i915_gem.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. /* Allocate the new object */
  170. obj = i915_gem_alloc_object(dev, size);
  171. if (obj == NULL)
  172. return -ENOMEM;
  173. ret = drm_gem_handle_create(file, &obj->base, &handle);
  174. if (ret) {
  175. drm_gem_object_release(&obj->base);
  176. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  177. kfree(obj);
  178. return ret;
  179. }
  180. /* drop reference from allocate - handle holds it now */
  181. drm_gem_object_unreference(&obj->base);
  182. trace_i915_gem_object_create(obj);
  183. *handle_p = handle;
  184. return 0;
  185. }
  186. int
  187. i915_gem_dumb_create(struct drm_file *file,
  188. struct drm_device *dev,
  189. struct drm_mode_create_dumb *args)
  190. {
  191. /* have to work out size/pitch and return them */
  192. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  193. args->size = args->pitch * args->height;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. int i915_gem_dumb_destroy(struct drm_file *file,
  198. struct drm_device *dev,
  199. uint32_t handle)
  200. {
  201. return drm_gem_handle_delete(file, handle);
  202. }
  203. /**
  204. * Creates a new mm object and returns a handle to it.
  205. */
  206. int
  207. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  208. struct drm_file *file)
  209. {
  210. struct drm_i915_gem_create *args = data;
  211. return i915_gem_create(file, dev,
  212. args->size, &args->handle);
  213. }
  214. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  215. {
  216. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  217. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  218. obj->tiling_mode != I915_TILING_NONE;
  219. }
  220. static inline void
  221. slow_shmem_copy(struct page *dst_page,
  222. int dst_offset,
  223. struct page *src_page,
  224. int src_offset,
  225. int length)
  226. {
  227. char *dst_vaddr, *src_vaddr;
  228. dst_vaddr = kmap(dst_page);
  229. src_vaddr = kmap(src_page);
  230. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  231. kunmap(src_page);
  232. kunmap(dst_page);
  233. }
  234. static inline void
  235. slow_shmem_bit17_copy(struct page *gpu_page,
  236. int gpu_offset,
  237. struct page *cpu_page,
  238. int cpu_offset,
  239. int length,
  240. int is_read)
  241. {
  242. char *gpu_vaddr, *cpu_vaddr;
  243. /* Use the unswizzled path if this page isn't affected. */
  244. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  245. if (is_read)
  246. return slow_shmem_copy(cpu_page, cpu_offset,
  247. gpu_page, gpu_offset, length);
  248. else
  249. return slow_shmem_copy(gpu_page, gpu_offset,
  250. cpu_page, cpu_offset, length);
  251. }
  252. gpu_vaddr = kmap(gpu_page);
  253. cpu_vaddr = kmap(cpu_page);
  254. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  255. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  256. */
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. if (is_read) {
  262. memcpy(cpu_vaddr + cpu_offset,
  263. gpu_vaddr + swizzled_gpu_offset,
  264. this_length);
  265. } else {
  266. memcpy(gpu_vaddr + swizzled_gpu_offset,
  267. cpu_vaddr + cpu_offset,
  268. this_length);
  269. }
  270. cpu_offset += this_length;
  271. gpu_offset += this_length;
  272. length -= this_length;
  273. }
  274. kunmap(cpu_page);
  275. kunmap(gpu_page);
  276. }
  277. /**
  278. * This is the fast shmem pread path, which attempts to copy_from_user directly
  279. * from the backing pages of the object to the user's address space. On a
  280. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  281. */
  282. static int
  283. i915_gem_shmem_pread_fast(struct drm_device *dev,
  284. struct drm_i915_gem_object *obj,
  285. struct drm_i915_gem_pread *args,
  286. struct drm_file *file)
  287. {
  288. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  289. ssize_t remain;
  290. loff_t offset;
  291. char __user *user_data;
  292. int page_offset, page_length;
  293. user_data = (char __user *) (uintptr_t) args->data_ptr;
  294. remain = args->size;
  295. offset = args->offset;
  296. while (remain > 0) {
  297. struct page *page;
  298. char *vaddr;
  299. int ret;
  300. /* Operation in this page
  301. *
  302. * page_offset = offset within page
  303. * page_length = bytes to copy for this page
  304. */
  305. page_offset = offset_in_page(offset);
  306. page_length = remain;
  307. if ((page_offset + remain) > PAGE_SIZE)
  308. page_length = PAGE_SIZE - page_offset;
  309. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  310. if (IS_ERR(page))
  311. return PTR_ERR(page);
  312. vaddr = kmap_atomic(page);
  313. ret = __copy_to_user_inatomic(user_data,
  314. vaddr + page_offset,
  315. page_length);
  316. kunmap_atomic(vaddr);
  317. mark_page_accessed(page);
  318. page_cache_release(page);
  319. if (ret)
  320. return -EFAULT;
  321. remain -= page_length;
  322. user_data += page_length;
  323. offset += page_length;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * This is the fallback shmem pread path, which allocates temporary storage
  329. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  330. * can copy out of the object's backing pages while holding the struct mutex
  331. * and not take page faults.
  332. */
  333. static int
  334. i915_gem_shmem_pread_slow(struct drm_device *dev,
  335. struct drm_i915_gem_object *obj,
  336. struct drm_i915_gem_pread *args,
  337. struct drm_file *file)
  338. {
  339. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  340. struct mm_struct *mm = current->mm;
  341. struct page **user_pages;
  342. ssize_t remain;
  343. loff_t offset, pinned_pages, i;
  344. loff_t first_data_page, last_data_page, num_pages;
  345. int shmem_page_offset;
  346. int data_page_index, data_page_offset;
  347. int page_length;
  348. int ret;
  349. uint64_t data_ptr = args->data_ptr;
  350. int do_bit17_swizzling;
  351. remain = args->size;
  352. /* Pin the user pages containing the data. We can't fault while
  353. * holding the struct mutex, yet we want to hold it while
  354. * dereferencing the user data.
  355. */
  356. first_data_page = data_ptr / PAGE_SIZE;
  357. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  358. num_pages = last_data_page - first_data_page + 1;
  359. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  360. if (user_pages == NULL)
  361. return -ENOMEM;
  362. mutex_unlock(&dev->struct_mutex);
  363. down_read(&mm->mmap_sem);
  364. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  365. num_pages, 1, 0, user_pages, NULL);
  366. up_read(&mm->mmap_sem);
  367. mutex_lock(&dev->struct_mutex);
  368. if (pinned_pages < num_pages) {
  369. ret = -EFAULT;
  370. goto out;
  371. }
  372. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  373. args->offset,
  374. args->size);
  375. if (ret)
  376. goto out;
  377. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  378. offset = args->offset;
  379. while (remain > 0) {
  380. struct page *page;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * data_page_index = page number in get_user_pages return
  385. * data_page_offset = offset with data_page_index page.
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  390. data_page_offset = offset_in_page(data_ptr);
  391. page_length = remain;
  392. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  393. page_length = PAGE_SIZE - shmem_page_offset;
  394. if ((data_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - data_page_offset;
  396. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  397. if (IS_ERR(page)) {
  398. ret = PTR_ERR(page);
  399. goto out;
  400. }
  401. if (do_bit17_swizzling) {
  402. slow_shmem_bit17_copy(page,
  403. shmem_page_offset,
  404. user_pages[data_page_index],
  405. data_page_offset,
  406. page_length,
  407. 1);
  408. } else {
  409. slow_shmem_copy(user_pages[data_page_index],
  410. data_page_offset,
  411. page,
  412. shmem_page_offset,
  413. page_length);
  414. }
  415. mark_page_accessed(page);
  416. page_cache_release(page);
  417. remain -= page_length;
  418. data_ptr += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. mark_page_accessed(user_pages[i]);
  425. page_cache_release(user_pages[i]);
  426. }
  427. drm_free_large(user_pages);
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  449. args->size);
  450. if (ret)
  451. return -EFAULT;
  452. ret = i915_mutex_lock_interruptible(dev);
  453. if (ret)
  454. return ret;
  455. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  456. if (&obj->base == NULL) {
  457. ret = -ENOENT;
  458. goto unlock;
  459. }
  460. /* Bounds check source. */
  461. if (args->offset > obj->base.size ||
  462. args->size > obj->base.size - args->offset) {
  463. ret = -EINVAL;
  464. goto out;
  465. }
  466. trace_i915_gem_object_pread(obj, args->offset, args->size);
  467. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  468. args->offset,
  469. args->size);
  470. if (ret)
  471. goto out;
  472. ret = -EFAULT;
  473. if (!i915_gem_object_needs_bit17_swizzle(obj))
  474. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  475. if (ret == -EFAULT)
  476. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  477. out:
  478. drm_gem_object_unreference(&obj->base);
  479. unlock:
  480. mutex_unlock(&dev->struct_mutex);
  481. return ret;
  482. }
  483. /* This is the fast write path which cannot handle
  484. * page faults in the source data
  485. */
  486. static inline int
  487. fast_user_write(struct io_mapping *mapping,
  488. loff_t page_base, int page_offset,
  489. char __user *user_data,
  490. int length)
  491. {
  492. char *vaddr_atomic;
  493. unsigned long unwritten;
  494. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  495. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  496. user_data, length);
  497. io_mapping_unmap_atomic(vaddr_atomic);
  498. return unwritten;
  499. }
  500. /* Here's the write path which can sleep for
  501. * page faults
  502. */
  503. static inline void
  504. slow_kernel_write(struct io_mapping *mapping,
  505. loff_t gtt_base, int gtt_offset,
  506. struct page *user_page, int user_offset,
  507. int length)
  508. {
  509. char __iomem *dst_vaddr;
  510. char *src_vaddr;
  511. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  512. src_vaddr = kmap(user_page);
  513. memcpy_toio(dst_vaddr + gtt_offset,
  514. src_vaddr + user_offset,
  515. length);
  516. kunmap(user_page);
  517. io_mapping_unmap(dst_vaddr);
  518. }
  519. /**
  520. * This is the fast pwrite path, where we copy the data directly from the
  521. * user into the GTT, uncached.
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t offset, page_base;
  532. char __user *user_data;
  533. int page_offset, page_length;
  534. user_data = (char __user *) (uintptr_t) args->data_ptr;
  535. remain = args->size;
  536. offset = obj->gtt_offset + args->offset;
  537. while (remain > 0) {
  538. /* Operation in this page
  539. *
  540. * page_base = page offset within aperture
  541. * page_offset = offset within page
  542. * page_length = bytes to copy for this page
  543. */
  544. page_base = offset & PAGE_MASK;
  545. page_offset = offset_in_page(offset);
  546. page_length = remain;
  547. if ((page_offset + remain) > PAGE_SIZE)
  548. page_length = PAGE_SIZE - page_offset;
  549. /* If we get a fault while copying data, then (presumably) our
  550. * source page isn't available. Return the error and we'll
  551. * retry in the slow path.
  552. */
  553. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  554. page_offset, user_data, page_length))
  555. return -EFAULT;
  556. remain -= page_length;
  557. user_data += page_length;
  558. offset += page_length;
  559. }
  560. return 0;
  561. }
  562. /**
  563. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  564. * the memory and maps it using kmap_atomic for copying.
  565. *
  566. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  567. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  568. */
  569. static int
  570. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  571. struct drm_i915_gem_object *obj,
  572. struct drm_i915_gem_pwrite *args,
  573. struct drm_file *file)
  574. {
  575. drm_i915_private_t *dev_priv = dev->dev_private;
  576. ssize_t remain;
  577. loff_t gtt_page_base, offset;
  578. loff_t first_data_page, last_data_page, num_pages;
  579. loff_t pinned_pages, i;
  580. struct page **user_pages;
  581. struct mm_struct *mm = current->mm;
  582. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  583. int ret;
  584. uint64_t data_ptr = args->data_ptr;
  585. remain = args->size;
  586. /* Pin the user pages containing the data. We can't fault while
  587. * holding the struct mutex, and all of the pwrite implementations
  588. * want to hold it while dereferencing the user data.
  589. */
  590. first_data_page = data_ptr / PAGE_SIZE;
  591. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  592. num_pages = last_data_page - first_data_page + 1;
  593. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  594. if (user_pages == NULL)
  595. return -ENOMEM;
  596. mutex_unlock(&dev->struct_mutex);
  597. down_read(&mm->mmap_sem);
  598. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  599. num_pages, 0, 0, user_pages, NULL);
  600. up_read(&mm->mmap_sem);
  601. mutex_lock(&dev->struct_mutex);
  602. if (pinned_pages < num_pages) {
  603. ret = -EFAULT;
  604. goto out_unpin_pages;
  605. }
  606. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  607. if (ret)
  608. goto out_unpin_pages;
  609. ret = i915_gem_object_put_fence(obj);
  610. if (ret)
  611. goto out_unpin_pages;
  612. offset = obj->gtt_offset + args->offset;
  613. while (remain > 0) {
  614. /* Operation in this page
  615. *
  616. * gtt_page_base = page offset within aperture
  617. * gtt_page_offset = offset within page in aperture
  618. * data_page_index = page number in get_user_pages return
  619. * data_page_offset = offset with data_page_index page.
  620. * page_length = bytes to copy for this page
  621. */
  622. gtt_page_base = offset & PAGE_MASK;
  623. gtt_page_offset = offset_in_page(offset);
  624. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  625. data_page_offset = offset_in_page(data_ptr);
  626. page_length = remain;
  627. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  628. page_length = PAGE_SIZE - gtt_page_offset;
  629. if ((data_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - data_page_offset;
  631. slow_kernel_write(dev_priv->mm.gtt_mapping,
  632. gtt_page_base, gtt_page_offset,
  633. user_pages[data_page_index],
  634. data_page_offset,
  635. page_length);
  636. remain -= page_length;
  637. offset += page_length;
  638. data_ptr += page_length;
  639. }
  640. out_unpin_pages:
  641. for (i = 0; i < pinned_pages; i++)
  642. page_cache_release(user_pages[i]);
  643. drm_free_large(user_pages);
  644. return ret;
  645. }
  646. /**
  647. * This is the fast shmem pwrite path, which attempts to directly
  648. * copy_from_user into the kmapped pages backing the object.
