  402. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  403. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  404. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  405. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  406. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  407. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  408. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  409. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  410. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  415. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  416. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  419. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  420. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  423. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  424. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  425. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  430. };
  431. struct dsiclk {
  432. u32 divsel_mask;
  433. u32 divsel_shift;
  434. u32 divsel;
  435. };
  436. static struct dsiclk dsiclk[2] = {
  437. {
  438. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  439. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  440. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  441. },
  442. {
  443. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  444. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  445. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  446. }
  447. };
  448. struct dsiescclk {
  449. u32 en;
  450. u32 div_mask;
  451. u32 div_shift;
  452. };
  453. static struct dsiescclk dsiescclk[3] = {
  454. {
  455. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  456. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  457. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  458. },
  459. {
  460. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  461. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  462. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  463. },
  464. {
  465. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  466. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  467. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  468. }
  469. };
  470. static struct regulator *hwacc_regulator[NUM_HW_ACC];
  471. static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
  472. static bool hwacc_enabled[NUM_HW_ACC];
  473. static bool hwacc_ret_enabled[NUM_HW_ACC];
  474. static const char *hwacc_regulator_name[NUM_HW_ACC] = {
  475. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
  476. [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
  477. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
  478. [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
  479. [HW_ACC_SGA] = "hwacc-sga",
  480. [HW_ACC_B2R2] = "hwacc-b2r2",
  481. [HW_ACC_MCDE] = "hwacc-mcde",
  482. [HW_ACC_ESRAM1] = "hwacc-esram1",
  483. [HW_ACC_ESRAM2] = "hwacc-esram2",
  484. [HW_ACC_ESRAM3] = "hwacc-esram3",
  485. [HW_ACC_ESRAM4] = "hwacc-esram4",
  486. };
  487. static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
  488. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
  489. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
  490. [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
  491. [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
  492. [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
  493. [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
  494. };
  495. /*
  496. * Used by MCDE to setup all necessary PRCMU registers
  497. */
  498. #define PRCMU_RESET_DSIPLL 0x00004000
  499. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  500. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  501. #define PRCMU_CLK_PLL_SW_SHIFT 5
  502. #define PRCMU_CLK_38 (1 << 9)
  503. #define PRCMU_CLK_38_SRC (1 << 10)
  504. #define PRCMU_CLK_38_DIV (1 << 11)
  505. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  506. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  507. /* DPI 50000000 Hz */
  508. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  509. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  510. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  511. /* D=101, N=1, R=4, SELDIV2=0 */
  512. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  513. #define PRCMU_ENABLE_PLLDSI 0x00000001
  514. #define PRCMU_DISABLE_PLLDSI 0x00000000
  515. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  516. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  517. /* ESC clk, div0=1, div1=1, div2=3 */
  518. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  519. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  520. #define PRCMU_DSI_RESET_SW 0x00000007
  521. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  522. int db8500_prcmu_enable_dsipll(void)
  523. {
  524. int i;
  525. /* Clear DSIPLL_RESETN */
  526. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  527. /* Unclamp DSIPLL in/out */
  528. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  529. /* Set DSI PLL FREQ */
  530. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  531. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  532. /* Enable Escape clocks */
  533. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  534. /* Start DSI PLL */
  535. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  536. /* Reset DSI PLL */
  537. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  538. for (i = 0; i < 10; i++) {
  539. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  540. == PRCMU_PLLDSI_LOCKP_LOCKED)
  541. break;
  542. udelay(100);
  543. }
  544. /* Set DSIPLL_RESETN */
  545. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  546. return 0;
  547. }
  548. int db8500_prcmu_disable_dsipll(void)
  549. {
  550. /* Disable dsi pll */
  551. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  552. /* Disable escapeclock */
  553. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  554. return 0;
  555. }
  556. int db8500_prcmu_set_display_clocks(void)
  557. {
  558. unsigned long flags;
  559. spin_lock_irqsave(&clk_mgt_lock, flags);
  560. /* Grab the HW semaphore. */
  561. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  562. cpu_relax();
  563. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  564. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  565. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  566. /* Release the HW semaphore. */
  567. writel(0, PRCM_SEM);
  568. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  569. return 0;
  570. }
  571. u32 db8500_prcmu_read(unsigned int reg)
  572. {
  573. return readl(_PRCMU_BASE + reg);
  574. }
  575. void db8500_prcmu_write(unsigned int reg, u32 value)
  576. {
  577. unsigned long flags;
  578. spin_lock_irqsave(&prcmu_lock, flags);
  579. writel(value, (_PRCMU_BASE + reg));
  580. spin_unlock_irqrestore(&prcmu_lock, flags);
  581. }
  582. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  583. {
  584. u32 val;
  585. unsigned long flags;
  586. spin_lock_irqsave(&prcmu_lock, flags);
  587. val = readl(_PRCMU_BASE + reg);
  588. val = ((val & ~mask) | (value & mask));
  589. writel(val, (_PRCMU_BASE + reg));
  590. spin_unlock_irqrestore(&prcmu_lock, flags);
  591. }
  592. struct prcmu_fw_version *prcmu_get_fw_version(void)
  593. {
  594. return fw_info.valid ? &fw_info.version : NULL;
  595. }
  596. bool prcmu_has_arm_maxopp(void)
  597. {
  598. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  599. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  600. }
  601. /**
  602. * prcmu_get_boot_status - PRCMU boot status checking
  603. * Returns: the current PRCMU boot status
  604. */
  605. int prcmu_get_boot_status(void)
  606. {
  607. return readb(tcdm_base + PRCM_BOOT_STATUS);
  608. }
  609. /**
  610. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  611. * @val: Value to be set, i.e. transition requested
  612. * Returns: 0 on success, -EINVAL on invalid argument
  613. *
  614. * This function is used to run the following power state sequences -
  615. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  616. */
  617. int prcmu_set_rc_a2p(enum romcode_write val)
  618. {
  619. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  620. return -EINVAL;
  621. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  622. return 0;
  623. }
  624. /**
  625. * prcmu_get_rc_p2a - This function is used to get power state sequences
  626. * Returns: the power transition that has last happened
  627. *
  628. * This function can return the following transitions-
  629. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  630. */
  631. enum romcode_read prcmu_get_rc_p2a(void)
  632. {
  633. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  634. }
  635. /**
  636. * prcmu_get_current_mode - Return the current XP70 power mode
  637. * Returns: Returns the current AP(ARM) power mode: init,
  638. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  639. */
  640. enum ap_pwrst prcmu_get_xp70_current_state(void)
  641. {
  642. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  643. }
  644. /**
  645. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  646. * @clkout: The CLKOUT number (0 or 1).
  647. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  648. * @div: The divider to be applied.
  649. *
  650. * Configures one of the programmable clock outputs (CLKOUTs).
  651. * @div should be in the range [1,63] to request a configuration, or 0 to
  652. * inform that the configuration is no longer requested.
