mm.h 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/prio_tree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/bit_spinlock.h>
  17. #include <linux/shrinker.h>
  18. struct mempolicy;
  19. struct anon_vma;
  20. struct file_ra_state;
  21. struct user_struct;
  22. struct writeback_control;
  23. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  24. extern unsigned long max_mapnr;
  25. #endif
  26. extern unsigned long num_physpages;
  27. extern unsigned long totalram_pages;
  28. extern void * high_memory;
  29. extern int page_cluster;
  30. #ifdef CONFIG_SYSCTL
  31. extern int sysctl_legacy_va_layout;
  32. #else
  33. #define sysctl_legacy_va_layout 0
  34. #endif
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  39. /* to align the pointer to the (next) page boundary */
  40. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  41. /*
  42. * Linux kernel virtual memory manager primitives.
  43. * The idea being to have a "virtual" mm in the same way
  44. * we have a virtual fs - giving a cleaner interface to the
  45. * mm details, and allowing different kinds of memory mappings
  46. * (from shared memory to executable loading to arbitrary
  47. * mmap() functions).
  48. */
  49. extern struct kmem_cache *vm_area_cachep;
  50. #ifndef CONFIG_MMU
  51. extern struct rb_root nommu_region_tree;
  52. extern struct rw_semaphore nommu_region_sem;
  53. extern unsigned int kobjsize(const void *objp);
  54. #endif
  55. /*
  56. * vm_flags in vm_area_struct, see mm_types.h.
  57. */
  58. #define VM_READ 0x00000001 /* currently active flags */
  59. #define VM_WRITE 0x00000002
  60. #define VM_EXEC 0x00000004
  61. #define VM_SHARED 0x00000008
  62. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  63. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  64. #define VM_MAYWRITE 0x00000020
  65. #define VM_MAYEXEC 0x00000040
  66. #define VM_MAYSHARE 0x00000080
  67. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  68. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  69. #define VM_GROWSUP 0x00000200
  70. #else
  71. #define VM_GROWSUP 0x00000000
  72. #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
  73. #endif
  74. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  75. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  76. #define VM_EXECUTABLE 0x00001000
  77. #define VM_LOCKED 0x00002000
  78. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  79. /* Used by sys_madvise() */
  80. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  81. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  82. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  83. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  84. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  85. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  86. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  87. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  88. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  89. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  90. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  91. #else
  92. #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
  93. #endif
  94. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  95. #define VM_NODUMP 0x04000000 /* Do not include in the core dump */
  96. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  97. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  98. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  99. #define VM_PAT 0x40000000 /* PAT reserves whole VMA at once (x86) */
  100. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  101. /* Bits set in the VMA until the stack is in its final location */
  102. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  103. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  104. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  105. #endif
  106. #ifdef CONFIG_STACK_GROWSUP
  107. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  108. #else
  109. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  110. #endif
  111. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  112. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  113. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  114. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  115. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  116. /*
  117. * Special vmas that are non-mergable, non-mlock()able.
  118. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  119. */
  120. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  121. /*
  122. * mapping from the currently active vm_flags protection bits (the
  123. * low four bits) to a page protection mask..
  124. */
  125. extern pgprot_t protection_map[16];
  126. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  127. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  128. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  129. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  130. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  131. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  132. /*
  133. * vm_fault is filled by the the pagefault handler and passed to the vma's
  134. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  135. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  136. *
  137. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  138. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  139. * mapping support.
  140. */
  141. struct vm_fault {
  142. unsigned int flags; /* FAULT_FLAG_xxx flags */
  143. pgoff_t pgoff; /* Logical page offset based on vma */
  144. void __user *virtual_address; /* Faulting virtual address */
  145. struct page *page; /* ->fault handlers should return a
  146. * page here, unless VM_FAULT_NOPAGE
  147. * is set (which is also implied by
  148. * VM_FAULT_ERROR).
  149. */
  150. };
  151. /*
  152. * These are the virtual MM functions - opening of an area, closing and
  153. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  154. * to the functions called when a no-page or a wp-page exception occurs.
  155. */
  156. struct vm_operations_struct {
  157. void (*open)(struct vm_area_struct * area);
  158. void (*close)(struct vm_area_struct * area);
  159. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  160. /* notification that a previously read-only page is about to become
  161. * writable, if an error is returned it will cause a SIGBUS */
  162. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  163. /* called by access_process_vm when get_user_pages() fails, typically
  164. * for use by special VMAs that can switch between memory and hardware
  165. */
  166. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  167. void *buf, int len, int write);
  168. #ifdef CONFIG_NUMA
  169. /*
  170. * set_policy() op must add a reference to any non-NULL @new mempolicy
  171. * to hold the policy upon return. Caller should pass NULL @new to
  172. * remove a policy and fall back to surrounding context--i.e. do not
  173. * install a MPOL_DEFAULT policy, nor the task or system default
  174. * mempolicy.
  175. */
  176. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  177. /*
  178. * get_policy() op must add reference [mpol_get()] to any policy at
  179. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  180. * in mm/mempolicy.c will do this automatically.
  181. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  182. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  183. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  184. * must return NULL--i.e., do not "fallback" to task or system default
  185. * policy.
  186. */
  187. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  188. unsigned long addr);
  189. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  190. const nodemask_t *to, unsigned long flags);
  191. #endif
  192. };
  193. struct mmu_gather;
  194. struct inode;
  195. #define page_private(page) ((page)->private)
  196. #define set_page_private(page, v) ((page)->private = (v))
  197. /*
  198. * FIXME: take this include out, include page-flags.h in
  199. * files which need it (119 of them)
  200. */
  201. #include <linux/page-flags.h>
  202. #include <linux/huge_mm.h>
  203. /*
  204. * Methods to modify the page usage count.