  649. */
  650. static int
  651. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  652. struct drm_i915_gem_object *obj,
  653. struct drm_i915_gem_pwrite *args,
  654. struct drm_file *file)
  655. {
  656. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  657. ssize_t remain;
  658. loff_t offset;
  659. char __user *user_data;
  660. int page_offset, page_length;
  661. user_data = (char __user *) (uintptr_t) args->data_ptr;
  662. remain = args->size;
  663. offset = args->offset;
  664. obj->dirty = 1;
  665. while (remain > 0) {
  666. struct page *page;
  667. char *vaddr;
  668. int ret;
  669. /* Operation in this page
  670. *
  671. * page_offset = offset within page
  672. * page_length = bytes to copy for this page
  673. */
  674. page_offset = offset_in_page(offset);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  679. if (IS_ERR(page))
  680. return PTR_ERR(page);
  681. vaddr = kmap_atomic(page, KM_USER0);
  682. ret = __copy_from_user_inatomic(vaddr + page_offset,
  683. user_data,
  684. page_length);
  685. kunmap_atomic(vaddr, KM_USER0);
  686. set_page_dirty(page);
  687. mark_page_accessed(page);
  688. page_cache_release(page);
  689. /* If we get a fault while copying data, then (presumably) our
  690. * source page isn't available. Return the error and we'll
  691. * retry in the slow path.
  692. */
  693. if (ret)
  694. return -EFAULT;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. return 0;
  700. }
  701. /**
  702. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  703. * the memory and maps it using kmap_atomic for copying.
  704. *
  705. * This avoids taking mmap_sem for faulting on the user's address while the
  706. * struct_mutex is held.
  707. */
  708. static int
  709. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  710. struct drm_i915_gem_object *obj,
  711. struct drm_i915_gem_pwrite *args,
  712. struct drm_file *file)
  713. {
  714. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  715. struct mm_struct *mm = current->mm;
  716. struct page **user_pages;
  717. ssize_t remain;
  718. loff_t offset, pinned_pages, i;
  719. loff_t first_data_page, last_data_page, num_pages;
  720. int shmem_page_offset;
  721. int data_page_index, data_page_offset;
  722. int page_length;
  723. int ret;
  724. uint64_t data_ptr = args->data_ptr;
  725. int do_bit17_swizzling;
  726. remain = args->size;
  727. /* Pin the user pages containing the data. We can't fault while
  728. * holding the struct mutex, and all of the pwrite implementations
  729. * want to hold it while dereferencing the user data.
  730. */
  731. first_data_page = data_ptr / PAGE_SIZE;
  732. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  733. num_pages = last_data_page - first_data_page + 1;
  734. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  735. if (user_pages == NULL)
  736. return -ENOMEM;
  737. mutex_unlock(&dev->struct_mutex);
  738. down_read(&mm->mmap_sem);
  739. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  740. num_pages, 0, 0, user_pages, NULL);
  741. up_read(&mm->mmap_sem);
  742. mutex_lock(&dev->struct_mutex);
  743. if (pinned_pages < num_pages) {
  744. ret = -EFAULT;
  745. goto out;
  746. }
  747. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  748. if (ret)
  749. goto out;
  750. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  751. offset = args->offset;
  752. obj->dirty = 1;
  753. while (remain > 0) {
  754. struct page *page;
  755. /* Operation in this page
  756. *
  757. * shmem_page_offset = offset within page in shmem file
  758. * data_page_index = page number in get_user_pages return
  759. * data_page_offset = offset with data_page_index page.
  760. * page_length = bytes to copy for this page
  761. */
  762. shmem_page_offset = offset_in_page(offset);
  763. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  764. data_page_offset = offset_in_page(data_ptr);
  765. page_length = remain;
  766. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  767. page_length = PAGE_SIZE - shmem_page_offset;
  768. if ((data_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - data_page_offset;
  770. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  771. if (IS_ERR(page)) {
  772. ret = PTR_ERR(page);
  773. goto out;
  774. }
  775. if (do_bit17_swizzling) {
  776. slow_shmem_bit17_copy(page,
  777. shmem_page_offset,
  778. user_pages[data_page_index],
  779. data_page_offset,
  780. page_length,
  781. 0);
  782. } else {
  783. slow_shmem_copy(page,
  784. shmem_page_offset,
  785. user_pages[data_page_index],
  786. data_page_offset,
  787. page_length);
  788. }
  789. set_page_dirty(page);
  790. mark_page_accessed(page);
  791. page_cache_release(page);
  792. remain -= page_length;
  793. data_ptr += page_length;
  794. offset += page_length;
  795. }
  796. out:
  797. for (i = 0; i < pinned_pages; i++)
  798. page_cache_release(user_pages[i]);
  799. drm_free_large(user_pages);
  800. return ret;
  801. }
  802. /**
  803. * Writes data to the object referenced by handle.
  804. *
  805. * On error, the contents of the buffer that were to be modified are undefined.
  806. */
  807. int
  808. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  809. struct drm_file *file)
  810. {
  811. struct drm_i915_gem_pwrite *args = data;
  812. struct drm_i915_gem_object *obj;
  813. int ret;
  814. if (args->size == 0)
  815. return 0;
  816. if (!access_ok(VERIFY_READ,
  817. (char __user *)(uintptr_t)args->data_ptr,
  818. args->size))
  819. return -EFAULT;
  820. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  821. args->size);
  822. if (ret)
  823. return -EFAULT;
  824. ret = i915_mutex_lock_interruptible(dev);
  825. if (ret)
  826. return ret;
  827. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  828. if (&obj->base == NULL) {
  829. ret = -ENOENT;
  830. goto unlock;
  831. }
  832. /* Bounds check destination. */
  833. if (args->offset > obj->base.size ||
  834. args->size > obj->base.size - args->offset) {
  835. ret = -EINVAL;
  836. goto out;
  837. }
  838. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  839. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  840. * it would end up going through the fenced access, and we'll get
  841. * different detiling behavior between reading and writing.
  842. * pread/pwrite currently are reading and writing from the CPU
  843. * perspective, requiring manual detiling by the client.
  844. */
  845. if (obj->phys_obj)
  846. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  847. else if (obj->gtt_space &&
  848. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  849. ret = i915_gem_object_pin(obj, 0, true);
  850. if (ret)
  851. goto out;
  852. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  853. if (ret)
  854. goto out_unpin;
  855. ret = i915_gem_object_put_fence(obj);
  856. if (ret)
  857. goto out_unpin;
  858. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  859. if (ret == -EFAULT)
  860. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  861. out_unpin:
  862. i915_gem_object_unpin(obj);
  863. } else {
  864. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  865. if (ret)
  866. goto out;
  867. ret = -EFAULT;
  868. if (!i915_gem_object_needs_bit17_swizzle(obj))
  869. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  870. if (ret == -EFAULT)
  871. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  872. }
  873. out:
  874. drm_gem_object_unreference(&obj->base);
  875. unlock:
  876. mutex_unlock(&dev->struct_mutex);
  877. return ret;
  878. }
  879. /**
  880. * Called when user space prepares to use an object with the CPU, either
  881. * through the mmap ioctl's mapping or a GTT mapping.
  882. */
  883. int
  884. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  885. struct drm_file *file)
  886. {
  887. struct drm_i915_gem_set_domain *args = data;
  888. struct drm_i915_gem_object *obj;
  889. uint32_t read_domains = args->read_domains;
  890. uint32_t write_domain = args->write_domain;
  891. int ret;
  892. if (!(dev->driver->driver_features & DRIVER_GEM))
  893. return -ENODEV;
  894. /* Only handle setting domains to types used by the CPU. */
  895. if (write_domain & I915_GEM_GPU_DOMAINS)
  896. return -EINVAL;
  897. if (read_domains & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. /* Having something in the write domain implies it's in the read
  900. * domain, and only that read domain. Enforce that in the request.
  901. */
  902. if (write_domain != 0 && read_domains != write_domain)
  903. return -EINVAL;
  904. ret = i915_mutex_lock_interruptible(dev);
  905. if (ret)
  906. return ret;
  907. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  908. if (&obj->base == NULL) {
  909. ret = -ENOENT;
  910. goto unlock;
  911. }
  912. if (read_domains & I915_GEM_DOMAIN_GTT) {
  913. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  914. /* Silently promote "you're not bound, there was nothing to do"
  915. * to success, since the client was just asking us to
  916. * make sure everything was done.
  917. */
  918. if (ret == -EINVAL)
  919. ret = 0;
  920. } else {
  921. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  922. }
  923. drm_gem_object_unreference(&obj->base);
  924. unlock:
  925. mutex_unlock(&dev->struct_mutex);
  926. return ret;
  927. }
  928. /**
  929. * Called when user space has done writes to this buffer
  930. */
  931. int
  932. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  933. struct drm_file *file)
  934. {
  935. struct drm_i915_gem_sw_finish *args = data;
  936. struct drm_i915_gem_object *obj;
  937. int ret = 0;
  938. if (!(dev->driver->driver_features & DRIVER_GEM))
  939. return -ENODEV;
  940. ret = i915_mutex_lock_interruptible(dev);
  941. if (ret)
  942. return ret;
  943. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  944. if (&obj->base == NULL) {
  945. ret = -ENOENT;
  946. goto unlock;
  947. }
  948. /* Pinned buffers may be scanout, so flush the cache */
  949. if (obj->pin_count)
  950. i915_gem_object_flush_cpu_write_domain(obj);
  951. drm_gem_object_unreference(&obj->base);
  952. unlock:
  953. mutex_unlock(&dev->struct_mutex);
  954. return ret;
  955. }
  956. /**
  957. * Maps the contents of an object, returning the address it is mapped
  958. * into.
  959. *
  960. * While the mapping holds a reference on the contents of the object, it doesn't
  961. * imply a ref on the object itself.
  962. */
  963. int
  964. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  965. struct drm_file *file)
  966. {
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. struct drm_i915_gem_mmap *args = data;
  969. struct drm_gem_object *obj;
  970. unsigned long addr;
  971. if (!(dev->driver->driver_features & DRIVER_GEM))
  972. return -ENODEV;
  973. obj = drm_gem_object_lookup(dev, file, args->handle);
  974. if (obj == NULL)
  975. return -ENOENT;
  976. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  977. drm_gem_object_unreference_unlocked(obj);
  978. return -E2BIG;
  979. }
  980. down_write(&current->mm->mmap_sem);
  981. addr = do_mmap(obj->filp, 0, args->size,
  982. PROT_READ | PROT_WRITE, MAP_SHARED,
  983. args->offset);
  984. up_write(&current->mm->mmap_sem);
  985. drm_gem_object_unreference_unlocked(obj);
  986. if (IS_ERR((void *)addr))
  987. return addr;
  988. args->addr_ptr = (uint64_t) addr;
  989. return 0;
  990. }
  991. /**
  992. * i915_gem_fault - fault a page into the GTT
  993. * vma: VMA in question
  994. * vmf: fault info
  995. *
  996. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  997. * from userspace. The fault handler takes care of binding the object to
  998. * the GTT (if needed), allocating and programming a fence register (again,
  999. * only if needed based on whether the old reg is still valid or the object
  1000. * is tiled) and inserting a new PTE into the faulting process.
  1001. *
  1002. * Note that the faulting process may involve evicting existing objects
  1003. * from the GTT and/or fence registers to make room. So performance may
  1004. * suffer if the GTT working set is large or there are few fence registers
  1005. * left.
  1006. */
  1007. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1008. {
  1009. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1010. struct drm_device *dev = obj->base.dev;
  1011. drm_i915_private_t *dev_priv = dev->dev_private;
  1012. pgoff_t page_offset;
  1013. unsigned long pfn;
  1014. int ret = 0;
  1015. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1016. /* We don't use vmf->pgoff since that has the fake offset */
  1017. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1018. PAGE_SHIFT;
  1019. ret = i915_mutex_lock_interruptible(dev);
  1020. if (ret)
  1021. goto out;
  1022. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1023. /* Now bind it into the GTT if needed */
  1024. if (!obj->map_and_fenceable) {
  1025. ret = i915_gem_object_unbind(obj);
  1026. if (ret)
  1027. goto unlock;
  1028. }
  1029. if (!obj->gtt_space) {
  1030. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1031. if (ret)
  1032. goto unlock;
  1033. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1034. if (ret)
  1035. goto unlock;
  1036. }
  1037. if (obj->tiling_mode == I915_TILING_NONE)
  1038. ret = i915_gem_object_put_fence(obj);
  1039. else
  1040. ret = i915_gem_object_get_fence(obj, NULL);
  1041. if (ret)
  1042. goto unlock;
  1043. if (i915_gem_object_is_inactive(obj))
  1044. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1045. obj->fault_mappable = true;
  1046. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1047. page_offset;
  1048. /* Finally, remap it using the new GTT offset */
  1049. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1050. unlock:
  1051. mutex_unlock(&dev->struct_mutex);
  1052. out:
  1053. switch (ret) {
  1054. case -EIO:
  1055. case -EAGAIN:
  1056. /* Give the error handler a chance to run and move the
  1057. * objects off the GPU active list. Next time we service the
  1058. * fault, we should be able to transition the page into the
  1059. * GTT without touching the GPU (and so avoid further
  1060. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1061. * with coherency, just lost writes.
  1062. */
  1063. set_need_resched();
  1064. case 0:
  1065. case -ERESTARTSYS:
  1066. case -EINTR:
  1067. return VM_FAULT_NOPAGE;
  1068. case -ENOMEM:
  1069. return VM_FAULT_OOM;
  1070. default:
  1071. return VM_FAULT_SIGBUS;
  1072. }
  1073. }
  1074. /**
  1075. * i915_gem_release_mmap - remove physical page mappings
  1076. * @obj: obj in question
  1077. *
  1078. * Preserve the reservation of the mmapping with the DRM core code, but
  1079. * relinquish ownership of the pages back to the system.
