kvm_main.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. #include <asm/pgtable.h>
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. DEFINE_SPINLOCK(kvm_lock);
  50. LIST_HEAD(vm_list);
  51. static cpumask_t cpus_hardware_enabled;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. static struct dentry *debugfs_dir;
  56. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  57. unsigned long arg);
  58. static inline int valid_vcpu(int n)
  59. {
  60. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  61. }
  62. /*
  63. * Switches to specified vcpu, until a matching vcpu_put()
  64. */
  65. void vcpu_load(struct kvm_vcpu *vcpu)
  66. {
  67. int cpu;
  68. mutex_lock(&vcpu->mutex);
  69. cpu = get_cpu();
  70. preempt_notifier_register(&vcpu->preempt_notifier);
  71. kvm_arch_vcpu_load(vcpu, cpu);
  72. put_cpu();
  73. }
  74. void vcpu_put(struct kvm_vcpu *vcpu)
  75. {
  76. preempt_disable();
  77. kvm_arch_vcpu_put(vcpu);
  78. preempt_notifier_unregister(&vcpu->preempt_notifier);
  79. preempt_enable();
  80. mutex_unlock(&vcpu->mutex);
  81. }
  82. static void ack_flush(void *_completed)
  83. {
  84. }
  85. void kvm_flush_remote_tlbs(struct kvm *kvm)
  86. {
  87. int i, cpu;
  88. cpumask_t cpus;
  89. struct kvm_vcpu *vcpu;
  90. cpus_clear(cpus);
  91. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  92. vcpu = kvm->vcpus[i];
  93. if (!vcpu)
  94. continue;
  95. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  96. continue;
  97. cpu = vcpu->cpu;
  98. if (cpu != -1 && cpu != raw_smp_processor_id())
  99. cpu_set(cpu, cpus);
  100. }
  101. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  102. }
  103. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  104. {
  105. struct page *page;
  106. int r;
  107. mutex_init(&vcpu->mutex);
  108. vcpu->cpu = -1;
  109. vcpu->kvm = kvm;
  110. vcpu->vcpu_id = id;
  111. init_waitqueue_head(&vcpu->wq);
  112. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  113. if (!page) {
  114. r = -ENOMEM;
  115. goto fail;
  116. }
  117. vcpu->run = page_address(page);
  118. r = kvm_arch_vcpu_init(vcpu);
  119. if (r < 0)
  120. goto fail_free_run;
  121. return 0;
  122. fail_free_run:
  123. free_page((unsigned long)vcpu->run);
  124. fail:
  125. return r;
  126. }
  127. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  128. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  129. {
  130. kvm_arch_vcpu_uninit(vcpu);
  131. free_page((unsigned long)vcpu->run);
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  134. static struct kvm *kvm_create_vm(void)
  135. {
  136. struct kvm *kvm = kvm_arch_create_vm();
  137. if (IS_ERR(kvm))
  138. goto out;
  139. kvm_io_bus_init(&kvm->pio_bus);
  140. mutex_init(&kvm->lock);
  141. kvm_io_bus_init(&kvm->mmio_bus);
  142. spin_lock(&kvm_lock);
  143. list_add(&kvm->vm_list, &vm_list);
  144. spin_unlock(&kvm_lock);
  145. out:
  146. return kvm;
  147. }
  148. /*
  149. * Free any memory in @free but not in @dont.
  150. */
  151. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  152. struct kvm_memory_slot *dont)
  153. {
  154. if (!dont || free->rmap != dont->rmap)
  155. vfree(free->rmap);
  156. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  157. vfree(free->dirty_bitmap);
  158. free->npages = 0;
  159. free->dirty_bitmap = NULL;
  160. free->rmap = NULL;
  161. }
  162. void kvm_free_physmem(struct kvm *kvm)
  163. {
  164. int i;
  165. for (i = 0; i < kvm->nmemslots; ++i)
  166. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  167. }
  168. static void kvm_destroy_vm(struct kvm *kvm)
  169. {
  170. spin_lock(&kvm_lock);
  171. list_del(&kvm->vm_list);
  172. spin_unlock(&kvm_lock);
  173. kvm_io_bus_destroy(&kvm->pio_bus);
  174. kvm_io_bus_destroy(&kvm->mmio_bus);
  175. kvm_arch_destroy_vm(kvm);
  176. }
  177. static int kvm_vm_release(struct inode *inode, struct file *filp)
  178. {
  179. struct kvm *kvm = filp->private_data;
  180. kvm_destroy_vm(kvm);
  181. return 0;
  182. }
  183. /*
  184. * Allocate some memory and give it an address in the guest physical address
  185. * space.
  186. *
  187. * Discontiguous memory is allowed, mostly for framebuffers.
  188. *
  189. * Must be called holding kvm->lock.
