rtc-cmos.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/mod_devicetable.h>
  37. #include <linux/log2.h>
  38. #include <linux/pm.h>
  39. #include <linux/of.h>
  40. #include <linux/of_platform.h>
  41. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  42. #include <asm-generic/rtc.h>
  43. struct cmos_rtc {
  44. struct rtc_device *rtc;
  45. struct device *dev;
  46. int irq;
  47. struct resource *iomem;
  48. void (*wake_on)(struct device *);
  49. void (*wake_off)(struct device *);
  50. u8 enabled_wake;
  51. u8 suspend_ctrl;
  52. /* newer hardware extends the original register set */
  53. u8 day_alrm;
  54. u8 mon_alrm;
  55. u8 century;
  56. };
  57. /* both platform and pnp busses use negative numbers for invalid irqs */
  58. #define is_valid_irq(n) ((n) > 0)
  59. static const char driver_name[] = "rtc_cmos";
  60. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  61. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  62. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  63. */
  64. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  65. static inline int is_intr(u8 rtc_intr)
  66. {
  67. if (!(rtc_intr & RTC_IRQF))
  68. return 0;
  69. return rtc_intr & RTC_IRQMASK;
  70. }
  71. /*----------------------------------------------------------------*/
  72. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  73. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  74. * used in a broken "legacy replacement" mode. The breakage includes
  75. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  76. * other (better) use.
  77. *
  78. * When that broken mode is in use, platform glue provides a partial
  79. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  80. * want to use HPET for anything except those IRQs though...
  81. */
  82. #ifdef CONFIG_HPET_EMULATE_RTC
  83. #include <asm/hpet.h>
  84. #else
  85. static inline int is_hpet_enabled(void)
  86. {
  87. return 0;
  88. }
  89. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  90. {
  91. return 0;
  92. }
  93. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  94. {
  95. return 0;
  96. }
  97. static inline int
  98. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  99. {
  100. return 0;
  101. }
  102. static inline int hpet_set_periodic_freq(unsigned long freq)
  103. {
  104. return 0;
  105. }
  106. static inline int hpet_rtc_dropped_irq(void)
  107. {
  108. return 0;
  109. }
  110. static inline int hpet_rtc_timer_init(void)
  111. {
  112. return 0;
  113. }
  114. extern irq_handler_t hpet_rtc_interrupt;
  115. static inline int hpet_register_irq_handler(irq_handler_t handler)
  116. {
  117. return 0;
  118. }
  119. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  120. {
  121. return 0;
  122. }
  123. #endif
  124. /*----------------------------------------------------------------*/
  125. #ifdef RTC_PORT
  126. /* Most newer x86 systems have two register banks, the first used
  127. * for RTC and NVRAM and the second only for NVRAM. Caller must
  128. * own rtc_lock ... and we won't worry about access during NMI.
  129. */
  130. #define can_bank2 true
  131. static inline unsigned char cmos_read_bank2(unsigned char addr)
  132. {
  133. outb(addr, RTC_PORT(2));
  134. return inb(RTC_PORT(3));
  135. }
  136. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  137. {
  138. outb(addr, RTC_PORT(2));
  139. outb(val, RTC_PORT(3));
  140. }
  141. #else
  142. #define can_bank2 false
  143. static inline unsigned char cmos_read_bank2(unsigned char addr)
  144. {
  145. return 0;
  146. }
  147. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  148. {
  149. }
  150. #endif
  151. /*----------------------------------------------------------------*/
  152. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  153. {
  154. /* REVISIT: if the clock has a "century" register, use
  155. * that instead of the heuristic in get_rtc_time().
  156. * That'll make Y3K compatility (year > 2070) easy!
  157. */
  158. get_rtc_time(t);
  159. return 0;
  160. }
  161. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  162. {
  163. /* REVISIT: set the "century" register if available
  164. *
  165. * NOTE: this ignores the issue whereby updating the seconds
  166. * takes effect exactly 500ms after we write the register.
  167. * (Also queueing and other delays before we get this far.)
  168. */
  169. return set_rtc_time(t);
  170. }
  171. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  172. {
  173. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  174. unsigned char rtc_control;
  175. if (!is_valid_irq(cmos->irq))
  176. return -EIO;
  177. /* Basic alarms only support hour, minute, and seconds fields.