  1080. *
  1081. * It is vital that we remove the page mapping if we have mapped a tiled
  1082. * object through the GTT and then lose the fence register due to
  1083. * resource pressure. Similarly if the object has been moved out of the
  1084. * aperture, than pages mapped into userspace must be revoked. Removing the
  1085. * mapping will then trigger a page fault on the next user access, allowing
  1086. * fixup by i915_gem_fault().
  1087. */
  1088. void
  1089. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1090. {
  1091. if (!obj->fault_mappable)
  1092. return;
  1093. if (obj->base.dev->dev_mapping)
  1094. unmap_mapping_range(obj->base.dev->dev_mapping,
  1095. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1096. obj->base.size, 1);
  1097. obj->fault_mappable = false;
  1098. }
  1099. static uint32_t
  1100. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1101. {
  1102. uint32_t gtt_size;
  1103. if (INTEL_INFO(dev)->gen >= 4 ||
  1104. tiling_mode == I915_TILING_NONE)
  1105. return size;
  1106. /* Previous chips need a power-of-two fence region when tiling */
  1107. if (INTEL_INFO(dev)->gen == 3)
  1108. gtt_size = 1024*1024;
  1109. else
  1110. gtt_size = 512*1024;
  1111. while (gtt_size < size)
  1112. gtt_size <<= 1;
  1113. return gtt_size;
  1114. }
  1115. /**
  1116. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1117. * @obj: object to check
  1118. *
  1119. * Return the required GTT alignment for an object, taking into account
  1120. * potential fence register mapping.
  1121. */
  1122. static uint32_t
  1123. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1124. uint32_t size,
  1125. int tiling_mode)
  1126. {
  1127. /*
  1128. * Minimum alignment is 4k (GTT page size), but might be greater
  1129. * if a fence register is needed for the object.
  1130. */
  1131. if (INTEL_INFO(dev)->gen >= 4 ||
  1132. tiling_mode == I915_TILING_NONE)
  1133. return 4096;
  1134. /*
  1135. * Previous chips need to be aligned to the size of the smallest
  1136. * fence register that can contain the object.
  1137. */
  1138. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1139. }
  1140. /**
  1141. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1142. * unfenced object
  1143. * @dev: the device
  1144. * @size: size of the object
  1145. * @tiling_mode: tiling mode of the object
  1146. *
  1147. * Return the required GTT alignment for an object, only taking into account
  1148. * unfenced tiled surface requirements.
  1149. */
  1150. uint32_t
  1151. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1152. uint32_t size,
  1153. int tiling_mode)
  1154. {
  1155. /*
  1156. * Minimum alignment is 4k (GTT page size) for sane hw.
  1157. */
  1158. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1159. tiling_mode == I915_TILING_NONE)
  1160. return 4096;
  1161. /* Previous hardware however needs to be aligned to a power-of-two
  1162. * tile height. The simplest method for determining this is to reuse
  1163. * the power-of-tile object size.
  1164. */
  1165. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1166. }
  1167. int
  1168. i915_gem_mmap_gtt(struct drm_file *file,
  1169. struct drm_device *dev,
  1170. uint32_t handle,
  1171. uint64_t *offset)
  1172. {
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. struct drm_i915_gem_object *obj;
  1175. int ret;
  1176. if (!(dev->driver->driver_features & DRIVER_GEM))
  1177. return -ENODEV;
  1178. ret = i915_mutex_lock_interruptible(dev);
  1179. if (ret)
  1180. return ret;
  1181. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1182. if (&obj->base == NULL) {
  1183. ret = -ENOENT;
  1184. goto unlock;
  1185. }
  1186. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1187. ret = -E2BIG;
  1188. goto unlock;
  1189. }
  1190. if (obj->madv != I915_MADV_WILLNEED) {
  1191. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1192. ret = -EINVAL;
  1193. goto out;
  1194. }
  1195. if (!obj->base.map_list.map) {
  1196. ret = drm_gem_create_mmap_offset(&obj->base);
  1197. if (ret)
  1198. goto out;
  1199. }
  1200. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1201. out:
  1202. drm_gem_object_unreference(&obj->base);
  1203. unlock:
  1204. mutex_unlock(&dev->struct_mutex);
  1205. return ret;
  1206. }
  1207. /**
  1208. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1209. * @dev: DRM device
  1210. * @data: GTT mapping ioctl data
  1211. * @file: GEM object info
  1212. *
  1213. * Simply returns the fake offset to userspace so it can mmap it.
  1214. * The mmap call will end up in drm_gem_mmap(), which will set things
  1215. * up so we can get faults in the handler above.
  1216. *
  1217. * The fault handler will take care of binding the object into the GTT
  1218. * (since it may have been evicted to make room for something), allocating
  1219. * a fence register, and mapping the appropriate aperture address into
  1220. * userspace.
  1221. */
  1222. int
  1223. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1224. struct drm_file *file)
  1225. {
  1226. struct drm_i915_gem_mmap_gtt *args = data;
  1227. if (!(dev->driver->driver_features & DRIVER_GEM))
  1228. return -ENODEV;
  1229. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1230. }
  1231. static int
  1232. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1233. gfp_t gfpmask)
  1234. {
  1235. int page_count, i;
  1236. struct address_space *mapping;
  1237. struct inode *inode;
  1238. struct page *page;
  1239. /* Get the list of pages out of our struct file. They'll be pinned
  1240. * at this point until we release them.
  1241. */
  1242. page_count = obj->base.size / PAGE_SIZE;
  1243. BUG_ON(obj->pages != NULL);
  1244. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1245. if (obj->pages == NULL)
  1246. return -ENOMEM;
  1247. inode = obj->base.filp->f_path.dentry->d_inode;
  1248. mapping = inode->i_mapping;
  1249. gfpmask |= mapping_gfp_mask(mapping);
  1250. for (i = 0; i < page_count; i++) {
  1251. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1252. if (IS_ERR(page))
  1253. goto err_pages;
  1254. obj->pages[i] = page;
  1255. }
  1256. if (obj->tiling_mode != I915_TILING_NONE)
  1257. i915_gem_object_do_bit_17_swizzle(obj);
  1258. return 0;
  1259. err_pages:
  1260. while (i--)
  1261. page_cache_release(obj->pages[i]);
  1262. drm_free_large(obj->pages);
  1263. obj->pages = NULL;
  1264. return PTR_ERR(page);
  1265. }
  1266. static void
  1267. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1268. {
  1269. int page_count = obj->base.size / PAGE_SIZE;
  1270. int i;
  1271. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1272. if (obj->tiling_mode != I915_TILING_NONE)
  1273. i915_gem_object_save_bit_17_swizzle(obj);
  1274. if (obj->madv == I915_MADV_DONTNEED)
  1275. obj->dirty = 0;
  1276. for (i = 0; i < page_count; i++) {
  1277. if (obj->dirty)
  1278. set_page_dirty(obj->pages[i]);
  1279. if (obj->madv == I915_MADV_WILLNEED)
  1280. mark_page_accessed(obj->pages[i]);
  1281. page_cache_release(obj->pages[i]);
  1282. }
  1283. obj->dirty = 0;
  1284. drm_free_large(obj->pages);
  1285. obj->pages = NULL;
  1286. }
  1287. void
  1288. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1289. struct intel_ring_buffer *ring,
  1290. u32 seqno)
  1291. {
  1292. struct drm_device *dev = obj->base.dev;
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. BUG_ON(ring == NULL);
  1295. obj->ring = ring;
  1296. /* Add a reference if we're newly entering the active list. */
  1297. if (!obj->active) {
  1298. drm_gem_object_reference(&obj->base);
  1299. obj->active = 1;
  1300. }
  1301. /* Move from whatever list we were on to the tail of execution. */
  1302. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1303. list_move_tail(&obj->ring_list, &ring->active_list);
  1304. obj->last_rendering_seqno = seqno;
  1305. if (obj->fenced_gpu_access) {
  1306. struct drm_i915_fence_reg *reg;
  1307. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1308. obj->last_fenced_seqno = seqno;
  1309. obj->last_fenced_ring = ring;
  1310. reg = &dev_priv->fence_regs[obj->fence_reg];
  1311. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1312. }
  1313. }
  1314. static void
  1315. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1316. {
  1317. list_del_init(&obj->ring_list);
  1318. obj->last_rendering_seqno = 0;
  1319. }
  1320. static void
  1321. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1322. {
  1323. struct drm_device *dev = obj->base.dev;
  1324. drm_i915_private_t *dev_priv = dev->dev_private;
  1325. BUG_ON(!obj->active);
  1326. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1327. i915_gem_object_move_off_active(obj);
  1328. }
  1329. static void
  1330. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1331. {
  1332. struct drm_device *dev = obj->base.dev;
  1333. struct drm_i915_private *dev_priv = dev->dev_private;
  1334. if (obj->pin_count != 0)
  1335. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1336. else
  1337. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1338. BUG_ON(!list_empty(&obj->gpu_write_list));
  1339. BUG_ON(!obj->active);
  1340. obj->ring = NULL;
  1341. i915_gem_object_move_off_active(obj);
  1342. obj->fenced_gpu_access = false;
  1343. obj->active = 0;
  1344. obj->pending_gpu_write = false;
  1345. drm_gem_object_unreference(&obj->base);
  1346. WARN_ON(i915_verify_lists(dev));
  1347. }
  1348. /* Immediately discard the backing storage */
  1349. static void
  1350. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1351. {
  1352. struct inode *inode;
  1353. /* Our goal here is to return as much of the memory as
  1354. * is possible back to the system as we are called from OOM.
  1355. * To do this we must instruct the shmfs to drop all of its
  1356. * backing pages, *now*.
  1357. */
  1358. inode = obj->base.filp->f_path.dentry->d_inode;
  1359. shmem_truncate_range(inode, 0, (loff_t)-1);
  1360. obj->madv = __I915_MADV_PURGED;
  1361. }
  1362. static inline int
  1363. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1364. {
  1365. return obj->madv == I915_MADV_DONTNEED;
  1366. }
  1367. static void
  1368. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1369. uint32_t flush_domains)
  1370. {
  1371. struct drm_i915_gem_object *obj, *next;
  1372. list_for_each_entry_safe(obj, next,
  1373. &ring->gpu_write_list,
  1374. gpu_write_list) {
  1375. if (obj->base.write_domain & flush_domains) {
  1376. uint32_t old_write_domain = obj->base.write_domain;
  1377. obj->base.write_domain = 0;
  1378. list_del_init(&obj->gpu_write_list);
  1379. i915_gem_object_move_to_active(obj, ring,
  1380. i915_gem_next_request_seqno(ring));
  1381. trace_i915_gem_object_change_domain(obj,
  1382. obj->base.read_domains,
  1383. old_write_domain);
  1384. }
  1385. }
  1386. }
  1387. int
  1388. i915_add_request(struct intel_ring_buffer *ring,
  1389. struct drm_file *file,
  1390. struct drm_i915_gem_request *request)
  1391. {
  1392. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1393. uint32_t seqno;
  1394. int was_empty;
  1395. int ret;
  1396. BUG_ON(request == NULL);
  1397. ret = ring->add_request(ring, &seqno);
  1398. if (ret)
  1399. return ret;
  1400. trace_i915_gem_request_add(ring, seqno);
  1401. request->seqno = seqno;
  1402. request->ring = ring;
  1403. request->emitted_jiffies = jiffies;
  1404. was_empty = list_empty(&ring->request_list);
  1405. list_add_tail(&request->list, &ring->request_list);
  1406. if (file) {
  1407. struct drm_i915_file_private *file_priv = file->driver_priv;
  1408. spin_lock(&file_priv->mm.lock);
  1409. request->file_priv = file_priv;
  1410. list_add_tail(&request->client_list,
  1411. &file_priv->mm.request_list);
  1412. spin_unlock(&file_priv->mm.lock);
  1413. }
  1414. ring->outstanding_lazy_request = false;
  1415. if (!dev_priv->mm.suspended) {
  1416. if (i915_enable_hangcheck) {
  1417. mod_timer(&dev_priv->hangcheck_timer,
  1418. jiffies +
  1419. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1420. }
  1421. if (was_empty)
  1422. queue_delayed_work(dev_priv->wq,
  1423. &dev_priv->mm.retire_work, HZ);
  1424. }
  1425. return 0;
  1426. }
  1427. static inline void
  1428. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1429. {
  1430. struct drm_i915_file_private *file_priv = request->file_priv;
  1431. if (!file_priv)
  1432. return;
  1433. spin_lock(&file_priv->mm.lock);
  1434. if (request->file_priv) {
  1435. list_del(&request->client_list);
  1436. request->file_priv = NULL;
  1437. }
  1438. spin_unlock(&file_priv->mm.lock);
  1439. }
  1440. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1441. struct intel_ring_buffer *ring)
  1442. {
  1443. while (!list_empty(&ring->request_list)) {
  1444. struct drm_i915_gem_request *request;
  1445. request = list_first_entry(&ring->request_list,
  1446. struct drm_i915_gem_request,
  1447. list);
  1448. list_del(&request->list);
  1449. i915_gem_request_remove_from_client(request);
  1450. kfree(request);
  1451. }
  1452. while (!list_empty(&ring->active_list)) {
  1453. struct drm_i915_gem_object *obj;
  1454. obj = list_first_entry(&ring->active_list,
  1455. struct drm_i915_gem_object,
  1456. ring_list);
  1457. obj->base.write_domain = 0;
  1458. list_del_init(&obj->gpu_write_list);
  1459. i915_gem_object_move_to_inactive(obj);
  1460. }
  1461. }
  1462. static void i915_gem_reset_fences(struct drm_device *dev)
  1463. {
  1464. struct drm_i915_private *dev_priv = dev->dev_private;
  1465. int i;
  1466. for (i = 0; i < 16; i++) {
  1467. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1468. struct drm_i915_gem_object *obj = reg->obj;
  1469. if (!obj)
  1470. continue;
  1471. if (obj->tiling_mode)
  1472. i915_gem_release_mmap(obj);
  1473. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1474. reg->obj->fenced_gpu_access = false;
  1475. reg->obj->last_fenced_seqno = 0;
  1476. reg->obj->last_fenced_ring = NULL;
  1477. i915_gem_clear_fence_reg(dev, reg);
  1478. }
  1479. }
  1480. void i915_gem_reset(struct drm_device *dev)
  1481. {
  1482. struct drm_i915_private *dev_priv = dev->dev_private;
  1483. struct drm_i915_gem_object *obj;
  1484. int i;
  1485. for (i = 0; i < I915_NUM_RINGS; i++)
  1486. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1487. /* Remove anything from the flushing lists. The GPU cache is likely
  1488. * to be lost on reset along with the data, so simply move the
  1489. * lost bo to the inactive list.