  653. */
  654. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  655. {
  656. static int requests[2];
  657. int r = 0;
  658. unsigned long flags;
  659. u32 val;
  660. u32 bits;
  661. u32 mask;
  662. u32 div_mask;
  663. BUG_ON(clkout > 1);
  664. BUG_ON(div > 63);
  665. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  666. if (!div && !requests[clkout])
  667. return -EINVAL;
  668. switch (clkout) {
  669. case 0:
  670. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  671. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  672. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  673. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  674. break;
  675. case 1:
  676. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  677. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  678. PRCM_CLKOCR_CLK1TYPE);
  679. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  680. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  681. break;
  682. }
  683. bits &= mask;
  684. spin_lock_irqsave(&clkout_lock, flags);
  685. val = readl(PRCM_CLKOCR);
  686. if (val & div_mask) {
  687. if (div) {
  688. if ((val & mask) != bits) {
  689. r = -EBUSY;
  690. goto unlock_and_return;
  691. }
  692. } else {
  693. if ((val & mask & ~div_mask) != bits) {
  694. r = -EINVAL;
  695. goto unlock_and_return;
  696. }
  697. }
  698. }
  699. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  700. requests[clkout] += (div ? 1 : -1);
  701. unlock_and_return:
  702. spin_unlock_irqrestore(&clkout_lock, flags);
  703. return r;
  704. }
  705. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  706. {
  707. unsigned long flags;
  708. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  709. spin_lock_irqsave(&mb0_transfer.lock, flags);
  710. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  711. cpu_relax();
  712. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  713. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  714. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  715. writeb((keep_ulp_clk ? 1 : 0),
  716. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  717. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  718. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  719. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  720. return 0;
  721. }
  722. u8 db8500_prcmu_get_power_state_result(void)
  723. {
  724. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  725. }
  726. /* This function should only be called while mb0_transfer.lock is held. */
  727. static void config_wakeups(void)
  728. {
  729. const u8 header[2] = {
  730. MB0H_CONFIG_WAKEUPS_EXE,
  731. MB0H_CONFIG_WAKEUPS_SLEEP
  732. };
  733. static u32 last_dbb_events;
  734. static u32 last_abb_events;
  735. u32 dbb_events;
  736. u32 abb_events;
  737. unsigned int i;
  738. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  739. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  740. abb_events = mb0_transfer.req.abb_events;
  741. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  742. return;
  743. for (i = 0; i < 2; i++) {
  744. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  745. cpu_relax();
  746. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  747. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  748. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  749. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  750. }
  751. last_dbb_events = dbb_events;
  752. last_abb_events = abb_events;
  753. }
  754. void db8500_prcmu_enable_wakeups(u32 wakeups)
  755. {
  756. unsigned long flags;
  757. u32 bits;
  758. int i;
  759. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  760. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  761. if (wakeups & BIT(i))
  762. bits |= prcmu_wakeup_bit[i];
  763. }
  764. spin_lock_irqsave(&mb0_transfer.lock, flags);
  765. mb0_transfer.req.dbb_wakeups = bits;
  766. config_wakeups();
  767. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  768. }
  769. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  770. {
  771. unsigned long flags;
  772. spin_lock_irqsave(&mb0_transfer.lock, flags);
  773. mb0_transfer.req.abb_events = abb_events;
  774. config_wakeups();
  775. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  776. }
  777. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  778. {
  779. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  780. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  781. else
  782. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  783. }
  784. /**
  785. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  786. * @opp: The new ARM operating point to which transition is to be made
  787. * Returns: 0 on success, non-zero on failure
  788. *
  789. * This function sets the the operating point of the ARM.
  790. */
  791. int db8500_prcmu_set_arm_opp(u8 opp)
  792. {
  793. int r;
  794. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  795. return -EINVAL;
  796. r = 0;
  797. mutex_lock(&mb1_transfer.lock);
  798. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  799. cpu_relax();
  800. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  801. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  802. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  803. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  804. wait_for_completion(&mb1_transfer.work);
  805. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  806. (mb1_transfer.ack.arm_opp != opp))
  807. r = -EIO;
  808. mutex_unlock(&mb1_transfer.lock);
  809. return r;
  810. }
  811. /**
  812. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  813. *
  814. * Returns: the current ARM OPP
  815. */
  816. int db8500_prcmu_get_arm_opp(void)
  817. {
  818. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  819. }
  820. /**
  821. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  822. *
  823. * Returns: the current DDR OPP
  824. */
  825. int db8500_prcmu_get_ddr_opp(void)
  826. {
  827. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  828. }
  829. /**
  830. * db8500_set_ddr_opp - set the appropriate DDR OPP
  831. * @opp: The new DDR operating point to which transition is to be made
  832. * Returns: 0 on success, non-zero on failure
  833. *
  834. * This function sets the operating point of the DDR.
  835. */
  836. int db8500_prcmu_set_ddr_opp(u8 opp)
  837. {
  838. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  839. return -EINVAL;
  840. /* Changing the DDR OPP can hang the hardware pre-v21 */
  841. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  842. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  843. return 0;
  844. }
  845. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  846. static void request_even_slower_clocks(bool enable)
  847. {
  848. void __iomem *clock_reg[] = {
  849. PRCM_ACLK_MGT,
  850. PRCM_DMACLK_MGT
  851. };
  852. unsigned long flags;
  853. unsigned int i;
  854. spin_lock_irqsave(&clk_mgt_lock, flags);
  855. /* Grab the HW semaphore. */
  856. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  857. cpu_relax();
  858. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  859. u32 val;
  860. u32 div;
  861. val = readl(clock_reg[i]);
  862. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  863. if (enable) {
  864. if ((div <= 1) || (div > 15)) {
  865. pr_err("prcmu: Bad clock divider %d in %s\n",
  866. div, __func__);
  867. goto unlock_and_return;
  868. }
  869. div <<= 1;
  870. } else {
  871. if (div <= 2)
  872. goto unlock_and_return;
  873. div >>= 1;
  874. }
  875. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  876. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  877. writel(val, clock_reg[i]);
  878. }
  879. unlock_and_return:
  880. /* Release the HW semaphore. */
  881. writel(0, PRCM_SEM);
  882. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  883. }
  884. /**
  885. * db8500_set_ape_opp - set the appropriate APE OPP
  886. * @opp: The new APE operating point to which transition is to be made
  887. * Returns: 0 on success, non-zero on failure
  888. *
  889. * This function sets the operating point of the APE.
  890. */
  891. int db8500_prcmu_set_ape_opp(u8 opp)
  892. {
  893. int r = 0;
  894. if (opp == mb1_transfer.ape_opp)
  895. return 0;
  896. mutex_lock(&mb1_transfer.lock);
  897. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  898. request_even_slower_clocks(false);
  899. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  900. goto skip_message;
  901. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  902. cpu_relax();
  903. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  904. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  905. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  906. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  907. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  908. wait_for_completion(&mb1_transfer.work);
  909. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  910. (mb1_transfer.ack.ape_opp != opp))
  911. r = -EIO;
  912. skip_message:
  913. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  914. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  915. request_even_slower_clocks(true);
  916. if (!r)
  917. mb1_transfer.ape_opp = opp;
  918. mutex_unlock(&mb1_transfer.lock);
  919. return r;
  920. }
  921. /**
  922. * db8500_prcmu_get_ape_opp - get the current APE OPP
  923. *
  924. * Returns: the current APE OPP
  925. */
  926. int db8500_prcmu_get_ape_opp(void)
  927. {
  928. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  929. }
  930. /**
  931. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  932. * @enable: true to request the higher voltage, false to drop a request.
  933. *
  934. * Calls to this function to enable and disable requests must be balanced.
  935. */
  936. int prcmu_request_ape_opp_100_voltage(bool enable)
  937. {
  938. int r = 0;
  939. u8 header;
  940. static unsigned int requests;
  941. mutex_lock(&mb1_transfer.lock);
  942. if (enable) {
  943. if (0 != requests++)
  944. goto unlock_and_return;
  945. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  946. } else {
  947. if (requests == 0) {
  948. r = -EIO;
  949. goto unlock_and_return;
  950. } else if (1 != requests--) {
  951. goto unlock_and_return;
  952. }
  953. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  954. }
  955. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  956. cpu_relax();
  957. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  958. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  959. wait_for_completion(&mb1_transfer.work);
  960. if ((mb1_transfer.ack.header != header) ||
  961. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  962. r = -EIO;
  963. unlock_and_return:
  964. mutex_unlock(&mb1_transfer.lock);
  965. return r;
  966. }
  967. /**
  968. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  969. *
  970. * This function releases the power state requirements of a USB wakeup.
