page_alloc.c 129 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <asm/tlbflush.h>
  51. #include <asm/div64.h>
  52. #include "internal.h"
  53. /*
  54. * Array of node states.
  55. */
  56. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  57. [N_POSSIBLE] = NODE_MASK_ALL,
  58. [N_ONLINE] = { { [0] = 1UL } },
  59. #ifndef CONFIG_NUMA
  60. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  61. #ifdef CONFIG_HIGHMEM
  62. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  63. #endif
  64. [N_CPU] = { { [0] = 1UL } },
  65. #endif /* NUMA */
  66. };
  67. EXPORT_SYMBOL(node_states);
  68. unsigned long totalram_pages __read_mostly;
  69. unsigned long totalreserve_pages __read_mostly;
  70. unsigned long highest_memmap_pfn __read_mostly;
  71. int percpu_pagelist_fraction;
  72. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  73. int pageblock_order __read_mostly;
  74. #endif
  75. static void __free_pages_ok(struct page *page, unsigned int order);
  76. /*
  77. * results with 256, 32 in the lowmem_reserve sysctl:
  78. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  79. * 1G machine -> (16M dma, 784M normal, 224M high)
  80. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  81. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  82. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  83. *
  84. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  85. * don't need any ZONE_NORMAL reservation
  86. */
  87. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  88. #ifdef CONFIG_ZONE_DMA
  89. 256,
  90. #endif
  91. #ifdef CONFIG_ZONE_DMA32
  92. 256,
  93. #endif
  94. #ifdef CONFIG_HIGHMEM
  95. 32,
  96. #endif
  97. 32,
  98. };
  99. EXPORT_SYMBOL(totalram_pages);
  100. static char * const zone_names[MAX_NR_ZONES] = {
  101. #ifdef CONFIG_ZONE_DMA
  102. "DMA",
  103. #endif
  104. #ifdef CONFIG_ZONE_DMA32
  105. "DMA32",
  106. #endif
  107. "Normal",
  108. #ifdef CONFIG_HIGHMEM
  109. "HighMem",
  110. #endif
  111. "Movable",
  112. };
  113. int min_free_kbytes = 1024;
  114. unsigned long __meminitdata nr_kernel_pages;
  115. unsigned long __meminitdata nr_all_pages;
  116. static unsigned long __meminitdata dma_reserve;
  117. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  118. /*
  119. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  120. * ranges of memory (RAM) that may be registered with add_active_range().
  121. * Ranges passed to add_active_range() will be merged if possible
  122. * so the number of times add_active_range() can be called is
  123. * related to the number of nodes and the number of holes
  124. */
  125. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  126. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  127. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  128. #else
  129. #if MAX_NUMNODES >= 32
  130. /* If there can be many nodes, allow up to 50 holes per node */
  131. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  132. #else
  133. /* By default, allow up to 256 distinct regions */
  134. #define MAX_ACTIVE_REGIONS 256
  135. #endif
  136. #endif
  137. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  138. static int __meminitdata nr_nodemap_entries;
  139. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  141. static unsigned long __initdata required_kernelcore;
  142. static unsigned long __initdata required_movablecore;
  143. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  144. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  145. int movable_zone;
  146. EXPORT_SYMBOL(movable_zone);
  147. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  148. #if MAX_NUMNODES > 1
  149. int nr_node_ids __read_mostly = MAX_NUMNODES;
  150. EXPORT_SYMBOL(nr_node_ids);
  151. #endif
  152. int page_group_by_mobility_disabled __read_mostly;
  153. static void set_pageblock_migratetype(struct page *page, int migratetype)
  154. {
  155. set_pageblock_flags_group(page, (unsigned long)migratetype,
  156. PB_migrate, PB_migrate_end);
  157. }
  158. #ifdef CONFIG_DEBUG_VM
  159. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  160. {
  161. int ret = 0;
  162. unsigned seq;
  163. unsigned long pfn = page_to_pfn(page);
  164. do {
  165. seq = zone_span_seqbegin(zone);
  166. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  167. ret = 1;
  168. else if (pfn < zone->zone_start_pfn)
  169. ret = 1;
  170. } while (zone_span_seqretry(zone, seq));
  171. return ret;
  172. }
  173. static int page_is_consistent(struct zone *zone, struct page *page)
  174. {
  175. if (!pfn_valid_within(page_to_pfn(page)))
  176. return 0;
  177. if (zone != page_zone(page))
  178. return 0;
  179. return 1;
  180. }
  181. /*
  182. * Temporary debugging check for pages not lying within a given zone.
  183. */
  184. static int bad_range(struct zone *zone, struct page *page)
  185. {
  186. if (page_outside_zone_boundaries(zone, page))
  187. return 1;
  188. if (!page_is_consistent(zone, page))
  189. return 1;
  190. return 0;
  191. }
  192. #else
  193. static inline int bad_range(struct zone *zone, struct page *page)
  194. {
  195. return 0;
  196. }
  197. #endif
  198. static void bad_page(struct page *page)
  199. {
  200. static unsigned long resume;
  201. static unsigned long nr_shown;
  202. static unsigned long nr_unshown;
  203. /*
  204. * Allow a burst of 60 reports, then keep quiet for that minute;
  205. * or allow a steady drip of one report per second.
  206. */
  207. if (nr_shown == 60) {
  208. if (time_before(jiffies, resume)) {
  209. nr_unshown++;
  210. goto out;
  211. }
  212. if (nr_unshown) {
  213. printk(KERN_ALERT
  214. "BUG: Bad page state: %lu messages suppressed\n",
  215. nr_unshown);
  216. nr_unshown = 0;
  217. }
  218. nr_shown = 0;
  219. }
  220. if (nr_shown++ == 0)
  221. resume = jiffies + 60 * HZ;
  222. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  223. current->comm, page_to_pfn(page));
  224. printk(KERN_ALERT
  225. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  226. page, (void *)page->flags, page_count(page),
  227. page_mapcount(page), page->mapping, page->index);
  228. dump_stack();
  229. out:
  230. /* Leave bad fields for debug, except PageBuddy could make trouble */
  231. __ClearPageBuddy(page);
  232. add_taint(TAINT_BAD_PAGE);
  233. }
  234. /*
  235. * Higher-order pages are called "compound pages". They are structured thusly:
  236. *
  237. * The first PAGE_SIZE page is called the "head page".
  238. *
  239. * The remaining PAGE_SIZE pages are called "tail pages".
  240. *
  241. * All pages have PG_compound set. All pages have their ->private pointing at
  242. * the head page (even the head page has this).
  243. *
  244. * The first tail page's ->lru.next holds the address of the compound page's
  245. * put_page() function. Its ->lru.prev holds the order of allocation.
  246. * This usage means that zero-order pages may not be compound.
  247. */
  248. static void free_compound_page(struct page *page)
  249. {
  250. __free_pages_ok(page, compound_order(page));
  251. }
  252. void prep_compound_page(struct page *page, unsigned long order)
  253. {
  254. int i;
  255. int nr_pages = 1 << order;
  256. set_compound_page_dtor(page, free_compound_page);
  257. set_compound_order(page, order);
  258. __SetPageHead(page);
  259. for (i = 1; i < nr_pages; i++) {
  260. struct page *p = page + i;
  261. __SetPageTail(p);
  262. p->first_page = page;
  263. }
  264. }
  265. #ifdef CONFIG_HUGETLBFS
  266. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  267. {
  268. int i;
  269. int nr_pages = 1 << order;
  270. struct page *p = page + 1;
  271. set_compound_page_dtor(page, free_compound_page);
  272. set_compound_order(page, order);
  273. __SetPageHead(page);
  274. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  275. __SetPageTail(p);
  276. p->first_page = page;
  277. }
  278. }
  279. #endif
  280. static int destroy_compound_page(struct page *page, unsigned long order)
  281. {
  282. int i;
  283. int nr_pages = 1 << order;
  284. int bad = 0;
  285. if (unlikely(compound_order(page) != order) ||
  286. unlikely(!PageHead(page))) {
  287. bad_page(page);
  288. bad++;
  289. }
  290. __ClearPageHead(page);
  291. for (i = 1; i < nr_pages; i++) {
  292. struct page *p = page + i;
  293. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  294. bad_page(page);
  295. bad++;
  296. }
  297. __ClearPageTail(p);
  298. }
  299. return bad;
  300. }
  301. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  302. {
  303. int i;
  304. /*
  305. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  306. * and __GFP_HIGHMEM from hard or soft interrupt context.
  307. */
  308. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  309. for (i = 0; i < (1 << order); i++)
  310. clear_highpage(page + i);
  311. }
  312. static inline void set_page_order(struct page *page, int order)
  313. {
  314. set_page_private(page, order);
  315. __SetPageBuddy(page);
  316. }
  317. static inline void rmv_page_order(struct page *page)
  318. {
  319. __ClearPageBuddy(page);
  320. set_page_private(page, 0);
  321. }
  322. /*
  323. * Locate the struct page for both the matching buddy in our
  324. * pair (buddy1) and the combined O(n+1) page they form (page).
  325. *
  326. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  327. * the following equation:
  328. * B2 = B1 ^ (1 << O)
  329. * For example, if the starting buddy (buddy2) is #8 its order
  330. * 1 buddy is #10:
  331. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  332. *
  333. * 2) Any buddy B will have an order O+1 parent P which
  334. * satisfies the following equation:
  335. * P = B & ~(1 << O)
  336. *
  337. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  338. */
  339. static inline struct page *
  340. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  341. {
  342. unsigned long buddy_idx = page_idx ^ (1 << order);
  343. return page + (buddy_idx - page_idx);
  344. }
  345. static inline unsigned long
  346. __find_combined_index(unsigned long page_idx, unsigned int order)
  347. {
  348. return (page_idx & ~(1 << order));
  349. }
  350. /*
  351. * This function checks whether a page is free && is the buddy
  352. * we can do coalesce a page and its buddy if
  353. * (a) the buddy is not in a hole &&
  354. * (b) the buddy is in the buddy system &&
  355. * (c) a page and its buddy have the same order &&
  356. * (d) a page and its buddy are in the same zone.
  357. *
  358. * For recording whether a page is in the buddy system, we use PG_buddy.
  359. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  360. *
  361. * For recording page's order, we use page_private(page).
  362. */
  363. static inline int page_is_buddy(struct page *page, struct page *buddy,
  364. int order)
  365. {
  366. if (!pfn_valid_within(page_to_pfn(buddy)))
  367. return 0;
  368. if (page_zone_id(page) != page_zone_id(buddy))
  369. return 0;
  370. if (PageBuddy(buddy) && page_order(buddy) == order) {
  371. BUG_ON(page_count(buddy) != 0);
  372. return 1;
  373. }
  374. return 0;
  375. }
  376. /*
  377. * Freeing function for a buddy system allocator.
  378. *
  379. * The concept of a buddy system is to maintain direct-mapped table
  380. * (containing bit values) for memory blocks of various "orders".
  381. * The bottom level table contains the map for the smallest allocatable
  382. * units of memory (here, pages), and each level above it describes
  383. * pairs of units from the levels below, hence, "buddies".
  384. * At a high level, all that happens here is marking the table entry
  385. * at the bottom level available, and propagating the changes upward
  386. * as necessary, plus some accounting needed to play nicely with other
  387. * parts of the VM system.
  388. * At each level, we keep a list of pages, which are heads of continuous
  389. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  390. * order is recorded in page_private(page) field.
  391. * So when we are allocating or freeing one, we can derive the state of the
  392. * other. That is, if we allocate a small block, and both were
  393. * free, the remainder of the region must be split into blocks.
  394. * If a block is freed, and its buddy is also free, then this
  395. * triggers coalescing into a block of larger size.
  396. *
  397. * -- wli
  398. */
  399. static inline void __free_one_page(struct page *page,
  400. struct zone *zone, unsigned int order)
  401. {
  402. unsigned long page_idx;
  403. int order_size = 1 << order;
  404. int migratetype = get_pageblock_migratetype(page);
  405. if (unlikely(PageCompound(page)))
  406. if (unlikely(destroy_compound_page(page, order)))
  407. return;
  408. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  409. VM_BUG_ON(page_idx & (order_size - 1));
  410. VM_BUG_ON(bad_range(zone, page));
  411. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  412. while (order < MAX_ORDER-1) {
  413. unsigned long combined_idx;
  414. struct page *buddy;
  415. buddy = __page_find_buddy(page, page_idx, order);
  416. if (!page_is_buddy(page, buddy, order))
  417. break;
  418. /* Our buddy is free, merge with it and move up one order. */
  419. list_del(&buddy->lru);
  420. zone->free_area[order].nr_free--;
  421. rmv_page_order(buddy);
  422. combined_idx = __find_combined_index(page_idx, order);
  423. page = page + (combined_idx - page_idx);
  424. page_idx = combined_idx;
  425. order++;
  426. }
  427. set_page_order(page, order);
  428. list_add(&page->lru,
  429. &zone->free_area[order].free_list[migratetype]);
  430. zone->free_area[order].nr_free++;
  431. }
  432. static inline int free_pages_check(struct page *page)
  433. {
  434. free_page_mlock(page);
  435. if (unlikely(page_mapcount(page) |
  436. (page->mapping != NULL) |
  437. (page_count(page) != 0) |
  438. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  439. bad_page(page);
  440. return 1;
  441. }
  442. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  443. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  444. return 0;
  445. }
  446. /*
  447. * Frees a list of pages.
  448. * Assumes all pages on list are in same zone, and of same order.
  449. * count is the number of pages to free.
  450. *
  451. * If the zone was previously in an "all pages pinned" state then look to
  452. * see if this freeing clears that state.
  453. *
  454. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  455. * pinned" detection logic.
  456. */
  457. static void free_pages_bulk(struct zone *zone, int count,
  458. struct list_head *list, int order)
  459. {
  460. spin_lock(&zone->lock);
  461. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  462. zone->pages_scanned = 0;
  463. while (count--) {
  464. struct page *page;
  465. VM_BUG_ON(list_empty(list));
  466. page = list_entry(list->prev, struct page, lru);
  467. /* have to delete it as __free_one_page list manipulates */
  468. list_del(&page->lru);
  469. __free_one_page(page, zone, order);
  470. }
  471. spin_unlock(&zone->lock);
  472. }
  473. static void free_one_page(struct zone *zone, struct page *page, int order)
  474. {
  475. spin_lock(&zone->lock);
  476. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  477. zone->pages_scanned = 0;
  478. __free_one_page(page, zone, order);
  479. spin_unlock(&zone->lock);
  480. }
  481. static void __free_pages_ok(struct page *page, unsigned int order)
  482. {
  483. unsigned long flags;
  484. int i;
  485. int bad = 0;
  486. kmemcheck_free_shadow(page, order);
  487. for (i = 0 ; i < (1 << order) ; ++i)
  488. bad += free_pages_check(page + i);
  489. if (bad)
  490. return;
  491. if (!PageHighMem(page)) {
  492. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  493. debug_check_no_obj_freed(page_address(page),
  494. PAGE_SIZE << order);
  495. }
  496. arch_free_page(page, order);
  497. kernel_map_pages(page, 1 << order, 0);
  498. local_irq_save(flags);
  499. __count_vm_events(PGFREE, 1 << order);
  500. free_one_page(page_zone(page), page, order);
  501. local_irq_restore(flags);
  502. }
  503. /*
  504. * permit the bootmem allocator to evade page validation on high-order frees
  505. */
  506. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  507. {
  508. if (order == 0) {
  509. __ClearPageReserved(page);
  510. set_page_count(page, 0);
  511. set_page_refcounted(page);
  512. __free_page(page);
  513. } else {
  514. int loop;
  515. prefetchw(page);
  516. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  517. struct page *p = &page[loop];
  518. if (loop + 1 < BITS_PER_LONG)
  519. prefetchw(p + 1);
  520. __ClearPageReserved(p);
  521. set_page_count(p, 0);
  522. }
  523. set_page_refcounted(page);
  524. __free_pages(page, order);
  525. }
  526. }
  527. /*
  528. * The order of subdivision here is critical for the IO subsystem.
  529. * Please do not alter this order without good reasons and regression
  530. * testing. Specifically, as large blocks of memory are subdivided,
  531. * the order in which smaller blocks are delivered depends on the order
  532. * they're subdivided in this function. This is the primary factor
  533. * influencing the order in which pages are delivered to the IO
  534. * subsystem according to empirical testing, and this is also justified
  535. * by considering the behavior of a buddy system containing a single
  536. * large block of memory acted on by a series of small allocations.
  537. * This behavior is a critical factor in sglist merging's success.
  538. *
  539. * -- wli
  540. */
  541. static inline void expand(struct zone *zone, struct page *page,
  542. int low, int high, struct free_area *area,
  543. int migratetype)
  544. {
  545. unsigned long size = 1 << high;
  546. while (high > low) {
  547. area--;
  548. high--;
  549. size >>= 1;
  550. VM_BUG_ON(bad_range(zone, &page[size]));
  551. list_add(&page[size].lru, &area->free_list[migratetype]);
  552. area->nr_free++;
  553. set_page_order(&page[size], high);
  554. }
  555. }
  556. /*
  557. * This page is about to be returned from the page allocator
  558. */
  559. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  560. {
  561. if (unlikely(page_mapcount(page) |
  562. (page->mapping != NULL) |
  563. (page_count(page) != 0) |
  564. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  565. bad_page(page);
  566. return 1;
  567. }
  568. set_page_private(page, 0);
  569. set_page_refcounted(page);
  570. arch_alloc_page(page, order);
  571. kernel_map_pages(page, 1 << order, 1);
  572. if (gfp_flags & __GFP_ZERO)
  573. prep_zero_page(page, order, gfp_flags);
  574. if (order && (gfp_flags & __GFP_COMP))
  575. prep_compound_page(page, order);
  576. return 0;
  577. }
  578. /*
  579. * Go through the free lists for the given migratetype and remove
  580. * the smallest available page from the freelists
  581. */
  582. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  583. int migratetype)
  584. {
  585. unsigned int current_order;
  586. struct free_area * area;
  587. struct page *page;
  588. /* Find a page of the appropriate size in the preferred list */
  589. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  590. area = &(zone->free_area[current_order]);
  591. if (list_empty(&area->free_list[migratetype]))
  592. continue;
  593. page = list_entry(area->free_list[migratetype].next,
  594. struct page, lru);
  595. list_del(&page->lru);
  596. rmv_page_order(page);
  597. area->nr_free--;
  598. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  599. expand(zone, page, order, current_order, area, migratetype);
  600. return page;
  601. }
  602. return NULL;
  603. }
  604. /*
  605. * This array describes the order lists are fallen back to when
  606. * the free lists for the desirable migrate type are depleted
  607. */
  608. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  609. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  610. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  611. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  612. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  613. };
  614. /*
  615. * Move the free pages in a range to the free lists of the requested type.
