hugetlb.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <linux/mutex.h>
  17. #include <asm/page.h>
  18. #include <asm/pgtable.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  22. static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
  23. unsigned long max_huge_pages;
  24. static struct list_head hugepage_freelists[MAX_NUMNODES];
  25. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  26. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  27. /*
  28. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  29. */
  30. static DEFINE_SPINLOCK(hugetlb_lock);
  31. static void clear_huge_page(struct page *page, unsigned long addr)
  32. {
  33. int i;
  34. might_sleep();
  35. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  36. cond_resched();
  37. clear_user_highpage(page + i, addr);
  38. }
  39. }
  40. static void copy_huge_page(struct page *dst, struct page *src,
  41. unsigned long addr)
  42. {
  43. int i;
  44. might_sleep();
  45. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  46. cond_resched();
  47. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
  48. }
  49. }
  50. static void enqueue_huge_page(struct page *page)
  51. {
  52. int nid = page_to_nid(page);
  53. list_add(&page->lru, &hugepage_freelists[nid]);
  54. free_huge_pages++;
  55. free_huge_pages_node[nid]++;
  56. }
  57. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  58. unsigned long address)
  59. {
  60. int nid = numa_node_id();
  61. struct page *page = NULL;
  62. struct zonelist *zonelist = huge_zonelist(vma, address);
  63. struct zone **z;
  64. for (z = zonelist->zones; *z; z++) {
  65. nid = (*z)->zone_pgdat->node_id;
  66. if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
  67. !list_empty(&hugepage_freelists[nid]))
  68. break;
  69. }
  70. if (*z) {
  71. page = list_entry(hugepage_freelists[nid].next,
  72. struct page, lru);
  73. list_del(&page->lru);
  74. free_huge_pages--;
  75. free_huge_pages_node[nid]--;
  76. }
  77. return page;
  78. }
  79. static int alloc_fresh_huge_page(void)
  80. {
  81. static int nid = 0;
  82. struct page *page;
  83. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  84. HUGETLB_PAGE_ORDER);
  85. nid = (nid + 1) % num_online_nodes();
  86. if (page) {
  87. page[1].lru.next = (void *)free_huge_page; /* dtor */
  88. spin_lock(&hugetlb_lock);
  89. nr_huge_pages++;
  90. nr_huge_pages_node[page_to_nid(page)]++;
  91. spin_unlock(&hugetlb_lock);
  92. put_page(page); /* free it into the hugepage allocator */
  93. return 1;
  94. }
  95. return 0;
  96. }
  97. void free_huge_page(struct page *page)
  98. {
  99. BUG_ON(page_count(page));
  100. INIT_LIST_HEAD(&page->lru);
  101. spin_lock(&hugetlb_lock);
  102. enqueue_huge_page(page);
  103. spin_unlock(&hugetlb_lock);
  104. }
  105. struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
  106. {
  107. struct inode *inode = vma->vm_file->f_dentry->d_inode;
  108. struct page *page;
  109. int use_reserve = 0;
  110. unsigned long idx;
  111. spin_lock(&hugetlb_lock);
  112. if (vma->vm_flags & VM_MAYSHARE) {
  113. /* idx = radix tree index, i.e. offset into file in
  114. * HPAGE_SIZE units */
  115. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  116. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  117. /* The hugetlbfs specific inode info stores the number
  118. * of "guaranteed available" (huge) pages. That is,
  119. * the first 'prereserved_hpages' pages of the inode
  120. * are either already instantiated, or have been
  121. * pre-reserved (by hugetlb_reserve_for_inode()). Here
  122. * we're in the process of instantiating the page, so
  123. * we use this to determine whether to draw from the
  124. * pre-reserved pool or the truly free pool. */
  125. if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
  126. use_reserve = 1;
  127. }
  128. if (!use_reserve) {
  129. if (free_huge_pages <= reserved_huge_pages)
  130. goto fail;
  131. } else {
  132. BUG_ON(reserved_huge_pages == 0);
  133. reserved_huge_pages--;
  134. }
  135. page = dequeue_huge_page(vma, addr);
  136. if (!page)
  137. goto fail;
  138. spin_unlock(&hugetlb_lock);
  139. set_page_refcounted(page);
  140. return page;
  141. fail:
  142. WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
  143. spin_unlock(&hugetlb_lock);
  144. return NULL;
  145. }
  146. /* hugetlb_extend_reservation()
  147. *
  148. * Ensure that at least 'atleast' hugepages are, and will remain,
  149. * available to instantiate the first 'atleast' pages of the given
  150. * inode. If the inode doesn't already have this many pages reserved
  151. * or instantiated, set aside some hugepages in the reserved pool to
  152. * satisfy later faults (or fail now if there aren't enough, rather
  153. * than getting the SIGBUS later).
