sched.c 258 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. int overloaded;
  416. struct plist_head pushable_tasks;
  417. #endif
  418. int rt_throttled;
  419. u64 rt_time;
  420. u64 rt_runtime;
  421. /* Nests inside the rq lock: */
  422. spinlock_t rt_runtime_lock;
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. unsigned long rt_nr_boosted;
  425. struct rq *rq;
  426. struct list_head leaf_rt_rq_list;
  427. struct task_group *tg;
  428. struct sched_rt_entity *rt_se;
  429. #endif
  430. };
  431. #ifdef CONFIG_SMP
  432. /*
  433. * We add the notion of a root-domain which will be used to define per-domain
  434. * variables. Each exclusive cpuset essentially defines an island domain by
  435. * fully partitioning the member cpus from any other cpuset. Whenever a new
  436. * exclusive cpuset is created, we also create and attach a new root-domain
  437. * object.
  438. *
  439. */
  440. struct root_domain {
  441. atomic_t refcount;
  442. cpumask_var_t span;
  443. cpumask_var_t online;
  444. /*
  445. * The "RT overload" flag: it gets set if a CPU has more than
  446. * one runnable RT task.
  447. */
  448. cpumask_var_t rto_mask;
  449. atomic_t rto_count;
  450. #ifdef CONFIG_SMP
  451. struct cpupri cpupri;
  452. #endif
  453. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  454. /*
  455. * Preferred wake up cpu nominated by sched_mc balance that will be
  456. * used when most cpus are idle in the system indicating overall very
  457. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  458. */
  459. unsigned int sched_mc_preferred_wakeup_cpu;
  460. #endif
  461. };
  462. /*
  463. * By default the system creates a single root-domain with all cpus as
  464. * members (mimicking the global state we have today).
  465. */
  466. static struct root_domain def_root_domain;
  467. #endif
  468. /*
  469. * This is the main, per-CPU runqueue data structure.
  470. *
  471. * Locking rule: those places that want to lock multiple runqueues
  472. * (such as the load balancing or the thread migration code), lock
  473. * acquire operations must be ordered by ascending &runqueue.
  474. */
  475. struct rq {
  476. /* runqueue lock: */
  477. spinlock_t lock;
  478. /*
  479. * nr_running and cpu_load should be in the same cacheline because
  480. * remote CPUs use both these fields when doing load calculation.
  481. */
  482. unsigned long nr_running;
  483. #define CPU_LOAD_IDX_MAX 5
  484. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  485. #ifdef CONFIG_NO_HZ
  486. unsigned long last_tick_seen;
  487. unsigned char in_nohz_recently;
  488. #endif
  489. /* capture load from *all* tasks on this cpu: */
  490. struct load_weight load;
  491. unsigned long nr_load_updates;
  492. u64 nr_switches;
  493. u64 nr_migrations_in;
  494. struct cfs_rq cfs;
  495. struct rt_rq rt;
  496. #ifdef CONFIG_FAIR_GROUP_SCHED
  497. /* list of leaf cfs_rq on this cpu: */
  498. struct list_head leaf_cfs_rq_list;
  499. #endif
  500. #ifdef CONFIG_RT_GROUP_SCHED
  501. struct list_head leaf_rt_rq_list;
  502. #endif
  503. /*
  504. * This is part of a global counter where only the total sum
  505. * over all CPUs matters. A task can increase this counter on
  506. * one CPU and if it got migrated afterwards it may decrease
  507. * it on another CPU. Always updated under the runqueue lock:
  508. */
  509. unsigned long nr_uninterruptible;
  510. struct task_struct *curr, *idle;
  511. unsigned long next_balance;
  512. struct mm_struct *prev_mm;
  513. u64 clock;
  514. atomic_t nr_iowait;
  515. #ifdef CONFIG_SMP
  516. struct root_domain *rd;
  517. struct sched_domain *sd;
  518. unsigned char idle_at_tick;
  519. /* For active balancing */
  520. int active_balance;
  521. int push_cpu;
  522. /* cpu of this runqueue: */
  523. int cpu;
  524. int online;
  525. unsigned long avg_load_per_task;
  526. struct task_struct *migration_thread;
  527. struct list_head migration_queue;
  528. #endif
  529. /* calc_load related fields */
  530. unsigned long calc_load_update;
  531. long calc_load_active;
  532. #ifdef CONFIG_SCHED_HRTICK
  533. #ifdef CONFIG_SMP
  534. int hrtick_csd_pending;
  535. struct call_single_data hrtick_csd;
  536. #endif
  537. struct hrtimer hrtick_timer;
  538. #endif
  539. #ifdef CONFIG_SCHEDSTATS
  540. /* latency stats */
  541. struct sched_info rq_sched_info;
  542. unsigned long long rq_cpu_time;
  543. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  544. /* sys_sched_yield() stats */
  545. unsigned int yld_count;
  546. /* schedule() stats */
  547. unsigned int sched_switch;
  548. unsigned int sched_count;
  549. unsigned int sched_goidle;
  550. /* try_to_wake_up() stats */
  551. unsigned int ttwu_count;
  552. unsigned int ttwu_local;
  553. /* BKL stats */
  554. unsigned int bkl_count;
  555. #endif
  556. };
  557. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  558. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  559. {
  560. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  561. }
  562. static inline int cpu_of(struct rq *rq)
  563. {
  564. #ifdef CONFIG_SMP
  565. return rq->cpu;
  566. #else
  567. return 0;
  568. #endif
  569. }
  570. /*
  571. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  572. * See detach_destroy_domains: synchronize_sched for details.
  573. *
  574. * The domain tree of any CPU may only be accessed from within
  575. * preempt-disabled sections.
  576. */
  577. #define for_each_domain(cpu, __sd) \
  578. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  579. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  580. #define this_rq() (&__get_cpu_var(runqueues))
  581. #define task_rq(p) cpu_rq(task_cpu(p))
  582. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  583. inline void update_rq_clock(struct rq *rq)
  584. {
  585. rq->clock = sched_clock_cpu(cpu_of(rq));
  586. }
  587. /*
  588. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  589. */
  590. #ifdef CONFIG_SCHED_DEBUG
  591. # define const_debug __read_mostly
  592. #else
  593. # define const_debug static const
  594. #endif
  595. /**
  596. * runqueue_is_locked
  597. *
  598. * Returns true if the current cpu runqueue is locked.
  599. * This interface allows printk to be called with the runqueue lock
  600. * held and know whether or not it is OK to wake up the klogd.
  601. */
  602. int runqueue_is_locked(void)
  603. {
  604. int cpu = get_cpu();
  605. struct rq *rq = cpu_rq(cpu);
  606. int ret;
  607. ret = spin_is_locked(&rq->lock);
  608. put_cpu();
  609. return ret;
  610. }
  611. /*
  612. * Debugging: various feature bits
  613. */
  614. #define SCHED_FEAT(name, enabled) \
  615. __SCHED_FEAT_##name ,
  616. enum {
  617. #include "sched_features.h"
  618. };
  619. #undef SCHED_FEAT
  620. #define SCHED_FEAT(name, enabled) \
  621. (1UL << __SCHED_FEAT_##name) * enabled |
  622. const_debug unsigned int sysctl_sched_features =
  623. #include "sched_features.h"
  624. 0;
  625. #undef SCHED_FEAT
  626. #ifdef CONFIG_SCHED_DEBUG
  627. #define SCHED_FEAT(name, enabled) \
  628. #name ,
  629. static __read_mostly char *sched_feat_names[] = {
  630. #include "sched_features.h"
  631. NULL
  632. };
  633. #undef SCHED_FEAT
  634. static int sched_feat_show(struct seq_file *m, void *v)
  635. {
  636. int i;
  637. for (i = 0; sched_feat_names[i]; i++) {
  638. if (!(sysctl_sched_features & (1UL << i)))
  639. seq_puts(m, "NO_");
  640. seq_printf(m, "%s ", sched_feat_names[i]);
  641. }
  642. seq_puts(m, "\n");
  643. return 0;
  644. }
  645. static ssize_t
  646. sched_feat_write(struct file *filp, const char __user *ubuf,
  647. size_t cnt, loff_t *ppos)
  648. {
  649. char buf[64];
  650. char *cmp = buf;
  651. int neg = 0;
  652. int i;
  653. if (cnt > 63)
  654. cnt = 63;
  655. if (copy_from_user(&buf, ubuf, cnt))
  656. return -EFAULT;
  657. buf[cnt] = 0;
  658. if (strncmp(buf, "NO_", 3) == 0) {
  659. neg = 1;
  660. cmp += 3;
  661. }
  662. for (i = 0; sched_feat_names[i]; i++) {
  663. int len = strlen(sched_feat_names[i]);
  664. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  665. if (neg)
  666. sysctl_sched_features &= ~(1UL << i);
  667. else
  668. sysctl_sched_features |= (1UL << i);
  669. break;
  670. }
  671. }
  672. if (!sched_feat_names[i])
  673. return -EINVAL;
  674. filp->f_pos += cnt;
  675. return cnt;
  676. }
  677. static int sched_feat_open(struct inode *inode, struct file *filp)
  678. {
  679. return single_open(filp, sched_feat_show, NULL);
  680. }
  681. static struct file_operations sched_feat_fops = {
  682. .open = sched_feat_open,
  683. .write = sched_feat_write,
  684. .read = seq_read,
  685. .llseek = seq_lseek,
  686. .release = single_release,
  687. };
  688. static __init int sched_init_debug(void)
  689. {
  690. debugfs_create_file("sched_features", 0644, NULL, NULL,
  691. &sched_feat_fops);
  692. return 0;
  693. }
  694. late_initcall(sched_init_debug);
  695. #endif
  696. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  697. /*
  698. * Number of tasks to iterate in a single balance run.
  699. * Limited because this is done with IRQs disabled.
  700. */
  701. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  702. /*
  703. * ratelimit for updating the group shares.
  704. * default: 0.25ms
  705. */
  706. unsigned int sysctl_sched_shares_ratelimit = 250000;
  707. /*
  708. * Inject some fuzzyness into changing the per-cpu group shares
  709. * this avoids remote rq-locks at the expense of fairness.
  710. * default: 4
  711. */
  712. unsigned int sysctl_sched_shares_thresh = 4;
  713. /*
  714. * period over which we measure -rt task cpu usage in us.
  715. * default: 1s
  716. */
  717. unsigned int sysctl_sched_rt_period = 1000000;
  718. static __read_mostly int scheduler_running;
  719. /*
  720. * part of the period that we allow rt tasks to run in us.
  721. * default: 0.95s
  722. */
  723. int sysctl_sched_rt_runtime = 950000;
  724. static inline u64 global_rt_period(void)
  725. {
  726. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  727. }
  728. static inline u64 global_rt_runtime(void)
  729. {
  730. if (sysctl_sched_rt_runtime < 0)
  731. return RUNTIME_INF;
  732. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  733. }
  734. #ifndef prepare_arch_switch
  735. # define prepare_arch_switch(next) do { } while (0)
  736. #endif
  737. #ifndef finish_arch_switch
  738. # define finish_arch_switch(prev) do { } while (0)
  739. #endif
  740. static inline int task_current(struct rq *rq, struct task_struct *p)
  741. {
  742. return rq->curr == p;
  743. }
  744. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  745. static inline int task_running(struct rq *rq, struct task_struct *p)
  746. {
  747. return task_current(rq, p);
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_DEBUG_SPINLOCK
  755. /* this is a valid case when another task releases the spinlock */
  756. rq->lock.owner = current;
  757. #endif
  758. /*
  759. * If we are tracking spinlock dependencies then we have to
  760. * fix up the runqueue lock - which gets 'carried over' from
  761. * prev into current:
  762. */
  763. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  764. spin_unlock_irq(&rq->lock);
  765. }
  766. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. static inline int task_running(struct rq *rq, struct task_struct *p)
  768. {
  769. #ifdef CONFIG_SMP
  770. return p->oncpu;
  771. #else
  772. return task_current(rq, p);
  773. #endif
  774. }
  775. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  776. {
  777. #ifdef CONFIG_SMP
  778. /*
  779. * We can optimise this out completely for !SMP, because the
  780. * SMP rebalancing from interrupt is the only thing that cares
  781. * here.
  782. */
  783. next->oncpu = 1;
  784. #endif
  785. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  786. spin_unlock_irq(&rq->lock);
  787. #else
  788. spin_unlock(&rq->lock);
  789. #endif
  790. }
  791. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  792. {
  793. #ifdef CONFIG_SMP
  794. /*
  795. * After ->oncpu is cleared, the task can be moved to a different CPU.
  796. * We must ensure this doesn't happen until the switch is completely
  797. * finished.
  798. */
  799. smp_wmb();
  800. prev->oncpu = 0;
  801. #endif
  802. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  803. local_irq_enable();
  804. #endif
  805. }
  806. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  807. /*
  808. * __task_rq_lock - lock the runqueue a given task resides on.
  809. * Must be called interrupts disabled.
  810. */
  811. static inline struct rq *__task_rq_lock(struct task_struct *p)
  812. __acquires(rq->lock)
  813. {
  814. for (;;) {
  815. struct rq *rq = task_rq(p);
  816. spin_lock(&rq->lock);
  817. if (likely(rq == task_rq(p)))
  818. return rq;
  819. spin_unlock(&rq->lock);
  820. }
  821. }
  822. /*
  823. * task_rq_lock - lock the runqueue a given task resides on and disable
  824. * interrupts. Note the ordering: we can safely lookup the task_rq without
  825. * explicitly disabling preemption.
  826. */
  827. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  828. __acquires(rq->lock)
  829. {
  830. struct rq *rq;
  831. for (;;) {
  832. local_irq_save(*flags);
  833. rq = task_rq(p);
  834. spin_lock(&rq->lock);
  835. if (likely(rq == task_rq(p)))
  836. return rq;
  837. spin_unlock_irqrestore(&rq->lock, *flags);
  838. }
  839. }
  840. void task_rq_unlock_wait(struct task_struct *p)
  841. {
  842. struct rq *rq = task_rq(p);
  843. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  844. spin_unlock_wait(&rq->lock);
  845. }
  846. static void __task_rq_unlock(struct rq *rq)
  847. __releases(rq->lock)
  848. {
  849. spin_unlock(&rq->lock);
  850. }
  851. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  852. __releases(rq->lock)
  853. {
  854. spin_unlock_irqrestore(&rq->lock, *flags);
  855. }
  856. /*
  857. * this_rq_lock - lock this runqueue and disable interrupts.
  858. */
  859. static struct rq *this_rq_lock(void)
  860. __acquires(rq->lock)
  861. {
  862. struct rq *rq;
  863. local_irq_disable();
  864. rq = this_rq();
  865. spin_lock(&rq->lock);
  866. return rq;
  867. }
  868. #ifdef CONFIG_SCHED_HRTICK
  869. /*
  870. * Use HR-timers to deliver accurate preemption points.
  871. *
  872. * Its all a bit involved since we cannot program an hrt while holding the
  873. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  874. * reschedule event.
  875. *
  876. * When we get rescheduled we reprogram the hrtick_timer outside of the
  877. * rq->lock.
  878. */
  879. /*
  880. * Use hrtick when:
  881. * - enabled by features
  882. * - hrtimer is actually high res
  883. */
  884. static inline int hrtick_enabled(struct rq *rq)
  885. {
  886. if (!sched_feat(HRTICK))
  887. return 0;
  888. if (!cpu_active(cpu_of(rq)))
  889. return 0;
  890. return hrtimer_is_hres_active(&rq->hrtick_timer);
  891. }
  892. static void hrtick_clear(struct rq *rq)
  893. {
  894. if (hrtimer_active(&rq->hrtick_timer))
  895. hrtimer_cancel(&rq->hrtick_timer);
  896. }
  897. /*
  898. * High-resolution timer tick.
  899. * Runs from hardirq context with interrupts disabled.
  900. */
  901. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  902. {
  903. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  904. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  905. spin_lock(&rq->lock);
  906. update_rq_clock(rq);
  907. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  908. spin_unlock(&rq->lock);
  909. return HRTIMER_NORESTART;
  910. }
  911. #ifdef CONFIG_SMP
  912. /*
  913. * called from hardirq (IPI) context
  914. */
  915. static void __hrtick_start(void *arg)
  916. {
  917. struct rq *rq = arg;
  918. spin_lock(&rq->lock);
  919. hrtimer_restart(&rq->hrtick_timer);
  920. rq->hrtick_csd_pending = 0;
  921. spin_unlock(&rq->lock);
  922. }
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. struct hrtimer *timer = &rq->hrtick_timer;
  931. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  932. hrtimer_set_expires(timer, time);
  933. if (rq == this_rq()) {
  934. hrtimer_restart(timer);
  935. } else if (!rq->hrtick_csd_pending) {
  936. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  937. rq->hrtick_csd_pending = 1;
  938. }
  939. }
  940. static int
  941. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  942. {
  943. int cpu = (int)(long)hcpu;
  944. switch (action) {
  945. case CPU_UP_CANCELED:
  946. case CPU_UP_CANCELED_FROZEN:
  947. case CPU_DOWN_PREPARE:
  948. case CPU_DOWN_PREPARE_FROZEN:
  949. case CPU_DEAD:
  950. case CPU_DEAD_FROZEN:
  951. hrtick_clear(cpu_rq(cpu));
  952. return NOTIFY_OK;
  953. }
  954. return NOTIFY_DONE;
  955. }
  956. static __init void init_hrtick(void)
  957. {
  958. hotcpu_notifier(hotplug_hrtick, 0);
  959. }
  960. #else
  961. /*
  962. * Called to set the hrtick timer state.
  963. *
  964. * called with rq->lock held and irqs disabled
  965. */
  966. static void hrtick_start(struct rq *rq, u64 delay)
  967. {
  968. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  969. HRTIMER_MODE_REL, 0);
  970. }
  971. static inline void init_hrtick(void)
  972. {
  973. }
  974. #endif /* CONFIG_SMP */
  975. static void init_rq_hrtick(struct rq *rq)
  976. {
  977. #ifdef CONFIG_SMP
  978. rq->hrtick_csd_pending = 0;
  979. rq->hrtick_csd.flags = 0;
  980. rq->hrtick_csd.func = __hrtick_start;
  981. rq->hrtick_csd.info = rq;
  982. #endif
  983. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  984. rq->hrtick_timer.function = hrtick;
  985. }
  986. #else /* CONFIG_SCHED_HRTICK */
  987. static inline void hrtick_clear(struct rq *rq)
  988. {
  989. }
  990. static inline void init_rq_hrtick(struct rq *rq)
  991. {
  992. }
  993. static inline void init_hrtick(void)
  994. {
  995. }
  996. #endif /* CONFIG_SCHED_HRTICK */
  997. /*
  998. * resched_task - mark a task 'to be rescheduled now'.
  999. *
  1000. * On UP this means the setting of the need_resched flag, on SMP it
  1001. * might also involve a cross-CPU call to trigger the scheduler on
  1002. * the target CPU.
  1003. */
  1004. #ifdef CONFIG_SMP
  1005. #ifndef tsk_is_polling
  1006. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1007. #endif
  1008. static void resched_task(struct task_struct *p)
  1009. {
  1010. int cpu;
  1011. assert_spin_locked(&task_rq(p)->lock);
  1012. if (test_tsk_need_resched(p))
  1013. return;
  1014. set_tsk_need_resched(p);
  1015. cpu = task_cpu(p);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /* NEED_RESCHED must be visible before we test polling */
  1019. smp_mb();
  1020. if (!tsk_is_polling(p))
  1021. smp_send_reschedule(cpu);
  1022. }
  1023. static void resched_cpu(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. unsigned long flags;
  1027. if (!spin_trylock_irqsave(&rq->lock, flags))
  1028. return;
  1029. resched_task(cpu_curr(cpu));
  1030. spin_unlock_irqrestore(&rq->lock, flags);
  1031. }
  1032. #ifdef CONFIG_NO_HZ
  1033. /*
  1034. * When add_timer_on() enqueues a timer into the timer wheel of an
  1035. * idle CPU then this timer might expire before the next timer event
  1036. * which is scheduled to wake up that CPU. In case of a completely
  1037. * idle system the next event might even be infinite time into the
  1038. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1039. * leaves the inner idle loop so the newly added timer is taken into
  1040. * account when the CPU goes back to idle and evaluates the timer
  1041. * wheel for the next timer event.
  1042. */
  1043. void wake_up_idle_cpu(int cpu)
  1044. {
  1045. struct rq *rq = cpu_rq(cpu);
  1046. if (cpu == smp_processor_id())
  1047. return;
  1048. /*
  1049. * This is safe, as this function is called with the timer
  1050. * wheel base lock of (cpu) held. When the CPU is on the way
  1051. * to idle and has not yet set rq->curr to idle then it will
  1052. * be serialized on the timer wheel base lock and take the new
  1053. * timer into account automatically.
  1054. */
  1055. if (rq->curr != rq->idle)
  1056. return;
  1057. /*
  1058. * We can set TIF_RESCHED on the idle task of the other CPU
  1059. * lockless. The worst case is that the other CPU runs the
  1060. * idle task through an additional NOOP schedule()
  1061. */
  1062. set_tsk_need_resched(rq->idle);
  1063. /* NEED_RESCHED must be visible before we test polling */
  1064. smp_mb();
  1065. if (!tsk_is_polling(rq->idle))
  1066. smp_send_reschedule(cpu);
  1067. }
  1068. #endif /* CONFIG_NO_HZ */
  1069. #else /* !CONFIG_SMP */
  1070. static void resched_task(struct task_struct *p)
  1071. {
  1072. assert_spin_locked(&task_rq(p)->lock);
  1073. set_tsk_need_resched(p);
  1074. }
  1075. #endif /* CONFIG_SMP */
  1076. #if BITS_PER_LONG == 32
  1077. # define WMULT_CONST (~0UL)
  1078. #else
  1079. # define WMULT_CONST (1UL << 32)
  1080. #endif
  1081. #define WMULT_SHIFT 32
  1082. /*
  1083. * Shift right and round:
  1084. */
  1085. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1086. /*
  1087. * delta *= weight / lw
  1088. */
  1089. static unsigned long
  1090. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1091. struct load_weight *lw)
  1092. {
  1093. u64 tmp;
  1094. if (!lw->inv_weight) {
  1095. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1096. lw->inv_weight = 1;
  1097. else
  1098. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1099. / (lw->weight+1);
  1100. }
  1101. tmp = (u64)delta_exec * weight;
  1102. /*
  1103. * Check whether we'd overflow the 64-bit multiplication:
  1104. */
  1105. if (unlikely(tmp > WMULT_CONST))
  1106. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1107. WMULT_SHIFT/2);
  1108. else
  1109. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1110. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1111. }
  1112. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1113. {
  1114. lw->weight += inc;
  1115. lw->inv_weight = 0;
  1116. }
  1117. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1118. {
  1119. lw->weight -= dec;
  1120. lw->inv_weight = 0;
  1121. }
  1122. /*
  1123. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1124. * of tasks with abnormal "nice" values across CPUs the contribution that
  1125. * each task makes to its run queue's load is weighted according to its
  1126. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1127. * scaled version of the new time slice allocation that they receive on time
  1128. * slice expiry etc.
  1129. */
  1130. #define WEIGHT_IDLEPRIO 3
  1131. #define WMULT_IDLEPRIO 1431655765
  1132. /*
  1133. * Nice levels are multiplicative, with a gentle 10% change for every
  1134. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1135. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1136. * that remained on nice 0.
  1137. *
  1138. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1139. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1140. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1141. * If a task goes up by ~10% and another task goes down by ~10% then
  1142. * the relative distance between them is ~25%.)
  1143. */
  1144. static const int prio_to_weight[40] = {
  1145. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1146. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1147. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1148. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1149. /* 0 */ 1024, 820, 655, 526, 423,
  1150. /* 5 */ 335, 272, 215, 172, 137,
  1151. /* 10 */ 110, 87, 70, 56, 45,
  1152. /* 15 */ 36, 29, 23, 18, 15,
  1153. };
  1154. /*
  1155. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1156. *
  1157. * In cases where the weight does not change often, we can use the
  1158. * precalculated inverse to speed up arithmetics by turning divisions
  1159. * into multiplications:
  1160. */
  1161. static const u32 prio_to_wmult[40] = {
  1162. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1163. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1164. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1165. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1166. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1167. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1168. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1169. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1170. };
  1171. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1172. /*
  1173. * runqueue iterator, to support SMP load-balancing between different
  1174. * scheduling classes, without having to expose their internal data
  1175. * structures to the load-balancing proper:
  1176. */
  1177. struct rq_iterator {
  1178. void *arg;
  1179. struct task_struct *(*start)(void *);
  1180. struct task_struct *(*next)(void *);
  1181. };
  1182. #ifdef CONFIG_SMP
  1183. static unsigned long
  1184. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. unsigned long max_load_move, struct sched_domain *sd,
  1186. enum cpu_idle_type idle, int *all_pinned,
  1187. int *this_best_prio, struct rq_iterator *iterator);
  1188. static int
  1189. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1190. struct sched_domain *sd, enum cpu_idle_type idle,
  1191. struct rq_iterator *iterator);
  1192. #endif
  1193. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1194. enum cpuacct_stat_index {
  1195. CPUACCT_STAT_USER, /* ... user mode */
  1196. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1197. CPUACCT_STAT_NSTATS,
  1198. };
  1199. #ifdef CONFIG_CGROUP_CPUACCT
  1200. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1201. static void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val);
  1203. #else
  1204. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1205. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1206. enum cpuacct_stat_index idx, cputime_t val) {}
  1207. #endif
  1208. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_add(&rq->load, load);
  1211. }
  1212. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1213. {
  1214. update_load_sub(&rq->load, load);
  1215. }
  1216. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1217. typedef int (*tg_visitor)(struct task_group *, void *);
  1218. /*
  1219. * Iterate the full tree, calling @down when first entering a node and @up when
  1220. * leaving it for the final time.
  1221. */
  1222. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1223. {
  1224. struct task_group *parent, *child;
  1225. int ret;
  1226. rcu_read_lock();
  1227. parent = &root_task_group;
  1228. down:
  1229. ret = (*down)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1233. parent = child;
  1234. goto down;
  1235. up:
  1236. continue;
  1237. }
  1238. ret = (*up)(parent, data);
  1239. if (ret)
  1240. goto out_unlock;
  1241. child = parent;
  1242. parent = parent->parent;
  1243. if (parent)
  1244. goto up;
  1245. out_unlock:
  1246. rcu_read_unlock();
  1247. return ret;
  1248. }
  1249. static int tg_nop(struct task_group *tg, void *data)
  1250. {
  1251. return 0;
  1252. }
  1253. #endif
  1254. #ifdef CONFIG_SMP
  1255. static unsigned long source_load(int cpu, int type);
  1256. static unsigned long target_load(int cpu, int type);
  1257. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1258. static unsigned long cpu_avg_load_per_task(int cpu)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1262. if (nr_running)
  1263. rq->avg_load_per_task = rq->load.weight / nr_running;
  1264. else
  1265. rq->avg_load_per_task = 0;
  1266. return rq->avg_load_per_task;
  1267. }
  1268. #ifdef CONFIG_FAIR_GROUP_SCHED
  1269. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1270. /*
  1271. * Calculate and set the cpu's group shares.
  1272. */
  1273. static void
  1274. update_group_shares_cpu(struct task_group *tg, int cpu,
  1275. unsigned long sd_shares, unsigned long sd_rq_weight)
  1276. {
  1277. unsigned long shares;
  1278. unsigned long rq_weight;
  1279. if (!tg->se[cpu])
  1280. return;
  1281. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1282. /*
  1283. * \Sum shares * rq_weight
  1284. * shares = -----------------------
  1285. * \Sum rq_weight
  1286. *
  1287. */
  1288. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1289. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1290. if (abs(shares - tg->se[cpu]->load.weight) >
  1291. sysctl_sched_shares_thresh) {
  1292. struct rq *rq = cpu_rq(cpu);
  1293. unsigned long flags;
  1294. spin_lock_irqsave(&rq->lock, flags);
  1295. tg->cfs_rq[cpu]->shares = shares;
  1296. __set_se_shares(tg->se[cpu], shares);
  1297. spin_unlock_irqrestore(&rq->lock, flags);
  1298. }
  1299. }
  1300. /*
  1301. * Re-compute the task group their per cpu shares over the given domain.
  1302. * This needs to be done in a bottom-up fashion because the rq weight of a
  1303. * parent group depends on the shares of its child groups.
  1304. */
  1305. static int tg_shares_up(struct task_group *tg, void *data)
  1306. {
  1307. unsigned long weight, rq_weight = 0;
  1308. unsigned long shares = 0;
  1309. struct sched_domain *sd = data;
  1310. int i;
  1311. for_each_cpu(i, sched_domain_span(sd)) {
  1312. /*
  1313. * If there are currently no tasks on the cpu pretend there
  1314. * is one of average load so that when a new task gets to
  1315. * run here it will not get delayed by group starvation.
  1316. */
  1317. weight = tg->cfs_rq[i]->load.weight;
  1318. if (!weight)
  1319. weight = NICE_0_LOAD;
  1320. tg->cfs_rq[i]->rq_weight = weight;
  1321. rq_weight += weight;
  1322. shares += tg->cfs_rq[i]->shares;
  1323. }
  1324. if ((!shares && rq_weight) || shares > tg->shares)
  1325. shares = tg->shares;
  1326. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1327. shares = tg->shares;
  1328. for_each_cpu(i, sched_domain_span(sd))
  1329. update_group_shares_cpu(tg, i, shares, rq_weight);
  1330. return 0;
  1331. }
  1332. /*
  1333. * Compute the cpu's hierarchical load factor for each task group.
  1334. * This needs to be done in a top-down fashion because the load of a child
  1335. * group is a fraction of its parents load.
  1336. */
  1337. static int tg_load_down(struct task_group *tg, void *data)
  1338. {
  1339. unsigned long load;
  1340. long cpu = (long)data;
  1341. if (!tg->parent) {
  1342. load = cpu_rq(cpu)->load.weight;
  1343. } else {
  1344. load = tg->parent->cfs_rq[cpu]->h_load;
  1345. load *= tg->cfs_rq[cpu]->shares;
  1346. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1347. }
  1348. tg->cfs_rq[cpu]->h_load = load;
  1349. return 0;
  1350. }
  1351. static void update_shares(struct sched_domain *sd)
  1352. {
  1353. u64 now = cpu_clock(raw_smp_processor_id());
  1354. s64 elapsed = now - sd->last_update;
  1355. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1356. sd->last_update = now;
  1357. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1358. }
  1359. }
  1360. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1361. {
  1362. spin_unlock(&rq->lock);
  1363. update_shares(sd);
  1364. spin_lock(&rq->lock);
  1365. }
  1366. static void update_h_load(long cpu)
  1367. {
  1368. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1369. }
  1370. #else
  1371. static inline void update_shares(struct sched_domain *sd)
  1372. {
  1373. }
  1374. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1375. {
  1376. }
  1377. #endif
  1378. #ifdef CONFIG_PREEMPT
  1379. /*
  1380. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1381. * way at the expense of forcing extra atomic operations in all
  1382. * invocations. This assures that the double_lock is acquired using the
  1383. * same underlying policy as the spinlock_t on this architecture, which
  1384. * reduces latency compared to the unfair variant below. However, it
  1385. * also adds more overhead and therefore may reduce throughput.
  1386. */
  1387. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1388. __releases(this_rq->lock)
  1389. __acquires(busiest->lock)
  1390. __acquires(this_rq->lock)
  1391. {
  1392. spin_unlock(&this_rq->lock);
  1393. double_rq_lock(this_rq, busiest);
  1394. return 1;
  1395. }
  1396. #else
  1397. /*
  1398. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1399. * latency by eliminating extra atomic operations when the locks are
  1400. * already in proper order on entry. This favors lower cpu-ids and will
  1401. * grant the double lock to lower cpus over higher ids under contention,
  1402. * regardless of entry order into the function.
  1403. */
  1404. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1405. __releases(this_rq->lock)
  1406. __acquires(busiest->lock)
  1407. __acquires(this_rq->lock)
  1408. {
  1409. int ret = 0;
  1410. if (unlikely(!spin_trylock(&busiest->lock))) {
  1411. if (busiest < this_rq) {
  1412. spin_unlock(&this_rq->lock);
  1413. spin_lock(&busiest->lock);
  1414. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1415. ret = 1;
  1416. } else
  1417. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1418. }
  1419. return ret;
  1420. }
  1421. #endif /* CONFIG_PREEMPT */
  1422. /*
  1423. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1424. */
  1425. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1426. {
  1427. if (unlikely(!irqs_disabled())) {
  1428. /* printk() doesn't work good under rq->lock */
  1429. spin_unlock(&this_rq->lock);
  1430. BUG_ON(1);
  1431. }
  1432. return _double_lock_balance(this_rq, busiest);
  1433. }
  1434. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1435. __releases(busiest->lock)
  1436. {
  1437. spin_unlock(&busiest->lock);
  1438. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1439. }
  1440. #endif
  1441. #ifdef CONFIG_FAIR_GROUP_SCHED
  1442. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1443. {
  1444. #ifdef CONFIG_SMP
  1445. cfs_rq->shares = shares;
  1446. #endif
  1447. }
  1448. #endif
  1449. static void calc_load_account_active(struct rq *this_rq);
  1450. #include "sched_stats.h"
  1451. #include "sched_idletask.c"
  1452. #include "sched_fair.c"
  1453. #include "sched_rt.c"
  1454. #ifdef CONFIG_SCHED_DEBUG
  1455. # include "sched_debug.c"
  1456. #endif
  1457. #define sched_class_highest (&rt_sched_class)
  1458. #define for_each_class(class) \
  1459. for (class = sched_class_highest; class; class = class->next)
  1460. static void inc_nr_running(struct rq *rq)
  1461. {
  1462. rq->nr_running++;
  1463. }
  1464. static void dec_nr_running(struct rq *rq)
  1465. {
  1466. rq->nr_running--;
  1467. }
  1468. static void set_load_weight(struct task_struct *p)
  1469. {
  1470. if (task_has_rt_policy(p)) {
  1471. p->se.load.weight = prio_to_weight[0] * 2;
  1472. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1473. return;
  1474. }
  1475. /*
  1476. * SCHED_IDLE tasks get minimal weight:
  1477. */
  1478. if (p->policy == SCHED_IDLE) {
  1479. p->se.load.weight = WEIGHT_IDLEPRIO;
  1480. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1481. return;
  1482. }
  1483. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1484. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1485. }
  1486. static void update_avg(u64 *avg, u64 sample)
  1487. {
  1488. s64 diff = sample - *avg;
  1489. *avg += diff >> 3;
  1490. }
  1491. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1492. {
  1493. if (wakeup)
  1494. p->se.start_runtime = p->se.sum_exec_runtime;
  1495. sched_info_queued(p);
  1496. p->sched_class->enqueue_task(rq, p, wakeup);
  1497. p->se.on_rq = 1;
  1498. }
  1499. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1500. {
  1501. if (sleep) {
  1502. if (p->se.last_wakeup) {
  1503. update_avg(&p->se.avg_overlap,
  1504. p->se.sum_exec_runtime - p->se.last_wakeup);
  1505. p->se.last_wakeup = 0;
  1506. } else {
  1507. update_avg(&p->se.avg_wakeup,
  1508. sysctl_sched_wakeup_granularity);
  1509. }
  1510. }
  1511. sched_info_dequeued(p);
  1512. p->sched_class->dequeue_task(rq, p, sleep);
  1513. p->se.on_rq = 0;
  1514. }
  1515. /*
  1516. * __normal_prio - return the priority that is based on the static prio
  1517. */
  1518. static inline int __normal_prio(struct task_struct *p)
  1519. {
  1520. return p->static_prio;
  1521. }
  1522. /*
  1523. * Calculate the expected normal priority: i.e. priority
  1524. * without taking RT-inheritance into account. Might be
  1525. * boosted by interactivity modifiers. Changes upon fork,
  1526. * setprio syscalls, and whenever the interactivity
  1527. * estimator recalculates.
  1528. */
  1529. static inline int normal_prio(struct task_struct *p)
  1530. {
  1531. int prio;
  1532. if (task_has_rt_policy(p))
  1533. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1534. else
  1535. prio = __normal_prio(p);
  1536. return prio;
  1537. }
  1538. /*
  1539. * Calculate the current priority, i.e. the priority
  1540. * taken into account by the scheduler. This value might
  1541. * be boosted by RT tasks, or might be boosted by
  1542. * interactivity modifiers. Will be RT if the task got
  1543. * RT-boosted. If not then it returns p->normal_prio.