  205. *
  206. * What counts for a page usage:
  207. * - cache mapping (page->mapping)
  208. * - private data (page->private)
  209. * - page mapped in a task's page tables, each mapping
  210. * is counted separately
  211. *
  212. * Also, many kernel routines increase the page count before a critical
  213. * routine so they can be sure the page doesn't go away from under them.
  214. */
  215. /*
  216. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  217. */
  218. static inline int put_page_testzero(struct page *page)
  219. {
  220. VM_BUG_ON(atomic_read(&page->_count) == 0);
  221. return atomic_dec_and_test(&page->_count);
  222. }
  223. /*
  224. * Try to grab a ref unless the page has a refcount of zero, return false if
  225. * that is the case.
  226. */
  227. static inline int get_page_unless_zero(struct page *page)
  228. {
  229. return atomic_inc_not_zero(&page->_count);
  230. }
  231. extern int page_is_ram(unsigned long pfn);
  232. /* Support for virtually mapped pages */
  233. struct page *vmalloc_to_page(const void *addr);
  234. unsigned long vmalloc_to_pfn(const void *addr);
  235. /*
  236. * Determine if an address is within the vmalloc range
  237. *
  238. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  239. * is no special casing required.
  240. */
  241. static inline int is_vmalloc_addr(const void *x)
  242. {
  243. #ifdef CONFIG_MMU
  244. unsigned long addr = (unsigned long)x;
  245. return addr >= VMALLOC_START && addr < VMALLOC_END;
  246. #else
  247. return 0;
  248. #endif
  249. }
  250. #ifdef CONFIG_MMU
  251. extern int is_vmalloc_or_module_addr(const void *x);
  252. #else
  253. static inline int is_vmalloc_or_module_addr(const void *x)
  254. {
  255. return 0;
  256. }
  257. #endif
  258. static inline void compound_lock(struct page *page)
  259. {
  260. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  261. VM_BUG_ON(PageSlab(page));
  262. bit_spin_lock(PG_compound_lock, &page->flags);
  263. #endif
  264. }
  265. static inline void compound_unlock(struct page *page)
  266. {
  267. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  268. VM_BUG_ON(PageSlab(page));
  269. bit_spin_unlock(PG_compound_lock, &page->flags);
  270. #endif
  271. }
  272. static inline unsigned long compound_lock_irqsave(struct page *page)
  273. {
  274. unsigned long uninitialized_var(flags);
  275. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  276. local_irq_save(flags);
  277. compound_lock(page);
  278. #endif
  279. return flags;
  280. }
  281. static inline void compound_unlock_irqrestore(struct page *page,
  282. unsigned long flags)
  283. {
  284. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  285. compound_unlock(page);
  286. local_irq_restore(flags);
  287. #endif
  288. }
  289. static inline struct page *compound_head(struct page *page)
  290. {
  291. if (unlikely(PageTail(page)))
  292. return page->first_page;
  293. return page;
  294. }
  295. /*
  296. * The atomic page->_mapcount, starts from -1: so that transitions
  297. * both from it and to it can be tracked, using atomic_inc_and_test
  298. * and atomic_add_negative(-1).
  299. */
  300. static inline void reset_page_mapcount(struct page *page)
  301. {
  302. atomic_set(&(page)->_mapcount, -1);
  303. }
  304. static inline int page_mapcount(struct page *page)
  305. {
  306. return atomic_read(&(page)->_mapcount) + 1;
  307. }
  308. static inline int page_count(struct page *page)
  309. {
  310. return atomic_read(&compound_head(page)->_count);
  311. }
  312. static inline void get_huge_page_tail(struct page *page)
  313. {
  314. /*
  315. * __split_huge_page_refcount() cannot run
  316. * from under us.
  317. */
  318. VM_BUG_ON(page_mapcount(page) < 0);
  319. VM_BUG_ON(atomic_read(&page->_count) != 0);
  320. atomic_inc(&page->_mapcount);
  321. }
  322. extern bool __get_page_tail(struct page *page);
  323. static inline void get_page(struct page *page)
  324. {
  325. if (unlikely(PageTail(page)))
  326. if (likely(__get_page_tail(page)))
  327. return;
  328. /*
  329. * Getting a normal page or the head of a compound page
  330. * requires to already have an elevated page->_count.
  331. */
  332. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  333. atomic_inc(&page->_count);
  334. }
  335. static inline struct page *virt_to_head_page(const void *x)
  336. {
  337. struct page *page = virt_to_page(x);
  338. return compound_head(page);
  339. }
  340. /*
  341. * Setup the page count before being freed into the page allocator for
  342. * the first time (boot or memory hotplug)
  343. */
  344. static inline void init_page_count(struct page *page)
  345. {
  346. atomic_set(&page->_count, 1);
  347. }
  348. /*
  349. * PageBuddy() indicate that the page is free and in the buddy system
  350. * (see mm/page_alloc.c).
  351. *
  352. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  353. * -2 so that an underflow of the page_mapcount() won't be mistaken
  354. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  355. * efficiently by most CPU architectures.
  356. */
  357. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  358. static inline int PageBuddy(struct page *page)
  359. {
  360. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  361. }
  362. static inline void __SetPageBuddy(struct page *page)
  363. {
  364. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  365. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  366. }
  367. static inline void __ClearPageBuddy(struct page *page)
  368. {
  369. VM_BUG_ON(!PageBuddy(page));
  370. atomic_set(&page->_mapcount, -1);
  371. }
  372. void put_page(struct page *page);
  373. void put_pages_list(struct list_head *pages);
  374. void split_page(struct page *page, unsigned int order);
  375. int split_free_page(struct page *page);
  376. /*
  377. * Compound pages have a destructor function. Provide a
  378. * prototype for that function and accessor functions.
