spi_s3c64xx.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222
  1. /* linux/drivers/spi/spi_s3c64xx.c
  2. *
  3. * Copyright (C) 2009 Samsung Electronics Ltd.
  4. * Jaswinder Singh <jassi.brar@samsung.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/init.h>
  21. #include <linux/module.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/spi.h>
  28. #include <mach/dma.h>
  29. #include <plat/s3c64xx-spi.h>
  30. /* Registers and bit-fields */
  31. #define S3C64XX_SPI_CH_CFG 0x00
  32. #define S3C64XX_SPI_CLK_CFG 0x04
  33. #define S3C64XX_SPI_MODE_CFG 0x08
  34. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  35. #define S3C64XX_SPI_INT_EN 0x10
  36. #define S3C64XX_SPI_STATUS 0x14
  37. #define S3C64XX_SPI_TX_DATA 0x18
  38. #define S3C64XX_SPI_RX_DATA 0x1C
  39. #define S3C64XX_SPI_PACKET_CNT 0x20
  40. #define S3C64XX_SPI_PENDING_CLR 0x24
  41. #define S3C64XX_SPI_SWAP_CFG 0x28
  42. #define S3C64XX_SPI_FB_CLK 0x2C
  43. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  44. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  45. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  46. #define S3C64XX_SPI_CPOL_L (1<<3)
  47. #define S3C64XX_SPI_CPHA_B (1<<2)
  48. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  49. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  50. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  51. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  52. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  53. #define S3C64XX_SPI_PSR_MASK 0xff
  54. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  55. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  56. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  57. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  58. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  59. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  60. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  61. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  62. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  63. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  64. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  65. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  66. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  67. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  68. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  69. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  70. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  71. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  72. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  73. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  74. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  75. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  76. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  77. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  78. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  79. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  80. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  81. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  82. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  83. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  84. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  85. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  86. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  87. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  88. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  89. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  90. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  91. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  92. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  93. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  94. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  95. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  96. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  97. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  98. #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  99. (((i)->fifo_lvl_mask + 1))) \
  100. ? 1 : 0)
  101. #define S3C64XX_SPI_ST_TX_DONE(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  102. (((i)->fifo_lvl_mask + 1) << 1)) \
  103. ? 1 : 0)
  104. #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
  105. #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)
  106. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  107. #define S3C64XX_SPI_TRAILCNT_OFF 19
  108. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  109. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  110. #define SUSPND (1<<0)
  111. #define SPIBUSY (1<<1)
  112. #define RXBUSY (1<<2)
  113. #define TXBUSY (1<<3)
  114. /**
  115. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  116. * @clk: Pointer to the spi clock.
  117. * @src_clk: Pointer to the clock used to generate SPI signals.
  118. * @master: Pointer to the SPI Protocol master.
  119. * @workqueue: Work queue for the SPI xfer requests.
  120. * @cntrlr_info: Platform specific data for the controller this driver manages.
  121. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  122. * @work: Work
  123. * @queue: To log SPI xfer requests.
  124. * @lock: Controller specific lock.
  125. * @state: Set of FLAGS to indicate status.
  126. * @rx_dmach: Controller's DMA channel for Rx.
  127. * @tx_dmach: Controller's DMA channel for Tx.
  128. * @sfr_start: BUS address of SPI controller regs.
  129. * @regs: Pointer to ioremap'ed controller registers.
  130. * @xfer_completion: To indicate completion of xfer task.
  131. * @cur_mode: Stores the active configuration of the controller.
  132. * @cur_bpw: Stores the active bits per word settings.
  133. * @cur_speed: Stores the active xfer clock speed.