  190. */
  191. int __kvm_set_memory_region(struct kvm *kvm,
  192. struct kvm_userspace_memory_region *mem,
  193. int user_alloc)
  194. {
  195. int r;
  196. gfn_t base_gfn;
  197. unsigned long npages;
  198. unsigned long i;
  199. struct kvm_memory_slot *memslot;
  200. struct kvm_memory_slot old, new;
  201. r = -EINVAL;
  202. /* General sanity checks */
  203. if (mem->memory_size & (PAGE_SIZE - 1))
  204. goto out;
  205. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  206. goto out;
  207. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  208. goto out;
  209. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  210. goto out;
  211. memslot = &kvm->memslots[mem->slot];
  212. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  213. npages = mem->memory_size >> PAGE_SHIFT;
  214. if (!npages)
  215. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  216. new = old = *memslot;
  217. new.base_gfn = base_gfn;
  218. new.npages = npages;
  219. new.flags = mem->flags;
  220. /* Disallow changing a memory slot's size. */
  221. r = -EINVAL;
  222. if (npages && old.npages && npages != old.npages)
  223. goto out_free;
  224. /* Check for overlaps */
  225. r = -EEXIST;
  226. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  227. struct kvm_memory_slot *s = &kvm->memslots[i];
  228. if (s == memslot)
  229. continue;
  230. if (!((base_gfn + npages <= s->base_gfn) ||
  231. (base_gfn >= s->base_gfn + s->npages)))
  232. goto out_free;
  233. }
  234. /* Free page dirty bitmap if unneeded */
  235. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  236. new.dirty_bitmap = NULL;
  237. r = -ENOMEM;
  238. /* Allocate if a slot is being created */
  239. if (npages && !new.rmap) {
  240. new.rmap = vmalloc(npages * sizeof(struct page *));
  241. if (!new.rmap)
  242. goto out_free;
  243. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  244. new.user_alloc = user_alloc;
  245. if (user_alloc)
  246. new.userspace_addr = mem->userspace_addr;
  247. else {
  248. down_write(&current->mm->mmap_sem);
  249. new.userspace_addr = do_mmap(NULL, 0,
  250. npages * PAGE_SIZE,
  251. PROT_READ | PROT_WRITE,
  252. MAP_SHARED | MAP_ANONYMOUS,
  253. 0);
  254. up_write(&current->mm->mmap_sem);
  255. if (IS_ERR((void *)new.userspace_addr))
  256. goto out_free;
  257. }
  258. } else {
  259. if (!old.user_alloc && old.rmap) {
  260. int ret;
  261. down_write(&current->mm->mmap_sem);
  262. ret = do_munmap(current->mm, old.userspace_addr,
  263. old.npages * PAGE_SIZE);
  264. up_write(&current->mm->mmap_sem);
  265. if (ret < 0)
  266. printk(KERN_WARNING
  267. "kvm_vm_ioctl_set_memory_region: "
  268. "failed to munmap memory\n");
  269. }
  270. }
  271. /* Allocate page dirty bitmap if needed */
  272. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  273. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  274. new.dirty_bitmap = vmalloc(dirty_bytes);
  275. if (!new.dirty_bitmap)
  276. goto out_free;
  277. memset(new.dirty_bitmap, 0, dirty_bytes);
  278. }
  279. if (mem->slot >= kvm->nmemslots)
  280. kvm->nmemslots = mem->slot + 1;
  281. if (!kvm->n_requested_mmu_pages) {
  282. unsigned int n_pages;
  283. if (npages) {
  284. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  285. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  286. n_pages);
  287. } else {
  288. unsigned int nr_mmu_pages;
  289. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  290. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  291. nr_mmu_pages = max(nr_mmu_pages,
  292. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  293. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  294. }
  295. }
  296. *memslot = new;
  297. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  298. kvm_flush_remote_tlbs(kvm);
  299. kvm_free_physmem_slot(&old, &new);
  300. return 0;
  301. out_free:
  302. kvm_free_physmem_slot(&new, &old);
  303. out:
  304. return r;
  305. }
  306. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  307. int kvm_set_memory_region(struct kvm *kvm,
  308. struct kvm_userspace_memory_region *mem,
  309. int user_alloc)
  310. {
  311. int r;
  312. mutex_lock(&kvm->lock);
  313. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  314. mutex_unlock(&kvm->lock);
  315. return r;
  316. }
  317. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  318. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  319. struct
  320. kvm_userspace_memory_region *mem,
  321. int user_alloc)
  322. {
  323. if (mem->slot >= KVM_MEMORY_SLOTS)
  324. return -EINVAL;
  325. return kvm_set_memory_region(kvm, mem, user_alloc);
  326. }
  327. int kvm_get_dirty_log(struct kvm *kvm,
  328. struct kvm_dirty_log *log, int *is_dirty)
  329. {
  330. struct kvm_memory_slot *memslot;
  331. int r, i;
  332. int n;
  333. unsigned long any = 0;
  334. r = -EINVAL;