  1544. */
  1545. static int effective_prio(struct task_struct *p)
  1546. {
  1547. p->normal_prio = normal_prio(p);
  1548. /*
  1549. * If we are RT tasks or we were boosted to RT priority,
  1550. * keep the priority unchanged. Otherwise, update priority
  1551. * to the normal priority:
  1552. */
  1553. if (!rt_prio(p->prio))
  1554. return p->normal_prio;
  1555. return p->prio;
  1556. }
  1557. /*
  1558. * activate_task - move a task to the runqueue.
  1559. */
  1560. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1561. {
  1562. if (task_contributes_to_load(p))
  1563. rq->nr_uninterruptible--;
  1564. enqueue_task(rq, p, wakeup);
  1565. inc_nr_running(rq);
  1566. }
  1567. /*
  1568. * deactivate_task - remove a task from the runqueue.
  1569. */
  1570. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1571. {
  1572. if (task_contributes_to_load(p))
  1573. rq->nr_uninterruptible++;
  1574. dequeue_task(rq, p, sleep);
  1575. dec_nr_running(rq);
  1576. }
  1577. /**
  1578. * task_curr - is this task currently executing on a CPU?
  1579. * @p: the task in question.
  1580. */
  1581. inline int task_curr(const struct task_struct *p)
  1582. {
  1583. return cpu_curr(task_cpu(p)) == p;
  1584. }
  1585. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1586. {
  1587. set_task_rq(p, cpu);
  1588. #ifdef CONFIG_SMP
  1589. /*
  1590. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1591. * successfuly executed on another CPU. We must ensure that updates of
  1592. * per-task data have been completed by this moment.
  1593. */
  1594. smp_wmb();
  1595. task_thread_info(p)->cpu = cpu;
  1596. #endif
  1597. }
  1598. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1599. const struct sched_class *prev_class,
  1600. int oldprio, int running)
  1601. {
  1602. if (prev_class != p->sched_class) {
  1603. if (prev_class->switched_from)
  1604. prev_class->switched_from(rq, p, running);
  1605. p->sched_class->switched_to(rq, p, running);
  1606. } else
  1607. p->sched_class->prio_changed(rq, p, oldprio, running);
  1608. }
  1609. #ifdef CONFIG_SMP
  1610. /* Used instead of source_load when we know the type == 0 */
  1611. static unsigned long weighted_cpuload(const int cpu)
  1612. {
  1613. return cpu_rq(cpu)->load.weight;
  1614. }
  1615. /*
  1616. * Is this task likely cache-hot:
  1617. */
  1618. static int
  1619. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1620. {
  1621. s64 delta;
  1622. /*
  1623. * Buddy candidates are cache hot:
  1624. */
  1625. if (sched_feat(CACHE_HOT_BUDDY) &&
  1626. (&p->se == cfs_rq_of(&p->se)->next ||
  1627. &p->se == cfs_rq_of(&p->se)->last))
  1628. return 1;
  1629. if (p->sched_class != &fair_sched_class)
  1630. return 0;
  1631. if (sysctl_sched_migration_cost == -1)
  1632. return 1;
  1633. if (sysctl_sched_migration_cost == 0)
  1634. return 0;
  1635. delta = now - p->se.exec_start;
  1636. return delta < (s64)sysctl_sched_migration_cost;
  1637. }
  1638. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1639. {
  1640. int old_cpu = task_cpu(p);
  1641. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1642. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1643. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1644. u64 clock_offset;
  1645. clock_offset = old_rq->clock - new_rq->clock;
  1646. trace_sched_migrate_task(p, new_cpu);
  1647. #ifdef CONFIG_SCHEDSTATS
  1648. if (p->se.wait_start)
  1649. p->se.wait_start -= clock_offset;
  1650. if (p->se.sleep_start)
  1651. p->se.sleep_start -= clock_offset;
  1652. if (p->se.block_start)
  1653. p->se.block_start -= clock_offset;
  1654. #endif
  1655. if (old_cpu != new_cpu) {
  1656. p->se.nr_migrations++;
  1657. new_rq->nr_migrations_in++;
  1658. #ifdef CONFIG_SCHEDSTATS
  1659. if (task_hot(p, old_rq->clock, NULL))
  1660. schedstat_inc(p, se.nr_forced2_migrations);
  1661. #endif
  1662. perf_counter_task_migration(p, new_cpu);
  1663. }
  1664. p->se.vruntime -= old_cfsrq->min_vruntime -
  1665. new_cfsrq->min_vruntime;
  1666. __set_task_cpu(p, new_cpu);
  1667. }
  1668. struct migration_req {
  1669. struct list_head list;
  1670. struct task_struct *task;
  1671. int dest_cpu;
  1672. struct completion done;
  1673. };
  1674. /*
  1675. * The task's runqueue lock must be held.
  1676. * Returns true if you have to wait for migration thread.
  1677. */
  1678. static int
  1679. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1680. {
  1681. struct rq *rq = task_rq(p);
  1682. /*
  1683. * If the task is not on a runqueue (and not running), then
  1684. * it is sufficient to simply update the task's cpu field.
  1685. */
  1686. if (!p->se.on_rq && !task_running(rq, p)) {
  1687. set_task_cpu(p, dest_cpu);
  1688. return 0;
  1689. }
  1690. init_completion(&req->done);
  1691. req->task = p;
  1692. req->dest_cpu = dest_cpu;
  1693. list_add(&req->list, &rq->migration_queue);
  1694. return 1;
  1695. }
  1696. /*
  1697. * wait_task_context_switch - wait for a thread to complete at least one
  1698. * context switch.
  1699. *
  1700. * @p must not be current.
  1701. */
  1702. void wait_task_context_switch(struct task_struct *p)
  1703. {
  1704. unsigned long nvcsw, nivcsw, flags;
  1705. int running;
  1706. struct rq *rq;
  1707. nvcsw = p->nvcsw;
  1708. nivcsw = p->nivcsw;
  1709. for (;;) {
  1710. /*
  1711. * The runqueue is assigned before the actual context
  1712. * switch. We need to take the runqueue lock.
  1713. *
  1714. * We could check initially without the lock but it is
  1715. * very likely that we need to take the lock in every
  1716. * iteration.
  1717. */
  1718. rq = task_rq_lock(p, &flags);
  1719. running = task_running(rq, p);
  1720. task_rq_unlock(rq, &flags);
  1721. if (likely(!running))
  1722. break;
  1723. /*
  1724. * The switch count is incremented before the actual
  1725. * context switch. We thus wait for two switches to be
  1726. * sure at least one completed.
  1727. */
  1728. if ((p->nvcsw - nvcsw) > 1)
  1729. break;
  1730. if ((p->nivcsw - nivcsw) > 1)
  1731. break;
  1732. cpu_relax();
  1733. }
  1734. }
  1735. /*
  1736. * wait_task_inactive - wait for a thread to unschedule.
  1737. *
  1738. * If @match_state is nonzero, it's the @p->state value just checked and
  1739. * not expected to change. If it changes, i.e. @p might have woken up,
  1740. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1741. * we return a positive number (its total switch count). If a second call
  1742. * a short while later returns the same number, the caller can be sure that
  1743. * @p has remained unscheduled the whole time.
  1744. *
  1745. * The caller must ensure that the task *will* unschedule sometime soon,
  1746. * else this function might spin for a *long* time. This function can't
  1747. * be called with interrupts off, or it may introduce deadlock with
  1748. * smp_call_function() if an IPI is sent by the same process we are
  1749. * waiting to become inactive.
  1750. */
  1751. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1752. {
  1753. unsigned long flags;
  1754. int running, on_rq;
  1755. unsigned long ncsw;
  1756. struct rq *rq;
  1757. for (;;) {
  1758. /*
  1759. * We do the initial early heuristics without holding
  1760. * any task-queue locks at all. We'll only try to get
  1761. * the runqueue lock when things look like they will
  1762. * work out!
  1763. */
  1764. rq = task_rq(p);
  1765. /*
  1766. * If the task is actively running on another CPU
  1767. * still, just relax and busy-wait without holding
  1768. * any locks.
  1769. *
  1770. * NOTE! Since we don't hold any locks, it's not
  1771. * even sure that "rq" stays as the right runqueue!
  1772. * But we don't care, since "task_running()" will
  1773. * return false if the runqueue has changed and p
  1774. * is actually now running somewhere else!
  1775. */
  1776. while (task_running(rq, p)) {
  1777. if (match_state && unlikely(p->state != match_state))
  1778. return 0;
  1779. cpu_relax();
  1780. }
  1781. /*
  1782. * Ok, time to look more closely! We need the rq
  1783. * lock now, to be *sure*. If we're wrong, we'll
  1784. * just go back and repeat.
  1785. */
  1786. rq = task_rq_lock(p, &flags);
  1787. trace_sched_wait_task(rq, p);
  1788. running = task_running(rq, p);
  1789. on_rq = p->se.on_rq;
  1790. ncsw = 0;
  1791. if (!match_state || p->state == match_state)
  1792. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1793. task_rq_unlock(rq, &flags);
  1794. /*
  1795. * If it changed from the expected state, bail out now.
  1796. */
  1797. if (unlikely(!ncsw))
  1798. break;
  1799. /*
  1800. * Was it really running after all now that we
  1801. * checked with the proper locks actually held?
  1802. *
  1803. * Oops. Go back and try again..
  1804. */
  1805. if (unlikely(running)) {
  1806. cpu_relax();
  1807. continue;
  1808. }
  1809. /*
  1810. * It's not enough that it's not actively running,
  1811. * it must be off the runqueue _entirely_, and not
  1812. * preempted!
  1813. *
  1814. * So if it was still runnable (but just not actively
  1815. * running right now), it's preempted, and we should
  1816. * yield - it could be a while.
  1817. */
  1818. if (unlikely(on_rq)) {
  1819. schedule_timeout_uninterruptible(1);
  1820. continue;
  1821. }
  1822. /*
  1823. * Ahh, all good. It wasn't running, and it wasn't
  1824. * runnable, which means that it will never become
  1825. * running in the future either. We're all done!
  1826. */
  1827. break;
  1828. }
  1829. return ncsw;
  1830. }
  1831. /***
  1832. * kick_process - kick a running thread to enter/exit the kernel
  1833. * @p: the to-be-kicked thread
  1834. *
  1835. * Cause a process which is running on another CPU to enter
  1836. * kernel-mode, without any delay. (to get signals handled.)
  1837. *
  1838. * NOTE: this function doesnt have to take the runqueue lock,
  1839. * because all it wants to ensure is that the remote task enters
  1840. * the kernel. If the IPI races and the task has been migrated
  1841. * to another CPU then no harm is done and the purpose has been
  1842. * achieved as well.
  1843. */
  1844. void kick_process(struct task_struct *p)
  1845. {
  1846. int cpu;
  1847. preempt_disable();
  1848. cpu = task_cpu(p);
  1849. if ((cpu != smp_processor_id()) && task_curr(p))
  1850. smp_send_reschedule(cpu);
  1851. preempt_enable();
  1852. }
  1853. EXPORT_SYMBOL_GPL(kick_process);
  1854. /*
  1855. * Return a low guess at the load of a migration-source cpu weighted
  1856. * according to the scheduling class and "nice" value.
  1857. *
  1858. * We want to under-estimate the load of migration sources, to
  1859. * balance conservatively.
  1860. */
  1861. static unsigned long source_load(int cpu, int type)
  1862. {
  1863. struct rq *rq = cpu_rq(cpu);
  1864. unsigned long total = weighted_cpuload(cpu);
  1865. if (type == 0 || !sched_feat(LB_BIAS))
  1866. return total;
  1867. return min(rq->cpu_load[type-1], total);
  1868. }
  1869. /*
  1870. * Return a high guess at the load of a migration-target cpu weighted
  1871. * according to the scheduling class and "nice" value.
  1872. */
  1873. static unsigned long target_load(int cpu, int type)
  1874. {
  1875. struct rq *rq = cpu_rq(cpu);
  1876. unsigned long total = weighted_cpuload(cpu);
  1877. if (type == 0 || !sched_feat(LB_BIAS))
  1878. return total;
  1879. return max(rq->cpu_load[type-1], total);
  1880. }
  1881. /*
  1882. * find_idlest_group finds and returns the least busy CPU group within the
  1883. * domain.
  1884. */
  1885. static struct sched_group *
  1886. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1887. {
  1888. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1889. unsigned long min_load = ULONG_MAX, this_load = 0;
  1890. int load_idx = sd->forkexec_idx;
  1891. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1892. do {
  1893. unsigned long load, avg_load;
  1894. int local_group;
  1895. int i;
  1896. /* Skip over this group if it has no CPUs allowed */
  1897. if (!cpumask_intersects(sched_group_cpus(group),
  1898. &p->cpus_allowed))
  1899. continue;
  1900. local_group = cpumask_test_cpu(this_cpu,
  1901. sched_group_cpus(group));
  1902. /* Tally up the load of all CPUs in the group */
  1903. avg_load = 0;
  1904. for_each_cpu(i, sched_group_cpus(group)) {
  1905. /* Bias balancing toward cpus of our domain */
  1906. if (local_group)
  1907. load = source_load(i, load_idx);
  1908. else
  1909. load = target_load(i, load_idx);
  1910. avg_load += load;
  1911. }
  1912. /* Adjust by relative CPU power of the group */
  1913. avg_load = sg_div_cpu_power(group,
  1914. avg_load * SCHED_LOAD_SCALE);
  1915. if (local_group) {
  1916. this_load = avg_load;
  1917. this = group;
  1918. } else if (avg_load < min_load) {
  1919. min_load = avg_load;
  1920. idlest = group;
  1921. }
  1922. } while (group = group->next, group != sd->groups);
  1923. if (!idlest || 100*this_load < imbalance*min_load)
  1924. return NULL;
  1925. return idlest;
  1926. }
  1927. /*
  1928. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1929. */
  1930. static int
  1931. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1932. {
  1933. unsigned long load, min_load = ULONG_MAX;
  1934. int idlest = -1;
  1935. int i;
  1936. /* Traverse only the allowed CPUs */
  1937. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1938. load = weighted_cpuload(i);
  1939. if (load < min_load || (load == min_load && i == this_cpu)) {
  1940. min_load = load;
  1941. idlest = i;
  1942. }
  1943. }
  1944. return idlest;
  1945. }
  1946. /*
  1947. * sched_balance_self: balance the current task (running on cpu) in domains
  1948. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1949. * SD_BALANCE_EXEC.
  1950. *
  1951. * Balance, ie. select the least loaded group.
  1952. *
  1953. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1954. *
  1955. * preempt must be disabled.
  1956. */
  1957. static int sched_balance_self(int cpu, int flag)
  1958. {
  1959. struct task_struct *t = current;
  1960. struct sched_domain *tmp, *sd = NULL;
  1961. for_each_domain(cpu, tmp) {
  1962. /*
  1963. * If power savings logic is enabled for a domain, stop there.
  1964. */
  1965. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1966. break;
  1967. if (tmp->flags & flag)
  1968. sd = tmp;
  1969. }
  1970. if (sd)
  1971. update_shares(sd);
  1972. while (sd) {
  1973. struct sched_group *group;
  1974. int new_cpu, weight;
  1975. if (!(sd->flags & flag)) {
  1976. sd = sd->child;
  1977. continue;
  1978. }
  1979. group = find_idlest_group(sd, t, cpu);
  1980. if (!group) {
  1981. sd = sd->child;
  1982. continue;
  1983. }
  1984. new_cpu = find_idlest_cpu(group, t, cpu);
  1985. if (new_cpu == -1 || new_cpu == cpu) {
  1986. /* Now try balancing at a lower domain level of cpu */
  1987. sd = sd->child;
  1988. continue;
  1989. }
  1990. /* Now try balancing at a lower domain level of new_cpu */
  1991. cpu = new_cpu;
  1992. weight = cpumask_weight(sched_domain_span(sd));
  1993. sd = NULL;
  1994. for_each_domain(cpu, tmp) {
  1995. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1996. break;
  1997. if (tmp->flags & flag)
  1998. sd = tmp;
  1999. }
  2000. /* while loop will break here if sd == NULL */
  2001. }
  2002. return cpu;
  2003. }
  2004. #endif /* CONFIG_SMP */
  2005. /**
  2006. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2007. * @p: the task to evaluate
  2008. * @func: the function to be called
  2009. * @info: the function call argument
  2010. *
  2011. * Calls the function @func when the task is currently running. This might
  2012. * be on the current CPU, which just calls the function directly
  2013. */
  2014. void task_oncpu_function_call(struct task_struct *p,
  2015. void (*func) (void *info), void *info)
  2016. {
  2017. int cpu;
  2018. preempt_disable();
  2019. cpu = task_cpu(p);
  2020. if (task_curr(p))
  2021. smp_call_function_single(cpu, func, info, 1);
  2022. preempt_enable();
  2023. }
  2024. /***
  2025. * try_to_wake_up - wake up a thread
  2026. * @p: the to-be-woken-up thread
  2027. * @state: the mask of task states that can be woken
  2028. * @sync: do a synchronous wakeup?
  2029. *
  2030. * Put it on the run-queue if it's not already there. The "current"
  2031. * thread is always on the run-queue (except when the actual
  2032. * re-schedule is in progress), and as such you're allowed to do
  2033. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2034. * runnable without the overhead of this.
  2035. *
  2036. * returns failure only if the task is already active.
  2037. */
  2038. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2039. {
  2040. int cpu, orig_cpu, this_cpu, success = 0;
  2041. unsigned long flags;
  2042. long old_state;
  2043. struct rq *rq;
  2044. if (!sched_feat(SYNC_WAKEUPS))
  2045. sync = 0;
  2046. #ifdef CONFIG_SMP
  2047. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2048. struct sched_domain *sd;
  2049. this_cpu = raw_smp_processor_id();
  2050. cpu = task_cpu(p);
  2051. for_each_domain(this_cpu, sd) {
  2052. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2053. update_shares(sd);
  2054. break;
  2055. }
  2056. }
  2057. }
  2058. #endif
  2059. smp_wmb();
  2060. rq = task_rq_lock(p, &flags);
  2061. update_rq_clock(rq);
  2062. old_state = p->state;
  2063. if (!(old_state & state))
  2064. goto out;
  2065. if (p->se.on_rq)
  2066. goto out_running;
  2067. cpu = task_cpu(p);
  2068. orig_cpu = cpu;
  2069. this_cpu = smp_processor_id();
  2070. #ifdef CONFIG_SMP
  2071. if (unlikely(task_running(rq, p)))
  2072. goto out_activate;
  2073. cpu = p->sched_class->select_task_rq(p, sync);
  2074. if (cpu != orig_cpu) {
  2075. set_task_cpu(p, cpu);
  2076. task_rq_unlock(rq, &flags);
  2077. /* might preempt at this point */
  2078. rq = task_rq_lock(p, &flags);
  2079. old_state = p->state;
  2080. if (!(old_state & state))
  2081. goto out;
  2082. if (p->se.on_rq)
  2083. goto out_running;
  2084. this_cpu = smp_processor_id();
  2085. cpu = task_cpu(p);
  2086. }
  2087. #ifdef CONFIG_SCHEDSTATS
  2088. schedstat_inc(rq, ttwu_count);
  2089. if (cpu == this_cpu)
  2090. schedstat_inc(rq, ttwu_local);
  2091. else {
  2092. struct sched_domain *sd;
  2093. for_each_domain(this_cpu, sd) {
  2094. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2095. schedstat_inc(sd, ttwu_wake_remote);
  2096. break;
  2097. }
  2098. }
  2099. }
  2100. #endif /* CONFIG_SCHEDSTATS */
  2101. out_activate:
  2102. #endif /* CONFIG_SMP */
  2103. schedstat_inc(p, se.nr_wakeups);
  2104. if (sync)
  2105. schedstat_inc(p, se.nr_wakeups_sync);
  2106. if (orig_cpu != cpu)
  2107. schedstat_inc(p, se.nr_wakeups_migrate);
  2108. if (cpu == this_cpu)
  2109. schedstat_inc(p, se.nr_wakeups_local);
  2110. else
  2111. schedstat_inc(p, se.nr_wakeups_remote);
  2112. activate_task(rq, p, 1);
  2113. success = 1;
  2114. /*
  2115. * Only attribute actual wakeups done by this task.
  2116. */
  2117. if (!in_interrupt()) {
  2118. struct sched_entity *se = &current->se;
  2119. u64 sample = se->sum_exec_runtime;
  2120. if (se->last_wakeup)
  2121. sample -= se->last_wakeup;
  2122. else
  2123. sample -= se->start_runtime;
  2124. update_avg(&se->avg_wakeup, sample);
  2125. se->last_wakeup = se->sum_exec_runtime;
  2126. }
  2127. out_running:
  2128. trace_sched_wakeup(rq, p, success);
  2129. check_preempt_curr(rq, p, sync);
  2130. p->state = TASK_RUNNING;
  2131. #ifdef CONFIG_SMP
  2132. if (p->sched_class->task_wake_up)
  2133. p->sched_class->task_wake_up(rq, p);
  2134. #endif
  2135. out:
  2136. task_rq_unlock(rq, &flags);
  2137. return success;
  2138. }
  2139. /**
  2140. * wake_up_process - Wake up a specific process
  2141. * @p: The process to be woken up.
  2142. *
  2143. * Attempt to wake up the nominated process and move it to the set of runnable
  2144. * processes. Returns 1 if the process was woken up, 0 if it was already
  2145. * running.
  2146. *
  2147. * It may be assumed that this function implies a write memory barrier before
  2148. * changing the task state if and only if any tasks are woken up.
  2149. */
  2150. int wake_up_process(struct task_struct *p)
  2151. {
  2152. return try_to_wake_up(p, TASK_ALL, 0);
  2153. }
  2154. EXPORT_SYMBOL(wake_up_process);
  2155. int wake_up_state(struct task_struct *p, unsigned int state)
  2156. {
  2157. return try_to_wake_up(p, state, 0);
  2158. }
  2159. /*
  2160. * Perform scheduler related setup for a newly forked process p.
  2161. * p is forked by current.
  2162. *
  2163. * __sched_fork() is basic setup used by init_idle() too:
  2164. */
  2165. static void __sched_fork(struct task_struct *p)
  2166. {
  2167. p->se.exec_start = 0;
  2168. p->se.sum_exec_runtime = 0;
  2169. p->se.prev_sum_exec_runtime = 0;
  2170. p->se.nr_migrations = 0;
  2171. p->se.last_wakeup = 0;
  2172. p->se.avg_overlap = 0;
  2173. p->se.start_runtime = 0;
  2174. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2175. #ifdef CONFIG_SCHEDSTATS
  2176. p->se.wait_start = 0;
  2177. p->se.sum_sleep_runtime = 0;
  2178. p->se.sleep_start = 0;
  2179. p->se.block_start = 0;
  2180. p->se.sleep_max = 0;
  2181. p->se.block_max = 0;
  2182. p->se.exec_max = 0;
  2183. p->se.slice_max = 0;
  2184. p->se.wait_max = 0;
  2185. #endif
  2186. INIT_LIST_HEAD(&p->rt.run_list);
  2187. p->se.on_rq = 0;
  2188. INIT_LIST_HEAD(&p->se.group_node);
  2189. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2190. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2191. #endif
  2192. /*
  2193. * We mark the process as running here, but have not actually
  2194. * inserted it onto the runqueue yet. This guarantees that
  2195. * nobody will actually run it, and a signal or other external
  2196. * event cannot wake it up and insert it on the runqueue either.
  2197. */
  2198. p->state = TASK_RUNNING;
  2199. }
  2200. /*
  2201. * fork()/clone()-time setup:
  2202. */
  2203. void sched_fork(struct task_struct *p, int clone_flags)
  2204. {
  2205. int cpu = get_cpu();
  2206. __sched_fork(p);
  2207. #ifdef CONFIG_SMP
  2208. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2209. #endif
  2210. set_task_cpu(p, cpu);
  2211. /*
  2212. * Make sure we do not leak PI boosting priority to the child:
  2213. */
  2214. p->prio = current->normal_prio;
  2215. if (!rt_prio(p->prio))
  2216. p->sched_class = &fair_sched_class;
  2217. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2218. if (likely(sched_info_on()))
  2219. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2220. #endif
  2221. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2222. p->oncpu = 0;
  2223. #endif
  2224. #ifdef CONFIG_PREEMPT
  2225. /* Want to start with kernel preemption disabled. */
  2226. task_thread_info(p)->preempt_count = 1;
  2227. #endif
  2228. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2229. put_cpu();
  2230. }
  2231. /*
  2232. * wake_up_new_task - wake up a newly created task for the first time.
  2233. *
  2234. * This function will do some initial scheduler statistics housekeeping
  2235. * that must be done for every newly created context, then puts the task
  2236. * on the runqueue and wakes it.
  2237. */
  2238. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2239. {
  2240. unsigned long flags;
  2241. struct rq *rq;
  2242. rq = task_rq_lock(p, &flags);
  2243. BUG_ON(p->state != TASK_RUNNING);
  2244. update_rq_clock(rq);
  2245. p->prio = effective_prio(p);
  2246. if (!p->sched_class->task_new || !current->se.on_rq) {
  2247. activate_task(rq, p, 0);
  2248. } else {
  2249. /*
  2250. * Let the scheduling class do new task startup
  2251. * management (if any):
  2252. */
  2253. p->sched_class->task_new(rq, p);
  2254. inc_nr_running(rq);
  2255. }
  2256. trace_sched_wakeup_new(rq, p, 1);
  2257. check_preempt_curr(rq, p, 0);
  2258. #ifdef CONFIG_SMP
  2259. if (p->sched_class->task_wake_up)
  2260. p->sched_class->task_wake_up(rq, p);
  2261. #endif
  2262. task_rq_unlock(rq, &flags);
  2263. }
  2264. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2265. /**
  2266. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2267. * @notifier: notifier struct to register
  2268. */
  2269. void preempt_notifier_register(struct preempt_notifier *notifier)
  2270. {
  2271. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2272. }
  2273. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2274. /**
  2275. * preempt_notifier_unregister - no longer interested in preemption notifications
  2276. * @notifier: notifier struct to unregister
  2277. *
  2278. * This is safe to call from within a preemption notifier.
  2279. */
  2280. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2281. {
  2282. hlist_del(&notifier->link);
  2283. }
  2284. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2285. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2286. {
  2287. struct preempt_notifier *notifier;
  2288. struct hlist_node *node;
  2289. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2290. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2291. }
  2292. static void
  2293. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2294. struct task_struct *next)
  2295. {
  2296. struct preempt_notifier *notifier;
  2297. struct hlist_node *node;
  2298. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2299. notifier->ops->sched_out(notifier, next);
  2300. }
  2301. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2302. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2303. {
  2304. }
  2305. static void
  2306. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2307. struct task_struct *next)
  2308. {
  2309. }
  2310. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2311. /**
  2312. * prepare_task_switch - prepare to switch tasks
  2313. * @rq: the runqueue preparing to switch
  2314. * @prev: the current task that is being switched out
  2315. * @next: the task we are going to switch to.
  2316. *
  2317. * This is called with the rq lock held and interrupts off. It must
  2318. * be paired with a subsequent finish_task_switch after the context
  2319. * switch.
  2320. *
  2321. * prepare_task_switch sets up locking and calls architecture specific
  2322. * hooks.
  2323. */
  2324. static inline void
  2325. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2326. struct task_struct *next)
  2327. {
  2328. fire_sched_out_preempt_notifiers(prev, next);
  2329. prepare_lock_switch(rq, next);
  2330. prepare_arch_switch(next);
  2331. }
  2332. /**
  2333. * finish_task_switch - clean up after a task-switch
  2334. * @rq: runqueue associated with task-switch
  2335. * @prev: the thread we just switched away from.
  2336. *
  2337. * finish_task_switch must be called after the context switch, paired
  2338. * with a prepare_task_switch call before the context switch.
  2339. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2340. * and do any other architecture-specific cleanup actions.
  2341. *
  2342. * Note that we may have delayed dropping an mm in context_switch(). If
  2343. * so, we finish that here outside of the runqueue lock. (Doing it
  2344. * with the lock held can cause deadlocks; see schedule() for
  2345. * details.)
  2346. */
  2347. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2348. __releases(rq->lock)
  2349. {
  2350. struct mm_struct *mm = rq->prev_mm;
  2351. long prev_state;
  2352. #ifdef CONFIG_SMP
  2353. int post_schedule = 0;
  2354. if (current->sched_class->needs_post_schedule)
  2355. post_schedule = current->sched_class->needs_post_schedule(rq);
  2356. #endif
  2357. rq->prev_mm = NULL;
  2358. /*
  2359. * A task struct has one reference for the use as "current".
  2360. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2361. * schedule one last time. The schedule call will never return, and
  2362. * the scheduled task must drop that reference.
  2363. * The test for TASK_DEAD must occur while the runqueue locks are
  2364. * still held, otherwise prev could be scheduled on another cpu, die
  2365. * there before we look at prev->state, and then the reference would
  2366. * be dropped twice.
  2367. * Manfred Spraul <manfred@colorfullife.com>
  2368. */
  2369. prev_state = prev->state;
  2370. finish_arch_switch(prev);
  2371. perf_counter_task_sched_in(current, cpu_of(rq));
  2372. finish_lock_switch(rq, prev);
  2373. #ifdef CONFIG_SMP
  2374. if (post_schedule)
  2375. current->sched_class->post_schedule(rq);
  2376. #endif
  2377. fire_sched_in_preempt_notifiers(current);
  2378. if (mm)
  2379. mmdrop(mm);
  2380. if (unlikely(prev_state == TASK_DEAD)) {
  2381. /*
  2382. * Remove function-return probe instances associated with this
  2383. * task and put them back on the free list.
  2384. */
  2385. kprobe_flush_task(prev);
  2386. put_task_struct(prev);
  2387. }
  2388. }
  2389. /**
  2390. * schedule_tail - first thing a freshly forked thread must call.
  2391. * @prev: the thread we just switched away from.
  2392. */
  2393. asmlinkage void schedule_tail(struct task_struct *prev)
  2394. __releases(rq->lock)
  2395. {
  2396. struct rq *rq = this_rq();
  2397. finish_task_switch(rq, prev);
  2398. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2399. /* In this case, finish_task_switch does not reenable preemption */
  2400. preempt_enable();
  2401. #endif
  2402. if (current->set_child_tid)
  2403. put_user(task_pid_vnr(current), current->set_child_tid);
  2404. }
  2405. /*
  2406. * context_switch - switch to the new MM and the new
  2407. * thread's register state.
  2408. */
  2409. static inline void
  2410. context_switch(struct rq *rq, struct task_struct *prev,
  2411. struct task_struct *next)
  2412. {
  2413. struct mm_struct *mm, *oldmm;
  2414. prepare_task_switch(rq, prev, next);
  2415. trace_sched_switch(rq, prev, next);
  2416. mm = next->mm;
  2417. oldmm = prev->active_mm;
  2418. /*
  2419. * For paravirt, this is coupled with an exit in switch_to to
  2420. * combine the page table reload and the switch backend into
  2421. * one hypercall.
  2422. */
  2423. arch_start_context_switch(prev);
  2424. if (unlikely(!mm)) {
  2425. next->active_mm = oldmm;
  2426. atomic_inc(&oldmm->mm_count);
  2427. enter_lazy_tlb(oldmm, next);
  2428. } else
  2429. switch_mm(oldmm, mm, next);
  2430. if (unlikely(!prev->mm)) {
  2431. prev->active_mm = NULL;
  2432. rq->prev_mm = oldmm;
  2433. }
  2434. /*
  2435. * Since the runqueue lock will be released by the next
  2436. * task (which is an invalid locking op but in the case
  2437. * of the scheduler it's an obvious special-case), so we
  2438. * do an early lockdep release here:
  2439. */
  2440. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2441. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2442. #endif
  2443. /* Here we just switch the register state and the stack. */
  2444. switch_to(prev, next, prev);
  2445. barrier();
  2446. /*
  2447. * this_rq must be evaluated again because prev may have moved
  2448. * CPUs since it called schedule(), thus the 'rq' on its stack
  2449. * frame will be invalid.
  2450. */
  2451. finish_task_switch(this_rq(), prev);
  2452. }
  2453. /*
  2454. * nr_running, nr_uninterruptible and nr_context_switches:
  2455. *
  2456. * externally visible scheduler statistics: current number of runnable
  2457. * threads, current number of uninterruptible-sleeping threads, total
  2458. * number of context switches performed since bootup.
  2459. */
  2460. unsigned long nr_running(void)
  2461. {
  2462. unsigned long i, sum = 0;
  2463. for_each_online_cpu(i)
  2464. sum += cpu_rq(i)->nr_running;
  2465. return sum;
  2466. }
  2467. unsigned long nr_uninterruptible(void)
  2468. {
  2469. unsigned long i, sum = 0;
  2470. for_each_possible_cpu(i)
  2471. sum += cpu_rq(i)->nr_uninterruptible;
  2472. /*
  2473. * Since we read the counters lockless, it might be slightly
  2474. * inaccurate. Do not allow it to go below zero though:
  2475. */
  2476. if (unlikely((long)sum < 0))
  2477. sum = 0;
  2478. return sum;
  2479. }
  2480. unsigned long long nr_context_switches(void)
  2481. {
  2482. int i;
  2483. unsigned long long sum = 0;
  2484. for_each_possible_cpu(i)
  2485. sum += cpu_rq(i)->nr_switches;
  2486. return sum;
  2487. }
  2488. unsigned long nr_iowait(void)
  2489. {
  2490. unsigned long i, sum = 0;
  2491. for_each_possible_cpu(i)
  2492. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2493. return sum;
  2494. }
  2495. /* Variables and functions for calc_load */
  2496. static atomic_long_t calc_load_tasks;
  2497. static unsigned long calc_load_update;
  2498. unsigned long avenrun[3];
  2499. EXPORT_SYMBOL(avenrun);
  2500. /**
  2501. * get_avenrun - get the load average array
  2502. * @loads: pointer to dest load array
  2503. * @offset: offset to add
  2504. * @shift: shift count to shift the result left
  2505. *
  2506. * These values are estimates at best, so no need for locking.
  2507. */
  2508. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2509. {
  2510. loads[0] = (avenrun[0] + offset) << shift;
  2511. loads[1] = (avenrun[1] + offset) << shift;
  2512. loads[2] = (avenrun[2] + offset) << shift;
  2513. }
  2514. static unsigned long
  2515. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2516. {
  2517. load *= exp;
  2518. load += active * (FIXED_1 - exp);
  2519. return load >> FSHIFT;
  2520. }
  2521. /*
  2522. * calc_load - update the avenrun load estimates 10 ticks after the
  2523. * CPUs have updated calc_load_tasks.
  2524. */
  2525. void calc_global_load(void)
  2526. {
  2527. unsigned long upd = calc_load_update + 10;
  2528. long active;
  2529. if (time_before(jiffies, upd))
  2530. return;
  2531. active = atomic_long_read(&calc_load_tasks);
  2532. active = active > 0 ? active * FIXED_1 : 0;
  2533. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2534. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2535. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2536. calc_load_update += LOAD_FREQ;
  2537. }
  2538. /*
  2539. * Either called from update_cpu_load() or from a cpu going idle
  2540. */
  2541. static void calc_load_account_active(struct rq *this_rq)
  2542. {
  2543. long nr_active, delta;
  2544. nr_active = this_rq->nr_running;
  2545. nr_active += (long) this_rq->nr_uninterruptible;
  2546. if (nr_active != this_rq->calc_load_active) {
  2547. delta = nr_active - this_rq->calc_load_active;
  2548. this_rq->calc_load_active = nr_active;
  2549. atomic_long_add(delta, &calc_load_tasks);
  2550. }
  2551. }
  2552. /*
  2553. * Externally visible per-cpu scheduler statistics:
  2554. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2555. */
  2556. u64 cpu_nr_migrations(int cpu)
  2557. {
  2558. return cpu_rq(cpu)->nr_migrations_in;
  2559. }
  2560. /*
  2561. * Update rq->cpu_load[] statistics. This function is usually called every
  2562. * scheduler tick (TICK_NSEC).
  2563. */
  2564. static void update_cpu_load(struct rq *this_rq)
  2565. {
  2566. unsigned long this_load = this_rq->load.weight;
  2567. int i, scale;
  2568. this_rq->nr_load_updates++;
  2569. /* Update our load: */
  2570. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2571. unsigned long old_load, new_load;
  2572. /* scale is effectively 1 << i now, and >> i divides by scale */
  2573. old_load = this_rq->cpu_load[i];
  2574. new_load = this_load;
  2575. /*
  2576. * Round up the averaging division if load is increasing. This
  2577. * prevents us from getting stuck on 9 if the load is 10, for
  2578. * example.
  2579. */
  2580. if (new_load > old_load)
  2581. new_load += scale-1;
  2582. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2583. }
  2584. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2585. this_rq->calc_load_update += LOAD_FREQ;
  2586. calc_load_account_active(this_rq);
  2587. }
  2588. }
  2589. #ifdef CONFIG_SMP
  2590. /*
  2591. * double_rq_lock - safely lock two runqueues
  2592. *
  2593. * Note this does not disable interrupts like task_rq_lock,
  2594. * you need to do so manually before calling.