  971. */
  972. int prcmu_release_usb_wakeup_state(void)
  973. {
  974. int r = 0;
  975. mutex_lock(&mb1_transfer.lock);
  976. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  977. cpu_relax();
  978. writeb(MB1H_RELEASE_USB_WAKEUP,
  979. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  980. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  981. wait_for_completion(&mb1_transfer.work);
  982. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  983. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  984. r = -EIO;
  985. mutex_unlock(&mb1_transfer.lock);
  986. return r;
  987. }
  988. static int request_pll(u8 clock, bool enable)
  989. {
  990. int r = 0;
  991. if (clock == PRCMU_PLLSOC0)
  992. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  993. else if (clock == PRCMU_PLLSOC1)
  994. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  995. else
  996. return -EINVAL;
  997. mutex_lock(&mb1_transfer.lock);
  998. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  999. cpu_relax();
  1000. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1001. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1002. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1003. wait_for_completion(&mb1_transfer.work);
  1004. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1005. r = -EIO;
  1006. mutex_unlock(&mb1_transfer.lock);
  1007. return r;
  1008. }
  1009. /**
  1010. * prcmu_set_hwacc - set the power state of a h/w accelerator
  1011. * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
  1012. * @state: The new power state (enum hw_acc_state).
  1013. *
  1014. * This function sets the power state of a hardware accelerator.
  1015. * This function should not be called from interrupt context.
  1016. *
  1017. * NOTE! Deprecated, to be removed when all users switched over to use the
  1018. * regulator framework API.
  1019. */
  1020. int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
  1021. {
  1022. int r = 0;
  1023. bool ram_retention = false;
  1024. bool enable, enable_ret;
  1025. /* check argument */
  1026. BUG_ON(hwacc_dev >= NUM_HW_ACC);
  1027. /* get state of switches */
  1028. enable = hwacc_enabled[hwacc_dev];
  1029. enable_ret = hwacc_ret_enabled[hwacc_dev];
  1030. /* set flag if retention is possible */
  1031. switch (hwacc_dev) {
  1032. case HW_ACC_SVAMMDSP:
  1033. case HW_ACC_SIAMMDSP:
  1034. case HW_ACC_ESRAM1:
  1035. case HW_ACC_ESRAM2:
  1036. case HW_ACC_ESRAM3:
  1037. case HW_ACC_ESRAM4:
  1038. ram_retention = true;
  1039. break;
  1040. }
  1041. /* check argument */
  1042. BUG_ON(state > HW_ON);
  1043. BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
  1044. /* modify enable flags */
  1045. switch (state) {
  1046. case HW_OFF:
  1047. enable_ret = false;
  1048. enable = false;
  1049. break;
  1050. case HW_ON:
  1051. enable = true;
  1052. break;
  1053. case HW_OFF_RAMRET:
  1054. enable_ret = true;
  1055. enable = false;
  1056. break;
  1057. }
  1058. /* get regulator (lazy) */
  1059. if (hwacc_regulator[hwacc_dev] == NULL) {
  1060. hwacc_regulator[hwacc_dev] = regulator_get(NULL,
  1061. hwacc_regulator_name[hwacc_dev]);
  1062. if (IS_ERR(hwacc_regulator[hwacc_dev])) {
  1063. pr_err("prcmu: failed to get supply %s\n",
  1064. hwacc_regulator_name[hwacc_dev]);
  1065. r = PTR_ERR(hwacc_regulator[hwacc_dev]);
  1066. goto out;
  1067. }
  1068. }
  1069. if (ram_retention) {
  1070. if (hwacc_ret_regulator[hwacc_dev] == NULL) {
  1071. hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
  1072. hwacc_ret_regulator_name[hwacc_dev]);
  1073. if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
  1074. pr_err("prcmu: failed to get supply %s\n",
  1075. hwacc_ret_regulator_name[hwacc_dev]);
  1076. r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
  1077. goto out;
  1078. }
  1079. }
  1080. }
  1081. /* set regulators */
  1082. if (ram_retention) {
  1083. if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
  1084. r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
  1085. if (r < 0) {
  1086. pr_err("prcmu_set_hwacc: ret enable failed\n");
  1087. goto out;
  1088. }
  1089. hwacc_ret_enabled[hwacc_dev] = true;
  1090. }
  1091. }
  1092. if (enable && !hwacc_enabled[hwacc_dev]) {
  1093. r = regulator_enable(hwacc_regulator[hwacc_dev]);
  1094. if (r < 0) {
  1095. pr_err("prcmu_set_hwacc: enable failed\n");
  1096. goto out;
  1097. }
  1098. hwacc_enabled[hwacc_dev] = true;
  1099. }
  1100. if (!enable && hwacc_enabled[hwacc_dev]) {
  1101. r = regulator_disable(hwacc_regulator[hwacc_dev]);
  1102. if (r < 0) {
  1103. pr_err("prcmu_set_hwacc: disable failed\n");
  1104. goto out;
  1105. }
  1106. hwacc_enabled[hwacc_dev] = false;
  1107. }
  1108. if (ram_retention) {
  1109. if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
  1110. r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
  1111. if (r < 0) {
  1112. pr_err("prcmu_set_hwacc: ret disable failed\n");
  1113. goto out;
  1114. }
  1115. hwacc_ret_enabled[hwacc_dev] = false;
  1116. }
  1117. }
  1118. out:
  1119. return r;
  1120. }
  1121. EXPORT_SYMBOL(prcmu_set_hwacc);
  1122. /**
  1123. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1124. * @epod_id: The EPOD to set
  1125. * @epod_state: The new EPOD state
  1126. *
  1127. * This function sets the state of a EPOD (power domain). It may not be called
  1128. * from interrupt context.
  1129. */
  1130. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1131. {
  1132. int r = 0;
  1133. bool ram_retention = false;
  1134. int i;
  1135. /* check argument */
  1136. BUG_ON(epod_id >= NUM_EPOD_ID);
  1137. /* set flag if retention is possible */
  1138. switch (epod_id) {
  1139. case EPOD_ID_SVAMMDSP:
  1140. case EPOD_ID_SIAMMDSP:
  1141. case EPOD_ID_ESRAM12:
  1142. case EPOD_ID_ESRAM34:
  1143. ram_retention = true;
  1144. break;
  1145. }
  1146. /* check argument */
  1147. BUG_ON(epod_state > EPOD_STATE_ON);
  1148. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1149. /* get lock */
  1150. mutex_lock(&mb2_transfer.lock);
  1151. /* wait for mailbox */
  1152. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1153. cpu_relax();
  1154. /* fill in mailbox */
  1155. for (i = 0; i < NUM_EPOD_ID; i++)
  1156. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1157. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1158. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1159. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1160. /*
  1161. * The current firmware version does not handle errors correctly,
  1162. * and we cannot recover if there is an error.
  1163. * This is expected to change when the firmware is updated.
  1164. */
  1165. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1166. msecs_to_jiffies(20000))) {
  1167. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1168. __func__);
  1169. r = -EIO;
  1170. goto unlock_and_return;
  1171. }
  1172. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1173. r = -EIO;
  1174. unlock_and_return:
  1175. mutex_unlock(&mb2_transfer.lock);
  1176. return r;
  1177. }
  1178. /**
  1179. * prcmu_configure_auto_pm - Configure autonomous power management.
  1180. * @sleep: Configuration for ApSleep.
  1181. * @idle: Configuration for ApIdle.
  1182. */
  1183. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1184. struct prcmu_auto_pm_config *idle)
  1185. {
  1186. u32 sleep_cfg;
  1187. u32 idle_cfg;
  1188. unsigned long flags;
  1189. BUG_ON((sleep == NULL) || (idle == NULL));
  1190. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1191. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1192. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1193. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1194. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1195. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1196. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1197. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1198. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1199. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1200. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1201. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1202. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1203. /*
  1204. * The autonomous power management configuration is done through
  1205. * fields in mailbox 2, but these fields are only used as shared
  1206. * variables - i.e. there is no need to send a message.