  335. if (log->slot >= KVM_MEMORY_SLOTS)
  336. goto out;
  337. memslot = &kvm->memslots[log->slot];
  338. r = -ENOENT;
  339. if (!memslot->dirty_bitmap)
  340. goto out;
  341. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  342. for (i = 0; !any && i < n/sizeof(long); ++i)
  343. any = memslot->dirty_bitmap[i];
  344. r = -EFAULT;
  345. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  346. goto out;
  347. if (any)
  348. *is_dirty = 1;
  349. r = 0;
  350. out:
  351. return r;
  352. }
  353. int is_error_page(struct page *page)
  354. {
  355. return page == bad_page;
  356. }
  357. EXPORT_SYMBOL_GPL(is_error_page);
  358. static inline unsigned long bad_hva(void)
  359. {
  360. return PAGE_OFFSET;
  361. }
  362. int kvm_is_error_hva(unsigned long addr)
  363. {
  364. return addr == bad_hva();
  365. }
  366. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  367. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  368. {
  369. int i;
  370. struct kvm_mem_alias *alias;
  371. for (i = 0; i < kvm->naliases; ++i) {
  372. alias = &kvm->aliases[i];
  373. if (gfn >= alias->base_gfn
  374. && gfn < alias->base_gfn + alias->npages)
  375. return alias->target_gfn + gfn - alias->base_gfn;
  376. }
  377. return gfn;
  378. }
  379. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  380. {
  381. int i;
  382. for (i = 0; i < kvm->nmemslots; ++i) {
  383. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  384. if (gfn >= memslot->base_gfn
  385. && gfn < memslot->base_gfn + memslot->npages)
  386. return memslot;
  387. }
  388. return NULL;
  389. }
  390. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  391. {
  392. gfn = unalias_gfn(kvm, gfn);
  393. return __gfn_to_memslot(kvm, gfn);
  394. }
  395. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  396. {
  397. int i;
  398. gfn = unalias_gfn(kvm, gfn);
  399. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  400. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  401. if (gfn >= memslot->base_gfn
  402. && gfn < memslot->base_gfn + memslot->npages)
  403. return 1;
  404. }
  405. return 0;
  406. }
  407. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  408. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  409. {
  410. struct kvm_memory_slot *slot;
  411. gfn = unalias_gfn(kvm, gfn);
  412. slot = __gfn_to_memslot(kvm, gfn);
  413. if (!slot)
  414. return bad_hva();
  415. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  416. }
  417. /*
  418. * Requires current->mm->mmap_sem to be held
  419. */
  420. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  421. {
  422. struct page *page[1];
  423. unsigned long addr;
  424. int npages;
  425. might_sleep();
  426. addr = gfn_to_hva(kvm, gfn);
  427. if (kvm_is_error_hva(addr)) {
  428. get_page(bad_page);
  429. return bad_page;
  430. }
  431. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  432. NULL);
  433. if (npages != 1) {
  434. get_page(bad_page);
  435. return bad_page;
  436. }
  437. return page[0];
  438. }
  439. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  440. {
  441. struct page *page;
  442. down_read(&current->mm->mmap_sem);
  443. page = __gfn_to_page(kvm, gfn);
  444. up_read(&current->mm->mmap_sem);
  445. return page;
  446. }
  447. EXPORT_SYMBOL_GPL(gfn_to_page);
  448. void kvm_release_page_clean(struct page *page)
  449. {
  450. put_page(page);
  451. }
  452. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  453. void kvm_release_page_dirty(struct page *page)
  454. {
  455. if (!PageReserved(page))
  456. SetPageDirty(page);
  457. put_page(page);
  458. }
  459. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  460. static int next_segment(unsigned long len, int offset)
  461. {
  462. if (len > PAGE_SIZE - offset)
  463. return PAGE_SIZE - offset;
  464. else
  465. return len;
  466. }
  467. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  468. int len)
  469. {
  470. int r;
  471. unsigned long addr;
  472. addr = gfn_to_hva(kvm, gfn);
  473. if (kvm_is_error_hva(addr))
  474. return -EFAULT;
  475. r = copy_from_user(data, (void __user *)addr + offset, len);
  476. if (r)
  477. return -EFAULT;
  478. return 0;
  479. }
  480. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  481. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  482. {
  483. gfn_t gfn = gpa >> PAGE_SHIFT;
  484. int seg;
  485. int offset = offset_in_page(gpa);
  486. int ret;
  487. while ((seg = next_segment(len, offset)) != 0) {
  488. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  489. if (ret < 0)
  490. return ret;
  491. offset = 0;
  492. len -= seg;
  493. data += seg;
  494. ++gfn;
  495. }
  496. return 0;
  497. }
  498. EXPORT_SYMBOL_GPL(kvm_read_guest);
  499. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  500. int offset, int len)
  501. {
  502. int r;
  503. unsigned long addr;