  178. * Some also support day and month, for alarms up to a year in
  179. * the future.
  180. */
  181. t->time.tm_mday = -1;
  182. t->time.tm_mon = -1;
  183. spin_lock_irq(&rtc_lock);
  184. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  185. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  186. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  187. if (cmos->day_alrm) {
  188. /* ignore upper bits on readback per ACPI spec */
  189. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  190. if (!t->time.tm_mday)
  191. t->time.tm_mday = -1;
  192. if (cmos->mon_alrm) {
  193. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  194. if (!t->time.tm_mon)
  195. t->time.tm_mon = -1;
  196. }
  197. }
  198. rtc_control = CMOS_READ(RTC_CONTROL);
  199. spin_unlock_irq(&rtc_lock);
  200. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  201. if (((unsigned)t->time.tm_sec) < 0x60)
  202. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  203. else
  204. t->time.tm_sec = -1;
  205. if (((unsigned)t->time.tm_min) < 0x60)
  206. t->time.tm_min = bcd2bin(t->time.tm_min);
  207. else
  208. t->time.tm_min = -1;
  209. if (((unsigned)t->time.tm_hour) < 0x24)
  210. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  211. else
  212. t->time.tm_hour = -1;
  213. if (cmos->day_alrm) {
  214. if (((unsigned)t->time.tm_mday) <= 0x31)
  215. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  216. else
  217. t->time.tm_mday = -1;
  218. if (cmos->mon_alrm) {
  219. if (((unsigned)t->time.tm_mon) <= 0x12)
  220. t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
  221. else
  222. t->time.tm_mon = -1;
  223. }
  224. }
  225. }
  226. t->time.tm_year = -1;
  227. t->enabled = !!(rtc_control & RTC_AIE);
  228. t->pending = 0;
  229. return 0;
  230. }
  231. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  232. {
  233. unsigned char rtc_intr;
  234. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  235. * allegedly some older rtcs need that to handle irqs properly
  236. */
  237. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  238. if (is_hpet_enabled())
  239. return;
  240. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  241. if (is_intr(rtc_intr))
  242. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  243. }
  244. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  245. {
  246. unsigned char rtc_control;
  247. /* flush any pending IRQ status, notably for update irqs,
  248. * before we enable new IRQs
  249. */
  250. rtc_control = CMOS_READ(RTC_CONTROL);
  251. cmos_checkintr(cmos, rtc_control);
  252. rtc_control |= mask;
  253. CMOS_WRITE(rtc_control, RTC_CONTROL);
  254. hpet_set_rtc_irq_bit(mask);
  255. cmos_checkintr(cmos, rtc_control);
  256. }
  257. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  258. {
  259. unsigned char rtc_control;
  260. rtc_control = CMOS_READ(RTC_CONTROL);
  261. rtc_control &= ~mask;
  262. CMOS_WRITE(rtc_control, RTC_CONTROL);
  263. hpet_mask_rtc_irq_bit(mask);
  264. cmos_checkintr(cmos, rtc_control);
  265. }
  266. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  267. {
  268. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  269. unsigned char mon, mday, hrs, min, sec, rtc_control;
  270. if (!is_valid_irq(cmos->irq))
  271. return -EIO;
  272. mon = t->time.tm_mon + 1;
  273. mday = t->time.tm_mday;
  274. hrs = t->time.tm_hour;
  275. min = t->time.tm_min;
  276. sec = t->time.tm_sec;
  277. rtc_control = CMOS_READ(RTC_CONTROL);
  278. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  279. /* Writing 0xff means "don't care" or "match all". */
  280. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  281. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  282. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  283. min = (min < 60) ? bin2bcd(min) : 0xff;
  284. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  285. }
  286. spin_lock_irq(&rtc_lock);
  287. /* next rtc irq must not be from previous alarm setting */
  288. cmos_irq_disable(cmos, RTC_AIE);
  289. /* update alarm */
  290. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  291. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  292. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  293. /* the system may support an "enhanced" alarm */
  294. if (cmos->day_alrm) {
  295. CMOS_WRITE(mday, cmos->day_alrm);
  296. if (cmos->mon_alrm)
  297. CMOS_WRITE(mon, cmos->mon_alrm);
  298. }
  299. /* FIXME the HPET alarm glue currently ignores day_alrm
  300. * and mon_alrm ...