  154. */
  155. int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
  156. unsigned long atleast)
  157. {
  158. struct inode *inode = &info->vfs_inode;
  159. unsigned long change_in_reserve = 0;
  160. int ret = 0;
  161. spin_lock(&hugetlb_lock);
  162. read_lock_irq(&inode->i_mapping->tree_lock);
  163. if (info->prereserved_hpages >= atleast)
  164. goto out;
  165. /* Because we always call this on shared mappings, none of the
  166. * pages beyond info->prereserved_hpages can have been
  167. * instantiated, so we need to reserve all of them now. */
  168. change_in_reserve = atleast - info->prereserved_hpages;
  169. if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
  170. ret = -ENOMEM;
  171. goto out;
  172. }
  173. reserved_huge_pages += change_in_reserve;
  174. info->prereserved_hpages = atleast;
  175. out:
  176. read_unlock_irq(&inode->i_mapping->tree_lock);
  177. spin_unlock(&hugetlb_lock);
  178. return ret;
  179. }
  180. /* hugetlb_truncate_reservation()
  181. *
  182. * This returns pages reserved for the given inode to the general free
  183. * hugepage pool. If the inode has any pages prereserved, but not
  184. * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
  185. * them.
  186. */
  187. void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
  188. unsigned long atmost)
  189. {
  190. struct inode *inode = &info->vfs_inode;
  191. struct address_space *mapping = inode->i_mapping;
  192. unsigned long idx;
  193. unsigned long change_in_reserve = 0;
  194. struct page *page;
  195. spin_lock(&hugetlb_lock);
  196. read_lock_irq(&inode->i_mapping->tree_lock);
  197. if (info->prereserved_hpages <= atmost)
  198. goto out;
  199. /* Count pages which were reserved, but not instantiated, and
  200. * which we can now release. */
  201. for (idx = atmost; idx < info->prereserved_hpages; idx++) {
  202. page = radix_tree_lookup(&mapping->page_tree, idx);
  203. if (!page)
  204. /* Pages which are already instantiated can't
  205. * be unreserved (and in fact have already
  206. * been removed from the reserved pool) */
  207. change_in_reserve++;
  208. }
  209. BUG_ON(reserved_huge_pages < change_in_reserve);
  210. reserved_huge_pages -= change_in_reserve;
  211. info->prereserved_hpages = atmost;
  212. out:
  213. read_unlock_irq(&inode->i_mapping->tree_lock);
  214. spin_unlock(&hugetlb_lock);
  215. }
  216. static int __init hugetlb_init(void)
  217. {
  218. unsigned long i;
  219. if (HPAGE_SHIFT == 0)
  220. return 0;
  221. for (i = 0; i < MAX_NUMNODES; ++i)
  222. INIT_LIST_HEAD(&hugepage_freelists[i]);
  223. for (i = 0; i < max_huge_pages; ++i) {
  224. if (!alloc_fresh_huge_page())
  225. break;
  226. }
  227. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  228. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  229. return 0;
  230. }
  231. module_init(hugetlb_init);
  232. static int __init hugetlb_setup(char *s)
  233. {
  234. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  235. max_huge_pages = 0;
  236. return 1;
  237. }
  238. __setup("hugepages=", hugetlb_setup);
  239. #ifdef CONFIG_SYSCTL
  240. static void update_and_free_page(struct page *page)
  241. {
  242. int i;
  243. nr_huge_pages--;
  244. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  245. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  246. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  247. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  248. 1 << PG_private | 1<< PG_writeback);
  249. }
  250. page[1].lru.next = NULL;
  251. set_page_refcounted(page);
  252. __free_pages(page, HUGETLB_PAGE_ORDER);
  253. }
  254. #ifdef CONFIG_HIGHMEM
  255. static void try_to_free_low(unsigned long count)
  256. {
  257. int i, nid;
  258. for (i = 0; i < MAX_NUMNODES; ++i) {
  259. struct page *page, *next;
  260. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  261. if (PageHighMem(page))
  262. continue;
  263. list_del(&page->lru);
  264. update_and_free_page(page);
  265. nid = page_zone(page)->zone_pgdat->node_id;
  266. free_huge_pages--;
  267. free_huge_pages_node[nid]--;
  268. if (count >= nr_huge_pages)
  269. return;
  270. }
  271. }
  272. }
  273. #else
  274. static inline void try_to_free_low(unsigned long count)
  275. {
  276. }
  277. #endif