  379. * These are _only_ valid on the head of a PG_compound page.
  380. */
  381. typedef void compound_page_dtor(struct page *);
  382. static inline void set_compound_page_dtor(struct page *page,
  383. compound_page_dtor *dtor)
  384. {
  385. page[1].lru.next = (void *)dtor;
  386. }
  387. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  388. {
  389. return (compound_page_dtor *)page[1].lru.next;
  390. }
  391. static inline int compound_order(struct page *page)
  392. {
  393. if (!PageHead(page))
  394. return 0;
  395. return (unsigned long)page[1].lru.prev;
  396. }
  397. static inline int compound_trans_order(struct page *page)
  398. {
  399. int order;
  400. unsigned long flags;
  401. if (!PageHead(page))
  402. return 0;
  403. flags = compound_lock_irqsave(page);
  404. order = compound_order(page);
  405. compound_unlock_irqrestore(page, flags);
  406. return order;
  407. }
  408. static inline void set_compound_order(struct page *page, unsigned long order)
  409. {
  410. page[1].lru.prev = (void *)order;
  411. }
  412. #ifdef CONFIG_MMU
  413. /*
  414. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  415. * servicing faults for write access. In the normal case, do always want
  416. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  417. * that do not have writing enabled, when used by access_process_vm.
  418. */
  419. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  420. {
  421. if (likely(vma->vm_flags & VM_WRITE))
  422. pte = pte_mkwrite(pte);
  423. return pte;
  424. }
  425. #endif
  426. /*
  427. * Multiple processes may "see" the same page. E.g. for untouched
  428. * mappings of /dev/null, all processes see the same page full of
  429. * zeroes, and text pages of executables and shared libraries have
  430. * only one copy in memory, at most, normally.
  431. *
  432. * For the non-reserved pages, page_count(page) denotes a reference count.
  433. * page_count() == 0 means the page is free. page->lru is then used for
  434. * freelist management in the buddy allocator.
  435. * page_count() > 0 means the page has been allocated.
  436. *
  437. * Pages are allocated by the slab allocator in order to provide memory
  438. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  439. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  440. * unless a particular usage is carefully commented. (the responsibility of
  441. * freeing the kmalloc memory is the caller's, of course).
  442. *
  443. * A page may be used by anyone else who does a __get_free_page().
  444. * In this case, page_count still tracks the references, and should only
  445. * be used through the normal accessor functions. The top bits of page->flags
  446. * and page->virtual store page management information, but all other fields
  447. * are unused and could be used privately, carefully. The management of this
  448. * page is the responsibility of the one who allocated it, and those who have
  449. * subsequently been given references to it.
  450. *
  451. * The other pages (we may call them "pagecache pages") are completely
  452. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  453. * The following discussion applies only to them.
  454. *
  455. * A pagecache page contains an opaque `private' member, which belongs to the
  456. * page's address_space. Usually, this is the address of a circular list of
  457. * the page's disk buffers. PG_private must be set to tell the VM to call
  458. * into the filesystem to release these pages.
  459. *
  460. * A page may belong to an inode's memory mapping. In this case, page->mapping
  461. * is the pointer to the inode, and page->index is the file offset of the page,
  462. * in units of PAGE_CACHE_SIZE.
  463. *
  464. * If pagecache pages are not associated with an inode, they are said to be
  465. * anonymous pages. These may become associated with the swapcache, and in that
  466. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  467. *
  468. * In either case (swapcache or inode backed), the pagecache itself holds one
  469. * reference to the page. Setting PG_private should also increment the
  470. * refcount. The each user mapping also has a reference to the page.
  471. *
  472. * The pagecache pages are stored in a per-mapping radix tree, which is
  473. * rooted at mapping->page_tree, and indexed by offset.
  474. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  475. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  476. *
  477. * All pagecache pages may be subject to I/O:
  478. * - inode pages may need to be read from disk,
  479. * - inode pages which have been modified and are MAP_SHARED may need
  480. * to be written back to the inode on disk,
  481. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  482. * modified may need to be swapped out to swap space and (later) to be read
  483. * back into memory.
  484. */
  485. /*
  486. * The zone field is never updated after free_area_init_core()
  487. * sets it, so none of the operations on it need to be atomic.
  488. */
  489. /*
  490. * page->flags layout:
  491. *
  492. * There are three possibilities for how page->flags get
  493. * laid out. The first is for the normal case, without
  494. * sparsemem. The second is for sparsemem when there is
  495. * plenty of space for node and section. The last is when
  496. * we have run out of space and have to fall back to an
  497. * alternate (slower) way of determining the node.
  498. *
  499. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  500. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  501. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  502. */
  503. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  504. #define SECTIONS_WIDTH SECTIONS_SHIFT
  505. #else
  506. #define SECTIONS_WIDTH 0
  507. #endif
  508. #define ZONES_WIDTH ZONES_SHIFT
  509. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  510. #define NODES_WIDTH NODES_SHIFT
  511. #else
  512. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  513. #error "Vmemmap: No space for nodes field in page flags"
  514. #endif
  515. #define NODES_WIDTH 0
  516. #endif
  517. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  518. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  519. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  520. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  521. /*
  522. * We are going to use the flags for the page to node mapping if its in
  523. * there. This includes the case where there is no node, so it is implicit.