  134. */
  135. struct s3c64xx_spi_driver_data {
  136. void __iomem *regs;
  137. struct clk *clk;
  138. struct clk *src_clk;
  139. struct platform_device *pdev;
  140. struct spi_master *master;
  141. struct workqueue_struct *workqueue;
  142. struct s3c64xx_spi_info *cntrlr_info;
  143. struct spi_device *tgl_spi;
  144. struct work_struct work;
  145. struct list_head queue;
  146. spinlock_t lock;
  147. enum dma_ch rx_dmach;
  148. enum dma_ch tx_dmach;
  149. unsigned long sfr_start;
  150. struct completion xfer_completion;
  151. unsigned state;
  152. unsigned cur_mode, cur_bpw;
  153. unsigned cur_speed;
  154. };
  155. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  156. .name = "samsung-spi-dma",
  157. };
  158. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  159. {
  160. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  161. void __iomem *regs = sdd->regs;
  162. unsigned long loops;
  163. u32 val;
  164. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  165. val = readl(regs + S3C64XX_SPI_CH_CFG);
  166. val |= S3C64XX_SPI_CH_SW_RST;
  167. val &= ~S3C64XX_SPI_CH_HS_EN;
  168. writel(val, regs + S3C64XX_SPI_CH_CFG);
  169. /* Flush TxFIFO*/
  170. loops = msecs_to_loops(1);
  171. do {
  172. val = readl(regs + S3C64XX_SPI_STATUS);
  173. } while (TX_FIFO_LVL(val, sci) && loops--);
  174. if (loops == 0)
  175. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  176. /* Flush RxFIFO*/
  177. loops = msecs_to_loops(1);
  178. do {
  179. val = readl(regs + S3C64XX_SPI_STATUS);
  180. if (RX_FIFO_LVL(val, sci))
  181. readl(regs + S3C64XX_SPI_RX_DATA);
  182. else
  183. break;
  184. } while (loops--);
  185. if (loops == 0)
  186. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  187. val = readl(regs + S3C64XX_SPI_CH_CFG);
  188. val &= ~S3C64XX_SPI_CH_SW_RST;
  189. writel(val, regs + S3C64XX_SPI_CH_CFG);
  190. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  191. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  192. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  193. val = readl(regs + S3C64XX_SPI_CH_CFG);
  194. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  195. writel(val, regs + S3C64XX_SPI_CH_CFG);
  196. }
  197. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  198. struct spi_device *spi,
  199. struct spi_transfer *xfer, int dma_mode)
  200. {
  201. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  202. void __iomem *regs = sdd->regs;
  203. u32 modecfg, chcfg;
  204. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  205. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  206. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  207. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  208. if (dma_mode) {
  209. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  210. } else {
  211. /* Always shift in data in FIFO, even if xfer is Tx only,
  212. * this helps setting PCKT_CNT value for generating clocks
  213. * as exactly needed.
  214. */
  215. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  216. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  217. | S3C64XX_SPI_PACKET_CNT_EN,
  218. regs + S3C64XX_SPI_PACKET_CNT);
  219. }
  220. if (xfer->tx_buf != NULL) {
  221. sdd->state |= TXBUSY;
  222. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  223. if (dma_mode) {
  224. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  225. s3c2410_dma_config(sdd->tx_dmach, 1);
  226. s3c2410_dma_enqueue(sdd->tx_dmach, (void *)sdd,
  227. xfer->tx_dma, xfer->len);
  228. s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_START);
  229. } else {
  230. unsigned char *buf = (unsigned char *) xfer->tx_buf;
  231. int i = 0;
  232. while (i < xfer->len)
  233. writeb(buf[i++], regs + S3C64XX_SPI_TX_DATA);
  234. }
  235. }
  236. if (xfer->rx_buf != NULL) {
  237. sdd->state |= RXBUSY;
  238. if (sci->high_speed && sdd->cur_speed >= 30000000UL
  239. && !(sdd->cur_mode & SPI_CPHA))
  240. chcfg |= S3C64XX_SPI_CH_HS_EN;
  241. if (dma_mode) {
  242. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  243. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  244. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  245. | S3C64XX_SPI_PACKET_CNT_EN,
  246. regs + S3C64XX_SPI_PACKET_CNT);
  247. s3c2410_dma_config(sdd->rx_dmach, 1);
  248. s3c2410_dma_enqueue(sdd->rx_dmach, (void *)sdd,
  249. xfer->rx_dma, xfer->len);
  250. s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_START);
  251. }
  252. }
  253. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  254. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  255. }
  256. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  257. struct spi_device *spi)
  258. {
  259. struct s3c64xx_spi_csinfo *cs;
  260. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  261. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  262. /* Deselect the last toggled device */
  263. cs = sdd->tgl_spi->controller_data;
  264. cs->set_level(cs->line,
  265. spi->mode & SPI_CS_HIGH ? 0 : 1);
  266. }
  267. sdd->tgl_spi = NULL;
  268. }
  269. cs = spi->controller_data;
  270. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  271. }
  272. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  273. struct spi_transfer *xfer, int dma_mode)
  274. {
  275. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  276. void __iomem *regs = sdd->regs;
  277. unsigned long val;
  278. int ms;
  279. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  280. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  281. ms += 10; /* some tolerance */
  282. if (dma_mode) {
  283. val = msecs_to_jiffies(ms) + 10;
  284. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  285. } else {
  286. u32 status;
  287. val = msecs_to_loops(ms);
  288. do {
  289. status = readl(regs + S3C64XX_SPI_STATUS);
  290. } while (RX_FIFO_LVL(status, sci) < xfer->len && --val);
  291. }
  292. if (!val)
  293. return -EIO;
  294. if (dma_mode) {
  295. u32 status;
  296. /*
  297. * DmaTx returns after simply writing data in the FIFO,
  298. * w/o waiting for real transmission on the bus to finish.