  1207. */
  1208. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1209. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1210. mb2_transfer.auto_pm_enabled =
  1211. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1212. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1213. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1214. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1215. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1216. }
  1217. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1218. bool prcmu_is_auto_pm_enabled(void)
  1219. {
  1220. return mb2_transfer.auto_pm_enabled;
  1221. }
  1222. static int request_sysclk(bool enable)
  1223. {
  1224. int r;
  1225. unsigned long flags;
  1226. r = 0;
  1227. mutex_lock(&mb3_transfer.sysclk_lock);
  1228. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1229. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1230. cpu_relax();
  1231. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1232. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1233. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1234. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1235. /*
  1236. * The firmware only sends an ACK if we want to enable the
  1237. * SysClk, and it succeeds.
  1238. */
  1239. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1240. msecs_to_jiffies(20000))) {
  1241. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1242. __func__);
  1243. r = -EIO;
  1244. }
  1245. mutex_unlock(&mb3_transfer.sysclk_lock);
  1246. return r;
  1247. }
  1248. static int request_timclk(bool enable)
  1249. {
  1250. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1251. if (!enable)
  1252. val |= PRCM_TCR_STOP_TIMERS;
  1253. writel(val, PRCM_TCR);
  1254. return 0;
  1255. }
  1256. static int request_clock(u8 clock, bool enable)
  1257. {
  1258. u32 val;
  1259. unsigned long flags;
  1260. spin_lock_irqsave(&clk_mgt_lock, flags);
  1261. /* Grab the HW semaphore. */
  1262. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1263. cpu_relax();
  1264. val = readl(clk_mgt[clock].reg);
  1265. if (enable) {
  1266. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1267. } else {
  1268. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1269. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1270. }
  1271. writel(val, clk_mgt[clock].reg);
  1272. /* Release the HW semaphore. */
  1273. writel(0, PRCM_SEM);
  1274. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1275. return 0;
  1276. }
  1277. static int request_sga_clock(u8 clock, bool enable)
  1278. {
  1279. u32 val;
  1280. int ret;
  1281. if (enable) {
  1282. val = readl(PRCM_CGATING_BYPASS);
  1283. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1284. }
  1285. ret = request_clock(clock, enable);
  1286. if (!ret && !enable) {
  1287. val = readl(PRCM_CGATING_BYPASS);
  1288. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1289. }
  1290. return ret;
  1291. }
  1292. static inline bool plldsi_locked(void)
  1293. {
  1294. return (readl(PRCM_PLLDSI_LOCKP) &
  1295. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1296. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1297. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1298. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1299. }
  1300. static int request_plldsi(bool enable)
  1301. {
  1302. int r = 0;
  1303. u32 val;
  1304. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1305. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1306. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1307. val = readl(PRCM_PLLDSI_ENABLE);
  1308. if (enable)
  1309. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1310. else
  1311. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1312. writel(val, PRCM_PLLDSI_ENABLE);
  1313. if (enable) {
  1314. unsigned int i;
  1315. bool locked = plldsi_locked();
  1316. for (i = 10; !locked && (i > 0); --i) {
  1317. udelay(100);
  1318. locked = plldsi_locked();
  1319. }
  1320. if (locked) {
  1321. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1322. PRCM_APE_RESETN_SET);
  1323. } else {
  1324. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1325. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1326. PRCM_MMIP_LS_CLAMP_SET);
  1327. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1328. writel(val, PRCM_PLLDSI_ENABLE);
  1329. r = -EAGAIN;
  1330. }
  1331. } else {
  1332. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1333. }
  1334. return r;
  1335. }
  1336. static int request_dsiclk(u8 n, bool enable)
  1337. {
  1338. u32 val;
  1339. val = readl(PRCM_DSI_PLLOUT_SEL);
  1340. val &= ~dsiclk[n].divsel_mask;
  1341. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1342. dsiclk[n].divsel_shift);
  1343. writel(val, PRCM_DSI_PLLOUT_SEL);
  1344. return 0;
  1345. }
  1346. static int request_dsiescclk(u8 n, bool enable)
  1347. {
  1348. u32 val;
  1349. val = readl(PRCM_DSITVCLK_DIV);
  1350. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1351. writel(val, PRCM_DSITVCLK_DIV);
  1352. return 0;
  1353. }
  1354. /**
  1355. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1356. * @clock: The clock for which the request is made.
  1357. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1358. *
  1359. * This function should only be used by the clock implementation.
  1360. * Do not use it from any other place!
  1361. */
  1362. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1363. {
  1364. if (clock == PRCMU_SGACLK)
  1365. return request_sga_clock(clock, enable);
  1366. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1367. return request_clock(clock, enable);
  1368. else if (clock == PRCMU_TIMCLK)
  1369. return request_timclk(enable);
  1370. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1371. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1372. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1373. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1374. else if (clock == PRCMU_PLLDSI)
  1375. return request_plldsi(enable);
  1376. else if (clock == PRCMU_SYSCLK)
  1377. return request_sysclk(enable);
  1378. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1379. return request_pll(clock, enable);
  1380. else
  1381. return -EINVAL;
  1382. }
  1383. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1384. int branch)
  1385. {
  1386. u64 rate;
  1387. u32 val;
  1388. u32 d;
  1389. u32 div = 1;
  1390. val = readl(reg);
  1391. rate = src_rate;
  1392. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1393. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1394. if (d > 1)
  1395. div *= d;
  1396. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1397. if (d > 1)
  1398. div *= d;
  1399. if (val & PRCM_PLL_FREQ_SELDIV2)
  1400. div *= 2;
  1401. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1402. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1403. ((reg == PRCM_PLLSOC0_FREQ) ||
  1404. (reg == PRCM_PLLDDR_FREQ))))
  1405. div *= 2;
  1406. (void)do_div(rate, div);
  1407. return (unsigned long)rate;
  1408. }
  1409. #define ROOT_CLOCK_RATE 38400000
  1410. static unsigned long clock_rate(u8 clock)
  1411. {
  1412. u32 val;
  1413. u32 pllsw;
  1414. unsigned long rate = ROOT_CLOCK_RATE;
  1415. val = readl(clk_mgt[clock].reg);
  1416. if (val & PRCM_CLK_MGT_CLK38) {
  1417. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1418. rate /= 2;
  1419. return rate;
  1420. }
  1421. val |= clk_mgt[clock].pllsw;
  1422. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1423. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1424. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1425. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1426. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1427. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1428. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1429. else
  1430. return 0;
  1431. if ((clock == PRCMU_SGACLK) &&
  1432. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1433. u64 r = (rate * 10);
  1434. (void)do_div(r, 25);
  1435. return (unsigned long)r;
  1436. }
  1437. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1438. if (val)
  1439. return rate / val;
  1440. else
  1441. return 0;
  1442. }
  1443. static unsigned long dsiclk_rate(u8 n)
  1444. {
  1445. u32 divsel;
  1446. u32 div = 1;
  1447. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1448. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1449. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1450. divsel = dsiclk[n].divsel;
  1451. switch (divsel) {
  1452. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1453. div *= 2;
  1454. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1455. div *= 2;
  1456. case PRCM_DSI_PLLOUT_SEL_PHI:
  1457. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1458. PLL_RAW) / div;
  1459. default:
  1460. return 0;
  1461. }
  1462. }
  1463. static unsigned long dsiescclk_rate(u8 n)
  1464. {
  1465. u32 div;
  1466. div = readl(PRCM_DSITVCLK_DIV);
  1467. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1468. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1469. }
  1470. unsigned long prcmu_clock_rate(u8 clock)
  1471. {
  1472. if (clock < PRCMU_NUM_REG_CLOCKS)
  1473. return clock_rate(clock);
  1474. else if (clock == PRCMU_TIMCLK)