  524. */
  525. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  526. #define NODE_NOT_IN_PAGE_FLAGS
  527. #endif
  528. /*
  529. * Define the bit shifts to access each section. For non-existent
  530. * sections we define the shift as 0; that plus a 0 mask ensures
  531. * the compiler will optimise away reference to them.
  532. */
  533. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  534. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  535. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  536. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  537. #ifdef NODE_NOT_IN_PAGE_FLAGS
  538. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  539. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  540. SECTIONS_PGOFF : ZONES_PGOFF)
  541. #else
  542. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  543. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  544. NODES_PGOFF : ZONES_PGOFF)
  545. #endif
  546. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  547. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  548. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  549. #endif
  550. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  551. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  552. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  553. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  554. static inline enum zone_type page_zonenum(const struct page *page)
  555. {
  556. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  557. }
  558. /*
  559. * The identification function is only used by the buddy allocator for
  560. * determining if two pages could be buddies. We are not really
  561. * identifying a zone since we could be using a the section number
  562. * id if we have not node id available in page flags.
  563. * We guarantee only that it will return the same value for two
  564. * combinable pages in a zone.
  565. */
  566. static inline int page_zone_id(struct page *page)
  567. {
  568. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  569. }
  570. static inline int zone_to_nid(struct zone *zone)
  571. {
  572. #ifdef CONFIG_NUMA
  573. return zone->node;
  574. #else
  575. return 0;
  576. #endif
  577. }
  578. #ifdef NODE_NOT_IN_PAGE_FLAGS
  579. extern int page_to_nid(const struct page *page);
  580. #else
  581. static inline int page_to_nid(const struct page *page)
  582. {
  583. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  584. }
  585. #endif
  586. static inline struct zone *page_zone(const struct page *page)
  587. {
  588. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  589. }
  590. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  591. static inline void set_page_section(struct page *page, unsigned long section)
  592. {
  593. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  594. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  595. }
  596. static inline unsigned long page_to_section(const struct page *page)
  597. {
  598. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  599. }
  600. #endif
  601. static inline void set_page_zone(struct page *page, enum zone_type zone)
  602. {
  603. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  604. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  605. }
  606. static inline void set_page_node(struct page *page, unsigned long node)
  607. {
  608. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  609. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  610. }
  611. static inline void set_page_links(struct page *page, enum zone_type zone,
  612. unsigned long node, unsigned long pfn)
  613. {
  614. set_page_zone(page, zone);
  615. set_page_node(page, node);
  616. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  617. set_page_section(page, pfn_to_section_nr(pfn));
  618. #endif
  619. }
  620. /*
  621. * Some inline functions in vmstat.h depend on page_zone()
  622. */
  623. #include <linux/vmstat.h>
  624. static __always_inline void *lowmem_page_address(const struct page *page)
  625. {
  626. return __va(PFN_PHYS(page_to_pfn(page)));
  627. }
  628. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  629. #define HASHED_PAGE_VIRTUAL
  630. #endif
  631. #if defined(WANT_PAGE_VIRTUAL)
  632. #define page_address(page) ((page)->virtual)
  633. #define set_page_address(page, address) \
  634. do { \
  635. (page)->virtual = (address); \
  636. } while(0)
  637. #define page_address_init() do { } while(0)
  638. #endif
  639. #if defined(HASHED_PAGE_VIRTUAL)
  640. void *page_address(const struct page *page);
  641. void set_page_address(struct page *page, void *virtual);
  642. void page_address_init(void);
  643. #endif
  644. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  645. #define page_address(page) lowmem_page_address(page)
  646. #define set_page_address(page, address) do { } while(0)
  647. #define page_address_init() do { } while(0)
  648. #endif
  649. /*
  650. * On an anonymous page mapped into a user virtual memory area,
  651. * page->mapping points to its anon_vma, not to a struct address_space;
  652. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  653. *
  654. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  655. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  656. * and then page->mapping points, not to an anon_vma, but to a private
  657. * structure which KSM associates with that merged page. See ksm.h.
  658. *
  659. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  660. *
  661. * Please note that, confusingly, "page_mapping" refers to the inode
  662. * address_space which maps the page from disk; whereas "page_mapped"
  663. * refers to user virtual address space into which the page is mapped.
  664. */
  665. #define PAGE_MAPPING_ANON 1
  666. #define PAGE_MAPPING_KSM 2
  667. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  668. extern struct address_space swapper_space;
  669. static inline struct address_space *page_mapping(struct page *page)
  670. {
  671. struct address_space *mapping = page->mapping;
  672. VM_BUG_ON(PageSlab(page));
  673. if (unlikely(PageSwapCache(page)))
  674. mapping = &swapper_space;
  675. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  676. mapping = NULL;
  677. return mapping;
  678. }
  679. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  680. static inline void *page_rmapping(struct page *page)
  681. {
  682. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  683. }
  684. extern struct address_space *__page_file_mapping(struct page *);
  685. static inline
  686. struct address_space *page_file_mapping(struct page *page)
  687. {
  688. if (unlikely(PageSwapCache(page)))
  689. return __page_file_mapping(page);
  690. return page->mapping;
  691. }
  692. static inline int PageAnon(struct page *page)
  693. {
  694. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  695. }
  696. /*
  697. * Return the pagecache index of the passed page. Regular pagecache pages
  698. * use ->index whereas swapcache pages use ->private
  699. */
  700. static inline pgoff_t page_index(struct page *page)
  701. {
  702. if (unlikely(PageSwapCache(page)))
  703. return page_private(page);
  704. return page->index;
  705. }
  706. extern pgoff_t __page_file_index(struct page *page);
  707. /*
  708. * Return the file index of the page. Regular pagecache pages use ->index
  709. * whereas swapcache pages use swp_offset(->private)
  710. */
  711. static inline pgoff_t page_file_index(struct page *page)
  712. {
  713. if (unlikely(PageSwapCache(page)))
  714. return __page_file_index(page);
  715. return page->index;
  716. }
  717. /*
  718. * Return true if this page is mapped into pagetables.