  504. addr = gfn_to_hva(kvm, gfn);
  505. if (kvm_is_error_hva(addr))
  506. return -EFAULT;
  507. r = copy_to_user((void __user *)addr + offset, data, len);
  508. if (r)
  509. return -EFAULT;
  510. mark_page_dirty(kvm, gfn);
  511. return 0;
  512. }
  513. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  514. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  515. unsigned long len)
  516. {
  517. gfn_t gfn = gpa >> PAGE_SHIFT;
  518. int seg;
  519. int offset = offset_in_page(gpa);
  520. int ret;
  521. while ((seg = next_segment(len, offset)) != 0) {
  522. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  523. if (ret < 0)
  524. return ret;
  525. offset = 0;
  526. len -= seg;
  527. data += seg;
  528. ++gfn;
  529. }
  530. return 0;
  531. }
  532. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  533. {
  534. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  535. }
  536. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  537. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  538. {
  539. gfn_t gfn = gpa >> PAGE_SHIFT;
  540. int seg;
  541. int offset = offset_in_page(gpa);
  542. int ret;
  543. while ((seg = next_segment(len, offset)) != 0) {
  544. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  545. if (ret < 0)
  546. return ret;
  547. offset = 0;
  548. len -= seg;
  549. ++gfn;
  550. }
  551. return 0;
  552. }
  553. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  554. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  555. {
  556. struct kvm_memory_slot *memslot;
  557. gfn = unalias_gfn(kvm, gfn);
  558. memslot = __gfn_to_memslot(kvm, gfn);
  559. if (memslot && memslot->dirty_bitmap) {
  560. unsigned long rel_gfn = gfn - memslot->base_gfn;
  561. /* avoid RMW */
  562. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  563. set_bit(rel_gfn, memslot->dirty_bitmap);
  564. }
  565. }
  566. /*
  567. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  568. */
  569. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  570. {
  571. DECLARE_WAITQUEUE(wait, current);
  572. add_wait_queue(&vcpu->wq, &wait);
  573. /*
  574. * We will block until either an interrupt or a signal wakes us up
  575. */
  576. while (!kvm_cpu_has_interrupt(vcpu)
  577. && !signal_pending(current)
  578. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  579. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  580. set_current_state(TASK_INTERRUPTIBLE);
  581. vcpu_put(vcpu);
  582. schedule();
  583. vcpu_load(vcpu);
  584. }
  585. __set_current_state(TASK_RUNNING);
  586. remove_wait_queue(&vcpu->wq, &wait);
  587. }
  588. void kvm_resched(struct kvm_vcpu *vcpu)
  589. {
  590. if (!need_resched())
  591. return;
  592. cond_resched();
  593. }
  594. EXPORT_SYMBOL_GPL(kvm_resched);
  595. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  596. struct kvm_interrupt *irq)
  597. {
  598. if (irq->irq < 0 || irq->irq >= 256)
  599. return -EINVAL;
  600. if (irqchip_in_kernel(vcpu->kvm))
  601. return -ENXIO;
  602. vcpu_load(vcpu);
  603. set_bit(irq->irq, vcpu->irq_pending);
  604. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  605. vcpu_put(vcpu);
  606. return 0;
  607. }
  608. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  609. unsigned long address,
  610. int *type)
  611. {
  612. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  613. unsigned long pgoff;
  614. struct page *page;
  615. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  616. if (pgoff == 0)
  617. page = virt_to_page(vcpu->run);
  618. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  619. page = virt_to_page(vcpu->pio_data);
  620. else
  621. return NOPAGE_SIGBUS;
  622. get_page(page);
  623. if (type != NULL)
  624. *type = VM_FAULT_MINOR;
  625. return page;
  626. }
  627. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  628. .nopage = kvm_vcpu_nopage,
  629. };
  630. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  631. {
  632. vma->vm_ops = &kvm_vcpu_vm_ops;
  633. return 0;
  634. }
  635. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  636. {
  637. struct kvm_vcpu *vcpu = filp->private_data;
  638. fput(vcpu->kvm->filp);
  639. return 0;
  640. }
  641. static struct file_operations kvm_vcpu_fops = {
  642. .release = kvm_vcpu_release,
  643. .unlocked_ioctl = kvm_vcpu_ioctl,
  644. .compat_ioctl = kvm_vcpu_ioctl,
  645. .mmap = kvm_vcpu_mmap,
  646. };
  647. /*
  648. * Allocates an inode for the vcpu.
  649. */
  650. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  651. {
  652. int fd, r;
  653. struct inode *inode;
  654. struct file *file;
  655. r = anon_inode_getfd(&fd, &inode, &file,
  656. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  657. if (r)
  658. return r;
  659. atomic_inc(&vcpu->kvm->filp->f_count);
  660. return fd;
  661. }
  662. /*
  663. * Creates some virtual cpus. Good luck creating more than one.