  1475. return ROOT_CLOCK_RATE / 16;
  1476. else if (clock == PRCMU_SYSCLK)
  1477. return ROOT_CLOCK_RATE;
  1478. else if (clock == PRCMU_PLLSOC0)
  1479. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1480. else if (clock == PRCMU_PLLSOC1)
  1481. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1482. else if (clock == PRCMU_PLLDDR)
  1483. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1484. else if (clock == PRCMU_PLLDSI)
  1485. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1486. PLL_RAW);
  1487. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1488. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1489. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1490. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1491. else
  1492. return 0;
  1493. }
  1494. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1495. {
  1496. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1497. return ROOT_CLOCK_RATE;
  1498. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1499. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1500. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1501. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1502. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1503. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1504. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1505. else
  1506. return 0;
  1507. }
  1508. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1509. {
  1510. u32 div;
  1511. div = (src_rate / rate);
  1512. if (div == 0)
  1513. return 1;
  1514. if (rate < (src_rate / div))
  1515. div++;
  1516. return div;
  1517. }
  1518. static long round_clock_rate(u8 clock, unsigned long rate)
  1519. {
  1520. u32 val;
  1521. u32 div;
  1522. unsigned long src_rate;
  1523. long rounded_rate;
  1524. val = readl(clk_mgt[clock].reg);
  1525. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1526. clk_mgt[clock].branch);
  1527. div = clock_divider(src_rate, rate);
  1528. if (val & PRCM_CLK_MGT_CLK38) {
  1529. if (clk_mgt[clock].clk38div) {
  1530. if (div > 2)
  1531. div = 2;
  1532. } else {
  1533. div = 1;
  1534. }
  1535. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1536. u64 r = (src_rate * 10);
  1537. (void)do_div(r, 25);
  1538. if (r <= rate)
  1539. return (unsigned long)r;
  1540. }
  1541. rounded_rate = (src_rate / min(div, (u32)31));
  1542. return rounded_rate;
  1543. }
  1544. #define MIN_PLL_VCO_RATE 600000000ULL
  1545. #define MAX_PLL_VCO_RATE 1680640000ULL
  1546. static long round_plldsi_rate(unsigned long rate)
  1547. {
  1548. long rounded_rate = 0;
  1549. unsigned long src_rate;
  1550. unsigned long rem;
  1551. u32 r;
  1552. src_rate = clock_rate(PRCMU_HDMICLK);
  1553. rem = rate;
  1554. for (r = 7; (rem > 0) && (r > 0); r--) {
  1555. u64 d;
  1556. d = (r * rate);
  1557. (void)do_div(d, src_rate);
  1558. if (d < 6)
  1559. d = 6;
  1560. else if (d > 255)
  1561. d = 255;
  1562. d *= src_rate;
  1563. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1564. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1565. continue;
  1566. (void)do_div(d, r);
  1567. if (rate < d) {
  1568. if (rounded_rate == 0)
  1569. rounded_rate = (long)d;
  1570. break;
  1571. }
  1572. if ((rate - d) < rem) {
  1573. rem = (rate - d);
  1574. rounded_rate = (long)d;
  1575. }
  1576. }
  1577. return rounded_rate;
  1578. }
  1579. static long round_dsiclk_rate(unsigned long rate)
  1580. {
  1581. u32 div;
  1582. unsigned long src_rate;
  1583. long rounded_rate;
  1584. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1585. PLL_RAW);
  1586. div = clock_divider(src_rate, rate);
  1587. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1588. return rounded_rate;
  1589. }
  1590. static long round_dsiescclk_rate(unsigned long rate)
  1591. {
  1592. u32 div;
  1593. unsigned long src_rate;
  1594. long rounded_rate;
  1595. src_rate = clock_rate(PRCMU_TVCLK);
  1596. div = clock_divider(src_rate, rate);
  1597. rounded_rate = (src_rate / min(div, (u32)255));
  1598. return rounded_rate;
  1599. }
  1600. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1601. {
  1602. if (clock < PRCMU_NUM_REG_CLOCKS)
  1603. return round_clock_rate(clock, rate);
  1604. else if (clock == PRCMU_PLLDSI)
  1605. return round_plldsi_rate(rate);
  1606. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1607. return round_dsiclk_rate(rate);
  1608. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1609. return round_dsiescclk_rate(rate);
  1610. else
  1611. return (long)prcmu_clock_rate(clock);
  1612. }
  1613. static void set_clock_rate(u8 clock, unsigned long rate)
  1614. {
  1615. u32 val;
  1616. u32 div;
  1617. unsigned long src_rate;
  1618. unsigned long flags;
  1619. spin_lock_irqsave(&clk_mgt_lock, flags);
  1620. /* Grab the HW semaphore. */
  1621. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1622. cpu_relax();
  1623. val = readl(clk_mgt[clock].reg);
  1624. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1625. clk_mgt[clock].branch);
  1626. div = clock_divider(src_rate, rate);
  1627. if (val & PRCM_CLK_MGT_CLK38) {
  1628. if (clk_mgt[clock].clk38div) {
  1629. if (div > 1)
  1630. val |= PRCM_CLK_MGT_CLK38DIV;
  1631. else
  1632. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1633. }
  1634. } else if (clock == PRCMU_SGACLK) {
  1635. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1636. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1637. if (div == 3) {
  1638. u64 r = (src_rate * 10);
  1639. (void)do_div(r, 25);
  1640. if (r <= rate) {
  1641. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1642. div = 0;
  1643. }
  1644. }
  1645. val |= min(div, (u32)31);
  1646. } else {
  1647. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1648. val |= min(div, (u32)31);
  1649. }
  1650. writel(val, clk_mgt[clock].reg);
  1651. /* Release the HW semaphore. */
  1652. writel(0, PRCM_SEM);
  1653. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1654. }
  1655. static int set_plldsi_rate(unsigned long rate)
  1656. {
  1657. unsigned long src_rate;
  1658. unsigned long rem;
  1659. u32 pll_freq = 0;
  1660. u32 r;
  1661. src_rate = clock_rate(PRCMU_HDMICLK);
  1662. rem = rate;
  1663. for (r = 7; (rem > 0) && (r > 0); r--) {
  1664. u64 d;
  1665. u64 hwrate;
  1666. d = (r * rate);
  1667. (void)do_div(d, src_rate);
  1668. if (d < 6)
  1669. d = 6;
  1670. else if (d > 255)
  1671. d = 255;
  1672. hwrate = (d * src_rate);
  1673. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1674. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1675. continue;
  1676. (void)do_div(hwrate, r);
  1677. if (rate < hwrate) {
  1678. if (pll_freq == 0)
  1679. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1680. (r << PRCM_PLL_FREQ_R_SHIFT));
  1681. break;
  1682. }
  1683. if ((rate - hwrate) < rem) {
  1684. rem = (rate - hwrate);
  1685. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1686. (r << PRCM_PLL_FREQ_R_SHIFT));
  1687. }
  1688. }
  1689. if (pll_freq == 0)
  1690. return -EINVAL;
  1691. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1692. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1693. return 0;
  1694. }
  1695. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1696. {
  1697. u32 val;
  1698. u32 div;
  1699. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1700. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1701. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1702. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1703. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1704. val = readl(PRCM_DSI_PLLOUT_SEL);
  1705. val &= ~dsiclk[n].divsel_mask;
  1706. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1707. writel(val, PRCM_DSI_PLLOUT_SEL);
  1708. }
  1709. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1710. {
  1711. u32 val;
  1712. u32 div;
  1713. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1714. val = readl(PRCM_DSITVCLK_DIV);
  1715. val &= ~dsiescclk[n].div_mask;
  1716. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1717. writel(val, PRCM_DSITVCLK_DIV);
  1718. }
  1719. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1720. {
  1721. if (clock < PRCMU_NUM_REG_CLOCKS)
  1722. set_clock_rate(clock, rate);
  1723. else if (clock == PRCMU_PLLDSI)
  1724. return set_plldsi_rate(rate);
  1725. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1726. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1727. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1728. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1729. return 0;
  1730. }
  1731. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1732. {
  1733. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1734. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1735. return -EINVAL;
  1736. mutex_lock(&mb4_transfer.lock);
  1737. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1738. cpu_relax();
  1739. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1740. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1741. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1742. writeb(DDR_PWR_STATE_ON,
  1743. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1744. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1745. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1746. wait_for_completion(&mb4_transfer.work);