  719. */
  720. static inline int page_mapped(struct page *page)
  721. {
  722. return atomic_read(&(page)->_mapcount) >= 0;
  723. }
  724. /*
  725. * Different kinds of faults, as returned by handle_mm_fault().
  726. * Used to decide whether a process gets delivered SIGBUS or
  727. * just gets major/minor fault counters bumped up.
  728. */
  729. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  730. #define VM_FAULT_OOM 0x0001
  731. #define VM_FAULT_SIGBUS 0x0002
  732. #define VM_FAULT_MAJOR 0x0004
  733. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  734. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  735. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  736. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  737. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  738. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  739. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  740. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  741. VM_FAULT_HWPOISON_LARGE)
  742. /* Encode hstate index for a hwpoisoned large page */
  743. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  744. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  745. /*
  746. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  747. */
  748. extern void pagefault_out_of_memory(void);
  749. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  750. /*
  751. * Flags passed to show_mem() and show_free_areas() to suppress output in
  752. * various contexts.
  753. */
  754. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  755. extern void show_free_areas(unsigned int flags);
  756. extern bool skip_free_areas_node(unsigned int flags, int nid);
  757. int shmem_zero_setup(struct vm_area_struct *);
  758. extern int can_do_mlock(void);
  759. extern int user_shm_lock(size_t, struct user_struct *);
  760. extern void user_shm_unlock(size_t, struct user_struct *);
  761. /*
  762. * Parameter block passed down to zap_pte_range in exceptional cases.
  763. */
  764. struct zap_details {
  765. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  766. struct address_space *check_mapping; /* Check page->mapping if set */
  767. pgoff_t first_index; /* Lowest page->index to unmap */
  768. pgoff_t last_index; /* Highest page->index to unmap */
  769. };
  770. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  771. pte_t pte);
  772. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  773. unsigned long size);
  774. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  775. unsigned long size, struct zap_details *);
  776. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  777. unsigned long start, unsigned long end);
  778. /**
  779. * mm_walk - callbacks for walk_page_range
  780. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  781. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  782. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  783. * this handler is required to be able to handle
  784. * pmd_trans_huge() pmds. They may simply choose to
  785. * split_huge_page() instead of handling it explicitly.
  786. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  787. * @pte_hole: if set, called for each hole at all levels
  788. * @hugetlb_entry: if set, called for each hugetlb entry
  789. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  790. * is used.
  791. *
  792. * (see walk_page_range for more details)
  793. */
  794. struct mm_walk {
  795. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  796. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  797. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  798. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  799. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  800. int (*hugetlb_entry)(pte_t *, unsigned long,
  801. unsigned long, unsigned long, struct mm_walk *);
  802. struct mm_struct *mm;
  803. void *private;
  804. };
  805. int walk_page_range(unsigned long addr, unsigned long end,
  806. struct mm_walk *walk);
  807. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  808. unsigned long end, unsigned long floor, unsigned long ceiling);
  809. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  810. struct vm_area_struct *vma);
  811. void unmap_mapping_range(struct address_space *mapping,
  812. loff_t const holebegin, loff_t const holelen, int even_cows);
  813. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  814. unsigned long *pfn);
  815. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  816. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  817. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  818. void *buf, int len, int write);
  819. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  820. loff_t const holebegin, loff_t const holelen)
  821. {
  822. unmap_mapping_range(mapping, holebegin, holelen, 0);
  823. }
  824. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  825. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  826. extern int vmtruncate(struct inode *inode, loff_t offset);
  827. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  828. int truncate_inode_page(struct address_space *mapping, struct page *page);
  829. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  830. int invalidate_inode_page(struct page *page);
  831. #ifdef CONFIG_MMU
  832. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  833. unsigned long address, unsigned int flags);
  834. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  835. unsigned long address, unsigned int fault_flags);
  836. #else
  837. static inline int handle_mm_fault(struct mm_struct *mm,
  838. struct vm_area_struct *vma, unsigned long address,
  839. unsigned int flags)
  840. {
  841. /* should never happen if there's no MMU */
  842. BUG();
  843. return VM_FAULT_SIGBUS;
  844. }
  845. static inline int fixup_user_fault(struct task_struct *tsk,
  846. struct mm_struct *mm, unsigned long address,
  847. unsigned int fault_flags)
  848. {
  849. /* should never happen if there's no MMU */
  850. BUG();
  851. return -EFAULT;
  852. }
  853. #endif
  854. extern int make_pages_present(unsigned long addr, unsigned long end);
  855. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  856. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  857. void *buf, int len, int write);
  858. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  859. unsigned long start, int len, unsigned int foll_flags,
  860. struct page **pages, struct vm_area_struct **vmas,
  861. int *nonblocking);
  862. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  863. unsigned long start, int nr_pages, int write, int force,