  616. * Note that start_page and end_pages are not aligned on a pageblock
  617. * boundary. If alignment is required, use move_freepages_block()
  618. */
  619. static int move_freepages(struct zone *zone,
  620. struct page *start_page, struct page *end_page,
  621. int migratetype)
  622. {
  623. struct page *page;
  624. unsigned long order;
  625. int pages_moved = 0;
  626. #ifndef CONFIG_HOLES_IN_ZONE
  627. /*
  628. * page_zone is not safe to call in this context when
  629. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  630. * anyway as we check zone boundaries in move_freepages_block().
  631. * Remove at a later date when no bug reports exist related to
  632. * grouping pages by mobility
  633. */
  634. BUG_ON(page_zone(start_page) != page_zone(end_page));
  635. #endif
  636. for (page = start_page; page <= end_page;) {
  637. /* Make sure we are not inadvertently changing nodes */
  638. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  639. if (!pfn_valid_within(page_to_pfn(page))) {
  640. page++;
  641. continue;
  642. }
  643. if (!PageBuddy(page)) {
  644. page++;
  645. continue;
  646. }
  647. order = page_order(page);
  648. list_del(&page->lru);
  649. list_add(&page->lru,
  650. &zone->free_area[order].free_list[migratetype]);
  651. page += 1 << order;
  652. pages_moved += 1 << order;
  653. }
  654. return pages_moved;
  655. }
  656. static int move_freepages_block(struct zone *zone, struct page *page,
  657. int migratetype)
  658. {
  659. unsigned long start_pfn, end_pfn;
  660. struct page *start_page, *end_page;
  661. start_pfn = page_to_pfn(page);
  662. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  663. start_page = pfn_to_page(start_pfn);
  664. end_page = start_page + pageblock_nr_pages - 1;
  665. end_pfn = start_pfn + pageblock_nr_pages - 1;
  666. /* Do not cross zone boundaries */
  667. if (start_pfn < zone->zone_start_pfn)
  668. start_page = page;
  669. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  670. return 0;
  671. return move_freepages(zone, start_page, end_page, migratetype);
  672. }
  673. /* Remove an element from the buddy allocator from the fallback list */
  674. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  675. int start_migratetype)
  676. {
  677. struct free_area * area;
  678. int current_order;
  679. struct page *page;
  680. int migratetype, i;
  681. /* Find the largest possible block of pages in the other list */
  682. for (current_order = MAX_ORDER-1; current_order >= order;
  683. --current_order) {
  684. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  685. migratetype = fallbacks[start_migratetype][i];
  686. /* MIGRATE_RESERVE handled later if necessary */
  687. if (migratetype == MIGRATE_RESERVE)
  688. continue;
  689. area = &(zone->free_area[current_order]);
  690. if (list_empty(&area->free_list[migratetype]))
  691. continue;
  692. page = list_entry(area->free_list[migratetype].next,
  693. struct page, lru);
  694. area->nr_free--;
  695. /*
  696. * If breaking a large block of pages, move all free
  697. * pages to the preferred allocation list. If falling
  698. * back for a reclaimable kernel allocation, be more
  699. * agressive about taking ownership of free pages
  700. */
  701. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  702. start_migratetype == MIGRATE_RECLAIMABLE) {
  703. unsigned long pages;
  704. pages = move_freepages_block(zone, page,
  705. start_migratetype);
  706. /* Claim the whole block if over half of it is free */
  707. if (pages >= (1 << (pageblock_order-1)))
  708. set_pageblock_migratetype(page,
  709. start_migratetype);
  710. migratetype = start_migratetype;
  711. }
  712. /* Remove the page from the freelists */
  713. list_del(&page->lru);
  714. rmv_page_order(page);
  715. __mod_zone_page_state(zone, NR_FREE_PAGES,
  716. -(1UL << order));
  717. if (current_order == pageblock_order)
  718. set_pageblock_migratetype(page,
  719. start_migratetype);
  720. expand(zone, page, order, current_order, area, migratetype);
  721. return page;
  722. }
  723. }
  724. /* Use MIGRATE_RESERVE rather than fail an allocation */
  725. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  726. }
  727. /*
  728. * Do the hard work of removing an element from the buddy allocator.
  729. * Call me with the zone->lock already held.
  730. */
  731. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  732. int migratetype)
  733. {
  734. struct page *page;
  735. page = __rmqueue_smallest(zone, order, migratetype);
  736. if (unlikely(!page))
  737. page = __rmqueue_fallback(zone, order, migratetype);
  738. return page;
  739. }
  740. /*
  741. * Obtain a specified number of elements from the buddy allocator, all under
  742. * a single hold of the lock, for efficiency. Add them to the supplied list.
  743. * Returns the number of new pages which were placed at *list.
  744. */
  745. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  746. unsigned long count, struct list_head *list,
  747. int migratetype)
  748. {
  749. int i;
  750. spin_lock(&zone->lock);
  751. for (i = 0; i < count; ++i) {
  752. struct page *page = __rmqueue(zone, order, migratetype);
  753. if (unlikely(page == NULL))
  754. break;
  755. /*
  756. * Split buddy pages returned by expand() are received here
  757. * in physical page order. The page is added to the callers and
  758. * list and the list head then moves forward. From the callers
  759. * perspective, the linked list is ordered by page number in
  760. * some conditions. This is useful for IO devices that can
  761. * merge IO requests if the physical pages are ordered
  762. * properly.
  763. */
  764. list_add(&page->lru, list);
  765. set_page_private(page, migratetype);
  766. list = &page->lru;
  767. }
  768. spin_unlock(&zone->lock);
  769. return i;
  770. }
  771. #ifdef CONFIG_NUMA
  772. /*
  773. * Called from the vmstat counter updater to drain pagesets of this
  774. * currently executing processor on remote nodes after they have
  775. * expired.
  776. *
  777. * Note that this function must be called with the thread pinned to
  778. * a single processor.
  779. */
  780. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  781. {
  782. unsigned long flags;
  783. int to_drain;
  784. local_irq_save(flags);
  785. if (pcp->count >= pcp->batch)
  786. to_drain = pcp->batch;
  787. else
  788. to_drain = pcp->count;
  789. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  790. pcp->count -= to_drain;
  791. local_irq_restore(flags);
  792. }
  793. #endif
  794. /*
  795. * Drain pages of the indicated processor.
  796. *
  797. * The processor must either be the current processor and the
  798. * thread pinned to the current processor or a processor that
  799. * is not online.
  800. */
  801. static void drain_pages(unsigned int cpu)
  802. {
  803. unsigned long flags;
  804. struct zone *zone;
  805. for_each_populated_zone(zone) {
  806. struct per_cpu_pageset *pset;
  807. struct per_cpu_pages *pcp;
  808. pset = zone_pcp(zone, cpu);
  809. pcp = &pset->pcp;
  810. local_irq_save(flags);
  811. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  812. pcp->count = 0;
  813. local_irq_restore(flags);
  814. }
  815. }
  816. /*
  817. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  818. */
  819. void drain_local_pages(void *arg)
  820. {
  821. drain_pages(smp_processor_id());
  822. }
  823. /*
  824. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  825. */
  826. void drain_all_pages(void)
  827. {
  828. on_each_cpu(drain_local_pages, NULL, 1);
  829. }
  830. #ifdef CONFIG_HIBERNATION
  831. void mark_free_pages(struct zone *zone)
  832. {
  833. unsigned long pfn, max_zone_pfn;
  834. unsigned long flags;
  835. int order, t;
  836. struct list_head *curr;
  837. if (!zone->spanned_pages)
  838. return;
  839. spin_lock_irqsave(&zone->lock, flags);
  840. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  841. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  842. if (pfn_valid(pfn)) {
  843. struct page *page = pfn_to_page(pfn);
  844. if (!swsusp_page_is_forbidden(page))
  845. swsusp_unset_page_free(page);
  846. }
  847. for_each_migratetype_order(order, t) {
  848. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  849. unsigned long i;
  850. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  851. for (i = 0; i < (1UL << order); i++)
  852. swsusp_set_page_free(pfn_to_page(pfn + i));
  853. }
  854. }
  855. spin_unlock_irqrestore(&zone->lock, flags);
  856. }
  857. #endif /* CONFIG_PM */
  858. /*
  859. * Free a 0-order page
  860. */
  861. static void free_hot_cold_page(struct page *page, int cold)
  862. {
  863. struct zone *zone = page_zone(page);
  864. struct per_cpu_pages *pcp;
  865. unsigned long flags;
  866. kmemcheck_free_shadow(page, 0);
  867. if (PageAnon(page))
  868. page->mapping = NULL;
  869. if (free_pages_check(page))
  870. return;
  871. if (!PageHighMem(page)) {
  872. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  873. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  874. }
  875. arch_free_page(page, 0);
  876. kernel_map_pages(page, 1, 0);
  877. pcp = &zone_pcp(zone, get_cpu())->pcp;
  878. local_irq_save(flags);
  879. __count_vm_event(PGFREE);
  880. if (cold)
  881. list_add_tail(&page->lru, &pcp->list);
  882. else
  883. list_add(&page->lru, &pcp->list);
  884. set_page_private(page, get_pageblock_migratetype(page));
  885. pcp->count++;
  886. if (pcp->count >= pcp->high) {
  887. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  888. pcp->count -= pcp->batch;
  889. }
  890. local_irq_restore(flags);
  891. put_cpu();
  892. }
  893. void free_hot_page(struct page *page)
  894. {
  895. free_hot_cold_page(page, 0);
  896. }
  897. void free_cold_page(struct page *page)
  898. {
  899. free_hot_cold_page(page, 1);
  900. }
  901. /*
  902. * split_page takes a non-compound higher-order page, and splits it into
  903. * n (1<<order) sub-pages: page[0..n]
  904. * Each sub-page must be freed individually.
  905. *
  906. * Note: this is probably too low level an operation for use in drivers.
  907. * Please consult with lkml before using this in your driver.
  908. */
  909. void split_page(struct page *page, unsigned int order)
  910. {
  911. int i;
  912. VM_BUG_ON(PageCompound(page));
  913. VM_BUG_ON(!page_count(page));
  914. #ifdef CONFIG_KMEMCHECK
  915. /*
  916. * Split shadow pages too, because free(page[0]) would
  917. * otherwise free the whole shadow.
  918. */
  919. if (kmemcheck_page_is_tracked(page))
  920. split_page(virt_to_page(page[0].shadow), order);
  921. #endif
  922. for (i = 1; i < (1 << order); i++)
  923. set_page_refcounted(page + i);
  924. }
  925. /*
  926. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  927. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  928. * or two.
  929. */
  930. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  931. struct zone *zone, int order, gfp_t gfp_flags)
  932. {
  933. unsigned long flags;
  934. struct page *page;
  935. int cold = !!(gfp_flags & __GFP_COLD);
  936. int cpu;
  937. int migratetype = allocflags_to_migratetype(gfp_flags);
  938. again:
  939. cpu = get_cpu();
  940. if (likely(order == 0)) {
  941. struct per_cpu_pages *pcp;
  942. pcp = &zone_pcp(zone, cpu)->pcp;
  943. local_irq_save(flags);
  944. if (!pcp->count) {
  945. pcp->count = rmqueue_bulk(zone, 0,
  946. pcp->batch, &pcp->list, migratetype);
  947. if (unlikely(!pcp->count))
  948. goto failed;
  949. }
  950. /* Find a page of the appropriate migrate type */
  951. if (cold) {
  952. list_for_each_entry_reverse(page, &pcp->list, lru)
  953. if (page_private(page) == migratetype)
  954. break;
  955. } else {
  956. list_for_each_entry(page, &pcp->list, lru)
  957. if (page_private(page) == migratetype)
  958. break;
  959. }
  960. /* Allocate more to the pcp list if necessary */
  961. if (unlikely(&page->lru == &pcp->list)) {
  962. pcp->count += rmqueue_bulk(zone, 0,
  963. pcp->batch, &pcp->list, migratetype);
  964. page = list_entry(pcp->list.next, struct page, lru);
  965. }
  966. list_del(&page->lru);
  967. pcp->count--;
  968. } else {
  969. spin_lock_irqsave(&zone->lock, flags);
  970. page = __rmqueue(zone, order, migratetype);
  971. spin_unlock(&zone->lock);
  972. if (!page)
  973. goto failed;
  974. }
  975. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  976. zone_statistics(preferred_zone, zone);
  977. local_irq_restore(flags);
  978. put_cpu();
  979. VM_BUG_ON(bad_range(zone, page));
  980. if (prep_new_page(page, order, gfp_flags))
  981. goto again;
  982. return page;
  983. failed:
  984. local_irq_restore(flags);
  985. put_cpu();
  986. return NULL;
  987. }
  988. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  989. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  990. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  991. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  992. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  993. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  994. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  995. #ifdef CONFIG_FAIL_PAGE_ALLOC
  996. static struct fail_page_alloc_attr {
  997. struct fault_attr attr;
  998. u32 ignore_gfp_highmem;
  999. u32 ignore_gfp_wait;
  1000. u32 min_order;
  1001. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1002. struct dentry *ignore_gfp_highmem_file;
  1003. struct dentry *ignore_gfp_wait_file;
  1004. struct dentry *min_order_file;
  1005. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1006. } fail_page_alloc = {
  1007. .attr = FAULT_ATTR_INITIALIZER,
  1008. .ignore_gfp_wait = 1,
  1009. .ignore_gfp_highmem = 1,
  1010. .min_order = 1,
  1011. };
  1012. static int __init setup_fail_page_alloc(char *str)
  1013. {
  1014. return setup_fault_attr(&fail_page_alloc.attr, str);
  1015. }
  1016. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1017. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1018. {
  1019. if (order < fail_page_alloc.min_order)
  1020. return 0;
  1021. if (gfp_mask & __GFP_NOFAIL)
  1022. return 0;
  1023. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1024. return 0;
  1025. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1026. return 0;
  1027. return should_fail(&fail_page_alloc.attr, 1 << order);
  1028. }
  1029. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1030. static int __init fail_page_alloc_debugfs(void)
  1031. {
  1032. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1033. struct dentry *dir;
  1034. int err;
  1035. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1036. "fail_page_alloc");
  1037. if (err)
  1038. return err;
  1039. dir = fail_page_alloc.attr.dentries.dir;
  1040. fail_page_alloc.ignore_gfp_wait_file =
  1041. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1042. &fail_page_alloc.ignore_gfp_wait);
  1043. fail_page_alloc.ignore_gfp_highmem_file =
  1044. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1045. &fail_page_alloc.ignore_gfp_highmem);
  1046. fail_page_alloc.min_order_file =
  1047. debugfs_create_u32("min-order", mode, dir,
  1048. &fail_page_alloc.min_order);
  1049. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1050. !fail_page_alloc.ignore_gfp_highmem_file ||
  1051. !fail_page_alloc.min_order_file) {
  1052. err = -ENOMEM;
  1053. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1054. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1055. debugfs_remove(fail_page_alloc.min_order_file);
  1056. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1057. }
  1058. return err;
  1059. }
  1060. late_initcall(fail_page_alloc_debugfs);
  1061. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1062. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1063. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1064. {
  1065. return 0;
  1066. }
  1067. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1068. /*
  1069. * Return 1 if free pages are above 'mark'. This takes into account the order
  1070. * of the allocation.
  1071. */
  1072. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1073. int classzone_idx, int alloc_flags)
  1074. {
  1075. /* free_pages my go negative - that's OK */
  1076. long min = mark;
  1077. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1078. int o;
  1079. if (alloc_flags & ALLOC_HIGH)
  1080. min -= min / 2;
  1081. if (alloc_flags & ALLOC_HARDER)
  1082. min -= min / 4;
  1083. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1084. return 0;
  1085. for (o = 0; o < order; o++) {
  1086. /* At the next order, this order's pages become unavailable */
  1087. free_pages -= z->free_area[o].nr_free << o;
  1088. /* Require fewer higher order pages to be free */
  1089. min >>= 1;
  1090. if (free_pages <= min)
  1091. return 0;
  1092. }
  1093. return 1;
  1094. }
  1095. #ifdef CONFIG_NUMA
  1096. /*
  1097. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1098. * skip over zones that are not allowed by the cpuset, or that have
  1099. * been recently (in last second) found to be nearly full. See further
  1100. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1101. * that have to skip over a lot of full or unallowed zones.
  1102. *
  1103. * If the zonelist cache is present in the passed in zonelist, then
  1104. * returns a pointer to the allowed node mask (either the current
  1105. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1106. *
  1107. * If the zonelist cache is not available for this zonelist, does
  1108. * nothing and returns NULL.
  1109. *
  1110. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1111. * a second since last zap'd) then we zap it out (clear its bits.)
  1112. *
  1113. * We hold off even calling zlc_setup, until after we've checked the
  1114. * first zone in the zonelist, on the theory that most allocations will
  1115. * be satisfied from that first zone, so best to examine that zone as
  1116. * quickly as we can.