  664. */
  665. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  666. {
  667. int r;
  668. struct kvm_vcpu *vcpu;
  669. if (!valid_vcpu(n))
  670. return -EINVAL;
  671. vcpu = kvm_arch_vcpu_create(kvm, n);
  672. if (IS_ERR(vcpu))
  673. return PTR_ERR(vcpu);
  674. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  675. mutex_lock(&kvm->lock);
  676. if (kvm->vcpus[n]) {
  677. r = -EEXIST;
  678. mutex_unlock(&kvm->lock);
  679. goto vcpu_destroy;
  680. }
  681. kvm->vcpus[n] = vcpu;
  682. mutex_unlock(&kvm->lock);
  683. /* Now it's all set up, let userspace reach it */
  684. r = create_vcpu_fd(vcpu);
  685. if (r < 0)
  686. goto unlink;
  687. return r;
  688. unlink:
  689. mutex_lock(&kvm->lock);
  690. kvm->vcpus[n] = NULL;
  691. mutex_unlock(&kvm->lock);
  692. vcpu_destroy:
  693. kvm_arch_vcpu_destroy(vcpu);
  694. return r;
  695. }
  696. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  697. {
  698. if (sigset) {
  699. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  700. vcpu->sigset_active = 1;
  701. vcpu->sigset = *sigset;
  702. } else
  703. vcpu->sigset_active = 0;
  704. return 0;
  705. }
  706. static long kvm_vcpu_ioctl(struct file *filp,
  707. unsigned int ioctl, unsigned long arg)
  708. {
  709. struct kvm_vcpu *vcpu = filp->private_data;
  710. void __user *argp = (void __user *)arg;
  711. int r;
  712. switch (ioctl) {
  713. case KVM_RUN:
  714. r = -EINVAL;
  715. if (arg)
  716. goto out;
  717. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  718. break;
  719. case KVM_GET_REGS: {
  720. struct kvm_regs kvm_regs;
  721. memset(&kvm_regs, 0, sizeof kvm_regs);
  722. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  723. if (r)
  724. goto out;
  725. r = -EFAULT;
  726. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  727. goto out;
  728. r = 0;
  729. break;
  730. }
  731. case KVM_SET_REGS: {
  732. struct kvm_regs kvm_regs;
  733. r = -EFAULT;
  734. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  735. goto out;
  736. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  737. if (r)
  738. goto out;
  739. r = 0;
  740. break;
  741. }
  742. case KVM_GET_SREGS: {
  743. struct kvm_sregs kvm_sregs;
  744. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  745. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  746. if (r)
  747. goto out;
  748. r = -EFAULT;
  749. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  750. goto out;
  751. r = 0;
  752. break;
  753. }
  754. case KVM_SET_SREGS: {
  755. struct kvm_sregs kvm_sregs;
  756. r = -EFAULT;
  757. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  758. goto out;
  759. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  760. if (r)
  761. goto out;
  762. r = 0;
  763. break;
  764. }
  765. case KVM_TRANSLATE: {
  766. struct kvm_translation tr;
  767. r = -EFAULT;
  768. if (copy_from_user(&tr, argp, sizeof tr))
  769. goto out;
  770. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  771. if (r)
  772. goto out;
  773. r = -EFAULT;
  774. if (copy_to_user(argp, &tr, sizeof tr))
  775. goto out;
  776. r = 0;
  777. break;
  778. }
  779. case KVM_INTERRUPT: {
  780. struct kvm_interrupt irq;
  781. r = -EFAULT;
  782. if (copy_from_user(&irq, argp, sizeof irq))
  783. goto out;
  784. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  785. if (r)
  786. goto out;
  787. r = 0;
  788. break;
  789. }
  790. case KVM_DEBUG_GUEST: {
  791. struct kvm_debug_guest dbg;
  792. r = -EFAULT;
  793. if (copy_from_user(&dbg, argp, sizeof dbg))
  794. goto out;
  795. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  796. if (r)
  797. goto out;
  798. r = 0;
  799. break;
  800. }
  801. case KVM_SET_SIGNAL_MASK: {
  802. struct kvm_signal_mask __user *sigmask_arg = argp;
  803. struct kvm_signal_mask kvm_sigmask;
  804. sigset_t sigset, *p;
  805. p = NULL;
  806. if (argp) {
  807. r = -EFAULT;
  808. if (copy_from_user(&kvm_sigmask, argp,
  809. sizeof kvm_sigmask))
  810. goto out;
  811. r = -EINVAL;
  812. if (kvm_sigmask.len != sizeof sigset)
  813. goto out;
  814. r = -EFAULT;
  815. if (copy_from_user(&sigset, sigmask_arg->sigset,
  816. sizeof sigset))
  817. goto out;
  818. p = &sigset;