  2595. */
  2596. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2597. __acquires(rq1->lock)
  2598. __acquires(rq2->lock)
  2599. {
  2600. BUG_ON(!irqs_disabled());
  2601. if (rq1 == rq2) {
  2602. spin_lock(&rq1->lock);
  2603. __acquire(rq2->lock); /* Fake it out ;) */
  2604. } else {
  2605. if (rq1 < rq2) {
  2606. spin_lock(&rq1->lock);
  2607. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2608. } else {
  2609. spin_lock(&rq2->lock);
  2610. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2611. }
  2612. }
  2613. update_rq_clock(rq1);
  2614. update_rq_clock(rq2);
  2615. }
  2616. /*
  2617. * double_rq_unlock - safely unlock two runqueues
  2618. *
  2619. * Note this does not restore interrupts like task_rq_unlock,
  2620. * you need to do so manually after calling.
  2621. */
  2622. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2623. __releases(rq1->lock)
  2624. __releases(rq2->lock)
  2625. {
  2626. spin_unlock(&rq1->lock);
  2627. if (rq1 != rq2)
  2628. spin_unlock(&rq2->lock);
  2629. else
  2630. __release(rq2->lock);
  2631. }
  2632. /*
  2633. * If dest_cpu is allowed for this process, migrate the task to it.
  2634. * This is accomplished by forcing the cpu_allowed mask to only
  2635. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2636. * the cpu_allowed mask is restored.
  2637. */
  2638. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2639. {
  2640. struct migration_req req;
  2641. unsigned long flags;
  2642. struct rq *rq;
  2643. rq = task_rq_lock(p, &flags);
  2644. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2645. || unlikely(!cpu_active(dest_cpu)))
  2646. goto out;
  2647. /* force the process onto the specified CPU */
  2648. if (migrate_task(p, dest_cpu, &req)) {
  2649. /* Need to wait for migration thread (might exit: take ref). */
  2650. struct task_struct *mt = rq->migration_thread;
  2651. get_task_struct(mt);
  2652. task_rq_unlock(rq, &flags);
  2653. wake_up_process(mt);
  2654. put_task_struct(mt);
  2655. wait_for_completion(&req.done);
  2656. return;
  2657. }
  2658. out:
  2659. task_rq_unlock(rq, &flags);
  2660. }
  2661. /*
  2662. * sched_exec - execve() is a valuable balancing opportunity, because at
  2663. * this point the task has the smallest effective memory and cache footprint.
  2664. */
  2665. void sched_exec(void)
  2666. {
  2667. int new_cpu, this_cpu = get_cpu();
  2668. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2669. put_cpu();
  2670. if (new_cpu != this_cpu)
  2671. sched_migrate_task(current, new_cpu);
  2672. }
  2673. /*
  2674. * pull_task - move a task from a remote runqueue to the local runqueue.
  2675. * Both runqueues must be locked.
  2676. */
  2677. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2678. struct rq *this_rq, int this_cpu)
  2679. {
  2680. deactivate_task(src_rq, p, 0);
  2681. set_task_cpu(p, this_cpu);
  2682. activate_task(this_rq, p, 0);
  2683. /*
  2684. * Note that idle threads have a prio of MAX_PRIO, for this test
  2685. * to be always true for them.
  2686. */
  2687. check_preempt_curr(this_rq, p, 0);
  2688. }
  2689. /*
  2690. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2691. */
  2692. static
  2693. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2694. struct sched_domain *sd, enum cpu_idle_type idle,
  2695. int *all_pinned)
  2696. {
  2697. int tsk_cache_hot = 0;
  2698. /*
  2699. * We do not migrate tasks that are:
  2700. * 1) running (obviously), or
  2701. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2702. * 3) are cache-hot on their current CPU.
  2703. */
  2704. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2705. schedstat_inc(p, se.nr_failed_migrations_affine);
  2706. return 0;
  2707. }
  2708. *all_pinned = 0;
  2709. if (task_running(rq, p)) {
  2710. schedstat_inc(p, se.nr_failed_migrations_running);
  2711. return 0;
  2712. }
  2713. /*
  2714. * Aggressive migration if:
  2715. * 1) task is cache cold, or
  2716. * 2) too many balance attempts have failed.
  2717. */
  2718. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2719. if (!tsk_cache_hot ||
  2720. sd->nr_balance_failed > sd->cache_nice_tries) {
  2721. #ifdef CONFIG_SCHEDSTATS
  2722. if (tsk_cache_hot) {
  2723. schedstat_inc(sd, lb_hot_gained[idle]);
  2724. schedstat_inc(p, se.nr_forced_migrations);
  2725. }
  2726. #endif
  2727. return 1;
  2728. }
  2729. if (tsk_cache_hot) {
  2730. schedstat_inc(p, se.nr_failed_migrations_hot);
  2731. return 0;
  2732. }
  2733. return 1;
  2734. }
  2735. static unsigned long
  2736. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2737. unsigned long max_load_move, struct sched_domain *sd,
  2738. enum cpu_idle_type idle, int *all_pinned,
  2739. int *this_best_prio, struct rq_iterator *iterator)
  2740. {
  2741. int loops = 0, pulled = 0, pinned = 0;
  2742. struct task_struct *p;
  2743. long rem_load_move = max_load_move;
  2744. if (max_load_move == 0)
  2745. goto out;
  2746. pinned = 1;
  2747. /*
  2748. * Start the load-balancing iterator:
  2749. */
  2750. p = iterator->start(iterator->arg);
  2751. next:
  2752. if (!p || loops++ > sysctl_sched_nr_migrate)
  2753. goto out;
  2754. if ((p->se.load.weight >> 1) > rem_load_move ||
  2755. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2756. p = iterator->next(iterator->arg);
  2757. goto next;
  2758. }
  2759. pull_task(busiest, p, this_rq, this_cpu);
  2760. pulled++;
  2761. rem_load_move -= p->se.load.weight;
  2762. #ifdef CONFIG_PREEMPT
  2763. /*
  2764. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2765. * will stop after the first task is pulled to minimize the critical
  2766. * section.
  2767. */
  2768. if (idle == CPU_NEWLY_IDLE)
  2769. goto out;
  2770. #endif
  2771. /*
  2772. * We only want to steal up to the prescribed amount of weighted load.
  2773. */
  2774. if (rem_load_move > 0) {
  2775. if (p->prio < *this_best_prio)
  2776. *this_best_prio = p->prio;
  2777. p = iterator->next(iterator->arg);
  2778. goto next;
  2779. }
  2780. out:
  2781. /*
  2782. * Right now, this is one of only two places pull_task() is called,
  2783. * so we can safely collect pull_task() stats here rather than
  2784. * inside pull_task().
  2785. */
  2786. schedstat_add(sd, lb_gained[idle], pulled);
  2787. if (all_pinned)
  2788. *all_pinned = pinned;
  2789. return max_load_move - rem_load_move;
  2790. }
  2791. /*
  2792. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2793. * this_rq, as part of a balancing operation within domain "sd".
  2794. * Returns 1 if successful and 0 otherwise.
  2795. *
  2796. * Called with both runqueues locked.
  2797. */
  2798. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2799. unsigned long max_load_move,
  2800. struct sched_domain *sd, enum cpu_idle_type idle,
  2801. int *all_pinned)
  2802. {
  2803. const struct sched_class *class = sched_class_highest;
  2804. unsigned long total_load_moved = 0;
  2805. int this_best_prio = this_rq->curr->prio;
  2806. do {
  2807. total_load_moved +=
  2808. class->load_balance(this_rq, this_cpu, busiest,
  2809. max_load_move - total_load_moved,
  2810. sd, idle, all_pinned, &this_best_prio);
  2811. class = class->next;
  2812. #ifdef CONFIG_PREEMPT
  2813. /*
  2814. * NEWIDLE balancing is a source of latency, so preemptible
  2815. * kernels will stop after the first task is pulled to minimize
  2816. * the critical section.
  2817. */
  2818. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2819. break;
  2820. #endif
  2821. } while (class && max_load_move > total_load_moved);
  2822. return total_load_moved > 0;
  2823. }
  2824. static int
  2825. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2826. struct sched_domain *sd, enum cpu_idle_type idle,
  2827. struct rq_iterator *iterator)
  2828. {
  2829. struct task_struct *p = iterator->start(iterator->arg);
  2830. int pinned = 0;
  2831. while (p) {
  2832. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2833. pull_task(busiest, p, this_rq, this_cpu);
  2834. /*
  2835. * Right now, this is only the second place pull_task()
  2836. * is called, so we can safely collect pull_task()
  2837. * stats here rather than inside pull_task().
  2838. */
  2839. schedstat_inc(sd, lb_gained[idle]);
  2840. return 1;
  2841. }
  2842. p = iterator->next(iterator->arg);
  2843. }
  2844. return 0;
  2845. }
  2846. /*
  2847. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2848. * part of active balancing operations within "domain".
  2849. * Returns 1 if successful and 0 otherwise.
  2850. *
  2851. * Called with both runqueues locked.
  2852. */
  2853. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2854. struct sched_domain *sd, enum cpu_idle_type idle)
  2855. {
  2856. const struct sched_class *class;
  2857. for (class = sched_class_highest; class; class = class->next)
  2858. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2859. return 1;
  2860. return 0;
  2861. }
  2862. /********** Helpers for find_busiest_group ************************/
  2863. /*
  2864. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2865. * during load balancing.
  2866. */
  2867. struct sd_lb_stats {
  2868. struct sched_group *busiest; /* Busiest group in this sd */
  2869. struct sched_group *this; /* Local group in this sd */
  2870. unsigned long total_load; /* Total load of all groups in sd */
  2871. unsigned long total_pwr; /* Total power of all groups in sd */
  2872. unsigned long avg_load; /* Average load across all groups in sd */
  2873. /** Statistics of this group */
  2874. unsigned long this_load;
  2875. unsigned long this_load_per_task;
  2876. unsigned long this_nr_running;
  2877. /* Statistics of the busiest group */
  2878. unsigned long max_load;
  2879. unsigned long busiest_load_per_task;
  2880. unsigned long busiest_nr_running;
  2881. int group_imb; /* Is there imbalance in this sd */
  2882. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2883. int power_savings_balance; /* Is powersave balance needed for this sd */
  2884. struct sched_group *group_min; /* Least loaded group in sd */
  2885. struct sched_group *group_leader; /* Group which relieves group_min */
  2886. unsigned long min_load_per_task; /* load_per_task in group_min */
  2887. unsigned long leader_nr_running; /* Nr running of group_leader */
  2888. unsigned long min_nr_running; /* Nr running of group_min */
  2889. #endif
  2890. };
  2891. /*
  2892. * sg_lb_stats - stats of a sched_group required for load_balancing
  2893. */
  2894. struct sg_lb_stats {
  2895. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2896. unsigned long group_load; /* Total load over the CPUs of the group */
  2897. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2898. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2899. unsigned long group_capacity;
  2900. int group_imb; /* Is there an imbalance in the group ? */
  2901. };
  2902. /**
  2903. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2904. * @group: The group whose first cpu is to be returned.
  2905. */
  2906. static inline unsigned int group_first_cpu(struct sched_group *group)
  2907. {
  2908. return cpumask_first(sched_group_cpus(group));
  2909. }
  2910. /**
  2911. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2912. * @sd: The sched_domain whose load_idx is to be obtained.
  2913. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2914. */
  2915. static inline int get_sd_load_idx(struct sched_domain *sd,
  2916. enum cpu_idle_type idle)
  2917. {
  2918. int load_idx;
  2919. switch (idle) {
  2920. case CPU_NOT_IDLE:
  2921. load_idx = sd->busy_idx;
  2922. break;
  2923. case CPU_NEWLY_IDLE:
  2924. load_idx = sd->newidle_idx;
  2925. break;
  2926. default:
  2927. load_idx = sd->idle_idx;
  2928. break;
  2929. }
  2930. return load_idx;
  2931. }
  2932. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2933. /**
  2934. * init_sd_power_savings_stats - Initialize power savings statistics for
  2935. * the given sched_domain, during load balancing.
  2936. *
  2937. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2938. * @sds: Variable containing the statistics for sd.
  2939. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2940. */
  2941. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2942. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2943. {
  2944. /*
  2945. * Busy processors will not participate in power savings
  2946. * balance.
  2947. */
  2948. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2949. sds->power_savings_balance = 0;
  2950. else {
  2951. sds->power_savings_balance = 1;
  2952. sds->min_nr_running = ULONG_MAX;
  2953. sds->leader_nr_running = 0;
  2954. }
  2955. }
  2956. /**
  2957. * update_sd_power_savings_stats - Update the power saving stats for a
  2958. * sched_domain while performing load balancing.
  2959. *
  2960. * @group: sched_group belonging to the sched_domain under consideration.
  2961. * @sds: Variable containing the statistics of the sched_domain
  2962. * @local_group: Does group contain the CPU for which we're performing
  2963. * load balancing ?
  2964. * @sgs: Variable containing the statistics of the group.
  2965. */
  2966. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2967. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2968. {
  2969. if (!sds->power_savings_balance)
  2970. return;
  2971. /*
  2972. * If the local group is idle or completely loaded
  2973. * no need to do power savings balance at this domain
  2974. */
  2975. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2976. !sds->this_nr_running))
  2977. sds->power_savings_balance = 0;
  2978. /*
  2979. * If a group is already running at full capacity or idle,
  2980. * don't include that group in power savings calculations
  2981. */
  2982. if (!sds->power_savings_balance ||
  2983. sgs->sum_nr_running >= sgs->group_capacity ||
  2984. !sgs->sum_nr_running)
  2985. return;
  2986. /*
  2987. * Calculate the group which has the least non-idle load.
  2988. * This is the group from where we need to pick up the load
  2989. * for saving power
  2990. */
  2991. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2992. (sgs->sum_nr_running == sds->min_nr_running &&
  2993. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2994. sds->group_min = group;
  2995. sds->min_nr_running = sgs->sum_nr_running;
  2996. sds->min_load_per_task = sgs->sum_weighted_load /
  2997. sgs->sum_nr_running;
  2998. }
  2999. /*
  3000. * Calculate the group which is almost near its
  3001. * capacity but still has some space to pick up some load
  3002. * from other group and save more power
  3003. */
  3004. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  3005. return;
  3006. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3007. (sgs->sum_nr_running == sds->leader_nr_running &&
  3008. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3009. sds->group_leader = group;
  3010. sds->leader_nr_running = sgs->sum_nr_running;
  3011. }
  3012. }
  3013. /**
  3014. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3015. * @sds: Variable containing the statistics of the sched_domain
  3016. * under consideration.
  3017. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3018. * @imbalance: Variable to store the imbalance.
  3019. *
  3020. * Description:
  3021. * Check if we have potential to perform some power-savings balance.
  3022. * If yes, set the busiest group to be the least loaded group in the
  3023. * sched_domain, so that it's CPUs can be put to idle.
  3024. *
  3025. * Returns 1 if there is potential to perform power-savings balance.
  3026. * Else returns 0.
  3027. */
  3028. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3029. int this_cpu, unsigned long *imbalance)
  3030. {
  3031. if (!sds->power_savings_balance)
  3032. return 0;
  3033. if (sds->this != sds->group_leader ||
  3034. sds->group_leader == sds->group_min)
  3035. return 0;
  3036. *imbalance = sds->min_load_per_task;
  3037. sds->busiest = sds->group_min;
  3038. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3039. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3040. group_first_cpu(sds->group_leader);
  3041. }
  3042. return 1;
  3043. }
  3044. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3045. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3046. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3047. {
  3048. return;
  3049. }
  3050. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3051. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3052. {
  3053. return;
  3054. }
  3055. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3056. int this_cpu, unsigned long *imbalance)
  3057. {
  3058. return 0;
  3059. }
  3060. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3061. /**
  3062. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3063. * @group: sched_group whose statistics are to be updated.
  3064. * @this_cpu: Cpu for which load balance is currently performed.
  3065. * @idle: Idle status of this_cpu
  3066. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3067. * @sd_idle: Idle status of the sched_domain containing group.
  3068. * @local_group: Does group contain this_cpu.
  3069. * @cpus: Set of cpus considered for load balancing.
  3070. * @balance: Should we balance.
  3071. * @sgs: variable to hold the statistics for this group.
  3072. */
  3073. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3074. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3075. int local_group, const struct cpumask *cpus,
  3076. int *balance, struct sg_lb_stats *sgs)
  3077. {
  3078. unsigned long load, max_cpu_load, min_cpu_load;
  3079. int i;
  3080. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3081. unsigned long sum_avg_load_per_task;
  3082. unsigned long avg_load_per_task;
  3083. if (local_group)
  3084. balance_cpu = group_first_cpu(group);
  3085. /* Tally up the load of all CPUs in the group */
  3086. sum_avg_load_per_task = avg_load_per_task = 0;
  3087. max_cpu_load = 0;
  3088. min_cpu_load = ~0UL;
  3089. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3090. struct rq *rq = cpu_rq(i);
  3091. if (*sd_idle && rq->nr_running)
  3092. *sd_idle = 0;
  3093. /* Bias balancing toward cpus of our domain */
  3094. if (local_group) {
  3095. if (idle_cpu(i) && !first_idle_cpu) {
  3096. first_idle_cpu = 1;
  3097. balance_cpu = i;
  3098. }
  3099. load = target_load(i, load_idx);
  3100. } else {
  3101. load = source_load(i, load_idx);
  3102. if (load > max_cpu_load)
  3103. max_cpu_load = load;
  3104. if (min_cpu_load > load)
  3105. min_cpu_load = load;
  3106. }
  3107. sgs->group_load += load;
  3108. sgs->sum_nr_running += rq->nr_running;
  3109. sgs->sum_weighted_load += weighted_cpuload(i);
  3110. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3111. }
  3112. /*
  3113. * First idle cpu or the first cpu(busiest) in this sched group
  3114. * is eligible for doing load balancing at this and above
  3115. * domains. In the newly idle case, we will allow all the cpu's
  3116. * to do the newly idle load balance.
  3117. */
  3118. if (idle != CPU_NEWLY_IDLE && local_group &&
  3119. balance_cpu != this_cpu && balance) {
  3120. *balance = 0;
  3121. return;
  3122. }
  3123. /* Adjust by relative CPU power of the group */
  3124. sgs->avg_load = sg_div_cpu_power(group,
  3125. sgs->group_load * SCHED_LOAD_SCALE);
  3126. /*
  3127. * Consider the group unbalanced when the imbalance is larger
  3128. * than the average weight of two tasks.
  3129. *
  3130. * APZ: with cgroup the avg task weight can vary wildly and
  3131. * might not be a suitable number - should we keep a
  3132. * normalized nr_running number somewhere that negates
  3133. * the hierarchy?
  3134. */
  3135. avg_load_per_task = sg_div_cpu_power(group,
  3136. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3137. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3138. sgs->group_imb = 1;
  3139. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3140. }
  3141. /**
  3142. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3143. * @sd: sched_domain whose statistics are to be updated.
  3144. * @this_cpu: Cpu for which load balance is currently performed.
  3145. * @idle: Idle status of this_cpu
  3146. * @sd_idle: Idle status of the sched_domain containing group.
  3147. * @cpus: Set of cpus considered for load balancing.
  3148. * @balance: Should we balance.
  3149. * @sds: variable to hold the statistics for this sched_domain.
  3150. */
  3151. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3152. enum cpu_idle_type idle, int *sd_idle,
  3153. const struct cpumask *cpus, int *balance,
  3154. struct sd_lb_stats *sds)
  3155. {
  3156. struct sched_group *group = sd->groups;
  3157. struct sg_lb_stats sgs;
  3158. int load_idx;
  3159. init_sd_power_savings_stats(sd, sds, idle);
  3160. load_idx = get_sd_load_idx(sd, idle);
  3161. do {
  3162. int local_group;
  3163. local_group = cpumask_test_cpu(this_cpu,
  3164. sched_group_cpus(group));
  3165. memset(&sgs, 0, sizeof(sgs));
  3166. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3167. local_group, cpus, balance, &sgs);
  3168. if (local_group && balance && !(*balance))
  3169. return;
  3170. sds->total_load += sgs.group_load;
  3171. sds->total_pwr += group->__cpu_power;
  3172. if (local_group) {
  3173. sds->this_load = sgs.avg_load;
  3174. sds->this = group;
  3175. sds->this_nr_running = sgs.sum_nr_running;
  3176. sds->this_load_per_task = sgs.sum_weighted_load;
  3177. } else if (sgs.avg_load > sds->max_load &&
  3178. (sgs.sum_nr_running > sgs.group_capacity ||
  3179. sgs.group_imb)) {
  3180. sds->max_load = sgs.avg_load;
  3181. sds->busiest = group;
  3182. sds->busiest_nr_running = sgs.sum_nr_running;
  3183. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3184. sds->group_imb = sgs.group_imb;
  3185. }
  3186. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3187. group = group->next;
  3188. } while (group != sd->groups);
  3189. }
  3190. /**
  3191. * fix_small_imbalance - Calculate the minor imbalance that exists
  3192. * amongst the groups of a sched_domain, during
  3193. * load balancing.
  3194. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3195. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3196. * @imbalance: Variable to store the imbalance.
  3197. */
  3198. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3199. int this_cpu, unsigned long *imbalance)
  3200. {
  3201. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3202. unsigned int imbn = 2;
  3203. if (sds->this_nr_running) {
  3204. sds->this_load_per_task /= sds->this_nr_running;
  3205. if (sds->busiest_load_per_task >
  3206. sds->this_load_per_task)
  3207. imbn = 1;
  3208. } else
  3209. sds->this_load_per_task =
  3210. cpu_avg_load_per_task(this_cpu);
  3211. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3212. sds->busiest_load_per_task * imbn) {
  3213. *imbalance = sds->busiest_load_per_task;
  3214. return;
  3215. }
  3216. /*
  3217. * OK, we don't have enough imbalance to justify moving tasks,
  3218. * however we may be able to increase total CPU power used by
  3219. * moving them.
  3220. */
  3221. pwr_now += sds->busiest->__cpu_power *
  3222. min(sds->busiest_load_per_task, sds->max_load);
  3223. pwr_now += sds->this->__cpu_power *
  3224. min(sds->this_load_per_task, sds->this_load);
  3225. pwr_now /= SCHED_LOAD_SCALE;
  3226. /* Amount of load we'd subtract */
  3227. tmp = sg_div_cpu_power(sds->busiest,
  3228. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3229. if (sds->max_load > tmp)
  3230. pwr_move += sds->busiest->__cpu_power *
  3231. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3232. /* Amount of load we'd add */
  3233. if (sds->max_load * sds->busiest->__cpu_power <
  3234. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3235. tmp = sg_div_cpu_power(sds->this,
  3236. sds->max_load * sds->busiest->__cpu_power);
  3237. else
  3238. tmp = sg_div_cpu_power(sds->this,
  3239. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3240. pwr_move += sds->this->__cpu_power *
  3241. min(sds->this_load_per_task, sds->this_load + tmp);
  3242. pwr_move /= SCHED_LOAD_SCALE;
  3243. /* Move if we gain throughput */
  3244. if (pwr_move > pwr_now)
  3245. *imbalance = sds->busiest_load_per_task;
  3246. }
  3247. /**
  3248. * calculate_imbalance - Calculate the amount of imbalance present within the
  3249. * groups of a given sched_domain during load balance.
  3250. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3251. * @this_cpu: Cpu for which currently load balance is being performed.
  3252. * @imbalance: The variable to store the imbalance.
  3253. */
  3254. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3255. unsigned long *imbalance)
  3256. {
  3257. unsigned long max_pull;
  3258. /*
  3259. * In the presence of smp nice balancing, certain scenarios can have
  3260. * max load less than avg load(as we skip the groups at or below
  3261. * its cpu_power, while calculating max_load..)
  3262. */
  3263. if (sds->max_load < sds->avg_load) {
  3264. *imbalance = 0;
  3265. return fix_small_imbalance(sds, this_cpu, imbalance);
  3266. }
  3267. /* Don't want to pull so many tasks that a group would go idle */
  3268. max_pull = min(sds->max_load - sds->avg_load,
  3269. sds->max_load - sds->busiest_load_per_task);
  3270. /* How much load to actually move to equalise the imbalance */
  3271. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3272. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3273. / SCHED_LOAD_SCALE;
  3274. /*
  3275. * if *imbalance is less than the average load per runnable task
  3276. * there is no gaurantee that any tasks will be moved so we'll have
  3277. * a think about bumping its value to force at least one task to be
  3278. * moved
  3279. */
  3280. if (*imbalance < sds->busiest_load_per_task)
  3281. return fix_small_imbalance(sds, this_cpu, imbalance);
  3282. }
  3283. /******* find_busiest_group() helpers end here *********************/
  3284. /**
  3285. * find_busiest_group - Returns the busiest group within the sched_domain
  3286. * if there is an imbalance. If there isn't an imbalance, and
  3287. * the user has opted for power-savings, it returns a group whose
  3288. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3289. * such a group exists.
  3290. *
  3291. * Also calculates the amount of weighted load which should be moved
  3292. * to restore balance.
  3293. *
  3294. * @sd: The sched_domain whose busiest group is to be returned.
  3295. * @this_cpu: The cpu for which load balancing is currently being performed.
  3296. * @imbalance: Variable which stores amount of weighted load which should
  3297. * be moved to restore balance/put a group to idle.
  3298. * @idle: The idle status of this_cpu.
  3299. * @sd_idle: The idleness of sd
  3300. * @cpus: The set of CPUs under consideration for load-balancing.
  3301. * @balance: Pointer to a variable indicating if this_cpu
  3302. * is the appropriate cpu to perform load balancing at this_level.
  3303. *
  3304. * Returns: - the busiest group if imbalance exists.
  3305. * - If no imbalance and user has opted for power-savings balance,
  3306. * return the least loaded group whose CPUs can be
  3307. * put to idle by rebalancing its tasks onto our group.
  3308. */
  3309. static struct sched_group *
  3310. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3311. unsigned long *imbalance, enum cpu_idle_type idle,
  3312. int *sd_idle, const struct cpumask *cpus, int *balance)
  3313. {
  3314. struct sd_lb_stats sds;
  3315. memset(&sds, 0, sizeof(sds));
  3316. /*
  3317. * Compute the various statistics relavent for load balancing at
  3318. * this level.
  3319. */
  3320. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3321. balance, &sds);
  3322. /* Cases where imbalance does not exist from POV of this_cpu */
  3323. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3324. * at this level.
  3325. * 2) There is no busy sibling group to pull from.
  3326. * 3) This group is the busiest group.
  3327. * 4) This group is more busy than the avg busieness at this
  3328. * sched_domain.
  3329. * 5) The imbalance is within the specified limit.
  3330. * 6) Any rebalance would lead to ping-pong
  3331. */
  3332. if (balance && !(*balance))
  3333. goto ret;
  3334. if (!sds.busiest || sds.busiest_nr_running == 0)
  3335. goto out_balanced;
  3336. if (sds.this_load >= sds.max_load)
  3337. goto out_balanced;
  3338. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3339. if (sds.this_load >= sds.avg_load)
  3340. goto out_balanced;
  3341. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3342. goto out_balanced;
  3343. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3344. if (sds.group_imb)
  3345. sds.busiest_load_per_task =
  3346. min(sds.busiest_load_per_task, sds.avg_load);
  3347. /*
  3348. * We're trying to get all the cpus to the average_load, so we don't
  3349. * want to push ourselves above the average load, nor do we wish to
  3350. * reduce the max loaded cpu below the average load, as either of these
  3351. * actions would just result in more rebalancing later, and ping-pong
  3352. * tasks around. Thus we look for the minimum possible imbalance.
  3353. * Negative imbalances (*we* are more loaded than anyone else) will
  3354. * be counted as no imbalance for these purposes -- we can't fix that
  3355. * by pulling tasks to us. Be careful of negative numbers as they'll
  3356. * appear as very large values with unsigned longs.
  3357. */
  3358. if (sds.max_load <= sds.busiest_load_per_task)
  3359. goto out_balanced;
  3360. /* Looks like there is an imbalance. Compute it */
  3361. calculate_imbalance(&sds, this_cpu, imbalance);
  3362. return sds.busiest;
  3363. out_balanced:
  3364. /*
  3365. * There is no obvious imbalance. But check if we can do some balancing
  3366. * to save power.
  3367. */
  3368. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3369. return sds.busiest;
  3370. ret:
  3371. *imbalance = 0;
  3372. return NULL;
  3373. }
  3374. /*
  3375. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3376. */
  3377. static struct rq *
  3378. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3379. unsigned long imbalance, const struct cpumask *cpus)
  3380. {
  3381. struct rq *busiest = NULL, *rq;
  3382. unsigned long max_load = 0;
  3383. int i;
  3384. for_each_cpu(i, sched_group_cpus(group)) {
  3385. unsigned long wl;
  3386. if (!cpumask_test_cpu(i, cpus))
  3387. continue;
  3388. rq = cpu_rq(i);
  3389. wl = weighted_cpuload(i);
  3390. if (rq->nr_running == 1 && wl > imbalance)
  3391. continue;
  3392. if (wl > max_load) {
  3393. max_load = wl;
  3394. busiest = rq;
  3395. }
  3396. }
  3397. return busiest;
  3398. }
  3399. /*
  3400. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3401. * so long as it is large enough.
  3402. */
  3403. #define MAX_PINNED_INTERVAL 512
  3404. /* Working cpumask for load_balance and load_balance_newidle. */
  3405. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3406. /*
  3407. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3408. * tasks if there is an imbalance.
  3409. */
  3410. static int load_balance(int this_cpu, struct rq *this_rq,
  3411. struct sched_domain *sd, enum cpu_idle_type idle,
  3412. int *balance)
  3413. {
  3414. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3415. struct sched_group *group;
  3416. unsigned long imbalance;
  3417. struct rq *busiest;
  3418. unsigned long flags;
  3419. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3420. cpumask_setall(cpus);
  3421. /*
  3422. * When power savings policy is enabled for the parent domain, idle
  3423. * sibling can pick up load irrespective of busy siblings. In this case,
  3424. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3425. * portraying it as CPU_NOT_IDLE.
  3426. */
  3427. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3428. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3429. sd_idle = 1;
  3430. schedstat_inc(sd, lb_count[idle]);
  3431. redo:
  3432. update_shares(sd);
  3433. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3434. cpus, balance);
  3435. if (*balance == 0)
  3436. goto out_balanced;
  3437. if (!group) {
  3438. schedstat_inc(sd, lb_nobusyg[idle]);
  3439. goto out_balanced;
  3440. }
  3441. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3442. if (!busiest) {
  3443. schedstat_inc(sd, lb_nobusyq[idle]);
  3444. goto out_balanced;
  3445. }
  3446. BUG_ON(busiest == this_rq);
  3447. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3448. ld_moved = 0;
  3449. if (busiest->nr_running > 1) {
  3450. /*
  3451. * Attempt to move tasks. If find_busiest_group has found
  3452. * an imbalance but busiest->nr_running <= 1, the group is
  3453. * still unbalanced. ld_moved simply stays zero, so it is
  3454. * correctly treated as an imbalance.
  3455. */
  3456. local_irq_save(flags);
  3457. double_rq_lock(this_rq, busiest);
  3458. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3459. imbalance, sd, idle, &all_pinned);
  3460. double_rq_unlock(this_rq, busiest);
  3461. local_irq_restore(flags);
  3462. /*
  3463. * some other cpu did the load balance for us.
  3464. */
  3465. if (ld_moved && this_cpu != smp_processor_id())
  3466. resched_cpu(this_cpu);
  3467. /* All tasks on this runqueue were pinned by CPU affinity */
  3468. if (unlikely(all_pinned)) {
  3469. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3470. if (!cpumask_empty(cpus))
  3471. goto redo;
  3472. goto out_balanced;
  3473. }
  3474. }
  3475. if (!ld_moved) {
  3476. schedstat_inc(sd, lb_failed[idle]);
  3477. sd->nr_balance_failed++;
  3478. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3479. spin_lock_irqsave(&busiest->lock, flags);
  3480. /* don't kick the migration_thread, if the curr
  3481. * task on busiest cpu can't be moved to this_cpu
  3482. */
  3483. if (!cpumask_test_cpu(this_cpu,
  3484. &busiest->curr->cpus_allowed)) {
  3485. spin_unlock_irqrestore(&busiest->lock, flags);
  3486. all_pinned = 1;
  3487. goto out_one_pinned;
  3488. }
  3489. if (!busiest->active_balance) {
  3490. busiest->active_balance = 1;
  3491. busiest->push_cpu = this_cpu;
  3492. active_balance = 1;
  3493. }
  3494. spin_unlock_irqrestore(&busiest->lock, flags);
  3495. if (active_balance)
  3496. wake_up_process(busiest->migration_thread);
  3497. /*
  3498. * We've kicked active balancing, reset the failure
  3499. * counter.
  3500. */
  3501. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3502. }
  3503. } else
  3504. sd->nr_balance_failed = 0;
  3505. if (likely(!active_balance)) {
  3506. /* We were unbalanced, so reset the balancing interval */
  3507. sd->balance_interval = sd->min_interval;
  3508. } else {
  3509. /*
  3510. * If we've begun active balancing, start to back off. This
  3511. * case may not be covered by the all_pinned logic if there
  3512. * is only 1 task on the busy runqueue (because we don't call
  3513. * move_tasks).
  3514. */
  3515. if (sd->balance_interval < sd->max_interval)
  3516. sd->balance_interval *= 2;
  3517. }
  3518. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3519. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3520. ld_moved = -1;
  3521. goto out;
  3522. out_balanced:
  3523. schedstat_inc(sd, lb_balanced[idle]);
  3524. sd->nr_balance_failed = 0;
  3525. out_one_pinned:
  3526. /* tune up the balancing interval */
  3527. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3528. (sd->balance_interval < sd->max_interval))
  3529. sd->balance_interval *= 2;
  3530. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3531. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3532. ld_moved = -1;
  3533. else
  3534. ld_moved = 0;
  3535. out:
  3536. if (ld_moved)
  3537. update_shares(sd);
  3538. return ld_moved;
  3539. }
  3540. /*
  3541. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3542. * tasks if there is an imbalance.
  3543. *
  3544. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3545. * this_rq is locked.
  3546. */
  3547. static int
  3548. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3549. {
  3550. struct sched_group *group;
  3551. struct rq *busiest = NULL;
  3552. unsigned long imbalance;
  3553. int ld_moved = 0;
  3554. int sd_idle = 0;
  3555. int all_pinned = 0;
  3556. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3557. cpumask_setall(cpus);
  3558. /*
  3559. * When power savings policy is enabled for the parent domain, idle
  3560. * sibling can pick up load irrespective of busy siblings. In this case,
  3561. * let the state of idle sibling percolate up as IDLE, instead of
  3562. * portraying it as CPU_NOT_IDLE.
  3563. */
  3564. if (sd->flags & SD_SHARE_CPUPOWER &&
  3565. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3566. sd_idle = 1;
  3567. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3568. redo:
  3569. update_shares_locked(this_rq, sd);
  3570. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3571. &sd_idle, cpus, NULL);
  3572. if (!group) {
  3573. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3574. goto out_balanced;
  3575. }
  3576. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3577. if (!busiest) {
  3578. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3579. goto out_balanced;
  3580. }
  3581. BUG_ON(busiest == this_rq);
  3582. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3583. ld_moved = 0;
  3584. if (busiest->nr_running > 1) {
  3585. /* Attempt to move tasks */
  3586. double_lock_balance(this_rq, busiest);
  3587. /* this_rq->clock is already updated */
  3588. update_rq_clock(busiest);
  3589. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3590. imbalance, sd, CPU_NEWLY_IDLE,
  3591. &all_pinned);
  3592. double_unlock_balance(this_rq, busiest);
  3593. if (unlikely(all_pinned)) {
  3594. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3595. if (!cpumask_empty(cpus))
  3596. goto redo;
  3597. }
  3598. }
  3599. if (!ld_moved) {
  3600. int active_balance = 0;
  3601. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3602. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3603. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3604. return -1;
  3605. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3606. return -1;
  3607. if (sd->nr_balance_failed++ < 2)
  3608. return -1;
  3609. /*
  3610. * The only task running in a non-idle cpu can be moved to this
  3611. * cpu in an attempt to completely freeup the other CPU
  3612. * package. The same method used to move task in load_balance()
  3613. * have been extended for load_balance_newidle() to speedup
  3614. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3615. *
  3616. * The package power saving logic comes from
  3617. * find_busiest_group(). If there are no imbalance, then
  3618. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3619. * f_b_g() will select a group from which a running task may be
  3620. * pulled to this cpu in order to make the other package idle.
  3621. * If there is no opportunity to make a package idle and if
  3622. * there are no imbalance, then f_b_g() will return NULL and no
  3623. * action will be taken in load_balance_newidle().