  1490. */
  1491. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1492. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1493. struct drm_i915_gem_object,
  1494. mm_list);
  1495. obj->base.write_domain = 0;
  1496. list_del_init(&obj->gpu_write_list);
  1497. i915_gem_object_move_to_inactive(obj);
  1498. }
  1499. /* Move everything out of the GPU domains to ensure we do any
  1500. * necessary invalidation upon reuse.
  1501. */
  1502. list_for_each_entry(obj,
  1503. &dev_priv->mm.inactive_list,
  1504. mm_list)
  1505. {
  1506. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1507. }
  1508. /* The fence registers are invalidated so clear them out */
  1509. i915_gem_reset_fences(dev);
  1510. }
  1511. /**
  1512. * This function clears the request list as sequence numbers are passed.
  1513. */
  1514. static void
  1515. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1516. {
  1517. uint32_t seqno;
  1518. int i;
  1519. if (list_empty(&ring->request_list))
  1520. return;
  1521. WARN_ON(i915_verify_lists(ring->dev));
  1522. seqno = ring->get_seqno(ring);
  1523. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1524. if (seqno >= ring->sync_seqno[i])
  1525. ring->sync_seqno[i] = 0;
  1526. while (!list_empty(&ring->request_list)) {
  1527. struct drm_i915_gem_request *request;
  1528. request = list_first_entry(&ring->request_list,
  1529. struct drm_i915_gem_request,
  1530. list);
  1531. if (!i915_seqno_passed(seqno, request->seqno))
  1532. break;
  1533. trace_i915_gem_request_retire(ring, request->seqno);
  1534. list_del(&request->list);
  1535. i915_gem_request_remove_from_client(request);
  1536. kfree(request);
  1537. }
  1538. /* Move any buffers on the active list that are no longer referenced
  1539. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1540. */
  1541. while (!list_empty(&ring->active_list)) {
  1542. struct drm_i915_gem_object *obj;
  1543. obj= list_first_entry(&ring->active_list,
  1544. struct drm_i915_gem_object,
  1545. ring_list);
  1546. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1547. break;
  1548. if (obj->base.write_domain != 0)
  1549. i915_gem_object_move_to_flushing(obj);
  1550. else
  1551. i915_gem_object_move_to_inactive(obj);
  1552. }
  1553. if (unlikely(ring->trace_irq_seqno &&
  1554. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1555. ring->irq_put(ring);
  1556. ring->trace_irq_seqno = 0;
  1557. }
  1558. WARN_ON(i915_verify_lists(ring->dev));
  1559. }
  1560. void
  1561. i915_gem_retire_requests(struct drm_device *dev)
  1562. {
  1563. drm_i915_private_t *dev_priv = dev->dev_private;
  1564. int i;
  1565. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1566. struct drm_i915_gem_object *obj, *next;
  1567. /* We must be careful that during unbind() we do not
  1568. * accidentally infinitely recurse into retire requests.
  1569. * Currently:
  1570. * retire -> free -> unbind -> wait -> retire_ring
  1571. */
  1572. list_for_each_entry_safe(obj, next,
  1573. &dev_priv->mm.deferred_free_list,
  1574. mm_list)
  1575. i915_gem_free_object_tail(obj);
  1576. }
  1577. for (i = 0; i < I915_NUM_RINGS; i++)
  1578. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1579. }
  1580. static void
  1581. i915_gem_retire_work_handler(struct work_struct *work)
  1582. {
  1583. drm_i915_private_t *dev_priv;
  1584. struct drm_device *dev;
  1585. bool idle;
  1586. int i;
  1587. dev_priv = container_of(work, drm_i915_private_t,
  1588. mm.retire_work.work);
  1589. dev = dev_priv->dev;
  1590. /* Come back later if the device is busy... */
  1591. if (!mutex_trylock(&dev->struct_mutex)) {
  1592. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1593. return;
  1594. }
  1595. i915_gem_retire_requests(dev);
  1596. /* Send a periodic flush down the ring so we don't hold onto GEM
  1597. * objects indefinitely.
  1598. */
  1599. idle = true;
  1600. for (i = 0; i < I915_NUM_RINGS; i++) {
  1601. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1602. if (!list_empty(&ring->gpu_write_list)) {
  1603. struct drm_i915_gem_request *request;
  1604. int ret;
  1605. ret = i915_gem_flush_ring(ring,
  1606. 0, I915_GEM_GPU_DOMAINS);
  1607. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1608. if (ret || request == NULL ||
  1609. i915_add_request(ring, NULL, request))
  1610. kfree(request);
  1611. }
  1612. idle &= list_empty(&ring->request_list);
  1613. }
  1614. if (!dev_priv->mm.suspended && !idle)
  1615. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1616. mutex_unlock(&dev->struct_mutex);
  1617. }
  1618. /**
  1619. * Waits for a sequence number to be signaled, and cleans up the
  1620. * request and object lists appropriately for that event.
  1621. */
  1622. int
  1623. i915_wait_request(struct intel_ring_buffer *ring,
  1624. uint32_t seqno)
  1625. {
  1626. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1627. u32 ier;
  1628. int ret = 0;
  1629. BUG_ON(seqno == 0);
  1630. if (atomic_read(&dev_priv->mm.wedged)) {
  1631. struct completion *x = &dev_priv->error_completion;
  1632. bool recovery_complete;
  1633. unsigned long flags;
  1634. /* Give the error handler a chance to run. */
  1635. spin_lock_irqsave(&x->wait.lock, flags);
  1636. recovery_complete = x->done > 0;
  1637. spin_unlock_irqrestore(&x->wait.lock, flags);
  1638. return recovery_complete ? -EIO : -EAGAIN;
  1639. }
  1640. if (seqno == ring->outstanding_lazy_request) {
  1641. struct drm_i915_gem_request *request;
  1642. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1643. if (request == NULL)
  1644. return -ENOMEM;
  1645. ret = i915_add_request(ring, NULL, request);
  1646. if (ret) {
  1647. kfree(request);
  1648. return ret;
  1649. }
  1650. seqno = request->seqno;
  1651. }
  1652. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1653. if (HAS_PCH_SPLIT(ring->dev))
  1654. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1655. else
  1656. ier = I915_READ(IER);
  1657. if (!ier) {
  1658. DRM_ERROR("something (likely vbetool) disabled "
  1659. "interrupts, re-enabling\n");
  1660. ring->dev->driver->irq_preinstall(ring->dev);
  1661. ring->dev->driver->irq_postinstall(ring->dev);
  1662. }
  1663. trace_i915_gem_request_wait_begin(ring, seqno);
  1664. ring->waiting_seqno = seqno;
  1665. if (ring->irq_get(ring)) {
  1666. if (dev_priv->mm.interruptible)
  1667. ret = wait_event_interruptible(ring->irq_queue,
  1668. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1669. || atomic_read(&dev_priv->mm.wedged));
  1670. else
  1671. wait_event(ring->irq_queue,
  1672. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1673. || atomic_read(&dev_priv->mm.wedged));
  1674. ring->irq_put(ring);
  1675. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1676. seqno) ||
  1677. atomic_read(&dev_priv->mm.wedged), 3000))
  1678. ret = -EBUSY;
  1679. ring->waiting_seqno = 0;
  1680. trace_i915_gem_request_wait_end(ring, seqno);
  1681. }
  1682. if (atomic_read(&dev_priv->mm.wedged))
  1683. ret = -EAGAIN;
  1684. if (ret && ret != -ERESTARTSYS)
  1685. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1686. __func__, ret, seqno, ring->get_seqno(ring),
  1687. dev_priv->next_seqno);
  1688. /* Directly dispatch request retiring. While we have the work queue
  1689. * to handle this, the waiter on a request often wants an associated
  1690. * buffer to have made it to the inactive list, and we would need
  1691. * a separate wait queue to handle that.
  1692. */
  1693. if (ret == 0)
  1694. i915_gem_retire_requests_ring(ring);
  1695. return ret;
  1696. }
  1697. /**
  1698. * Ensures that all rendering to the object has completed and the object is
  1699. * safe to unbind from the GTT or access from the CPU.
  1700. */
  1701. int
  1702. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1703. {
  1704. int ret;
  1705. /* This function only exists to support waiting for existing rendering,
  1706. * not for emitting required flushes.
  1707. */
  1708. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1709. /* If there is rendering queued on the buffer being evicted, wait for
  1710. * it.
  1711. */
  1712. if (obj->active) {
  1713. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1714. if (ret)
  1715. return ret;
  1716. }
  1717. return 0;
  1718. }
  1719. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1720. {
  1721. u32 old_write_domain, old_read_domains;
  1722. /* Act a barrier for all accesses through the GTT */
  1723. mb();
  1724. /* Force a pagefault for domain tracking on next user access */
  1725. i915_gem_release_mmap(obj);
  1726. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1727. return;
  1728. old_read_domains = obj->base.read_domains;
  1729. old_write_domain = obj->base.write_domain;
  1730. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1731. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1732. trace_i915_gem_object_change_domain(obj,
  1733. old_read_domains,
  1734. old_write_domain);
  1735. }
  1736. /**
  1737. * Unbinds an object from the GTT aperture.
  1738. */
  1739. int
  1740. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1741. {
  1742. int ret = 0;
  1743. if (obj->gtt_space == NULL)
  1744. return 0;
  1745. if (obj->pin_count != 0) {
  1746. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1747. return -EINVAL;
  1748. }
  1749. ret = i915_gem_object_finish_gpu(obj);
  1750. if (ret == -ERESTARTSYS)
  1751. return ret;
  1752. /* Continue on if we fail due to EIO, the GPU is hung so we
  1753. * should be safe and we need to cleanup or else we might
  1754. * cause memory corruption through use-after-free.
  1755. */
  1756. i915_gem_object_finish_gtt(obj);
  1757. /* Move the object to the CPU domain to ensure that
  1758. * any possible CPU writes while it's not in the GTT
  1759. * are flushed when we go to remap it.
  1760. */
  1761. if (ret == 0)
  1762. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1763. if (ret == -ERESTARTSYS)
  1764. return ret;
  1765. if (ret) {
  1766. /* In the event of a disaster, abandon all caches and
  1767. * hope for the best.