  278. static unsigned long set_max_huge_pages(unsigned long count)
  279. {
  280. while (count > nr_huge_pages) {
  281. if (!alloc_fresh_huge_page())
  282. return nr_huge_pages;
  283. }
  284. if (count >= nr_huge_pages)
  285. return nr_huge_pages;
  286. spin_lock(&hugetlb_lock);
  287. try_to_free_low(count);
  288. while (count < nr_huge_pages) {
  289. struct page *page = dequeue_huge_page(NULL, 0);
  290. if (!page)
  291. break;
  292. update_and_free_page(page);
  293. }
  294. spin_unlock(&hugetlb_lock);
  295. return nr_huge_pages;
  296. }
  297. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  298. struct file *file, void __user *buffer,
  299. size_t *length, loff_t *ppos)
  300. {
  301. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  302. max_huge_pages = set_max_huge_pages(max_huge_pages);
  303. return 0;
  304. }
  305. #endif /* CONFIG_SYSCTL */
  306. int hugetlb_report_meminfo(char *buf)
  307. {
  308. return sprintf(buf,
  309. "HugePages_Total: %5lu\n"
  310. "HugePages_Free: %5lu\n"
  311. "HugePages_Rsvd: %5lu\n"
  312. "Hugepagesize: %5lu kB\n",
  313. nr_huge_pages,
  314. free_huge_pages,
  315. reserved_huge_pages,
  316. HPAGE_SIZE/1024);
  317. }
  318. int hugetlb_report_node_meminfo(int nid, char *buf)
  319. {
  320. return sprintf(buf,
  321. "Node %d HugePages_Total: %5u\n"
  322. "Node %d HugePages_Free: %5u\n",
  323. nid, nr_huge_pages_node[nid],
  324. nid, free_huge_pages_node[nid]);
  325. }
  326. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  327. unsigned long hugetlb_total_pages(void)
  328. {
  329. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  330. }
  331. /*
  332. * We cannot handle pagefaults against hugetlb pages at all. They cause
  333. * handle_mm_fault() to try to instantiate regular-sized pages in the
  334. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  335. * this far.
  336. */
  337. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  338. unsigned long address, int *unused)
  339. {
  340. BUG();
  341. return NULL;
  342. }
  343. struct vm_operations_struct hugetlb_vm_ops = {
  344. .nopage = hugetlb_nopage,
  345. };
  346. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  347. int writable)
  348. {
  349. pte_t entry;
  350. if (writable) {
  351. entry =
  352. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  353. } else {
  354. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  355. }
  356. entry = pte_mkyoung(entry);
  357. entry = pte_mkhuge(entry);
  358. return entry;
  359. }
  360. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  361. unsigned long address, pte_t *ptep)
  362. {
  363. pte_t entry;
  364. entry = pte_mkwrite(pte_mkdirty(*ptep));
  365. ptep_set_access_flags(vma, address, ptep, entry, 1);
  366. update_mmu_cache(vma, address, entry);
  367. lazy_mmu_prot_update(entry);
  368. }
  369. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  370. struct vm_area_struct *vma)
  371. {
  372. pte_t *src_pte, *dst_pte, entry;
  373. struct page *ptepage;
  374. unsigned long addr;
  375. int cow;
  376. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  377. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  378. src_pte = huge_pte_offset(src, addr);
  379. if (!src_pte)
  380. continue;
  381. dst_pte = huge_pte_alloc(dst, addr);
  382. if (!dst_pte)
  383. goto nomem;
  384. spin_lock(&dst->page_table_lock);
  385. spin_lock(&src->page_table_lock);
  386. if (!pte_none(*src_pte)) {
  387. if (cow)
  388. ptep_set_wrprotect(src, addr, src_pte);
  389. entry = *src_pte;
  390. ptepage = pte_page(entry);
  391. get_page(ptepage);
  392. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  393. set_huge_pte_at(dst, addr, dst_pte, entry);
  394. }
  395. spin_unlock(&src->page_table_lock);
  396. spin_unlock(&dst->page_table_lock);
  397. }
  398. return 0;
  399. nomem:
  400. return -ENOMEM;
  401. }
  402. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  403. unsigned long end)
  404. {
  405. struct mm_struct *mm = vma->vm_mm;
  406. unsigned long address;
  407. pte_t *ptep;
  408. pte_t pte;
  409. struct page *page;
  410. WARN_ON(!is_vm_hugetlb_page(vma));
  411. BUG_ON(start & ~HPAGE_MASK);
  412. BUG_ON(end & ~HPAGE_MASK);
  413. spin_lock(&mm->page_table_lock);
  414. /* Update high watermark before we lower rss */