  3624. *
  3625. * Under normal task pull operation due to imbalance, there
  3626. * will be more than one task in the source run queue and
  3627. * move_tasks() will succeed. ld_moved will be true and this
  3628. * active balance code will not be triggered.
  3629. */
  3630. /* Lock busiest in correct order while this_rq is held */
  3631. double_lock_balance(this_rq, busiest);
  3632. /*
  3633. * don't kick the migration_thread, if the curr
  3634. * task on busiest cpu can't be moved to this_cpu
  3635. */
  3636. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3637. double_unlock_balance(this_rq, busiest);
  3638. all_pinned = 1;
  3639. return ld_moved;
  3640. }
  3641. if (!busiest->active_balance) {
  3642. busiest->active_balance = 1;
  3643. busiest->push_cpu = this_cpu;
  3644. active_balance = 1;
  3645. }
  3646. double_unlock_balance(this_rq, busiest);
  3647. /*
  3648. * Should not call ttwu while holding a rq->lock
  3649. */
  3650. spin_unlock(&this_rq->lock);
  3651. if (active_balance)
  3652. wake_up_process(busiest->migration_thread);
  3653. spin_lock(&this_rq->lock);
  3654. } else
  3655. sd->nr_balance_failed = 0;
  3656. update_shares_locked(this_rq, sd);
  3657. return ld_moved;
  3658. out_balanced:
  3659. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3660. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3661. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3662. return -1;
  3663. sd->nr_balance_failed = 0;
  3664. return 0;
  3665. }
  3666. /*
  3667. * idle_balance is called by schedule() if this_cpu is about to become
  3668. * idle. Attempts to pull tasks from other CPUs.
  3669. */
  3670. static void idle_balance(int this_cpu, struct rq *this_rq)
  3671. {
  3672. struct sched_domain *sd;
  3673. int pulled_task = 0;
  3674. unsigned long next_balance = jiffies + HZ;
  3675. for_each_domain(this_cpu, sd) {
  3676. unsigned long interval;
  3677. if (!(sd->flags & SD_LOAD_BALANCE))
  3678. continue;
  3679. if (sd->flags & SD_BALANCE_NEWIDLE)
  3680. /* If we've pulled tasks over stop searching: */
  3681. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3682. sd);
  3683. interval = msecs_to_jiffies(sd->balance_interval);
  3684. if (time_after(next_balance, sd->last_balance + interval))
  3685. next_balance = sd->last_balance + interval;
  3686. if (pulled_task)
  3687. break;
  3688. }
  3689. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3690. /*
  3691. * We are going idle. next_balance may be set based on
  3692. * a busy processor. So reset next_balance.
  3693. */
  3694. this_rq->next_balance = next_balance;
  3695. }
  3696. }
  3697. /*
  3698. * active_load_balance is run by migration threads. It pushes running tasks
  3699. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3700. * running on each physical CPU where possible, and avoids physical /
  3701. * logical imbalances.
  3702. *
  3703. * Called with busiest_rq locked.
  3704. */
  3705. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3706. {
  3707. int target_cpu = busiest_rq->push_cpu;
  3708. struct sched_domain *sd;
  3709. struct rq *target_rq;
  3710. /* Is there any task to move? */
  3711. if (busiest_rq->nr_running <= 1)
  3712. return;
  3713. target_rq = cpu_rq(target_cpu);
  3714. /*
  3715. * This condition is "impossible", if it occurs
  3716. * we need to fix it. Originally reported by
  3717. * Bjorn Helgaas on a 128-cpu setup.
  3718. */
  3719. BUG_ON(busiest_rq == target_rq);
  3720. /* move a task from busiest_rq to target_rq */
  3721. double_lock_balance(busiest_rq, target_rq);
  3722. update_rq_clock(busiest_rq);
  3723. update_rq_clock(target_rq);
  3724. /* Search for an sd spanning us and the target CPU. */
  3725. for_each_domain(target_cpu, sd) {
  3726. if ((sd->flags & SD_LOAD_BALANCE) &&
  3727. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3728. break;
  3729. }
  3730. if (likely(sd)) {
  3731. schedstat_inc(sd, alb_count);
  3732. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3733. sd, CPU_IDLE))
  3734. schedstat_inc(sd, alb_pushed);
  3735. else
  3736. schedstat_inc(sd, alb_failed);
  3737. }
  3738. double_unlock_balance(busiest_rq, target_rq);
  3739. }
  3740. #ifdef CONFIG_NO_HZ
  3741. static struct {
  3742. atomic_t load_balancer;
  3743. cpumask_var_t cpu_mask;
  3744. cpumask_var_t ilb_grp_nohz_mask;
  3745. } nohz ____cacheline_aligned = {
  3746. .load_balancer = ATOMIC_INIT(-1),
  3747. };
  3748. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3749. /**
  3750. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3751. * @cpu: The cpu whose lowest level of sched domain is to
  3752. * be returned.
  3753. * @flag: The flag to check for the lowest sched_domain
  3754. * for the given cpu.
  3755. *
  3756. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3757. */
  3758. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3759. {
  3760. struct sched_domain *sd;
  3761. for_each_domain(cpu, sd)
  3762. if (sd && (sd->flags & flag))
  3763. break;
  3764. return sd;
  3765. }
  3766. /**
  3767. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3768. * @cpu: The cpu whose domains we're iterating over.
  3769. * @sd: variable holding the value of the power_savings_sd
  3770. * for cpu.
  3771. * @flag: The flag to filter the sched_domains to be iterated.
  3772. *
  3773. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3774. * set, starting from the lowest sched_domain to the highest.
  3775. */
  3776. #define for_each_flag_domain(cpu, sd, flag) \
  3777. for (sd = lowest_flag_domain(cpu, flag); \
  3778. (sd && (sd->flags & flag)); sd = sd->parent)
  3779. /**
  3780. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3781. * @ilb_group: group to be checked for semi-idleness
  3782. *
  3783. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3784. *
  3785. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3786. * and atleast one non-idle CPU. This helper function checks if the given
  3787. * sched_group is semi-idle or not.
  3788. */
  3789. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3790. {
  3791. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3792. sched_group_cpus(ilb_group));
  3793. /*
  3794. * A sched_group is semi-idle when it has atleast one busy cpu
  3795. * and atleast one idle cpu.
  3796. */
  3797. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3798. return 0;
  3799. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3800. return 0;
  3801. return 1;
  3802. }
  3803. /**
  3804. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3805. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3806. *
  3807. * Returns: Returns the id of the idle load balancer if it exists,
  3808. * Else, returns >= nr_cpu_ids.
  3809. *
  3810. * This algorithm picks the idle load balancer such that it belongs to a
  3811. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3812. * completely idle packages/cores just for the purpose of idle load balancing
  3813. * when there are other idle cpu's which are better suited for that job.
  3814. */
  3815. static int find_new_ilb(int cpu)
  3816. {
  3817. struct sched_domain *sd;
  3818. struct sched_group *ilb_group;
  3819. /*
  3820. * Have idle load balancer selection from semi-idle packages only
  3821. * when power-aware load balancing is enabled
  3822. */
  3823. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3824. goto out_done;
  3825. /*
  3826. * Optimize for the case when we have no idle CPUs or only one
  3827. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3828. */
  3829. if (cpumask_weight(nohz.cpu_mask) < 2)
  3830. goto out_done;
  3831. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3832. ilb_group = sd->groups;
  3833. do {
  3834. if (is_semi_idle_group(ilb_group))
  3835. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3836. ilb_group = ilb_group->next;
  3837. } while (ilb_group != sd->groups);
  3838. }
  3839. out_done:
  3840. return cpumask_first(nohz.cpu_mask);
  3841. }
  3842. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3843. static inline int find_new_ilb(int call_cpu)
  3844. {
  3845. return cpumask_first(nohz.cpu_mask);
  3846. }
  3847. #endif
  3848. /*
  3849. * This routine will try to nominate the ilb (idle load balancing)
  3850. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3851. * load balancing on behalf of all those cpus. If all the cpus in the system
  3852. * go into this tickless mode, then there will be no ilb owner (as there is
  3853. * no need for one) and all the cpus will sleep till the next wakeup event
  3854. * arrives...
  3855. *
  3856. * For the ilb owner, tick is not stopped. And this tick will be used
  3857. * for idle load balancing. ilb owner will still be part of
  3858. * nohz.cpu_mask..
  3859. *
  3860. * While stopping the tick, this cpu will become the ilb owner if there
  3861. * is no other owner. And will be the owner till that cpu becomes busy
  3862. * or if all cpus in the system stop their ticks at which point
  3863. * there is no need for ilb owner.
  3864. *
  3865. * When the ilb owner becomes busy, it nominates another owner, during the
  3866. * next busy scheduler_tick()
  3867. */
  3868. int select_nohz_load_balancer(int stop_tick)
  3869. {
  3870. int cpu = smp_processor_id();
  3871. if (stop_tick) {
  3872. cpu_rq(cpu)->in_nohz_recently = 1;
  3873. if (!cpu_active(cpu)) {
  3874. if (atomic_read(&nohz.load_balancer) != cpu)
  3875. return 0;
  3876. /*
  3877. * If we are going offline and still the leader,
  3878. * give up!
  3879. */
  3880. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3881. BUG();
  3882. return 0;
  3883. }
  3884. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3885. /* time for ilb owner also to sleep */
  3886. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3887. if (atomic_read(&nohz.load_balancer) == cpu)
  3888. atomic_set(&nohz.load_balancer, -1);
  3889. return 0;
  3890. }
  3891. if (atomic_read(&nohz.load_balancer) == -1) {
  3892. /* make me the ilb owner */
  3893. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3894. return 1;
  3895. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3896. int new_ilb;
  3897. if (!(sched_smt_power_savings ||
  3898. sched_mc_power_savings))
  3899. return 1;
  3900. /*
  3901. * Check to see if there is a more power-efficient
  3902. * ilb.
  3903. */
  3904. new_ilb = find_new_ilb(cpu);
  3905. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3906. atomic_set(&nohz.load_balancer, -1);
  3907. resched_cpu(new_ilb);
  3908. return 0;
  3909. }
  3910. return 1;
  3911. }
  3912. } else {
  3913. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3914. return 0;
  3915. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3916. if (atomic_read(&nohz.load_balancer) == cpu)
  3917. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3918. BUG();
  3919. }
  3920. return 0;
  3921. }
  3922. #endif
  3923. static DEFINE_SPINLOCK(balancing);
  3924. /*
  3925. * It checks each scheduling domain to see if it is due to be balanced,
  3926. * and initiates a balancing operation if so.
  3927. *
  3928. * Balancing parameters are set up in arch_init_sched_domains.
  3929. */
  3930. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3931. {
  3932. int balance = 1;
  3933. struct rq *rq = cpu_rq(cpu);
  3934. unsigned long interval;
  3935. struct sched_domain *sd;
  3936. /* Earliest time when we have to do rebalance again */
  3937. unsigned long next_balance = jiffies + 60*HZ;
  3938. int update_next_balance = 0;
  3939. int need_serialize;
  3940. for_each_domain(cpu, sd) {
  3941. if (!(sd->flags & SD_LOAD_BALANCE))
  3942. continue;
  3943. interval = sd->balance_interval;
  3944. if (idle != CPU_IDLE)
  3945. interval *= sd->busy_factor;
  3946. /* scale ms to jiffies */
  3947. interval = msecs_to_jiffies(interval);
  3948. if (unlikely(!interval))
  3949. interval = 1;
  3950. if (interval > HZ*NR_CPUS/10)
  3951. interval = HZ*NR_CPUS/10;
  3952. need_serialize = sd->flags & SD_SERIALIZE;
  3953. if (need_serialize) {
  3954. if (!spin_trylock(&balancing))
  3955. goto out;
  3956. }
  3957. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3958. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3959. /*
  3960. * We've pulled tasks over so either we're no
  3961. * longer idle, or one of our SMT siblings is
  3962. * not idle.
  3963. */
  3964. idle = CPU_NOT_IDLE;
  3965. }
  3966. sd->last_balance = jiffies;
  3967. }
  3968. if (need_serialize)
  3969. spin_unlock(&balancing);
  3970. out:
  3971. if (time_after(next_balance, sd->last_balance + interval)) {
  3972. next_balance = sd->last_balance + interval;
  3973. update_next_balance = 1;
  3974. }
  3975. /*
  3976. * Stop the load balance at this level. There is another
  3977. * CPU in our sched group which is doing load balancing more
  3978. * actively.
  3979. */
  3980. if (!balance)
  3981. break;
  3982. }
  3983. /*
  3984. * next_balance will be updated only when there is a need.
  3985. * When the cpu is attached to null domain for ex, it will not be
  3986. * updated.
  3987. */
  3988. if (likely(update_next_balance))
  3989. rq->next_balance = next_balance;
  3990. }
  3991. /*
  3992. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3993. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3994. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3995. */
  3996. static void run_rebalance_domains(struct softirq_action *h)
  3997. {
  3998. int this_cpu = smp_processor_id();
  3999. struct rq *this_rq = cpu_rq(this_cpu);
  4000. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4001. CPU_IDLE : CPU_NOT_IDLE;
  4002. rebalance_domains(this_cpu, idle);
  4003. #ifdef CONFIG_NO_HZ
  4004. /*
  4005. * If this cpu is the owner for idle load balancing, then do the
  4006. * balancing on behalf of the other idle cpus whose ticks are
  4007. * stopped.
  4008. */
  4009. if (this_rq->idle_at_tick &&
  4010. atomic_read(&nohz.load_balancer) == this_cpu) {
  4011. struct rq *rq;
  4012. int balance_cpu;
  4013. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4014. if (balance_cpu == this_cpu)
  4015. continue;
  4016. /*
  4017. * If this cpu gets work to do, stop the load balancing
  4018. * work being done for other cpus. Next load
  4019. * balancing owner will pick it up.
  4020. */
  4021. if (need_resched())
  4022. break;
  4023. rebalance_domains(balance_cpu, CPU_IDLE);
  4024. rq = cpu_rq(balance_cpu);
  4025. if (time_after(this_rq->next_balance, rq->next_balance))
  4026. this_rq->next_balance = rq->next_balance;
  4027. }
  4028. }
  4029. #endif
  4030. }
  4031. static inline int on_null_domain(int cpu)
  4032. {
  4033. return !rcu_dereference(cpu_rq(cpu)->sd);
  4034. }
  4035. /*
  4036. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4037. *
  4038. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4039. * idle load balancing owner or decide to stop the periodic load balancing,
  4040. * if the whole system is idle.
  4041. */
  4042. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4043. {
  4044. #ifdef CONFIG_NO_HZ
  4045. /*
  4046. * If we were in the nohz mode recently and busy at the current
  4047. * scheduler tick, then check if we need to nominate new idle
  4048. * load balancer.
  4049. */
  4050. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4051. rq->in_nohz_recently = 0;
  4052. if (atomic_read(&nohz.load_balancer) == cpu) {
  4053. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4054. atomic_set(&nohz.load_balancer, -1);
  4055. }
  4056. if (atomic_read(&nohz.load_balancer) == -1) {
  4057. int ilb = find_new_ilb(cpu);
  4058. if (ilb < nr_cpu_ids)
  4059. resched_cpu(ilb);
  4060. }
  4061. }
  4062. /*
  4063. * If this cpu is idle and doing idle load balancing for all the
  4064. * cpus with ticks stopped, is it time for that to stop?
  4065. */
  4066. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4067. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4068. resched_cpu(cpu);
  4069. return;
  4070. }
  4071. /*
  4072. * If this cpu is idle and the idle load balancing is done by
  4073. * someone else, then no need raise the SCHED_SOFTIRQ
  4074. */
  4075. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4076. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4077. return;
  4078. #endif
  4079. /* Don't need to rebalance while attached to NULL domain */
  4080. if (time_after_eq(jiffies, rq->next_balance) &&
  4081. likely(!on_null_domain(cpu)))
  4082. raise_softirq(SCHED_SOFTIRQ);
  4083. }
  4084. #else /* CONFIG_SMP */
  4085. /*
  4086. * on UP we do not need to balance between CPUs:
  4087. */
  4088. static inline void idle_balance(int cpu, struct rq *rq)
  4089. {
  4090. }
  4091. #endif
  4092. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4093. EXPORT_PER_CPU_SYMBOL(kstat);
  4094. /*
  4095. * Return any ns on the sched_clock that have not yet been accounted in
  4096. * @p in case that task is currently running.
  4097. *
  4098. * Called with task_rq_lock() held on @rq.
  4099. */
  4100. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4101. {
  4102. u64 ns = 0;
  4103. if (task_current(rq, p)) {
  4104. update_rq_clock(rq);
  4105. ns = rq->clock - p->se.exec_start;
  4106. if ((s64)ns < 0)
  4107. ns = 0;
  4108. }
  4109. return ns;
  4110. }
  4111. unsigned long long task_delta_exec(struct task_struct *p)
  4112. {
  4113. unsigned long flags;
  4114. struct rq *rq;
  4115. u64 ns = 0;
  4116. rq = task_rq_lock(p, &flags);
  4117. ns = do_task_delta_exec(p, rq);
  4118. task_rq_unlock(rq, &flags);
  4119. return ns;
  4120. }
  4121. /*
  4122. * Return accounted runtime for the task.
  4123. * In case the task is currently running, return the runtime plus current's
  4124. * pending runtime that have not been accounted yet.
  4125. */
  4126. unsigned long long task_sched_runtime(struct task_struct *p)
  4127. {
  4128. unsigned long flags;
  4129. struct rq *rq;
  4130. u64 ns = 0;
  4131. rq = task_rq_lock(p, &flags);
  4132. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4133. task_rq_unlock(rq, &flags);
  4134. return ns;
  4135. }
  4136. /*
  4137. * Return sum_exec_runtime for the thread group.
  4138. * In case the task is currently running, return the sum plus current's
  4139. * pending runtime that have not been accounted yet.
  4140. *
  4141. * Note that the thread group might have other running tasks as well,
  4142. * so the return value not includes other pending runtime that other
  4143. * running tasks might have.
  4144. */
  4145. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4146. {
  4147. struct task_cputime totals;
  4148. unsigned long flags;
  4149. struct rq *rq;
  4150. u64 ns;
  4151. rq = task_rq_lock(p, &flags);
  4152. thread_group_cputime(p, &totals);
  4153. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4154. task_rq_unlock(rq, &flags);
  4155. return ns;
  4156. }
  4157. /*
  4158. * Account user cpu time to a process.
  4159. * @p: the process that the cpu time gets accounted to
  4160. * @cputime: the cpu time spent in user space since the last update
  4161. * @cputime_scaled: cputime scaled by cpu frequency
  4162. */
  4163. void account_user_time(struct task_struct *p, cputime_t cputime,
  4164. cputime_t cputime_scaled)
  4165. {
  4166. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4167. cputime64_t tmp;
  4168. /* Add user time to process. */
  4169. p->utime = cputime_add(p->utime, cputime);
  4170. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4171. account_group_user_time(p, cputime);
  4172. /* Add user time to cpustat. */
  4173. tmp = cputime_to_cputime64(cputime);
  4174. if (TASK_NICE(p) > 0)
  4175. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4176. else
  4177. cpustat->user = cputime64_add(cpustat->user, tmp);
  4178. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4179. /* Account for user time used */
  4180. acct_update_integrals(p);
  4181. }
  4182. /*
  4183. * Account guest cpu time to a process.
  4184. * @p: the process that the cpu time gets accounted to
  4185. * @cputime: the cpu time spent in virtual machine since the last update
  4186. * @cputime_scaled: cputime scaled by cpu frequency
  4187. */
  4188. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4189. cputime_t cputime_scaled)
  4190. {
  4191. cputime64_t tmp;
  4192. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4193. tmp = cputime_to_cputime64(cputime);
  4194. /* Add guest time to process. */
  4195. p->utime = cputime_add(p->utime, cputime);
  4196. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4197. account_group_user_time(p, cputime);
  4198. p->gtime = cputime_add(p->gtime, cputime);
  4199. /* Add guest time to cpustat. */
  4200. cpustat->user = cputime64_add(cpustat->user, tmp);
  4201. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4202. }
  4203. /*
  4204. * Account system cpu time to a process.
  4205. * @p: the process that the cpu time gets accounted to
  4206. * @hardirq_offset: the offset to subtract from hardirq_count()
  4207. * @cputime: the cpu time spent in kernel space since the last update
  4208. * @cputime_scaled: cputime scaled by cpu frequency
  4209. */
  4210. void account_system_time(struct task_struct *p, int hardirq_offset,
  4211. cputime_t cputime, cputime_t cputime_scaled)
  4212. {
  4213. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4214. cputime64_t tmp;
  4215. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4216. account_guest_time(p, cputime, cputime_scaled);
  4217. return;
  4218. }
  4219. /* Add system time to process. */
  4220. p->stime = cputime_add(p->stime, cputime);
  4221. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4222. account_group_system_time(p, cputime);
  4223. /* Add system time to cpustat. */
  4224. tmp = cputime_to_cputime64(cputime);
  4225. if (hardirq_count() - hardirq_offset)
  4226. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4227. else if (softirq_count())
  4228. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4229. else
  4230. cpustat->system = cputime64_add(cpustat->system, tmp);
  4231. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4232. /* Account for system time used */
  4233. acct_update_integrals(p);
  4234. }
  4235. /*
  4236. * Account for involuntary wait time.
  4237. * @steal: the cpu time spent in involuntary wait
  4238. */
  4239. void account_steal_time(cputime_t cputime)
  4240. {
  4241. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4242. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4243. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4244. }
  4245. /*
  4246. * Account for idle time.
  4247. * @cputime: the cpu time spent in idle wait
  4248. */
  4249. void account_idle_time(cputime_t cputime)
  4250. {
  4251. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4252. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4253. struct rq *rq = this_rq();
  4254. if (atomic_read(&rq->nr_iowait) > 0)
  4255. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4256. else
  4257. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4258. }
  4259. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4260. /*
  4261. * Account a single tick of cpu time.
  4262. * @p: the process that the cpu time gets accounted to
  4263. * @user_tick: indicates if the tick is a user or a system tick
  4264. */
  4265. void account_process_tick(struct task_struct *p, int user_tick)
  4266. {
  4267. cputime_t one_jiffy = jiffies_to_cputime(1);
  4268. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4269. struct rq *rq = this_rq();
  4270. if (user_tick)
  4271. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4272. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4273. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4274. one_jiffy_scaled);
  4275. else
  4276. account_idle_time(one_jiffy);
  4277. }
  4278. /*
  4279. * Account multiple ticks of steal time.
  4280. * @p: the process from which the cpu time has been stolen
  4281. * @ticks: number of stolen ticks
  4282. */
  4283. void account_steal_ticks(unsigned long ticks)
  4284. {
  4285. account_steal_time(jiffies_to_cputime(ticks));
  4286. }
  4287. /*
  4288. * Account multiple ticks of idle time.
  4289. * @ticks: number of stolen ticks
  4290. */
  4291. void account_idle_ticks(unsigned long ticks)
  4292. {
  4293. account_idle_time(jiffies_to_cputime(ticks));
  4294. }
  4295. #endif
  4296. /*
  4297. * Use precise platform statistics if available:
  4298. */
  4299. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4300. cputime_t task_utime(struct task_struct *p)
  4301. {
  4302. return p->utime;
  4303. }
  4304. cputime_t task_stime(struct task_struct *p)
  4305. {
  4306. return p->stime;
  4307. }
  4308. #else
  4309. cputime_t task_utime(struct task_struct *p)
  4310. {
  4311. clock_t utime = cputime_to_clock_t(p->utime),
  4312. total = utime + cputime_to_clock_t(p->stime);
  4313. u64 temp;
  4314. /*
  4315. * Use CFS's precise accounting:
  4316. */
  4317. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4318. if (total) {
  4319. temp *= utime;
  4320. do_div(temp, total);
  4321. }
  4322. utime = (clock_t)temp;
  4323. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4324. return p->prev_utime;
  4325. }
  4326. cputime_t task_stime(struct task_struct *p)
  4327. {
  4328. clock_t stime;
  4329. /*
  4330. * Use CFS's precise accounting. (we subtract utime from
  4331. * the total, to make sure the total observed by userspace
  4332. * grows monotonically - apps rely on that):
  4333. */
  4334. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4335. cputime_to_clock_t(task_utime(p));
  4336. if (stime >= 0)
  4337. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4338. return p->prev_stime;
  4339. }
  4340. #endif
  4341. inline cputime_t task_gtime(struct task_struct *p)
  4342. {
  4343. return p->gtime;
  4344. }
  4345. /*
  4346. * This function gets called by the timer code, with HZ frequency.
  4347. * We call it with interrupts disabled.
  4348. *
  4349. * It also gets called by the fork code, when changing the parent's
  4350. * timeslices.
  4351. */
  4352. void scheduler_tick(void)
  4353. {
  4354. int cpu = smp_processor_id();
  4355. struct rq *rq = cpu_rq(cpu);
  4356. struct task_struct *curr = rq->curr;
  4357. sched_clock_tick();
  4358. spin_lock(&rq->lock);
  4359. update_rq_clock(rq);
  4360. update_cpu_load(rq);
  4361. curr->sched_class->task_tick(rq, curr, 0);
  4362. spin_unlock(&rq->lock);
  4363. perf_counter_task_tick(curr, cpu);
  4364. #ifdef CONFIG_SMP
  4365. rq->idle_at_tick = idle_cpu(cpu);
  4366. trigger_load_balance(rq, cpu);
  4367. #endif
  4368. }
  4369. notrace unsigned long get_parent_ip(unsigned long addr)
  4370. {
  4371. if (in_lock_functions(addr)) {
  4372. addr = CALLER_ADDR2;
  4373. if (in_lock_functions(addr))
  4374. addr = CALLER_ADDR3;
  4375. }
  4376. return addr;
  4377. }
  4378. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4379. defined(CONFIG_PREEMPT_TRACER))
  4380. void __kprobes add_preempt_count(int val)
  4381. {
  4382. #ifdef CONFIG_DEBUG_PREEMPT
  4383. /*
  4384. * Underflow?
  4385. */
  4386. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4387. return;
  4388. #endif
  4389. preempt_count() += val;
  4390. #ifdef CONFIG_DEBUG_PREEMPT
  4391. /*
  4392. * Spinlock count overflowing soon?
  4393. */
  4394. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4395. PREEMPT_MASK - 10);
  4396. #endif
  4397. if (preempt_count() == val)
  4398. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4399. }
  4400. EXPORT_SYMBOL(add_preempt_count);
  4401. void __kprobes sub_preempt_count(int val)
  4402. {
  4403. #ifdef CONFIG_DEBUG_PREEMPT
  4404. /*
  4405. * Underflow?
  4406. */
  4407. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4408. return;
  4409. /*
  4410. * Is the spinlock portion underflowing?
  4411. */
  4412. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4413. !(preempt_count() & PREEMPT_MASK)))
  4414. return;
  4415. #endif
  4416. if (preempt_count() == val)
  4417. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4418. preempt_count() -= val;
  4419. }
  4420. EXPORT_SYMBOL(sub_preempt_count);
  4421. #endif
  4422. /*
  4423. * Print scheduling while atomic bug:
  4424. */
  4425. static noinline void __schedule_bug(struct task_struct *prev)
  4426. {
  4427. struct pt_regs *regs = get_irq_regs();
  4428. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4429. prev->comm, prev->pid, preempt_count());
  4430. debug_show_held_locks(prev);
  4431. print_modules();
  4432. if (irqs_disabled())
  4433. print_irqtrace_events(prev);
  4434. if (regs)
  4435. show_regs(regs);
  4436. else
  4437. dump_stack();
  4438. }
  4439. /*
  4440. * Various schedule()-time debugging checks and statistics:
  4441. */
  4442. static inline void schedule_debug(struct task_struct *prev)
  4443. {
  4444. /*
  4445. * Test if we are atomic. Since do_exit() needs to call into
  4446. * schedule() atomically, we ignore that path for now.
  4447. * Otherwise, whine if we are scheduling when we should not be.
  4448. */
  4449. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4450. __schedule_bug(prev);
  4451. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4452. schedstat_inc(this_rq(), sched_count);
  4453. #ifdef CONFIG_SCHEDSTATS
  4454. if (unlikely(prev->lock_depth >= 0)) {
  4455. schedstat_inc(this_rq(), bkl_count);
  4456. schedstat_inc(prev, sched_info.bkl_count);
  4457. }
  4458. #endif
  4459. }
  4460. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4461. {
  4462. if (prev->state == TASK_RUNNING) {
  4463. u64 runtime = prev->se.sum_exec_runtime;
  4464. runtime -= prev->se.prev_sum_exec_runtime;
  4465. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4466. /*
  4467. * In order to avoid avg_overlap growing stale when we are
  4468. * indeed overlapping and hence not getting put to sleep, grow
  4469. * the avg_overlap on preemption.
  4470. *
  4471. * We use the average preemption runtime because that
  4472. * correlates to the amount of cache footprint a task can
  4473. * build up.
  4474. */
  4475. update_avg(&prev->se.avg_overlap, runtime);
  4476. }
  4477. prev->sched_class->put_prev_task(rq, prev);
  4478. }
  4479. /*
  4480. * Pick up the highest-prio task:
  4481. */
  4482. static inline struct task_struct *
  4483. pick_next_task(struct rq *rq)
  4484. {
  4485. const struct sched_class *class;
  4486. struct task_struct *p;
  4487. /*
  4488. * Optimization: we know that if all tasks are in
  4489. * the fair class we can call that function directly:
  4490. */
  4491. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4492. p = fair_sched_class.pick_next_task(rq);
  4493. if (likely(p))
  4494. return p;
  4495. }
  4496. class = sched_class_highest;
  4497. for ( ; ; ) {
  4498. p = class->pick_next_task(rq);
  4499. if (p)
  4500. return p;
  4501. /*
  4502. * Will never be NULL as the idle class always
  4503. * returns a non-NULL p:
  4504. */
  4505. class = class->next;
  4506. }
  4507. }
  4508. /*
  4509. * schedule() is the main scheduler function.
  4510. */
  4511. asmlinkage void __sched schedule(void)
  4512. {
  4513. struct task_struct *prev, *next;
  4514. unsigned long *switch_count;
  4515. struct rq *rq;
  4516. int cpu;
  4517. need_resched:
  4518. preempt_disable();
  4519. cpu = smp_processor_id();
  4520. rq = cpu_rq(cpu);
  4521. rcu_qsctr_inc(cpu);
  4522. prev = rq->curr;
  4523. switch_count = &prev->nivcsw;
  4524. release_kernel_lock(prev);
  4525. need_resched_nonpreemptible:
  4526. schedule_debug(prev);
  4527. if (sched_feat(HRTICK))
  4528. hrtick_clear(rq);
  4529. spin_lock_irq(&rq->lock);
  4530. update_rq_clock(rq);
  4531. clear_tsk_need_resched(prev);
  4532. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4533. if (unlikely(signal_pending_state(prev->state, prev)))
  4534. prev->state = TASK_RUNNING;
  4535. else
  4536. deactivate_task(rq, prev, 1);
  4537. switch_count = &prev->nvcsw;
  4538. }
  4539. #ifdef CONFIG_SMP
  4540. if (prev->sched_class->pre_schedule)
  4541. prev->sched_class->pre_schedule(rq, prev);
  4542. #endif
  4543. if (unlikely(!rq->nr_running))
  4544. idle_balance(cpu, rq);
  4545. put_prev_task(rq, prev);
  4546. next = pick_next_task(rq);
  4547. if (likely(prev != next)) {
  4548. sched_info_switch(prev, next);
  4549. perf_counter_task_sched_out(prev, next, cpu);
  4550. rq->nr_switches++;
  4551. rq->curr = next;
  4552. ++*switch_count;
  4553. context_switch(rq, prev, next); /* unlocks the rq */
  4554. /*
  4555. * the context switch might have flipped the stack from under
  4556. * us, hence refresh the local variables.
  4557. */
  4558. cpu = smp_processor_id();
  4559. rq = cpu_rq(cpu);
  4560. } else
  4561. spin_unlock_irq(&rq->lock);
  4562. if (unlikely(reacquire_kernel_lock(current) < 0))
  4563. goto need_resched_nonpreemptible;
  4564. preempt_enable_no_resched();
  4565. if (need_resched())
  4566. goto need_resched;
  4567. }
  4568. EXPORT_SYMBOL(schedule);
  4569. #ifdef CONFIG_SMP
  4570. /*
  4571. * Look out! "owner" is an entirely speculative pointer
  4572. * access and not reliable.
  4573. */
  4574. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4575. {
  4576. unsigned int cpu;
  4577. struct rq *rq;
  4578. if (!sched_feat(OWNER_SPIN))
  4579. return 0;
  4580. #ifdef CONFIG_DEBUG_PAGEALLOC
  4581. /*
  4582. * Need to access the cpu field knowing that
  4583. * DEBUG_PAGEALLOC could have unmapped it if
  4584. * the mutex owner just released it and exited.
  4585. */
  4586. if (probe_kernel_address(&owner->cpu, cpu))
  4587. goto out;
  4588. #else
  4589. cpu = owner->cpu;
  4590. #endif
  4591. /*
  4592. * Even if the access succeeded (likely case),
  4593. * the cpu field may no longer be valid.
  4594. */
  4595. if (cpu >= nr_cpumask_bits)
  4596. goto out;
  4597. /*
  4598. * We need to validate that we can do a
  4599. * get_cpu() and that we have the percpu area.
  4600. */
  4601. if (!cpu_online(cpu))
  4602. goto out;
  4603. rq = cpu_rq(cpu);
  4604. for (;;) {
  4605. /*
  4606. * Owner changed, break to re-assess state.
  4607. */
  4608. if (lock->owner != owner)
  4609. break;
  4610. /*
  4611. * Is that owner really running on that cpu?
  4612. */
  4613. if (task_thread_info(rq->curr) != owner || need_resched())
  4614. return 0;
  4615. cpu_relax();
  4616. }
  4617. out:
  4618. return 1;
  4619. }
  4620. #endif
  4621. #ifdef CONFIG_PREEMPT
  4622. /*
  4623. * this is the entry point to schedule() from in-kernel preemption
  4624. * off of preempt_enable. Kernel preemptions off return from interrupt
  4625. * occur there and call schedule directly.
  4626. */
  4627. asmlinkage void __sched preempt_schedule(void)
  4628. {
  4629. struct thread_info *ti = current_thread_info();
  4630. /*
  4631. * If there is a non-zero preempt_count or interrupts are disabled,
  4632. * we do not want to preempt the current task. Just return..
  4633. */
  4634. if (likely(ti->preempt_count || irqs_disabled()))
  4635. return;
  4636. do {
  4637. add_preempt_count(PREEMPT_ACTIVE);
  4638. schedule();
  4639. sub_preempt_count(PREEMPT_ACTIVE);
  4640. /*
  4641. * Check again in case we missed a preemption opportunity
  4642. * between schedule and now.
  4643. */
  4644. barrier();
  4645. } while (need_resched());
  4646. }
  4647. EXPORT_SYMBOL(preempt_schedule);
  4648. /*
  4649. * this is the entry point to schedule() from kernel preemption
  4650. * off of irq context.
  4651. * Note, that this is called and return with irqs disabled. This will
  4652. * protect us against recursive calling from irq.
  4653. */
  4654. asmlinkage void __sched preempt_schedule_irq(void)
  4655. {
  4656. struct thread_info *ti = current_thread_info();
  4657. /* Catch callers which need to be fixed */
  4658. BUG_ON(ti->preempt_count || !irqs_disabled());
  4659. do {
  4660. add_preempt_count(PREEMPT_ACTIVE);
  4661. local_irq_enable();
  4662. schedule();
  4663. local_irq_disable();
  4664. sub_preempt_count(PREEMPT_ACTIVE);
  4665. /*
  4666. * Check again in case we missed a preemption opportunity
  4667. * between schedule and now.
  4668. */
  4669. barrier();
  4670. } while (need_resched());
  4671. }
  4672. #endif /* CONFIG_PREEMPT */
  4673. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4674. void *key)
  4675. {
  4676. return try_to_wake_up(curr->private, mode, sync);
  4677. }
  4678. EXPORT_SYMBOL(default_wake_function);
  4679. /*
  4680. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4681. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4682. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4683. *
  4684. * There are circumstances in which we can try to wake a task which has already
  4685. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4686. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4687. */
  4688. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4689. int nr_exclusive, int sync, void *key)
  4690. {
  4691. wait_queue_t *curr, *next;
  4692. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4693. unsigned flags = curr->flags;
  4694. if (curr->func(curr, mode, sync, key) &&
  4695. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4696. break;
  4697. }
  4698. }
  4699. /**
  4700. * __wake_up - wake up threads blocked on a waitqueue.