  299. * DmaRx returns only after Dma read data from FIFO which
  300. * needs bus transmission to finish, so we don't worry if
  301. * Xfer involved Rx(with or without Tx).
  302. */
  303. if (xfer->rx_buf == NULL) {
  304. val = msecs_to_loops(10);
  305. status = readl(regs + S3C64XX_SPI_STATUS);
  306. while ((TX_FIFO_LVL(status, sci)
  307. || !S3C64XX_SPI_ST_TX_DONE(status, sci))
  308. && --val) {
  309. cpu_relax();
  310. status = readl(regs + S3C64XX_SPI_STATUS);
  311. }
  312. if (!val)
  313. return -EIO;
  314. }
  315. } else {
  316. unsigned char *buf;
  317. int i;
  318. /* If it was only Tx */
  319. if (xfer->rx_buf == NULL) {
  320. sdd->state &= ~TXBUSY;
  321. return 0;
  322. }
  323. i = 0;
  324. buf = xfer->rx_buf;
  325. while (i < xfer->len)
  326. buf[i++] = readb(regs + S3C64XX_SPI_RX_DATA);
  327. sdd->state &= ~RXBUSY;
  328. }
  329. return 0;
  330. }
  331. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  332. struct spi_device *spi)
  333. {
  334. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  335. if (sdd->tgl_spi == spi)
  336. sdd->tgl_spi = NULL;
  337. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  338. }
  339. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  340. {
  341. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  342. void __iomem *regs = sdd->regs;
  343. u32 val;
  344. /* Disable Clock */
  345. if (sci->clk_from_cmu) {
  346. clk_disable(sdd->src_clk);
  347. } else {
  348. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  349. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  350. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  351. }
  352. /* Set Polarity and Phase */
  353. val = readl(regs + S3C64XX_SPI_CH_CFG);
  354. val &= ~(S3C64XX_SPI_CH_SLAVE |
  355. S3C64XX_SPI_CPOL_L |
  356. S3C64XX_SPI_CPHA_B);
  357. if (sdd->cur_mode & SPI_CPOL)
  358. val |= S3C64XX_SPI_CPOL_L;
  359. if (sdd->cur_mode & SPI_CPHA)
  360. val |= S3C64XX_SPI_CPHA_B;
  361. writel(val, regs + S3C64XX_SPI_CH_CFG);
  362. /* Set Channel & DMA Mode */
  363. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  364. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  365. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  366. switch (sdd->cur_bpw) {
  367. case 32:
  368. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  369. break;
  370. case 16:
  371. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  372. break;
  373. default:
  374. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  375. break;
  376. }
  377. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE; /* Always 8bits wide */
  378. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  379. if (sci->clk_from_cmu) {
  380. /* Configure Clock */
  381. /* There is half-multiplier before the SPI */
  382. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  383. /* Enable Clock */
  384. clk_enable(sdd->src_clk);
  385. } else {
  386. /* Configure Clock */
  387. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  388. val &= ~S3C64XX_SPI_PSR_MASK;
  389. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  390. & S3C64XX_SPI_PSR_MASK);
  391. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  392. /* Enable Clock */
  393. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  394. val |= S3C64XX_SPI_ENCLK_ENABLE;
  395. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  396. }
  397. }
  398. static void s3c64xx_spi_dma_rxcb(struct s3c2410_dma_chan *chan, void *buf_id,
  399. int size, enum s3c2410_dma_buffresult res)
  400. {
  401. struct s3c64xx_spi_driver_data *sdd = buf_id;
  402. unsigned long flags;
  403. spin_lock_irqsave(&sdd->lock, flags);
  404. if (res == S3C2410_RES_OK)
  405. sdd->state &= ~RXBUSY;
  406. else
  407. dev_err(&sdd->pdev->dev, "DmaAbrtRx-%d\n", size);
  408. /* If the other done */
  409. if (!(sdd->state & TXBUSY))
  410. complete(&sdd->xfer_completion);
  411. spin_unlock_irqrestore(&sdd->lock, flags);
  412. }
  413. static void s3c64xx_spi_dma_txcb(struct s3c2410_dma_chan *chan, void *buf_id,
