paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t pte;
  60. pt_element_t inherited_ar;
  61. gfn_t gfn;
  62. u32 error_code;
  63. };
  64. /*
  65. * Fetch a guest pte for a guest virtual address
  66. */
  67. static int FNAME(walk_addr)(struct guest_walker *walker,
  68. struct kvm_vcpu *vcpu, gva_t addr,
  69. int write_fault, int user_fault, int fetch_fault)
  70. {
  71. pt_element_t pte;
  72. gfn_t table_gfn;
  73. unsigned index;
  74. gpa_t pte_gpa;
  75. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  76. walker->level = vcpu->mmu.root_level;
  77. pte = vcpu->cr3;
  78. #if PTTYPE == 64
  79. if (!is_long_mode(vcpu)) {
  80. pte = vcpu->pdptrs[(addr >> 30) & 3];
  81. if (!is_present_pte(pte))
  82. goto not_present;
  83. --walker->level;
  84. }
  85. #endif
  86. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  87. (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  88. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  89. for (;;) {
  90. index = PT_INDEX(addr, walker->level);
  91. table_gfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  92. pte_gpa = table_gfn << PAGE_SHIFT;
  93. pte_gpa += index * sizeof(pt_element_t);
  94. walker->table_gfn[walker->level - 1] = table_gfn;
  95. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  96. walker->level - 1, table_gfn);
  97. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  98. if (!is_present_pte(pte))
  99. goto not_present;
  100. if (write_fault && !is_writeble_pte(pte))
  101. if (user_fault || is_write_protection(vcpu))
  102. goto access_error;
  103. if (user_fault && !(pte & PT_USER_MASK))
  104. goto access_error;
  105. #if PTTYPE == 64
  106. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  107. goto access_error;
  108. #endif
  109. if (!(pte & PT_ACCESSED_MASK)) {
  110. mark_page_dirty(vcpu->kvm, table_gfn);
  111. pte |= PT_ACCESSED_MASK;
  112. kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  113. }
  114. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  115. walker->gfn = (pte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  116. break;
  117. }
  118. if (walker->level == PT_DIRECTORY_LEVEL
  119. && (pte & PT_PAGE_SIZE_MASK)
  120. && (PTTYPE == 64 || is_pse(vcpu))) {
  121. walker->gfn = (pte & PT_DIR_BASE_ADDR_MASK)
  122. >> PAGE_SHIFT;
  123. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  124. break;
  125. }
  126. walker->inherited_ar &= pte;
  127. --walker->level;
  128. }
  129. if (write_fault && !is_dirty_pte(pte)) {
  130. mark_page_dirty(vcpu->kvm, table_gfn);
  131. pte |= PT_DIRTY_MASK;
  132. kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  133. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
  134. }
  135. walker->pte = pte;
  136. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
  137. return 1;
  138. not_present:
  139. walker->error_code = 0;
  140. goto err;
  141. access_error:
  142. walker->error_code = PFERR_PRESENT_MASK;
  143. err:
  144. if (write_fault)
  145. walker->error_code |= PFERR_WRITE_MASK;
  146. if (user_fault)
  147. walker->error_code |= PFERR_USER_MASK;
  148. if (fetch_fault)
  149. walker->error_code |= PFERR_FETCH_MASK;
  150. return 0;
  151. }
  152. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  153. u64 *shadow_pte,
  154. gpa_t gaddr,
  155. pt_element_t gpte,
  156. u64 access_bits,
  157. int user_fault,
  158. int write_fault,
  159. int *ptwrite,
  160. struct guest_walker *walker,
  161. gfn_t gfn)
  162. {
  163. hpa_t paddr;
  164. int dirty = gpte & PT_DIRTY_MASK;
  165. u64 spte;
  166. int was_rmapped = is_rmap_pte(*shadow_pte);
  167. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  168. " user_fault %d gfn %lx\n",
  169. __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
  170. write_fault, user_fault, gfn);
  171. /*
  172. * We don't set the accessed bit, since we sometimes want to see
  173. * whether the guest actually used the pte (in order to detect
  174. * demand paging).