  301. */
  302. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  303. if (t->enabled)
  304. cmos_irq_enable(cmos, RTC_AIE);
  305. spin_unlock_irq(&rtc_lock);
  306. return 0;
  307. }
  308. static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
  309. {
  310. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  311. unsigned long flags;
  312. if (!is_valid_irq(cmos->irq))
  313. return -EINVAL;
  314. spin_lock_irqsave(&rtc_lock, flags);
  315. if (enabled)
  316. cmos_irq_enable(cmos, RTC_AIE);
  317. else
  318. cmos_irq_disable(cmos, RTC_AIE);
  319. spin_unlock_irqrestore(&rtc_lock, flags);
  320. return 0;
  321. }
  322. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  323. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  324. {
  325. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  326. unsigned char rtc_control, valid;
  327. spin_lock_irq(&rtc_lock);
  328. rtc_control = CMOS_READ(RTC_CONTROL);
  329. valid = CMOS_READ(RTC_VALID);
  330. spin_unlock_irq(&rtc_lock);
  331. /* NOTE: at least ICH6 reports battery status using a different
  332. * (non-RTC) bit; and SQWE is ignored on many current systems.
  333. */
  334. return seq_printf(seq,
  335. "periodic_IRQ\t: %s\n"
  336. "update_IRQ\t: %s\n"
  337. "HPET_emulated\t: %s\n"
  338. // "square_wave\t: %s\n"
  339. "BCD\t\t: %s\n"
  340. "DST_enable\t: %s\n"
  341. "periodic_freq\t: %d\n"
  342. "batt_status\t: %s\n",
  343. (rtc_control & RTC_PIE) ? "yes" : "no",
  344. (rtc_control & RTC_UIE) ? "yes" : "no",
  345. is_hpet_enabled() ? "yes" : "no",
  346. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  347. (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  348. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  349. cmos->rtc->irq_freq,
  350. (valid & RTC_VRT) ? "okay" : "dead");
  351. }
  352. #else
  353. #define cmos_procfs NULL
  354. #endif
  355. static const struct rtc_class_ops cmos_rtc_ops = {
  356. .read_time = cmos_read_time,
  357. .set_time = cmos_set_time,
  358. .read_alarm = cmos_read_alarm,
  359. .set_alarm = cmos_set_alarm,
  360. .proc = cmos_procfs,
  361. .alarm_irq_enable = cmos_alarm_irq_enable,
  362. };
  363. /*----------------------------------------------------------------*/
  364. /*
  365. * All these chips have at least 64 bytes of address space, shared by
  366. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  367. * by boot firmware. Modern chips have 128 or 256 bytes.
  368. */
  369. #define NVRAM_OFFSET (RTC_REG_D + 1)
  370. static ssize_t
  371. cmos_nvram_read(struct file *filp, struct kobject *kobj,
  372. struct bin_attribute *attr,
  373. char *buf, loff_t off, size_t count)
  374. {
  375. int retval;
  376. if (unlikely(off >= attr->size))
  377. return 0;
  378. if (unlikely(off < 0))
  379. return -EINVAL;
  380. if ((off + count) > attr->size)
  381. count = attr->size - off;
  382. off += NVRAM_OFFSET;
  383. spin_lock_irq(&rtc_lock);
  384. for (retval = 0; count; count--, off++, retval++) {
  385. if (off < 128)
  386. *buf++ = CMOS_READ(off);
  387. else if (can_bank2)
  388. *buf++ = cmos_read_bank2(off);
  389. else
  390. break;
  391. }
  392. spin_unlock_irq(&rtc_lock);
  393. return retval;
  394. }
  395. static ssize_t
  396. cmos_nvram_write(struct file *filp, struct kobject *kobj,
  397. struct bin_attribute *attr,
  398. char *buf, loff_t off, size_t count)
  399. {
  400. struct cmos_rtc *cmos;
  401. int retval;
  402. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  403. if (unlikely(off >= attr->size))
  404. return -EFBIG;
  405. if (unlikely(off < 0))
  406. return -EINVAL;
  407. if ((off + count) > attr->size)
  408. count = attr->size - off;
  409. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  410. * checksum on part of the NVRAM data. That's currently ignored
  411. * here. If userspace is smart enough to know what fields of
  412. * NVRAM to update, updating checksums is also part of its job.