  1117. */
  1118. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1119. {
  1120. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1121. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1122. zlc = zonelist->zlcache_ptr;
  1123. if (!zlc)
  1124. return NULL;
  1125. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1126. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1127. zlc->last_full_zap = jiffies;
  1128. }
  1129. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1130. &cpuset_current_mems_allowed :
  1131. &node_states[N_HIGH_MEMORY];
  1132. return allowednodes;
  1133. }
  1134. /*
  1135. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1136. * if it is worth looking at further for free memory:
  1137. * 1) Check that the zone isn't thought to be full (doesn't have its
  1138. * bit set in the zonelist_cache fullzones BITMAP).
  1139. * 2) Check that the zones node (obtained from the zonelist_cache
  1140. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1141. * Return true (non-zero) if zone is worth looking at further, or
  1142. * else return false (zero) if it is not.
  1143. *
  1144. * This check -ignores- the distinction between various watermarks,
  1145. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1146. * found to be full for any variation of these watermarks, it will
  1147. * be considered full for up to one second by all requests, unless
  1148. * we are so low on memory on all allowed nodes that we are forced
  1149. * into the second scan of the zonelist.
  1150. *
  1151. * In the second scan we ignore this zonelist cache and exactly
  1152. * apply the watermarks to all zones, even it is slower to do so.
  1153. * We are low on memory in the second scan, and should leave no stone
  1154. * unturned looking for a free page.
  1155. */
  1156. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1157. nodemask_t *allowednodes)
  1158. {
  1159. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1160. int i; /* index of *z in zonelist zones */
  1161. int n; /* node that zone *z is on */
  1162. zlc = zonelist->zlcache_ptr;
  1163. if (!zlc)
  1164. return 1;
  1165. i = z - zonelist->_zonerefs;
  1166. n = zlc->z_to_n[i];
  1167. /* This zone is worth trying if it is allowed but not full */
  1168. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1169. }
  1170. /*
  1171. * Given 'z' scanning a zonelist, set the corresponding bit in
  1172. * zlc->fullzones, so that subsequent attempts to allocate a page
  1173. * from that zone don't waste time re-examining it.
  1174. */
  1175. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1176. {
  1177. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1178. int i; /* index of *z in zonelist zones */
  1179. zlc = zonelist->zlcache_ptr;
  1180. if (!zlc)
  1181. return;
  1182. i = z - zonelist->_zonerefs;
  1183. set_bit(i, zlc->fullzones);
  1184. }
  1185. #else /* CONFIG_NUMA */
  1186. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1187. {
  1188. return NULL;
  1189. }
  1190. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1191. nodemask_t *allowednodes)
  1192. {
  1193. return 1;
  1194. }
  1195. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1196. {
  1197. }
  1198. #endif /* CONFIG_NUMA */
  1199. /*
  1200. * get_page_from_freelist goes through the zonelist trying to allocate
  1201. * a page.
  1202. */
  1203. static struct page *
  1204. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1205. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1206. {
  1207. struct zoneref *z;
  1208. struct page *page = NULL;
  1209. int classzone_idx;
  1210. struct zone *zone, *preferred_zone;
  1211. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1212. int zlc_active = 0; /* set if using zonelist_cache */
  1213. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1214. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1215. &preferred_zone);
  1216. if (!preferred_zone)
  1217. return NULL;
  1218. classzone_idx = zone_idx(preferred_zone);
  1219. zonelist_scan:
  1220. /*
  1221. * Scan zonelist, looking for a zone with enough free.
  1222. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1223. */
  1224. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1225. high_zoneidx, nodemask) {
  1226. if (NUMA_BUILD && zlc_active &&
  1227. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1228. continue;
  1229. if ((alloc_flags & ALLOC_CPUSET) &&
  1230. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1231. goto try_next_zone;
  1232. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1233. unsigned long mark;
  1234. if (alloc_flags & ALLOC_WMARK_MIN)
  1235. mark = zone->pages_min;
  1236. else if (alloc_flags & ALLOC_WMARK_LOW)
  1237. mark = zone->pages_low;
  1238. else
  1239. mark = zone->pages_high;
  1240. if (!zone_watermark_ok(zone, order, mark,
  1241. classzone_idx, alloc_flags)) {
  1242. if (!zone_reclaim_mode ||
  1243. !zone_reclaim(zone, gfp_mask, order))
  1244. goto this_zone_full;
  1245. }
  1246. }
  1247. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1248. if (page)
  1249. break;
  1250. this_zone_full:
  1251. if (NUMA_BUILD)
  1252. zlc_mark_zone_full(zonelist, z);
  1253. try_next_zone:
  1254. if (NUMA_BUILD && !did_zlc_setup) {
  1255. /* we do zlc_setup after the first zone is tried */
  1256. allowednodes = zlc_setup(zonelist, alloc_flags);
  1257. zlc_active = 1;
  1258. did_zlc_setup = 1;
  1259. }
  1260. }
  1261. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1262. /* Disable zlc cache for second zonelist scan */
  1263. zlc_active = 0;
  1264. goto zonelist_scan;
  1265. }
  1266. return page;
  1267. }
  1268. /*
  1269. * This is the 'heart' of the zoned buddy allocator.
  1270. */
  1271. struct page *
  1272. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1273. struct zonelist *zonelist, nodemask_t *nodemask)
  1274. {
  1275. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1276. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1277. struct zoneref *z;
  1278. struct zone *zone;
  1279. struct page *page;
  1280. struct reclaim_state reclaim_state;
  1281. struct task_struct *p = current;
  1282. int do_retry;
  1283. int alloc_flags;
  1284. unsigned long did_some_progress;
  1285. unsigned long pages_reclaimed = 0;
  1286. lockdep_trace_alloc(gfp_mask);
  1287. might_sleep_if(wait);
  1288. if (should_fail_alloc_page(gfp_mask, order))
  1289. return NULL;
  1290. restart:
  1291. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1292. if (unlikely(!z->zone)) {
  1293. /*
  1294. * Happens if we have an empty zonelist as a result of
  1295. * GFP_THISNODE being used on a memoryless node
  1296. */
  1297. return NULL;
  1298. }
  1299. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1300. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1301. if (page)
  1302. goto got_pg;
  1303. /*
  1304. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1305. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1306. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1307. * using a larger set of nodes after it has established that the
  1308. * allowed per node queues are empty and that nodes are
  1309. * over allocated.
  1310. */
  1311. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1312. goto nopage;
  1313. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1314. wakeup_kswapd(zone, order);
  1315. /*
  1316. * OK, we're below the kswapd watermark and have kicked background
  1317. * reclaim. Now things get more complex, so set up alloc_flags according
  1318. * to how we want to proceed.
  1319. *
  1320. * The caller may dip into page reserves a bit more if the caller
  1321. * cannot run direct reclaim, or if the caller has realtime scheduling
  1322. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1323. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1324. */
  1325. alloc_flags = ALLOC_WMARK_MIN;
  1326. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1327. alloc_flags |= ALLOC_HARDER;
  1328. if (gfp_mask & __GFP_HIGH)
  1329. alloc_flags |= ALLOC_HIGH;
  1330. if (wait)
  1331. alloc_flags |= ALLOC_CPUSET;
  1332. /*
  1333. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1334. * coming from realtime tasks go deeper into reserves.
  1335. *
  1336. * This is the last chance, in general, before the goto nopage.
  1337. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1338. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1339. */
  1340. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1341. high_zoneidx, alloc_flags);
  1342. if (page)
  1343. goto got_pg;
  1344. /* This allocation should allow future memory freeing. */
  1345. rebalance:
  1346. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1347. && !in_interrupt()) {
  1348. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1349. nofail_alloc:
  1350. /* go through the zonelist yet again, ignoring mins */
  1351. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1352. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1353. if (page)
  1354. goto got_pg;
  1355. if (gfp_mask & __GFP_NOFAIL) {
  1356. congestion_wait(WRITE, HZ/50);
  1357. goto nofail_alloc;
  1358. }
  1359. }
  1360. goto nopage;
  1361. }
  1362. /* Atomic allocations - we can't balance anything */
  1363. if (!wait)
  1364. goto nopage;
  1365. cond_resched();
  1366. /* We now go into synchronous reclaim */
  1367. cpuset_memory_pressure_bump();
  1368. /*
  1369. * The task's cpuset might have expanded its set of allowable nodes
  1370. */
  1371. cpuset_update_task_memory_state();
  1372. p->flags |= PF_MEMALLOC;
  1373. lockdep_set_current_reclaim_state(gfp_mask);
  1374. reclaim_state.reclaimed_slab = 0;
  1375. p->reclaim_state = &reclaim_state;
  1376. did_some_progress = try_to_free_pages(zonelist, order,
  1377. gfp_mask, nodemask);
  1378. p->reclaim_state = NULL;
  1379. lockdep_clear_current_reclaim_state();
  1380. p->flags &= ~PF_MEMALLOC;
  1381. cond_resched();
  1382. if (order != 0)
  1383. drain_all_pages();
  1384. if (likely(did_some_progress)) {
  1385. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1386. zonelist, high_zoneidx, alloc_flags);
  1387. if (page)
  1388. goto got_pg;
  1389. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1390. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1391. schedule_timeout_uninterruptible(1);
  1392. goto restart;
  1393. }
  1394. /*
  1395. * Go through the zonelist yet one more time, keep
  1396. * very high watermark here, this is only to catch
  1397. * a parallel oom killing, we must fail if we're still
  1398. * under heavy pressure.
  1399. */
  1400. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1401. order, zonelist, high_zoneidx,
  1402. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1403. if (page) {
  1404. clear_zonelist_oom(zonelist, gfp_mask);
  1405. goto got_pg;
  1406. }
  1407. /* The OOM killer will not help higher order allocs so fail */
  1408. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1409. clear_zonelist_oom(zonelist, gfp_mask);
  1410. goto nopage;
  1411. }
  1412. out_of_memory(zonelist, gfp_mask, order);
  1413. clear_zonelist_oom(zonelist, gfp_mask);
  1414. goto restart;
  1415. }
  1416. /*
  1417. * Don't let big-order allocations loop unless the caller explicitly
  1418. * requests that. Wait for some write requests to complete then retry.
  1419. *
  1420. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1421. * means __GFP_NOFAIL, but that may not be true in other
  1422. * implementations.
  1423. *
  1424. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1425. * specified, then we retry until we no longer reclaim any pages
  1426. * (above), or we've reclaimed an order of pages at least as
  1427. * large as the allocation's order. In both cases, if the
  1428. * allocation still fails, we stop retrying.
  1429. */
  1430. pages_reclaimed += did_some_progress;
  1431. do_retry = 0;
  1432. if (!(gfp_mask & __GFP_NORETRY)) {
  1433. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1434. do_retry = 1;
  1435. } else {
  1436. if (gfp_mask & __GFP_REPEAT &&
  1437. pages_reclaimed < (1 << order))
  1438. do_retry = 1;
  1439. }
  1440. if (gfp_mask & __GFP_NOFAIL)
  1441. do_retry = 1;
  1442. }
  1443. if (do_retry) {
  1444. congestion_wait(WRITE, HZ/50);
  1445. goto rebalance;
  1446. }
  1447. nopage:
  1448. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1449. printk(KERN_WARNING "%s: page allocation failure."
  1450. " order:%d, mode:0x%x\n",
  1451. p->comm, order, gfp_mask);
  1452. dump_stack();
  1453. show_mem();
  1454. }
  1455. return page;
  1456. got_pg:
  1457. if (kmemcheck_enabled)
  1458. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1459. return page;
  1460. }
  1461. EXPORT_SYMBOL(__alloc_pages_internal);
  1462. /*
  1463. * Common helper functions.
  1464. */
  1465. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1466. {
  1467. struct page * page;
  1468. page = alloc_pages(gfp_mask, order);
  1469. if (!page)
  1470. return 0;
  1471. return (unsigned long) page_address(page);
  1472. }
  1473. EXPORT_SYMBOL(__get_free_pages);
  1474. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1475. {
  1476. struct page * page;
  1477. /*
  1478. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1479. * a highmem page
  1480. */
  1481. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1482. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1483. if (page)
  1484. return (unsigned long) page_address(page);
  1485. return 0;
  1486. }
  1487. EXPORT_SYMBOL(get_zeroed_page);
  1488. void __pagevec_free(struct pagevec *pvec)
  1489. {
  1490. int i = pagevec_count(pvec);
  1491. while (--i >= 0)
  1492. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1493. }
  1494. void __free_pages(struct page *page, unsigned int order)
  1495. {
  1496. if (put_page_testzero(page)) {
  1497. if (order == 0)
  1498. free_hot_page(page);
  1499. else
  1500. __free_pages_ok(page, order);
  1501. }
  1502. }
  1503. EXPORT_SYMBOL(__free_pages);
  1504. void free_pages(unsigned long addr, unsigned int order)
  1505. {
  1506. if (addr != 0) {
  1507. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1508. __free_pages(virt_to_page((void *)addr), order);
  1509. }
  1510. }
  1511. EXPORT_SYMBOL(free_pages);
  1512. /**
  1513. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1514. * @size: the number of bytes to allocate
  1515. * @gfp_mask: GFP flags for the allocation
  1516. *
  1517. * This function is similar to alloc_pages(), except that it allocates the
  1518. * minimum number of pages to satisfy the request. alloc_pages() can only
  1519. * allocate memory in power-of-two pages.
  1520. *
  1521. * This function is also limited by MAX_ORDER.
  1522. *
  1523. * Memory allocated by this function must be released by free_pages_exact().
  1524. */
  1525. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1526. {
  1527. unsigned int order = get_order(size);
  1528. unsigned long addr;
  1529. addr = __get_free_pages(gfp_mask, order);
  1530. if (addr) {
  1531. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1532. unsigned long used = addr + PAGE_ALIGN(size);
  1533. split_page(virt_to_page(addr), order);
  1534. while (used < alloc_end) {
  1535. free_page(used);
  1536. used += PAGE_SIZE;
  1537. }
  1538. }
  1539. return (void *)addr;
  1540. }
  1541. EXPORT_SYMBOL(alloc_pages_exact);
  1542. /**
  1543. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1544. * @virt: the value returned by alloc_pages_exact.
  1545. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1546. *
  1547. * Release the memory allocated by a previous call to alloc_pages_exact.
  1548. */
  1549. void free_pages_exact(void *virt, size_t size)
  1550. {
  1551. unsigned long addr = (unsigned long)virt;
  1552. unsigned long end = addr + PAGE_ALIGN(size);
  1553. while (addr < end) {
  1554. free_page(addr);
  1555. addr += PAGE_SIZE;
  1556. }
  1557. }
  1558. EXPORT_SYMBOL(free_pages_exact);
  1559. static unsigned int nr_free_zone_pages(int offset)
  1560. {
  1561. struct zoneref *z;
  1562. struct zone *zone;
  1563. /* Just pick one node, since fallback list is circular */
  1564. unsigned int sum = 0;
  1565. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1566. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1567. unsigned long size = zone->present_pages;
  1568. unsigned long high = zone->pages_high;
  1569. if (size > high)
  1570. sum += size - high;
  1571. }
  1572. return sum;
  1573. }
  1574. /*
  1575. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1576. */
  1577. unsigned int nr_free_buffer_pages(void)
  1578. {
  1579. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1580. }
  1581. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1582. /*
  1583. * Amount of free RAM allocatable within all zones
  1584. */
  1585. unsigned int nr_free_pagecache_pages(void)
  1586. {
  1587. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1588. }
  1589. static inline void show_node(struct zone *zone)
  1590. {
  1591. if (NUMA_BUILD)
  1592. printk("Node %d ", zone_to_nid(zone));
  1593. }
  1594. void si_meminfo(struct sysinfo *val)
  1595. {
  1596. val->totalram = totalram_pages;
  1597. val->sharedram = 0;
  1598. val->freeram = global_page_state(NR_FREE_PAGES);
  1599. val->bufferram = nr_blockdev_pages();
  1600. val->totalhigh = totalhigh_pages;
  1601. val->freehigh = nr_free_highpages();
  1602. val->mem_unit = PAGE_SIZE;
  1603. }
  1604. EXPORT_SYMBOL(si_meminfo);
  1605. #ifdef CONFIG_NUMA
  1606. void si_meminfo_node(struct sysinfo *val, int nid)
  1607. {
  1608. pg_data_t *pgdat = NODE_DATA(nid);
  1609. val->totalram = pgdat->node_present_pages;
  1610. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1611. #ifdef CONFIG_HIGHMEM
  1612. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1613. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1614. NR_FREE_PAGES);
  1615. #else
  1616. val->totalhigh = 0;
  1617. val->freehigh = 0;
  1618. #endif
  1619. val->mem_unit = PAGE_SIZE;
  1620. }
  1621. #endif
  1622. #define K(x) ((x) << (PAGE_SHIFT-10))
  1623. /*
  1624. * Show free area list (used inside shift_scroll-lock stuff)
  1625. * We also calculate the percentage fragmentation. We do this by counting the
  1626. * memory on each free list with the exception of the first item on the list.