  819. }
  820. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  821. break;
  822. }
  823. case KVM_GET_FPU: {
  824. struct kvm_fpu fpu;
  825. memset(&fpu, 0, sizeof fpu);
  826. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  827. if (r)
  828. goto out;
  829. r = -EFAULT;
  830. if (copy_to_user(argp, &fpu, sizeof fpu))
  831. goto out;
  832. r = 0;
  833. break;
  834. }
  835. case KVM_SET_FPU: {
  836. struct kvm_fpu fpu;
  837. r = -EFAULT;
  838. if (copy_from_user(&fpu, argp, sizeof fpu))
  839. goto out;
  840. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  841. if (r)
  842. goto out;
  843. r = 0;
  844. break;
  845. }
  846. default:
  847. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  848. }
  849. out:
  850. return r;
  851. }
  852. static long kvm_vm_ioctl(struct file *filp,
  853. unsigned int ioctl, unsigned long arg)
  854. {
  855. struct kvm *kvm = filp->private_data;
  856. void __user *argp = (void __user *)arg;
  857. int r;
  858. switch (ioctl) {
  859. case KVM_CREATE_VCPU:
  860. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  861. if (r < 0)
  862. goto out;
  863. break;
  864. case KVM_SET_USER_MEMORY_REGION: {
  865. struct kvm_userspace_memory_region kvm_userspace_mem;
  866. r = -EFAULT;
  867. if (copy_from_user(&kvm_userspace_mem, argp,
  868. sizeof kvm_userspace_mem))
  869. goto out;
  870. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  871. if (r)
  872. goto out;
  873. break;
  874. }
  875. case KVM_GET_DIRTY_LOG: {
  876. struct kvm_dirty_log log;
  877. r = -EFAULT;
  878. if (copy_from_user(&log, argp, sizeof log))
  879. goto out;
  880. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  881. if (r)
  882. goto out;
  883. break;
  884. }
  885. default:
  886. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  887. }
  888. out:
  889. return r;
  890. }
  891. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  892. unsigned long address,
  893. int *type)
  894. {
  895. struct kvm *kvm = vma->vm_file->private_data;
  896. unsigned long pgoff;
  897. struct page *page;
  898. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  899. if (!kvm_is_visible_gfn(kvm, pgoff))
  900. return NOPAGE_SIGBUS;
  901. /* current->mm->mmap_sem is already held so call lockless version */
  902. page = __gfn_to_page(kvm, pgoff);
  903. if (is_error_page(page)) {
  904. kvm_release_page_clean(page);
  905. return NOPAGE_SIGBUS;
  906. }
  907. if (type != NULL)
  908. *type = VM_FAULT_MINOR;
  909. return page;
  910. }
  911. static struct vm_operations_struct kvm_vm_vm_ops = {
  912. .nopage = kvm_vm_nopage,
  913. };
  914. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  915. {
  916. vma->vm_ops = &kvm_vm_vm_ops;
  917. return 0;
  918. }
  919. static struct file_operations kvm_vm_fops = {
  920. .release = kvm_vm_release,
  921. .unlocked_ioctl = kvm_vm_ioctl,
  922. .compat_ioctl = kvm_vm_ioctl,
  923. .mmap = kvm_vm_mmap,
  924. };
  925. static int kvm_dev_ioctl_create_vm(void)
  926. {
  927. int fd, r;
  928. struct inode *inode;
  929. struct file *file;
  930. struct kvm *kvm;
  931. kvm = kvm_create_vm();
  932. if (IS_ERR(kvm))
  933. return PTR_ERR(kvm);
  934. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  935. if (r) {
  936. kvm_destroy_vm(kvm);
  937. return r;
  938. }
  939. kvm->filp = file;
  940. return fd;
  941. }
  942. static long kvm_dev_ioctl(struct file *filp,
  943. unsigned int ioctl, unsigned long arg)
  944. {
  945. void __user *argp = (void __user *)arg;
  946. long r = -EINVAL;
  947. switch (ioctl) {
  948. case KVM_GET_API_VERSION:
  949. r = -EINVAL;
  950. if (arg)
  951. goto out;
  952. r = KVM_API_VERSION;
  953. break;
  954. case KVM_CREATE_VM:
  955. r = -EINVAL;
  956. if (arg)
  957. goto out;
  958. r = kvm_dev_ioctl_create_vm();
  959. break;
  960. case KVM_CHECK_EXTENSION:
  961. r = kvm_dev_ioctl_check_extension((long)argp);
  962. break;
  963. case KVM_GET_VCPU_MMAP_SIZE:
  964. r = -EINVAL;
  965. if (arg)
  966. goto out;
  967. r = 2 * PAGE_SIZE;
  968. break;
  969. default:
  970. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  971. }
  972. out:
  973. return r;
  974. }