  413. */
  414. off += NVRAM_OFFSET;
  415. spin_lock_irq(&rtc_lock);
  416. for (retval = 0; count; count--, off++, retval++) {
  417. /* don't trash RTC registers */
  418. if (off == cmos->day_alrm
  419. || off == cmos->mon_alrm
  420. || off == cmos->century)
  421. buf++;
  422. else if (off < 128)
  423. CMOS_WRITE(*buf++, off);
  424. else if (can_bank2)
  425. cmos_write_bank2(*buf++, off);
  426. else
  427. break;
  428. }
  429. spin_unlock_irq(&rtc_lock);
  430. return retval;
  431. }
  432. static struct bin_attribute nvram = {
  433. .attr = {
  434. .name = "nvram",
  435. .mode = S_IRUGO | S_IWUSR,
  436. },
  437. .read = cmos_nvram_read,
  438. .write = cmos_nvram_write,
  439. /* size gets set up later */
  440. };
  441. /*----------------------------------------------------------------*/
  442. static struct cmos_rtc cmos_rtc;
  443. static irqreturn_t cmos_interrupt(int irq, void *p)
  444. {
  445. u8 irqstat;
  446. u8 rtc_control;
  447. spin_lock(&rtc_lock);
  448. /* When the HPET interrupt handler calls us, the interrupt
  449. * status is passed as arg1 instead of the irq number. But
  450. * always clear irq status, even when HPET is in the way.
  451. *
  452. * Note that HPET and RTC are almost certainly out of phase,
  453. * giving different IRQ status ...
  454. */
  455. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  456. rtc_control = CMOS_READ(RTC_CONTROL);
  457. if (is_hpet_enabled())
  458. irqstat = (unsigned long)irq & 0xF0;
  459. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  460. /* All Linux RTC alarms should be treated as if they were oneshot.
  461. * Similar code may be needed in system wakeup paths, in case the
  462. * alarm woke the system.
  463. */
  464. if (irqstat & RTC_AIE) {
  465. rtc_control &= ~RTC_AIE;
  466. CMOS_WRITE(rtc_control, RTC_CONTROL);
  467. hpet_mask_rtc_irq_bit(RTC_AIE);
  468. CMOS_READ(RTC_INTR_FLAGS);
  469. pm_wakeup_event(cmos_rtc.dev, 0);
  470. }
  471. spin_unlock(&rtc_lock);
  472. if (is_intr(irqstat)) {
  473. rtc_update_irq(p, 1, irqstat);
  474. return IRQ_HANDLED;
  475. } else
  476. return IRQ_NONE;
  477. }
  478. #ifdef CONFIG_PNP
  479. #define INITSECTION
  480. #else
  481. #define INITSECTION __init
  482. #endif
  483. static int INITSECTION
  484. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  485. {
  486. struct cmos_rtc_board_info *info = dev->platform_data;
  487. int retval = 0;
  488. unsigned char rtc_control;
  489. unsigned address_space;
  490. /* there can be only one ... */
  491. if (cmos_rtc.dev)
  492. return -EBUSY;
  493. if (!ports)
  494. return -ENODEV;
  495. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  496. *
  497. * REVISIT non-x86 systems may instead use memory space resources
  498. * (needing ioremap etc), not i/o space resources like this ...
  499. */
  500. ports = request_region(ports->start,
  501. resource_size(ports),
  502. driver_name);
  503. if (!ports) {
  504. dev_dbg(dev, "i/o registers already in use\n");
  505. return -EBUSY;
  506. }
  507. cmos_rtc.irq = rtc_irq;
  508. cmos_rtc.iomem = ports;
  509. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  510. * driver did, but don't reject unknown configs. Old hardware
  511. * won't address 128 bytes. Newer chips have multiple banks,
  512. * though they may not be listed in one I/O resource.