  175. */
  176. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  177. spte |= gpte & PT64_NX_MASK;
  178. if (!dirty)
  179. access_bits &= ~PT_WRITABLE_MASK;
  180. paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
  181. spte |= PT_PRESENT_MASK;
  182. if (access_bits & PT_USER_MASK)
  183. spte |= PT_USER_MASK;
  184. if (is_error_hpa(paddr)) {
  185. set_shadow_pte(shadow_pte,
  186. shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
  187. kvm_release_page_clean(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  188. >> PAGE_SHIFT));
  189. return;
  190. }
  191. spte |= paddr;
  192. if ((access_bits & PT_WRITABLE_MASK)
  193. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  194. struct kvm_mmu_page *shadow;
  195. spte |= PT_WRITABLE_MASK;
  196. if (user_fault) {
  197. mmu_unshadow(vcpu->kvm, gfn);
  198. goto unshadowed;
  199. }
  200. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  201. if (shadow) {
  202. pgprintk("%s: found shadow page for %lx, marking ro\n",
  203. __FUNCTION__, gfn);
  204. access_bits &= ~PT_WRITABLE_MASK;
  205. if (is_writeble_pte(spte)) {
  206. spte &= ~PT_WRITABLE_MASK;
  207. kvm_x86_ops->tlb_flush(vcpu);
  208. }
  209. if (write_fault)
  210. *ptwrite = 1;
  211. }
  212. }
  213. unshadowed:
  214. if (access_bits & PT_WRITABLE_MASK)
  215. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  216. pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
  217. set_shadow_pte(shadow_pte, spte);
  218. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  219. if (!was_rmapped) {
  220. rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
  221. >> PAGE_SHIFT);
  222. if (!is_rmap_pte(*shadow_pte)) {
  223. struct page *page;
  224. page = pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  225. >> PAGE_SHIFT);
  226. kvm_release_page_clean(page);
  227. }
  228. }
  229. else
  230. kvm_release_page_clean(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  231. >> PAGE_SHIFT));
  232. if (!ptwrite || !*ptwrite)
  233. vcpu->last_pte_updated = shadow_pte;
  234. }
  235. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  236. u64 *shadow_pte, u64 access_bits,
  237. int user_fault, int write_fault, int *ptwrite,
  238. struct guest_walker *walker, gfn_t gfn)
  239. {
  240. access_bits &= gpte;
  241. FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
  242. gpte, access_bits, user_fault, write_fault,
  243. ptwrite, walker, gfn);
  244. }
  245. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  246. u64 *spte, const void *pte, int bytes,
  247. int offset_in_pte)
  248. {
  249. pt_element_t gpte;
  250. gpte = *(const pt_element_t *)pte;
  251. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  252. if (!offset_in_pte && !is_present_pte(gpte))
  253. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  254. return;
  255. }
  256. if (bytes < sizeof(pt_element_t))
  257. return;
  258. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  259. FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  260. 0, NULL, NULL,
  261. (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
  262. }
  263. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
  264. u64 *shadow_pte, u64 access_bits,
  265. int user_fault, int write_fault, int *ptwrite,
  266. struct guest_walker *walker, gfn_t gfn)
  267. {
  268. gpa_t gaddr;
  269. access_bits &= gpde;
  270. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  271. if (PTTYPE == 32 && is_cpuid_PSE36())
  272. gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
  273. (32 - PT32_DIR_PSE36_SHIFT);
  274. FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
  275. gpde, access_bits, user_fault, write_fault,
  276. ptwrite, walker, gfn);
  277. }
  278. /*
  279. * Fetch a shadow pte for a specific level in the paging hierarchy.
  280. */
  281. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  282. struct guest_walker *walker,
  283. int user_fault, int write_fault, int *ptwrite)
  284. {
  285. hpa_t shadow_addr;
  286. int level;
  287. u64 *shadow_ent;
  288. u64 *prev_shadow_ent = NULL;
  289. if (!is_present_pte(walker->pte))
  290. return NULL;
  291. shadow_addr = vcpu->mmu.root_hpa;
  292. level = vcpu->mmu.shadow_root_level;
  293. if (level == PT32E_ROOT_LEVEL) {
  294. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  295. shadow_addr &= PT64_BASE_ADDR_MASK;
  296. --level;
  297. }
  298. for (; ; level--) {
  299. u32 index = SHADOW_PT_INDEX(addr, level);
  300. struct kvm_mmu_page *shadow_page;
  301. u64 shadow_pte;
  302. int metaphysical;
  303. gfn_t table_gfn;
  304. unsigned hugepage_access = 0;
  305. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  306. if (is_shadow_present_pte(*shadow_ent)) {
  307. if (level == PT_PAGE_TABLE_LEVEL)
  308. break;
  309. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  310. prev_shadow_ent = shadow_ent;
  311. continue;
  312. }
  313. if (level == PT_PAGE_TABLE_LEVEL)