  4701. * @q: the waitqueue
  4702. * @mode: which threads
  4703. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4704. * @key: is directly passed to the wakeup function
  4705. *
  4706. * It may be assumed that this function implies a write memory barrier before
  4707. * changing the task state if and only if any tasks are woken up.
  4708. */
  4709. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4710. int nr_exclusive, void *key)
  4711. {
  4712. unsigned long flags;
  4713. spin_lock_irqsave(&q->lock, flags);
  4714. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4715. spin_unlock_irqrestore(&q->lock, flags);
  4716. }
  4717. EXPORT_SYMBOL(__wake_up);
  4718. /*
  4719. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4720. */
  4721. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4722. {
  4723. __wake_up_common(q, mode, 1, 0, NULL);
  4724. }
  4725. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4726. {
  4727. __wake_up_common(q, mode, 1, 0, key);
  4728. }
  4729. /**
  4730. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4731. * @q: the waitqueue
  4732. * @mode: which threads
  4733. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4734. * @key: opaque value to be passed to wakeup targets
  4735. *
  4736. * The sync wakeup differs that the waker knows that it will schedule
  4737. * away soon, so while the target thread will be woken up, it will not
  4738. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4739. * with each other. This can prevent needless bouncing between CPUs.
  4740. *
  4741. * On UP it can prevent extra preemption.
  4742. *
  4743. * It may be assumed that this function implies a write memory barrier before
  4744. * changing the task state if and only if any tasks are woken up.
  4745. */
  4746. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4747. int nr_exclusive, void *key)
  4748. {
  4749. unsigned long flags;
  4750. int sync = 1;
  4751. if (unlikely(!q))
  4752. return;
  4753. if (unlikely(!nr_exclusive))
  4754. sync = 0;
  4755. spin_lock_irqsave(&q->lock, flags);
  4756. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4757. spin_unlock_irqrestore(&q->lock, flags);
  4758. }
  4759. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4760. /*
  4761. * __wake_up_sync - see __wake_up_sync_key()
  4762. */
  4763. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4764. {
  4765. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4766. }
  4767. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4768. /**
  4769. * complete: - signals a single thread waiting on this completion
  4770. * @x: holds the state of this particular completion
  4771. *
  4772. * This will wake up a single thread waiting on this completion. Threads will be
  4773. * awakened in the same order in which they were queued.
  4774. *
  4775. * See also complete_all(), wait_for_completion() and related routines.
  4776. *
  4777. * It may be assumed that this function implies a write memory barrier before
  4778. * changing the task state if and only if any tasks are woken up.
  4779. */
  4780. void complete(struct completion *x)
  4781. {
  4782. unsigned long flags;
  4783. spin_lock_irqsave(&x->wait.lock, flags);
  4784. x->done++;
  4785. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4786. spin_unlock_irqrestore(&x->wait.lock, flags);
  4787. }
  4788. EXPORT_SYMBOL(complete);
  4789. /**
  4790. * complete_all: - signals all threads waiting on this completion
  4791. * @x: holds the state of this particular completion
  4792. *
  4793. * This will wake up all threads waiting on this particular completion event.
  4794. *
  4795. * It may be assumed that this function implies a write memory barrier before
  4796. * changing the task state if and only if any tasks are woken up.
  4797. */
  4798. void complete_all(struct completion *x)
  4799. {
  4800. unsigned long flags;
  4801. spin_lock_irqsave(&x->wait.lock, flags);
  4802. x->done += UINT_MAX/2;
  4803. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4804. spin_unlock_irqrestore(&x->wait.lock, flags);
  4805. }
  4806. EXPORT_SYMBOL(complete_all);
  4807. static inline long __sched
  4808. do_wait_for_common(struct completion *x, long timeout, int state)
  4809. {
  4810. if (!x->done) {
  4811. DECLARE_WAITQUEUE(wait, current);
  4812. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4813. __add_wait_queue_tail(&x->wait, &wait);
  4814. do {
  4815. if (signal_pending_state(state, current)) {
  4816. timeout = -ERESTARTSYS;
  4817. break;
  4818. }
  4819. __set_current_state(state);
  4820. spin_unlock_irq(&x->wait.lock);
  4821. timeout = schedule_timeout(timeout);
  4822. spin_lock_irq(&x->wait.lock);
  4823. } while (!x->done && timeout);
  4824. __remove_wait_queue(&x->wait, &wait);
  4825. if (!x->done)
  4826. return timeout;
  4827. }
  4828. x->done--;
  4829. return timeout ?: 1;
  4830. }
  4831. static long __sched
  4832. wait_for_common(struct completion *x, long timeout, int state)
  4833. {
  4834. might_sleep();
  4835. spin_lock_irq(&x->wait.lock);
  4836. timeout = do_wait_for_common(x, timeout, state);
  4837. spin_unlock_irq(&x->wait.lock);
  4838. return timeout;
  4839. }
  4840. /**
  4841. * wait_for_completion: - waits for completion of a task
  4842. * @x: holds the state of this particular completion
  4843. *
  4844. * This waits to be signaled for completion of a specific task. It is NOT
  4845. * interruptible and there is no timeout.
  4846. *
  4847. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4848. * and interrupt capability. Also see complete().
  4849. */
  4850. void __sched wait_for_completion(struct completion *x)
  4851. {
  4852. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4853. }
  4854. EXPORT_SYMBOL(wait_for_completion);
  4855. /**
  4856. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4857. * @x: holds the state of this particular completion
  4858. * @timeout: timeout value in jiffies
  4859. *
  4860. * This waits for either a completion of a specific task to be signaled or for a
  4861. * specified timeout to expire. The timeout is in jiffies. It is not
  4862. * interruptible.
  4863. */
  4864. unsigned long __sched
  4865. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4866. {
  4867. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4868. }
  4869. EXPORT_SYMBOL(wait_for_completion_timeout);
  4870. /**
  4871. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4872. * @x: holds the state of this particular completion
  4873. *
  4874. * This waits for completion of a specific task to be signaled. It is
  4875. * interruptible.
  4876. */
  4877. int __sched wait_for_completion_interruptible(struct completion *x)
  4878. {
  4879. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4880. if (t == -ERESTARTSYS)
  4881. return t;
  4882. return 0;
  4883. }
  4884. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4885. /**
  4886. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4887. * @x: holds the state of this particular completion
  4888. * @timeout: timeout value in jiffies
  4889. *
  4890. * This waits for either a completion of a specific task to be signaled or for a
  4891. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4892. */
  4893. unsigned long __sched
  4894. wait_for_completion_interruptible_timeout(struct completion *x,
  4895. unsigned long timeout)
  4896. {
  4897. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4898. }
  4899. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4900. /**
  4901. * wait_for_completion_killable: - waits for completion of a task (killable)
  4902. * @x: holds the state of this particular completion
  4903. *
  4904. * This waits to be signaled for completion of a specific task. It can be
  4905. * interrupted by a kill signal.
  4906. */
  4907. int __sched wait_for_completion_killable(struct completion *x)
  4908. {
  4909. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4910. if (t == -ERESTARTSYS)
  4911. return t;
  4912. return 0;
  4913. }
  4914. EXPORT_SYMBOL(wait_for_completion_killable);
  4915. /**
  4916. * try_wait_for_completion - try to decrement a completion without blocking
  4917. * @x: completion structure
  4918. *
  4919. * Returns: 0 if a decrement cannot be done without blocking
  4920. * 1 if a decrement succeeded.
  4921. *
  4922. * If a completion is being used as a counting completion,
  4923. * attempt to decrement the counter without blocking. This
  4924. * enables us to avoid waiting if the resource the completion
  4925. * is protecting is not available.
  4926. */
  4927. bool try_wait_for_completion(struct completion *x)
  4928. {
  4929. int ret = 1;
  4930. spin_lock_irq(&x->wait.lock);
  4931. if (!x->done)
  4932. ret = 0;
  4933. else
  4934. x->done--;
  4935. spin_unlock_irq(&x->wait.lock);
  4936. return ret;
  4937. }
  4938. EXPORT_SYMBOL(try_wait_for_completion);
  4939. /**
  4940. * completion_done - Test to see if a completion has any waiters
  4941. * @x: completion structure
  4942. *
  4943. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4944. * 1 if there are no waiters.
  4945. *
  4946. */
  4947. bool completion_done(struct completion *x)
  4948. {
  4949. int ret = 1;
  4950. spin_lock_irq(&x->wait.lock);
  4951. if (!x->done)
  4952. ret = 0;
  4953. spin_unlock_irq(&x->wait.lock);
  4954. return ret;
  4955. }
  4956. EXPORT_SYMBOL(completion_done);
  4957. static long __sched
  4958. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4959. {
  4960. unsigned long flags;
  4961. wait_queue_t wait;
  4962. init_waitqueue_entry(&wait, current);
  4963. __set_current_state(state);
  4964. spin_lock_irqsave(&q->lock, flags);
  4965. __add_wait_queue(q, &wait);
  4966. spin_unlock(&q->lock);
  4967. timeout = schedule_timeout(timeout);
  4968. spin_lock_irq(&q->lock);
  4969. __remove_wait_queue(q, &wait);
  4970. spin_unlock_irqrestore(&q->lock, flags);
  4971. return timeout;
  4972. }
  4973. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4974. {
  4975. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4976. }
  4977. EXPORT_SYMBOL(interruptible_sleep_on);
  4978. long __sched
  4979. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4980. {
  4981. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4982. }
  4983. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4984. void __sched sleep_on(wait_queue_head_t *q)
  4985. {
  4986. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4987. }
  4988. EXPORT_SYMBOL(sleep_on);
  4989. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4990. {
  4991. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4992. }
  4993. EXPORT_SYMBOL(sleep_on_timeout);
  4994. #ifdef CONFIG_RT_MUTEXES
  4995. /*
  4996. * rt_mutex_setprio - set the current priority of a task
  4997. * @p: task
  4998. * @prio: prio value (kernel-internal form)
  4999. *
  5000. * This function changes the 'effective' priority of a task. It does
  5001. * not touch ->normal_prio like __setscheduler().
  5002. *
  5003. * Used by the rt_mutex code to implement priority inheritance logic.
  5004. */
  5005. void rt_mutex_setprio(struct task_struct *p, int prio)
  5006. {
  5007. unsigned long flags;
  5008. int oldprio, on_rq, running;
  5009. struct rq *rq;
  5010. const struct sched_class *prev_class = p->sched_class;
  5011. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5012. rq = task_rq_lock(p, &flags);
  5013. update_rq_clock(rq);
  5014. oldprio = p->prio;
  5015. on_rq = p->se.on_rq;
  5016. running = task_current(rq, p);
  5017. if (on_rq)
  5018. dequeue_task(rq, p, 0);
  5019. if (running)
  5020. p->sched_class->put_prev_task(rq, p);
  5021. if (rt_prio(prio))
  5022. p->sched_class = &rt_sched_class;
  5023. else
  5024. p->sched_class = &fair_sched_class;
  5025. p->prio = prio;
  5026. if (running)
  5027. p->sched_class->set_curr_task(rq);
  5028. if (on_rq) {
  5029. enqueue_task(rq, p, 0);
  5030. check_class_changed(rq, p, prev_class, oldprio, running);
  5031. }
  5032. task_rq_unlock(rq, &flags);
  5033. }
  5034. #endif
  5035. void set_user_nice(struct task_struct *p, long nice)
  5036. {
  5037. int old_prio, delta, on_rq;
  5038. unsigned long flags;
  5039. struct rq *rq;
  5040. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5041. return;
  5042. /*
  5043. * We have to be careful, if called from sys_setpriority(),
  5044. * the task might be in the middle of scheduling on another CPU.
  5045. */
  5046. rq = task_rq_lock(p, &flags);
  5047. update_rq_clock(rq);
  5048. /*
  5049. * The RT priorities are set via sched_setscheduler(), but we still
  5050. * allow the 'normal' nice value to be set - but as expected
  5051. * it wont have any effect on scheduling until the task is
  5052. * SCHED_FIFO/SCHED_RR:
  5053. */
  5054. if (task_has_rt_policy(p)) {
  5055. p->static_prio = NICE_TO_PRIO(nice);
  5056. goto out_unlock;
  5057. }
  5058. on_rq = p->se.on_rq;
  5059. if (on_rq)
  5060. dequeue_task(rq, p, 0);
  5061. p->static_prio = NICE_TO_PRIO(nice);
  5062. set_load_weight(p);
  5063. old_prio = p->prio;
  5064. p->prio = effective_prio(p);
  5065. delta = p->prio - old_prio;
  5066. if (on_rq) {
  5067. enqueue_task(rq, p, 0);
  5068. /*
  5069. * If the task increased its priority or is running and
  5070. * lowered its priority, then reschedule its CPU:
  5071. */
  5072. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5073. resched_task(rq->curr);
  5074. }
  5075. out_unlock:
  5076. task_rq_unlock(rq, &flags);
  5077. }
  5078. EXPORT_SYMBOL(set_user_nice);
  5079. /*
  5080. * can_nice - check if a task can reduce its nice value
  5081. * @p: task
  5082. * @nice: nice value
  5083. */
  5084. int can_nice(const struct task_struct *p, const int nice)
  5085. {
  5086. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5087. int nice_rlim = 20 - nice;
  5088. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5089. capable(CAP_SYS_NICE));
  5090. }
  5091. #ifdef __ARCH_WANT_SYS_NICE
  5092. /*
  5093. * sys_nice - change the priority of the current process.
  5094. * @increment: priority increment
  5095. *
  5096. * sys_setpriority is a more generic, but much slower function that
  5097. * does similar things.
  5098. */
  5099. SYSCALL_DEFINE1(nice, int, increment)
  5100. {
  5101. long nice, retval;
  5102. /*
  5103. * Setpriority might change our priority at the same moment.
  5104. * We don't have to worry. Conceptually one call occurs first
  5105. * and we have a single winner.
  5106. */
  5107. if (increment < -40)
  5108. increment = -40;
  5109. if (increment > 40)
  5110. increment = 40;
  5111. nice = TASK_NICE(current) + increment;
  5112. if (nice < -20)
  5113. nice = -20;
  5114. if (nice > 19)
  5115. nice = 19;
  5116. if (increment < 0 && !can_nice(current, nice))
  5117. return -EPERM;
  5118. retval = security_task_setnice(current, nice);
  5119. if (retval)
  5120. return retval;
  5121. set_user_nice(current, nice);
  5122. return 0;
  5123. }
  5124. #endif
  5125. /**
  5126. * task_prio - return the priority value of a given task.
  5127. * @p: the task in question.
  5128. *
  5129. * This is the priority value as seen by users in /proc.
  5130. * RT tasks are offset by -200. Normal tasks are centered
  5131. * around 0, value goes from -16 to +15.
  5132. */
  5133. int task_prio(const struct task_struct *p)
  5134. {
  5135. return p->prio - MAX_RT_PRIO;
  5136. }
  5137. /**
  5138. * task_nice - return the nice value of a given task.
  5139. * @p: the task in question.
  5140. */
  5141. int task_nice(const struct task_struct *p)
  5142. {
  5143. return TASK_NICE(p);
  5144. }
  5145. EXPORT_SYMBOL(task_nice);
  5146. /**
  5147. * idle_cpu - is a given cpu idle currently?
  5148. * @cpu: the processor in question.
  5149. */
  5150. int idle_cpu(int cpu)
  5151. {
  5152. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5153. }
  5154. /**
  5155. * idle_task - return the idle task for a given cpu.
  5156. * @cpu: the processor in question.
  5157. */
  5158. struct task_struct *idle_task(int cpu)
  5159. {
  5160. return cpu_rq(cpu)->idle;
  5161. }
  5162. /**
  5163. * find_process_by_pid - find a process with a matching PID value.
  5164. * @pid: the pid in question.
  5165. */
  5166. static struct task_struct *find_process_by_pid(pid_t pid)
  5167. {
  5168. return pid ? find_task_by_vpid(pid) : current;
  5169. }
  5170. /* Actually do priority change: must hold rq lock. */
  5171. static void
  5172. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5173. {
  5174. BUG_ON(p->se.on_rq);
  5175. p->policy = policy;
  5176. switch (p->policy) {
  5177. case SCHED_NORMAL:
  5178. case SCHED_BATCH:
  5179. case SCHED_IDLE:
  5180. p->sched_class = &fair_sched_class;
  5181. break;
  5182. case SCHED_FIFO:
  5183. case SCHED_RR:
  5184. p->sched_class = &rt_sched_class;
  5185. break;
  5186. }
  5187. p->rt_priority = prio;
  5188. p->normal_prio = normal_prio(p);
  5189. /* we are holding p->pi_lock already */
  5190. p->prio = rt_mutex_getprio(p);
  5191. set_load_weight(p);
  5192. }
  5193. /*
  5194. * check the target process has a UID that matches the current process's
  5195. */
  5196. static bool check_same_owner(struct task_struct *p)
  5197. {
  5198. const struct cred *cred = current_cred(), *pcred;
  5199. bool match;
  5200. rcu_read_lock();
  5201. pcred = __task_cred(p);
  5202. match = (cred->euid == pcred->euid ||
  5203. cred->euid == pcred->uid);
  5204. rcu_read_unlock();
  5205. return match;
  5206. }
  5207. static int __sched_setscheduler(struct task_struct *p, int policy,
  5208. struct sched_param *param, bool user)
  5209. {
  5210. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5211. unsigned long flags;
  5212. const struct sched_class *prev_class = p->sched_class;
  5213. struct rq *rq;
  5214. /* may grab non-irq protected spin_locks */
  5215. BUG_ON(in_interrupt());
  5216. recheck:
  5217. /* double check policy once rq lock held */
  5218. if (policy < 0)
  5219. policy = oldpolicy = p->policy;
  5220. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5221. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5222. policy != SCHED_IDLE)
  5223. return -EINVAL;
  5224. /*
  5225. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5226. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5227. * SCHED_BATCH and SCHED_IDLE is 0.
  5228. */
  5229. if (param->sched_priority < 0 ||
  5230. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5231. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5232. return -EINVAL;
  5233. if (rt_policy(policy) != (param->sched_priority != 0))
  5234. return -EINVAL;
  5235. /*
  5236. * Allow unprivileged RT tasks to decrease priority:
  5237. */
  5238. if (user && !capable(CAP_SYS_NICE)) {
  5239. if (rt_policy(policy)) {
  5240. unsigned long rlim_rtprio;
  5241. if (!lock_task_sighand(p, &flags))
  5242. return -ESRCH;
  5243. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5244. unlock_task_sighand(p, &flags);
  5245. /* can't set/change the rt policy */
  5246. if (policy != p->policy && !rlim_rtprio)
  5247. return -EPERM;
  5248. /* can't increase priority */
  5249. if (param->sched_priority > p->rt_priority &&
  5250. param->sched_priority > rlim_rtprio)
  5251. return -EPERM;
  5252. }
  5253. /*
  5254. * Like positive nice levels, dont allow tasks to
  5255. * move out of SCHED_IDLE either:
  5256. */
  5257. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5258. return -EPERM;
  5259. /* can't change other user's priorities */
  5260. if (!check_same_owner(p))
  5261. return -EPERM;
  5262. }
  5263. if (user) {
  5264. #ifdef CONFIG_RT_GROUP_SCHED
  5265. /*
  5266. * Do not allow realtime tasks into groups that have no runtime
  5267. * assigned.
  5268. */
  5269. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5270. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5271. return -EPERM;
  5272. #endif
  5273. retval = security_task_setscheduler(p, policy, param);
  5274. if (retval)
  5275. return retval;
  5276. }
  5277. /*
  5278. * make sure no PI-waiters arrive (or leave) while we are
  5279. * changing the priority of the task:
  5280. */
  5281. spin_lock_irqsave(&p->pi_lock, flags);
  5282. /*
  5283. * To be able to change p->policy safely, the apropriate
  5284. * runqueue lock must be held.
  5285. */
  5286. rq = __task_rq_lock(p);
  5287. /* recheck policy now with rq lock held */
  5288. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5289. policy = oldpolicy = -1;
  5290. __task_rq_unlock(rq);
  5291. spin_unlock_irqrestore(&p->pi_lock, flags);
  5292. goto recheck;
  5293. }
  5294. update_rq_clock(rq);
  5295. on_rq = p->se.on_rq;
  5296. running = task_current(rq, p);
  5297. if (on_rq)
  5298. deactivate_task(rq, p, 0);
  5299. if (running)
  5300. p->sched_class->put_prev_task(rq, p);
  5301. oldprio = p->prio;
  5302. __setscheduler(rq, p, policy, param->sched_priority);
  5303. if (running)
  5304. p->sched_class->set_curr_task(rq);
  5305. if (on_rq) {
  5306. activate_task(rq, p, 0);
  5307. check_class_changed(rq, p, prev_class, oldprio, running);
  5308. }
  5309. __task_rq_unlock(rq);
  5310. spin_unlock_irqrestore(&p->pi_lock, flags);
  5311. rt_mutex_adjust_pi(p);
  5312. return 0;
  5313. }
  5314. /**
  5315. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5316. * @p: the task in question.
  5317. * @policy: new policy.
  5318. * @param: structure containing the new RT priority.
  5319. *
  5320. * NOTE that the task may be already dead.
  5321. */
  5322. int sched_setscheduler(struct task_struct *p, int policy,
  5323. struct sched_param *param)
  5324. {
  5325. return __sched_setscheduler(p, policy, param, true);
  5326. }
  5327. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5328. /**
  5329. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5330. * @p: the task in question.
  5331. * @policy: new policy.
  5332. * @param: structure containing the new RT priority.
  5333. *
  5334. * Just like sched_setscheduler, only don't bother checking if the
  5335. * current context has permission. For example, this is needed in
  5336. * stop_machine(): we create temporary high priority worker threads,
  5337. * but our caller might not have that capability.
  5338. */
  5339. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5340. struct sched_param *param)
  5341. {
  5342. return __sched_setscheduler(p, policy, param, false);
  5343. }
  5344. static int
  5345. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5346. {
  5347. struct sched_param lparam;
  5348. struct task_struct *p;
  5349. int retval;
  5350. if (!param || pid < 0)
  5351. return -EINVAL;
  5352. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5353. return -EFAULT;
  5354. rcu_read_lock();
  5355. retval = -ESRCH;
  5356. p = find_process_by_pid(pid);
  5357. if (p != NULL)
  5358. retval = sched_setscheduler(p, policy, &lparam);
  5359. rcu_read_unlock();
  5360. return retval;
  5361. }
  5362. /**
  5363. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5364. * @pid: the pid in question.
  5365. * @policy: new policy.
  5366. * @param: structure containing the new RT priority.
  5367. */
  5368. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5369. struct sched_param __user *, param)
  5370. {
  5371. /* negative values for policy are not valid */
  5372. if (policy < 0)
  5373. return -EINVAL;
  5374. return do_sched_setscheduler(pid, policy, param);
  5375. }
  5376. /**
  5377. * sys_sched_setparam - set/change the RT priority of a thread
  5378. * @pid: the pid in question.
  5379. * @param: structure containing the new RT priority.
  5380. */
  5381. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5382. {
  5383. return do_sched_setscheduler(pid, -1, param);
  5384. }
  5385. /**
  5386. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5387. * @pid: the pid in question.
  5388. */
  5389. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5390. {
  5391. struct task_struct *p;
  5392. int retval;
  5393. if (pid < 0)
  5394. return -EINVAL;
  5395. retval = -ESRCH;
  5396. read_lock(&tasklist_lock);
  5397. p = find_process_by_pid(pid);
  5398. if (p) {
  5399. retval = security_task_getscheduler(p);
  5400. if (!retval)
  5401. retval = p->policy;
  5402. }
  5403. read_unlock(&tasklist_lock);
  5404. return retval;
  5405. }
  5406. /**
  5407. * sys_sched_getscheduler - get the RT priority of a thread
  5408. * @pid: the pid in question.
  5409. * @param: structure containing the RT priority.
  5410. */
  5411. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5412. {
  5413. struct sched_param lp;
  5414. struct task_struct *p;
  5415. int retval;
  5416. if (!param || pid < 0)
  5417. return -EINVAL;
  5418. read_lock(&tasklist_lock);
  5419. p = find_process_by_pid(pid);
  5420. retval = -ESRCH;
  5421. if (!p)
  5422. goto out_unlock;
  5423. retval = security_task_getscheduler(p);
  5424. if (retval)
  5425. goto out_unlock;
  5426. lp.sched_priority = p->rt_priority;
  5427. read_unlock(&tasklist_lock);
  5428. /*
  5429. * This one might sleep, we cannot do it with a spinlock held ...
  5430. */
  5431. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5432. return retval;
  5433. out_unlock:
  5434. read_unlock(&tasklist_lock);
  5435. return retval;
  5436. }
  5437. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5438. {
  5439. cpumask_var_t cpus_allowed, new_mask;
  5440. struct task_struct *p;
  5441. int retval;
  5442. get_online_cpus();
  5443. read_lock(&tasklist_lock);
  5444. p = find_process_by_pid(pid);
  5445. if (!p) {
  5446. read_unlock(&tasklist_lock);
  5447. put_online_cpus();
  5448. return -ESRCH;
  5449. }
  5450. /*
  5451. * It is not safe to call set_cpus_allowed with the
  5452. * tasklist_lock held. We will bump the task_struct's
  5453. * usage count and then drop tasklist_lock.
  5454. */
  5455. get_task_struct(p);
  5456. read_unlock(&tasklist_lock);
  5457. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5458. retval = -ENOMEM;
  5459. goto out_put_task;
  5460. }
  5461. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5462. retval = -ENOMEM;
  5463. goto out_free_cpus_allowed;
  5464. }
  5465. retval = -EPERM;
  5466. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5467. goto out_unlock;
  5468. retval = security_task_setscheduler(p, 0, NULL);
  5469. if (retval)
  5470. goto out_unlock;
  5471. cpuset_cpus_allowed(p, cpus_allowed);
  5472. cpumask_and(new_mask, in_mask, cpus_allowed);
  5473. again:
  5474. retval = set_cpus_allowed_ptr(p, new_mask);
  5475. if (!retval) {
  5476. cpuset_cpus_allowed(p, cpus_allowed);
  5477. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5478. /*
  5479. * We must have raced with a concurrent cpuset
  5480. * update. Just reset the cpus_allowed to the
  5481. * cpuset's cpus_allowed
  5482. */
  5483. cpumask_copy(new_mask, cpus_allowed);
  5484. goto again;
  5485. }
  5486. }
  5487. out_unlock:
  5488. free_cpumask_var(new_mask);
  5489. out_free_cpus_allowed:
  5490. free_cpumask_var(cpus_allowed);
  5491. out_put_task:
  5492. put_task_struct(p);
  5493. put_online_cpus();
  5494. return retval;
  5495. }
  5496. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5497. struct cpumask *new_mask)
  5498. {
  5499. if (len < cpumask_size())
  5500. cpumask_clear(new_mask);
  5501. else if (len > cpumask_size())
  5502. len = cpumask_size();
  5503. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5504. }
  5505. /**
  5506. * sys_sched_setaffinity - set the cpu affinity of a process
  5507. * @pid: pid of the process
  5508. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5509. * @user_mask_ptr: user-space pointer to the new cpu mask
  5510. */
  5511. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5512. unsigned long __user *, user_mask_ptr)
  5513. {
  5514. cpumask_var_t new_mask;
  5515. int retval;
  5516. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5517. return -ENOMEM;
  5518. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5519. if (retval == 0)
  5520. retval = sched_setaffinity(pid, new_mask);
  5521. free_cpumask_var(new_mask);
  5522. return retval;
  5523. }
  5524. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5525. {
  5526. struct task_struct *p;
  5527. int retval;
  5528. get_online_cpus();
  5529. read_lock(&tasklist_lock);
  5530. retval = -ESRCH;
  5531. p = find_process_by_pid(pid);
  5532. if (!p)
  5533. goto out_unlock;
  5534. retval = security_task_getscheduler(p);
  5535. if (retval)
  5536. goto out_unlock;
  5537. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5538. out_unlock:
  5539. read_unlock(&tasklist_lock);
  5540. put_online_cpus();
  5541. return retval;
  5542. }
  5543. /**
  5544. * sys_sched_getaffinity - get the cpu affinity of a process
  5545. * @pid: pid of the process
  5546. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5547. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5548. */
  5549. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5550. unsigned long __user *, user_mask_ptr)
  5551. {
  5552. int ret;
  5553. cpumask_var_t mask;
  5554. if (len < cpumask_size())
  5555. return -EINVAL;
  5556. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5557. return -ENOMEM;
  5558. ret = sched_getaffinity(pid, mask);
  5559. if (ret == 0) {
  5560. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5561. ret = -EFAULT;
  5562. else
  5563. ret = cpumask_size();
  5564. }
  5565. free_cpumask_var(mask);
  5566. return ret;
  5567. }
  5568. /**
  5569. * sys_sched_yield - yield the current processor to other threads.
  5570. *
  5571. * This function yields the current CPU to other tasks. If there are no
  5572. * other threads running on this CPU then this function will return.
  5573. */
  5574. SYSCALL_DEFINE0(sched_yield)
  5575. {
  5576. struct rq *rq = this_rq_lock();
  5577. schedstat_inc(rq, yld_count);
  5578. current->sched_class->yield_task(rq);
  5579. /*
  5580. * Since we are going to call schedule() anyway, there's
  5581. * no need to preempt or enable interrupts:
  5582. */
  5583. __release(rq->lock);
  5584. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5585. _raw_spin_unlock(&rq->lock);
  5586. preempt_enable_no_resched();
  5587. schedule();
  5588. return 0;
  5589. }
  5590. static void __cond_resched(void)
  5591. {
  5592. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5593. __might_sleep(__FILE__, __LINE__);
  5594. #endif
  5595. /*
  5596. * The BKS might be reacquired before we have dropped
  5597. * PREEMPT_ACTIVE, which could trigger a second
  5598. * cond_resched() call.
  5599. */
  5600. do {
  5601. add_preempt_count(PREEMPT_ACTIVE);
  5602. schedule();
  5603. sub_preempt_count(PREEMPT_ACTIVE);
  5604. } while (need_resched());
  5605. }
  5606. int __sched _cond_resched(void)
  5607. {
  5608. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5609. system_state == SYSTEM_RUNNING) {
  5610. __cond_resched();
  5611. return 1;
  5612. }
  5613. return 0;
  5614. }
  5615. EXPORT_SYMBOL(_cond_resched);
  5616. /*
  5617. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5618. * call schedule, and on return reacquire the lock.
  5619. *
  5620. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5621. * operations here to prevent schedule() from being called twice (once via
  5622. * spin_unlock(), once by hand).
  5623. */
  5624. int cond_resched_lock(spinlock_t *lock)
  5625. {
  5626. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5627. int ret = 0;
  5628. if (spin_needbreak(lock) || resched) {
  5629. spin_unlock(lock);
  5630. if (resched && need_resched())
  5631. __cond_resched();
  5632. else
  5633. cpu_relax();
  5634. ret = 1;
  5635. spin_lock(lock);
  5636. }
  5637. return ret;
  5638. }
  5639. EXPORT_SYMBOL(cond_resched_lock);
  5640. int __sched cond_resched_softirq(void)
  5641. {
  5642. BUG_ON(!in_softirq());
  5643. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5644. local_bh_enable();
  5645. __cond_resched();
  5646. local_bh_disable();
  5647. return 1;
  5648. }
  5649. return 0;
  5650. }
  5651. EXPORT_SYMBOL(cond_resched_softirq);
  5652. /**
  5653. * yield - yield the current processor to other threads.
  5654. *
  5655. * This is a shortcut for kernel-space yielding - it marks the
  5656. * thread runnable and calls sys_sched_yield().
  5657. */
  5658. void __sched yield(void)
  5659. {
  5660. set_current_state(TASK_RUNNING);
  5661. sys_sched_yield();
  5662. }
  5663. EXPORT_SYMBOL(yield);
  5664. /*
  5665. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5666. * that process accounting knows that this is a task in IO wait state.
  5667. *
  5668. * But don't do that if it is a deliberate, throttling IO wait (this task
  5669. * has set its backing_dev_info: the queue against which it should throttle)
  5670. */
  5671. void __sched io_schedule(void)
  5672. {
  5673. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5674. delayacct_blkio_start();
  5675. atomic_inc(&rq->nr_iowait);
  5676. schedule();
  5677. atomic_dec(&rq->nr_iowait);
  5678. delayacct_blkio_end();
  5679. }
  5680. EXPORT_SYMBOL(io_schedule);
  5681. long __sched io_schedule_timeout(long timeout)
  5682. {
  5683. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5684. long ret;
  5685. delayacct_blkio_start();
  5686. atomic_inc(&rq->nr_iowait);
  5687. ret = schedule_timeout(timeout);
  5688. atomic_dec(&rq->nr_iowait);
  5689. delayacct_blkio_end();
  5690. return ret;
  5691. }
  5692. /**
  5693. * sys_sched_get_priority_max - return maximum RT priority.
  5694. * @policy: scheduling class.
  5695. *
  5696. * this syscall returns the maximum rt_priority that can be used
  5697. * by a given scheduling class.
  5698. */
  5699. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5700. {
  5701. int ret = -EINVAL;
  5702. switch (policy) {
  5703. case SCHED_FIFO:
  5704. case SCHED_RR:
  5705. ret = MAX_USER_RT_PRIO-1;
  5706. break;
  5707. case SCHED_NORMAL:
  5708. case SCHED_BATCH:
  5709. case SCHED_IDLE:
  5710. ret = 0;
  5711. break;
  5712. }
  5713. return ret;
  5714. }
  5715. /**
  5716. * sys_sched_get_priority_min - return minimum RT priority.
  5717. * @policy: scheduling class.
  5718. *
  5719. * this syscall returns the minimum rt_priority that can be used
  5720. * by a given scheduling class.
  5721. */
  5722. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5723. {
  5724. int ret = -EINVAL;
  5725. switch (policy) {
  5726. case SCHED_FIFO:
  5727. case SCHED_RR:
  5728. ret = 1;
  5729. break;
  5730. case SCHED_NORMAL:
  5731. case SCHED_BATCH:
  5732. case SCHED_IDLE:
  5733. ret = 0;
  5734. }
  5735. return ret;
  5736. }
  5737. /**
  5738. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5739. * @pid: pid of the process.
  5740. * @interval: userspace pointer to the timeslice value.
  5741. *
  5742. * this syscall writes the default timeslice value of a given process
  5743. * into the user-space timespec buffer. A value of '0' means infinity.
  5744. */
  5745. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5746. struct timespec __user *, interval)
  5747. {
  5748. struct task_struct *p;
  5749. unsigned int time_slice;
  5750. int retval;
  5751. struct timespec t;
  5752. if (pid < 0)
  5753. return -EINVAL;
  5754. retval = -ESRCH;
  5755. read_lock(&tasklist_lock);
  5756. p = find_process_by_pid(pid);
  5757. if (!p)
  5758. goto out_unlock;
  5759. retval = security_task_getscheduler(p);
  5760. if (retval)
  5761. goto out_unlock;
  5762. /*
  5763. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5764. * tasks that are on an otherwise idle runqueue:
  5765. */
  5766. time_slice = 0;
  5767. if (p->policy == SCHED_RR) {
  5768. time_slice = DEF_TIMESLICE;
  5769. } else if (p->policy != SCHED_FIFO) {
  5770. struct sched_entity *se = &p->se;
  5771. unsigned long flags;
  5772. struct rq *rq;
  5773. rq = task_rq_lock(p, &flags);
  5774. if (rq->cfs.load.weight)
  5775. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5776. task_rq_unlock(rq, &flags);
  5777. }
  5778. read_unlock(&tasklist_lock);
  5779. jiffies_to_timespec(time_slice, &t);
  5780. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5781. return retval;
  5782. out_unlock:
  5783. read_unlock(&tasklist_lock);
  5784. return retval;
  5785. }
  5786. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5787. void sched_show_task(struct task_struct *p)
  5788. {
  5789. unsigned long free = 0;
  5790. unsigned state;
  5791. state = p->state ? __ffs(p->state) + 1 : 0;
  5792. printk(KERN_INFO "%-13.13s %c", p->comm,
  5793. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5794. #if BITS_PER_LONG == 32
  5795. if (state == TASK_RUNNING)
  5796. printk(KERN_CONT " running ");
  5797. else
  5798. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5799. #else
  5800. if (state == TASK_RUNNING)
  5801. printk(KERN_CONT " running task ");
  5802. else
  5803. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5804. #endif
  5805. #ifdef CONFIG_DEBUG_STACK_USAGE
  5806. free = stack_not_used(p);
  5807. #endif
  5808. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5809. task_pid_nr(p), task_pid_nr(p->real_parent),
  5810. (unsigned long)task_thread_info(p)->flags);
  5811. show_stack(p, NULL);
  5812. }
  5813. void show_state_filter(unsigned long state_filter)
  5814. {
  5815. struct task_struct *g, *p;
  5816. #if BITS_PER_LONG == 32
  5817. printk(KERN_INFO
  5818. " task PC stack pid father\n");
  5819. #else
  5820. printk(KERN_INFO
  5821. " task PC stack pid father\n");
  5822. #endif
  5823. read_lock(&tasklist_lock);
  5824. do_each_thread(g, p) {
  5825. /*
  5826. * reset the NMI-timeout, listing all files on a slow
  5827. * console might take alot of time:
  5828. */
  5829. touch_nmi_watchdog();
  5830. if (!state_filter || (p->state & state_filter))
  5831. sched_show_task(p);
  5832. } while_each_thread(g, p);
  5833. touch_all_softlockup_watchdogs();
  5834. #ifdef CONFIG_SCHED_DEBUG
  5835. sysrq_sched_debug_show();
  5836. #endif
  5837. read_unlock(&tasklist_lock);
  5838. /*
  5839. * Only show locks if all tasks are dumped:
  5840. */
  5841. if (state_filter == -1)
  5842. debug_show_all_locks();
  5843. }
  5844. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5845. {
  5846. idle->sched_class = &idle_sched_class;
  5847. }
  5848. /**
  5849. * init_idle - set up an idle thread for a given CPU
  5850. * @idle: task in question
  5851. * @cpu: cpu the idle task belongs to
  5852. *
  5853. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5854. * flag, to make booting more robust.