  415. update_hiwater_rss(mm);
  416. for (address = start; address < end; address += HPAGE_SIZE) {
  417. ptep = huge_pte_offset(mm, address);
  418. if (!ptep)
  419. continue;
  420. pte = huge_ptep_get_and_clear(mm, address, ptep);
  421. if (pte_none(pte))
  422. continue;
  423. page = pte_page(pte);
  424. put_page(page);
  425. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  426. }
  427. spin_unlock(&mm->page_table_lock);
  428. flush_tlb_range(vma, start, end);
  429. }
  430. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  431. unsigned long address, pte_t *ptep, pte_t pte)
  432. {
  433. struct page *old_page, *new_page;
  434. int avoidcopy;
  435. old_page = pte_page(pte);
  436. /* If no-one else is actually using this page, avoid the copy
  437. * and just make the page writable */
  438. avoidcopy = (page_count(old_page) == 1);
  439. if (avoidcopy) {
  440. set_huge_ptep_writable(vma, address, ptep);
  441. return VM_FAULT_MINOR;
  442. }
  443. page_cache_get(old_page);
  444. new_page = alloc_huge_page(vma, address);
  445. if (!new_page) {
  446. page_cache_release(old_page);
  447. return VM_FAULT_OOM;
  448. }
  449. spin_unlock(&mm->page_table_lock);
  450. copy_huge_page(new_page, old_page, address);
  451. spin_lock(&mm->page_table_lock);
  452. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  453. if (likely(pte_same(*ptep, pte))) {
  454. /* Break COW */
  455. set_huge_pte_at(mm, address, ptep,
  456. make_huge_pte(vma, new_page, 1));
  457. /* Make the old page be freed below */
  458. new_page = old_page;
  459. }
  460. page_cache_release(new_page);
  461. page_cache_release(old_page);
  462. return VM_FAULT_MINOR;
  463. }
  464. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  465. unsigned long address, pte_t *ptep, int write_access)
  466. {
  467. int ret = VM_FAULT_SIGBUS;
  468. unsigned long idx;
  469. unsigned long size;
  470. struct page *page;
  471. struct address_space *mapping;
  472. pte_t new_pte;
  473. mapping = vma->vm_file->f_mapping;
  474. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  475. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  476. /*
  477. * Use page lock to guard against racing truncation
  478. * before we get page_table_lock.
  479. */
  480. retry:
  481. page = find_lock_page(mapping, idx);
  482. if (!page) {
  483. if (hugetlb_get_quota(mapping))
  484. goto out;
  485. page = alloc_huge_page(vma, address);
  486. if (!page) {
  487. hugetlb_put_quota(mapping);
  488. ret = VM_FAULT_OOM;
  489. goto out;
  490. }
  491. clear_huge_page(page, address);
  492. if (vma->vm_flags & VM_SHARED) {
  493. int err;
  494. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  495. if (err) {
  496. put_page(page);
  497. hugetlb_put_quota(mapping);
  498. if (err == -EEXIST)
  499. goto retry;
  500. goto out;
  501. }
  502. } else
  503. lock_page(page);
  504. }
  505. spin_lock(&mm->page_table_lock);
  506. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  507. if (idx >= size)
  508. goto backout;
  509. ret = VM_FAULT_MINOR;
  510. if (!pte_none(*ptep))
  511. goto backout;
  512. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  513. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  514. && (vma->vm_flags & VM_SHARED)));
  515. set_huge_pte_at(mm, address, ptep, new_pte);
  516. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  517. /* Optimization, do the COW without a second fault */
  518. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  519. }
  520. spin_unlock(&mm->page_table_lock);
  521. unlock_page(page);
  522. out:
  523. return ret;
  524. backout:
  525. spin_unlock(&mm->page_table_lock);
  526. hugetlb_put_quota(mapping);
  527. unlock_page(page);
  528. put_page(page);
  529. goto out;
  530. }
  531. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  532. unsigned long address, int write_access)
  533. {
  534. pte_t *ptep;
  535. pte_t entry;
  536. int ret;
  537. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  538. ptep = huge_pte_alloc(mm, address);
  539. if (!ptep)
  540. return VM_FAULT_OOM;
  541. /*
  542. * Serialize hugepage allocation and instantiation, so that we don't
  543. * get spurious allocation failures if two CPUs race to instantiate
  544. * the same page in the page cache.