  1768. */
  1769. i915_gem_clflush_object(obj);
  1770. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1771. }
  1772. /* release the fence reg _after_ flushing */
  1773. ret = i915_gem_object_put_fence(obj);
  1774. if (ret == -ERESTARTSYS)
  1775. return ret;
  1776. trace_i915_gem_object_unbind(obj);
  1777. i915_gem_gtt_unbind_object(obj);
  1778. i915_gem_object_put_pages_gtt(obj);
  1779. list_del_init(&obj->gtt_list);
  1780. list_del_init(&obj->mm_list);
  1781. /* Avoid an unnecessary call to unbind on rebind. */
  1782. obj->map_and_fenceable = true;
  1783. drm_mm_put_block(obj->gtt_space);
  1784. obj->gtt_space = NULL;
  1785. obj->gtt_offset = 0;
  1786. if (i915_gem_object_is_purgeable(obj))
  1787. i915_gem_object_truncate(obj);
  1788. return ret;
  1789. }
  1790. int
  1791. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1792. uint32_t invalidate_domains,
  1793. uint32_t flush_domains)
  1794. {
  1795. int ret;
  1796. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1797. return 0;
  1798. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1799. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1800. if (ret)
  1801. return ret;
  1802. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1803. i915_gem_process_flushing_list(ring, flush_domains);
  1804. return 0;
  1805. }
  1806. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1807. {
  1808. int ret;
  1809. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1810. return 0;
  1811. if (!list_empty(&ring->gpu_write_list)) {
  1812. ret = i915_gem_flush_ring(ring,
  1813. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1814. if (ret)
  1815. return ret;
  1816. }
  1817. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1818. }
  1819. int
  1820. i915_gpu_idle(struct drm_device *dev)
  1821. {
  1822. drm_i915_private_t *dev_priv = dev->dev_private;
  1823. bool lists_empty;
  1824. int ret, i;
  1825. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1826. list_empty(&dev_priv->mm.active_list));
  1827. if (lists_empty)
  1828. return 0;
  1829. /* Flush everything onto the inactive list. */
  1830. for (i = 0; i < I915_NUM_RINGS; i++) {
  1831. ret = i915_ring_idle(&dev_priv->ring[i]);
  1832. if (ret)
  1833. return ret;
  1834. }
  1835. return 0;
  1836. }
  1837. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1838. struct intel_ring_buffer *pipelined)
  1839. {
  1840. struct drm_device *dev = obj->base.dev;
  1841. drm_i915_private_t *dev_priv = dev->dev_private;
  1842. u32 size = obj->gtt_space->size;
  1843. int regnum = obj->fence_reg;
  1844. uint64_t val;
  1845. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1846. 0xfffff000) << 32;
  1847. val |= obj->gtt_offset & 0xfffff000;
  1848. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1849. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1850. if (obj->tiling_mode == I915_TILING_Y)
  1851. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1852. val |= I965_FENCE_REG_VALID;
  1853. if (pipelined) {
  1854. int ret = intel_ring_begin(pipelined, 6);
  1855. if (ret)
  1856. return ret;
  1857. intel_ring_emit(pipelined, MI_NOOP);
  1858. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1859. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1860. intel_ring_emit(pipelined, (u32)val);
  1861. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1862. intel_ring_emit(pipelined, (u32)(val >> 32));
  1863. intel_ring_advance(pipelined);
  1864. } else
  1865. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1866. return 0;
  1867. }
  1868. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1869. struct intel_ring_buffer *pipelined)
  1870. {
  1871. struct drm_device *dev = obj->base.dev;
  1872. drm_i915_private_t *dev_priv = dev->dev_private;
  1873. u32 size = obj->gtt_space->size;
  1874. int regnum = obj->fence_reg;
  1875. uint64_t val;
  1876. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1877. 0xfffff000) << 32;
  1878. val |= obj->gtt_offset & 0xfffff000;
  1879. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1880. if (obj->tiling_mode == I915_TILING_Y)
  1881. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1882. val |= I965_FENCE_REG_VALID;
  1883. if (pipelined) {
  1884. int ret = intel_ring_begin(pipelined, 6);
  1885. if (ret)
  1886. return ret;
  1887. intel_ring_emit(pipelined, MI_NOOP);
  1888. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1889. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1890. intel_ring_emit(pipelined, (u32)val);
  1891. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1892. intel_ring_emit(pipelined, (u32)(val >> 32));
  1893. intel_ring_advance(pipelined);
  1894. } else
  1895. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1896. return 0;
  1897. }
  1898. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1899. struct intel_ring_buffer *pipelined)
  1900. {
  1901. struct drm_device *dev = obj->base.dev;
  1902. drm_i915_private_t *dev_priv = dev->dev_private;
  1903. u32 size = obj->gtt_space->size;
  1904. u32 fence_reg, val, pitch_val;
  1905. int tile_width;
  1906. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1907. (size & -size) != size ||
  1908. (obj->gtt_offset & (size - 1)),
  1909. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1910. obj->gtt_offset, obj->map_and_fenceable, size))
  1911. return -EINVAL;
  1912. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1913. tile_width = 128;
  1914. else
  1915. tile_width = 512;
  1916. /* Note: pitch better be a power of two tile widths */
  1917. pitch_val = obj->stride / tile_width;
  1918. pitch_val = ffs(pitch_val) - 1;
  1919. val = obj->gtt_offset;
  1920. if (obj->tiling_mode == I915_TILING_Y)
  1921. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1922. val |= I915_FENCE_SIZE_BITS(size);
  1923. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1924. val |= I830_FENCE_REG_VALID;
  1925. fence_reg = obj->fence_reg;
  1926. if (fence_reg < 8)
  1927. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1928. else
  1929. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1930. if (pipelined) {
  1931. int ret = intel_ring_begin(pipelined, 4);
  1932. if (ret)
  1933. return ret;
  1934. intel_ring_emit(pipelined, MI_NOOP);
  1935. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1936. intel_ring_emit(pipelined, fence_reg);
  1937. intel_ring_emit(pipelined, val);
  1938. intel_ring_advance(pipelined);
  1939. } else
  1940. I915_WRITE(fence_reg, val);
  1941. return 0;
  1942. }
  1943. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1944. struct intel_ring_buffer *pipelined)
  1945. {
  1946. struct drm_device *dev = obj->base.dev;
  1947. drm_i915_private_t *dev_priv = dev->dev_private;
  1948. u32 size = obj->gtt_space->size;
  1949. int regnum = obj->fence_reg;
  1950. uint32_t val;
  1951. uint32_t pitch_val;
  1952. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1953. (size & -size) != size ||
  1954. (obj->gtt_offset & (size - 1)),
  1955. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1956. obj->gtt_offset, size))
  1957. return -EINVAL;
  1958. pitch_val = obj->stride / 128;
  1959. pitch_val = ffs(pitch_val) - 1;
  1960. val = obj->gtt_offset;
  1961. if (obj->tiling_mode == I915_TILING_Y)
  1962. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1963. val |= I830_FENCE_SIZE_BITS(size);
  1964. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1965. val |= I830_FENCE_REG_VALID;
  1966. if (pipelined) {
  1967. int ret = intel_ring_begin(pipelined, 4);
  1968. if (ret)
  1969. return ret;
  1970. intel_ring_emit(pipelined, MI_NOOP);
  1971. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1972. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1973. intel_ring_emit(pipelined, val);
  1974. intel_ring_advance(pipelined);
  1975. } else
  1976. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1977. return 0;
  1978. }
  1979. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1980. {
  1981. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1982. }
  1983. static int
  1984. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1985. struct intel_ring_buffer *pipelined)
  1986. {
  1987. int ret;
  1988. if (obj->fenced_gpu_access) {
  1989. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1990. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1991. 0, obj->base.write_domain);
  1992. if (ret)
  1993. return ret;
  1994. }
  1995. obj->fenced_gpu_access = false;
  1996. }
  1997. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1998. if (!ring_passed_seqno(obj->last_fenced_ring,
  1999. obj->last_fenced_seqno)) {
  2000. ret = i915_wait_request(obj->last_fenced_ring,
  2001. obj->last_fenced_seqno);
  2002. if (ret)
  2003. return ret;
  2004. }
  2005. obj->last_fenced_seqno = 0;
  2006. obj->last_fenced_ring = NULL;
  2007. }
  2008. /* Ensure that all CPU reads are completed before installing a fence
  2009. * and all writes before removing the fence.
  2010. */
  2011. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2012. mb();
  2013. return 0;
  2014. }
  2015. int
  2016. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2017. {
  2018. int ret;
  2019. if (obj->tiling_mode)
  2020. i915_gem_release_mmap(obj);
  2021. ret = i915_gem_object_flush_fence(obj, NULL);
  2022. if (ret)
  2023. return ret;
  2024. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2025. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2026. i915_gem_clear_fence_reg(obj->base.dev,
  2027. &dev_priv->fence_regs[obj->fence_reg]);
  2028. obj->fence_reg = I915_FENCE_REG_NONE;
  2029. }
  2030. return 0;
  2031. }
  2032. static struct drm_i915_fence_reg *
  2033. i915_find_fence_reg(struct drm_device *dev,
  2034. struct intel_ring_buffer *pipelined)
  2035. {
  2036. struct drm_i915_private *dev_priv = dev->dev_private;
  2037. struct drm_i915_fence_reg *reg, *first, *avail;
  2038. int i;
  2039. /* First try to find a free reg */
  2040. avail = NULL;
  2041. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2042. reg = &dev_priv->fence_regs[i];
  2043. if (!reg->obj)
  2044. return reg;
  2045. if (!reg->obj->pin_count)
  2046. avail = reg;
  2047. }
  2048. if (avail == NULL)
  2049. return NULL;
  2050. /* None available, try to steal one or wait for a user to finish */
  2051. avail = first = NULL;
  2052. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2053. if (reg->obj->pin_count)
  2054. continue;
  2055. if (first == NULL)
  2056. first = reg;
  2057. if (!pipelined ||
  2058. !reg->obj->last_fenced_ring ||
  2059. reg->obj->last_fenced_ring == pipelined) {
  2060. avail = reg;
  2061. break;
  2062. }
  2063. }
  2064. if (avail == NULL)
  2065. avail = first;
  2066. return avail;
  2067. }
  2068. /**
  2069. * i915_gem_object_get_fence - set up a fence reg for an object
  2070. * @obj: object to map through a fence reg
  2071. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2072. * @interruptible: must we wait uninterruptibly for the register to retire?
  2073. *
  2074. * When mapping objects through the GTT, userspace wants to be able to write
  2075. * to them without having to worry about swizzling if the object is tiled.
  2076. *
  2077. * This function walks the fence regs looking for a free one for @obj,
  2078. * stealing one if it can't find any.
  2079. *
  2080. * It then sets up the reg based on the object's properties: address, pitch
  2081. * and tiling format.
  2082. */
  2083. int
  2084. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2085. struct intel_ring_buffer *pipelined)
  2086. {
  2087. struct drm_device *dev = obj->base.dev;
  2088. struct drm_i915_private *dev_priv = dev->dev_private;
  2089. struct drm_i915_fence_reg *reg;
  2090. int ret;
  2091. /* XXX disable pipelining. There are bugs. Shocking. */
  2092. pipelined = NULL;
  2093. /* Just update our place in the LRU if our fence is getting reused. */
  2094. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2095. reg = &dev_priv->fence_regs[obj->fence_reg];
  2096. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2097. if (obj->tiling_changed) {
  2098. ret = i915_gem_object_flush_fence(obj, pipelined);
  2099. if (ret)
  2100. return ret;
  2101. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2102. pipelined = NULL;
  2103. if (pipelined) {
  2104. reg->setup_seqno =
  2105. i915_gem_next_request_seqno(pipelined);
  2106. obj->last_fenced_seqno = reg->setup_seqno;
  2107. obj->last_fenced_ring = pipelined;
  2108. }
  2109. goto update;
  2110. }
  2111. if (!pipelined) {
  2112. if (reg->setup_seqno) {
  2113. if (!ring_passed_seqno(obj->last_fenced_ring,
  2114. reg->setup_seqno)) {
  2115. ret = i915_wait_request(obj->last_fenced_ring,
  2116. reg->setup_seqno);
  2117. if (ret)
  2118. return ret;
  2119. }
  2120. reg->setup_seqno = 0;
  2121. }
  2122. } else if (obj->last_fenced_ring &&
  2123. obj->last_fenced_ring != pipelined) {
  2124. ret = i915_gem_object_flush_fence(obj, pipelined);
  2125. if (ret)
  2126. return ret;
  2127. }
  2128. return 0;
  2129. }
  2130. reg = i915_find_fence_reg(dev, pipelined);
  2131. if (reg == NULL)
  2132. return -ENOSPC;
  2133. ret = i915_gem_object_flush_fence(obj, pipelined);
  2134. if (ret)
  2135. return ret;
  2136. if (reg->obj) {
  2137. struct drm_i915_gem_object *old = reg->obj;
  2138. drm_gem_object_reference(&old->base);
  2139. if (old->tiling_mode)
  2140. i915_gem_release_mmap(old);
  2141. ret = i915_gem_object_flush_fence(old, pipelined);
  2142. if (ret) {
  2143. drm_gem_object_unreference(&old->base);
  2144. return ret;
  2145. }
  2146. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2147. pipelined = NULL;
  2148. old->fence_reg = I915_FENCE_REG_NONE;
  2149. old->last_fenced_ring = pipelined;
  2150. old->last_fenced_seqno =
  2151. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2152. drm_gem_object_unreference(&old->base);
  2153. } else if (obj->last_fenced_seqno == 0)
  2154. pipelined = NULL;
  2155. reg->obj = obj;
  2156. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2157. obj->fence_reg = reg - dev_priv->fence_regs;
  2158. obj->last_fenced_ring = pipelined;
  2159. reg->setup_seqno =
  2160. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2161. obj->last_fenced_seqno = reg->setup_seqno;
  2162. update:
  2163. obj->tiling_changed = false;
  2164. switch (INTEL_INFO(dev)->gen) {
  2165. case 7:
  2166. case 6:
  2167. ret = sandybridge_write_fence_reg(obj, pipelined);
  2168. break;
  2169. case 5:
  2170. case 4:
  2171. ret = i965_write_fence_reg(obj, pipelined);
  2172. break;
  2173. case 3:
  2174. ret = i915_write_fence_reg(obj, pipelined);
  2175. break;
  2176. case 2:
  2177. ret = i830_write_fence_reg(obj, pipelined);
  2178. break;
  2179. }
  2180. return ret;
  2181. }
  2182. /**
  2183. * i915_gem_clear_fence_reg - clear out fence register info
  2184. * @obj: object to clear
  2185. *
  2186. * Zeroes out the fence register itself and clears out the associated
  2187. * data structures in dev_priv and obj.
  2188. */
  2189. static void
  2190. i915_gem_clear_fence_reg(struct drm_device *dev,
  2191. struct drm_i915_fence_reg *reg)
  2192. {
  2193. drm_i915_private_t *dev_priv = dev->dev_private;
  2194. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2195. switch (INTEL_INFO(dev)->gen) {
  2196. case 7:
  2197. case 6:
  2198. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2199. break;
  2200. case 5:
  2201. case 4:
  2202. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2203. break;
  2204. case 3:
  2205. if (fence_reg >= 8)
  2206. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2207. else
  2208. case 2:
  2209. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2210. I915_WRITE(fence_reg, 0);
  2211. break;
  2212. }
  2213. list_del_init(&reg->lru_list);
  2214. reg->obj = NULL;
  2215. reg->setup_seqno = 0;
  2216. }
  2217. /**
  2218. * Finds free space in the GTT aperture and binds the object there.
  2219. */
  2220. static int
  2221. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2222. unsigned alignment,
  2223. bool map_and_fenceable)
  2224. {
  2225. struct drm_device *dev = obj->base.dev;
  2226. drm_i915_private_t *dev_priv = dev->dev_private;
  2227. struct drm_mm_node *free_space;
  2228. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2229. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2230. bool mappable, fenceable;
  2231. int ret;
  2232. if (obj->madv != I915_MADV_WILLNEED) {
  2233. DRM_ERROR("Attempting to bind a purgeable object\n");
  2234. return -EINVAL;
  2235. }
  2236. fence_size = i915_gem_get_gtt_size(dev,
  2237. obj->base.size,
  2238. obj->tiling_mode);
  2239. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2240. obj->base.size,
  2241. obj->tiling_mode);
  2242. unfenced_alignment =
  2243. i915_gem_get_unfenced_gtt_alignment(dev,
  2244. obj->base.size,
  2245. obj->tiling_mode);
  2246. if (alignment == 0)
  2247. alignment = map_and_fenceable ? fence_alignment :
  2248. unfenced_alignment;
  2249. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2250. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2251. return -EINVAL;
  2252. }
  2253. size = map_and_fenceable ? fence_size : obj->base.size;
  2254. /* If the object is bigger than the entire aperture, reject it early
  2255. * before evicting everything in a vain attempt to find space.