  414. int size, enum s3c2410_dma_buffresult res)
  415. {
  416. struct s3c64xx_spi_driver_data *sdd = buf_id;
  417. unsigned long flags;
  418. spin_lock_irqsave(&sdd->lock, flags);
  419. if (res == S3C2410_RES_OK)
  420. sdd->state &= ~TXBUSY;
  421. else
  422. dev_err(&sdd->pdev->dev, "DmaAbrtTx-%d \n", size);
  423. /* If the other done */
  424. if (!(sdd->state & RXBUSY))
  425. complete(&sdd->xfer_completion);
  426. spin_unlock_irqrestore(&sdd->lock, flags);
  427. }
  428. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  429. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  430. struct spi_message *msg)
  431. {
  432. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  433. struct device *dev = &sdd->pdev->dev;
  434. struct spi_transfer *xfer;
  435. if (msg->is_dma_mapped)
  436. return 0;
  437. /* First mark all xfer unmapped */
  438. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  439. xfer->rx_dma = XFER_DMAADDR_INVALID;
  440. xfer->tx_dma = XFER_DMAADDR_INVALID;
  441. }
  442. /* Map until end or first fail */
  443. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  444. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  445. continue;
  446. if (xfer->tx_buf != NULL) {
  447. xfer->tx_dma = dma_map_single(dev,
  448. (void *)xfer->tx_buf, xfer->len,
  449. DMA_TO_DEVICE);
  450. if (dma_mapping_error(dev, xfer->tx_dma)) {
  451. dev_err(dev, "dma_map_single Tx failed\n");
  452. xfer->tx_dma = XFER_DMAADDR_INVALID;
  453. return -ENOMEM;
  454. }
  455. }
  456. if (xfer->rx_buf != NULL) {
  457. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  458. xfer->len, DMA_FROM_DEVICE);
  459. if (dma_mapping_error(dev, xfer->rx_dma)) {
  460. dev_err(dev, "dma_map_single Rx failed\n");
  461. dma_unmap_single(dev, xfer->tx_dma,
  462. xfer->len, DMA_TO_DEVICE);
  463. xfer->tx_dma = XFER_DMAADDR_INVALID;
  464. xfer->rx_dma = XFER_DMAADDR_INVALID;
  465. return -ENOMEM;
  466. }
  467. }
  468. }
  469. return 0;
  470. }
  471. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  472. struct spi_message *msg)
  473. {
  474. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  475. struct device *dev = &sdd->pdev->dev;
  476. struct spi_transfer *xfer;
  477. if (msg->is_dma_mapped)
  478. return;
  479. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  480. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  481. continue;
  482. if (xfer->rx_buf != NULL
  483. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  484. dma_unmap_single(dev, xfer->rx_dma,
  485. xfer->len, DMA_FROM_DEVICE);
  486. if (xfer->tx_buf != NULL
  487. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  488. dma_unmap_single(dev, xfer->tx_dma,
  489. xfer->len, DMA_TO_DEVICE);
  490. }
  491. }
  492. static void handle_msg(struct s3c64xx_spi_driver_data *sdd,
  493. struct spi_message *msg)
  494. {
  495. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  496. struct spi_device *spi = msg->spi;
  497. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  498. struct spi_transfer *xfer;
  499. int status = 0, cs_toggle = 0;
  500. u32 speed;
  501. u8 bpw;
  502. /* If Master's(controller) state differs from that needed by Slave */
  503. if (sdd->cur_speed != spi->max_speed_hz
  504. || sdd->cur_mode != spi->mode
  505. || sdd->cur_bpw != spi->bits_per_word) {
  506. sdd->cur_bpw = spi->bits_per_word;
  507. sdd->cur_speed = spi->max_speed_hz;
  508. sdd->cur_mode = spi->mode;
  509. s3c64xx_spi_config(sdd);
  510. }
  511. /* Map all the transfers if needed */
  512. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  513. dev_err(&spi->dev,
  514. "Xfer: Unable to map message buffers!\n");
  515. status = -ENOMEM;
  516. goto out;
  517. }
  518. /* Configure feedback delay */
  519. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  520. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  521. unsigned long flags;
  522. int use_dma;
  523. INIT_COMPLETION(sdd->xfer_completion);
  524. /* Only BPW and Speed may change across transfers */