  5855. */
  5856. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5857. {
  5858. struct rq *rq = cpu_rq(cpu);
  5859. unsigned long flags;
  5860. spin_lock_irqsave(&rq->lock, flags);
  5861. __sched_fork(idle);
  5862. idle->se.exec_start = sched_clock();
  5863. idle->prio = idle->normal_prio = MAX_PRIO;
  5864. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5865. __set_task_cpu(idle, cpu);
  5866. rq->curr = rq->idle = idle;
  5867. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5868. idle->oncpu = 1;
  5869. #endif
  5870. spin_unlock_irqrestore(&rq->lock, flags);
  5871. /* Set the preempt count _outside_ the spinlocks! */
  5872. #if defined(CONFIG_PREEMPT)
  5873. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5874. #else
  5875. task_thread_info(idle)->preempt_count = 0;
  5876. #endif
  5877. /*
  5878. * The idle tasks have their own, simple scheduling class:
  5879. */
  5880. idle->sched_class = &idle_sched_class;
  5881. ftrace_graph_init_task(idle);
  5882. }
  5883. /*
  5884. * In a system that switches off the HZ timer nohz_cpu_mask
  5885. * indicates which cpus entered this state. This is used
  5886. * in the rcu update to wait only for active cpus. For system
  5887. * which do not switch off the HZ timer nohz_cpu_mask should
  5888. * always be CPU_BITS_NONE.
  5889. */
  5890. cpumask_var_t nohz_cpu_mask;
  5891. /*
  5892. * Increase the granularity value when there are more CPUs,
  5893. * because with more CPUs the 'effective latency' as visible
  5894. * to users decreases. But the relationship is not linear,
  5895. * so pick a second-best guess by going with the log2 of the
  5896. * number of CPUs.
  5897. *
  5898. * This idea comes from the SD scheduler of Con Kolivas:
  5899. */
  5900. static inline void sched_init_granularity(void)
  5901. {
  5902. unsigned int factor = 1 + ilog2(num_online_cpus());
  5903. const unsigned long limit = 200000000;
  5904. sysctl_sched_min_granularity *= factor;
  5905. if (sysctl_sched_min_granularity > limit)
  5906. sysctl_sched_min_granularity = limit;
  5907. sysctl_sched_latency *= factor;
  5908. if (sysctl_sched_latency > limit)
  5909. sysctl_sched_latency = limit;
  5910. sysctl_sched_wakeup_granularity *= factor;
  5911. sysctl_sched_shares_ratelimit *= factor;
  5912. }
  5913. #ifdef CONFIG_SMP
  5914. /*
  5915. * This is how migration works:
  5916. *
  5917. * 1) we queue a struct migration_req structure in the source CPU's
  5918. * runqueue and wake up that CPU's migration thread.
  5919. * 2) we down() the locked semaphore => thread blocks.
  5920. * 3) migration thread wakes up (implicitly it forces the migrated
  5921. * thread off the CPU)
  5922. * 4) it gets the migration request and checks whether the migrated
  5923. * task is still in the wrong runqueue.
  5924. * 5) if it's in the wrong runqueue then the migration thread removes
  5925. * it and puts it into the right queue.
  5926. * 6) migration thread up()s the semaphore.
  5927. * 7) we wake up and the migration is done.
  5928. */
  5929. /*
  5930. * Change a given task's CPU affinity. Migrate the thread to a
  5931. * proper CPU and schedule it away if the CPU it's executing on
  5932. * is removed from the allowed bitmask.
  5933. *
  5934. * NOTE: the caller must have a valid reference to the task, the
  5935. * task must not exit() & deallocate itself prematurely. The
  5936. * call is not atomic; no spinlocks may be held.
  5937. */
  5938. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5939. {
  5940. struct migration_req req;
  5941. unsigned long flags;
  5942. struct rq *rq;
  5943. int ret = 0;
  5944. rq = task_rq_lock(p, &flags);
  5945. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5946. ret = -EINVAL;
  5947. goto out;
  5948. }
  5949. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5950. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5951. ret = -EINVAL;
  5952. goto out;
  5953. }
  5954. if (p->sched_class->set_cpus_allowed)
  5955. p->sched_class->set_cpus_allowed(p, new_mask);
  5956. else {
  5957. cpumask_copy(&p->cpus_allowed, new_mask);
  5958. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5959. }
  5960. /* Can the task run on the task's current CPU? If so, we're done */
  5961. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5962. goto out;
  5963. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5964. /* Need help from migration thread: drop lock and wait. */
  5965. task_rq_unlock(rq, &flags);
  5966. wake_up_process(rq->migration_thread);
  5967. wait_for_completion(&req.done);
  5968. tlb_migrate_finish(p->mm);
  5969. return 0;
  5970. }
  5971. out:
  5972. task_rq_unlock(rq, &flags);
  5973. return ret;
  5974. }
  5975. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5976. /*
  5977. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5978. * this because either it can't run here any more (set_cpus_allowed()
  5979. * away from this CPU, or CPU going down), or because we're
  5980. * attempting to rebalance this task on exec (sched_exec).
  5981. *
  5982. * So we race with normal scheduler movements, but that's OK, as long
  5983. * as the task is no longer on this CPU.
  5984. *
  5985. * Returns non-zero if task was successfully migrated.
  5986. */
  5987. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5988. {
  5989. struct rq *rq_dest, *rq_src;
  5990. int ret = 0, on_rq;
  5991. if (unlikely(!cpu_active(dest_cpu)))
  5992. return ret;
  5993. rq_src = cpu_rq(src_cpu);
  5994. rq_dest = cpu_rq(dest_cpu);
  5995. double_rq_lock(rq_src, rq_dest);
  5996. /* Already moved. */
  5997. if (task_cpu(p) != src_cpu)
  5998. goto done;
  5999. /* Affinity changed (again). */
  6000. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6001. goto fail;
  6002. on_rq = p->se.on_rq;
  6003. if (on_rq)
  6004. deactivate_task(rq_src, p, 0);
  6005. set_task_cpu(p, dest_cpu);
  6006. if (on_rq) {
  6007. activate_task(rq_dest, p, 0);
  6008. check_preempt_curr(rq_dest, p, 0);
  6009. }
  6010. done:
  6011. ret = 1;
  6012. fail:
  6013. double_rq_unlock(rq_src, rq_dest);
  6014. return ret;
  6015. }
  6016. /*
  6017. * migration_thread - this is a highprio system thread that performs
  6018. * thread migration by bumping thread off CPU then 'pushing' onto
  6019. * another runqueue.
  6020. */
  6021. static int migration_thread(void *data)
  6022. {
  6023. int cpu = (long)data;
  6024. struct rq *rq;
  6025. rq = cpu_rq(cpu);
  6026. BUG_ON(rq->migration_thread != current);
  6027. set_current_state(TASK_INTERRUPTIBLE);
  6028. while (!kthread_should_stop()) {
  6029. struct migration_req *req;
  6030. struct list_head *head;
  6031. spin_lock_irq(&rq->lock);
  6032. if (cpu_is_offline(cpu)) {
  6033. spin_unlock_irq(&rq->lock);
  6034. goto wait_to_die;
  6035. }
  6036. if (rq->active_balance) {
  6037. active_load_balance(rq, cpu);
  6038. rq->active_balance = 0;
  6039. }
  6040. head = &rq->migration_queue;
  6041. if (list_empty(head)) {
  6042. spin_unlock_irq(&rq->lock);
  6043. schedule();
  6044. set_current_state(TASK_INTERRUPTIBLE);
  6045. continue;
  6046. }
  6047. req = list_entry(head->next, struct migration_req, list);
  6048. list_del_init(head->next);
  6049. spin_unlock(&rq->lock);
  6050. __migrate_task(req->task, cpu, req->dest_cpu);
  6051. local_irq_enable();
  6052. complete(&req->done);
  6053. }
  6054. __set_current_state(TASK_RUNNING);
  6055. return 0;
  6056. wait_to_die:
  6057. /* Wait for kthread_stop */
  6058. set_current_state(TASK_INTERRUPTIBLE);
  6059. while (!kthread_should_stop()) {
  6060. schedule();
  6061. set_current_state(TASK_INTERRUPTIBLE);
  6062. }
  6063. __set_current_state(TASK_RUNNING);
  6064. return 0;
  6065. }
  6066. #ifdef CONFIG_HOTPLUG_CPU
  6067. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6068. {
  6069. int ret;
  6070. local_irq_disable();
  6071. ret = __migrate_task(p, src_cpu, dest_cpu);
  6072. local_irq_enable();
  6073. return ret;
  6074. }
  6075. /*
  6076. * Figure out where task on dead CPU should go, use force if necessary.
  6077. */
  6078. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6079. {
  6080. int dest_cpu;
  6081. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6082. again:
  6083. /* Look for allowed, online CPU in same node. */
  6084. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6085. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6086. goto move;
  6087. /* Any allowed, online CPU? */
  6088. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6089. if (dest_cpu < nr_cpu_ids)
  6090. goto move;
  6091. /* No more Mr. Nice Guy. */
  6092. if (dest_cpu >= nr_cpu_ids) {
  6093. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6094. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6095. /*
  6096. * Don't tell them about moving exiting tasks or
  6097. * kernel threads (both mm NULL), since they never
  6098. * leave kernel.
  6099. */
  6100. if (p->mm && printk_ratelimit()) {
  6101. printk(KERN_INFO "process %d (%s) no "
  6102. "longer affine to cpu%d\n",
  6103. task_pid_nr(p), p->comm, dead_cpu);
  6104. }
  6105. }
  6106. move:
  6107. /* It can have affinity changed while we were choosing. */
  6108. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6109. goto again;
  6110. }
  6111. /*
  6112. * While a dead CPU has no uninterruptible tasks queued at this point,
  6113. * it might still have a nonzero ->nr_uninterruptible counter, because
  6114. * for performance reasons the counter is not stricly tracking tasks to
  6115. * their home CPUs. So we just add the counter to another CPU's counter,
  6116. * to keep the global sum constant after CPU-down:
  6117. */
  6118. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6119. {
  6120. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6121. unsigned long flags;
  6122. local_irq_save(flags);
  6123. double_rq_lock(rq_src, rq_dest);
  6124. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6125. rq_src->nr_uninterruptible = 0;
  6126. double_rq_unlock(rq_src, rq_dest);
  6127. local_irq_restore(flags);
  6128. }
  6129. /* Run through task list and migrate tasks from the dead cpu. */
  6130. static void migrate_live_tasks(int src_cpu)
  6131. {
  6132. struct task_struct *p, *t;
  6133. read_lock(&tasklist_lock);
  6134. do_each_thread(t, p) {
  6135. if (p == current)
  6136. continue;
  6137. if (task_cpu(p) == src_cpu)
  6138. move_task_off_dead_cpu(src_cpu, p);
  6139. } while_each_thread(t, p);
  6140. read_unlock(&tasklist_lock);
  6141. }
  6142. /*
  6143. * Schedules idle task to be the next runnable task on current CPU.
  6144. * It does so by boosting its priority to highest possible.
  6145. * Used by CPU offline code.
  6146. */
  6147. void sched_idle_next(void)
  6148. {
  6149. int this_cpu = smp_processor_id();
  6150. struct rq *rq = cpu_rq(this_cpu);
  6151. struct task_struct *p = rq->idle;
  6152. unsigned long flags;
  6153. /* cpu has to be offline */
  6154. BUG_ON(cpu_online(this_cpu));
  6155. /*
  6156. * Strictly not necessary since rest of the CPUs are stopped by now
  6157. * and interrupts disabled on the current cpu.
  6158. */
  6159. spin_lock_irqsave(&rq->lock, flags);
  6160. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6161. update_rq_clock(rq);
  6162. activate_task(rq, p, 0);
  6163. spin_unlock_irqrestore(&rq->lock, flags);
  6164. }
  6165. /*
  6166. * Ensures that the idle task is using init_mm right before its cpu goes
  6167. * offline.
  6168. */
  6169. void idle_task_exit(void)
  6170. {
  6171. struct mm_struct *mm = current->active_mm;
  6172. BUG_ON(cpu_online(smp_processor_id()));
  6173. if (mm != &init_mm)
  6174. switch_mm(mm, &init_mm, current);
  6175. mmdrop(mm);
  6176. }
  6177. /* called under rq->lock with disabled interrupts */
  6178. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6179. {
  6180. struct rq *rq = cpu_rq(dead_cpu);
  6181. /* Must be exiting, otherwise would be on tasklist. */
  6182. BUG_ON(!p->exit_state);
  6183. /* Cannot have done final schedule yet: would have vanished. */
  6184. BUG_ON(p->state == TASK_DEAD);
  6185. get_task_struct(p);
  6186. /*
  6187. * Drop lock around migration; if someone else moves it,
  6188. * that's OK. No task can be added to this CPU, so iteration is
  6189. * fine.
  6190. */
  6191. spin_unlock_irq(&rq->lock);
  6192. move_task_off_dead_cpu(dead_cpu, p);
  6193. spin_lock_irq(&rq->lock);
  6194. put_task_struct(p);
  6195. }
  6196. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6197. static void migrate_dead_tasks(unsigned int dead_cpu)
  6198. {
  6199. struct rq *rq = cpu_rq(dead_cpu);
  6200. struct task_struct *next;
  6201. for ( ; ; ) {
  6202. if (!rq->nr_running)
  6203. break;
  6204. update_rq_clock(rq);
  6205. next = pick_next_task(rq);
  6206. if (!next)
  6207. break;
  6208. next->sched_class->put_prev_task(rq, next);
  6209. migrate_dead(dead_cpu, next);
  6210. }
  6211. }
  6212. /*
  6213. * remove the tasks which were accounted by rq from calc_load_tasks.
  6214. */
  6215. static void calc_global_load_remove(struct rq *rq)
  6216. {
  6217. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6218. }
  6219. #endif /* CONFIG_HOTPLUG_CPU */
  6220. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6221. static struct ctl_table sd_ctl_dir[] = {
  6222. {
  6223. .procname = "sched_domain",
  6224. .mode = 0555,
  6225. },
  6226. {0, },
  6227. };
  6228. static struct ctl_table sd_ctl_root[] = {
  6229. {
  6230. .ctl_name = CTL_KERN,
  6231. .procname = "kernel",
  6232. .mode = 0555,
  6233. .child = sd_ctl_dir,
  6234. },
  6235. {0, },
  6236. };
  6237. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6238. {
  6239. struct ctl_table *entry =
  6240. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6241. return entry;
  6242. }
  6243. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6244. {
  6245. struct ctl_table *entry;
  6246. /*
  6247. * In the intermediate directories, both the child directory and
  6248. * procname are dynamically allocated and could fail but the mode
  6249. * will always be set. In the lowest directory the names are
  6250. * static strings and all have proc handlers.
  6251. */
  6252. for (entry = *tablep; entry->mode; entry++) {
  6253. if (entry->child)
  6254. sd_free_ctl_entry(&entry->child);
  6255. if (entry->proc_handler == NULL)
  6256. kfree(entry->procname);
  6257. }
  6258. kfree(*tablep);
  6259. *tablep = NULL;
  6260. }
  6261. static void
  6262. set_table_entry(struct ctl_table *entry,
  6263. const char *procname, void *data, int maxlen,
  6264. mode_t mode, proc_handler *proc_handler)
  6265. {
  6266. entry->procname = procname;
  6267. entry->data = data;
  6268. entry->maxlen = maxlen;
  6269. entry->mode = mode;
  6270. entry->proc_handler = proc_handler;
  6271. }
  6272. static struct ctl_table *
  6273. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6274. {
  6275. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6276. if (table == NULL)
  6277. return NULL;
  6278. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6279. sizeof(long), 0644, proc_doulongvec_minmax);
  6280. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6281. sizeof(long), 0644, proc_doulongvec_minmax);
  6282. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6283. sizeof(int), 0644, proc_dointvec_minmax);
  6284. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6285. sizeof(int), 0644, proc_dointvec_minmax);
  6286. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6287. sizeof(int), 0644, proc_dointvec_minmax);
  6288. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6289. sizeof(int), 0644, proc_dointvec_minmax);
  6290. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6291. sizeof(int), 0644, proc_dointvec_minmax);
  6292. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6293. sizeof(int), 0644, proc_dointvec_minmax);
  6294. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6295. sizeof(int), 0644, proc_dointvec_minmax);
  6296. set_table_entry(&table[9], "cache_nice_tries",
  6297. &sd->cache_nice_tries,
  6298. sizeof(int), 0644, proc_dointvec_minmax);
  6299. set_table_entry(&table[10], "flags", &sd->flags,
  6300. sizeof(int), 0644, proc_dointvec_minmax);
  6301. set_table_entry(&table[11], "name", sd->name,
  6302. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6303. /* &table[12] is terminator */
  6304. return table;
  6305. }
  6306. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6307. {
  6308. struct ctl_table *entry, *table;
  6309. struct sched_domain *sd;
  6310. int domain_num = 0, i;
  6311. char buf[32];
  6312. for_each_domain(cpu, sd)
  6313. domain_num++;
  6314. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6315. if (table == NULL)
  6316. return NULL;
  6317. i = 0;
  6318. for_each_domain(cpu, sd) {
  6319. snprintf(buf, 32, "domain%d", i);
  6320. entry->procname = kstrdup(buf, GFP_KERNEL);
  6321. entry->mode = 0555;
  6322. entry->child = sd_alloc_ctl_domain_table(sd);
  6323. entry++;
  6324. i++;
  6325. }
  6326. return table;
  6327. }
  6328. static struct ctl_table_header *sd_sysctl_header;
  6329. static void register_sched_domain_sysctl(void)
  6330. {
  6331. int i, cpu_num = num_online_cpus();
  6332. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6333. char buf[32];
  6334. WARN_ON(sd_ctl_dir[0].child);
  6335. sd_ctl_dir[0].child = entry;
  6336. if (entry == NULL)
  6337. return;
  6338. for_each_online_cpu(i) {
  6339. snprintf(buf, 32, "cpu%d", i);
  6340. entry->procname = kstrdup(buf, GFP_KERNEL);
  6341. entry->mode = 0555;
  6342. entry->child = sd_alloc_ctl_cpu_table(i);
  6343. entry++;
  6344. }
  6345. WARN_ON(sd_sysctl_header);
  6346. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6347. }
  6348. /* may be called multiple times per register */
  6349. static void unregister_sched_domain_sysctl(void)
  6350. {
  6351. if (sd_sysctl_header)
  6352. unregister_sysctl_table(sd_sysctl_header);
  6353. sd_sysctl_header = NULL;
  6354. if (sd_ctl_dir[0].child)
  6355. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6356. }
  6357. #else
  6358. static void register_sched_domain_sysctl(void)
  6359. {
  6360. }
  6361. static void unregister_sched_domain_sysctl(void)
  6362. {
  6363. }
  6364. #endif
  6365. static void set_rq_online(struct rq *rq)
  6366. {
  6367. if (!rq->online) {
  6368. const struct sched_class *class;
  6369. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6370. rq->online = 1;
  6371. for_each_class(class) {
  6372. if (class->rq_online)
  6373. class->rq_online(rq);
  6374. }
  6375. }
  6376. }
  6377. static void set_rq_offline(struct rq *rq)
  6378. {
  6379. if (rq->online) {
  6380. const struct sched_class *class;
  6381. for_each_class(class) {
  6382. if (class->rq_offline)
  6383. class->rq_offline(rq);
  6384. }
  6385. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6386. rq->online = 0;
  6387. }
  6388. }
  6389. /*
  6390. * migration_call - callback that gets triggered when a CPU is added.
  6391. * Here we can start up the necessary migration thread for the new CPU.
  6392. */
  6393. static int __cpuinit
  6394. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6395. {
  6396. struct task_struct *p;
  6397. int cpu = (long)hcpu;
  6398. unsigned long flags;
  6399. struct rq *rq;
  6400. switch (action) {
  6401. case CPU_UP_PREPARE:
  6402. case CPU_UP_PREPARE_FROZEN:
  6403. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6404. if (IS_ERR(p))
  6405. return NOTIFY_BAD;
  6406. kthread_bind(p, cpu);
  6407. /* Must be high prio: stop_machine expects to yield to it. */
  6408. rq = task_rq_lock(p, &flags);
  6409. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6410. task_rq_unlock(rq, &flags);
  6411. cpu_rq(cpu)->migration_thread = p;
  6412. break;
  6413. case CPU_ONLINE:
  6414. case CPU_ONLINE_FROZEN:
  6415. /* Strictly unnecessary, as first user will wake it. */
  6416. wake_up_process(cpu_rq(cpu)->migration_thread);
  6417. /* Update our root-domain */
  6418. rq = cpu_rq(cpu);
  6419. spin_lock_irqsave(&rq->lock, flags);
  6420. rq->calc_load_update = calc_load_update;
  6421. rq->calc_load_active = 0;
  6422. if (rq->rd) {
  6423. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6424. set_rq_online(rq);
  6425. }
  6426. spin_unlock_irqrestore(&rq->lock, flags);
  6427. break;
  6428. #ifdef CONFIG_HOTPLUG_CPU
  6429. case CPU_UP_CANCELED:
  6430. case CPU_UP_CANCELED_FROZEN:
  6431. if (!cpu_rq(cpu)->migration_thread)
  6432. break;
  6433. /* Unbind it from offline cpu so it can run. Fall thru. */
  6434. kthread_bind(cpu_rq(cpu)->migration_thread,
  6435. cpumask_any(cpu_online_mask));
  6436. kthread_stop(cpu_rq(cpu)->migration_thread);
  6437. cpu_rq(cpu)->migration_thread = NULL;
  6438. break;
  6439. case CPU_DEAD:
  6440. case CPU_DEAD_FROZEN:
  6441. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6442. migrate_live_tasks(cpu);
  6443. rq = cpu_rq(cpu);
  6444. kthread_stop(rq->migration_thread);
  6445. rq->migration_thread = NULL;
  6446. /* Idle task back to normal (off runqueue, low prio) */
  6447. spin_lock_irq(&rq->lock);
  6448. update_rq_clock(rq);
  6449. deactivate_task(rq, rq->idle, 0);
  6450. rq->idle->static_prio = MAX_PRIO;
  6451. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6452. rq->idle->sched_class = &idle_sched_class;
  6453. migrate_dead_tasks(cpu);
  6454. spin_unlock_irq(&rq->lock);
  6455. cpuset_unlock();
  6456. migrate_nr_uninterruptible(rq);
  6457. BUG_ON(rq->nr_running != 0);
  6458. calc_global_load_remove(rq);
  6459. /*
  6460. * No need to migrate the tasks: it was best-effort if
  6461. * they didn't take sched_hotcpu_mutex. Just wake up
  6462. * the requestors.
  6463. */
  6464. spin_lock_irq(&rq->lock);
  6465. while (!list_empty(&rq->migration_queue)) {
  6466. struct migration_req *req;
  6467. req = list_entry(rq->migration_queue.next,
  6468. struct migration_req, list);
  6469. list_del_init(&req->list);
  6470. spin_unlock_irq(&rq->lock);
  6471. complete(&req->done);
  6472. spin_lock_irq(&rq->lock);
  6473. }
  6474. spin_unlock_irq(&rq->lock);
  6475. break;
  6476. case CPU_DYING:
  6477. case CPU_DYING_FROZEN:
  6478. /* Update our root-domain */
  6479. rq = cpu_rq(cpu);
  6480. spin_lock_irqsave(&rq->lock, flags);
  6481. if (rq->rd) {
  6482. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6483. set_rq_offline(rq);
  6484. }
  6485. spin_unlock_irqrestore(&rq->lock, flags);
  6486. break;
  6487. #endif
  6488. }
  6489. return NOTIFY_OK;
  6490. }
  6491. /*
  6492. * Register at high priority so that task migration (migrate_all_tasks)
  6493. * happens before everything else. This has to be lower priority than
  6494. * the notifier in the perf_counter subsystem, though.
  6495. */
  6496. static struct notifier_block __cpuinitdata migration_notifier = {
  6497. .notifier_call = migration_call,
  6498. .priority = 10
  6499. };
  6500. static int __init migration_init(void)
  6501. {
  6502. void *cpu = (void *)(long)smp_processor_id();
  6503. int err;
  6504. /* Start one for the boot CPU: */
  6505. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6506. BUG_ON(err == NOTIFY_BAD);
  6507. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6508. register_cpu_notifier(&migration_notifier);
  6509. return err;
  6510. }
  6511. early_initcall(migration_init);
  6512. #endif
  6513. #ifdef CONFIG_SMP
  6514. #ifdef CONFIG_SCHED_DEBUG
  6515. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6516. struct cpumask *groupmask)
  6517. {
  6518. struct sched_group *group = sd->groups;
  6519. char str[256];
  6520. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6521. cpumask_clear(groupmask);
  6522. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6523. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6524. printk("does not load-balance\n");
  6525. if (sd->parent)
  6526. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6527. " has parent");
  6528. return -1;
  6529. }
  6530. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6531. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6532. printk(KERN_ERR "ERROR: domain->span does not contain "
  6533. "CPU%d\n", cpu);
  6534. }
  6535. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6536. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6537. " CPU%d\n", cpu);
  6538. }
  6539. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6540. do {
  6541. if (!group) {
  6542. printk("\n");
  6543. printk(KERN_ERR "ERROR: group is NULL\n");
  6544. break;
  6545. }
  6546. if (!group->__cpu_power) {
  6547. printk(KERN_CONT "\n");
  6548. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6549. "set\n");
  6550. break;
  6551. }
  6552. if (!cpumask_weight(sched_group_cpus(group))) {
  6553. printk(KERN_CONT "\n");
  6554. printk(KERN_ERR "ERROR: empty group\n");
  6555. break;
  6556. }
  6557. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6558. printk(KERN_CONT "\n");
  6559. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6560. break;
  6561. }
  6562. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6563. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6564. printk(KERN_CONT " %s", str);
  6565. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6566. printk(KERN_CONT " (__cpu_power = %d)",
  6567. group->__cpu_power);
  6568. }
  6569. group = group->next;
  6570. } while (group != sd->groups);
  6571. printk(KERN_CONT "\n");
  6572. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6573. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6574. if (sd->parent &&
  6575. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6576. printk(KERN_ERR "ERROR: parent span is not a superset "
  6577. "of domain->span\n");
  6578. return 0;
  6579. }
  6580. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6581. {
  6582. cpumask_var_t groupmask;
  6583. int level = 0;
  6584. if (!sd) {
  6585. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6586. return;
  6587. }
  6588. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6589. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6590. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6591. return;
  6592. }
  6593. for (;;) {
  6594. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6595. break;
  6596. level++;
  6597. sd = sd->parent;
  6598. if (!sd)
  6599. break;
  6600. }
  6601. free_cpumask_var(groupmask);
  6602. }
  6603. #else /* !CONFIG_SCHED_DEBUG */
  6604. # define sched_domain_debug(sd, cpu) do { } while (0)
  6605. #endif /* CONFIG_SCHED_DEBUG */
  6606. static int sd_degenerate(struct sched_domain *sd)
  6607. {
  6608. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6609. return 1;
  6610. /* Following flags need at least 2 groups */
  6611. if (sd->flags & (SD_LOAD_BALANCE |
  6612. SD_BALANCE_NEWIDLE |
  6613. SD_BALANCE_FORK |
  6614. SD_BALANCE_EXEC |
  6615. SD_SHARE_CPUPOWER |
  6616. SD_SHARE_PKG_RESOURCES)) {
  6617. if (sd->groups != sd->groups->next)
  6618. return 0;
  6619. }
  6620. /* Following flags don't use groups */
  6621. if (sd->flags & (SD_WAKE_IDLE |
  6622. SD_WAKE_AFFINE |
  6623. SD_WAKE_BALANCE))
  6624. return 0;
  6625. return 1;
  6626. }
  6627. static int
  6628. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6629. {
  6630. unsigned long cflags = sd->flags, pflags = parent->flags;
  6631. if (sd_degenerate(parent))
  6632. return 1;
  6633. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6634. return 0;
  6635. /* Does parent contain flags not in child? */
  6636. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6637. if (cflags & SD_WAKE_AFFINE)
  6638. pflags &= ~SD_WAKE_BALANCE;
  6639. /* Flags needing groups don't count if only 1 group in parent */
  6640. if (parent->groups == parent->groups->next) {
  6641. pflags &= ~(SD_LOAD_BALANCE |
  6642. SD_BALANCE_NEWIDLE |
  6643. SD_BALANCE_FORK |
  6644. SD_BALANCE_EXEC |
  6645. SD_SHARE_CPUPOWER |
  6646. SD_SHARE_PKG_RESOURCES);
  6647. if (nr_node_ids == 1)
  6648. pflags &= ~SD_SERIALIZE;
  6649. }
  6650. if (~cflags & pflags)
  6651. return 0;
  6652. return 1;
  6653. }
  6654. static void free_rootdomain(struct root_domain *rd)
  6655. {
  6656. cpupri_cleanup(&rd->cpupri);
  6657. free_cpumask_var(rd->rto_mask);
  6658. free_cpumask_var(rd->online);
  6659. free_cpumask_var(rd->span);
  6660. kfree(rd);
  6661. }
  6662. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6663. {
  6664. struct root_domain *old_rd = NULL;
  6665. unsigned long flags;
  6666. spin_lock_irqsave(&rq->lock, flags);
  6667. if (rq->rd) {
  6668. old_rd = rq->rd;
  6669. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6670. set_rq_offline(rq);
  6671. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6672. /*
  6673. * If we dont want to free the old_rt yet then
  6674. * set old_rd to NULL to skip the freeing later
  6675. * in this function:
  6676. */
  6677. if (!atomic_dec_and_test(&old_rd->refcount))
  6678. old_rd = NULL;
  6679. }
  6680. atomic_inc(&rd->refcount);
  6681. rq->rd = rd;
  6682. cpumask_set_cpu(rq->cpu, rd->span);
  6683. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6684. set_rq_online(rq);
  6685. spin_unlock_irqrestore(&rq->lock, flags);
  6686. if (old_rd)
  6687. free_rootdomain(old_rd);
  6688. }
  6689. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6690. {
  6691. gfp_t gfp = GFP_KERNEL;
  6692. memset(rd, 0, sizeof(*rd));
  6693. if (bootmem)
  6694. gfp = GFP_NOWAIT;
  6695. if (!alloc_cpumask_var(&rd->span, gfp))
  6696. goto out;
  6697. if (!alloc_cpumask_var(&rd->online, gfp))
  6698. goto free_span;
  6699. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6700. goto free_online;
  6701. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6702. goto free_rto_mask;
  6703. return 0;
  6704. free_rto_mask:
  6705. free_cpumask_var(rd->rto_mask);
  6706. free_online:
  6707. free_cpumask_var(rd->online);
  6708. free_span:
  6709. free_cpumask_var(rd->span);
  6710. out:
  6711. return -ENOMEM;
  6712. }
  6713. static void init_defrootdomain(void)
  6714. {
  6715. init_rootdomain(&def_root_domain, true);
  6716. atomic_set(&def_root_domain.refcount, 1);
  6717. }
  6718. static struct root_domain *alloc_rootdomain(void)
  6719. {
  6720. struct root_domain *rd;
  6721. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6722. if (!rd)
  6723. return NULL;
  6724. if (init_rootdomain(rd, false) != 0) {
  6725. kfree(rd);
  6726. return NULL;
  6727. }
  6728. return rd;
  6729. }
  6730. /*
  6731. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6732. * hold the hotplug lock.
  6733. */
  6734. static void
  6735. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6736. {
  6737. struct rq *rq = cpu_rq(cpu);
  6738. struct sched_domain *tmp;
  6739. /* Remove the sched domains which do not contribute to scheduling. */
  6740. for (tmp = sd; tmp; ) {
  6741. struct sched_domain *parent = tmp->parent;
  6742. if (!parent)
  6743. break;
  6744. if (sd_parent_degenerate(tmp, parent)) {
  6745. tmp->parent = parent->parent;
  6746. if (parent->parent)
  6747. parent->parent->child = tmp;
  6748. } else
  6749. tmp = tmp->parent;
  6750. }
  6751. if (sd && sd_degenerate(sd)) {
  6752. sd = sd->parent;
  6753. if (sd)
  6754. sd->child = NULL;
  6755. }
  6756. sched_domain_debug(sd, cpu);
  6757. rq_attach_root(rq, rd);
  6758. rcu_assign_pointer(rq->sd, sd);
  6759. }
  6760. /* cpus with isolated domains */
  6761. static cpumask_var_t cpu_isolated_map;
  6762. /* Setup the mask of cpus configured for isolated domains */
  6763. static int __init isolated_cpu_setup(char *str)
  6764. {
  6765. cpulist_parse(str, cpu_isolated_map);
  6766. return 1;
  6767. }
  6768. __setup("isolcpus=", isolated_cpu_setup);
  6769. /*
  6770. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6771. * to a function which identifies what group(along with sched group) a CPU
  6772. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6773. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6774. *
  6775. * init_sched_build_groups will build a circular linked list of the groups
  6776. * covered by the given span, and will set each group's ->cpumask correctly,
  6777. * and ->cpu_power to 0.
  6778. */
  6779. static void
  6780. init_sched_build_groups(const struct cpumask *span,
  6781. const struct cpumask *cpu_map,
  6782. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6783. struct sched_group **sg,
  6784. struct cpumask *tmpmask),
  6785. struct cpumask *covered, struct cpumask *tmpmask)
  6786. {
  6787. struct sched_group *first = NULL, *last = NULL;
  6788. int i;
  6789. cpumask_clear(covered);
  6790. for_each_cpu(i, span) {
  6791. struct sched_group *sg;
  6792. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6793. int j;
  6794. if (cpumask_test_cpu(i, covered))
  6795. continue;
  6796. cpumask_clear(sched_group_cpus(sg));
  6797. sg->__cpu_power = 0;
  6798. for_each_cpu(j, span) {
  6799. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6800. continue;
  6801. cpumask_set_cpu(j, covered);
  6802. cpumask_set_cpu(j, sched_group_cpus(sg));
  6803. }
  6804. if (!first)
  6805. first = sg;
  6806. if (last)
  6807. last->next = sg;
  6808. last = sg;
  6809. }
  6810. last->next = first;
  6811. }
  6812. #define SD_NODES_PER_DOMAIN 16
  6813. #ifdef CONFIG_NUMA
  6814. /**
  6815. * find_next_best_node - find the next node to include in a sched_domain
  6816. * @node: node whose sched_domain we're building
  6817. * @used_nodes: nodes already in the sched_domain
  6818. *
  6819. * Find the next node to include in a given scheduling domain. Simply
  6820. * finds the closest node not already in the @used_nodes map.
  6821. *
  6822. * Should use nodemask_t.
  6823. */
  6824. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6825. {
  6826. int i, n, val, min_val, best_node = 0;
  6827. min_val = INT_MAX;
  6828. for (i = 0; i < nr_node_ids; i++) {
  6829. /* Start at @node */
  6830. n = (node + i) % nr_node_ids;
  6831. if (!nr_cpus_node(n))
  6832. continue;
  6833. /* Skip already used nodes */
  6834. if (node_isset(n, *used_nodes))
  6835. continue;
  6836. /* Simple min distance search */
  6837. val = node_distance(node, n);
  6838. if (val < min_val) {
  6839. min_val = val;
  6840. best_node = n;
  6841. }
  6842. }
  6843. node_set(best_node, *used_nodes);
  6844. return best_node;
  6845. }
  6846. /**
  6847. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6848. * @node: node whose cpumask we're constructing
  6849. * @span: resulting cpumask
  6850. *
  6851. * Given a node, construct a good cpumask for its sched_domain to span. It
  6852. * should be one that prevents unnecessary balancing, but also spreads tasks
  6853. * out optimally.