  2256. */
  2257. if (obj->base.size >
  2258. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2259. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2260. return -E2BIG;
  2261. }
  2262. search_free:
  2263. if (map_and_fenceable)
  2264. free_space =
  2265. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2266. size, alignment, 0,
  2267. dev_priv->mm.gtt_mappable_end,
  2268. 0);
  2269. else
  2270. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2271. size, alignment, 0);
  2272. if (free_space != NULL) {
  2273. if (map_and_fenceable)
  2274. obj->gtt_space =
  2275. drm_mm_get_block_range_generic(free_space,
  2276. size, alignment, 0,
  2277. dev_priv->mm.gtt_mappable_end,
  2278. 0);
  2279. else
  2280. obj->gtt_space =
  2281. drm_mm_get_block(free_space, size, alignment);
  2282. }
  2283. if (obj->gtt_space == NULL) {
  2284. /* If the gtt is empty and we're still having trouble
  2285. * fitting our object in, we're out of memory.
  2286. */
  2287. ret = i915_gem_evict_something(dev, size, alignment,
  2288. map_and_fenceable);
  2289. if (ret)
  2290. return ret;
  2291. goto search_free;
  2292. }
  2293. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2294. if (ret) {
  2295. drm_mm_put_block(obj->gtt_space);
  2296. obj->gtt_space = NULL;
  2297. if (ret == -ENOMEM) {
  2298. /* first try to reclaim some memory by clearing the GTT */
  2299. ret = i915_gem_evict_everything(dev, false);
  2300. if (ret) {
  2301. /* now try to shrink everyone else */
  2302. if (gfpmask) {
  2303. gfpmask = 0;
  2304. goto search_free;
  2305. }
  2306. return -ENOMEM;
  2307. }
  2308. goto search_free;
  2309. }
  2310. return ret;
  2311. }
  2312. ret = i915_gem_gtt_bind_object(obj);
  2313. if (ret) {
  2314. i915_gem_object_put_pages_gtt(obj);
  2315. drm_mm_put_block(obj->gtt_space);
  2316. obj->gtt_space = NULL;
  2317. if (i915_gem_evict_everything(dev, false))
  2318. return ret;
  2319. goto search_free;
  2320. }
  2321. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2322. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2323. /* Assert that the object is not currently in any GPU domain. As it
  2324. * wasn't in the GTT, there shouldn't be any way it could have been in
  2325. * a GPU cache
  2326. */
  2327. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2328. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2329. obj->gtt_offset = obj->gtt_space->start;
  2330. fenceable =
  2331. obj->gtt_space->size == fence_size &&
  2332. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2333. mappable =
  2334. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2335. obj->map_and_fenceable = mappable && fenceable;
  2336. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2337. return 0;
  2338. }
  2339. void
  2340. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2341. {
  2342. /* If we don't have a page list set up, then we're not pinned
  2343. * to GPU, and we can ignore the cache flush because it'll happen
  2344. * again at bind time.
  2345. */
  2346. if (obj->pages == NULL)
  2347. return;
  2348. /* If the GPU is snooping the contents of the CPU cache,
  2349. * we do not need to manually clear the CPU cache lines. However,
  2350. * the caches are only snooped when the render cache is
  2351. * flushed/invalidated. As we always have to emit invalidations
  2352. * and flushes when moving into and out of the RENDER domain, correct
  2353. * snooping behaviour occurs naturally as the result of our domain
  2354. * tracking.
  2355. */
  2356. if (obj->cache_level != I915_CACHE_NONE)
  2357. return;
  2358. trace_i915_gem_object_clflush(obj);
  2359. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2360. }
  2361. /** Flushes any GPU write domain for the object if it's dirty. */
  2362. static int
  2363. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2364. {
  2365. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2366. return 0;
  2367. /* Queue the GPU write cache flushing we need. */
  2368. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2369. }
  2370. /** Flushes the GTT write domain for the object if it's dirty. */
  2371. static void
  2372. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2373. {
  2374. uint32_t old_write_domain;
  2375. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2376. return;
  2377. /* No actual flushing is required for the GTT write domain. Writes
  2378. * to it immediately go to main memory as far as we know, so there's
  2379. * no chipset flush. It also doesn't land in render cache.
  2380. *
  2381. * However, we do have to enforce the order so that all writes through
  2382. * the GTT land before any writes to the device, such as updates to
  2383. * the GATT itself.
  2384. */
  2385. wmb();
  2386. old_write_domain = obj->base.write_domain;
  2387. obj->base.write_domain = 0;
  2388. trace_i915_gem_object_change_domain(obj,
  2389. obj->base.read_domains,
  2390. old_write_domain);
  2391. }
  2392. /** Flushes the CPU write domain for the object if it's dirty. */
  2393. static void
  2394. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2395. {
  2396. uint32_t old_write_domain;
  2397. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2398. return;
  2399. i915_gem_clflush_object(obj);
  2400. intel_gtt_chipset_flush();
  2401. old_write_domain = obj->base.write_domain;
  2402. obj->base.write_domain = 0;
  2403. trace_i915_gem_object_change_domain(obj,
  2404. obj->base.read_domains,
  2405. old_write_domain);
  2406. }
  2407. /**
  2408. * Moves a single object to the GTT read, and possibly write domain.
  2409. *
  2410. * This function returns when the move is complete, including waiting on
  2411. * flushes to occur.
  2412. */
  2413. int
  2414. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2415. {
  2416. uint32_t old_write_domain, old_read_domains;
  2417. int ret;
  2418. /* Not valid to be called on unbound objects. */
  2419. if (obj->gtt_space == NULL)
  2420. return -EINVAL;
  2421. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2422. return 0;
  2423. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2424. if (ret)
  2425. return ret;
  2426. if (obj->pending_gpu_write || write) {
  2427. ret = i915_gem_object_wait_rendering(obj);
  2428. if (ret)
  2429. return ret;
  2430. }
  2431. i915_gem_object_flush_cpu_write_domain(obj);
  2432. old_write_domain = obj->base.write_domain;
  2433. old_read_domains = obj->base.read_domains;
  2434. /* It should now be out of any other write domains, and we can update
  2435. * the domain values for our changes.
  2436. */
  2437. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2438. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2439. if (write) {
  2440. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2441. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2442. obj->dirty = 1;
  2443. }
  2444. trace_i915_gem_object_change_domain(obj,
  2445. old_read_domains,
  2446. old_write_domain);
  2447. return 0;
  2448. }
  2449. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2450. enum i915_cache_level cache_level)
  2451. {
  2452. int ret;
  2453. if (obj->cache_level == cache_level)
  2454. return 0;
  2455. if (obj->pin_count) {
  2456. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2457. return -EBUSY;
  2458. }
  2459. if (obj->gtt_space) {
  2460. ret = i915_gem_object_finish_gpu(obj);
  2461. if (ret)
  2462. return ret;
  2463. i915_gem_object_finish_gtt(obj);
  2464. /* Before SandyBridge, you could not use tiling or fence
  2465. * registers with snooped memory, so relinquish any fences
  2466. * currently pointing to our region in the aperture.
  2467. */
  2468. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2469. ret = i915_gem_object_put_fence(obj);
  2470. if (ret)
  2471. return ret;
  2472. }
  2473. i915_gem_gtt_rebind_object(obj, cache_level);
  2474. }
  2475. if (cache_level == I915_CACHE_NONE) {
  2476. u32 old_read_domains, old_write_domain;
  2477. /* If we're coming from LLC cached, then we haven't
  2478. * actually been tracking whether the data is in the
  2479. * CPU cache or not, since we only allow one bit set
  2480. * in obj->write_domain and have been skipping the clflushes.
  2481. * Just set it to the CPU cache for now.
  2482. */
  2483. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2484. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2485. old_read_domains = obj->base.read_domains;
  2486. old_write_domain = obj->base.write_domain;
  2487. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2488. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2489. trace_i915_gem_object_change_domain(obj,
  2490. old_read_domains,
  2491. old_write_domain);
  2492. }
  2493. obj->cache_level = cache_level;
  2494. return 0;
  2495. }
  2496. /*
  2497. * Prepare buffer for display plane (scanout, cursors, etc).
  2498. * Can be called from an uninterruptible phase (modesetting) and allows
  2499. * any flushes to be pipelined (for pageflips).
  2500. *
  2501. * For the display plane, we want to be in the GTT but out of any write
  2502. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2503. * ability to pipeline the waits, pinning and any additional subtleties
  2504. * that may differentiate the display plane from ordinary buffers.
  2505. */
  2506. int
  2507. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2508. u32 alignment,
  2509. struct intel_ring_buffer *pipelined)
  2510. {
  2511. u32 old_read_domains, old_write_domain;
  2512. int ret;
  2513. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2514. if (ret)
  2515. return ret;
  2516. if (pipelined != obj->ring) {
  2517. ret = i915_gem_object_wait_rendering(obj);
  2518. if (ret == -ERESTARTSYS)
  2519. return ret;
  2520. }
  2521. /* The display engine is not coherent with the LLC cache on gen6. As
  2522. * a result, we make sure that the pinning that is about to occur is
  2523. * done with uncached PTEs. This is lowest common denominator for all
  2524. * chipsets.
  2525. *
  2526. * However for gen6+, we could do better by using the GFDT bit instead
  2527. * of uncaching, which would allow us to flush all the LLC-cached data
  2528. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2529. */
  2530. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2531. if (ret)
  2532. return ret;
  2533. /* As the user may map the buffer once pinned in the display plane
  2534. * (e.g. libkms for the bootup splash), we have to ensure that we
  2535. * always use map_and_fenceable for all scanout buffers.
  2536. */
  2537. ret = i915_gem_object_pin(obj, alignment, true);
  2538. if (ret)
  2539. return ret;
  2540. i915_gem_object_flush_cpu_write_domain(obj);
  2541. old_write_domain = obj->base.write_domain;
  2542. old_read_domains = obj->base.read_domains;
  2543. /* It should now be out of any other write domains, and we can update
  2544. * the domain values for our changes.
  2545. */
  2546. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2547. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2548. trace_i915_gem_object_change_domain(obj,
  2549. old_read_domains,
  2550. old_write_domain);
  2551. return 0;
  2552. }
  2553. int
  2554. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2555. {
  2556. int ret;
  2557. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2558. return 0;
  2559. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2560. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2561. if (ret)
  2562. return ret;
  2563. }
  2564. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2565. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2566. return i915_gem_object_wait_rendering(obj);
  2567. }
  2568. /**
  2569. * Moves a single object to the CPU read, and possibly write domain.
  2570. *
  2571. * This function returns when the move is complete, including waiting on
  2572. * flushes to occur.
  2573. */
  2574. static int
  2575. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2576. {
  2577. uint32_t old_write_domain, old_read_domains;
  2578. int ret;
  2579. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2580. return 0;
  2581. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2582. if (ret)
  2583. return ret;
  2584. ret = i915_gem_object_wait_rendering(obj);
  2585. if (ret)
  2586. return ret;
  2587. i915_gem_object_flush_gtt_write_domain(obj);
  2588. /* If we have a partially-valid cache of the object in the CPU,
  2589. * finish invalidating it and free the per-page flags.
  2590. */
  2591. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2592. old_write_domain = obj->base.write_domain;
  2593. old_read_domains = obj->base.read_domains;
  2594. /* Flush the CPU cache if it's still invalid. */
  2595. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2596. i915_gem_clflush_object(obj);
  2597. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2598. }
  2599. /* It should now be out of any other write domains, and we can update
  2600. * the domain values for our changes.
  2601. */
  2602. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2603. /* If we're writing through the CPU, then the GPU read domains will
  2604. * need to be invalidated at next use.
  2605. */
  2606. if (write) {
  2607. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2608. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2609. }
  2610. trace_i915_gem_object_change_domain(obj,
  2611. old_read_domains,
  2612. old_write_domain);
  2613. return 0;
  2614. }
  2615. /**
  2616. * Moves the object from a partially CPU read to a full one.
  2617. *
  2618. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2619. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2620. */
  2621. static void
  2622. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2623. {
  2624. if (!obj->page_cpu_valid)
  2625. return;
  2626. /* If we're partially in the CPU read domain, finish moving it in.
  2627. */
  2628. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2629. int i;
  2630. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2631. if (obj->page_cpu_valid[i])
  2632. continue;
  2633. drm_clflush_pages(obj->pages + i, 1);
  2634. }
  2635. }
  2636. /* Free the page_cpu_valid mappings which are now stale, whether
  2637. * or not we've got I915_GEM_DOMAIN_CPU.
  2638. */
  2639. kfree(obj->page_cpu_valid);
  2640. obj->page_cpu_valid = NULL;
  2641. }
  2642. /**
  2643. * Set the CPU read domain on a range of the object.
  2644. *
  2645. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2646. * not entirely valid. The page_cpu_valid member of the object flags which
  2647. * pages have been flushed, and will be respected by
  2648. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2649. * of the whole object.
  2650. *
  2651. * This function returns when the move is complete, including waiting on
  2652. * flushes to occur.
  2653. */
  2654. static int
  2655. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2656. uint64_t offset, uint64_t size)
  2657. {
  2658. uint32_t old_read_domains;
  2659. int i, ret;
  2660. if (offset == 0 && size == obj->base.size)
  2661. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2662. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2663. if (ret)
  2664. return ret;
  2665. ret = i915_gem_object_wait_rendering(obj);
  2666. if (ret)
  2667. return ret;
  2668. i915_gem_object_flush_gtt_write_domain(obj);
  2669. /* If we're already fully in the CPU read domain, we're done. */
  2670. if (obj->page_cpu_valid == NULL &&
  2671. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2672. return 0;
  2673. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2674. * newly adding I915_GEM_DOMAIN_CPU
  2675. */
  2676. if (obj->page_cpu_valid == NULL) {
  2677. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2678. GFP_KERNEL);
  2679. if (obj->page_cpu_valid == NULL)
  2680. return -ENOMEM;
  2681. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2682. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2683. /* Flush the cache on any pages that are still invalid from the CPU's
  2684. * perspective.