  1747. mutex_unlock(&mb4_transfer.lock);
  1748. return 0;
  1749. }
  1750. int db8500_prcmu_config_hotdog(u8 threshold)
  1751. {
  1752. mutex_lock(&mb4_transfer.lock);
  1753. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1754. cpu_relax();
  1755. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1756. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1757. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1758. wait_for_completion(&mb4_transfer.work);
  1759. mutex_unlock(&mb4_transfer.lock);
  1760. return 0;
  1761. }
  1762. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1763. {
  1764. mutex_lock(&mb4_transfer.lock);
  1765. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1766. cpu_relax();
  1767. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1768. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1769. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1770. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1771. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1772. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1773. wait_for_completion(&mb4_transfer.work);
  1774. mutex_unlock(&mb4_transfer.lock);
  1775. return 0;
  1776. }
  1777. static int config_hot_period(u16 val)
  1778. {
  1779. mutex_lock(&mb4_transfer.lock);
  1780. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1781. cpu_relax();
  1782. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1783. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1784. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1785. wait_for_completion(&mb4_transfer.work);
  1786. mutex_unlock(&mb4_transfer.lock);
  1787. return 0;
  1788. }
  1789. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1790. {
  1791. if (cycles32k == 0xFFFF)
  1792. return -EINVAL;
  1793. return config_hot_period(cycles32k);
  1794. }
  1795. int db8500_prcmu_stop_temp_sense(void)
  1796. {
  1797. return config_hot_period(0xFFFF);
  1798. }
  1799. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1800. {
  1801. mutex_lock(&mb4_transfer.lock);
  1802. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1803. cpu_relax();
  1804. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1805. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1806. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1807. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1808. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1809. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1810. wait_for_completion(&mb4_transfer.work);
  1811. mutex_unlock(&mb4_transfer.lock);
  1812. return 0;
  1813. }
  1814. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1815. {
  1816. BUG_ON(num == 0 || num > 0xf);
  1817. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1818. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1819. A9WDOG_AUTO_OFF_DIS);
  1820. }
  1821. int db8500_prcmu_enable_a9wdog(u8 id)
  1822. {
  1823. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1824. }
  1825. int db8500_prcmu_disable_a9wdog(u8 id)
  1826. {
  1827. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1828. }
  1829. int db8500_prcmu_kick_a9wdog(u8 id)
  1830. {
  1831. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1832. }
  1833. /*
  1834. * timeout is 28 bit, in ms.
  1835. */
  1836. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1837. {
  1838. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1839. (id & A9WDOG_ID_MASK) |
  1840. /*
  1841. * Put the lowest 28 bits of timeout at
  1842. * offset 4. Four first bits are used for id.
  1843. */
  1844. (u8)((timeout << 4) & 0xf0),
  1845. (u8)((timeout >> 4) & 0xff),
  1846. (u8)((timeout >> 12) & 0xff),
  1847. (u8)((timeout >> 20) & 0xff));
  1848. }
  1849. /**
  1850. * prcmu_abb_read() - Read register value(s) from the ABB.
  1851. * @slave: The I2C slave address.
  1852. * @reg: The (start) register address.
  1853. * @value: The read out value(s).
  1854. * @size: The number of registers to read.
  1855. *
  1856. * Reads register value(s) from the ABB.
  1857. * @size has to be 1 for the current firmware version.
  1858. */
  1859. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1860. {
  1861. int r;
  1862. if (size != 1)
  1863. return -EINVAL;
  1864. mutex_lock(&mb5_transfer.lock);
  1865. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1866. cpu_relax();
  1867. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1868. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1869. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1870. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1871. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1872. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1873. msecs_to_jiffies(20000))) {
  1874. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1875. __func__);
  1876. r = -EIO;
  1877. } else {
  1878. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1879. }
  1880. if (!r)
  1881. *value = mb5_transfer.ack.value;
  1882. mutex_unlock(&mb5_transfer.lock);
  1883. return r;
  1884. }
  1885. /**
  1886. * prcmu_abb_write() - Write register value(s) to the ABB.
  1887. * @slave: The I2C slave address.
  1888. * @reg: The (start) register address.
  1889. * @value: The value(s) to write.
  1890. * @size: The number of registers to write.
  1891. *
  1892. * Reads register value(s) from the ABB.
  1893. * @size has to be 1 for the current firmware version.
  1894. */
  1895. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1896. {
  1897. int r;
  1898. if (size != 1)
  1899. return -EINVAL;
  1900. mutex_lock(&mb5_transfer.lock);
  1901. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1902. cpu_relax();
  1903. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1904. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1905. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1906. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1907. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1908. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1909. msecs_to_jiffies(20000))) {
  1910. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1911. __func__);
  1912. r = -EIO;
  1913. } else {
  1914. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1915. }
  1916. mutex_unlock(&mb5_transfer.lock);
  1917. return r;
  1918. }
  1919. /**
  1920. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1921. */
  1922. void prcmu_ac_wake_req(void)
  1923. {
  1924. u32 val;
  1925. u32 status;
  1926. mutex_lock(&mb0_transfer.ac_wake_lock);
  1927. val = readl(PRCM_HOSTACCESS_REQ);
  1928. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1929. goto unlock_and_return;
  1930. atomic_set(&ac_wake_req_state, 1);
  1931. retry:
  1932. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  1933. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1934. msecs_to_jiffies(5000))) {
  1935. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1936. __func__);
  1937. goto unlock_and_return;
  1938. }
  1939. /*
  1940. * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
  1941. * As a workaround, we wait, and then check that the modem is indeed
  1942. * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
  1943. * register, which may not be the whole truth).
  1944. */
  1945. udelay(400);
  1946. status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
  1947. if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
  1948. PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
  1949. pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
  1950. __func__, status);
  1951. udelay(1200);
  1952. writel(val, PRCM_HOSTACCESS_REQ);
  1953. if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1954. msecs_to_jiffies(5000)))
  1955. goto retry;
  1956. pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
  1957. __func__);
  1958. }
  1959. unlock_and_return:
  1960. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1961. }
  1962. /**
  1963. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1964. */
  1965. void prcmu_ac_sleep_req()
  1966. {
  1967. u32 val;
  1968. mutex_lock(&mb0_transfer.ac_wake_lock);
  1969. val = readl(PRCM_HOSTACCESS_REQ);
  1970. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1971. goto unlock_and_return;
  1972. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1973. PRCM_HOSTACCESS_REQ);
  1974. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1975. msecs_to_jiffies(5000))) {
  1976. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1977. __func__);
  1978. }
  1979. atomic_set(&ac_wake_req_state, 0);
  1980. unlock_and_return:
  1981. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1982. }
  1983. bool db8500_prcmu_is_ac_wake_requested(void)
  1984. {
  1985. return (atomic_read(&ac_wake_req_state) != 0);
  1986. }
  1987. /**
  1988. * db8500_prcmu_system_reset - System reset
  1989. *
  1990. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1991. * fires interrupt to fw
  1992. */
  1993. void db8500_prcmu_system_reset(u16 reset_code)
  1994. {
  1995. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1996. writel(1, PRCM_APE_SOFTRST);
  1997. }
  1998. /**
  1999. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2000. *
  2001. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2002. * last restart.