  6854. */
  6855. static void sched_domain_node_span(int node, struct cpumask *span)
  6856. {
  6857. nodemask_t used_nodes;
  6858. int i;
  6859. cpumask_clear(span);
  6860. nodes_clear(used_nodes);
  6861. cpumask_or(span, span, cpumask_of_node(node));
  6862. node_set(node, used_nodes);
  6863. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6864. int next_node = find_next_best_node(node, &used_nodes);
  6865. cpumask_or(span, span, cpumask_of_node(next_node));
  6866. }
  6867. }
  6868. #endif /* CONFIG_NUMA */
  6869. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6870. /*
  6871. * The cpus mask in sched_group and sched_domain hangs off the end.
  6872. *
  6873. * ( See the the comments in include/linux/sched.h:struct sched_group
  6874. * and struct sched_domain. )
  6875. */
  6876. struct static_sched_group {
  6877. struct sched_group sg;
  6878. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6879. };
  6880. struct static_sched_domain {
  6881. struct sched_domain sd;
  6882. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6883. };
  6884. /*
  6885. * SMT sched-domains:
  6886. */
  6887. #ifdef CONFIG_SCHED_SMT
  6888. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6889. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6890. static int
  6891. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6892. struct sched_group **sg, struct cpumask *unused)
  6893. {
  6894. if (sg)
  6895. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6896. return cpu;
  6897. }
  6898. #endif /* CONFIG_SCHED_SMT */
  6899. /*
  6900. * multi-core sched-domains:
  6901. */
  6902. #ifdef CONFIG_SCHED_MC
  6903. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6904. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6905. #endif /* CONFIG_SCHED_MC */
  6906. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6907. static int
  6908. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6909. struct sched_group **sg, struct cpumask *mask)
  6910. {
  6911. int group;
  6912. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6913. group = cpumask_first(mask);
  6914. if (sg)
  6915. *sg = &per_cpu(sched_group_core, group).sg;
  6916. return group;
  6917. }
  6918. #elif defined(CONFIG_SCHED_MC)
  6919. static int
  6920. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6921. struct sched_group **sg, struct cpumask *unused)
  6922. {
  6923. if (sg)
  6924. *sg = &per_cpu(sched_group_core, cpu).sg;
  6925. return cpu;
  6926. }
  6927. #endif
  6928. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6929. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6930. static int
  6931. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6932. struct sched_group **sg, struct cpumask *mask)
  6933. {
  6934. int group;
  6935. #ifdef CONFIG_SCHED_MC
  6936. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6937. group = cpumask_first(mask);
  6938. #elif defined(CONFIG_SCHED_SMT)
  6939. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6940. group = cpumask_first(mask);
  6941. #else
  6942. group = cpu;
  6943. #endif
  6944. if (sg)
  6945. *sg = &per_cpu(sched_group_phys, group).sg;
  6946. return group;
  6947. }
  6948. #ifdef CONFIG_NUMA
  6949. /*
  6950. * The init_sched_build_groups can't handle what we want to do with node
  6951. * groups, so roll our own. Now each node has its own list of groups which
  6952. * gets dynamically allocated.
  6953. */
  6954. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6955. static struct sched_group ***sched_group_nodes_bycpu;
  6956. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6957. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6958. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6959. struct sched_group **sg,
  6960. struct cpumask *nodemask)
  6961. {
  6962. int group;
  6963. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6964. group = cpumask_first(nodemask);
  6965. if (sg)
  6966. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6967. return group;
  6968. }
  6969. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6970. {
  6971. struct sched_group *sg = group_head;
  6972. int j;
  6973. if (!sg)
  6974. return;
  6975. do {
  6976. for_each_cpu(j, sched_group_cpus(sg)) {
  6977. struct sched_domain *sd;
  6978. sd = &per_cpu(phys_domains, j).sd;
  6979. if (j != group_first_cpu(sd->groups)) {
  6980. /*
  6981. * Only add "power" once for each
  6982. * physical package.
  6983. */
  6984. continue;
  6985. }
  6986. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6987. }
  6988. sg = sg->next;
  6989. } while (sg != group_head);
  6990. }
  6991. #endif /* CONFIG_NUMA */
  6992. #ifdef CONFIG_NUMA
  6993. /* Free memory allocated for various sched_group structures */
  6994. static void free_sched_groups(const struct cpumask *cpu_map,
  6995. struct cpumask *nodemask)
  6996. {
  6997. int cpu, i;
  6998. for_each_cpu(cpu, cpu_map) {
  6999. struct sched_group **sched_group_nodes
  7000. = sched_group_nodes_bycpu[cpu];
  7001. if (!sched_group_nodes)
  7002. continue;
  7003. for (i = 0; i < nr_node_ids; i++) {
  7004. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7005. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7006. if (cpumask_empty(nodemask))
  7007. continue;
  7008. if (sg == NULL)
  7009. continue;
  7010. sg = sg->next;
  7011. next_sg:
  7012. oldsg = sg;
  7013. sg = sg->next;
  7014. kfree(oldsg);
  7015. if (oldsg != sched_group_nodes[i])
  7016. goto next_sg;
  7017. }
  7018. kfree(sched_group_nodes);
  7019. sched_group_nodes_bycpu[cpu] = NULL;
  7020. }
  7021. }
  7022. #else /* !CONFIG_NUMA */
  7023. static void free_sched_groups(const struct cpumask *cpu_map,
  7024. struct cpumask *nodemask)
  7025. {
  7026. }
  7027. #endif /* CONFIG_NUMA */
  7028. /*
  7029. * Initialize sched groups cpu_power.
  7030. *
  7031. * cpu_power indicates the capacity of sched group, which is used while
  7032. * distributing the load between different sched groups in a sched domain.
  7033. * Typically cpu_power for all the groups in a sched domain will be same unless
  7034. * there are asymmetries in the topology. If there are asymmetries, group
  7035. * having more cpu_power will pickup more load compared to the group having
  7036. * less cpu_power.
  7037. *
  7038. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  7039. * the maximum number of tasks a group can handle in the presence of other idle
  7040. * or lightly loaded groups in the same sched domain.
  7041. */
  7042. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7043. {
  7044. struct sched_domain *child;
  7045. struct sched_group *group;
  7046. WARN_ON(!sd || !sd->groups);
  7047. if (cpu != group_first_cpu(sd->groups))
  7048. return;
  7049. child = sd->child;
  7050. sd->groups->__cpu_power = 0;
  7051. /*
  7052. * For perf policy, if the groups in child domain share resources
  7053. * (for example cores sharing some portions of the cache hierarchy
  7054. * or SMT), then set this domain groups cpu_power such that each group
  7055. * can handle only one task, when there are other idle groups in the
  7056. * same sched domain.
  7057. */
  7058. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7059. (child->flags &
  7060. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7061. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7062. return;
  7063. }
  7064. /*
  7065. * add cpu_power of each child group to this groups cpu_power
  7066. */
  7067. group = child->groups;
  7068. do {
  7069. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7070. group = group->next;
  7071. } while (group != child->groups);
  7072. }
  7073. /*
  7074. * Initializers for schedule domains
  7075. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7076. */
  7077. #ifdef CONFIG_SCHED_DEBUG
  7078. # define SD_INIT_NAME(sd, type) sd->name = #type
  7079. #else
  7080. # define SD_INIT_NAME(sd, type) do { } while (0)
  7081. #endif
  7082. #define SD_INIT(sd, type) sd_init_##type(sd)
  7083. #define SD_INIT_FUNC(type) \
  7084. static noinline void sd_init_##type(struct sched_domain *sd) \
  7085. { \
  7086. memset(sd, 0, sizeof(*sd)); \
  7087. *sd = SD_##type##_INIT; \
  7088. sd->level = SD_LV_##type; \
  7089. SD_INIT_NAME(sd, type); \
  7090. }
  7091. SD_INIT_FUNC(CPU)
  7092. #ifdef CONFIG_NUMA
  7093. SD_INIT_FUNC(ALLNODES)
  7094. SD_INIT_FUNC(NODE)
  7095. #endif
  7096. #ifdef CONFIG_SCHED_SMT
  7097. SD_INIT_FUNC(SIBLING)
  7098. #endif
  7099. #ifdef CONFIG_SCHED_MC
  7100. SD_INIT_FUNC(MC)
  7101. #endif
  7102. static int default_relax_domain_level = -1;
  7103. static int __init setup_relax_domain_level(char *str)
  7104. {
  7105. unsigned long val;
  7106. val = simple_strtoul(str, NULL, 0);
  7107. if (val < SD_LV_MAX)
  7108. default_relax_domain_level = val;
  7109. return 1;
  7110. }
  7111. __setup("relax_domain_level=", setup_relax_domain_level);
  7112. static void set_domain_attribute(struct sched_domain *sd,
  7113. struct sched_domain_attr *attr)
  7114. {
  7115. int request;
  7116. if (!attr || attr->relax_domain_level < 0) {
  7117. if (default_relax_domain_level < 0)
  7118. return;
  7119. else
  7120. request = default_relax_domain_level;
  7121. } else
  7122. request = attr->relax_domain_level;
  7123. if (request < sd->level) {
  7124. /* turn off idle balance on this domain */
  7125. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7126. } else {
  7127. /* turn on idle balance on this domain */
  7128. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7129. }
  7130. }
  7131. /*
  7132. * Build sched domains for a given set of cpus and attach the sched domains
  7133. * to the individual cpus
  7134. */
  7135. static int __build_sched_domains(const struct cpumask *cpu_map,
  7136. struct sched_domain_attr *attr)
  7137. {
  7138. int i, err = -ENOMEM;
  7139. struct root_domain *rd;
  7140. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7141. tmpmask;
  7142. #ifdef CONFIG_NUMA
  7143. cpumask_var_t domainspan, covered, notcovered;
  7144. struct sched_group **sched_group_nodes = NULL;
  7145. int sd_allnodes = 0;
  7146. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7147. goto out;
  7148. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7149. goto free_domainspan;
  7150. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7151. goto free_covered;
  7152. #endif
  7153. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7154. goto free_notcovered;
  7155. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7156. goto free_nodemask;
  7157. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7158. goto free_this_sibling_map;
  7159. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7160. goto free_this_core_map;
  7161. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7162. goto free_send_covered;
  7163. #ifdef CONFIG_NUMA
  7164. /*
  7165. * Allocate the per-node list of sched groups
  7166. */
  7167. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7168. GFP_KERNEL);
  7169. if (!sched_group_nodes) {
  7170. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7171. goto free_tmpmask;
  7172. }
  7173. #endif
  7174. rd = alloc_rootdomain();
  7175. if (!rd) {
  7176. printk(KERN_WARNING "Cannot alloc root domain\n");
  7177. goto free_sched_groups;
  7178. }
  7179. #ifdef CONFIG_NUMA
  7180. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7181. #endif
  7182. /*
  7183. * Set up domains for cpus specified by the cpu_map.
  7184. */
  7185. for_each_cpu(i, cpu_map) {
  7186. struct sched_domain *sd = NULL, *p;
  7187. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7188. #ifdef CONFIG_NUMA
  7189. if (cpumask_weight(cpu_map) >
  7190. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7191. sd = &per_cpu(allnodes_domains, i).sd;
  7192. SD_INIT(sd, ALLNODES);
  7193. set_domain_attribute(sd, attr);
  7194. cpumask_copy(sched_domain_span(sd), cpu_map);
  7195. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7196. p = sd;
  7197. sd_allnodes = 1;
  7198. } else
  7199. p = NULL;
  7200. sd = &per_cpu(node_domains, i).sd;
  7201. SD_INIT(sd, NODE);
  7202. set_domain_attribute(sd, attr);
  7203. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7204. sd->parent = p;
  7205. if (p)
  7206. p->child = sd;
  7207. cpumask_and(sched_domain_span(sd),
  7208. sched_domain_span(sd), cpu_map);
  7209. #endif
  7210. p = sd;
  7211. sd = &per_cpu(phys_domains, i).sd;
  7212. SD_INIT(sd, CPU);
  7213. set_domain_attribute(sd, attr);
  7214. cpumask_copy(sched_domain_span(sd), nodemask);
  7215. sd->parent = p;
  7216. if (p)
  7217. p->child = sd;
  7218. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7219. #ifdef CONFIG_SCHED_MC
  7220. p = sd;
  7221. sd = &per_cpu(core_domains, i).sd;
  7222. SD_INIT(sd, MC);
  7223. set_domain_attribute(sd, attr);
  7224. cpumask_and(sched_domain_span(sd), cpu_map,
  7225. cpu_coregroup_mask(i));
  7226. sd->parent = p;
  7227. p->child = sd;
  7228. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7229. #endif
  7230. #ifdef CONFIG_SCHED_SMT
  7231. p = sd;
  7232. sd = &per_cpu(cpu_domains, i).sd;
  7233. SD_INIT(sd, SIBLING);
  7234. set_domain_attribute(sd, attr);
  7235. cpumask_and(sched_domain_span(sd),
  7236. topology_thread_cpumask(i), cpu_map);
  7237. sd->parent = p;
  7238. p->child = sd;
  7239. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7240. #endif
  7241. }
  7242. #ifdef CONFIG_SCHED_SMT
  7243. /* Set up CPU (sibling) groups */
  7244. for_each_cpu(i, cpu_map) {
  7245. cpumask_and(this_sibling_map,
  7246. topology_thread_cpumask(i), cpu_map);
  7247. if (i != cpumask_first(this_sibling_map))
  7248. continue;
  7249. init_sched_build_groups(this_sibling_map, cpu_map,
  7250. &cpu_to_cpu_group,
  7251. send_covered, tmpmask);
  7252. }
  7253. #endif
  7254. #ifdef CONFIG_SCHED_MC
  7255. /* Set up multi-core groups */
  7256. for_each_cpu(i, cpu_map) {
  7257. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7258. if (i != cpumask_first(this_core_map))
  7259. continue;
  7260. init_sched_build_groups(this_core_map, cpu_map,
  7261. &cpu_to_core_group,
  7262. send_covered, tmpmask);
  7263. }
  7264. #endif
  7265. /* Set up physical groups */
  7266. for (i = 0; i < nr_node_ids; i++) {
  7267. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7268. if (cpumask_empty(nodemask))
  7269. continue;
  7270. init_sched_build_groups(nodemask, cpu_map,
  7271. &cpu_to_phys_group,
  7272. send_covered, tmpmask);
  7273. }
  7274. #ifdef CONFIG_NUMA
  7275. /* Set up node groups */
  7276. if (sd_allnodes) {
  7277. init_sched_build_groups(cpu_map, cpu_map,
  7278. &cpu_to_allnodes_group,
  7279. send_covered, tmpmask);
  7280. }
  7281. for (i = 0; i < nr_node_ids; i++) {
  7282. /* Set up node groups */
  7283. struct sched_group *sg, *prev;
  7284. int j;
  7285. cpumask_clear(covered);
  7286. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7287. if (cpumask_empty(nodemask)) {
  7288. sched_group_nodes[i] = NULL;
  7289. continue;
  7290. }
  7291. sched_domain_node_span(i, domainspan);
  7292. cpumask_and(domainspan, domainspan, cpu_map);
  7293. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7294. GFP_KERNEL, i);
  7295. if (!sg) {
  7296. printk(KERN_WARNING "Can not alloc domain group for "
  7297. "node %d\n", i);
  7298. goto error;
  7299. }
  7300. sched_group_nodes[i] = sg;
  7301. for_each_cpu(j, nodemask) {
  7302. struct sched_domain *sd;
  7303. sd = &per_cpu(node_domains, j).sd;
  7304. sd->groups = sg;
  7305. }
  7306. sg->__cpu_power = 0;
  7307. cpumask_copy(sched_group_cpus(sg), nodemask);
  7308. sg->next = sg;
  7309. cpumask_or(covered, covered, nodemask);
  7310. prev = sg;
  7311. for (j = 0; j < nr_node_ids; j++) {
  7312. int n = (i + j) % nr_node_ids;
  7313. cpumask_complement(notcovered, covered);
  7314. cpumask_and(tmpmask, notcovered, cpu_map);
  7315. cpumask_and(tmpmask, tmpmask, domainspan);
  7316. if (cpumask_empty(tmpmask))
  7317. break;
  7318. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7319. if (cpumask_empty(tmpmask))
  7320. continue;
  7321. sg = kmalloc_node(sizeof(struct sched_group) +
  7322. cpumask_size(),
  7323. GFP_KERNEL, i);
  7324. if (!sg) {
  7325. printk(KERN_WARNING
  7326. "Can not alloc domain group for node %d\n", j);
  7327. goto error;
  7328. }
  7329. sg->__cpu_power = 0;
  7330. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7331. sg->next = prev->next;
  7332. cpumask_or(covered, covered, tmpmask);
  7333. prev->next = sg;
  7334. prev = sg;
  7335. }
  7336. }
  7337. #endif
  7338. /* Calculate CPU power for physical packages and nodes */
  7339. #ifdef CONFIG_SCHED_SMT
  7340. for_each_cpu(i, cpu_map) {
  7341. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7342. init_sched_groups_power(i, sd);
  7343. }
  7344. #endif
  7345. #ifdef CONFIG_SCHED_MC
  7346. for_each_cpu(i, cpu_map) {
  7347. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7348. init_sched_groups_power(i, sd);
  7349. }
  7350. #endif
  7351. for_each_cpu(i, cpu_map) {
  7352. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7353. init_sched_groups_power(i, sd);
  7354. }
  7355. #ifdef CONFIG_NUMA
  7356. for (i = 0; i < nr_node_ids; i++)
  7357. init_numa_sched_groups_power(sched_group_nodes[i]);
  7358. if (sd_allnodes) {
  7359. struct sched_group *sg;
  7360. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7361. tmpmask);
  7362. init_numa_sched_groups_power(sg);
  7363. }
  7364. #endif
  7365. /* Attach the domains */
  7366. for_each_cpu(i, cpu_map) {
  7367. struct sched_domain *sd;
  7368. #ifdef CONFIG_SCHED_SMT
  7369. sd = &per_cpu(cpu_domains, i).sd;
  7370. #elif defined(CONFIG_SCHED_MC)
  7371. sd = &per_cpu(core_domains, i).sd;
  7372. #else
  7373. sd = &per_cpu(phys_domains, i).sd;
  7374. #endif
  7375. cpu_attach_domain(sd, rd, i);
  7376. }
  7377. err = 0;
  7378. free_tmpmask:
  7379. free_cpumask_var(tmpmask);
  7380. free_send_covered:
  7381. free_cpumask_var(send_covered);
  7382. free_this_core_map:
  7383. free_cpumask_var(this_core_map);
  7384. free_this_sibling_map:
  7385. free_cpumask_var(this_sibling_map);
  7386. free_nodemask:
  7387. free_cpumask_var(nodemask);
  7388. free_notcovered:
  7389. #ifdef CONFIG_NUMA
  7390. free_cpumask_var(notcovered);
  7391. free_covered:
  7392. free_cpumask_var(covered);
  7393. free_domainspan:
  7394. free_cpumask_var(domainspan);
  7395. out:
  7396. #endif
  7397. return err;
  7398. free_sched_groups:
  7399. #ifdef CONFIG_NUMA
  7400. kfree(sched_group_nodes);
  7401. #endif
  7402. goto free_tmpmask;
  7403. #ifdef CONFIG_NUMA
  7404. error:
  7405. free_sched_groups(cpu_map, tmpmask);
  7406. free_rootdomain(rd);
  7407. goto free_tmpmask;
  7408. #endif
  7409. }
  7410. static int build_sched_domains(const struct cpumask *cpu_map)
  7411. {
  7412. return __build_sched_domains(cpu_map, NULL);
  7413. }
  7414. static struct cpumask *doms_cur; /* current sched domains */
  7415. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7416. static struct sched_domain_attr *dattr_cur;
  7417. /* attribues of custom domains in 'doms_cur' */
  7418. /*
  7419. * Special case: If a kmalloc of a doms_cur partition (array of
  7420. * cpumask) fails, then fallback to a single sched domain,
  7421. * as determined by the single cpumask fallback_doms.
  7422. */
  7423. static cpumask_var_t fallback_doms;
  7424. /*
  7425. * arch_update_cpu_topology lets virtualized architectures update the
  7426. * cpu core maps. It is supposed to return 1 if the topology changed
  7427. * or 0 if it stayed the same.
  7428. */
  7429. int __attribute__((weak)) arch_update_cpu_topology(void)
  7430. {
  7431. return 0;
  7432. }
  7433. /*
  7434. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7435. * For now this just excludes isolated cpus, but could be used to
  7436. * exclude other special cases in the future.
  7437. */
  7438. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7439. {
  7440. int err;
  7441. arch_update_cpu_topology();
  7442. ndoms_cur = 1;
  7443. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7444. if (!doms_cur)
  7445. doms_cur = fallback_doms;
  7446. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7447. dattr_cur = NULL;
  7448. err = build_sched_domains(doms_cur);
  7449. register_sched_domain_sysctl();
  7450. return err;
  7451. }
  7452. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7453. struct cpumask *tmpmask)
  7454. {
  7455. free_sched_groups(cpu_map, tmpmask);
  7456. }
  7457. /*
  7458. * Detach sched domains from a group of cpus specified in cpu_map
  7459. * These cpus will now be attached to the NULL domain
  7460. */
  7461. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7462. {
  7463. /* Save because hotplug lock held. */
  7464. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7465. int i;
  7466. for_each_cpu(i, cpu_map)
  7467. cpu_attach_domain(NULL, &def_root_domain, i);
  7468. synchronize_sched();
  7469. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7470. }
  7471. /* handle null as "default" */
  7472. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7473. struct sched_domain_attr *new, int idx_new)
  7474. {
  7475. struct sched_domain_attr tmp;
  7476. /* fast path */
  7477. if (!new && !cur)
  7478. return 1;
  7479. tmp = SD_ATTR_INIT;
  7480. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7481. new ? (new + idx_new) : &tmp,
  7482. sizeof(struct sched_domain_attr));
  7483. }
  7484. /*
  7485. * Partition sched domains as specified by the 'ndoms_new'
  7486. * cpumasks in the array doms_new[] of cpumasks. This compares
  7487. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7488. * It destroys each deleted domain and builds each new domain.
  7489. *
  7490. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7491. * The masks don't intersect (don't overlap.) We should setup one
  7492. * sched domain for each mask. CPUs not in any of the cpumasks will
  7493. * not be load balanced. If the same cpumask appears both in the
  7494. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7495. * it as it is.
  7496. *
  7497. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7498. * ownership of it and will kfree it when done with it. If the caller
  7499. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7500. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7501. * the single partition 'fallback_doms', it also forces the domains
  7502. * to be rebuilt.
  7503. *
  7504. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7505. * ndoms_new == 0 is a special case for destroying existing domains,
  7506. * and it will not create the default domain.
  7507. *
  7508. * Call with hotplug lock held
  7509. */
  7510. /* FIXME: Change to struct cpumask *doms_new[] */
  7511. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7512. struct sched_domain_attr *dattr_new)
  7513. {
  7514. int i, j, n;
  7515. int new_topology;
  7516. mutex_lock(&sched_domains_mutex);
  7517. /* always unregister in case we don't destroy any domains */
  7518. unregister_sched_domain_sysctl();
  7519. /* Let architecture update cpu core mappings. */
  7520. new_topology = arch_update_cpu_topology();
  7521. n = doms_new ? ndoms_new : 0;
  7522. /* Destroy deleted domains */
  7523. for (i = 0; i < ndoms_cur; i++) {
  7524. for (j = 0; j < n && !new_topology; j++) {
  7525. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7526. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7527. goto match1;
  7528. }
  7529. /* no match - a current sched domain not in new doms_new[] */
  7530. detach_destroy_domains(doms_cur + i);
  7531. match1:
  7532. ;
  7533. }
  7534. if (doms_new == NULL) {
  7535. ndoms_cur = 0;
  7536. doms_new = fallback_doms;
  7537. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7538. WARN_ON_ONCE(dattr_new);
  7539. }
  7540. /* Build new domains */
  7541. for (i = 0; i < ndoms_new; i++) {
  7542. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7543. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7544. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7545. goto match2;
  7546. }
  7547. /* no match - add a new doms_new */
  7548. __build_sched_domains(doms_new + i,
  7549. dattr_new ? dattr_new + i : NULL);
  7550. match2:
  7551. ;
  7552. }
  7553. /* Remember the new sched domains */
  7554. if (doms_cur != fallback_doms)
  7555. kfree(doms_cur);
  7556. kfree(dattr_cur); /* kfree(NULL) is safe */
  7557. doms_cur = doms_new;
  7558. dattr_cur = dattr_new;
  7559. ndoms_cur = ndoms_new;
  7560. register_sched_domain_sysctl();
  7561. mutex_unlock(&sched_domains_mutex);
  7562. }
  7563. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7564. static void arch_reinit_sched_domains(void)
  7565. {
  7566. get_online_cpus();
  7567. /* Destroy domains first to force the rebuild */
  7568. partition_sched_domains(0, NULL, NULL);
  7569. rebuild_sched_domains();
  7570. put_online_cpus();
  7571. }
  7572. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7573. {
  7574. unsigned int level = 0;
  7575. if (sscanf(buf, "%u", &level) != 1)
  7576. return -EINVAL;
  7577. /*
  7578. * level is always be positive so don't check for
  7579. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7580. * What happens on 0 or 1 byte write,
  7581. * need to check for count as well?
  7582. */
  7583. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7584. return -EINVAL;
  7585. if (smt)
  7586. sched_smt_power_savings = level;
  7587. else
  7588. sched_mc_power_savings = level;
  7589. arch_reinit_sched_domains();
  7590. return count;
  7591. }
  7592. #ifdef CONFIG_SCHED_MC
  7593. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7594. char *page)
  7595. {
  7596. return sprintf(page, "%u\n", sched_mc_power_savings);
  7597. }
  7598. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7599. const char *buf, size_t count)
  7600. {
  7601. return sched_power_savings_store(buf, count, 0);
  7602. }
  7603. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7604. sched_mc_power_savings_show,
  7605. sched_mc_power_savings_store);
  7606. #endif
  7607. #ifdef CONFIG_SCHED_SMT
  7608. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7609. char *page)
  7610. {
  7611. return sprintf(page, "%u\n", sched_smt_power_savings);
  7612. }
  7613. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7614. const char *buf, size_t count)
  7615. {
  7616. return sched_power_savings_store(buf, count, 1);
  7617. }
  7618. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7619. sched_smt_power_savings_show,
  7620. sched_smt_power_savings_store);
  7621. #endif
  7622. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7623. {
  7624. int err = 0;
  7625. #ifdef CONFIG_SCHED_SMT
  7626. if (smt_capable())
  7627. err = sysfs_create_file(&cls->kset.kobj,
  7628. &attr_sched_smt_power_savings.attr);
  7629. #endif
  7630. #ifdef CONFIG_SCHED_MC
  7631. if (!err && mc_capable())
  7632. err = sysfs_create_file(&cls->kset.kobj,
  7633. &attr_sched_mc_power_savings.attr);
  7634. #endif
  7635. return err;
  7636. }
  7637. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7638. #ifndef CONFIG_CPUSETS
  7639. /*
  7640. * Add online and remove offline CPUs from the scheduler domains.
  7641. * When cpusets are enabled they take over this function.
  7642. */
  7643. static int update_sched_domains(struct notifier_block *nfb,
  7644. unsigned long action, void *hcpu)
  7645. {
  7646. switch (action) {
  7647. case CPU_ONLINE:
  7648. case CPU_ONLINE_FROZEN:
  7649. case CPU_DEAD:
  7650. case CPU_DEAD_FROZEN:
  7651. partition_sched_domains(1, NULL, NULL);
  7652. return NOTIFY_OK;
  7653. default:
  7654. return NOTIFY_DONE;
  7655. }
  7656. }
  7657. #endif
  7658. static int update_runtime(struct notifier_block *nfb,
  7659. unsigned long action, void *hcpu)
  7660. {
  7661. int cpu = (int)(long)hcpu;
  7662. switch (action) {
  7663. case CPU_DOWN_PREPARE:
  7664. case CPU_DOWN_PREPARE_FROZEN:
  7665. disable_runtime(cpu_rq(cpu));
  7666. return NOTIFY_OK;
  7667. case CPU_DOWN_FAILED:
  7668. case CPU_DOWN_FAILED_FROZEN:
  7669. case CPU_ONLINE:
  7670. case CPU_ONLINE_FROZEN:
  7671. enable_runtime(cpu_rq(cpu));
  7672. return NOTIFY_OK;
  7673. default:
  7674. return NOTIFY_DONE;
  7675. }
  7676. }
  7677. void __init sched_init_smp(void)
  7678. {
  7679. cpumask_var_t non_isolated_cpus;
  7680. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7681. #if defined(CONFIG_NUMA)
  7682. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7683. GFP_KERNEL);
  7684. BUG_ON(sched_group_nodes_bycpu == NULL);
  7685. #endif
  7686. get_online_cpus();
  7687. mutex_lock(&sched_domains_mutex);
  7688. arch_init_sched_domains(cpu_online_mask);
  7689. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7690. if (cpumask_empty(non_isolated_cpus))
  7691. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7692. mutex_unlock(&sched_domains_mutex);
  7693. put_online_cpus();
  7694. #ifndef CONFIG_CPUSETS
  7695. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7696. hotcpu_notifier(update_sched_domains, 0);
  7697. #endif
  7698. /* RT runtime code needs to handle some hotplug events */
  7699. hotcpu_notifier(update_runtime, 0);
  7700. init_hrtick();
  7701. /* Move init over to a non-isolated CPU */
  7702. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7703. BUG();
  7704. sched_init_granularity();
  7705. free_cpumask_var(non_isolated_cpus);
  7706. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7707. init_sched_rt_class();
  7708. }
  7709. #else
  7710. void __init sched_init_smp(void)
  7711. {
  7712. sched_init_granularity();
  7713. }
  7714. #endif /* CONFIG_SMP */
  7715. int in_sched_functions(unsigned long addr)
  7716. {
  7717. return in_lock_functions(addr) ||
  7718. (addr >= (unsigned long)__sched_text_start
  7719. && addr < (unsigned long)__sched_text_end);
  7720. }
  7721. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7722. {
  7723. cfs_rq->tasks_timeline = RB_ROOT;
  7724. INIT_LIST_HEAD(&cfs_rq->tasks);
  7725. #ifdef CONFIG_FAIR_GROUP_SCHED
  7726. cfs_rq->rq = rq;
  7727. #endif
  7728. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7729. }
  7730. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7731. {
  7732. struct rt_prio_array *array;
  7733. int i;
  7734. array = &rt_rq->active;
  7735. for (i = 0; i < MAX_RT_PRIO; i++) {
  7736. INIT_LIST_HEAD(array->queue + i);
  7737. __clear_bit(i, array->bitmap);
  7738. }
  7739. /* delimiter for bitsearch: */
  7740. __set_bit(MAX_RT_PRIO, array->bitmap);
  7741. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7742. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7743. #ifdef CONFIG_SMP
  7744. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7745. #endif
  7746. #endif
  7747. #ifdef CONFIG_SMP
  7748. rt_rq->rt_nr_migratory = 0;
  7749. rt_rq->overloaded = 0;
  7750. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7751. #endif
  7752. rt_rq->rt_time = 0;
  7753. rt_rq->rt_throttled = 0;
  7754. rt_rq->rt_runtime = 0;
  7755. spin_lock_init(&rt_rq->rt_runtime_lock);
  7756. #ifdef CONFIG_RT_GROUP_SCHED
  7757. rt_rq->rt_nr_boosted = 0;
  7758. rt_rq->rq = rq;
  7759. #endif
  7760. }
  7761. #ifdef CONFIG_FAIR_GROUP_SCHED
  7762. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7763. struct sched_entity *se, int cpu, int add,
  7764. struct sched_entity *parent)
  7765. {
  7766. struct rq *rq = cpu_rq(cpu);
  7767. tg->cfs_rq[cpu] = cfs_rq;
  7768. init_cfs_rq(cfs_rq, rq);
  7769. cfs_rq->tg = tg;
  7770. if (add)
  7771. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7772. tg->se[cpu] = se;
  7773. /* se could be NULL for init_task_group */
  7774. if (!se)
  7775. return;
  7776. if (!parent)
  7777. se->cfs_rq = &rq->cfs;
  7778. else
  7779. se->cfs_rq = parent->my_q;
  7780. se->my_q = cfs_rq;
  7781. se->load.weight = tg->shares;
  7782. se->load.inv_weight = 0;
  7783. se->parent = parent;
  7784. }
  7785. #endif
  7786. #ifdef CONFIG_RT_GROUP_SCHED
  7787. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7788. struct sched_rt_entity *rt_se, int cpu, int add,
  7789. struct sched_rt_entity *parent)
  7790. {
  7791. struct rq *rq = cpu_rq(cpu);
  7792. tg->rt_rq[cpu] = rt_rq;
  7793. init_rt_rq(rt_rq, rq);
  7794. rt_rq->tg = tg;
  7795. rt_rq->rt_se = rt_se;
  7796. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7797. if (add)
  7798. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7799. tg->rt_se[cpu] = rt_se;
  7800. if (!rt_se)
  7801. return;
  7802. if (!parent)
  7803. rt_se->rt_rq = &rq->rt;
  7804. else
  7805. rt_se->rt_rq = parent->my_q;
  7806. rt_se->my_q = rt_rq;
  7807. rt_se->parent = parent;
  7808. INIT_LIST_HEAD(&rt_se->run_list);
  7809. }
  7810. #endif
  7811. void __init sched_init(void)
  7812. {
  7813. int i, j;
  7814. unsigned long alloc_size = 0, ptr;
  7815. #ifdef CONFIG_FAIR_GROUP_SCHED
  7816. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7817. #endif
  7818. #ifdef CONFIG_RT_GROUP_SCHED
  7819. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7820. #endif
  7821. #ifdef CONFIG_USER_SCHED
  7822. alloc_size *= 2;
  7823. #endif
  7824. #ifdef CONFIG_CPUMASK_OFFSTACK
  7825. alloc_size += num_possible_cpus() * cpumask_size();
  7826. #endif
  7827. /*
  7828. * As sched_init() is called before page_alloc is setup,
  7829. * we use alloc_bootmem().
  7830. */
  7831. if (alloc_size) {
  7832. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7833. #ifdef CONFIG_FAIR_GROUP_SCHED
  7834. init_task_group.se = (struct sched_entity **)ptr;
  7835. ptr += nr_cpu_ids * sizeof(void **);
  7836. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7837. ptr += nr_cpu_ids * sizeof(void **);
  7838. #ifdef CONFIG_USER_SCHED
  7839. root_task_group.se = (struct sched_entity **)ptr;
  7840. ptr += nr_cpu_ids * sizeof(void **);
  7841. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7842. ptr += nr_cpu_ids * sizeof(void **);
  7843. #endif /* CONFIG_USER_SCHED */
  7844. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7845. #ifdef CONFIG_RT_GROUP_SCHED
  7846. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7847. ptr += nr_cpu_ids * sizeof(void **);
  7848. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7849. ptr += nr_cpu_ids * sizeof(void **);
  7850. #ifdef CONFIG_USER_SCHED
  7851. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7852. ptr += nr_cpu_ids * sizeof(void **);
  7853. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7854. ptr += nr_cpu_ids * sizeof(void **);
  7855. #endif /* CONFIG_USER_SCHED */
  7856. #endif /* CONFIG_RT_GROUP_SCHED */
  7857. #ifdef CONFIG_CPUMASK_OFFSTACK
  7858. for_each_possible_cpu(i) {
  7859. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7860. ptr += cpumask_size();
  7861. }
  7862. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7863. }
  7864. #ifdef CONFIG_SMP
  7865. init_defrootdomain();
  7866. #endif
  7867. init_rt_bandwidth(&def_rt_bandwidth,
  7868. global_rt_period(), global_rt_runtime());
  7869. #ifdef CONFIG_RT_GROUP_SCHED
  7870. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7871. global_rt_period(), global_rt_runtime());
  7872. #ifdef CONFIG_USER_SCHED
  7873. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7874. global_rt_period(), RUNTIME_INF);
  7875. #endif /* CONFIG_USER_SCHED */
  7876. #endif /* CONFIG_RT_GROUP_SCHED */
  7877. #ifdef CONFIG_GROUP_SCHED
  7878. list_add(&init_task_group.list, &task_groups);
  7879. INIT_LIST_HEAD(&init_task_group.children);
  7880. #ifdef CONFIG_USER_SCHED
  7881. INIT_LIST_HEAD(&root_task_group.children);
  7882. init_task_group.parent = &root_task_group;
  7883. list_add(&init_task_group.siblings, &root_task_group.children);
  7884. #endif /* CONFIG_USER_SCHED */
  7885. #endif /* CONFIG_GROUP_SCHED */
  7886. for_each_possible_cpu(i) {
  7887. struct rq *rq;
  7888. rq = cpu_rq(i);
  7889. spin_lock_init(&rq->lock);
  7890. rq->nr_running = 0;
  7891. rq->calc_load_active = 0;
  7892. rq->calc_load_update = jiffies + LOAD_FREQ;
  7893. init_cfs_rq(&rq->cfs, rq);
  7894. init_rt_rq(&rq->rt, rq);
  7895. #ifdef CONFIG_FAIR_GROUP_SCHED
  7896. init_task_group.shares = init_task_group_load;
  7897. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7898. #ifdef CONFIG_CGROUP_SCHED
  7899. /*
  7900. * How much cpu bandwidth does init_task_group get?