  314. break;
  315. if (level - 1 == PT_PAGE_TABLE_LEVEL
  316. && walker->level == PT_DIRECTORY_LEVEL) {
  317. metaphysical = 1;
  318. hugepage_access = walker->pte;
  319. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  320. if (!is_dirty_pte(walker->pte))
  321. hugepage_access &= ~PT_WRITABLE_MASK;
  322. hugepage_access >>= PT_WRITABLE_SHIFT;
  323. if (walker->pte & PT64_NX_MASK)
  324. hugepage_access |= (1 << 2);
  325. table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
  326. >> PAGE_SHIFT;
  327. } else {
  328. metaphysical = 0;
  329. table_gfn = walker->table_gfn[level - 2];
  330. }
  331. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  332. metaphysical, hugepage_access,
  333. shadow_ent);
  334. shadow_addr = __pa(shadow_page->spt);
  335. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  336. | PT_WRITABLE_MASK | PT_USER_MASK;
  337. *shadow_ent = shadow_pte;
  338. prev_shadow_ent = shadow_ent;
  339. }
  340. if (walker->level == PT_DIRECTORY_LEVEL) {
  341. FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
  342. walker->inherited_ar, user_fault, write_fault,
  343. ptwrite, walker, walker->gfn);
  344. } else {
  345. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  346. FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
  347. walker->inherited_ar, user_fault, write_fault,
  348. ptwrite, walker, walker->gfn);
  349. }
  350. return shadow_ent;
  351. }
  352. /*
  353. * Page fault handler. There are several causes for a page fault:
  354. * - there is no shadow pte for the guest pte
  355. * - write access through a shadow pte marked read only so that we can set
  356. * the dirty bit
  357. * - write access to a shadow pte marked read only so we can update the page
  358. * dirty bitmap, when userspace requests it
  359. * - mmio access; in this case we will never install a present shadow pte
  360. * - normal guest page fault due to the guest pte marked not present, not
  361. * writable, or not executable
  362. *
  363. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  364. * a negative value on error.
  365. */
  366. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  367. u32 error_code)
  368. {
  369. int write_fault = error_code & PFERR_WRITE_MASK;
  370. int user_fault = error_code & PFERR_USER_MASK;
  371. int fetch_fault = error_code & PFERR_FETCH_MASK;
  372. struct guest_walker walker;
  373. u64 *shadow_pte;
  374. int write_pt = 0;
  375. int r;
  376. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  377. kvm_mmu_audit(vcpu, "pre page fault");
  378. r = mmu_topup_memory_caches(vcpu);
  379. if (r)
  380. return r;
  381. /*
  382. * Look up the shadow pte for the faulting address.
  383. */
  384. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  385. fetch_fault);
  386. /*
  387. * The page is not mapped by the guest. Let the guest handle it.
  388. */
  389. if (!r) {
  390. pgprintk("%s: guest page fault\n", __FUNCTION__);
  391. inject_page_fault(vcpu, addr, walker.error_code);
  392. vcpu->last_pt_write_count = 0; /* reset fork detector */
  393. return 0;
  394. }
  395. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  396. &write_pt);
  397. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  398. shadow_pte, *shadow_pte, write_pt);
  399. if (!write_pt)
  400. vcpu->last_pt_write_count = 0; /* reset fork detector */
  401. /*
  402. * mmio: emulate if accessible, otherwise its a guest fault.
  403. */
  404. if (is_io_pte(*shadow_pte))
  405. return 1;
  406. ++vcpu->stat.pf_fixed;
  407. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  408. return write_pt;
  409. }
  410. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  411. {
  412. struct guest_walker walker;
  413. gpa_t gpa = UNMAPPED_GVA;
  414. int r;
  415. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  416. if (r) {
  417. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  418. gpa |= vaddr & ~PAGE_MASK;
  419. }
  420. return gpa;
  421. }
  422. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  423. struct kvm_mmu_page *sp)
  424. {
  425. int i;
  426. pt_element_t *gpt;
  427. struct page *page;
  428. if (sp->role.metaphysical || PTTYPE == 32) {
  429. nonpaging_prefetch_page(vcpu, sp);
  430. return;
  431. }
  432. page = gfn_to_page(vcpu->kvm, sp->gfn);
  433. gpt = kmap_atomic(page, KM_USER0);
  434. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  435. if (is_present_pte(gpt[i]))
  436. sp->spt[i] = shadow_trap_nonpresent_pte;
  437. else
  438. sp->spt[i] = shadow_notrap_nonpresent_pte;
  439. kunmap_atomic(gpt, KM_USER0);
  440. kvm_release_page_clean(page);
  441. }
  442. #undef pt_element_t
  443. #undef guest_walker
  444. #undef FNAME
  445. #undef PT_BASE_ADDR_MASK
  446. #undef PT_INDEX
  447. #undef SHADOW_PT_INDEX
  448. #undef PT_LEVEL_MASK
  449. #undef PT_DIR_BASE_ADDR_MASK
  450. #undef PT_LEVEL_BITS
  451. #undef PT_MAX_FULL_LEVELS