  1627. */
  1628. void show_free_areas(void)
  1629. {
  1630. int cpu;
  1631. struct zone *zone;
  1632. for_each_populated_zone(zone) {
  1633. show_node(zone);
  1634. printk("%s per-cpu:\n", zone->name);
  1635. for_each_online_cpu(cpu) {
  1636. struct per_cpu_pageset *pageset;
  1637. pageset = zone_pcp(zone, cpu);
  1638. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1639. cpu, pageset->pcp.high,
  1640. pageset->pcp.batch, pageset->pcp.count);
  1641. }
  1642. }
  1643. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1644. " inactive_file:%lu"
  1645. //TODO: check/adjust line lengths
  1646. #ifdef CONFIG_UNEVICTABLE_LRU
  1647. " unevictable:%lu"
  1648. #endif
  1649. " dirty:%lu writeback:%lu unstable:%lu\n"
  1650. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1651. global_page_state(NR_ACTIVE_ANON),
  1652. global_page_state(NR_ACTIVE_FILE),
  1653. global_page_state(NR_INACTIVE_ANON),
  1654. global_page_state(NR_INACTIVE_FILE),
  1655. #ifdef CONFIG_UNEVICTABLE_LRU
  1656. global_page_state(NR_UNEVICTABLE),
  1657. #endif
  1658. global_page_state(NR_FILE_DIRTY),
  1659. global_page_state(NR_WRITEBACK),
  1660. global_page_state(NR_UNSTABLE_NFS),
  1661. global_page_state(NR_FREE_PAGES),
  1662. global_page_state(NR_SLAB_RECLAIMABLE) +
  1663. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1664. global_page_state(NR_FILE_MAPPED),
  1665. global_page_state(NR_PAGETABLE),
  1666. global_page_state(NR_BOUNCE));
  1667. for_each_populated_zone(zone) {
  1668. int i;
  1669. show_node(zone);
  1670. printk("%s"
  1671. " free:%lukB"
  1672. " min:%lukB"
  1673. " low:%lukB"
  1674. " high:%lukB"
  1675. " active_anon:%lukB"
  1676. " inactive_anon:%lukB"
  1677. " active_file:%lukB"
  1678. " inactive_file:%lukB"
  1679. #ifdef CONFIG_UNEVICTABLE_LRU
  1680. " unevictable:%lukB"
  1681. #endif
  1682. " present:%lukB"
  1683. " pages_scanned:%lu"
  1684. " all_unreclaimable? %s"
  1685. "\n",
  1686. zone->name,
  1687. K(zone_page_state(zone, NR_FREE_PAGES)),
  1688. K(zone->pages_min),
  1689. K(zone->pages_low),
  1690. K(zone->pages_high),
  1691. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1692. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1693. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1694. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1695. #ifdef CONFIG_UNEVICTABLE_LRU
  1696. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1697. #endif
  1698. K(zone->present_pages),
  1699. zone->pages_scanned,
  1700. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1701. );
  1702. printk("lowmem_reserve[]:");
  1703. for (i = 0; i < MAX_NR_ZONES; i++)
  1704. printk(" %lu", zone->lowmem_reserve[i]);
  1705. printk("\n");
  1706. }
  1707. for_each_populated_zone(zone) {
  1708. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1709. show_node(zone);
  1710. printk("%s: ", zone->name);
  1711. spin_lock_irqsave(&zone->lock, flags);
  1712. for (order = 0; order < MAX_ORDER; order++) {
  1713. nr[order] = zone->free_area[order].nr_free;
  1714. total += nr[order] << order;
  1715. }
  1716. spin_unlock_irqrestore(&zone->lock, flags);
  1717. for (order = 0; order < MAX_ORDER; order++)
  1718. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1719. printk("= %lukB\n", K(total));
  1720. }
  1721. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1722. show_swap_cache_info();
  1723. }
  1724. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1725. {
  1726. zoneref->zone = zone;
  1727. zoneref->zone_idx = zone_idx(zone);
  1728. }
  1729. /*
  1730. * Builds allocation fallback zone lists.
  1731. *
  1732. * Add all populated zones of a node to the zonelist.
  1733. */
  1734. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1735. int nr_zones, enum zone_type zone_type)
  1736. {
  1737. struct zone *zone;
  1738. BUG_ON(zone_type >= MAX_NR_ZONES);
  1739. zone_type++;
  1740. do {
  1741. zone_type--;
  1742. zone = pgdat->node_zones + zone_type;
  1743. if (populated_zone(zone)) {
  1744. zoneref_set_zone(zone,
  1745. &zonelist->_zonerefs[nr_zones++]);
  1746. check_highest_zone(zone_type);
  1747. }
  1748. } while (zone_type);
  1749. return nr_zones;
  1750. }
  1751. /*
  1752. * zonelist_order:
  1753. * 0 = automatic detection of better ordering.
  1754. * 1 = order by ([node] distance, -zonetype)
  1755. * 2 = order by (-zonetype, [node] distance)
  1756. *
  1757. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1758. * the same zonelist. So only NUMA can configure this param.
  1759. */
  1760. #define ZONELIST_ORDER_DEFAULT 0
  1761. #define ZONELIST_ORDER_NODE 1
  1762. #define ZONELIST_ORDER_ZONE 2
  1763. /* zonelist order in the kernel.
  1764. * set_zonelist_order() will set this to NODE or ZONE.
  1765. */
  1766. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1767. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1768. #ifdef CONFIG_NUMA
  1769. /* The value user specified ....changed by config */
  1770. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1771. /* string for sysctl */
  1772. #define NUMA_ZONELIST_ORDER_LEN 16
  1773. char numa_zonelist_order[16] = "default";
  1774. /*
  1775. * interface for configure zonelist ordering.
  1776. * command line option "numa_zonelist_order"
  1777. * = "[dD]efault - default, automatic configuration.
  1778. * = "[nN]ode - order by node locality, then by zone within node
  1779. * = "[zZ]one - order by zone, then by locality within zone
  1780. */
  1781. static int __parse_numa_zonelist_order(char *s)
  1782. {
  1783. if (*s == 'd' || *s == 'D') {
  1784. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1785. } else if (*s == 'n' || *s == 'N') {
  1786. user_zonelist_order = ZONELIST_ORDER_NODE;
  1787. } else if (*s == 'z' || *s == 'Z') {
  1788. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1789. } else {
  1790. printk(KERN_WARNING
  1791. "Ignoring invalid numa_zonelist_order value: "
  1792. "%s\n", s);
  1793. return -EINVAL;
  1794. }
  1795. return 0;
  1796. }
  1797. static __init int setup_numa_zonelist_order(char *s)
  1798. {
  1799. if (s)
  1800. return __parse_numa_zonelist_order(s);
  1801. return 0;
  1802. }
  1803. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1804. /*
  1805. * sysctl handler for numa_zonelist_order
  1806. */
  1807. int numa_zonelist_order_handler(ctl_table *table, int write,
  1808. struct file *file, void __user *buffer, size_t *length,
  1809. loff_t *ppos)
  1810. {
  1811. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1812. int ret;
  1813. if (write)
  1814. strncpy(saved_string, (char*)table->data,
  1815. NUMA_ZONELIST_ORDER_LEN);
  1816. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1817. if (ret)
  1818. return ret;
  1819. if (write) {
  1820. int oldval = user_zonelist_order;
  1821. if (__parse_numa_zonelist_order((char*)table->data)) {
  1822. /*
  1823. * bogus value. restore saved string
  1824. */
  1825. strncpy((char*)table->data, saved_string,
  1826. NUMA_ZONELIST_ORDER_LEN);
  1827. user_zonelist_order = oldval;
  1828. } else if (oldval != user_zonelist_order)
  1829. build_all_zonelists();
  1830. }
  1831. return 0;
  1832. }
  1833. #define MAX_NODE_LOAD (num_online_nodes())
  1834. static int node_load[MAX_NUMNODES];
  1835. /**
  1836. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1837. * @node: node whose fallback list we're appending
  1838. * @used_node_mask: nodemask_t of already used nodes
  1839. *
  1840. * We use a number of factors to determine which is the next node that should
  1841. * appear on a given node's fallback list. The node should not have appeared
  1842. * already in @node's fallback list, and it should be the next closest node
  1843. * according to the distance array (which contains arbitrary distance values
  1844. * from each node to each node in the system), and should also prefer nodes
  1845. * with no CPUs, since presumably they'll have very little allocation pressure
  1846. * on them otherwise.
  1847. * It returns -1 if no node is found.
  1848. */
  1849. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1850. {
  1851. int n, val;
  1852. int min_val = INT_MAX;
  1853. int best_node = -1;
  1854. const struct cpumask *tmp = cpumask_of_node(0);
  1855. /* Use the local node if we haven't already */
  1856. if (!node_isset(node, *used_node_mask)) {
  1857. node_set(node, *used_node_mask);
  1858. return node;
  1859. }
  1860. for_each_node_state(n, N_HIGH_MEMORY) {
  1861. /* Don't want a node to appear more than once */
  1862. if (node_isset(n, *used_node_mask))
  1863. continue;
  1864. /* Use the distance array to find the distance */
  1865. val = node_distance(node, n);
  1866. /* Penalize nodes under us ("prefer the next node") */
  1867. val += (n < node);
  1868. /* Give preference to headless and unused nodes */
  1869. tmp = cpumask_of_node(n);
  1870. if (!cpumask_empty(tmp))
  1871. val += PENALTY_FOR_NODE_WITH_CPUS;
  1872. /* Slight preference for less loaded node */
  1873. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1874. val += node_load[n];
  1875. if (val < min_val) {
  1876. min_val = val;
  1877. best_node = n;
  1878. }
  1879. }
  1880. if (best_node >= 0)
  1881. node_set(best_node, *used_node_mask);
  1882. return best_node;
  1883. }
  1884. /*
  1885. * Build zonelists ordered by node and zones within node.
  1886. * This results in maximum locality--normal zone overflows into local
  1887. * DMA zone, if any--but risks exhausting DMA zone.
  1888. */
  1889. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1890. {
  1891. int j;
  1892. struct zonelist *zonelist;
  1893. zonelist = &pgdat->node_zonelists[0];
  1894. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1895. ;
  1896. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1897. MAX_NR_ZONES - 1);
  1898. zonelist->_zonerefs[j].zone = NULL;
  1899. zonelist->_zonerefs[j].zone_idx = 0;
  1900. }
  1901. /*
  1902. * Build gfp_thisnode zonelists
  1903. */
  1904. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1905. {
  1906. int j;
  1907. struct zonelist *zonelist;
  1908. zonelist = &pgdat->node_zonelists[1];
  1909. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1910. zonelist->_zonerefs[j].zone = NULL;
  1911. zonelist->_zonerefs[j].zone_idx = 0;
  1912. }
  1913. /*
  1914. * Build zonelists ordered by zone and nodes within zones.
  1915. * This results in conserving DMA zone[s] until all Normal memory is
  1916. * exhausted, but results in overflowing to remote node while memory
  1917. * may still exist in local DMA zone.
  1918. */
  1919. static int node_order[MAX_NUMNODES];
  1920. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1921. {
  1922. int pos, j, node;
  1923. int zone_type; /* needs to be signed */
  1924. struct zone *z;
  1925. struct zonelist *zonelist;
  1926. zonelist = &pgdat->node_zonelists[0];
  1927. pos = 0;
  1928. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1929. for (j = 0; j < nr_nodes; j++) {
  1930. node = node_order[j];
  1931. z = &NODE_DATA(node)->node_zones[zone_type];
  1932. if (populated_zone(z)) {
  1933. zoneref_set_zone(z,
  1934. &zonelist->_zonerefs[pos++]);
  1935. check_highest_zone(zone_type);
  1936. }
  1937. }
  1938. }
  1939. zonelist->_zonerefs[pos].zone = NULL;
  1940. zonelist->_zonerefs[pos].zone_idx = 0;
  1941. }
  1942. static int default_zonelist_order(void)
  1943. {
  1944. int nid, zone_type;
  1945. unsigned long low_kmem_size,total_size;
  1946. struct zone *z;
  1947. int average_size;
  1948. /*
  1949. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1950. * If they are really small and used heavily, the system can fall
  1951. * into OOM very easily.
  1952. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1953. */
  1954. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1955. low_kmem_size = 0;
  1956. total_size = 0;
  1957. for_each_online_node(nid) {
  1958. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1959. z = &NODE_DATA(nid)->node_zones[zone_type];
  1960. if (populated_zone(z)) {
  1961. if (zone_type < ZONE_NORMAL)
  1962. low_kmem_size += z->present_pages;
  1963. total_size += z->present_pages;
  1964. }
  1965. }
  1966. }
  1967. if (!low_kmem_size || /* there are no DMA area. */
  1968. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1969. return ZONELIST_ORDER_NODE;
  1970. /*
  1971. * look into each node's config.
  1972. * If there is a node whose DMA/DMA32 memory is very big area on
  1973. * local memory, NODE_ORDER may be suitable.
  1974. */
  1975. average_size = total_size /
  1976. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1977. for_each_online_node(nid) {
  1978. low_kmem_size = 0;
  1979. total_size = 0;
  1980. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1981. z = &NODE_DATA(nid)->node_zones[zone_type];
  1982. if (populated_zone(z)) {
  1983. if (zone_type < ZONE_NORMAL)
  1984. low_kmem_size += z->present_pages;
  1985. total_size += z->present_pages;
  1986. }
  1987. }
  1988. if (low_kmem_size &&
  1989. total_size > average_size && /* ignore small node */
  1990. low_kmem_size > total_size * 70/100)
  1991. return ZONELIST_ORDER_NODE;
  1992. }
  1993. return ZONELIST_ORDER_ZONE;
  1994. }
  1995. static void set_zonelist_order(void)
  1996. {
  1997. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1998. current_zonelist_order = default_zonelist_order();
  1999. else
  2000. current_zonelist_order = user_zonelist_order;
  2001. }
  2002. static void build_zonelists(pg_data_t *pgdat)
  2003. {
  2004. int j, node, load;
  2005. enum zone_type i;
  2006. nodemask_t used_mask;
  2007. int local_node, prev_node;
  2008. struct zonelist *zonelist;
  2009. int order = current_zonelist_order;
  2010. /* initialize zonelists */
  2011. for (i = 0; i < MAX_ZONELISTS; i++) {
  2012. zonelist = pgdat->node_zonelists + i;
  2013. zonelist->_zonerefs[0].zone = NULL;
  2014. zonelist->_zonerefs[0].zone_idx = 0;
  2015. }
  2016. /* NUMA-aware ordering of nodes */
  2017. local_node = pgdat->node_id;
  2018. load = num_online_nodes();
  2019. prev_node = local_node;
  2020. nodes_clear(used_mask);
  2021. memset(node_load, 0, sizeof(node_load));
  2022. memset(node_order, 0, sizeof(node_order));
  2023. j = 0;
  2024. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2025. int distance = node_distance(local_node, node);
  2026. /*
  2027. * If another node is sufficiently far away then it is better
  2028. * to reclaim pages in a zone before going off node.
  2029. */
  2030. if (distance > RECLAIM_DISTANCE)
  2031. zone_reclaim_mode = 1;
  2032. /*
  2033. * We don't want to pressure a particular node.
  2034. * So adding penalty to the first node in same
  2035. * distance group to make it round-robin.
  2036. */
  2037. if (distance != node_distance(local_node, prev_node))
  2038. node_load[node] = load;
  2039. prev_node = node;
  2040. load--;
  2041. if (order == ZONELIST_ORDER_NODE)
  2042. build_zonelists_in_node_order(pgdat, node);
  2043. else
  2044. node_order[j++] = node; /* remember order */
  2045. }
  2046. if (order == ZONELIST_ORDER_ZONE) {
  2047. /* calculate node order -- i.e., DMA last! */
  2048. build_zonelists_in_zone_order(pgdat, j);
  2049. }
  2050. build_thisnode_zonelists(pgdat);
  2051. }
  2052. /* Construct the zonelist performance cache - see further mmzone.h */
  2053. static void build_zonelist_cache(pg_data_t *pgdat)
  2054. {
  2055. struct zonelist *zonelist;
  2056. struct zonelist_cache *zlc;
  2057. struct zoneref *z;
  2058. zonelist = &pgdat->node_zonelists[0];
  2059. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2060. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2061. for (z = zonelist->_zonerefs; z->zone; z++)
  2062. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2063. }
  2064. #else /* CONFIG_NUMA */
  2065. static void set_zonelist_order(void)
  2066. {
  2067. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2068. }
  2069. static void build_zonelists(pg_data_t *pgdat)
  2070. {
  2071. int node, local_node;
  2072. enum zone_type j;
  2073. struct zonelist *zonelist;
  2074. local_node = pgdat->node_id;
  2075. zonelist = &pgdat->node_zonelists[0];
  2076. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2077. /*
  2078. * Now we build the zonelist so that it contains the zones
  2079. * of all the other nodes.
  2080. * We don't want to pressure a particular node, so when
  2081. * building the zones for node N, we make sure that the
  2082. * zones coming right after the local ones are those from
  2083. * node N+1 (modulo N)
  2084. */
  2085. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2086. if (!node_online(node))
  2087. continue;
  2088. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2089. MAX_NR_ZONES - 1);
  2090. }
  2091. for (node = 0; node < local_node; node++) {
  2092. if (!node_online(node))
  2093. continue;
  2094. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2095. MAX_NR_ZONES - 1);
  2096. }
  2097. zonelist->_zonerefs[j].zone = NULL;
  2098. zonelist->_zonerefs[j].zone_idx = 0;
  2099. }
  2100. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2101. static void build_zonelist_cache(pg_data_t *pgdat)
  2102. {
  2103. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2104. }
  2105. #endif /* CONFIG_NUMA */
  2106. /* return values int ....just for stop_machine() */
  2107. static int __build_all_zonelists(void *dummy)
  2108. {
  2109. int nid;
  2110. for_each_online_node(nid) {
  2111. pg_data_t *pgdat = NODE_DATA(nid);
  2112. build_zonelists(pgdat);
  2113. build_zonelist_cache(pgdat);
  2114. }
  2115. return 0;
  2116. }
  2117. void build_all_zonelists(void)
  2118. {
  2119. set_zonelist_order();
  2120. if (system_state == SYSTEM_BOOTING) {
  2121. __build_all_zonelists(NULL);
  2122. mminit_verify_zonelist();
  2123. cpuset_init_current_mems_allowed();
  2124. } else {
  2125. /* we have to stop all cpus to guarantee there is no user
  2126. of zonelist */
  2127. stop_machine(__build_all_zonelists, NULL, NULL);
  2128. /* cpuset refresh routine should be here */
  2129. }
  2130. vm_total_pages = nr_free_pagecache_pages();
  2131. /*
  2132. * Disable grouping by mobility if the number of pages in the
  2133. * system is too low to allow the mechanism to work. It would be
  2134. * more accurate, but expensive to check per-zone. This check is
  2135. * made on memory-hotadd so a system can start with mobility
  2136. * disabled and enable it later
  2137. */
  2138. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2139. page_group_by_mobility_disabled = 1;
  2140. else
  2141. page_group_by_mobility_disabled = 0;
  2142. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2143. "Total pages: %ld\n",
  2144. num_online_nodes(),
  2145. zonelist_order_name[current_zonelist_order],
  2146. page_group_by_mobility_disabled ? "off" : "on",
  2147. vm_total_pages);
  2148. #ifdef CONFIG_NUMA
  2149. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2150. #endif
  2151. }
  2152. /*
  2153. * Helper functions to size the waitqueue hash table.