  513. */
  514. #if defined(CONFIG_ATARI)
  515. address_space = 64;
  516. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
  517. || defined(__sparc__) || defined(__mips__) \
  518. || defined(__powerpc__)
  519. address_space = 128;
  520. #else
  521. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  522. address_space = 128;
  523. #endif
  524. if (can_bank2 && ports->end > (ports->start + 1))
  525. address_space = 256;
  526. /* For ACPI systems extension info comes from the FADT. On others,
  527. * board specific setup provides it as appropriate. Systems where
  528. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  529. * some almost-clones) can provide hooks to make that behave.
  530. *
  531. * Note that ACPI doesn't preclude putting these registers into
  532. * "extended" areas of the chip, including some that we won't yet
  533. * expect CMOS_READ and friends to handle.
  534. */
  535. if (info) {
  536. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  537. cmos_rtc.day_alrm = info->rtc_day_alarm;
  538. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  539. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  540. if (info->rtc_century && info->rtc_century < 128)
  541. cmos_rtc.century = info->rtc_century;
  542. if (info->wake_on && info->wake_off) {
  543. cmos_rtc.wake_on = info->wake_on;
  544. cmos_rtc.wake_off = info->wake_off;
  545. }
  546. }
  547. cmos_rtc.dev = dev;
  548. dev_set_drvdata(dev, &cmos_rtc);
  549. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  550. &cmos_rtc_ops, THIS_MODULE);
  551. if (IS_ERR(cmos_rtc.rtc)) {
  552. retval = PTR_ERR(cmos_rtc.rtc);
  553. goto cleanup0;
  554. }
  555. rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
  556. spin_lock_irq(&rtc_lock);
  557. /* force periodic irq to CMOS reset default of 1024Hz;
  558. *
  559. * REVISIT it's been reported that at least one x86_64 ALI mobo
  560. * doesn't use 32KHz here ... for portability we might need to
  561. * do something about other clock frequencies.
  562. */
  563. cmos_rtc.rtc->irq_freq = 1024;
  564. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  565. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  566. /* disable irqs */
  567. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  568. rtc_control = CMOS_READ(RTC_CONTROL);
  569. spin_unlock_irq(&rtc_lock);
  570. /* FIXME:
  571. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  572. */
  573. if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
  574. dev_warn(dev, "only 24-hr supported\n");
  575. retval = -ENXIO;
  576. goto cleanup1;
  577. }
  578. if (is_valid_irq(rtc_irq)) {
  579. irq_handler_t rtc_cmos_int_handler;
  580. if (is_hpet_enabled()) {
  581. int err;
  582. rtc_cmos_int_handler = hpet_rtc_interrupt;
  583. err = hpet_register_irq_handler(cmos_interrupt);
  584. if (err != 0) {
  585. printk(KERN_WARNING "hpet_register_irq_handler "
  586. " failed in rtc_init().");
  587. goto cleanup1;
  588. }
  589. } else
  590. rtc_cmos_int_handler = cmos_interrupt;
  591. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  592. 0, dev_name(&cmos_rtc.rtc->dev),
  593. cmos_rtc.rtc);
  594. if (retval < 0) {
  595. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  596. goto cleanup1;
  597. }
  598. }
  599. hpet_rtc_timer_init();
  600. /* export at least the first block of NVRAM */
  601. nvram.size = address_space - NVRAM_OFFSET;
  602. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  603. if (retval < 0) {
  604. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  605. goto cleanup2;
  606. }
  607. pr_info("%s: %s%s, %zd bytes nvram%s\n",
  608. dev_name(&cmos_rtc.rtc->dev),
  609. !is_valid_irq(rtc_irq) ? "no alarms" :
  610. cmos_rtc.mon_alrm ? "alarms up to one year" :
  611. cmos_rtc.day_alrm ? "alarms up to one month" :
  612. "alarms up to one day",
  613. cmos_rtc.century ? ", y3k" : "",
  614. nvram.size,
  615. is_hpet_enabled() ? ", hpet irqs" : "");
  616. return 0;
  617. cleanup2:
  618. if (is_valid_irq(rtc_irq))
  619. free_irq(rtc_irq, cmos_rtc.rtc);
  620. cleanup1:
  621. cmos_rtc.dev = NULL;
  622. rtc_device_unregister(cmos_rtc.rtc);
  623. cleanup0:
  624. release_region(ports->start, resource_size(ports));
  625. return retval;
  626. }
  627. static void cmos_do_shutdown(void)
  628. {
  629. spin_lock_irq(&rtc_lock);
  630. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  631. spin_unlock_irq(&rtc_lock);
  632. }
  633. static void __exit cmos_do_remove(struct device *dev)
  634. {
  635. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  636. struct resource *ports;
  637. cmos_do_shutdown();
  638. sysfs_remove_bin_file(&dev->kobj, &nvram);
  639. if (is_valid_irq(cmos->irq)) {
  640. free_irq(cmos->irq, cmos->rtc);
  641. hpet_unregister_irq_handler(cmos_interrupt);
  642. }
  643. rtc_device_unregister(cmos->rtc);
  644. cmos->rtc = NULL;
  645. ports = cmos->iomem;
  646. release_region(ports->start, resource_size(ports));
  647. cmos->iomem = NULL;
  648. cmos->dev = NULL;
  649. dev_set_drvdata(dev, NULL);
  650. }
  651. #ifdef CONFIG_PM
  652. static int cmos_suspend(struct device *dev)
  653. {
  654. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  655. unsigned char tmp;
  656. /* only the alarm might be a wakeup event source */
  657. spin_lock_irq(&rtc_lock);
  658. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  659. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  660. unsigned char mask;
  661. if (device_may_wakeup(dev))
  662. mask = RTC_IRQMASK & ~RTC_AIE;
  663. else
  664. mask = RTC_IRQMASK;
  665. tmp &= ~mask;
  666. CMOS_WRITE(tmp, RTC_CONTROL);
  667. /* shut down hpet emulation - we don't need it for alarm */
  668. hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
  669. cmos_checkintr(cmos, tmp);
  670. }
  671. spin_unlock_irq(&rtc_lock);
  672. if (tmp & RTC_AIE) {
  673. cmos->enabled_wake = 1;
  674. if (cmos->wake_on)
  675. cmos->wake_on(dev);
  676. else
  677. enable_irq_wake(cmos->irq);
  678. }
  679. pr_debug("%s: suspend%s, ctrl %02x\n",
  680. dev_name(&cmos_rtc.rtc->dev),
  681. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  682. tmp);
  683. return 0;
  684. }
  685. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  686. * after a detour through G3 "mechanical off", although the ACPI spec
  687. * says wakeup should only work from G1/S4 "hibernate". To most users,
  688. * distinctions between S4 and S5 are pointless. So when the hardware
  689. * allows, don't draw that distinction.
  690. */
  691. static inline int cmos_poweroff(struct device *dev)
  692. {
  693. return cmos_suspend(dev);
  694. }
  695. static int cmos_resume(struct device *dev)
  696. {
  697. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  698. unsigned char tmp = cmos->suspend_ctrl;
  699. /* re-enable any irqs previously active */
  700. if (tmp & RTC_IRQMASK) {
  701. unsigned char mask;
  702. if (cmos->enabled_wake) {
  703. if (cmos->wake_off)
  704. cmos->wake_off(dev);
  705. else
  706. disable_irq_wake(cmos->irq);
  707. cmos->enabled_wake = 0;
  708. }
  709. spin_lock_irq(&rtc_lock);
  710. do {
  711. CMOS_WRITE(tmp, RTC_CONTROL);
  712. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  713. mask = CMOS_READ(RTC_INTR_FLAGS);
  714. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  715. if (!is_hpet_enabled() || !is_intr(mask))
  716. break;
  717. /* force one-shot behavior if HPET blocked
  718. * the wake alarm's irq
  719. */
  720. rtc_update_irq(cmos->rtc, 1, mask);
  721. tmp &= ~RTC_AIE;
  722. hpet_mask_rtc_irq_bit(RTC_AIE);
  723. } while (mask & RTC_AIE);
  724. spin_unlock_irq(&rtc_lock);
  725. }
  726. pr_debug("%s: resume, ctrl %02x\n",
  727. dev_name(&cmos_rtc.rtc->dev),
  728. tmp);
  729. return 0;
  730. }
  731. static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
  732. #else
  733. static inline int cmos_poweroff(struct device *dev)
  734. {
  735. return -ENOSYS;
  736. }
  737. #endif
  738. /*----------------------------------------------------------------*/
  739. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  740. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  741. * probably list them in similar PNPBIOS tables; so PNP is more common.
  742. *
  743. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  744. * predate even PNPBIOS should set up platform_bus devices.