  525. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  526. speed = xfer->speed_hz ? : spi->max_speed_hz;
  527. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  528. sdd->cur_bpw = bpw;
  529. sdd->cur_speed = speed;
  530. s3c64xx_spi_config(sdd);
  531. }
  532. /* Polling method for xfers not bigger than FIFO capacity */
  533. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  534. use_dma = 0;
  535. else
  536. use_dma = 1;
  537. spin_lock_irqsave(&sdd->lock, flags);
  538. /* Pending only which is to be done */
  539. sdd->state &= ~RXBUSY;
  540. sdd->state &= ~TXBUSY;
  541. enable_datapath(sdd, spi, xfer, use_dma);
  542. /* Slave Select */
  543. enable_cs(sdd, spi);
  544. /* Start the signals */
  545. S3C64XX_SPI_ACT(sdd);
  546. spin_unlock_irqrestore(&sdd->lock, flags);
  547. status = wait_for_xfer(sdd, xfer, use_dma);
  548. /* Quiese the signals */
  549. S3C64XX_SPI_DEACT(sdd);
  550. if (status) {
  551. dev_err(&spi->dev, "I/O Error: "
  552. "rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  553. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  554. (sdd->state & RXBUSY) ? 'f' : 'p',
  555. (sdd->state & TXBUSY) ? 'f' : 'p',
  556. xfer->len);
  557. if (use_dma) {
  558. if (xfer->tx_buf != NULL
  559. && (sdd->state & TXBUSY))
  560. s3c2410_dma_ctrl(sdd->tx_dmach,
  561. S3C2410_DMAOP_FLUSH);
  562. if (xfer->rx_buf != NULL
  563. && (sdd->state & RXBUSY))
  564. s3c2410_dma_ctrl(sdd->rx_dmach,
  565. S3C2410_DMAOP_FLUSH);
  566. }
  567. goto out;
  568. }
  569. if (xfer->delay_usecs)
  570. udelay(xfer->delay_usecs);
  571. if (xfer->cs_change) {
  572. /* Hint that the next mssg is gonna be
  573. for the same device */
  574. if (list_is_last(&xfer->transfer_list,
  575. &msg->transfers))
  576. cs_toggle = 1;
  577. else
  578. disable_cs(sdd, spi);
  579. }
  580. msg->actual_length += xfer->len;
  581. flush_fifo(sdd);
  582. }
  583. out:
  584. if (!cs_toggle || status)
  585. disable_cs(sdd, spi);
  586. else
  587. sdd->tgl_spi = spi;
  588. s3c64xx_spi_unmap_mssg(sdd, msg);
  589. msg->status = status;
  590. if (msg->complete)
  591. msg->complete(msg->context);
  592. }
  593. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  594. {
  595. if (s3c2410_dma_request(sdd->rx_dmach,
  596. &s3c64xx_spi_dma_client, NULL) < 0) {
  597. dev_err(&sdd->pdev->dev, "cannot get RxDMA\n");
  598. return 0;
  599. }
  600. s3c2410_dma_set_buffdone_fn(sdd->rx_dmach, s3c64xx_spi_dma_rxcb);
  601. s3c2410_dma_devconfig(sdd->rx_dmach, S3C2410_DMASRC_HW,
  602. sdd->sfr_start + S3C64XX_SPI_RX_DATA);
  603. if (s3c2410_dma_request(sdd->tx_dmach,
  604. &s3c64xx_spi_dma_client, NULL) < 0) {
  605. dev_err(&sdd->pdev->dev, "cannot get TxDMA\n");
  606. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  607. return 0;
  608. }
  609. s3c2410_dma_set_buffdone_fn(sdd->tx_dmach, s3c64xx_spi_dma_txcb);
  610. s3c2410_dma_devconfig(sdd->tx_dmach, S3C2410_DMASRC_MEM,
  611. sdd->sfr_start + S3C64XX_SPI_TX_DATA);
  612. return 1;
  613. }
  614. static void s3c64xx_spi_work(struct work_struct *work)
  615. {
  616. struct s3c64xx_spi_driver_data *sdd = container_of(work,
  617. struct s3c64xx_spi_driver_data, work);
  618. unsigned long flags;
  619. /* Acquire DMA channels */
  620. while (!acquire_dma(sdd))
  621. msleep(10);
  622. spin_lock_irqsave(&sdd->lock, flags);
  623. while (!list_empty(&sdd->queue)
  624. && !(sdd->state & SUSPND)) {
  625. struct spi_message *msg;
  626. msg = container_of(sdd->queue.next, struct spi_message, queue);
  627. list_del_init(&msg->queue);
  628. /* Set Xfer busy flag */
  629. sdd->state |= SPIBUSY;
  630. spin_unlock_irqrestore(&sdd->lock, flags);
  631. handle_msg(sdd, msg);
  632. spin_lock_irqsave(&sdd->lock, flags);
  633. sdd->state &= ~SPIBUSY;
  634. }
  635. spin_unlock_irqrestore(&sdd->lock, flags);
  636. /* Free DMA channels */
  637. s3c2410_dma_free(sdd->tx_dmach, &s3c64xx_spi_dma_client);
  638. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  639. }
  640. static int s3c64xx_spi_transfer(struct spi_device *spi,