  2685. */
  2686. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2687. i++) {
  2688. if (obj->page_cpu_valid[i])
  2689. continue;
  2690. drm_clflush_pages(obj->pages + i, 1);
  2691. obj->page_cpu_valid[i] = 1;
  2692. }
  2693. /* It should now be out of any other write domains, and we can update
  2694. * the domain values for our changes.
  2695. */
  2696. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2697. old_read_domains = obj->base.read_domains;
  2698. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2699. trace_i915_gem_object_change_domain(obj,
  2700. old_read_domains,
  2701. obj->base.write_domain);
  2702. return 0;
  2703. }
  2704. /* Throttle our rendering by waiting until the ring has completed our requests
  2705. * emitted over 20 msec ago.
  2706. *
  2707. * Note that if we were to use the current jiffies each time around the loop,
  2708. * we wouldn't escape the function with any frames outstanding if the time to
  2709. * render a frame was over 20ms.
  2710. *
  2711. * This should get us reasonable parallelism between CPU and GPU but also
  2712. * relatively low latency when blocking on a particular request to finish.
  2713. */
  2714. static int
  2715. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2716. {
  2717. struct drm_i915_private *dev_priv = dev->dev_private;
  2718. struct drm_i915_file_private *file_priv = file->driver_priv;
  2719. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2720. struct drm_i915_gem_request *request;
  2721. struct intel_ring_buffer *ring = NULL;
  2722. u32 seqno = 0;
  2723. int ret;
  2724. if (atomic_read(&dev_priv->mm.wedged))
  2725. return -EIO;
  2726. spin_lock(&file_priv->mm.lock);
  2727. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2728. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2729. break;
  2730. ring = request->ring;
  2731. seqno = request->seqno;
  2732. }
  2733. spin_unlock(&file_priv->mm.lock);
  2734. if (seqno == 0)
  2735. return 0;
  2736. ret = 0;
  2737. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2738. /* And wait for the seqno passing without holding any locks and
  2739. * causing extra latency for others. This is safe as the irq
  2740. * generation is designed to be run atomically and so is
  2741. * lockless.
  2742. */
  2743. if (ring->irq_get(ring)) {
  2744. ret = wait_event_interruptible(ring->irq_queue,
  2745. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2746. || atomic_read(&dev_priv->mm.wedged));
  2747. ring->irq_put(ring);
  2748. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2749. ret = -EIO;
  2750. }
  2751. }
  2752. if (ret == 0)
  2753. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2754. return ret;
  2755. }
  2756. int
  2757. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2758. uint32_t alignment,
  2759. bool map_and_fenceable)
  2760. {
  2761. struct drm_device *dev = obj->base.dev;
  2762. struct drm_i915_private *dev_priv = dev->dev_private;
  2763. int ret;
  2764. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2765. WARN_ON(i915_verify_lists(dev));
  2766. if (obj->gtt_space != NULL) {
  2767. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2768. (map_and_fenceable && !obj->map_and_fenceable)) {
  2769. WARN(obj->pin_count,
  2770. "bo is already pinned with incorrect alignment:"
  2771. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2772. " obj->map_and_fenceable=%d\n",
  2773. obj->gtt_offset, alignment,
  2774. map_and_fenceable,
  2775. obj->map_and_fenceable);
  2776. ret = i915_gem_object_unbind(obj);
  2777. if (ret)
  2778. return ret;
  2779. }
  2780. }
  2781. if (obj->gtt_space == NULL) {
  2782. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2783. map_and_fenceable);
  2784. if (ret)
  2785. return ret;
  2786. }
  2787. if (obj->pin_count++ == 0) {
  2788. if (!obj->active)
  2789. list_move_tail(&obj->mm_list,
  2790. &dev_priv->mm.pinned_list);
  2791. }
  2792. obj->pin_mappable |= map_and_fenceable;
  2793. WARN_ON(i915_verify_lists(dev));
  2794. return 0;
  2795. }
  2796. void
  2797. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2798. {
  2799. struct drm_device *dev = obj->base.dev;
  2800. drm_i915_private_t *dev_priv = dev->dev_private;
  2801. WARN_ON(i915_verify_lists(dev));
  2802. BUG_ON(obj->pin_count == 0);
  2803. BUG_ON(obj->gtt_space == NULL);
  2804. if (--obj->pin_count == 0) {
  2805. if (!obj->active)
  2806. list_move_tail(&obj->mm_list,
  2807. &dev_priv->mm.inactive_list);
  2808. obj->pin_mappable = false;
  2809. }
  2810. WARN_ON(i915_verify_lists(dev));
  2811. }
  2812. int
  2813. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2814. struct drm_file *file)
  2815. {
  2816. struct drm_i915_gem_pin *args = data;
  2817. struct drm_i915_gem_object *obj;
  2818. int ret;
  2819. ret = i915_mutex_lock_interruptible(dev);
  2820. if (ret)
  2821. return ret;
  2822. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2823. if (&obj->base == NULL) {
  2824. ret = -ENOENT;
  2825. goto unlock;
  2826. }
  2827. if (obj->madv != I915_MADV_WILLNEED) {
  2828. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2829. ret = -EINVAL;
  2830. goto out;
  2831. }
  2832. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2833. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2834. args->handle);
  2835. ret = -EINVAL;
  2836. goto out;
  2837. }
  2838. obj->user_pin_count++;
  2839. obj->pin_filp = file;
  2840. if (obj->user_pin_count == 1) {
  2841. ret = i915_gem_object_pin(obj, args->alignment, true);
  2842. if (ret)
  2843. goto out;
  2844. }
  2845. /* XXX - flush the CPU caches for pinned objects
  2846. * as the X server doesn't manage domains yet
  2847. */
  2848. i915_gem_object_flush_cpu_write_domain(obj);
  2849. args->offset = obj->gtt_offset;
  2850. out:
  2851. drm_gem_object_unreference(&obj->base);
  2852. unlock:
  2853. mutex_unlock(&dev->struct_mutex);
  2854. return ret;
  2855. }
  2856. int
  2857. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2858. struct drm_file *file)
  2859. {
  2860. struct drm_i915_gem_pin *args = data;
  2861. struct drm_i915_gem_object *obj;
  2862. int ret;
  2863. ret = i915_mutex_lock_interruptible(dev);
  2864. if (ret)
  2865. return ret;
  2866. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2867. if (&obj->base == NULL) {
  2868. ret = -ENOENT;
  2869. goto unlock;
  2870. }
  2871. if (obj->pin_filp != file) {
  2872. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2873. args->handle);
  2874. ret = -EINVAL;
  2875. goto out;
  2876. }
  2877. obj->user_pin_count--;
  2878. if (obj->user_pin_count == 0) {
  2879. obj->pin_filp = NULL;
  2880. i915_gem_object_unpin(obj);
  2881. }
  2882. out:
  2883. drm_gem_object_unreference(&obj->base);
  2884. unlock:
  2885. mutex_unlock(&dev->struct_mutex);
  2886. return ret;
  2887. }
  2888. int
  2889. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2890. struct drm_file *file)
  2891. {
  2892. struct drm_i915_gem_busy *args = data;
  2893. struct drm_i915_gem_object *obj;
  2894. int ret;
  2895. ret = i915_mutex_lock_interruptible(dev);
  2896. if (ret)
  2897. return ret;
  2898. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2899. if (&obj->base == NULL) {
  2900. ret = -ENOENT;
  2901. goto unlock;
  2902. }
  2903. /* Count all active objects as busy, even if they are currently not used
  2904. * by the gpu. Users of this interface expect objects to eventually
  2905. * become non-busy without any further actions, therefore emit any
  2906. * necessary flushes here.
  2907. */
  2908. args->busy = obj->active;
  2909. if (args->busy) {
  2910. /* Unconditionally flush objects, even when the gpu still uses this
  2911. * object. Userspace calling this function indicates that it wants to
  2912. * use this buffer rather sooner than later, so issuing the required
  2913. * flush earlier is beneficial.
  2914. */
  2915. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2916. ret = i915_gem_flush_ring(obj->ring,
  2917. 0, obj->base.write_domain);
  2918. } else if (obj->ring->outstanding_lazy_request ==
  2919. obj->last_rendering_seqno) {
  2920. struct drm_i915_gem_request *request;
  2921. /* This ring is not being cleared by active usage,
  2922. * so emit a request to do so.
  2923. */
  2924. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2925. if (request)
  2926. ret = i915_add_request(obj->ring, NULL,request);
  2927. else
  2928. ret = -ENOMEM;
  2929. }
  2930. /* Update the active list for the hardware's current position.
  2931. * Otherwise this only updates on a delayed timer or when irqs
  2932. * are actually unmasked, and our working set ends up being
  2933. * larger than required.
  2934. */
  2935. i915_gem_retire_requests_ring(obj->ring);
  2936. args->busy = obj->active;
  2937. }
  2938. drm_gem_object_unreference(&obj->base);
  2939. unlock:
  2940. mutex_unlock(&dev->struct_mutex);
  2941. return ret;
  2942. }
  2943. int
  2944. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2945. struct drm_file *file_priv)
  2946. {
  2947. return i915_gem_ring_throttle(dev, file_priv);
  2948. }
  2949. int
  2950. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2951. struct drm_file *file_priv)
  2952. {
  2953. struct drm_i915_gem_madvise *args = data;
  2954. struct drm_i915_gem_object *obj;
  2955. int ret;
  2956. switch (args->madv) {
  2957. case I915_MADV_DONTNEED:
  2958. case I915_MADV_WILLNEED:
  2959. break;
  2960. default:
  2961. return -EINVAL;
  2962. }
  2963. ret = i915_mutex_lock_interruptible(dev);
  2964. if (ret)
  2965. return ret;
  2966. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2967. if (&obj->base == NULL) {
  2968. ret = -ENOENT;
  2969. goto unlock;
  2970. }
  2971. if (obj->pin_count) {
  2972. ret = -EINVAL;
  2973. goto out;
  2974. }
  2975. if (obj->madv != __I915_MADV_PURGED)
  2976. obj->madv = args->madv;
  2977. /* if the object is no longer bound, discard its backing storage */
  2978. if (i915_gem_object_is_purgeable(obj) &&
  2979. obj->gtt_space == NULL)
  2980. i915_gem_object_truncate(obj);
  2981. args->retained = obj->madv != __I915_MADV_PURGED;
  2982. out:
  2983. drm_gem_object_unreference(&obj->base);
  2984. unlock:
  2985. mutex_unlock(&dev->struct_mutex);
  2986. return ret;
  2987. }
  2988. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2989. size_t size)
  2990. {
  2991. struct drm_i915_private *dev_priv = dev->dev_private;
  2992. struct drm_i915_gem_object *obj;
  2993. struct address_space *mapping;
  2994. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2995. if (obj == NULL)
  2996. return NULL;
  2997. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2998. kfree(obj);
  2999. return NULL;
  3000. }
  3001. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3002. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3003. i915_gem_info_add_obj(dev_priv, size);
  3004. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3005. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3006. if (IS_GEN6(dev)) {
  3007. /* On Gen6, we can have the GPU use the LLC (the CPU
  3008. * cache) for about a 10% performance improvement
  3009. * compared to uncached. Graphics requests other than
  3010. * display scanout are coherent with the CPU in
  3011. * accessing this cache. This means in this mode we
  3012. * don't need to clflush on the CPU side, and on the
  3013. * GPU side we only need to flush internal caches to
  3014. * get data visible to the CPU.
  3015. *
  3016. * However, we maintain the display planes as UC, and so
  3017. * need to rebind when first used as such.
  3018. */
  3019. obj->cache_level = I915_CACHE_LLC;
  3020. } else
  3021. obj->cache_level = I915_CACHE_NONE;
  3022. obj->base.driver_private = NULL;
  3023. obj->fence_reg = I915_FENCE_REG_NONE;
  3024. INIT_LIST_HEAD(&obj->mm_list);
  3025. INIT_LIST_HEAD(&obj->gtt_list);
  3026. INIT_LIST_HEAD(&obj->ring_list);
  3027. INIT_LIST_HEAD(&obj->exec_list);
  3028. INIT_LIST_HEAD(&obj->gpu_write_list);
  3029. obj->madv = I915_MADV_WILLNEED;
  3030. /* Avoid an unnecessary call to unbind on the first bind. */
  3031. obj->map_and_fenceable = true;
  3032. return obj;
  3033. }
  3034. int i915_gem_init_object(struct drm_gem_object *obj)
  3035. {
  3036. BUG();
  3037. return 0;
  3038. }
  3039. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3040. {
  3041. struct drm_device *dev = obj->base.dev;
  3042. drm_i915_private_t *dev_priv = dev->dev_private;
  3043. int ret;
  3044. ret = i915_gem_object_unbind(obj);
  3045. if (ret == -ERESTARTSYS) {
  3046. list_move(&obj->mm_list,
  3047. &dev_priv->mm.deferred_free_list);
  3048. return;
  3049. }
  3050. trace_i915_gem_object_destroy(obj);
  3051. if (obj->base.map_list.map)
  3052. drm_gem_free_mmap_offset(&obj->base);
  3053. drm_gem_object_release(&obj->base);
  3054. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3055. kfree(obj->page_cpu_valid);
  3056. kfree(obj->bit_17);
  3057. kfree(obj);
  3058. }
  3059. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3060. {
  3061. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3062. struct drm_device *dev = obj->base.dev;
  3063. while (obj->pin_count > 0)
  3064. i915_gem_object_unpin(obj);
  3065. if (obj->phys_obj)
  3066. i915_gem_detach_phys_object(dev, obj);
  3067. i915_gem_free_object_tail(obj);
  3068. }
  3069. int
  3070. i915_gem_idle(struct drm_device *dev)
  3071. {
  3072. drm_i915_private_t *dev_priv = dev->dev_private;
  3073. int ret;
  3074. mutex_lock(&dev->struct_mutex);
  3075. if (dev_priv->mm.suspended) {
  3076. mutex_unlock(&dev->struct_mutex);
  3077. return 0;
  3078. }
  3079. ret = i915_gpu_idle(dev);
  3080. if (ret) {
  3081. mutex_unlock(&dev->struct_mutex);
  3082. return ret;
  3083. }
  3084. /* Under UMS, be paranoid and evict. */
  3085. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3086. ret = i915_gem_evict_inactive(dev, false);
  3087. if (ret) {
  3088. mutex_unlock(&dev->struct_mutex);
  3089. return ret;
  3090. }
  3091. }
  3092. i915_gem_reset_fences(dev);
  3093. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3094. * We need to replace this with a semaphore, or something.