  2003. */
  2004. u16 db8500_prcmu_get_reset_code(void)
  2005. {
  2006. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2007. }
  2008. /**
  2009. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2010. */
  2011. void db8500_prcmu_modem_reset(void)
  2012. {
  2013. mutex_lock(&mb1_transfer.lock);
  2014. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2015. cpu_relax();
  2016. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2017. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2018. wait_for_completion(&mb1_transfer.work);
  2019. /*
  2020. * No need to check return from PRCMU as modem should go in reset state
  2021. * This state is already managed by upper layer
  2022. */
  2023. mutex_unlock(&mb1_transfer.lock);
  2024. }
  2025. static void ack_dbb_wakeup(void)
  2026. {
  2027. unsigned long flags;
  2028. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2029. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2030. cpu_relax();
  2031. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2032. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2033. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2034. }
  2035. static inline void print_unknown_header_warning(u8 n, u8 header)
  2036. {
  2037. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2038. header, n);
  2039. }
  2040. static bool read_mailbox_0(void)
  2041. {
  2042. bool r;
  2043. u32 ev;
  2044. unsigned int n;
  2045. u8 header;
  2046. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2047. switch (header) {
  2048. case MB0H_WAKEUP_EXE:
  2049. case MB0H_WAKEUP_SLEEP:
  2050. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2051. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2052. else
  2053. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2054. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2055. complete(&mb0_transfer.ac_wake_work);
  2056. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2057. complete(&mb3_transfer.sysclk_work);
  2058. ev &= mb0_transfer.req.dbb_irqs;
  2059. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2060. if (ev & prcmu_irq_bit[n])
  2061. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2062. }
  2063. r = true;
  2064. break;
  2065. default:
  2066. print_unknown_header_warning(0, header);
  2067. r = false;
  2068. break;
  2069. }
  2070. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2071. return r;
  2072. }
  2073. static bool read_mailbox_1(void)
  2074. {
  2075. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2076. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2077. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2078. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2079. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2080. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2081. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2082. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2083. complete(&mb1_transfer.work);
  2084. return false;
  2085. }
  2086. static bool read_mailbox_2(void)
  2087. {
  2088. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2089. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2090. complete(&mb2_transfer.work);
  2091. return false;
  2092. }
  2093. static bool read_mailbox_3(void)
  2094. {
  2095. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2096. return false;
  2097. }
  2098. static bool read_mailbox_4(void)
  2099. {
  2100. u8 header;
  2101. bool do_complete = true;
  2102. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2103. switch (header) {
  2104. case MB4H_MEM_ST:
  2105. case MB4H_HOTDOG:
  2106. case MB4H_HOTMON:
  2107. case MB4H_HOT_PERIOD:
  2108. case MB4H_A9WDOG_CONF:
  2109. case MB4H_A9WDOG_EN:
  2110. case MB4H_A9WDOG_DIS:
  2111. case MB4H_A9WDOG_LOAD:
  2112. case MB4H_A9WDOG_KICK:
  2113. break;
  2114. default:
  2115. print_unknown_header_warning(4, header);
  2116. do_complete = false;
  2117. break;
  2118. }
  2119. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2120. if (do_complete)
  2121. complete(&mb4_transfer.work);
  2122. return false;
  2123. }
  2124. static bool read_mailbox_5(void)
  2125. {
  2126. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2127. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2128. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2129. complete(&mb5_transfer.work);
  2130. return false;
  2131. }
  2132. static bool read_mailbox_6(void)
  2133. {
  2134. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2135. return false;
  2136. }
  2137. static bool read_mailbox_7(void)
  2138. {
  2139. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2140. return false;
  2141. }
  2142. static bool (* const read_mailbox[NUM_MB])(void) = {
  2143. read_mailbox_0,
  2144. read_mailbox_1,
  2145. read_mailbox_2,
  2146. read_mailbox_3,
  2147. read_mailbox_4,
  2148. read_mailbox_5,
  2149. read_mailbox_6,
  2150. read_mailbox_7
  2151. };
  2152. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2153. {
  2154. u32 bits;
  2155. u8 n;
  2156. irqreturn_t r;
  2157. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2158. if (unlikely(!bits))
  2159. return IRQ_NONE;
  2160. r = IRQ_HANDLED;
  2161. for (n = 0; bits; n++) {
  2162. if (bits & MBOX_BIT(n)) {
  2163. bits -= MBOX_BIT(n);
  2164. if (read_mailbox[n]())
  2165. r = IRQ_WAKE_THREAD;
  2166. }
  2167. }
  2168. return r;
  2169. }
  2170. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2171. {
  2172. ack_dbb_wakeup();
  2173. return IRQ_HANDLED;
  2174. }
  2175. static void prcmu_mask_work(struct work_struct *work)
  2176. {
  2177. unsigned long flags;
  2178. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2179. config_wakeups();
  2180. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2181. }
  2182. static void prcmu_irq_mask(struct irq_data *d)
  2183. {
  2184. unsigned long flags;
  2185. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2186. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2187. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2188. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2189. schedule_work(&mb0_transfer.mask_work);
  2190. }
  2191. static void prcmu_irq_unmask(struct irq_data *d)
  2192. {
  2193. unsigned long flags;
  2194. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2195. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2196. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2197. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2198. schedule_work(&mb0_transfer.mask_work);
  2199. }
  2200. static void noop(struct irq_data *d)
  2201. {
  2202. }
  2203. static struct irq_chip prcmu_irq_chip = {
  2204. .name = "prcmu",
  2205. .irq_disable = prcmu_irq_mask,
  2206. .irq_ack = noop,
  2207. .irq_mask = prcmu_irq_mask,
  2208. .irq_unmask = prcmu_irq_unmask,
  2209. };
  2210. static char *fw_project_name(u8 project)
  2211. {
  2212. switch (project) {
  2213. case PRCMU_FW_PROJECT_U8500:
  2214. return "U8500";
  2215. case PRCMU_FW_PROJECT_U8500_C2:
  2216. return "U8500 C2";
  2217. case PRCMU_FW_PROJECT_U9500:
  2218. return "U9500";
  2219. case PRCMU_FW_PROJECT_U9500_C2:
  2220. return "U9500 C2";
  2221. default:
  2222. return "Unknown";
  2223. }
  2224. }
  2225. void __init db8500_prcmu_early_init(void)
  2226. {
  2227. unsigned int i;
  2228. if (cpu_is_u8500v2()) {
  2229. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2230. if (tcpm_base != NULL) {
  2231. u32 version;
  2232. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2233. fw_info.version.project = version & 0xFF;
  2234. fw_info.version.api_version = (version >> 8) & 0xFF;
  2235. fw_info.version.func_version = (version >> 16) & 0xFF;
  2236. fw_info.version.errata = (version >> 24) & 0xFF;
  2237. fw_info.valid = true;
  2238. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2239. fw_project_name(fw_info.version.project),
  2240. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2241. (version >> 24) & 0xFF);
  2242. iounmap(tcpm_base);
  2243. }
  2244. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2245. } else {
  2246. pr_err("prcmu: Unsupported chip version\n");
  2247. BUG();
  2248. }
  2249. spin_lock_init(&mb0_transfer.lock);
  2250. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2251. mutex_init(&mb0_transfer.ac_wake_lock);
  2252. init_completion(&mb0_transfer.ac_wake_work);
  2253. mutex_init(&mb1_transfer.lock);
  2254. init_completion(&mb1_transfer.work);
  2255. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2256. mutex_init(&mb2_transfer.lock);
  2257. init_completion(&mb2_transfer.work);
  2258. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2259. spin_lock_init(&mb3_transfer.lock);
  2260. mutex_init(&mb3_transfer.sysclk_lock);
  2261. init_completion(&mb3_transfer.sysclk_work);
  2262. mutex_init(&mb4_transfer.lock);
  2263. init_completion(&mb4_transfer.work);
  2264. mutex_init(&mb5_transfer.lock);
  2265. init_completion(&mb5_transfer.work);
  2266. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2267. /* Initalize irqs. */
  2268. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  2269. unsigned int irq;
  2270. irq = IRQ_PRCMU_BASE + i;
  2271. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  2272. handle_simple_irq);
  2273. set_irq_flags(irq, IRQF_VALID);
  2274. }
  2275. }
  2276. static void __init init_prcm_registers(void)
  2277. {
  2278. u32 val;
  2279. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2280. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2281. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2282. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2283. }
  2284. /*
  2285. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2286. */
  2287. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2288. REGULATOR_SUPPLY("v-ape", NULL),