  864. struct page **pages, struct vm_area_struct **vmas);
  865. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  866. struct page **pages);
  867. struct kvec;
  868. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  869. struct page **pages);
  870. int get_kernel_page(unsigned long start, int write, struct page **pages);
  871. struct page *get_dump_page(unsigned long addr);
  872. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  873. extern void do_invalidatepage(struct page *page, unsigned long offset);
  874. int __set_page_dirty_nobuffers(struct page *page);
  875. int __set_page_dirty_no_writeback(struct page *page);
  876. int redirty_page_for_writepage(struct writeback_control *wbc,
  877. struct page *page);
  878. void account_page_dirtied(struct page *page, struct address_space *mapping);
  879. void account_page_writeback(struct page *page);
  880. int set_page_dirty(struct page *page);
  881. int set_page_dirty_lock(struct page *page);
  882. int clear_page_dirty_for_io(struct page *page);
  883. /* Is the vma a continuation of the stack vma above it? */
  884. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  885. {
  886. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  887. }
  888. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  889. unsigned long addr)
  890. {
  891. return (vma->vm_flags & VM_GROWSDOWN) &&
  892. (vma->vm_start == addr) &&
  893. !vma_growsdown(vma->vm_prev, addr);
  894. }
  895. /* Is the vma a continuation of the stack vma below it? */
  896. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  897. {
  898. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  899. }
  900. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  901. unsigned long addr)
  902. {
  903. return (vma->vm_flags & VM_GROWSUP) &&
  904. (vma->vm_end == addr) &&
  905. !vma_growsup(vma->vm_next, addr);
  906. }
  907. extern pid_t
  908. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  909. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  910. unsigned long old_addr, struct vm_area_struct *new_vma,
  911. unsigned long new_addr, unsigned long len);
  912. extern unsigned long do_mremap(unsigned long addr,
  913. unsigned long old_len, unsigned long new_len,
  914. unsigned long flags, unsigned long new_addr);
  915. extern int mprotect_fixup(struct vm_area_struct *vma,
  916. struct vm_area_struct **pprev, unsigned long start,
  917. unsigned long end, unsigned long newflags);
  918. /*
  919. * doesn't attempt to fault and will return short.
  920. */
  921. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  922. struct page **pages);
  923. /*
  924. * per-process(per-mm_struct) statistics.
  925. */
  926. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  927. {
  928. long val = atomic_long_read(&mm->rss_stat.count[member]);
  929. #ifdef SPLIT_RSS_COUNTING
  930. /*
  931. * counter is updated in asynchronous manner and may go to minus.
  932. * But it's never be expected number for users.
  933. */
  934. if (val < 0)
  935. val = 0;
  936. #endif
  937. return (unsigned long)val;
  938. }
  939. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  940. {
  941. atomic_long_add(value, &mm->rss_stat.count[member]);
  942. }
  943. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  944. {
  945. atomic_long_inc(&mm->rss_stat.count[member]);
  946. }
  947. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  948. {
  949. atomic_long_dec(&mm->rss_stat.count[member]);
  950. }
  951. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  952. {
  953. return get_mm_counter(mm, MM_FILEPAGES) +
  954. get_mm_counter(mm, MM_ANONPAGES);
  955. }
  956. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  957. {
  958. return max(mm->hiwater_rss, get_mm_rss(mm));
  959. }
  960. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  961. {
  962. return max(mm->hiwater_vm, mm->total_vm);
  963. }
  964. static inline void update_hiwater_rss(struct mm_struct *mm)
  965. {
  966. unsigned long _rss = get_mm_rss(mm);
  967. if ((mm)->hiwater_rss < _rss)
  968. (mm)->hiwater_rss = _rss;
  969. }
  970. static inline void update_hiwater_vm(struct mm_struct *mm)
  971. {
  972. if (mm->hiwater_vm < mm->total_vm)
  973. mm->hiwater_vm = mm->total_vm;
  974. }
  975. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  976. struct mm_struct *mm)
  977. {
  978. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  979. if (*maxrss < hiwater_rss)
  980. *maxrss = hiwater_rss;
  981. }
  982. #if defined(SPLIT_RSS_COUNTING)
  983. void sync_mm_rss(struct mm_struct *mm);
  984. #else
  985. static inline void sync_mm_rss(struct mm_struct *mm)
  986. {
  987. }
  988. #endif
  989. int vma_wants_writenotify(struct vm_area_struct *vma);
  990. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  991. spinlock_t **ptl);
  992. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  993. spinlock_t **ptl)
  994. {
  995. pte_t *ptep;
  996. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  997. return ptep;
  998. }
  999. #ifdef __PAGETABLE_PUD_FOLDED
  1000. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1001. unsigned long address)
  1002. {
  1003. return 0;
  1004. }
  1005. #else
  1006. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1007. #endif
  1008. #ifdef __PAGETABLE_PMD_FOLDED
  1009. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1010. unsigned long address)
  1011. {
  1012. return 0;
  1013. }
  1014. #else
  1015. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1016. #endif
  1017. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1018. pmd_t *pmd, unsigned long address);
  1019. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1020. /*
  1021. * The following ifdef needed to get the 4level-fixup.h header to work.
  1022. * Remove it when 4level-fixup.h has been removed.
  1023. */
  1024. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1025. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1026. {
  1027. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1028. NULL: pud_offset(pgd, address);
  1029. }
  1030. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1031. {
  1032. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1033. NULL: pmd_offset(pud, address);
  1034. }
  1035. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1036. #if USE_SPLIT_PTLOCKS
  1037. /*
  1038. * We tuck a spinlock to guard each pagetable page into its struct page,
  1039. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1040. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1041. * When freeing, reset page->mapping so free_pages_check won't complain.