  975. static struct file_operations kvm_chardev_ops = {
  976. .unlocked_ioctl = kvm_dev_ioctl,
  977. .compat_ioctl = kvm_dev_ioctl,
  978. };
  979. static struct miscdevice kvm_dev = {
  980. KVM_MINOR,
  981. "kvm",
  982. &kvm_chardev_ops,
  983. };
  984. static void hardware_enable(void *junk)
  985. {
  986. int cpu = raw_smp_processor_id();
  987. if (cpu_isset(cpu, cpus_hardware_enabled))
  988. return;
  989. cpu_set(cpu, cpus_hardware_enabled);
  990. kvm_arch_hardware_enable(NULL);
  991. }
  992. static void hardware_disable(void *junk)
  993. {
  994. int cpu = raw_smp_processor_id();
  995. if (!cpu_isset(cpu, cpus_hardware_enabled))
  996. return;
  997. cpu_clear(cpu, cpus_hardware_enabled);
  998. decache_vcpus_on_cpu(cpu);
  999. kvm_arch_hardware_disable(NULL);
  1000. }
  1001. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1002. void *v)
  1003. {
  1004. int cpu = (long)v;
  1005. val &= ~CPU_TASKS_FROZEN;
  1006. switch (val) {
  1007. case CPU_DYING:
  1008. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1009. cpu);
  1010. hardware_disable(NULL);
  1011. break;
  1012. case CPU_UP_CANCELED:
  1013. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1014. cpu);
  1015. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1016. break;
  1017. case CPU_ONLINE:
  1018. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1019. cpu);
  1020. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1021. break;
  1022. }
  1023. return NOTIFY_OK;
  1024. }
  1025. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1026. void *v)
  1027. {
  1028. if (val == SYS_RESTART) {
  1029. /*
  1030. * Some (well, at least mine) BIOSes hang on reboot if
  1031. * in vmx root mode.
  1032. */
  1033. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1034. on_each_cpu(hardware_disable, NULL, 0, 1);
  1035. }
  1036. return NOTIFY_OK;
  1037. }
  1038. static struct notifier_block kvm_reboot_notifier = {
  1039. .notifier_call = kvm_reboot,
  1040. .priority = 0,
  1041. };
  1042. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1043. {
  1044. memset(bus, 0, sizeof(*bus));
  1045. }
  1046. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1047. {
  1048. int i;
  1049. for (i = 0; i < bus->dev_count; i++) {
  1050. struct kvm_io_device *pos = bus->devs[i];
  1051. kvm_iodevice_destructor(pos);
  1052. }
  1053. }
  1054. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1055. {
  1056. int i;
  1057. for (i = 0; i < bus->dev_count; i++) {
  1058. struct kvm_io_device *pos = bus->devs[i];
  1059. if (pos->in_range(pos, addr))
  1060. return pos;
  1061. }
  1062. return NULL;
  1063. }
  1064. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1065. {
  1066. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1067. bus->devs[bus->dev_count++] = dev;
  1068. }
  1069. static struct notifier_block kvm_cpu_notifier = {
  1070. .notifier_call = kvm_cpu_hotplug,
  1071. .priority = 20, /* must be > scheduler priority */
  1072. };
  1073. static u64 vm_stat_get(void *_offset)
  1074. {
  1075. unsigned offset = (long)_offset;
  1076. u64 total = 0;
  1077. struct kvm *kvm;
  1078. spin_lock(&kvm_lock);
  1079. list_for_each_entry(kvm, &vm_list, vm_list)
  1080. total += *(u32 *)((void *)kvm + offset);
  1081. spin_unlock(&kvm_lock);
  1082. return total;
  1083. }
  1084. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1085. static u64 vcpu_stat_get(void *_offset)
  1086. {
  1087. unsigned offset = (long)_offset;
  1088. u64 total = 0;
  1089. struct kvm *kvm;
  1090. struct kvm_vcpu *vcpu;
  1091. int i;
  1092. spin_lock(&kvm_lock);
  1093. list_for_each_entry(kvm, &vm_list, vm_list)
  1094. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1095. vcpu = kvm->vcpus[i];
  1096. if (vcpu)
  1097. total += *(u32 *)((void *)vcpu + offset);
  1098. }
  1099. spin_unlock(&kvm_lock);
  1100. return total;
  1101. }
  1102. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1103. static struct file_operations *stat_fops[] = {
  1104. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1105. [KVM_STAT_VM] = &vm_stat_fops,
  1106. };
  1107. static void kvm_init_debug(void)
  1108. {
  1109. struct kvm_stats_debugfs_item *p;