  2289. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2290. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2291. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2292. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2293. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2294. REGULATOR_SUPPLY("vcore", "sdi0"),
  2295. REGULATOR_SUPPLY("vcore", "sdi1"),
  2296. REGULATOR_SUPPLY("vcore", "sdi2"),
  2297. REGULATOR_SUPPLY("vcore", "sdi3"),
  2298. REGULATOR_SUPPLY("vcore", "sdi4"),
  2299. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2300. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2301. /* "v-uart" changed to "vcore" in the mainline kernel */
  2302. REGULATOR_SUPPLY("vcore", "uart0"),
  2303. REGULATOR_SUPPLY("vcore", "uart1"),
  2304. REGULATOR_SUPPLY("vcore", "uart2"),
  2305. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2306. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2307. };
  2308. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2309. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2310. /* AV8100 regulator */
  2311. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2312. };
  2313. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2314. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2315. REGULATOR_SUPPLY("vsupply", "mcde"),
  2316. };
  2317. /* SVA MMDSP regulator switch */
  2318. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2319. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2320. };
  2321. /* SVA pipe regulator switch */
  2322. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2323. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2324. };
  2325. /* SIA MMDSP regulator switch */
  2326. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2327. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2328. };
  2329. /* SIA pipe regulator switch */
  2330. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2331. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2332. };
  2333. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2334. REGULATOR_SUPPLY("v-mali", NULL),
  2335. };
  2336. /* ESRAM1 and 2 regulator switch */
  2337. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2338. REGULATOR_SUPPLY("esram12", "cm_control"),
  2339. };
  2340. /* ESRAM3 and 4 regulator switch */
  2341. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2342. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2343. REGULATOR_SUPPLY("esram34", "cm_control"),
  2344. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2345. };
  2346. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2347. [DB8500_REGULATOR_VAPE] = {
  2348. .constraints = {
  2349. .name = "db8500-vape",
  2350. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2351. },
  2352. .consumer_supplies = db8500_vape_consumers,
  2353. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2354. },
  2355. [DB8500_REGULATOR_VARM] = {
  2356. .constraints = {
  2357. .name = "db8500-varm",
  2358. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2359. },
  2360. },
  2361. [DB8500_REGULATOR_VMODEM] = {
  2362. .constraints = {
  2363. .name = "db8500-vmodem",
  2364. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2365. },
  2366. },
  2367. [DB8500_REGULATOR_VPLL] = {
  2368. .constraints = {
  2369. .name = "db8500-vpll",
  2370. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2371. },
  2372. },
  2373. [DB8500_REGULATOR_VSMPS1] = {
  2374. .constraints = {
  2375. .name = "db8500-vsmps1",
  2376. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2377. },
  2378. },
  2379. [DB8500_REGULATOR_VSMPS2] = {
  2380. .constraints = {
  2381. .name = "db8500-vsmps2",
  2382. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2383. },
  2384. .consumer_supplies = db8500_vsmps2_consumers,
  2385. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2386. },
  2387. [DB8500_REGULATOR_VSMPS3] = {
  2388. .constraints = {
  2389. .name = "db8500-vsmps3",
  2390. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2391. },
  2392. },
  2393. [DB8500_REGULATOR_VRF1] = {
  2394. .constraints = {
  2395. .name = "db8500-vrf1",
  2396. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2397. },
  2398. },
  2399. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2400. /* dependency to u8500-vape is handled outside regulator framework */
  2401. .constraints = {
  2402. .name = "db8500-sva-mmdsp",
  2403. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2404. },
  2405. .consumer_supplies = db8500_svammdsp_consumers,
  2406. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2407. },
  2408. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2409. .constraints = {
  2410. /* "ret" means "retention" */
  2411. .name = "db8500-sva-mmdsp-ret",
  2412. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2413. },
  2414. },
  2415. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2416. /* dependency to u8500-vape is handled outside regulator framework */
  2417. .constraints = {
  2418. .name = "db8500-sva-pipe",
  2419. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2420. },
  2421. .consumer_supplies = db8500_svapipe_consumers,
  2422. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2423. },
  2424. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2425. /* dependency to u8500-vape is handled outside regulator framework */
  2426. .constraints = {
  2427. .name = "db8500-sia-mmdsp",
  2428. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2429. },
  2430. .consumer_supplies = db8500_siammdsp_consumers,
  2431. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2432. },
  2433. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2434. .constraints = {
  2435. .name = "db8500-sia-mmdsp-ret",
  2436. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2437. },
  2438. },
  2439. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2440. /* dependency to u8500-vape is handled outside regulator framework */
  2441. .constraints = {
  2442. .name = "db8500-sia-pipe",
  2443. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2444. },
  2445. .consumer_supplies = db8500_siapipe_consumers,
  2446. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2447. },
  2448. [DB8500_REGULATOR_SWITCH_SGA] = {
  2449. .supply_regulator = "db8500-vape",
  2450. .constraints = {
  2451. .name = "db8500-sga",
  2452. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2453. },
  2454. .consumer_supplies = db8500_sga_consumers,
  2455. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2456. },
  2457. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2458. .supply_regulator = "db8500-vape",
  2459. .constraints = {
  2460. .name = "db8500-b2r2-mcde",
  2461. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2462. },
  2463. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2464. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2465. },
  2466. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2467. /*
  2468. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2469. * no need to hold Vape
  2470. */
  2471. .constraints = {
  2472. .name = "db8500-esram12",
  2473. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2474. },
  2475. .consumer_supplies = db8500_esram12_consumers,
  2476. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2477. },
  2478. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2479. .constraints = {
  2480. .name = "db8500-esram12-ret",
  2481. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2482. },
  2483. },
  2484. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2485. /*
  2486. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2487. * no need to hold Vape
  2488. */
  2489. .constraints = {
  2490. .name = "db8500-esram34",
  2491. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2492. },
  2493. .consumer_supplies = db8500_esram34_consumers,
  2494. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2495. },
  2496. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2497. .constraints = {
  2498. .name = "db8500-esram34-ret",
  2499. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2500. },
  2501. },
  2502. };
  2503. static struct mfd_cell db8500_prcmu_devs[] = {
  2504. {
  2505. .name = "db8500-prcmu-regulators",
  2506. .platform_data = &db8500_regulators,
  2507. .pdata_size = sizeof(db8500_regulators),
  2508. },
  2509. {
  2510. .name = "cpufreq-u8500",
  2511. },
  2512. };
  2513. /**
  2514. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2515. *
  2516. */
  2517. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  2518. {
  2519. int err = 0;
  2520. if (ux500_is_svp())
  2521. return -ENODEV;
  2522. init_prcm_registers();
  2523. /* Clean up the mailbox interrupts after pre-kernel code. */
  2524. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2525. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  2526. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2527. if (err < 0) {
  2528. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2529. err = -EBUSY;
  2530. goto no_irq_return;
  2531. }
  2532. if (cpu_is_u8500v20_or_later())
  2533. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2534. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2535. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  2536. 0);
  2537. if (err)
  2538. pr_err("prcmu: Failed to add subdevices\n");
  2539. else
  2540. pr_info("DB8500 PRCMU initialized\n");
  2541. no_irq_return:
  2542. return err;
  2543. }
  2544. static struct platform_driver db8500_prcmu_driver = {
  2545. .driver = {
  2546. .name = "db8500-prcmu",
  2547. .owner = THIS_MODULE,
  2548. },
  2549. };
  2550. static int __init db8500_prcmu_init(void)
  2551. {
  2552. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  2553. }
  2554. arch_initcall(db8500_prcmu_init);
  2555. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2556. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2557. MODULE_LICENSE("GPL v2");