  7901. *
  7902. * In case of task-groups formed thr' the cgroup filesystem, it
  7903. * gets 100% of the cpu resources in the system. This overall
  7904. * system cpu resource is divided among the tasks of
  7905. * init_task_group and its child task-groups in a fair manner,
  7906. * based on each entity's (task or task-group's) weight
  7907. * (se->load.weight).
  7908. *
  7909. * In other words, if init_task_group has 10 tasks of weight
  7910. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7911. * then A0's share of the cpu resource is:
  7912. *
  7913. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7914. *
  7915. * We achieve this by letting init_task_group's tasks sit
  7916. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7917. */
  7918. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7919. #elif defined CONFIG_USER_SCHED
  7920. root_task_group.shares = NICE_0_LOAD;
  7921. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7922. /*
  7923. * In case of task-groups formed thr' the user id of tasks,
  7924. * init_task_group represents tasks belonging to root user.
  7925. * Hence it forms a sibling of all subsequent groups formed.
  7926. * In this case, init_task_group gets only a fraction of overall
  7927. * system cpu resource, based on the weight assigned to root
  7928. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7929. * by letting tasks of init_task_group sit in a separate cfs_rq
  7930. * (init_cfs_rq) and having one entity represent this group of
  7931. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7932. */
  7933. init_tg_cfs_entry(&init_task_group,
  7934. &per_cpu(init_cfs_rq, i),
  7935. &per_cpu(init_sched_entity, i), i, 1,
  7936. root_task_group.se[i]);
  7937. #endif
  7938. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7939. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7940. #ifdef CONFIG_RT_GROUP_SCHED
  7941. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7942. #ifdef CONFIG_CGROUP_SCHED
  7943. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7944. #elif defined CONFIG_USER_SCHED
  7945. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7946. init_tg_rt_entry(&init_task_group,
  7947. &per_cpu(init_rt_rq, i),
  7948. &per_cpu(init_sched_rt_entity, i), i, 1,
  7949. root_task_group.rt_se[i]);
  7950. #endif
  7951. #endif
  7952. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7953. rq->cpu_load[j] = 0;
  7954. #ifdef CONFIG_SMP
  7955. rq->sd = NULL;
  7956. rq->rd = NULL;
  7957. rq->active_balance = 0;
  7958. rq->next_balance = jiffies;
  7959. rq->push_cpu = 0;
  7960. rq->cpu = i;
  7961. rq->online = 0;
  7962. rq->migration_thread = NULL;
  7963. INIT_LIST_HEAD(&rq->migration_queue);
  7964. rq_attach_root(rq, &def_root_domain);
  7965. #endif
  7966. init_rq_hrtick(rq);
  7967. atomic_set(&rq->nr_iowait, 0);
  7968. }
  7969. set_load_weight(&init_task);
  7970. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7971. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7972. #endif
  7973. #ifdef CONFIG_SMP
  7974. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7975. #endif
  7976. #ifdef CONFIG_RT_MUTEXES
  7977. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7978. #endif
  7979. /*
  7980. * The boot idle thread does lazy MMU switching as well:
  7981. */
  7982. atomic_inc(&init_mm.mm_count);
  7983. enter_lazy_tlb(&init_mm, current);
  7984. /*
  7985. * Make us the idle thread. Technically, schedule() should not be
  7986. * called from this thread, however somewhere below it might be,
  7987. * but because we are the idle thread, we just pick up running again
  7988. * when this runqueue becomes "idle".
  7989. */
  7990. init_idle(current, smp_processor_id());
  7991. calc_load_update = jiffies + LOAD_FREQ;
  7992. /*
  7993. * During early bootup we pretend to be a normal task:
  7994. */
  7995. current->sched_class = &fair_sched_class;
  7996. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7997. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7998. #ifdef CONFIG_SMP
  7999. #ifdef CONFIG_NO_HZ
  8000. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8001. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8002. #endif
  8003. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8004. #endif /* SMP */
  8005. perf_counter_init();
  8006. scheduler_running = 1;
  8007. }
  8008. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8009. void __might_sleep(char *file, int line)
  8010. {
  8011. #ifdef in_atomic
  8012. static unsigned long prev_jiffy; /* ratelimiting */
  8013. if ((!in_atomic() && !irqs_disabled()) ||
  8014. system_state != SYSTEM_RUNNING || oops_in_progress)
  8015. return;
  8016. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8017. return;
  8018. prev_jiffy = jiffies;
  8019. printk(KERN_ERR
  8020. "BUG: sleeping function called from invalid context at %s:%d\n",
  8021. file, line);
  8022. printk(KERN_ERR
  8023. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8024. in_atomic(), irqs_disabled(),
  8025. current->pid, current->comm);
  8026. debug_show_held_locks(current);
  8027. if (irqs_disabled())
  8028. print_irqtrace_events(current);
  8029. dump_stack();
  8030. #endif
  8031. }
  8032. EXPORT_SYMBOL(__might_sleep);
  8033. #endif
  8034. #ifdef CONFIG_MAGIC_SYSRQ
  8035. static void normalize_task(struct rq *rq, struct task_struct *p)
  8036. {
  8037. int on_rq;
  8038. update_rq_clock(rq);
  8039. on_rq = p->se.on_rq;
  8040. if (on_rq)
  8041. deactivate_task(rq, p, 0);
  8042. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8043. if (on_rq) {
  8044. activate_task(rq, p, 0);
  8045. resched_task(rq->curr);
  8046. }
  8047. }
  8048. void normalize_rt_tasks(void)
  8049. {
  8050. struct task_struct *g, *p;
  8051. unsigned long flags;
  8052. struct rq *rq;
  8053. read_lock_irqsave(&tasklist_lock, flags);
  8054. do_each_thread(g, p) {
  8055. /*
  8056. * Only normalize user tasks:
  8057. */
  8058. if (!p->mm)
  8059. continue;
  8060. p->se.exec_start = 0;
  8061. #ifdef CONFIG_SCHEDSTATS
  8062. p->se.wait_start = 0;
  8063. p->se.sleep_start = 0;
  8064. p->se.block_start = 0;
  8065. #endif
  8066. if (!rt_task(p)) {
  8067. /*
  8068. * Renice negative nice level userspace
  8069. * tasks back to 0:
  8070. */
  8071. if (TASK_NICE(p) < 0 && p->mm)
  8072. set_user_nice(p, 0);
  8073. continue;
  8074. }
  8075. spin_lock(&p->pi_lock);
  8076. rq = __task_rq_lock(p);
  8077. normalize_task(rq, p);
  8078. __task_rq_unlock(rq);
  8079. spin_unlock(&p->pi_lock);
  8080. } while_each_thread(g, p);
  8081. read_unlock_irqrestore(&tasklist_lock, flags);
  8082. }
  8083. #endif /* CONFIG_MAGIC_SYSRQ */
  8084. #ifdef CONFIG_IA64
  8085. /*
  8086. * These functions are only useful for the IA64 MCA handling.
  8087. *
  8088. * They can only be called when the whole system has been
  8089. * stopped - every CPU needs to be quiescent, and no scheduling
  8090. * activity can take place. Using them for anything else would
  8091. * be a serious bug, and as a result, they aren't even visible
  8092. * under any other configuration.
  8093. */
  8094. /**
  8095. * curr_task - return the current task for a given cpu.
  8096. * @cpu: the processor in question.
  8097. *
  8098. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8099. */
  8100. struct task_struct *curr_task(int cpu)
  8101. {
  8102. return cpu_curr(cpu);
  8103. }
  8104. /**
  8105. * set_curr_task - set the current task for a given cpu.
  8106. * @cpu: the processor in question.
  8107. * @p: the task pointer to set.
  8108. *
  8109. * Description: This function must only be used when non-maskable interrupts
  8110. * are serviced on a separate stack. It allows the architecture to switch the
  8111. * notion of the current task on a cpu in a non-blocking manner. This function
  8112. * must be called with all CPU's synchronized, and interrupts disabled, the
  8113. * and caller must save the original value of the current task (see
  8114. * curr_task() above) and restore that value before reenabling interrupts and
  8115. * re-starting the system.
  8116. *
  8117. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8118. */
  8119. void set_curr_task(int cpu, struct task_struct *p)
  8120. {
  8121. cpu_curr(cpu) = p;
  8122. }
  8123. #endif
  8124. #ifdef CONFIG_FAIR_GROUP_SCHED
  8125. static void free_fair_sched_group(struct task_group *tg)
  8126. {
  8127. int i;
  8128. for_each_possible_cpu(i) {
  8129. if (tg->cfs_rq)
  8130. kfree(tg->cfs_rq[i]);
  8131. if (tg->se)
  8132. kfree(tg->se[i]);
  8133. }
  8134. kfree(tg->cfs_rq);
  8135. kfree(tg->se);
  8136. }
  8137. static
  8138. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8139. {
  8140. struct cfs_rq *cfs_rq;
  8141. struct sched_entity *se;
  8142. struct rq *rq;
  8143. int i;
  8144. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8145. if (!tg->cfs_rq)
  8146. goto err;
  8147. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8148. if (!tg->se)
  8149. goto err;
  8150. tg->shares = NICE_0_LOAD;
  8151. for_each_possible_cpu(i) {
  8152. rq = cpu_rq(i);
  8153. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8154. GFP_KERNEL, cpu_to_node(i));
  8155. if (!cfs_rq)
  8156. goto err;
  8157. se = kzalloc_node(sizeof(struct sched_entity),
  8158. GFP_KERNEL, cpu_to_node(i));
  8159. if (!se)
  8160. goto err;
  8161. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8162. }
  8163. return 1;
  8164. err:
  8165. return 0;
  8166. }
  8167. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8168. {
  8169. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8170. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8171. }
  8172. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8173. {
  8174. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8175. }
  8176. #else /* !CONFG_FAIR_GROUP_SCHED */
  8177. static inline void free_fair_sched_group(struct task_group *tg)
  8178. {
  8179. }
  8180. static inline
  8181. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8182. {
  8183. return 1;
  8184. }
  8185. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8186. {
  8187. }
  8188. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8189. {
  8190. }
  8191. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8192. #ifdef CONFIG_RT_GROUP_SCHED
  8193. static void free_rt_sched_group(struct task_group *tg)
  8194. {
  8195. int i;
  8196. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8197. for_each_possible_cpu(i) {
  8198. if (tg->rt_rq)
  8199. kfree(tg->rt_rq[i]);
  8200. if (tg->rt_se)
  8201. kfree(tg->rt_se[i]);
  8202. }
  8203. kfree(tg->rt_rq);
  8204. kfree(tg->rt_se);
  8205. }
  8206. static
  8207. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8208. {
  8209. struct rt_rq *rt_rq;
  8210. struct sched_rt_entity *rt_se;
  8211. struct rq *rq;
  8212. int i;
  8213. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8214. if (!tg->rt_rq)
  8215. goto err;
  8216. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8217. if (!tg->rt_se)
  8218. goto err;
  8219. init_rt_bandwidth(&tg->rt_bandwidth,
  8220. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8221. for_each_possible_cpu(i) {
  8222. rq = cpu_rq(i);
  8223. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8224. GFP_KERNEL, cpu_to_node(i));
  8225. if (!rt_rq)
  8226. goto err;
  8227. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8228. GFP_KERNEL, cpu_to_node(i));
  8229. if (!rt_se)
  8230. goto err;
  8231. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8232. }
  8233. return 1;
  8234. err:
  8235. return 0;
  8236. }
  8237. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8238. {
  8239. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8240. &cpu_rq(cpu)->leaf_rt_rq_list);
  8241. }
  8242. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8243. {
  8244. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8245. }
  8246. #else /* !CONFIG_RT_GROUP_SCHED */
  8247. static inline void free_rt_sched_group(struct task_group *tg)
  8248. {
  8249. }
  8250. static inline
  8251. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8252. {
  8253. return 1;
  8254. }
  8255. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8256. {
  8257. }
  8258. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8259. {
  8260. }
  8261. #endif /* CONFIG_RT_GROUP_SCHED */
  8262. #ifdef CONFIG_GROUP_SCHED
  8263. static void free_sched_group(struct task_group *tg)
  8264. {
  8265. free_fair_sched_group(tg);
  8266. free_rt_sched_group(tg);
  8267. kfree(tg);
  8268. }
  8269. /* allocate runqueue etc for a new task group */
  8270. struct task_group *sched_create_group(struct task_group *parent)
  8271. {
  8272. struct task_group *tg;
  8273. unsigned long flags;
  8274. int i;
  8275. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8276. if (!tg)
  8277. return ERR_PTR(-ENOMEM);
  8278. if (!alloc_fair_sched_group(tg, parent))
  8279. goto err;
  8280. if (!alloc_rt_sched_group(tg, parent))
  8281. goto err;
  8282. spin_lock_irqsave(&task_group_lock, flags);
  8283. for_each_possible_cpu(i) {
  8284. register_fair_sched_group(tg, i);
  8285. register_rt_sched_group(tg, i);
  8286. }
  8287. list_add_rcu(&tg->list, &task_groups);
  8288. WARN_ON(!parent); /* root should already exist */
  8289. tg->parent = parent;
  8290. INIT_LIST_HEAD(&tg->children);
  8291. list_add_rcu(&tg->siblings, &parent->children);
  8292. spin_unlock_irqrestore(&task_group_lock, flags);
  8293. return tg;
  8294. err:
  8295. free_sched_group(tg);
  8296. return ERR_PTR(-ENOMEM);
  8297. }
  8298. /* rcu callback to free various structures associated with a task group */
  8299. static void free_sched_group_rcu(struct rcu_head *rhp)
  8300. {
  8301. /* now it should be safe to free those cfs_rqs */
  8302. free_sched_group(container_of(rhp, struct task_group, rcu));
  8303. }
  8304. /* Destroy runqueue etc associated with a task group */
  8305. void sched_destroy_group(struct task_group *tg)
  8306. {
  8307. unsigned long flags;
  8308. int i;
  8309. spin_lock_irqsave(&task_group_lock, flags);
  8310. for_each_possible_cpu(i) {
  8311. unregister_fair_sched_group(tg, i);
  8312. unregister_rt_sched_group(tg, i);
  8313. }
  8314. list_del_rcu(&tg->list);
  8315. list_del_rcu(&tg->siblings);
  8316. spin_unlock_irqrestore(&task_group_lock, flags);
  8317. /* wait for possible concurrent references to cfs_rqs complete */
  8318. call_rcu(&tg->rcu, free_sched_group_rcu);
  8319. }
  8320. /* change task's runqueue when it moves between groups.
  8321. * The caller of this function should have put the task in its new group
  8322. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8323. * reflect its new group.
  8324. */
  8325. void sched_move_task(struct task_struct *tsk)
  8326. {
  8327. int on_rq, running;
  8328. unsigned long flags;
  8329. struct rq *rq;
  8330. rq = task_rq_lock(tsk, &flags);
  8331. update_rq_clock(rq);
  8332. running = task_current(rq, tsk);
  8333. on_rq = tsk->se.on_rq;
  8334. if (on_rq)
  8335. dequeue_task(rq, tsk, 0);
  8336. if (unlikely(running))
  8337. tsk->sched_class->put_prev_task(rq, tsk);
  8338. set_task_rq(tsk, task_cpu(tsk));
  8339. #ifdef CONFIG_FAIR_GROUP_SCHED
  8340. if (tsk->sched_class->moved_group)
  8341. tsk->sched_class->moved_group(tsk);
  8342. #endif
  8343. if (unlikely(running))
  8344. tsk->sched_class->set_curr_task(rq);
  8345. if (on_rq)
  8346. enqueue_task(rq, tsk, 0);
  8347. task_rq_unlock(rq, &flags);
  8348. }
  8349. #endif /* CONFIG_GROUP_SCHED */
  8350. #ifdef CONFIG_FAIR_GROUP_SCHED
  8351. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8352. {
  8353. struct cfs_rq *cfs_rq = se->cfs_rq;
  8354. int on_rq;
  8355. on_rq = se->on_rq;
  8356. if (on_rq)
  8357. dequeue_entity(cfs_rq, se, 0);
  8358. se->load.weight = shares;
  8359. se->load.inv_weight = 0;
  8360. if (on_rq)
  8361. enqueue_entity(cfs_rq, se, 0);
  8362. }
  8363. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8364. {
  8365. struct cfs_rq *cfs_rq = se->cfs_rq;
  8366. struct rq *rq = cfs_rq->rq;
  8367. unsigned long flags;
  8368. spin_lock_irqsave(&rq->lock, flags);
  8369. __set_se_shares(se, shares);
  8370. spin_unlock_irqrestore(&rq->lock, flags);
  8371. }
  8372. static DEFINE_MUTEX(shares_mutex);
  8373. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8374. {
  8375. int i;
  8376. unsigned long flags;
  8377. /*
  8378. * We can't change the weight of the root cgroup.
  8379. */
  8380. if (!tg->se[0])
  8381. return -EINVAL;
  8382. if (shares < MIN_SHARES)
  8383. shares = MIN_SHARES;
  8384. else if (shares > MAX_SHARES)
  8385. shares = MAX_SHARES;
  8386. mutex_lock(&shares_mutex);
  8387. if (tg->shares == shares)
  8388. goto done;
  8389. spin_lock_irqsave(&task_group_lock, flags);
  8390. for_each_possible_cpu(i)
  8391. unregister_fair_sched_group(tg, i);
  8392. list_del_rcu(&tg->siblings);
  8393. spin_unlock_irqrestore(&task_group_lock, flags);
  8394. /* wait for any ongoing reference to this group to finish */
  8395. synchronize_sched();
  8396. /*
  8397. * Now we are free to modify the group's share on each cpu
  8398. * w/o tripping rebalance_share or load_balance_fair.
  8399. */
  8400. tg->shares = shares;
  8401. for_each_possible_cpu(i) {
  8402. /*
  8403. * force a rebalance
  8404. */
  8405. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8406. set_se_shares(tg->se[i], shares);
  8407. }
  8408. /*
  8409. * Enable load balance activity on this group, by inserting it back on
  8410. * each cpu's rq->leaf_cfs_rq_list.
  8411. */
  8412. spin_lock_irqsave(&task_group_lock, flags);
  8413. for_each_possible_cpu(i)
  8414. register_fair_sched_group(tg, i);
  8415. list_add_rcu(&tg->siblings, &tg->parent->children);
  8416. spin_unlock_irqrestore(&task_group_lock, flags);
  8417. done:
  8418. mutex_unlock(&shares_mutex);
  8419. return 0;
  8420. }
  8421. unsigned long sched_group_shares(struct task_group *tg)
  8422. {
  8423. return tg->shares;
  8424. }
  8425. #endif
  8426. #ifdef CONFIG_RT_GROUP_SCHED
  8427. /*
  8428. * Ensure that the real time constraints are schedulable.
  8429. */
  8430. static DEFINE_MUTEX(rt_constraints_mutex);
  8431. static unsigned long to_ratio(u64 period, u64 runtime)
  8432. {
  8433. if (runtime == RUNTIME_INF)
  8434. return 1ULL << 20;
  8435. return div64_u64(runtime << 20, period);
  8436. }
  8437. /* Must be called with tasklist_lock held */
  8438. static inline int tg_has_rt_tasks(struct task_group *tg)
  8439. {
  8440. struct task_struct *g, *p;
  8441. do_each_thread(g, p) {
  8442. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8443. return 1;
  8444. } while_each_thread(g, p);
  8445. return 0;
  8446. }
  8447. struct rt_schedulable_data {
  8448. struct task_group *tg;
  8449. u64 rt_period;
  8450. u64 rt_runtime;
  8451. };
  8452. static int tg_schedulable(struct task_group *tg, void *data)
  8453. {
  8454. struct rt_schedulable_data *d = data;
  8455. struct task_group *child;
  8456. unsigned long total, sum = 0;
  8457. u64 period, runtime;
  8458. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8459. runtime = tg->rt_bandwidth.rt_runtime;
  8460. if (tg == d->tg) {
  8461. period = d->rt_period;
  8462. runtime = d->rt_runtime;
  8463. }
  8464. #ifdef CONFIG_USER_SCHED
  8465. if (tg == &root_task_group) {
  8466. period = global_rt_period();
  8467. runtime = global_rt_runtime();
  8468. }
  8469. #endif
  8470. /*
  8471. * Cannot have more runtime than the period.
  8472. */
  8473. if (runtime > period && runtime != RUNTIME_INF)
  8474. return -EINVAL;
  8475. /*
  8476. * Ensure we don't starve existing RT tasks.
  8477. */
  8478. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8479. return -EBUSY;
  8480. total = to_ratio(period, runtime);
  8481. /*
  8482. * Nobody can have more than the global setting allows.
  8483. */
  8484. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8485. return -EINVAL;
  8486. /*
  8487. * The sum of our children's runtime should not exceed our own.
  8488. */
  8489. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8490. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8491. runtime = child->rt_bandwidth.rt_runtime;
  8492. if (child == d->tg) {
  8493. period = d->rt_period;
  8494. runtime = d->rt_runtime;
  8495. }
  8496. sum += to_ratio(period, runtime);
  8497. }
  8498. if (sum > total)
  8499. return -EINVAL;
  8500. return 0;
  8501. }
  8502. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8503. {
  8504. struct rt_schedulable_data data = {
  8505. .tg = tg,
  8506. .rt_period = period,
  8507. .rt_runtime = runtime,
  8508. };
  8509. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8510. }
  8511. static int tg_set_bandwidth(struct task_group *tg,
  8512. u64 rt_period, u64 rt_runtime)
  8513. {
  8514. int i, err = 0;
  8515. mutex_lock(&rt_constraints_mutex);
  8516. read_lock(&tasklist_lock);
  8517. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8518. if (err)
  8519. goto unlock;
  8520. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8521. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8522. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8523. for_each_possible_cpu(i) {
  8524. struct rt_rq *rt_rq = tg->rt_rq[i];
  8525. spin_lock(&rt_rq->rt_runtime_lock);
  8526. rt_rq->rt_runtime = rt_runtime;
  8527. spin_unlock(&rt_rq->rt_runtime_lock);
  8528. }
  8529. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8530. unlock:
  8531. read_unlock(&tasklist_lock);
  8532. mutex_unlock(&rt_constraints_mutex);
  8533. return err;
  8534. }
  8535. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8536. {
  8537. u64 rt_runtime, rt_period;
  8538. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8539. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8540. if (rt_runtime_us < 0)
  8541. rt_runtime = RUNTIME_INF;
  8542. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8543. }
  8544. long sched_group_rt_runtime(struct task_group *tg)
  8545. {
  8546. u64 rt_runtime_us;
  8547. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8548. return -1;
  8549. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8550. do_div(rt_runtime_us, NSEC_PER_USEC);
  8551. return rt_runtime_us;
  8552. }
  8553. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8554. {
  8555. u64 rt_runtime, rt_period;
  8556. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8557. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8558. if (rt_period == 0)
  8559. return -EINVAL;
  8560. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8561. }
  8562. long sched_group_rt_period(struct task_group *tg)
  8563. {
  8564. u64 rt_period_us;
  8565. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8566. do_div(rt_period_us, NSEC_PER_USEC);
  8567. return rt_period_us;
  8568. }
  8569. static int sched_rt_global_constraints(void)
  8570. {
  8571. u64 runtime, period;
  8572. int ret = 0;
  8573. if (sysctl_sched_rt_period <= 0)
  8574. return -EINVAL;
  8575. runtime = global_rt_runtime();
  8576. period = global_rt_period();
  8577. /*
  8578. * Sanity check on the sysctl variables.
  8579. */
  8580. if (runtime > period && runtime != RUNTIME_INF)
  8581. return -EINVAL;
  8582. mutex_lock(&rt_constraints_mutex);
  8583. read_lock(&tasklist_lock);
  8584. ret = __rt_schedulable(NULL, 0, 0);
  8585. read_unlock(&tasklist_lock);
  8586. mutex_unlock(&rt_constraints_mutex);
  8587. return ret;
  8588. }
  8589. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8590. {
  8591. /* Don't accept realtime tasks when there is no way for them to run */
  8592. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8593. return 0;
  8594. return 1;
  8595. }
  8596. #else /* !CONFIG_RT_GROUP_SCHED */
  8597. static int sched_rt_global_constraints(void)
  8598. {
  8599. unsigned long flags;
  8600. int i;
  8601. if (sysctl_sched_rt_period <= 0)
  8602. return -EINVAL;
  8603. /*
  8604. * There's always some RT tasks in the root group
  8605. * -- migration, kstopmachine etc..
  8606. */
  8607. if (sysctl_sched_rt_runtime == 0)
  8608. return -EBUSY;
  8609. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8610. for_each_possible_cpu(i) {
  8611. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8612. spin_lock(&rt_rq->rt_runtime_lock);
  8613. rt_rq->rt_runtime = global_rt_runtime();
  8614. spin_unlock(&rt_rq->rt_runtime_lock);
  8615. }
  8616. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8617. return 0;
  8618. }
  8619. #endif /* CONFIG_RT_GROUP_SCHED */
  8620. int sched_rt_handler(struct ctl_table *table, int write,
  8621. struct file *filp, void __user *buffer, size_t *lenp,
  8622. loff_t *ppos)
  8623. {
  8624. int ret;
  8625. int old_period, old_runtime;
  8626. static DEFINE_MUTEX(mutex);
  8627. mutex_lock(&mutex);
  8628. old_period = sysctl_sched_rt_period;
  8629. old_runtime = sysctl_sched_rt_runtime;
  8630. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8631. if (!ret && write) {
  8632. ret = sched_rt_global_constraints();
  8633. if (ret) {
  8634. sysctl_sched_rt_period = old_period;
  8635. sysctl_sched_rt_runtime = old_runtime;
  8636. } else {
  8637. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8638. def_rt_bandwidth.rt_period =
  8639. ns_to_ktime(global_rt_period());
  8640. }
  8641. }
  8642. mutex_unlock(&mutex);
  8643. return ret;
  8644. }
  8645. #ifdef CONFIG_CGROUP_SCHED
  8646. /* return corresponding task_group object of a cgroup */
  8647. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8648. {
  8649. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8650. struct task_group, css);
  8651. }
  8652. static struct cgroup_subsys_state *
  8653. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8654. {
  8655. struct task_group *tg, *parent;
  8656. if (!cgrp->parent) {
  8657. /* This is early initialization for the top cgroup */
  8658. return &init_task_group.css;
  8659. }
  8660. parent = cgroup_tg(cgrp->parent);
  8661. tg = sched_create_group(parent);
  8662. if (IS_ERR(tg))
  8663. return ERR_PTR(-ENOMEM);
  8664. return &tg->css;
  8665. }
  8666. static void
  8667. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8668. {
  8669. struct task_group *tg = cgroup_tg(cgrp);
  8670. sched_destroy_group(tg);
  8671. }
  8672. static int
  8673. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8674. struct task_struct *tsk)
  8675. {
  8676. #ifdef CONFIG_RT_GROUP_SCHED
  8677. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8678. return -EINVAL;
  8679. #else
  8680. /* We don't support RT-tasks being in separate groups */
  8681. if (tsk->sched_class != &fair_sched_class)
  8682. return -EINVAL;
  8683. #endif
  8684. return 0;
  8685. }
  8686. static void
  8687. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8688. struct cgroup *old_cont, struct task_struct *tsk)
  8689. {
  8690. sched_move_task(tsk);
  8691. }
  8692. #ifdef CONFIG_FAIR_GROUP_SCHED
  8693. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8694. u64 shareval)
  8695. {
  8696. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8697. }
  8698. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8699. {
  8700. struct task_group *tg = cgroup_tg(cgrp);
  8701. return (u64) tg->shares;
  8702. }
  8703. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8704. #ifdef CONFIG_RT_GROUP_SCHED
  8705. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8706. s64 val)
  8707. {
  8708. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8709. }
  8710. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8711. {
  8712. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8713. }
  8714. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8715. u64 rt_period_us)
  8716. {
  8717. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8718. }
  8719. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8720. {
  8721. return sched_group_rt_period(cgroup_tg(cgrp));
  8722. }
  8723. #endif /* CONFIG_RT_GROUP_SCHED */
  8724. static struct cftype cpu_files[] = {
  8725. #ifdef CONFIG_FAIR_GROUP_SCHED
  8726. {
  8727. .name = "shares",
  8728. .read_u64 = cpu_shares_read_u64,
  8729. .write_u64 = cpu_shares_write_u64,
  8730. },
  8731. #endif
  8732. #ifdef CONFIG_RT_GROUP_SCHED
  8733. {
  8734. .name = "rt_runtime_us",
  8735. .read_s64 = cpu_rt_runtime_read,
  8736. .write_s64 = cpu_rt_runtime_write,
  8737. },
  8738. {
  8739. .name = "rt_period_us",
  8740. .read_u64 = cpu_rt_period_read_uint,
  8741. .write_u64 = cpu_rt_period_write_uint,
  8742. },
  8743. #endif
  8744. };
  8745. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8746. {
  8747. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8748. }
  8749. struct cgroup_subsys cpu_cgroup_subsys = {
  8750. .name = "cpu",
  8751. .create = cpu_cgroup_create,
  8752. .destroy = cpu_cgroup_destroy,
  8753. .can_attach = cpu_cgroup_can_attach,
  8754. .attach = cpu_cgroup_attach,
  8755. .populate = cpu_cgroup_populate,
  8756. .subsys_id = cpu_cgroup_subsys_id,
  8757. .early_init = 1,
  8758. };
  8759. #endif /* CONFIG_CGROUP_SCHED */
  8760. #ifdef CONFIG_CGROUP_CPUACCT
  8761. /*
  8762. * CPU accounting code for task groups.
  8763. *
  8764. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8765. * (balbir@in.ibm.com).
  8766. */
  8767. /* track cpu usage of a group of tasks and its child groups */
  8768. struct cpuacct {
  8769. struct cgroup_subsys_state css;
  8770. /* cpuusage holds pointer to a u64-type object on every cpu */
  8771. u64 *cpuusage;
  8772. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8773. struct cpuacct *parent;
  8774. };
  8775. struct cgroup_subsys cpuacct_subsys;
  8776. /* return cpu accounting group corresponding to this container */
  8777. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8778. {
  8779. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8780. struct cpuacct, css);
  8781. }
  8782. /* return cpu accounting group to which this task belongs */
  8783. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8784. {
  8785. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8786. struct cpuacct, css);
  8787. }
  8788. /* create a new cpu accounting group */
  8789. static struct cgroup_subsys_state *cpuacct_create(
  8790. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8791. {
  8792. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8793. int i;
  8794. if (!ca)
  8795. goto out;
  8796. ca->cpuusage = alloc_percpu(u64);
  8797. if (!ca->cpuusage)
  8798. goto out_free_ca;
  8799. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8800. if (percpu_counter_init(&ca->cpustat[i], 0))
  8801. goto out_free_counters;
  8802. if (cgrp->parent)
  8803. ca->parent = cgroup_ca(cgrp->parent);
  8804. return &ca->css;
  8805. out_free_counters:
  8806. while (--i >= 0)
  8807. percpu_counter_destroy(&ca->cpustat[i]);
  8808. free_percpu(ca->cpuusage);
  8809. out_free_ca:
  8810. kfree(ca);
  8811. out:
  8812. return ERR_PTR(-ENOMEM);
  8813. }
  8814. /* destroy an existing cpu accounting group */
  8815. static void
  8816. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8817. {
  8818. struct cpuacct *ca = cgroup_ca(cgrp);
  8819. int i;
  8820. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8821. percpu_counter_destroy(&ca->cpustat[i]);
  8822. free_percpu(ca->cpuusage);
  8823. kfree(ca);
  8824. }
  8825. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8826. {
  8827. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8828. u64 data;
  8829. #ifndef CONFIG_64BIT
  8830. /*
  8831. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8832. */
  8833. spin_lock_irq(&cpu_rq(cpu)->lock);
  8834. data = *cpuusage;
  8835. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8836. #else
  8837. data = *cpuusage;
  8838. #endif
  8839. return data;
  8840. }
  8841. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8842. {
  8843. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8844. #ifndef CONFIG_64BIT
  8845. /*
  8846. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8847. */
  8848. spin_lock_irq(&cpu_rq(cpu)->lock);
  8849. *cpuusage = val;
  8850. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8851. #else
  8852. *cpuusage = val;
  8853. #endif
  8854. }
  8855. /* return total cpu usage (in nanoseconds) of a group */
  8856. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8857. {
  8858. struct cpuacct *ca = cgroup_ca(cgrp);
  8859. u64 totalcpuusage = 0;
  8860. int i;
  8861. for_each_present_cpu(i)
  8862. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8863. return totalcpuusage;
  8864. }
  8865. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8866. u64 reset)
  8867. {
  8868. struct cpuacct *ca = cgroup_ca(cgrp);
  8869. int err = 0;
  8870. int i;
  8871. if (reset) {
  8872. err = -EINVAL;
  8873. goto out;
  8874. }
  8875. for_each_present_cpu(i)
  8876. cpuacct_cpuusage_write(ca, i, 0);
  8877. out:
  8878. return err;
  8879. }
  8880. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8881. struct seq_file *m)
  8882. {
  8883. struct cpuacct *ca = cgroup_ca(cgroup);
  8884. u64 percpu;
  8885. int i;
  8886. for_each_present_cpu(i) {
  8887. percpu = cpuacct_cpuusage_read(ca, i);
  8888. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8889. }
  8890. seq_printf(m, "\n");
  8891. return 0;
  8892. }
  8893. static const char *cpuacct_stat_desc[] = {
  8894. [CPUACCT_STAT_USER] = "user",
  8895. [CPUACCT_STAT_SYSTEM] = "system",
  8896. };
  8897. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8898. struct cgroup_map_cb *cb)
  8899. {
  8900. struct cpuacct *ca = cgroup_ca(cgrp);
  8901. int i;
  8902. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8903. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8904. val = cputime64_to_clock_t(val);
  8905. cb->fill(cb, cpuacct_stat_desc[i], val);
  8906. }
  8907. return 0;
  8908. }
  8909. static struct cftype files[] = {
  8910. {
  8911. .name = "usage",
  8912. .read_u64 = cpuusage_read,
  8913. .write_u64 = cpuusage_write,
  8914. },
  8915. {
  8916. .name = "usage_percpu",
  8917. .read_seq_string = cpuacct_percpu_seq_read,
  8918. },
  8919. {
  8920. .name = "stat",
  8921. .read_map = cpuacct_stats_show,
  8922. },
  8923. };
  8924. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8925. {
  8926. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8927. }
  8928. /*
  8929. * charge this task's execution time to its accounting group.
  8930. *
  8931. * called with rq->lock held.
  8932. */
  8933. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8934. {
  8935. struct cpuacct *ca;
  8936. int cpu;
  8937. if (unlikely(!cpuacct_subsys.active))
  8938. return;
  8939. cpu = task_cpu(tsk);
  8940. rcu_read_lock();
  8941. ca = task_ca(tsk);
  8942. for (; ca; ca = ca->parent) {
  8943. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8944. *cpuusage += cputime;
  8945. }
  8946. rcu_read_unlock();
  8947. }
  8948. /*
  8949. * Charge the system/user time to the task's accounting group.
  8950. */
  8951. static void cpuacct_update_stats(struct task_struct *tsk,
  8952. enum cpuacct_stat_index idx, cputime_t val)
  8953. {
  8954. struct cpuacct *ca;
  8955. if (unlikely(!cpuacct_subsys.active))
  8956. return;
  8957. rcu_read_lock();
  8958. ca = task_ca(tsk);
  8959. do {
  8960. percpu_counter_add(&ca->cpustat[idx], val);
  8961. ca = ca->parent;
  8962. } while (ca);
  8963. rcu_read_unlock();
  8964. }
  8965. struct cgroup_subsys cpuacct_subsys = {
  8966. .name = "cpuacct",
  8967. .create = cpuacct_create,
  8968. .destroy = cpuacct_destroy,
  8969. .populate = cpuacct_populate,
  8970. .subsys_id = cpuacct_subsys_id,
  8971. };
  8972. #endif /* CONFIG_CGROUP_CPUACCT */