  2154. * Essentially these want to choose hash table sizes sufficiently
  2155. * large so that collisions trying to wait on pages are rare.
  2156. * But in fact, the number of active page waitqueues on typical
  2157. * systems is ridiculously low, less than 200. So this is even
  2158. * conservative, even though it seems large.
  2159. *
  2160. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2161. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2162. */
  2163. #define PAGES_PER_WAITQUEUE 256
  2164. #ifndef CONFIG_MEMORY_HOTPLUG
  2165. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2166. {
  2167. unsigned long size = 1;
  2168. pages /= PAGES_PER_WAITQUEUE;
  2169. while (size < pages)
  2170. size <<= 1;
  2171. /*
  2172. * Once we have dozens or even hundreds of threads sleeping
  2173. * on IO we've got bigger problems than wait queue collision.
  2174. * Limit the size of the wait table to a reasonable size.
  2175. */
  2176. size = min(size, 4096UL);
  2177. return max(size, 4UL);
  2178. }
  2179. #else
  2180. /*
  2181. * A zone's size might be changed by hot-add, so it is not possible to determine
  2182. * a suitable size for its wait_table. So we use the maximum size now.
  2183. *
  2184. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2185. *
  2186. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2187. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2188. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2189. *
  2190. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2191. * or more by the traditional way. (See above). It equals:
  2192. *
  2193. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2194. * ia64(16K page size) : = ( 8G + 4M)byte.
  2195. * powerpc (64K page size) : = (32G +16M)byte.
  2196. */
  2197. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2198. {
  2199. return 4096UL;
  2200. }
  2201. #endif
  2202. /*
  2203. * This is an integer logarithm so that shifts can be used later
  2204. * to extract the more random high bits from the multiplicative
  2205. * hash function before the remainder is taken.
  2206. */
  2207. static inline unsigned long wait_table_bits(unsigned long size)
  2208. {
  2209. return ffz(~size);
  2210. }
  2211. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2212. /*
  2213. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2214. * of blocks reserved is based on zone->pages_min. The memory within the
  2215. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2216. * higher will lead to a bigger reserve which will get freed as contiguous
  2217. * blocks as reclaim kicks in
  2218. */
  2219. static void setup_zone_migrate_reserve(struct zone *zone)
  2220. {
  2221. unsigned long start_pfn, pfn, end_pfn;
  2222. struct page *page;
  2223. unsigned long reserve, block_migratetype;
  2224. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2225. start_pfn = zone->zone_start_pfn;
  2226. end_pfn = start_pfn + zone->spanned_pages;
  2227. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2228. pageblock_order;
  2229. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2230. if (!pfn_valid(pfn))
  2231. continue;
  2232. page = pfn_to_page(pfn);
  2233. /* Watch out for overlapping nodes */
  2234. if (page_to_nid(page) != zone_to_nid(zone))
  2235. continue;
  2236. /* Blocks with reserved pages will never free, skip them. */
  2237. if (PageReserved(page))
  2238. continue;
  2239. block_migratetype = get_pageblock_migratetype(page);
  2240. /* If this block is reserved, account for it */
  2241. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2242. reserve--;
  2243. continue;
  2244. }
  2245. /* Suitable for reserving if this block is movable */
  2246. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2247. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2248. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2249. reserve--;
  2250. continue;
  2251. }
  2252. /*
  2253. * If the reserve is met and this is a previous reserved block,
  2254. * take it back
  2255. */
  2256. if (block_migratetype == MIGRATE_RESERVE) {
  2257. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2258. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2259. }
  2260. }
  2261. }
  2262. /*
  2263. * Initially all pages are reserved - free ones are freed
  2264. * up by free_all_bootmem() once the early boot process is
  2265. * done. Non-atomic initialization, single-pass.
  2266. */
  2267. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2268. unsigned long start_pfn, enum memmap_context context)
  2269. {
  2270. struct page *page;
  2271. unsigned long end_pfn = start_pfn + size;
  2272. unsigned long pfn;
  2273. struct zone *z;
  2274. if (highest_memmap_pfn < end_pfn - 1)
  2275. highest_memmap_pfn = end_pfn - 1;
  2276. z = &NODE_DATA(nid)->node_zones[zone];
  2277. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2278. /*
  2279. * There can be holes in boot-time mem_map[]s
  2280. * handed to this function. They do not
  2281. * exist on hotplugged memory.
  2282. */
  2283. if (context == MEMMAP_EARLY) {
  2284. if (!early_pfn_valid(pfn))
  2285. continue;
  2286. if (!early_pfn_in_nid(pfn, nid))
  2287. continue;
  2288. }
  2289. page = pfn_to_page(pfn);
  2290. set_page_links(page, zone, nid, pfn);
  2291. mminit_verify_page_links(page, zone, nid, pfn);
  2292. init_page_count(page);
  2293. reset_page_mapcount(page);
  2294. SetPageReserved(page);
  2295. /*
  2296. * Mark the block movable so that blocks are reserved for
  2297. * movable at startup. This will force kernel allocations
  2298. * to reserve their blocks rather than leaking throughout
  2299. * the address space during boot when many long-lived
  2300. * kernel allocations are made. Later some blocks near
  2301. * the start are marked MIGRATE_RESERVE by
  2302. * setup_zone_migrate_reserve()
  2303. *
  2304. * bitmap is created for zone's valid pfn range. but memmap
  2305. * can be created for invalid pages (for alignment)
  2306. * check here not to call set_pageblock_migratetype() against
  2307. * pfn out of zone.
  2308. */
  2309. if ((z->zone_start_pfn <= pfn)
  2310. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2311. && !(pfn & (pageblock_nr_pages - 1)))
  2312. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2313. INIT_LIST_HEAD(&page->lru);
  2314. #ifdef WANT_PAGE_VIRTUAL
  2315. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2316. if (!is_highmem_idx(zone))
  2317. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2318. #endif
  2319. }
  2320. }
  2321. static void __meminit zone_init_free_lists(struct zone *zone)
  2322. {
  2323. int order, t;
  2324. for_each_migratetype_order(order, t) {
  2325. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2326. zone->free_area[order].nr_free = 0;
  2327. }
  2328. }
  2329. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2330. #define memmap_init(size, nid, zone, start_pfn) \
  2331. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2332. #endif
  2333. static int zone_batchsize(struct zone *zone)
  2334. {
  2335. #ifdef CONFIG_MMU
  2336. int batch;
  2337. /*
  2338. * The per-cpu-pages pools are set to around 1000th of the
  2339. * size of the zone. But no more than 1/2 of a meg.
  2340. *
  2341. * OK, so we don't know how big the cache is. So guess.
  2342. */
  2343. batch = zone->present_pages / 1024;
  2344. if (batch * PAGE_SIZE > 512 * 1024)
  2345. batch = (512 * 1024) / PAGE_SIZE;
  2346. batch /= 4; /* We effectively *= 4 below */
  2347. if (batch < 1)
  2348. batch = 1;
  2349. /*
  2350. * Clamp the batch to a 2^n - 1 value. Having a power
  2351. * of 2 value was found to be more likely to have
  2352. * suboptimal cache aliasing properties in some cases.
  2353. *
  2354. * For example if 2 tasks are alternately allocating
  2355. * batches of pages, one task can end up with a lot
  2356. * of pages of one half of the possible page colors
  2357. * and the other with pages of the other colors.
  2358. */
  2359. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2360. return batch;
  2361. #else
  2362. /* The deferral and batching of frees should be suppressed under NOMMU
  2363. * conditions.
  2364. *
  2365. * The problem is that NOMMU needs to be able to allocate large chunks
  2366. * of contiguous memory as there's no hardware page translation to
  2367. * assemble apparent contiguous memory from discontiguous pages.
  2368. *
  2369. * Queueing large contiguous runs of pages for batching, however,
  2370. * causes the pages to actually be freed in smaller chunks. As there
  2371. * can be a significant delay between the individual batches being
  2372. * recycled, this leads to the once large chunks of space being
  2373. * fragmented and becoming unavailable for high-order allocations.
  2374. */
  2375. return 0;
  2376. #endif
  2377. }
  2378. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2379. {
  2380. struct per_cpu_pages *pcp;
  2381. memset(p, 0, sizeof(*p));
  2382. pcp = &p->pcp;
  2383. pcp->count = 0;
  2384. pcp->high = 6 * batch;
  2385. pcp->batch = max(1UL, 1 * batch);
  2386. INIT_LIST_HEAD(&pcp->list);
  2387. }
  2388. /*
  2389. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2390. * to the value high for the pageset p.
  2391. */
  2392. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2393. unsigned long high)
  2394. {
  2395. struct per_cpu_pages *pcp;
  2396. pcp = &p->pcp;
  2397. pcp->high = high;
  2398. pcp->batch = max(1UL, high/4);
  2399. if ((high/4) > (PAGE_SHIFT * 8))
  2400. pcp->batch = PAGE_SHIFT * 8;
  2401. }
  2402. #ifdef CONFIG_NUMA
  2403. /*
  2404. * Boot pageset table. One per cpu which is going to be used for all
  2405. * zones and all nodes. The parameters will be set in such a way
  2406. * that an item put on a list will immediately be handed over to
  2407. * the buddy list. This is safe since pageset manipulation is done
  2408. * with interrupts disabled.
  2409. *
  2410. * Some NUMA counter updates may also be caught by the boot pagesets.
  2411. *
  2412. * The boot_pagesets must be kept even after bootup is complete for
  2413. * unused processors and/or zones. They do play a role for bootstrapping
  2414. * hotplugged processors.
  2415. *
  2416. * zoneinfo_show() and maybe other functions do
  2417. * not check if the processor is online before following the pageset pointer.
  2418. * Other parts of the kernel may not check if the zone is available.
  2419. */
  2420. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2421. /*
  2422. * Dynamically allocate memory for the
  2423. * per cpu pageset array in struct zone.
  2424. */
  2425. static int __cpuinit process_zones(int cpu)
  2426. {
  2427. struct zone *zone, *dzone;
  2428. int node = cpu_to_node(cpu);
  2429. node_set_state(node, N_CPU); /* this node has a cpu */
  2430. for_each_populated_zone(zone) {
  2431. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2432. GFP_KERNEL, node);
  2433. if (!zone_pcp(zone, cpu))
  2434. goto bad;
  2435. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2436. if (percpu_pagelist_fraction)
  2437. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2438. (zone->present_pages / percpu_pagelist_fraction));
  2439. }
  2440. return 0;
  2441. bad:
  2442. for_each_zone(dzone) {
  2443. if (!populated_zone(dzone))
  2444. continue;
  2445. if (dzone == zone)
  2446. break;
  2447. kfree(zone_pcp(dzone, cpu));
  2448. zone_pcp(dzone, cpu) = NULL;
  2449. }
  2450. return -ENOMEM;
  2451. }
  2452. static inline void free_zone_pagesets(int cpu)
  2453. {
  2454. struct zone *zone;
  2455. for_each_zone(zone) {
  2456. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2457. /* Free per_cpu_pageset if it is slab allocated */
  2458. if (pset != &boot_pageset[cpu])
  2459. kfree(pset);
  2460. zone_pcp(zone, cpu) = NULL;
  2461. }
  2462. }
  2463. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2464. unsigned long action,
  2465. void *hcpu)
  2466. {
  2467. int cpu = (long)hcpu;
  2468. int ret = NOTIFY_OK;
  2469. switch (action) {
  2470. case CPU_UP_PREPARE:
  2471. case CPU_UP_PREPARE_FROZEN:
  2472. if (process_zones(cpu))
  2473. ret = NOTIFY_BAD;
  2474. break;
  2475. case CPU_UP_CANCELED:
  2476. case CPU_UP_CANCELED_FROZEN:
  2477. case CPU_DEAD:
  2478. case CPU_DEAD_FROZEN:
  2479. free_zone_pagesets(cpu);
  2480. break;
  2481. default:
  2482. break;
  2483. }
  2484. return ret;
  2485. }
  2486. static struct notifier_block __cpuinitdata pageset_notifier =
  2487. { &pageset_cpuup_callback, NULL, 0 };
  2488. void __init setup_per_cpu_pageset(void)
  2489. {
  2490. int err;
  2491. /* Initialize per_cpu_pageset for cpu 0.
  2492. * A cpuup callback will do this for every cpu
  2493. * as it comes online
  2494. */
  2495. err = process_zones(smp_processor_id());
  2496. BUG_ON(err);
  2497. register_cpu_notifier(&pageset_notifier);
  2498. }
  2499. #endif
  2500. static noinline __init_refok
  2501. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2502. {
  2503. int i;
  2504. struct pglist_data *pgdat = zone->zone_pgdat;
  2505. size_t alloc_size;
  2506. /*
  2507. * The per-page waitqueue mechanism uses hashed waitqueues
  2508. * per zone.
  2509. */
  2510. zone->wait_table_hash_nr_entries =
  2511. wait_table_hash_nr_entries(zone_size_pages);
  2512. zone->wait_table_bits =
  2513. wait_table_bits(zone->wait_table_hash_nr_entries);
  2514. alloc_size = zone->wait_table_hash_nr_entries
  2515. * sizeof(wait_queue_head_t);
  2516. if (!slab_is_available()) {
  2517. zone->wait_table = (wait_queue_head_t *)
  2518. alloc_bootmem_node(pgdat, alloc_size);
  2519. } else {
  2520. /*
  2521. * This case means that a zone whose size was 0 gets new memory
  2522. * via memory hot-add.
  2523. * But it may be the case that a new node was hot-added. In
  2524. * this case vmalloc() will not be able to use this new node's
  2525. * memory - this wait_table must be initialized to use this new
  2526. * node itself as well.
  2527. * To use this new node's memory, further consideration will be
  2528. * necessary.
  2529. */
  2530. zone->wait_table = vmalloc(alloc_size);
  2531. }
  2532. if (!zone->wait_table)
  2533. return -ENOMEM;
  2534. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2535. init_waitqueue_head(zone->wait_table + i);
  2536. return 0;
  2537. }
  2538. static __meminit void zone_pcp_init(struct zone *zone)
  2539. {
  2540. int cpu;
  2541. unsigned long batch = zone_batchsize(zone);
  2542. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2543. #ifdef CONFIG_NUMA
  2544. /* Early boot. Slab allocator not functional yet */
  2545. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2546. setup_pageset(&boot_pageset[cpu],0);
  2547. #else
  2548. setup_pageset(zone_pcp(zone,cpu), batch);
  2549. #endif
  2550. }
  2551. if (zone->present_pages)
  2552. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2553. zone->name, zone->present_pages, batch);
  2554. }
  2555. __meminit int init_currently_empty_zone(struct zone *zone,
  2556. unsigned long zone_start_pfn,
  2557. unsigned long size,
  2558. enum memmap_context context)
  2559. {
  2560. struct pglist_data *pgdat = zone->zone_pgdat;
  2561. int ret;
  2562. ret = zone_wait_table_init(zone, size);
  2563. if (ret)
  2564. return ret;
  2565. pgdat->nr_zones = zone_idx(zone) + 1;
  2566. zone->zone_start_pfn = zone_start_pfn;
  2567. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2568. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2569. pgdat->node_id,
  2570. (unsigned long)zone_idx(zone),
  2571. zone_start_pfn, (zone_start_pfn + size));
  2572. zone_init_free_lists(zone);
  2573. return 0;
  2574. }
  2575. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2576. /*
  2577. * Basic iterator support. Return the first range of PFNs for a node
  2578. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2579. */
  2580. static int __meminit first_active_region_index_in_nid(int nid)
  2581. {
  2582. int i;
  2583. for (i = 0; i < nr_nodemap_entries; i++)
  2584. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2585. return i;
  2586. return -1;
  2587. }
  2588. /*
  2589. * Basic iterator support. Return the next active range of PFNs for a node
  2590. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2591. */
  2592. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2593. {
  2594. for (index = index + 1; index < nr_nodemap_entries; index++)
  2595. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2596. return index;
  2597. return -1;
  2598. }
  2599. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2600. /*
  2601. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2602. * Architectures may implement their own version but if add_active_range()
  2603. * was used and there are no special requirements, this is a convenient
  2604. * alternative
  2605. */
  2606. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2607. {
  2608. int i;
  2609. for (i = 0; i < nr_nodemap_entries; i++) {
  2610. unsigned long start_pfn = early_node_map[i].start_pfn;
  2611. unsigned long end_pfn = early_node_map[i].end_pfn;
  2612. if (start_pfn <= pfn && pfn < end_pfn)
  2613. return early_node_map[i].nid;
  2614. }
  2615. /* This is a memory hole */
  2616. return -1;
  2617. }
  2618. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2619. int __meminit early_pfn_to_nid(unsigned long pfn)
  2620. {
  2621. int nid;
  2622. nid = __early_pfn_to_nid(pfn);
  2623. if (nid >= 0)
  2624. return nid;
  2625. /* just returns 0 */
  2626. return 0;
  2627. }
  2628. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2629. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2630. {
  2631. int nid;
  2632. nid = __early_pfn_to_nid(pfn);
  2633. if (nid >= 0 && nid != node)
  2634. return false;
  2635. return true;
  2636. }
  2637. #endif
  2638. /* Basic iterator support to walk early_node_map[] */
  2639. #define for_each_active_range_index_in_nid(i, nid) \
  2640. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2641. i = next_active_region_index_in_nid(i, nid))
  2642. /**
  2643. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2644. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2645. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2646. *
  2647. * If an architecture guarantees that all ranges registered with
  2648. * add_active_ranges() contain no holes and may be freed, this
  2649. * this function may be used instead of calling free_bootmem() manually.