  641. struct spi_message *msg)
  642. {
  643. struct s3c64xx_spi_driver_data *sdd;
  644. unsigned long flags;
  645. sdd = spi_master_get_devdata(spi->master);
  646. spin_lock_irqsave(&sdd->lock, flags);
  647. if (sdd->state & SUSPND) {
  648. spin_unlock_irqrestore(&sdd->lock, flags);
  649. return -ESHUTDOWN;
  650. }
  651. msg->status = -EINPROGRESS;
  652. msg->actual_length = 0;
  653. list_add_tail(&msg->queue, &sdd->queue);
  654. queue_work(sdd->workqueue, &sdd->work);
  655. spin_unlock_irqrestore(&sdd->lock, flags);
  656. return 0;
  657. }
  658. /*
  659. * Here we only check the validity of requested configuration
  660. * and save the configuration in a local data-structure.
  661. * The controller is actually configured only just before we
  662. * get a message to transfer.
  663. */
  664. static int s3c64xx_spi_setup(struct spi_device *spi)
  665. {
  666. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  667. struct s3c64xx_spi_driver_data *sdd;
  668. struct s3c64xx_spi_info *sci;
  669. struct spi_message *msg;
  670. unsigned long flags;
  671. int err = 0;
  672. if (cs == NULL || cs->set_level == NULL) {
  673. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  674. return -ENODEV;
  675. }
  676. sdd = spi_master_get_devdata(spi->master);
  677. sci = sdd->cntrlr_info;
  678. spin_lock_irqsave(&sdd->lock, flags);
  679. list_for_each_entry(msg, &sdd->queue, queue) {
  680. /* Is some mssg is already queued for this device */
  681. if (msg->spi == spi) {
  682. dev_err(&spi->dev,
  683. "setup: attempt while mssg in queue!\n");
  684. spin_unlock_irqrestore(&sdd->lock, flags);
  685. return -EBUSY;
  686. }
  687. }
  688. if (sdd->state & SUSPND) {
  689. spin_unlock_irqrestore(&sdd->lock, flags);
  690. dev_err(&spi->dev,
  691. "setup: SPI-%d not active!\n", spi->master->bus_num);
  692. return -ESHUTDOWN;
  693. }
  694. spin_unlock_irqrestore(&sdd->lock, flags);
  695. if (spi->bits_per_word != 8
  696. && spi->bits_per_word != 16
  697. && spi->bits_per_word != 32) {
  698. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  699. spi->bits_per_word);
  700. err = -EINVAL;
  701. goto setup_exit;
  702. }
  703. /* Check if we can provide the requested rate */
  704. if (!sci->clk_from_cmu) {
  705. u32 psr, speed;
  706. /* Max possible */
  707. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  708. if (spi->max_speed_hz > speed)
  709. spi->max_speed_hz = speed;
  710. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  711. psr &= S3C64XX_SPI_PSR_MASK;
  712. if (psr == S3C64XX_SPI_PSR_MASK)
  713. psr--;
  714. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  715. if (spi->max_speed_hz < speed) {
  716. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  717. psr++;
  718. } else {
  719. err = -EINVAL;
  720. goto setup_exit;
  721. }
  722. }
  723. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  724. if (spi->max_speed_hz >= speed)
  725. spi->max_speed_hz = speed;
  726. else
  727. err = -EINVAL;
  728. }
  729. setup_exit:
  730. /* setup() returns with device de-selected */
  731. disable_cs(sdd, spi);
  732. return err;
  733. }
  734. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  735. {
  736. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  737. void __iomem *regs = sdd->regs;
  738. unsigned int val;
  739. sdd->cur_speed = 0;
  740. S3C64XX_SPI_DEACT(sdd);
  741. /* Disable Interrupts - we use Polling if not DMA mode */
  742. writel(0, regs + S3C64XX_SPI_INT_EN);
  743. if (!sci->clk_from_cmu)
  744. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  745. regs + S3C64XX_SPI_CLK_CFG);
  746. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  747. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  748. /* Clear any irq pending bits */
  749. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  750. regs + S3C64XX_SPI_PENDING_CLR);
  751. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  752. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  753. val &= ~S3C64XX_SPI_MODE_4BURST;