  745. */
  746. #ifdef CONFIG_ACPI
  747. #include <linux/acpi.h>
  748. static u32 rtc_handler(void *context)
  749. {
  750. struct device *dev = context;
  751. pm_wakeup_event(dev, 0);
  752. acpi_clear_event(ACPI_EVENT_RTC);
  753. acpi_disable_event(ACPI_EVENT_RTC, 0);
  754. return ACPI_INTERRUPT_HANDLED;
  755. }
  756. static inline void rtc_wake_setup(struct device *dev)
  757. {
  758. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
  759. /*
  760. * After the RTC handler is installed, the Fixed_RTC event should
  761. * be disabled. Only when the RTC alarm is set will it be enabled.
  762. */
  763. acpi_clear_event(ACPI_EVENT_RTC);
  764. acpi_disable_event(ACPI_EVENT_RTC, 0);
  765. }
  766. static void rtc_wake_on(struct device *dev)
  767. {
  768. acpi_clear_event(ACPI_EVENT_RTC);
  769. acpi_enable_event(ACPI_EVENT_RTC, 0);
  770. }
  771. static void rtc_wake_off(struct device *dev)
  772. {
  773. acpi_disable_event(ACPI_EVENT_RTC, 0);
  774. }
  775. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  776. * its device node and pass extra config data. This helps its driver use
  777. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  778. * that this board's RTC is wakeup-capable (per ACPI spec).
  779. */
  780. static struct cmos_rtc_board_info acpi_rtc_info;
  781. static void __devinit
  782. cmos_wake_setup(struct device *dev)
  783. {
  784. if (acpi_disabled)
  785. return;
  786. rtc_wake_setup(dev);
  787. acpi_rtc_info.wake_on = rtc_wake_on;
  788. acpi_rtc_info.wake_off = rtc_wake_off;
  789. /* workaround bug in some ACPI tables */
  790. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  791. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  792. acpi_gbl_FADT.month_alarm);
  793. acpi_gbl_FADT.month_alarm = 0;
  794. }
  795. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  796. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  797. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  798. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  799. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  800. dev_info(dev, "RTC can wake from S4\n");
  801. dev->platform_data = &acpi_rtc_info;
  802. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  803. device_init_wakeup(dev, 1);
  804. }
  805. #else
  806. static void __devinit
  807. cmos_wake_setup(struct device *dev)
  808. {
  809. }
  810. #endif
  811. #ifdef CONFIG_PNP
  812. #include <linux/pnp.h>
  813. static int __devinit
  814. cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  815. {
  816. cmos_wake_setup(&pnp->dev);
  817. if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
  818. /* Some machines contain a PNP entry for the RTC, but
  819. * don't define the IRQ. It should always be safe to
  820. * hardcode it in these cases
  821. */
  822. return cmos_do_probe(&pnp->dev,
  823. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  824. else
  825. return cmos_do_probe(&pnp->dev,
  826. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  827. pnp_irq(pnp, 0));
  828. }
  829. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  830. {
  831. cmos_do_remove(&pnp->dev);
  832. }
  833. #ifdef CONFIG_PM
  834. static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
  835. {
  836. return cmos_suspend(&pnp->dev);
  837. }
  838. static int cmos_pnp_resume(struct pnp_dev *pnp)
  839. {
  840. return cmos_resume(&pnp->dev);
  841. }
  842. #else
  843. #define cmos_pnp_suspend NULL
  844. #define cmos_pnp_resume NULL
  845. #endif
  846. static void cmos_pnp_shutdown(struct pnp_dev *pnp)
  847. {
  848. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
  849. return;
  850. cmos_do_shutdown();
  851. }
  852. static const struct pnp_device_id rtc_ids[] = {
  853. { .id = "PNP0b00", },
  854. { .id = "PNP0b01", },
  855. { .id = "PNP0b02", },
  856. { },
  857. };
  858. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  859. static struct pnp_driver cmos_pnp_driver = {