  2650. */
  2651. void __init free_bootmem_with_active_regions(int nid,
  2652. unsigned long max_low_pfn)
  2653. {
  2654. int i;
  2655. for_each_active_range_index_in_nid(i, nid) {
  2656. unsigned long size_pages = 0;
  2657. unsigned long end_pfn = early_node_map[i].end_pfn;
  2658. if (early_node_map[i].start_pfn >= max_low_pfn)
  2659. continue;
  2660. if (end_pfn > max_low_pfn)
  2661. end_pfn = max_low_pfn;
  2662. size_pages = end_pfn - early_node_map[i].start_pfn;
  2663. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2664. PFN_PHYS(early_node_map[i].start_pfn),
  2665. size_pages << PAGE_SHIFT);
  2666. }
  2667. }
  2668. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2669. {
  2670. int i;
  2671. int ret;
  2672. for_each_active_range_index_in_nid(i, nid) {
  2673. ret = work_fn(early_node_map[i].start_pfn,
  2674. early_node_map[i].end_pfn, data);
  2675. if (ret)
  2676. break;
  2677. }
  2678. }
  2679. /**
  2680. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2681. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2682. *
  2683. * If an architecture guarantees that all ranges registered with
  2684. * add_active_ranges() contain no holes and may be freed, this
  2685. * function may be used instead of calling memory_present() manually.
  2686. */
  2687. void __init sparse_memory_present_with_active_regions(int nid)
  2688. {
  2689. int i;
  2690. for_each_active_range_index_in_nid(i, nid)
  2691. memory_present(early_node_map[i].nid,
  2692. early_node_map[i].start_pfn,
  2693. early_node_map[i].end_pfn);
  2694. }
  2695. /**
  2696. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2697. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2698. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2699. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2700. *
  2701. * It returns the start and end page frame of a node based on information
  2702. * provided by an arch calling add_active_range(). If called for a node
  2703. * with no available memory, a warning is printed and the start and end
  2704. * PFNs will be 0.
  2705. */
  2706. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2707. unsigned long *start_pfn, unsigned long *end_pfn)
  2708. {
  2709. int i;
  2710. *start_pfn = -1UL;
  2711. *end_pfn = 0;
  2712. for_each_active_range_index_in_nid(i, nid) {
  2713. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2714. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2715. }
  2716. if (*start_pfn == -1UL)
  2717. *start_pfn = 0;
  2718. }
  2719. /*
  2720. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2721. * assumption is made that zones within a node are ordered in monotonic
  2722. * increasing memory addresses so that the "highest" populated zone is used
  2723. */
  2724. static void __init find_usable_zone_for_movable(void)
  2725. {
  2726. int zone_index;
  2727. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2728. if (zone_index == ZONE_MOVABLE)
  2729. continue;
  2730. if (arch_zone_highest_possible_pfn[zone_index] >
  2731. arch_zone_lowest_possible_pfn[zone_index])
  2732. break;
  2733. }
  2734. VM_BUG_ON(zone_index == -1);
  2735. movable_zone = zone_index;
  2736. }
  2737. /*
  2738. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2739. * because it is sized independant of architecture. Unlike the other zones,
  2740. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2741. * in each node depending on the size of each node and how evenly kernelcore
  2742. * is distributed. This helper function adjusts the zone ranges
  2743. * provided by the architecture for a given node by using the end of the
  2744. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2745. * zones within a node are in order of monotonic increases memory addresses
  2746. */
  2747. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2748. unsigned long zone_type,
  2749. unsigned long node_start_pfn,
  2750. unsigned long node_end_pfn,
  2751. unsigned long *zone_start_pfn,
  2752. unsigned long *zone_end_pfn)
  2753. {
  2754. /* Only adjust if ZONE_MOVABLE is on this node */
  2755. if (zone_movable_pfn[nid]) {
  2756. /* Size ZONE_MOVABLE */
  2757. if (zone_type == ZONE_MOVABLE) {
  2758. *zone_start_pfn = zone_movable_pfn[nid];
  2759. *zone_end_pfn = min(node_end_pfn,
  2760. arch_zone_highest_possible_pfn[movable_zone]);
  2761. /* Adjust for ZONE_MOVABLE starting within this range */
  2762. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2763. *zone_end_pfn > zone_movable_pfn[nid]) {
  2764. *zone_end_pfn = zone_movable_pfn[nid];
  2765. /* Check if this whole range is within ZONE_MOVABLE */
  2766. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2767. *zone_start_pfn = *zone_end_pfn;
  2768. }
  2769. }
  2770. /*
  2771. * Return the number of pages a zone spans in a node, including holes
  2772. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2773. */
  2774. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2775. unsigned long zone_type,
  2776. unsigned long *ignored)
  2777. {
  2778. unsigned long node_start_pfn, node_end_pfn;
  2779. unsigned long zone_start_pfn, zone_end_pfn;
  2780. /* Get the start and end of the node and zone */
  2781. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2782. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2783. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2784. adjust_zone_range_for_zone_movable(nid, zone_type,
  2785. node_start_pfn, node_end_pfn,
  2786. &zone_start_pfn, &zone_end_pfn);
  2787. /* Check that this node has pages within the zone's required range */
  2788. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2789. return 0;
  2790. /* Move the zone boundaries inside the node if necessary */
  2791. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2792. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2793. /* Return the spanned pages */
  2794. return zone_end_pfn - zone_start_pfn;
  2795. }
  2796. /*
  2797. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2798. * then all holes in the requested range will be accounted for.
  2799. */
  2800. static unsigned long __meminit __absent_pages_in_range(int nid,
  2801. unsigned long range_start_pfn,
  2802. unsigned long range_end_pfn)
  2803. {
  2804. int i = 0;
  2805. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2806. unsigned long start_pfn;
  2807. /* Find the end_pfn of the first active range of pfns in the node */
  2808. i = first_active_region_index_in_nid(nid);
  2809. if (i == -1)
  2810. return 0;
  2811. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2812. /* Account for ranges before physical memory on this node */
  2813. if (early_node_map[i].start_pfn > range_start_pfn)
  2814. hole_pages = prev_end_pfn - range_start_pfn;
  2815. /* Find all holes for the zone within the node */
  2816. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2817. /* No need to continue if prev_end_pfn is outside the zone */
  2818. if (prev_end_pfn >= range_end_pfn)
  2819. break;
  2820. /* Make sure the end of the zone is not within the hole */
  2821. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2822. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2823. /* Update the hole size cound and move on */
  2824. if (start_pfn > range_start_pfn) {
  2825. BUG_ON(prev_end_pfn > start_pfn);
  2826. hole_pages += start_pfn - prev_end_pfn;
  2827. }
  2828. prev_end_pfn = early_node_map[i].end_pfn;
  2829. }
  2830. /* Account for ranges past physical memory on this node */
  2831. if (range_end_pfn > prev_end_pfn)
  2832. hole_pages += range_end_pfn -
  2833. max(range_start_pfn, prev_end_pfn);
  2834. return hole_pages;
  2835. }
  2836. /**
  2837. * absent_pages_in_range - Return number of page frames in holes within a range
  2838. * @start_pfn: The start PFN to start searching for holes
  2839. * @end_pfn: The end PFN to stop searching for holes
  2840. *
  2841. * It returns the number of pages frames in memory holes within a range.
  2842. */
  2843. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2844. unsigned long end_pfn)
  2845. {
  2846. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2847. }
  2848. /* Return the number of page frames in holes in a zone on a node */
  2849. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2850. unsigned long zone_type,
  2851. unsigned long *ignored)
  2852. {
  2853. unsigned long node_start_pfn, node_end_pfn;
  2854. unsigned long zone_start_pfn, zone_end_pfn;
  2855. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2856. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2857. node_start_pfn);
  2858. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2859. node_end_pfn);
  2860. adjust_zone_range_for_zone_movable(nid, zone_type,
  2861. node_start_pfn, node_end_pfn,
  2862. &zone_start_pfn, &zone_end_pfn);
  2863. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2864. }
  2865. #else
  2866. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2867. unsigned long zone_type,
  2868. unsigned long *zones_size)
  2869. {
  2870. return zones_size[zone_type];
  2871. }
  2872. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2873. unsigned long zone_type,
  2874. unsigned long *zholes_size)
  2875. {
  2876. if (!zholes_size)
  2877. return 0;
  2878. return zholes_size[zone_type];
  2879. }
  2880. #endif
  2881. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2882. unsigned long *zones_size, unsigned long *zholes_size)
  2883. {
  2884. unsigned long realtotalpages, totalpages = 0;
  2885. enum zone_type i;
  2886. for (i = 0; i < MAX_NR_ZONES; i++)
  2887. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2888. zones_size);
  2889. pgdat->node_spanned_pages = totalpages;
  2890. realtotalpages = totalpages;
  2891. for (i = 0; i < MAX_NR_ZONES; i++)
  2892. realtotalpages -=
  2893. zone_absent_pages_in_node(pgdat->node_id, i,
  2894. zholes_size);
  2895. pgdat->node_present_pages = realtotalpages;
  2896. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2897. realtotalpages);
  2898. }
  2899. #ifndef CONFIG_SPARSEMEM
  2900. /*
  2901. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2902. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2903. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2904. * round what is now in bits to nearest long in bits, then return it in
  2905. * bytes.
  2906. */
  2907. static unsigned long __init usemap_size(unsigned long zonesize)
  2908. {
  2909. unsigned long usemapsize;
  2910. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2911. usemapsize = usemapsize >> pageblock_order;
  2912. usemapsize *= NR_PAGEBLOCK_BITS;
  2913. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2914. return usemapsize / 8;
  2915. }
  2916. static void __init setup_usemap(struct pglist_data *pgdat,
  2917. struct zone *zone, unsigned long zonesize)
  2918. {
  2919. unsigned long usemapsize = usemap_size(zonesize);
  2920. zone->pageblock_flags = NULL;
  2921. if (usemapsize)
  2922. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2923. }
  2924. #else
  2925. static void inline setup_usemap(struct pglist_data *pgdat,
  2926. struct zone *zone, unsigned long zonesize) {}
  2927. #endif /* CONFIG_SPARSEMEM */
  2928. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2929. /* Return a sensible default order for the pageblock size. */
  2930. static inline int pageblock_default_order(void)
  2931. {
  2932. if (HPAGE_SHIFT > PAGE_SHIFT)
  2933. return HUGETLB_PAGE_ORDER;
  2934. return MAX_ORDER-1;
  2935. }
  2936. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2937. static inline void __init set_pageblock_order(unsigned int order)
  2938. {
  2939. /* Check that pageblock_nr_pages has not already been setup */
  2940. if (pageblock_order)
  2941. return;
  2942. /*
  2943. * Assume the largest contiguous order of interest is a huge page.
  2944. * This value may be variable depending on boot parameters on IA64
  2945. */
  2946. pageblock_order = order;
  2947. }
  2948. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2949. /*
  2950. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2951. * and pageblock_default_order() are unused as pageblock_order is set
  2952. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2953. * pageblock_order based on the kernel config
  2954. */
  2955. static inline int pageblock_default_order(unsigned int order)
  2956. {
  2957. return MAX_ORDER-1;
  2958. }
  2959. #define set_pageblock_order(x) do {} while (0)
  2960. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2961. /*
  2962. * Set up the zone data structures:
  2963. * - mark all pages reserved
  2964. * - mark all memory queues empty
  2965. * - clear the memory bitmaps
  2966. */
  2967. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2968. unsigned long *zones_size, unsigned long *zholes_size)
  2969. {
  2970. enum zone_type j;
  2971. int nid = pgdat->node_id;
  2972. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2973. int ret;
  2974. pgdat_resize_init(pgdat);
  2975. pgdat->nr_zones = 0;
  2976. init_waitqueue_head(&pgdat->kswapd_wait);
  2977. pgdat->kswapd_max_order = 0;
  2978. pgdat_page_cgroup_init(pgdat);
  2979. for (j = 0; j < MAX_NR_ZONES; j++) {
  2980. struct zone *zone = pgdat->node_zones + j;
  2981. unsigned long size, realsize, memmap_pages;
  2982. enum lru_list l;
  2983. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2984. realsize = size - zone_absent_pages_in_node(nid, j,
  2985. zholes_size);
  2986. /*
  2987. * Adjust realsize so that it accounts for how much memory
  2988. * is used by this zone for memmap. This affects the watermark
  2989. * and per-cpu initialisations
  2990. */
  2991. memmap_pages =
  2992. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2993. if (realsize >= memmap_pages) {
  2994. realsize -= memmap_pages;
  2995. if (memmap_pages)
  2996. printk(KERN_DEBUG
  2997. " %s zone: %lu pages used for memmap\n",
  2998. zone_names[j], memmap_pages);
  2999. } else
  3000. printk(KERN_WARNING
  3001. " %s zone: %lu pages exceeds realsize %lu\n",
  3002. zone_names[j], memmap_pages, realsize);
  3003. /* Account for reserved pages */
  3004. if (j == 0 && realsize > dma_reserve) {
  3005. realsize -= dma_reserve;
  3006. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3007. zone_names[0], dma_reserve);
  3008. }
  3009. if (!is_highmem_idx(j))
  3010. nr_kernel_pages += realsize;
  3011. nr_all_pages += realsize;
  3012. zone->spanned_pages = size;
  3013. zone->present_pages = realsize;
  3014. #ifdef CONFIG_NUMA
  3015. zone->node = nid;
  3016. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3017. / 100;
  3018. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3019. #endif
  3020. zone->name = zone_names[j];
  3021. spin_lock_init(&zone->lock);
  3022. spin_lock_init(&zone->lru_lock);
  3023. zone_seqlock_init(zone);
  3024. zone->zone_pgdat = pgdat;
  3025. zone->prev_priority = DEF_PRIORITY;
  3026. zone_pcp_init(zone);
  3027. for_each_lru(l) {
  3028. INIT_LIST_HEAD(&zone->lru[l].list);
  3029. zone->lru[l].nr_scan = 0;
  3030. }
  3031. zone->reclaim_stat.recent_rotated[0] = 0;
  3032. zone->reclaim_stat.recent_rotated[1] = 0;
  3033. zone->reclaim_stat.recent_scanned[0] = 0;
  3034. zone->reclaim_stat.recent_scanned[1] = 0;
  3035. zap_zone_vm_stats(zone);
  3036. zone->flags = 0;
  3037. if (!size)
  3038. continue;
  3039. set_pageblock_order(pageblock_default_order());
  3040. setup_usemap(pgdat, zone, size);
  3041. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3042. size, MEMMAP_EARLY);
  3043. BUG_ON(ret);
  3044. memmap_init(size, nid, j, zone_start_pfn);
  3045. zone_start_pfn += size;
  3046. }
  3047. }
  3048. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3049. {
  3050. /* Skip empty nodes */
  3051. if (!pgdat->node_spanned_pages)
  3052. return;
  3053. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3054. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3055. if (!pgdat->node_mem_map) {
  3056. unsigned long size, start, end;
  3057. struct page *map;
  3058. /*
  3059. * The zone's endpoints aren't required to be MAX_ORDER
  3060. * aligned but the node_mem_map endpoints must be in order
  3061. * for the buddy allocator to function correctly.
  3062. */
  3063. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3064. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3065. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3066. size = (end - start) * sizeof(struct page);
  3067. map = alloc_remap(pgdat->node_id, size);
  3068. if (!map)
  3069. map = alloc_bootmem_node(pgdat, size);
  3070. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3071. }
  3072. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3073. /*
  3074. * With no DISCONTIG, the global mem_map is just set as node 0's
  3075. */
  3076. if (pgdat == NODE_DATA(0)) {
  3077. mem_map = NODE_DATA(0)->node_mem_map;
  3078. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3079. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3080. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3081. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3082. }
  3083. #endif
  3084. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3085. }
  3086. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3087. unsigned long node_start_pfn, unsigned long *zholes_size)
  3088. {
  3089. pg_data_t *pgdat = NODE_DATA(nid);
  3090. pgdat->node_id = nid;
  3091. pgdat->node_start_pfn = node_start_pfn;
  3092. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3093. alloc_node_mem_map(pgdat);
  3094. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3095. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3096. nid, (unsigned long)pgdat,
  3097. (unsigned long)pgdat->node_mem_map);
  3098. #endif
  3099. free_area_init_core(pgdat, zones_size, zholes_size);
  3100. }
  3101. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3102. #if MAX_NUMNODES > 1
  3103. /*
  3104. * Figure out the number of possible node ids.
  3105. */
  3106. static void __init setup_nr_node_ids(void)
  3107. {
  3108. unsigned int node;
  3109. unsigned int highest = 0;
  3110. for_each_node_mask(node, node_possible_map)
  3111. highest = node;
  3112. nr_node_ids = highest + 1;
  3113. }
  3114. #else
  3115. static inline void setup_nr_node_ids(void)
  3116. {
  3117. }
  3118. #endif
  3119. /**
  3120. * add_active_range - Register a range of PFNs backed by physical memory
  3121. * @nid: The node ID the range resides on
  3122. * @start_pfn: The start PFN of the available physical memory
  3123. * @end_pfn: The end PFN of the available physical memory
  3124. *
  3125. * These ranges are stored in an early_node_map[] and later used by
  3126. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3127. * range spans a memory hole, it is up to the architecture to ensure
  3128. * the memory is not freed by the bootmem allocator. If possible
  3129. * the range being registered will be merged with existing ranges.