  754. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  755. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  756. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  757. flush_fifo(sdd);
  758. }
  759. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  760. {
  761. struct resource *mem_res, *dmatx_res, *dmarx_res;
  762. struct s3c64xx_spi_driver_data *sdd;
  763. struct s3c64xx_spi_info *sci;
  764. struct spi_master *master;
  765. int ret;
  766. if (pdev->id < 0) {
  767. dev_err(&pdev->dev,
  768. "Invalid platform device id-%d\n", pdev->id);
  769. return -ENODEV;
  770. }
  771. if (pdev->dev.platform_data == NULL) {
  772. dev_err(&pdev->dev, "platform_data missing!\n");
  773. return -ENODEV;
  774. }
  775. sci = pdev->dev.platform_data;
  776. if (!sci->src_clk_name) {
  777. dev_err(&pdev->dev,
  778. "Board init must call s3c64xx_spi_set_info()\n");
  779. return -EINVAL;
  780. }
  781. /* Check for availability of necessary resource */
  782. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  783. if (dmatx_res == NULL) {
  784. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  785. return -ENXIO;
  786. }
  787. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  788. if (dmarx_res == NULL) {
  789. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  790. return -ENXIO;
  791. }
  792. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  793. if (mem_res == NULL) {
  794. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  795. return -ENXIO;
  796. }
  797. master = spi_alloc_master(&pdev->dev,
  798. sizeof(struct s3c64xx_spi_driver_data));
  799. if (master == NULL) {
  800. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  801. return -ENOMEM;
  802. }
  803. platform_set_drvdata(pdev, master);
  804. sdd = spi_master_get_devdata(master);
  805. sdd->master = master;
  806. sdd->cntrlr_info = sci;
  807. sdd->pdev = pdev;
  808. sdd->sfr_start = mem_res->start;
  809. sdd->tx_dmach = dmatx_res->start;
  810. sdd->rx_dmach = dmarx_res->start;
  811. sdd->cur_bpw = 8;
  812. master->bus_num = pdev->id;
  813. master->setup = s3c64xx_spi_setup;
  814. master->transfer = s3c64xx_spi_transfer;
  815. master->num_chipselect = sci->num_cs;
  816. master->dma_alignment = 8;
  817. /* the spi->mode bits understood by this driver: */
  818. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  819. if (request_mem_region(mem_res->start,
  820. resource_size(mem_res), pdev->name) == NULL) {
  821. dev_err(&pdev->dev, "Req mem region failed\n");
  822. ret = -ENXIO;
  823. goto err0;
  824. }
  825. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  826. if (sdd->regs == NULL) {
  827. dev_err(&pdev->dev, "Unable to remap IO\n");
  828. ret = -ENXIO;
  829. goto err1;
  830. }
  831. if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
  832. dev_err(&pdev->dev, "Unable to config gpio\n");
  833. ret = -EBUSY;
  834. goto err2;
  835. }
  836. /* Setup clocks */
  837. sdd->clk = clk_get(&pdev->dev, "spi");
  838. if (IS_ERR(sdd->clk)) {
  839. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  840. ret = PTR_ERR(sdd->clk);
  841. goto err3;
  842. }
  843. if (clk_enable(sdd->clk)) {
  844. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  845. ret = -EBUSY;
  846. goto err4;
  847. }
  848. sdd->src_clk = clk_get(&pdev->dev, sci->src_clk_name);
  849. if (IS_ERR(sdd->src_clk)) {
  850. dev_err(&pdev->dev,
  851. "Unable to acquire clock '%s'\n", sci->src_clk_name);
  852. ret = PTR_ERR(sdd->src_clk);
  853. goto err5;
  854. }
  855. if (clk_enable(sdd->src_clk)) {
  856. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n",
  857. sci->src_clk_name);
  858. ret = -EBUSY;
  859. goto err6;
  860. }
  861. sdd->workqueue = create_singlethread_workqueue(
  862. dev_name(master->dev.parent));
  863. if (sdd->workqueue == NULL) {
  864. dev_err(&pdev->dev, "Unable to create workqueue\n");
  865. ret = -ENOMEM;
  866. goto err7;
  867. }
  868. /* Setup Deufult Mode */
  869. s3c64xx_spi_hwinit(sdd, pdev->id);
  870. spin_lock_init(&sdd->lock);