  1042. */
  1043. #define __pte_lockptr(page) &((page)->ptl)
  1044. #define pte_lock_init(_page) do { \
  1045. spin_lock_init(__pte_lockptr(_page)); \
  1046. } while (0)
  1047. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1048. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1049. #else /* !USE_SPLIT_PTLOCKS */
  1050. /*
  1051. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1052. */
  1053. #define pte_lock_init(page) do {} while (0)
  1054. #define pte_lock_deinit(page) do {} while (0)
  1055. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1056. #endif /* USE_SPLIT_PTLOCKS */
  1057. static inline void pgtable_page_ctor(struct page *page)
  1058. {
  1059. pte_lock_init(page);
  1060. inc_zone_page_state(page, NR_PAGETABLE);
  1061. }
  1062. static inline void pgtable_page_dtor(struct page *page)
  1063. {
  1064. pte_lock_deinit(page);
  1065. dec_zone_page_state(page, NR_PAGETABLE);
  1066. }
  1067. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1068. ({ \
  1069. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1070. pte_t *__pte = pte_offset_map(pmd, address); \
  1071. *(ptlp) = __ptl; \
  1072. spin_lock(__ptl); \
  1073. __pte; \
  1074. })
  1075. #define pte_unmap_unlock(pte, ptl) do { \
  1076. spin_unlock(ptl); \
  1077. pte_unmap(pte); \
  1078. } while (0)
  1079. #define pte_alloc_map(mm, vma, pmd, address) \
  1080. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1081. pmd, address))? \
  1082. NULL: pte_offset_map(pmd, address))
  1083. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1084. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1085. pmd, address))? \
  1086. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1087. #define pte_alloc_kernel(pmd, address) \
  1088. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1089. NULL: pte_offset_kernel(pmd, address))
  1090. extern void free_area_init(unsigned long * zones_size);
  1091. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1092. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1093. extern void free_initmem(void);
  1094. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1095. /*
  1096. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1097. * zones, allocate the backing mem_map and account for memory holes in a more
  1098. * architecture independent manner. This is a substitute for creating the
  1099. * zone_sizes[] and zholes_size[] arrays and passing them to
  1100. * free_area_init_node()
  1101. *
  1102. * An architecture is expected to register range of page frames backed by
  1103. * physical memory with memblock_add[_node]() before calling
  1104. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1105. * usage, an architecture is expected to do something like
  1106. *
  1107. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1108. * max_highmem_pfn};
  1109. * for_each_valid_physical_page_range()
  1110. * memblock_add_node(base, size, nid)
  1111. * free_area_init_nodes(max_zone_pfns);
  1112. *
  1113. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1114. * registered physical page range. Similarly
  1115. * sparse_memory_present_with_active_regions() calls memory_present() for
  1116. * each range when SPARSEMEM is enabled.
  1117. *
  1118. * See mm/page_alloc.c for more information on each function exposed by
  1119. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1120. */
  1121. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1122. unsigned long node_map_pfn_alignment(void);
  1123. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1124. unsigned long end_pfn);
  1125. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1126. unsigned long end_pfn);
  1127. extern void get_pfn_range_for_nid(unsigned int nid,
  1128. unsigned long *start_pfn, unsigned long *end_pfn);
  1129. extern unsigned long find_min_pfn_with_active_regions(void);
  1130. extern void free_bootmem_with_active_regions(int nid,
  1131. unsigned long max_low_pfn);
  1132. extern void sparse_memory_present_with_active_regions(int nid);
  1133. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1134. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1135. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1136. static inline int __early_pfn_to_nid(unsigned long pfn)
  1137. {
  1138. return 0;
  1139. }
  1140. #else
  1141. /* please see mm/page_alloc.c */
  1142. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1143. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1144. /* there is a per-arch backend function. */
  1145. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1146. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1147. #endif
  1148. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1149. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1150. unsigned long, enum memmap_context);
  1151. extern void setup_per_zone_wmarks(void);
  1152. extern int __meminit init_per_zone_wmark_min(void);
  1153. extern void mem_init(void);
  1154. extern void __init mmap_init(void);
  1155. extern void show_mem(unsigned int flags);
  1156. extern void si_meminfo(struct sysinfo * val);
  1157. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1158. extern int after_bootmem;
  1159. extern __printf(3, 4)
  1160. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1161. extern void setup_per_cpu_pageset(void);
  1162. extern void zone_pcp_update(struct zone *zone);
  1163. extern void zone_pcp_reset(struct zone *zone);
  1164. /* nommu.c */
  1165. extern atomic_long_t mmap_pages_allocated;
  1166. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1167. /* prio_tree.c */
  1168. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1169. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1170. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1171. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1172. struct prio_tree_iter *iter);
  1173. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1174. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1175. (vma = vma_prio_tree_next(vma, iter)); )
  1176. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1177. struct list_head *list)
  1178. {
  1179. vma->shared.vm_set.parent = NULL;
  1180. list_add_tail(&vma->shared.vm_set.list, list);
  1181. }
  1182. /* mmap.c */
  1183. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1184. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1185. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1186. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1187. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1188. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1189. struct mempolicy *);
  1190. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1191. extern int split_vma(struct mm_struct *,
  1192. struct vm_area_struct *, unsigned long addr, int new_below);
  1193. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1194. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1195. struct rb_node **, struct rb_node *);
  1196. extern void unlink_file_vma(struct vm_area_struct *);
  1197. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1198. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1199. extern void exit_mmap(struct mm_struct *);
  1200. extern int mm_take_all_locks(struct mm_struct *mm);
  1201. extern void mm_drop_all_locks(struct mm_struct *mm);
  1202. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1203. extern void added_exe_file_vma(struct mm_struct *mm);
  1204. extern void removed_exe_file_vma(struct mm_struct *mm);