  3130. */
  3131. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3132. unsigned long end_pfn)
  3133. {
  3134. int i;
  3135. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3136. "Entering add_active_range(%d, %#lx, %#lx) "
  3137. "%d entries of %d used\n",
  3138. nid, start_pfn, end_pfn,
  3139. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3140. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3141. /* Merge with existing active regions if possible */
  3142. for (i = 0; i < nr_nodemap_entries; i++) {
  3143. if (early_node_map[i].nid != nid)
  3144. continue;
  3145. /* Skip if an existing region covers this new one */
  3146. if (start_pfn >= early_node_map[i].start_pfn &&
  3147. end_pfn <= early_node_map[i].end_pfn)
  3148. return;
  3149. /* Merge forward if suitable */
  3150. if (start_pfn <= early_node_map[i].end_pfn &&
  3151. end_pfn > early_node_map[i].end_pfn) {
  3152. early_node_map[i].end_pfn = end_pfn;
  3153. return;
  3154. }
  3155. /* Merge backward if suitable */
  3156. if (start_pfn < early_node_map[i].end_pfn &&
  3157. end_pfn >= early_node_map[i].start_pfn) {
  3158. early_node_map[i].start_pfn = start_pfn;
  3159. return;
  3160. }
  3161. }
  3162. /* Check that early_node_map is large enough */
  3163. if (i >= MAX_ACTIVE_REGIONS) {
  3164. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3165. MAX_ACTIVE_REGIONS);
  3166. return;
  3167. }
  3168. early_node_map[i].nid = nid;
  3169. early_node_map[i].start_pfn = start_pfn;
  3170. early_node_map[i].end_pfn = end_pfn;
  3171. nr_nodemap_entries = i + 1;
  3172. }
  3173. /**
  3174. * remove_active_range - Shrink an existing registered range of PFNs
  3175. * @nid: The node id the range is on that should be shrunk
  3176. * @start_pfn: The new PFN of the range
  3177. * @end_pfn: The new PFN of the range
  3178. *
  3179. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3180. * The map is kept near the end physical page range that has already been
  3181. * registered. This function allows an arch to shrink an existing registered
  3182. * range.
  3183. */
  3184. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3185. unsigned long end_pfn)
  3186. {
  3187. int i, j;
  3188. int removed = 0;
  3189. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3190. nid, start_pfn, end_pfn);
  3191. /* Find the old active region end and shrink */
  3192. for_each_active_range_index_in_nid(i, nid) {
  3193. if (early_node_map[i].start_pfn >= start_pfn &&
  3194. early_node_map[i].end_pfn <= end_pfn) {
  3195. /* clear it */
  3196. early_node_map[i].start_pfn = 0;
  3197. early_node_map[i].end_pfn = 0;
  3198. removed = 1;
  3199. continue;
  3200. }
  3201. if (early_node_map[i].start_pfn < start_pfn &&
  3202. early_node_map[i].end_pfn > start_pfn) {
  3203. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3204. early_node_map[i].end_pfn = start_pfn;
  3205. if (temp_end_pfn > end_pfn)
  3206. add_active_range(nid, end_pfn, temp_end_pfn);
  3207. continue;
  3208. }
  3209. if (early_node_map[i].start_pfn >= start_pfn &&
  3210. early_node_map[i].end_pfn > end_pfn &&
  3211. early_node_map[i].start_pfn < end_pfn) {
  3212. early_node_map[i].start_pfn = end_pfn;
  3213. continue;
  3214. }
  3215. }
  3216. if (!removed)
  3217. return;
  3218. /* remove the blank ones */
  3219. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3220. if (early_node_map[i].nid != nid)
  3221. continue;
  3222. if (early_node_map[i].end_pfn)
  3223. continue;
  3224. /* we found it, get rid of it */
  3225. for (j = i; j < nr_nodemap_entries - 1; j++)
  3226. memcpy(&early_node_map[j], &early_node_map[j+1],
  3227. sizeof(early_node_map[j]));
  3228. j = nr_nodemap_entries - 1;
  3229. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3230. nr_nodemap_entries--;
  3231. }
  3232. }
  3233. /**
  3234. * remove_all_active_ranges - Remove all currently registered regions
  3235. *
  3236. * During discovery, it may be found that a table like SRAT is invalid
  3237. * and an alternative discovery method must be used. This function removes
  3238. * all currently registered regions.
  3239. */
  3240. void __init remove_all_active_ranges(void)
  3241. {
  3242. memset(early_node_map, 0, sizeof(early_node_map));
  3243. nr_nodemap_entries = 0;
  3244. }
  3245. /* Compare two active node_active_regions */
  3246. static int __init cmp_node_active_region(const void *a, const void *b)
  3247. {
  3248. struct node_active_region *arange = (struct node_active_region *)a;
  3249. struct node_active_region *brange = (struct node_active_region *)b;
  3250. /* Done this way to avoid overflows */
  3251. if (arange->start_pfn > brange->start_pfn)
  3252. return 1;
  3253. if (arange->start_pfn < brange->start_pfn)
  3254. return -1;
  3255. return 0;
  3256. }
  3257. /* sort the node_map by start_pfn */
  3258. static void __init sort_node_map(void)
  3259. {
  3260. sort(early_node_map, (size_t)nr_nodemap_entries,
  3261. sizeof(struct node_active_region),
  3262. cmp_node_active_region, NULL);
  3263. }
  3264. /* Find the lowest pfn for a node */
  3265. static unsigned long __init find_min_pfn_for_node(int nid)
  3266. {
  3267. int i;
  3268. unsigned long min_pfn = ULONG_MAX;
  3269. /* Assuming a sorted map, the first range found has the starting pfn */
  3270. for_each_active_range_index_in_nid(i, nid)
  3271. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3272. if (min_pfn == ULONG_MAX) {
  3273. printk(KERN_WARNING
  3274. "Could not find start_pfn for node %d\n", nid);
  3275. return 0;
  3276. }
  3277. return min_pfn;
  3278. }
  3279. /**
  3280. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3281. *
  3282. * It returns the minimum PFN based on information provided via
  3283. * add_active_range().
  3284. */
  3285. unsigned long __init find_min_pfn_with_active_regions(void)
  3286. {
  3287. return find_min_pfn_for_node(MAX_NUMNODES);
  3288. }
  3289. /*
  3290. * early_calculate_totalpages()
  3291. * Sum pages in active regions for movable zone.
  3292. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3293. */
  3294. static unsigned long __init early_calculate_totalpages(void)
  3295. {
  3296. int i;
  3297. unsigned long totalpages = 0;
  3298. for (i = 0; i < nr_nodemap_entries; i++) {
  3299. unsigned long pages = early_node_map[i].end_pfn -
  3300. early_node_map[i].start_pfn;
  3301. totalpages += pages;
  3302. if (pages)
  3303. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3304. }
  3305. return totalpages;
  3306. }
  3307. /*
  3308. * Find the PFN the Movable zone begins in each node. Kernel memory
  3309. * is spread evenly between nodes as long as the nodes have enough
  3310. * memory. When they don't, some nodes will have more kernelcore than
  3311. * others
  3312. */
  3313. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3314. {
  3315. int i, nid;
  3316. unsigned long usable_startpfn;
  3317. unsigned long kernelcore_node, kernelcore_remaining;
  3318. unsigned long totalpages = early_calculate_totalpages();
  3319. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3320. /*
  3321. * If movablecore was specified, calculate what size of
  3322. * kernelcore that corresponds so that memory usable for
  3323. * any allocation type is evenly spread. If both kernelcore
  3324. * and movablecore are specified, then the value of kernelcore
  3325. * will be used for required_kernelcore if it's greater than
  3326. * what movablecore would have allowed.
  3327. */
  3328. if (required_movablecore) {
  3329. unsigned long corepages;
  3330. /*
  3331. * Round-up so that ZONE_MOVABLE is at least as large as what
  3332. * was requested by the user
  3333. */
  3334. required_movablecore =
  3335. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3336. corepages = totalpages - required_movablecore;
  3337. required_kernelcore = max(required_kernelcore, corepages);
  3338. }
  3339. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3340. if (!required_kernelcore)
  3341. return;
  3342. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3343. find_usable_zone_for_movable();
  3344. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3345. restart:
  3346. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3347. kernelcore_node = required_kernelcore / usable_nodes;
  3348. for_each_node_state(nid, N_HIGH_MEMORY) {
  3349. /*
  3350. * Recalculate kernelcore_node if the division per node
  3351. * now exceeds what is necessary to satisfy the requested
  3352. * amount of memory for the kernel
  3353. */
  3354. if (required_kernelcore < kernelcore_node)
  3355. kernelcore_node = required_kernelcore / usable_nodes;
  3356. /*
  3357. * As the map is walked, we track how much memory is usable
  3358. * by the kernel using kernelcore_remaining. When it is
  3359. * 0, the rest of the node is usable by ZONE_MOVABLE
  3360. */
  3361. kernelcore_remaining = kernelcore_node;
  3362. /* Go through each range of PFNs within this node */
  3363. for_each_active_range_index_in_nid(i, nid) {
  3364. unsigned long start_pfn, end_pfn;
  3365. unsigned long size_pages;
  3366. start_pfn = max(early_node_map[i].start_pfn,
  3367. zone_movable_pfn[nid]);
  3368. end_pfn = early_node_map[i].end_pfn;
  3369. if (start_pfn >= end_pfn)
  3370. continue;
  3371. /* Account for what is only usable for kernelcore */
  3372. if (start_pfn < usable_startpfn) {
  3373. unsigned long kernel_pages;
  3374. kernel_pages = min(end_pfn, usable_startpfn)
  3375. - start_pfn;
  3376. kernelcore_remaining -= min(kernel_pages,
  3377. kernelcore_remaining);
  3378. required_kernelcore -= min(kernel_pages,
  3379. required_kernelcore);
  3380. /* Continue if range is now fully accounted */
  3381. if (end_pfn <= usable_startpfn) {
  3382. /*
  3383. * Push zone_movable_pfn to the end so
  3384. * that if we have to rebalance
  3385. * kernelcore across nodes, we will
  3386. * not double account here
  3387. */
  3388. zone_movable_pfn[nid] = end_pfn;
  3389. continue;
  3390. }
  3391. start_pfn = usable_startpfn;
  3392. }
  3393. /*
  3394. * The usable PFN range for ZONE_MOVABLE is from
  3395. * start_pfn->end_pfn. Calculate size_pages as the
  3396. * number of pages used as kernelcore
  3397. */
  3398. size_pages = end_pfn - start_pfn;
  3399. if (size_pages > kernelcore_remaining)
  3400. size_pages = kernelcore_remaining;
  3401. zone_movable_pfn[nid] = start_pfn + size_pages;
  3402. /*
  3403. * Some kernelcore has been met, update counts and
  3404. * break if the kernelcore for this node has been
  3405. * satisified
  3406. */
  3407. required_kernelcore -= min(required_kernelcore,
  3408. size_pages);
  3409. kernelcore_remaining -= size_pages;
  3410. if (!kernelcore_remaining)
  3411. break;
  3412. }
  3413. }
  3414. /*
  3415. * If there is still required_kernelcore, we do another pass with one
  3416. * less node in the count. This will push zone_movable_pfn[nid] further
  3417. * along on the nodes that still have memory until kernelcore is
  3418. * satisified
  3419. */
  3420. usable_nodes--;
  3421. if (usable_nodes && required_kernelcore > usable_nodes)
  3422. goto restart;
  3423. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3424. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3425. zone_movable_pfn[nid] =
  3426. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3427. }
  3428. /* Any regular memory on that node ? */
  3429. static void check_for_regular_memory(pg_data_t *pgdat)
  3430. {
  3431. #ifdef CONFIG_HIGHMEM
  3432. enum zone_type zone_type;
  3433. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3434. struct zone *zone = &pgdat->node_zones[zone_type];
  3435. if (zone->present_pages)
  3436. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3437. }
  3438. #endif
  3439. }
  3440. /**
  3441. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3442. * @max_zone_pfn: an array of max PFNs for each zone
  3443. *
  3444. * This will call free_area_init_node() for each active node in the system.
  3445. * Using the page ranges provided by add_active_range(), the size of each
  3446. * zone in each node and their holes is calculated. If the maximum PFN
  3447. * between two adjacent zones match, it is assumed that the zone is empty.
  3448. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3449. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3450. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3451. * at arch_max_dma_pfn.
  3452. */
  3453. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3454. {
  3455. unsigned long nid;
  3456. int i;
  3457. /* Sort early_node_map as initialisation assumes it is sorted */
  3458. sort_node_map();
  3459. /* Record where the zone boundaries are */
  3460. memset(arch_zone_lowest_possible_pfn, 0,
  3461. sizeof(arch_zone_lowest_possible_pfn));
  3462. memset(arch_zone_highest_possible_pfn, 0,
  3463. sizeof(arch_zone_highest_possible_pfn));
  3464. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3465. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3466. for (i = 1; i < MAX_NR_ZONES; i++) {
  3467. if (i == ZONE_MOVABLE)
  3468. continue;
  3469. arch_zone_lowest_possible_pfn[i] =
  3470. arch_zone_highest_possible_pfn[i-1];
  3471. arch_zone_highest_possible_pfn[i] =
  3472. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3473. }
  3474. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3475. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3476. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3477. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3478. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3479. /* Print out the zone ranges */
  3480. printk("Zone PFN ranges:\n");
  3481. for (i = 0; i < MAX_NR_ZONES; i++) {
  3482. if (i == ZONE_MOVABLE)
  3483. continue;
  3484. printk(" %-8s %0#10lx -> %0#10lx\n",
  3485. zone_names[i],
  3486. arch_zone_lowest_possible_pfn[i],
  3487. arch_zone_highest_possible_pfn[i]);
  3488. }
  3489. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3490. printk("Movable zone start PFN for each node\n");
  3491. for (i = 0; i < MAX_NUMNODES; i++) {
  3492. if (zone_movable_pfn[i])
  3493. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3494. }
  3495. /* Print out the early_node_map[] */
  3496. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3497. for (i = 0; i < nr_nodemap_entries; i++)
  3498. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3499. early_node_map[i].start_pfn,
  3500. early_node_map[i].end_pfn);
  3501. /* Initialise every node */
  3502. mminit_verify_pageflags_layout();
  3503. setup_nr_node_ids();
  3504. for_each_online_node(nid) {
  3505. pg_data_t *pgdat = NODE_DATA(nid);
  3506. free_area_init_node(nid, NULL,
  3507. find_min_pfn_for_node(nid), NULL);
  3508. /* Any memory on that node */
  3509. if (pgdat->node_present_pages)
  3510. node_set_state(nid, N_HIGH_MEMORY);
  3511. check_for_regular_memory(pgdat);
  3512. }
  3513. }
  3514. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3515. {
  3516. unsigned long long coremem;
  3517. if (!p)
  3518. return -EINVAL;
  3519. coremem = memparse(p, &p);
  3520. *core = coremem >> PAGE_SHIFT;
  3521. /* Paranoid check that UL is enough for the coremem value */
  3522. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3523. return 0;
  3524. }
  3525. /*
  3526. * kernelcore=size sets the amount of memory for use for allocations that
  3527. * cannot be reclaimed or migrated.
  3528. */
  3529. static int __init cmdline_parse_kernelcore(char *p)
  3530. {
  3531. return cmdline_parse_core(p, &required_kernelcore);
  3532. }
  3533. /*
  3534. * movablecore=size sets the amount of memory for use for allocations that
  3535. * can be reclaimed or migrated.
  3536. */
  3537. static int __init cmdline_parse_movablecore(char *p)
  3538. {
  3539. return cmdline_parse_core(p, &required_movablecore);
  3540. }
  3541. early_param("kernelcore", cmdline_parse_kernelcore);
  3542. early_param("movablecore", cmdline_parse_movablecore);
  3543. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3544. /**
  3545. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3546. * @new_dma_reserve: The number of pages to mark reserved
  3547. *
  3548. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3549. * In the DMA zone, a significant percentage may be consumed by kernel image
  3550. * and other unfreeable allocations which can skew the watermarks badly. This
  3551. * function may optionally be used to account for unfreeable pages in the
  3552. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3553. * smaller per-cpu batchsize.
  3554. */
  3555. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3556. {
  3557. dma_reserve = new_dma_reserve;
  3558. }
  3559. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3560. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3561. EXPORT_SYMBOL(contig_page_data);
  3562. #endif
  3563. void __init free_area_init(unsigned long *zones_size)
  3564. {
  3565. free_area_init_node(0, zones_size,
  3566. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3567. }
  3568. static int page_alloc_cpu_notify(struct notifier_block *self,
  3569. unsigned long action, void *hcpu)
  3570. {
  3571. int cpu = (unsigned long)hcpu;
  3572. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3573. drain_pages(cpu);
  3574. /*
  3575. * Spill the event counters of the dead processor
  3576. * into the current processors event counters.
  3577. * This artificially elevates the count of the current
  3578. * processor.
  3579. */
  3580. vm_events_fold_cpu(cpu);
  3581. /*
  3582. * Zero the differential counters of the dead processor
  3583. * so that the vm statistics are consistent.
  3584. *
  3585. * This is only okay since the processor is dead and cannot
  3586. * race with what we are doing.
  3587. */
  3588. refresh_cpu_vm_stats(cpu);
  3589. }
  3590. return NOTIFY_OK;
  3591. }
  3592. void __init page_alloc_init(void)
  3593. {
  3594. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3595. }
  3596. /*
  3597. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3598. * or min_free_kbytes changes.