  860. .name = (char *) driver_name,
  861. .id_table = rtc_ids,
  862. .probe = cmos_pnp_probe,
  863. .remove = __exit_p(cmos_pnp_remove),
  864. .shutdown = cmos_pnp_shutdown,
  865. /* flag ensures resume() gets called, and stops syslog spam */
  866. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  867. .suspend = cmos_pnp_suspend,
  868. .resume = cmos_pnp_resume,
  869. };
  870. #endif /* CONFIG_PNP */
  871. #ifdef CONFIG_OF
  872. static const struct of_device_id of_cmos_match[] = {
  873. {
  874. .compatible = "motorola,mc146818",
  875. },
  876. { },
  877. };
  878. MODULE_DEVICE_TABLE(of, of_cmos_match);
  879. static __init void cmos_of_init(struct platform_device *pdev)
  880. {
  881. struct device_node *node = pdev->dev.of_node;
  882. struct rtc_time time;
  883. int ret;
  884. const __be32 *val;
  885. if (!node)
  886. return;
  887. val = of_get_property(node, "ctrl-reg", NULL);
  888. if (val)
  889. CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
  890. val = of_get_property(node, "freq-reg", NULL);
  891. if (val)
  892. CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
  893. get_rtc_time(&time);
  894. ret = rtc_valid_tm(&time);
  895. if (ret) {
  896. struct rtc_time def_time = {
  897. .tm_year = 1,
  898. .tm_mday = 1,
  899. };
  900. set_rtc_time(&def_time);
  901. }
  902. }
  903. #else
  904. static inline void cmos_of_init(struct platform_device *pdev) {}
  905. #define of_cmos_match NULL
  906. #endif
  907. /*----------------------------------------------------------------*/
  908. /* Platform setup should have set up an RTC device, when PNP is
  909. * unavailable ... this could happen even on (older) PCs.
  910. */
  911. static int __init cmos_platform_probe(struct platform_device *pdev)
  912. {
  913. cmos_of_init(pdev);
  914. cmos_wake_setup(&pdev->dev);
  915. return cmos_do_probe(&pdev->dev,
  916. platform_get_resource(pdev, IORESOURCE_IO, 0),
  917. platform_get_irq(pdev, 0));
  918. }
  919. static int __exit cmos_platform_remove(struct platform_device *pdev)
  920. {
  921. cmos_do_remove(&pdev->dev);
  922. return 0;
  923. }
  924. static void cmos_platform_shutdown(struct platform_device *pdev)
  925. {
  926. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
  927. return;
  928. cmos_do_shutdown();
  929. }
  930. /* work with hotplug and coldplug */
  931. MODULE_ALIAS("platform:rtc_cmos");
  932. static struct platform_driver cmos_platform_driver = {
  933. .remove = __exit_p(cmos_platform_remove),
  934. .shutdown = cmos_platform_shutdown,
  935. .driver = {
  936. .name = (char *) driver_name,
  937. #ifdef CONFIG_PM
  938. .pm = &cmos_pm_ops,
  939. #endif
  940. .of_match_table = of_cmos_match,
  941. }
  942. };
  943. #ifdef CONFIG_PNP
  944. static bool pnp_driver_registered;
  945. #endif
  946. static bool platform_driver_registered;
  947. static int __init cmos_init(void)
  948. {
  949. int retval = 0;
  950. #ifdef CONFIG_PNP
  951. retval = pnp_register_driver(&cmos_pnp_driver);
  952. if (retval == 0)
  953. pnp_driver_registered = true;
  954. #endif
  955. if (!cmos_rtc.dev) {
  956. retval = platform_driver_probe(&cmos_platform_driver,
  957. cmos_platform_probe);
  958. if (retval == 0)
  959. platform_driver_registered = true;
  960. }
  961. if (retval == 0)
  962. return 0;
  963. #ifdef CONFIG_PNP
  964. if (pnp_driver_registered)
  965. pnp_unregister_driver(&cmos_pnp_driver);
  966. #endif
  967. return retval;
  968. }
  969. module_init(cmos_init);
  970. static void __exit cmos_exit(void)
  971. {
  972. #ifdef CONFIG_PNP
  973. if (pnp_driver_registered)
  974. pnp_unregister_driver(&cmos_pnp_driver);
  975. #endif
  976. if (platform_driver_registered)
  977. platform_driver_unregister(&cmos_platform_driver);
  978. }
  979. module_exit(cmos_exit);
  980. MODULE_AUTHOR("David Brownell");
  981. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  982. MODULE_LICENSE("GPL");