  3095. * And not confound mm.suspended!
  3096. */
  3097. dev_priv->mm.suspended = 1;
  3098. del_timer_sync(&dev_priv->hangcheck_timer);
  3099. i915_kernel_lost_context(dev);
  3100. i915_gem_cleanup_ringbuffer(dev);
  3101. mutex_unlock(&dev->struct_mutex);
  3102. /* Cancel the retire work handler, which should be idle now. */
  3103. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3104. return 0;
  3105. }
  3106. int
  3107. i915_gem_init_ringbuffer(struct drm_device *dev)
  3108. {
  3109. drm_i915_private_t *dev_priv = dev->dev_private;
  3110. int ret;
  3111. ret = intel_init_render_ring_buffer(dev);
  3112. if (ret)
  3113. return ret;
  3114. if (HAS_BSD(dev)) {
  3115. ret = intel_init_bsd_ring_buffer(dev);
  3116. if (ret)
  3117. goto cleanup_render_ring;
  3118. }
  3119. if (HAS_BLT(dev)) {
  3120. ret = intel_init_blt_ring_buffer(dev);
  3121. if (ret)
  3122. goto cleanup_bsd_ring;
  3123. }
  3124. dev_priv->next_seqno = 1;
  3125. return 0;
  3126. cleanup_bsd_ring:
  3127. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3128. cleanup_render_ring:
  3129. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3130. return ret;
  3131. }
  3132. void
  3133. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3134. {
  3135. drm_i915_private_t *dev_priv = dev->dev_private;
  3136. int i;
  3137. for (i = 0; i < I915_NUM_RINGS; i++)
  3138. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3139. }
  3140. int
  3141. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3142. struct drm_file *file_priv)
  3143. {
  3144. drm_i915_private_t *dev_priv = dev->dev_private;
  3145. int ret, i;
  3146. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3147. return 0;
  3148. if (atomic_read(&dev_priv->mm.wedged)) {
  3149. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3150. atomic_set(&dev_priv->mm.wedged, 0);
  3151. }
  3152. mutex_lock(&dev->struct_mutex);
  3153. dev_priv->mm.suspended = 0;
  3154. ret = i915_gem_init_ringbuffer(dev);
  3155. if (ret != 0) {
  3156. mutex_unlock(&dev->struct_mutex);
  3157. return ret;
  3158. }
  3159. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3160. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3161. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3162. for (i = 0; i < I915_NUM_RINGS; i++) {
  3163. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3164. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3165. }
  3166. mutex_unlock(&dev->struct_mutex);
  3167. ret = drm_irq_install(dev);
  3168. if (ret)
  3169. goto cleanup_ringbuffer;
  3170. return 0;
  3171. cleanup_ringbuffer:
  3172. mutex_lock(&dev->struct_mutex);
  3173. i915_gem_cleanup_ringbuffer(dev);
  3174. dev_priv->mm.suspended = 1;
  3175. mutex_unlock(&dev->struct_mutex);
  3176. return ret;
  3177. }
  3178. int
  3179. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3180. struct drm_file *file_priv)
  3181. {
  3182. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3183. return 0;
  3184. drm_irq_uninstall(dev);
  3185. return i915_gem_idle(dev);
  3186. }
  3187. void
  3188. i915_gem_lastclose(struct drm_device *dev)
  3189. {
  3190. int ret;
  3191. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3192. return;
  3193. ret = i915_gem_idle(dev);
  3194. if (ret)
  3195. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3196. }
  3197. static void
  3198. init_ring_lists(struct intel_ring_buffer *ring)
  3199. {
  3200. INIT_LIST_HEAD(&ring->active_list);
  3201. INIT_LIST_HEAD(&ring->request_list);
  3202. INIT_LIST_HEAD(&ring->gpu_write_list);
  3203. }
  3204. void
  3205. i915_gem_load(struct drm_device *dev)
  3206. {
  3207. int i;
  3208. drm_i915_private_t *dev_priv = dev->dev_private;
  3209. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3210. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3211. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3212. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3213. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3214. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3215. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3216. for (i = 0; i < I915_NUM_RINGS; i++)
  3217. init_ring_lists(&dev_priv->ring[i]);
  3218. for (i = 0; i < 16; i++)
  3219. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3220. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3221. i915_gem_retire_work_handler);
  3222. init_completion(&dev_priv->error_completion);
  3223. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3224. if (IS_GEN3(dev)) {
  3225. u32 tmp = I915_READ(MI_ARB_STATE);
  3226. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3227. /* arb state is a masked write, so set bit + bit in mask */
  3228. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3229. I915_WRITE(MI_ARB_STATE, tmp);
  3230. }
  3231. }
  3232. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3233. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3234. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3235. dev_priv->fence_reg_start = 3;
  3236. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3237. dev_priv->num_fence_regs = 16;
  3238. else
  3239. dev_priv->num_fence_regs = 8;
  3240. /* Initialize fence registers to zero */
  3241. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3242. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3243. }
  3244. i915_gem_detect_bit_6_swizzle(dev);
  3245. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3246. dev_priv->mm.interruptible = true;
  3247. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3248. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3249. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3250. }
  3251. /*
  3252. * Create a physically contiguous memory object for this object
  3253. * e.g. for cursor + overlay regs
  3254. */
  3255. static int i915_gem_init_phys_object(struct drm_device *dev,
  3256. int id, int size, int align)
  3257. {
  3258. drm_i915_private_t *dev_priv = dev->dev_private;
  3259. struct drm_i915_gem_phys_object *phys_obj;
  3260. int ret;
  3261. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3262. return 0;
  3263. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3264. if (!phys_obj)
  3265. return -ENOMEM;
  3266. phys_obj->id = id;
  3267. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3268. if (!phys_obj->handle) {
  3269. ret = -ENOMEM;
  3270. goto kfree_obj;
  3271. }
  3272. #ifdef CONFIG_X86
  3273. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3274. #endif
  3275. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3276. return 0;
  3277. kfree_obj:
  3278. kfree(phys_obj);
  3279. return ret;
  3280. }
  3281. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3282. {
  3283. drm_i915_private_t *dev_priv = dev->dev_private;
  3284. struct drm_i915_gem_phys_object *phys_obj;
  3285. if (!dev_priv->mm.phys_objs[id - 1])
  3286. return;
  3287. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3288. if (phys_obj->cur_obj) {
  3289. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3290. }
  3291. #ifdef CONFIG_X86
  3292. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3293. #endif
  3294. drm_pci_free(dev, phys_obj->handle);
  3295. kfree(phys_obj);
  3296. dev_priv->mm.phys_objs[id - 1] = NULL;
  3297. }
  3298. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3299. {
  3300. int i;
  3301. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3302. i915_gem_free_phys_object(dev, i);
  3303. }
  3304. void i915_gem_detach_phys_object(struct drm_device *dev,
  3305. struct drm_i915_gem_object *obj)
  3306. {
  3307. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3308. char *vaddr;
  3309. int i;
  3310. int page_count;
  3311. if (!obj->phys_obj)
  3312. return;
  3313. vaddr = obj->phys_obj->handle->vaddr;
  3314. page_count = obj->base.size / PAGE_SIZE;
  3315. for (i = 0; i < page_count; i++) {
  3316. struct page *page = shmem_read_mapping_page(mapping, i);
  3317. if (!IS_ERR(page)) {
  3318. char *dst = kmap_atomic(page);
  3319. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3320. kunmap_atomic(dst);
  3321. drm_clflush_pages(&page, 1);
  3322. set_page_dirty(page);
  3323. mark_page_accessed(page);
  3324. page_cache_release(page);
  3325. }
  3326. }
  3327. intel_gtt_chipset_flush();
  3328. obj->phys_obj->cur_obj = NULL;
  3329. obj->phys_obj = NULL;
  3330. }
  3331. int
  3332. i915_gem_attach_phys_object(struct drm_device *dev,
  3333. struct drm_i915_gem_object *obj,
  3334. int id,
  3335. int align)
  3336. {
  3337. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3338. drm_i915_private_t *dev_priv = dev->dev_private;
  3339. int ret = 0;
  3340. int page_count;
  3341. int i;
  3342. if (id > I915_MAX_PHYS_OBJECT)
  3343. return -EINVAL;
  3344. if (obj->phys_obj) {
  3345. if (obj->phys_obj->id == id)
  3346. return 0;
  3347. i915_gem_detach_phys_object(dev, obj);
  3348. }
  3349. /* create a new object */
  3350. if (!dev_priv->mm.phys_objs[id - 1]) {
  3351. ret = i915_gem_init_phys_object(dev, id,
  3352. obj->base.size, align);
  3353. if (ret) {
  3354. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3355. id, obj->base.size);
  3356. return ret;
  3357. }
  3358. }
  3359. /* bind to the object */
  3360. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3361. obj->phys_obj->cur_obj = obj;
  3362. page_count = obj->base.size / PAGE_SIZE;
  3363. for (i = 0; i < page_count; i++) {
  3364. struct page *page;
  3365. char *dst, *src;
  3366. page = shmem_read_mapping_page(mapping, i);
  3367. if (IS_ERR(page))
  3368. return PTR_ERR(page);
  3369. src = kmap_atomic(page);
  3370. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3371. memcpy(dst, src, PAGE_SIZE);
  3372. kunmap_atomic(src);
  3373. mark_page_accessed(page);
  3374. page_cache_release(page);
  3375. }
  3376. return 0;
  3377. }
  3378. static int
  3379. i915_gem_phys_pwrite(struct drm_device *dev,
  3380. struct drm_i915_gem_object *obj,
  3381. struct drm_i915_gem_pwrite *args,
  3382. struct drm_file *file_priv)
  3383. {
  3384. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3385. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3386. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3387. unsigned long unwritten;
  3388. /* The physical object once assigned is fixed for the lifetime
  3389. * of the obj, so we can safely drop the lock and continue
  3390. * to access vaddr.
  3391. */
  3392. mutex_unlock(&dev->struct_mutex);
  3393. unwritten = copy_from_user(vaddr, user_data, args->size);
  3394. mutex_lock(&dev->struct_mutex);
  3395. if (unwritten)
  3396. return -EFAULT;
  3397. }
  3398. intel_gtt_chipset_flush();
  3399. return 0;
  3400. }
  3401. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3402. {
  3403. struct drm_i915_file_private *file_priv = file->driver_priv;
  3404. /* Clean up our request list when the client is going away, so that
  3405. * later retire_requests won't dereference our soon-to-be-gone
  3406. * file_priv.
  3407. */
  3408. spin_lock(&file_priv->mm.lock);
  3409. while (!list_empty(&file_priv->mm.request_list)) {
  3410. struct drm_i915_gem_request *request;
  3411. request = list_first_entry(&file_priv->mm.request_list,
  3412. struct drm_i915_gem_request,
  3413. client_list);
  3414. list_del(&request->client_list);
  3415. request->file_priv = NULL;
  3416. }
  3417. spin_unlock(&file_priv->mm.lock);
  3418. }
  3419. static int
  3420. i915_gpu_is_active(struct drm_device *dev)
  3421. {
  3422. drm_i915_private_t *dev_priv = dev->dev_private;
  3423. int lists_empty;
  3424. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3425. list_empty(&dev_priv->mm.active_list);
  3426. return !lists_empty;
  3427. }
  3428. static int
  3429. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3430. {
  3431. struct drm_i915_private *dev_priv =
  3432. container_of(shrinker,
  3433. struct drm_i915_private,
  3434. mm.inactive_shrinker);
  3435. struct drm_device *dev = dev_priv->dev;
  3436. struct drm_i915_gem_object *obj, *next;
  3437. int nr_to_scan = sc->nr_to_scan;
  3438. int cnt;
  3439. if (!mutex_trylock(&dev->struct_mutex))
  3440. return 0;
  3441. /* "fast-path" to count number of available objects */
  3442. if (nr_to_scan == 0) {
  3443. cnt = 0;
  3444. list_for_each_entry(obj,
  3445. &dev_priv->mm.inactive_list,
  3446. mm_list)
  3447. cnt++;
  3448. mutex_unlock(&dev->struct_mutex);
  3449. return cnt / 100 * sysctl_vfs_cache_pressure;
  3450. }
  3451. rescan:
  3452. /* first scan for clean buffers */
  3453. i915_gem_retire_requests(dev);
  3454. list_for_each_entry_safe(obj, next,
  3455. &dev_priv->mm.inactive_list,
  3456. mm_list) {
  3457. if (i915_gem_object_is_purgeable(obj)) {
  3458. if (i915_gem_object_unbind(obj) == 0 &&
  3459. --nr_to_scan == 0)
  3460. break;
  3461. }
  3462. }
  3463. /* second pass, evict/count anything still on the inactive list */
  3464. cnt = 0;
  3465. list_for_each_entry_safe(obj, next,
  3466. &dev_priv->mm.inactive_list,
  3467. mm_list) {
  3468. if (nr_to_scan &&
  3469. i915_gem_object_unbind(obj) == 0)
  3470. nr_to_scan--;
  3471. else
  3472. cnt++;
  3473. }
  3474. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3475. /*
  3476. * We are desperate for pages, so as a last resort, wait
  3477. * for the GPU to finish and discard whatever we can.
  3478. * This has a dramatic impact to reduce the number of
  3479. * OOM-killer events whilst running the GPU aggressively.
  3480. */
  3481. if (i915_gpu_idle(dev) == 0)
  3482. goto rescan;
  3483. }
  3484. mutex_unlock(&dev->struct_mutex);
  3485. return cnt / 100 * sysctl_vfs_cache_pressure;
  3486. }