  1110. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1111. for (p = debugfs_entries; p->name; ++p)
  1112. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1113. (void *)(long)p->offset,
  1114. stat_fops[p->kind]);
  1115. }
  1116. static void kvm_exit_debug(void)
  1117. {
  1118. struct kvm_stats_debugfs_item *p;
  1119. for (p = debugfs_entries; p->name; ++p)
  1120. debugfs_remove(p->dentry);
  1121. debugfs_remove(debugfs_dir);
  1122. }
  1123. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1124. {
  1125. hardware_disable(NULL);
  1126. return 0;
  1127. }
  1128. static int kvm_resume(struct sys_device *dev)
  1129. {
  1130. hardware_enable(NULL);
  1131. return 0;
  1132. }
  1133. static struct sysdev_class kvm_sysdev_class = {
  1134. .name = "kvm",
  1135. .suspend = kvm_suspend,
  1136. .resume = kvm_resume,
  1137. };
  1138. static struct sys_device kvm_sysdev = {
  1139. .id = 0,
  1140. .cls = &kvm_sysdev_class,
  1141. };
  1142. struct page *bad_page;
  1143. static inline
  1144. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1145. {
  1146. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1147. }
  1148. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1149. {
  1150. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1151. kvm_arch_vcpu_load(vcpu, cpu);
  1152. }
  1153. static void kvm_sched_out(struct preempt_notifier *pn,
  1154. struct task_struct *next)
  1155. {
  1156. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1157. kvm_arch_vcpu_put(vcpu);
  1158. }
  1159. int kvm_init(void *opaque, unsigned int vcpu_size,
  1160. struct module *module)
  1161. {
  1162. int r;
  1163. int cpu;
  1164. kvm_init_debug();
  1165. r = kvm_arch_init(opaque);
  1166. if (r)
  1167. goto out4;
  1168. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1169. if (bad_page == NULL) {
  1170. r = -ENOMEM;
  1171. goto out;
  1172. }
  1173. r = kvm_arch_hardware_setup();
  1174. if (r < 0)
  1175. goto out;
  1176. for_each_online_cpu(cpu) {
  1177. smp_call_function_single(cpu,
  1178. kvm_arch_check_processor_compat,
  1179. &r, 0, 1);
  1180. if (r < 0)
  1181. goto out_free_0;
  1182. }
  1183. on_each_cpu(hardware_enable, NULL, 0, 1);
  1184. r = register_cpu_notifier(&kvm_cpu_notifier);
  1185. if (r)
  1186. goto out_free_1;
  1187. register_reboot_notifier(&kvm_reboot_notifier);
  1188. r = sysdev_class_register(&kvm_sysdev_class);
  1189. if (r)
  1190. goto out_free_2;
  1191. r = sysdev_register(&kvm_sysdev);
  1192. if (r)
  1193. goto out_free_3;
  1194. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1195. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1196. __alignof__(struct kvm_vcpu),
  1197. 0, NULL);
  1198. if (!kvm_vcpu_cache) {
  1199. r = -ENOMEM;
  1200. goto out_free_4;
  1201. }
  1202. kvm_chardev_ops.owner = module;
  1203. r = misc_register(&kvm_dev);
  1204. if (r) {
  1205. printk(KERN_ERR "kvm: misc device register failed\n");
  1206. goto out_free;
  1207. }
  1208. kvm_preempt_ops.sched_in = kvm_sched_in;
  1209. kvm_preempt_ops.sched_out = kvm_sched_out;
  1210. return 0;
  1211. out_free:
  1212. kmem_cache_destroy(kvm_vcpu_cache);
  1213. out_free_4:
  1214. sysdev_unregister(&kvm_sysdev);
  1215. out_free_3:
  1216. sysdev_class_unregister(&kvm_sysdev_class);
  1217. out_free_2:
  1218. unregister_reboot_notifier(&kvm_reboot_notifier);
  1219. unregister_cpu_notifier(&kvm_cpu_notifier);
  1220. out_free_1:
  1221. on_each_cpu(hardware_disable, NULL, 0, 1);
  1222. out_free_0:
  1223. kvm_arch_hardware_unsetup();
  1224. out:
  1225. kvm_arch_exit();
  1226. kvm_exit_debug();
  1227. out4:
  1228. return r;
  1229. }
  1230. EXPORT_SYMBOL_GPL(kvm_init);
  1231. void kvm_exit(void)
  1232. {
  1233. misc_deregister(&kvm_dev);
  1234. kmem_cache_destroy(kvm_vcpu_cache);
  1235. sysdev_unregister(&kvm_sysdev);
  1236. sysdev_class_unregister(&kvm_sysdev_class);
  1237. unregister_reboot_notifier(&kvm_reboot_notifier);
  1238. unregister_cpu_notifier(&kvm_cpu_notifier);
  1239. on_each_cpu(hardware_disable, NULL, 0, 1);
  1240. kvm_arch_hardware_unsetup();
  1241. kvm_arch_exit();
  1242. kvm_exit_debug();
  1243. __free_page(bad_page);
  1244. }
  1245. EXPORT_SYMBOL_GPL(kvm_exit);