  871. init_completion(&sdd->xfer_completion);
  872. INIT_WORK(&sdd->work, s3c64xx_spi_work);
  873. INIT_LIST_HEAD(&sdd->queue);
  874. if (spi_register_master(master)) {
  875. dev_err(&pdev->dev, "cannot register SPI master\n");
  876. ret = -EBUSY;
  877. goto err8;
  878. }
  879. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
  880. "with %d Slaves attached\n",
  881. pdev->id, master->num_chipselect);
  882. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  883. mem_res->end, mem_res->start,
  884. sdd->rx_dmach, sdd->tx_dmach);
  885. return 0;
  886. err8:
  887. destroy_workqueue(sdd->workqueue);
  888. err7:
  889. clk_disable(sdd->src_clk);
  890. err6:
  891. clk_put(sdd->src_clk);
  892. err5:
  893. clk_disable(sdd->clk);
  894. err4:
  895. clk_put(sdd->clk);
  896. err3:
  897. err2:
  898. iounmap((void *) sdd->regs);
  899. err1:
  900. release_mem_region(mem_res->start, resource_size(mem_res));
  901. err0:
  902. platform_set_drvdata(pdev, NULL);
  903. spi_master_put(master);
  904. return ret;
  905. }
  906. static int s3c64xx_spi_remove(struct platform_device *pdev)
  907. {
  908. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  909. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  910. struct resource *mem_res;
  911. unsigned long flags;
  912. spin_lock_irqsave(&sdd->lock, flags);
  913. sdd->state |= SUSPND;
  914. spin_unlock_irqrestore(&sdd->lock, flags);
  915. while (sdd->state & SPIBUSY)
  916. msleep(10);
  917. spi_unregister_master(master);
  918. destroy_workqueue(sdd->workqueue);
  919. clk_disable(sdd->src_clk);
  920. clk_put(sdd->src_clk);
  921. clk_disable(sdd->clk);
  922. clk_put(sdd->clk);
  923. iounmap((void *) sdd->regs);
  924. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  925. if (mem_res != NULL)
  926. release_mem_region(mem_res->start, resource_size(mem_res));
  927. platform_set_drvdata(pdev, NULL);
  928. spi_master_put(master);
  929. return 0;
  930. }
  931. #ifdef CONFIG_PM
  932. static int s3c64xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  933. {
  934. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  935. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  936. unsigned long flags;
  937. spin_lock_irqsave(&sdd->lock, flags);
  938. sdd->state |= SUSPND;
  939. spin_unlock_irqrestore(&sdd->lock, flags);
  940. while (sdd->state & SPIBUSY)
  941. msleep(10);
  942. /* Disable the clock */
  943. clk_disable(sdd->src_clk);
  944. clk_disable(sdd->clk);
  945. sdd->cur_speed = 0; /* Output Clock is stopped */
  946. return 0;
  947. }
  948. static int s3c64xx_spi_resume(struct platform_device *pdev)
  949. {
  950. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  951. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  952. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  953. unsigned long flags;
  954. sci->cfg_gpio(pdev);
  955. /* Enable the clock */
  956. clk_enable(sdd->src_clk);
  957. clk_enable(sdd->clk);
  958. s3c64xx_spi_hwinit(sdd, pdev->id);
  959. spin_lock_irqsave(&sdd->lock, flags);
  960. sdd->state &= ~SUSPND;
  961. spin_unlock_irqrestore(&sdd->lock, flags);
  962. return 0;
  963. }
  964. #else
  965. #define s3c64xx_spi_suspend NULL
  966. #define s3c64xx_spi_resume NULL
  967. #endif /* CONFIG_PM */
  968. static struct platform_driver s3c64xx_spi_driver = {
  969. .driver = {
  970. .name = "s3c64xx-spi",
  971. .owner = THIS_MODULE,
  972. },
  973. .remove = s3c64xx_spi_remove,
  974. .suspend = s3c64xx_spi_suspend,
  975. .resume = s3c64xx_spi_resume,
  976. };
  977. MODULE_ALIAS("platform:s3c64xx-spi");
  978. static int __init s3c64xx_spi_init(void)
  979. {
  980. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  981. }
  982. subsys_initcall(s3c64xx_spi_init);
  983. static void __exit s3c64xx_spi_exit(void)
  984. {
  985. platform_driver_unregister(&s3c64xx_spi_driver);
  986. }
  987. module_exit(s3c64xx_spi_exit);
  988. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  989. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  990. MODULE_LICENSE("GPL");