  3599. */
  3600. static void calculate_totalreserve_pages(void)
  3601. {
  3602. struct pglist_data *pgdat;
  3603. unsigned long reserve_pages = 0;
  3604. enum zone_type i, j;
  3605. for_each_online_pgdat(pgdat) {
  3606. for (i = 0; i < MAX_NR_ZONES; i++) {
  3607. struct zone *zone = pgdat->node_zones + i;
  3608. unsigned long max = 0;
  3609. /* Find valid and maximum lowmem_reserve in the zone */
  3610. for (j = i; j < MAX_NR_ZONES; j++) {
  3611. if (zone->lowmem_reserve[j] > max)
  3612. max = zone->lowmem_reserve[j];
  3613. }
  3614. /* we treat pages_high as reserved pages. */
  3615. max += zone->pages_high;
  3616. if (max > zone->present_pages)
  3617. max = zone->present_pages;
  3618. reserve_pages += max;
  3619. }
  3620. }
  3621. totalreserve_pages = reserve_pages;
  3622. }
  3623. /*
  3624. * setup_per_zone_lowmem_reserve - called whenever
  3625. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3626. * has a correct pages reserved value, so an adequate number of
  3627. * pages are left in the zone after a successful __alloc_pages().
  3628. */
  3629. static void setup_per_zone_lowmem_reserve(void)
  3630. {
  3631. struct pglist_data *pgdat;
  3632. enum zone_type j, idx;
  3633. for_each_online_pgdat(pgdat) {
  3634. for (j = 0; j < MAX_NR_ZONES; j++) {
  3635. struct zone *zone = pgdat->node_zones + j;
  3636. unsigned long present_pages = zone->present_pages;
  3637. zone->lowmem_reserve[j] = 0;
  3638. idx = j;
  3639. while (idx) {
  3640. struct zone *lower_zone;
  3641. idx--;
  3642. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3643. sysctl_lowmem_reserve_ratio[idx] = 1;
  3644. lower_zone = pgdat->node_zones + idx;
  3645. lower_zone->lowmem_reserve[j] = present_pages /
  3646. sysctl_lowmem_reserve_ratio[idx];
  3647. present_pages += lower_zone->present_pages;
  3648. }
  3649. }
  3650. }
  3651. /* update totalreserve_pages */
  3652. calculate_totalreserve_pages();
  3653. }
  3654. /**
  3655. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3656. *
  3657. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3658. * with respect to min_free_kbytes.
  3659. */
  3660. void setup_per_zone_pages_min(void)
  3661. {
  3662. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3663. unsigned long lowmem_pages = 0;
  3664. struct zone *zone;
  3665. unsigned long flags;
  3666. /* Calculate total number of !ZONE_HIGHMEM pages */
  3667. for_each_zone(zone) {
  3668. if (!is_highmem(zone))
  3669. lowmem_pages += zone->present_pages;
  3670. }
  3671. for_each_zone(zone) {
  3672. u64 tmp;
  3673. spin_lock_irqsave(&zone->lock, flags);
  3674. tmp = (u64)pages_min * zone->present_pages;
  3675. do_div(tmp, lowmem_pages);
  3676. if (is_highmem(zone)) {
  3677. /*
  3678. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3679. * need highmem pages, so cap pages_min to a small
  3680. * value here.
  3681. *
  3682. * The (pages_high-pages_low) and (pages_low-pages_min)
  3683. * deltas controls asynch page reclaim, and so should
  3684. * not be capped for highmem.
  3685. */
  3686. int min_pages;
  3687. min_pages = zone->present_pages / 1024;
  3688. if (min_pages < SWAP_CLUSTER_MAX)
  3689. min_pages = SWAP_CLUSTER_MAX;
  3690. if (min_pages > 128)
  3691. min_pages = 128;
  3692. zone->pages_min = min_pages;
  3693. } else {
  3694. /*
  3695. * If it's a lowmem zone, reserve a number of pages
  3696. * proportionate to the zone's size.
  3697. */
  3698. zone->pages_min = tmp;
  3699. }
  3700. zone->pages_low = zone->pages_min + (tmp >> 2);
  3701. zone->pages_high = zone->pages_min + (tmp >> 1);
  3702. setup_zone_migrate_reserve(zone);
  3703. spin_unlock_irqrestore(&zone->lock, flags);
  3704. }
  3705. /* update totalreserve_pages */
  3706. calculate_totalreserve_pages();
  3707. }
  3708. /**
  3709. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3710. *
  3711. * The inactive anon list should be small enough that the VM never has to
  3712. * do too much work, but large enough that each inactive page has a chance
  3713. * to be referenced again before it is swapped out.
  3714. *
  3715. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3716. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3717. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3718. * the anonymous pages are kept on the inactive list.
  3719. *
  3720. * total target max
  3721. * memory ratio inactive anon
  3722. * -------------------------------------
  3723. * 10MB 1 5MB
  3724. * 100MB 1 50MB
  3725. * 1GB 3 250MB
  3726. * 10GB 10 0.9GB
  3727. * 100GB 31 3GB
  3728. * 1TB 101 10GB
  3729. * 10TB 320 32GB
  3730. */
  3731. static void setup_per_zone_inactive_ratio(void)
  3732. {
  3733. struct zone *zone;
  3734. for_each_zone(zone) {
  3735. unsigned int gb, ratio;
  3736. /* Zone size in gigabytes */
  3737. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3738. ratio = int_sqrt(10 * gb);
  3739. if (!ratio)
  3740. ratio = 1;
  3741. zone->inactive_ratio = ratio;
  3742. }
  3743. }
  3744. /*
  3745. * Initialise min_free_kbytes.
  3746. *
  3747. * For small machines we want it small (128k min). For large machines
  3748. * we want it large (64MB max). But it is not linear, because network
  3749. * bandwidth does not increase linearly with machine size. We use
  3750. *
  3751. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3752. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3753. *
  3754. * which yields
  3755. *
  3756. * 16MB: 512k
  3757. * 32MB: 724k
  3758. * 64MB: 1024k
  3759. * 128MB: 1448k
  3760. * 256MB: 2048k
  3761. * 512MB: 2896k
  3762. * 1024MB: 4096k
  3763. * 2048MB: 5792k
  3764. * 4096MB: 8192k
  3765. * 8192MB: 11584k
  3766. * 16384MB: 16384k
  3767. */
  3768. static int __init init_per_zone_pages_min(void)
  3769. {
  3770. unsigned long lowmem_kbytes;
  3771. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3772. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3773. if (min_free_kbytes < 128)
  3774. min_free_kbytes = 128;
  3775. if (min_free_kbytes > 65536)
  3776. min_free_kbytes = 65536;
  3777. setup_per_zone_pages_min();
  3778. setup_per_zone_lowmem_reserve();
  3779. setup_per_zone_inactive_ratio();
  3780. return 0;
  3781. }
  3782. module_init(init_per_zone_pages_min)
  3783. /*
  3784. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3785. * that we can call two helper functions whenever min_free_kbytes
  3786. * changes.
  3787. */
  3788. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3789. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3790. {
  3791. proc_dointvec(table, write, file, buffer, length, ppos);
  3792. if (write)
  3793. setup_per_zone_pages_min();
  3794. return 0;
  3795. }
  3796. #ifdef CONFIG_NUMA
  3797. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3798. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3799. {
  3800. struct zone *zone;
  3801. int rc;
  3802. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3803. if (rc)
  3804. return rc;
  3805. for_each_zone(zone)
  3806. zone->min_unmapped_pages = (zone->present_pages *
  3807. sysctl_min_unmapped_ratio) / 100;
  3808. return 0;
  3809. }
  3810. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3811. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3812. {
  3813. struct zone *zone;
  3814. int rc;
  3815. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3816. if (rc)
  3817. return rc;
  3818. for_each_zone(zone)
  3819. zone->min_slab_pages = (zone->present_pages *
  3820. sysctl_min_slab_ratio) / 100;
  3821. return 0;
  3822. }
  3823. #endif
  3824. /*
  3825. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3826. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3827. * whenever sysctl_lowmem_reserve_ratio changes.
  3828. *
  3829. * The reserve ratio obviously has absolutely no relation with the
  3830. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3831. * if in function of the boot time zone sizes.
  3832. */
  3833. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3834. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3835. {
  3836. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3837. setup_per_zone_lowmem_reserve();
  3838. return 0;
  3839. }
  3840. /*
  3841. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3842. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3843. * can have before it gets flushed back to buddy allocator.
  3844. */
  3845. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3846. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3847. {
  3848. struct zone *zone;
  3849. unsigned int cpu;
  3850. int ret;
  3851. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3852. if (!write || (ret == -EINVAL))
  3853. return ret;
  3854. for_each_zone(zone) {
  3855. for_each_online_cpu(cpu) {
  3856. unsigned long high;
  3857. high = zone->present_pages / percpu_pagelist_fraction;
  3858. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3859. }
  3860. }
  3861. return 0;
  3862. }
  3863. int hashdist = HASHDIST_DEFAULT;
  3864. #ifdef CONFIG_NUMA
  3865. static int __init set_hashdist(char *str)
  3866. {
  3867. if (!str)
  3868. return 0;
  3869. hashdist = simple_strtoul(str, &str, 0);
  3870. return 1;
  3871. }
  3872. __setup("hashdist=", set_hashdist);
  3873. #endif
  3874. /*
  3875. * allocate a large system hash table from bootmem
  3876. * - it is assumed that the hash table must contain an exact power-of-2
  3877. * quantity of entries
  3878. * - limit is the number of hash buckets, not the total allocation size
  3879. */
  3880. void *__init alloc_large_system_hash(const char *tablename,
  3881. unsigned long bucketsize,
  3882. unsigned long numentries,
  3883. int scale,
  3884. int flags,
  3885. unsigned int *_hash_shift,
  3886. unsigned int *_hash_mask,
  3887. unsigned long limit)
  3888. {
  3889. unsigned long long max = limit;
  3890. unsigned long log2qty, size;
  3891. void *table = NULL;
  3892. /* allow the kernel cmdline to have a say */
  3893. if (!numentries) {
  3894. /* round applicable memory size up to nearest megabyte */
  3895. numentries = nr_kernel_pages;
  3896. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3897. numentries >>= 20 - PAGE_SHIFT;
  3898. numentries <<= 20 - PAGE_SHIFT;
  3899. /* limit to 1 bucket per 2^scale bytes of low memory */
  3900. if (scale > PAGE_SHIFT)
  3901. numentries >>= (scale - PAGE_SHIFT);
  3902. else
  3903. numentries <<= (PAGE_SHIFT - scale);
  3904. /* Make sure we've got at least a 0-order allocation.. */
  3905. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3906. numentries = PAGE_SIZE / bucketsize;
  3907. }
  3908. numentries = roundup_pow_of_two(numentries);
  3909. /* limit allocation size to 1/16 total memory by default */
  3910. if (max == 0) {
  3911. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3912. do_div(max, bucketsize);
  3913. }
  3914. if (numentries > max)
  3915. numentries = max;
  3916. log2qty = ilog2(numentries);
  3917. do {
  3918. size = bucketsize << log2qty;
  3919. if (flags & HASH_EARLY)
  3920. table = alloc_bootmem_nopanic(size);
  3921. else if (hashdist)
  3922. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3923. else {
  3924. unsigned long order = get_order(size);
  3925. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3926. /*
  3927. * If bucketsize is not a power-of-two, we may free
  3928. * some pages at the end of hash table.
  3929. */
  3930. if (table) {
  3931. unsigned long alloc_end = (unsigned long)table +
  3932. (PAGE_SIZE << order);
  3933. unsigned long used = (unsigned long)table +
  3934. PAGE_ALIGN(size);
  3935. split_page(virt_to_page(table), order);
  3936. while (used < alloc_end) {
  3937. free_page(used);
  3938. used += PAGE_SIZE;
  3939. }
  3940. }
  3941. }
  3942. } while (!table && size > PAGE_SIZE && --log2qty);
  3943. if (!table)
  3944. panic("Failed to allocate %s hash table\n", tablename);
  3945. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3946. tablename,
  3947. (1U << log2qty),
  3948. ilog2(size) - PAGE_SHIFT,
  3949. size);
  3950. if (_hash_shift)
  3951. *_hash_shift = log2qty;
  3952. if (_hash_mask)
  3953. *_hash_mask = (1 << log2qty) - 1;
  3954. /*
  3955. * If hashdist is set, the table allocation is done with __vmalloc()
  3956. * which invokes the kmemleak_alloc() callback. This function may also
  3957. * be called before the slab and kmemleak are initialised when
  3958. * kmemleak simply buffers the request to be executed later
  3959. * (GFP_ATOMIC flag ignored in this case).
  3960. */
  3961. if (!hashdist)
  3962. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  3963. return table;
  3964. }
  3965. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3966. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3967. unsigned long pfn)
  3968. {
  3969. #ifdef CONFIG_SPARSEMEM
  3970. return __pfn_to_section(pfn)->pageblock_flags;
  3971. #else
  3972. return zone->pageblock_flags;
  3973. #endif /* CONFIG_SPARSEMEM */
  3974. }
  3975. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3976. {
  3977. #ifdef CONFIG_SPARSEMEM
  3978. pfn &= (PAGES_PER_SECTION-1);
  3979. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3980. #else
  3981. pfn = pfn - zone->zone_start_pfn;
  3982. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3983. #endif /* CONFIG_SPARSEMEM */
  3984. }
  3985. /**
  3986. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3987. * @page: The page within the block of interest
  3988. * @start_bitidx: The first bit of interest to retrieve
  3989. * @end_bitidx: The last bit of interest
  3990. * returns pageblock_bits flags
  3991. */
  3992. unsigned long get_pageblock_flags_group(struct page *page,
  3993. int start_bitidx, int end_bitidx)
  3994. {
  3995. struct zone *zone;
  3996. unsigned long *bitmap;
  3997. unsigned long pfn, bitidx;
  3998. unsigned long flags = 0;
  3999. unsigned long value = 1;
  4000. zone = page_zone(page);
  4001. pfn = page_to_pfn(page);
  4002. bitmap = get_pageblock_bitmap(zone, pfn);
  4003. bitidx = pfn_to_bitidx(zone, pfn);
  4004. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4005. if (test_bit(bitidx + start_bitidx, bitmap))
  4006. flags |= value;
  4007. return flags;
  4008. }
  4009. /**
  4010. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4011. * @page: The page within the block of interest
  4012. * @start_bitidx: The first bit of interest
  4013. * @end_bitidx: The last bit of interest
  4014. * @flags: The flags to set
  4015. */
  4016. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4017. int start_bitidx, int end_bitidx)
  4018. {
  4019. struct zone *zone;
  4020. unsigned long *bitmap;
  4021. unsigned long pfn, bitidx;
  4022. unsigned long value = 1;
  4023. zone = page_zone(page);
  4024. pfn = page_to_pfn(page);
  4025. bitmap = get_pageblock_bitmap(zone, pfn);
  4026. bitidx = pfn_to_bitidx(zone, pfn);
  4027. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4028. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4029. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4030. if (flags & value)
  4031. __set_bit(bitidx + start_bitidx, bitmap);
  4032. else
  4033. __clear_bit(bitidx + start_bitidx, bitmap);
  4034. }
  4035. /*
  4036. * This is designed as sub function...plz see page_isolation.c also.
  4037. * set/clear page block's type to be ISOLATE.
  4038. * page allocater never alloc memory from ISOLATE block.
  4039. */
  4040. int set_migratetype_isolate(struct page *page)
  4041. {
  4042. struct zone *zone;
  4043. unsigned long flags;
  4044. int ret = -EBUSY;
  4045. zone = page_zone(page);
  4046. spin_lock_irqsave(&zone->lock, flags);
  4047. /*
  4048. * In future, more migrate types will be able to be isolation target.
  4049. */
  4050. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4051. goto out;
  4052. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4053. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4054. ret = 0;
  4055. out:
  4056. spin_unlock_irqrestore(&zone->lock, flags);
  4057. if (!ret)
  4058. drain_all_pages();
  4059. return ret;
  4060. }
  4061. void unset_migratetype_isolate(struct page *page)
  4062. {
  4063. struct zone *zone;
  4064. unsigned long flags;
  4065. zone = page_zone(page);
  4066. spin_lock_irqsave(&zone->lock, flags);
  4067. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4068. goto out;
  4069. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4070. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4071. out:
  4072. spin_unlock_irqrestore(&zone->lock, flags);
  4073. }
  4074. #ifdef CONFIG_MEMORY_HOTREMOVE
  4075. /*
  4076. * All pages in the range must be isolated before calling this.
  4077. */
  4078. void
  4079. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4080. {
  4081. struct page *page;
  4082. struct zone *zone;
  4083. int order, i;
  4084. unsigned long pfn;
  4085. unsigned long flags;
  4086. /* find the first valid pfn */
  4087. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4088. if (pfn_valid(pfn))
  4089. break;
  4090. if (pfn == end_pfn)
  4091. return;
  4092. zone = page_zone(pfn_to_page(pfn));
  4093. spin_lock_irqsave(&zone->lock, flags);
  4094. pfn = start_pfn;
  4095. while (pfn < end_pfn) {
  4096. if (!pfn_valid(pfn)) {
  4097. pfn++;
  4098. continue;
  4099. }
  4100. page = pfn_to_page(pfn);
  4101. BUG_ON(page_count(page));
  4102. BUG_ON(!PageBuddy(page));
  4103. order = page_order(page);
  4104. #ifdef CONFIG_DEBUG_VM
  4105. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4106. pfn, 1 << order, end_pfn);
  4107. #endif
  4108. list_del(&page->lru);
  4109. rmv_page_order(page);
  4110. zone->free_area[order].nr_free--;
  4111. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4112. - (1UL << order));
  4113. for (i = 0; i < (1 << order); i++)
  4114. SetPageReserved((page+i));
  4115. pfn += (1 << order);
  4116. }
  4117. spin_unlock_irqrestore(&zone->lock, flags);
  4118. }
  4119. #endif