  545. */
  546. mutex_lock(&hugetlb_instantiation_mutex);
  547. entry = *ptep;
  548. if (pte_none(entry)) {
  549. ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
  550. mutex_unlock(&hugetlb_instantiation_mutex);
  551. return ret;
  552. }
  553. ret = VM_FAULT_MINOR;
  554. spin_lock(&mm->page_table_lock);
  555. /* Check for a racing update before calling hugetlb_cow */
  556. if (likely(pte_same(entry, *ptep)))
  557. if (write_access && !pte_write(entry))
  558. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  559. spin_unlock(&mm->page_table_lock);
  560. mutex_unlock(&hugetlb_instantiation_mutex);
  561. return ret;
  562. }
  563. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  564. struct page **pages, struct vm_area_struct **vmas,
  565. unsigned long *position, int *length, int i)
  566. {
  567. unsigned long vpfn, vaddr = *position;
  568. int remainder = *length;
  569. vpfn = vaddr/PAGE_SIZE;
  570. spin_lock(&mm->page_table_lock);
  571. while (vaddr < vma->vm_end && remainder) {
  572. pte_t *pte;
  573. struct page *page;
  574. /*
  575. * Some archs (sparc64, sh*) have multiple pte_ts to
  576. * each hugepage. We have to make * sure we get the
  577. * first, for the page indexing below to work.
  578. */
  579. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  580. if (!pte || pte_none(*pte)) {
  581. int ret;
  582. spin_unlock(&mm->page_table_lock);
  583. ret = hugetlb_fault(mm, vma, vaddr, 0);
  584. spin_lock(&mm->page_table_lock);
  585. if (ret == VM_FAULT_MINOR)
  586. continue;
  587. remainder = 0;
  588. if (!i)
  589. i = -EFAULT;
  590. break;
  591. }
  592. if (pages) {
  593. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  594. get_page(page);
  595. pages[i] = page;
  596. }
  597. if (vmas)
  598. vmas[i] = vma;
  599. vaddr += PAGE_SIZE;
  600. ++vpfn;
  601. --remainder;
  602. ++i;
  603. }
  604. spin_unlock(&mm->page_table_lock);
  605. *length = remainder;
  606. *position = vaddr;
  607. return i;
  608. }
  609. void hugetlb_change_protection(struct vm_area_struct *vma,
  610. unsigned long address, unsigned long end, pgprot_t newprot)
  611. {
  612. struct mm_struct *mm = vma->vm_mm;
  613. unsigned long start = address;
  614. pte_t *ptep;
  615. pte_t pte;
  616. BUG_ON(address >= end);
  617. flush_cache_range(vma, address, end);
  618. spin_lock(&mm->page_table_lock);
  619. for (; address < end; address += HPAGE_SIZE) {
  620. ptep = huge_pte_offset(mm, address);
  621. if (!ptep)
  622. continue;
  623. if (!pte_none(*ptep)) {
  624. pte = huge_ptep_get_and_clear(mm, address, ptep);
  625. pte = pte_mkhuge(pte_modify(pte, newprot));
  626. set_huge_pte_at(mm, address, ptep, pte);
  627. lazy_mmu_prot_update(pte);
  628. }
  629. }
  630. spin_unlock(&mm->page_table_lock);
  631. flush_tlb_range(vma, start, end);
  632. }