  1205. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1206. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1207. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1208. extern int install_special_mapping(struct mm_struct *mm,
  1209. unsigned long addr, unsigned long len,
  1210. unsigned long flags, struct page **pages);
  1211. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1212. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1213. unsigned long len, unsigned long flags,
  1214. vm_flags_t vm_flags, unsigned long pgoff);
  1215. extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
  1216. unsigned long, unsigned long,
  1217. unsigned long, unsigned long);
  1218. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1219. /* These take the mm semaphore themselves */
  1220. extern unsigned long vm_brk(unsigned long, unsigned long);
  1221. extern int vm_munmap(unsigned long, size_t);
  1222. extern unsigned long vm_mmap(struct file *, unsigned long,
  1223. unsigned long, unsigned long,
  1224. unsigned long, unsigned long);
  1225. /* truncate.c */
  1226. extern void truncate_inode_pages(struct address_space *, loff_t);
  1227. extern void truncate_inode_pages_range(struct address_space *,
  1228. loff_t lstart, loff_t lend);
  1229. /* generic vm_area_ops exported for stackable file systems */
  1230. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1231. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1232. /* mm/page-writeback.c */
  1233. int write_one_page(struct page *page, int wait);
  1234. void task_dirty_inc(struct task_struct *tsk);
  1235. /* readahead.c */
  1236. #define VM_MAX_READAHEAD 128 /* kbytes */
  1237. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1238. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1239. pgoff_t offset, unsigned long nr_to_read);
  1240. void page_cache_sync_readahead(struct address_space *mapping,
  1241. struct file_ra_state *ra,
  1242. struct file *filp,
  1243. pgoff_t offset,
  1244. unsigned long size);
  1245. void page_cache_async_readahead(struct address_space *mapping,
  1246. struct file_ra_state *ra,
  1247. struct file *filp,
  1248. struct page *pg,
  1249. pgoff_t offset,
  1250. unsigned long size);
  1251. unsigned long max_sane_readahead(unsigned long nr);
  1252. unsigned long ra_submit(struct file_ra_state *ra,
  1253. struct address_space *mapping,
  1254. struct file *filp);
  1255. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1256. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1257. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1258. extern int expand_downwards(struct vm_area_struct *vma,
  1259. unsigned long address);
  1260. #if VM_GROWSUP
  1261. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1262. #else
  1263. #define expand_upwards(vma, address) do { } while (0)
  1264. #endif
  1265. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1266. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1267. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1268. struct vm_area_struct **pprev);
  1269. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1270. NULL if none. Assume start_addr < end_addr. */
  1271. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1272. {
  1273. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1274. if (vma && end_addr <= vma->vm_start)
  1275. vma = NULL;
  1276. return vma;
  1277. }
  1278. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1279. {
  1280. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1281. }
  1282. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1283. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1284. unsigned long vm_start, unsigned long vm_end)
  1285. {
  1286. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1287. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1288. vma = NULL;
  1289. return vma;
  1290. }
  1291. #ifdef CONFIG_MMU
  1292. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1293. #else
  1294. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1295. {
  1296. return __pgprot(0);
  1297. }
  1298. #endif
  1299. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1300. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1301. unsigned long pfn, unsigned long size, pgprot_t);
  1302. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1303. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1304. unsigned long pfn);
  1305. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1306. unsigned long pfn);
  1307. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1308. unsigned int foll_flags);
  1309. #define FOLL_WRITE 0x01 /* check pte is writable */
  1310. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1311. #define FOLL_GET 0x04 /* do get_page on page */
  1312. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1313. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1314. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1315. * and return without waiting upon it */
  1316. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1317. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1318. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1319. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1320. void *data);
  1321. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1322. unsigned long size, pte_fn_t fn, void *data);
  1323. #ifdef CONFIG_PROC_FS
  1324. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1325. #else
  1326. static inline void vm_stat_account(struct mm_struct *mm,
  1327. unsigned long flags, struct file *file, long pages)
  1328. {
  1329. mm->total_vm += pages;
  1330. }
  1331. #endif /* CONFIG_PROC_FS */
  1332. #ifdef CONFIG_DEBUG_PAGEALLOC
  1333. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1334. #ifdef CONFIG_HIBERNATION
  1335. extern bool kernel_page_present(struct page *page);
  1336. #endif /* CONFIG_HIBERNATION */
  1337. #else
  1338. static inline void
  1339. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1340. #ifdef CONFIG_HIBERNATION
  1341. static inline bool kernel_page_present(struct page *page) { return true; }
  1342. #endif /* CONFIG_HIBERNATION */
  1343. #endif
  1344. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1345. #ifdef __HAVE_ARCH_GATE_AREA
  1346. int in_gate_area_no_mm(unsigned long addr);
  1347. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1348. #else
  1349. int in_gate_area_no_mm(unsigned long addr);
  1350. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1351. #endif /* __HAVE_ARCH_GATE_AREA */
  1352. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1353. void __user *, size_t *, loff_t *);
  1354. unsigned long shrink_slab(struct shrink_control *shrink,
  1355. unsigned long nr_pages_scanned,
  1356. unsigned long lru_pages);
  1357. #ifndef CONFIG_MMU
  1358. #define randomize_va_space 0
  1359. #else
  1360. extern int randomize_va_space;
  1361. #endif
  1362. const char * arch_vma_name(struct vm_area_struct *vma);
  1363. void print_vma_addr(char *prefix, unsigned long rip);
  1364. void sparse_mem_maps_populate_node(struct page **map_map,
  1365. unsigned long pnum_begin,
  1366. unsigned long pnum_end,
  1367. unsigned long map_count,
  1368. int nodeid);
  1369. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1370. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1371. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1372. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1373. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1374. void *vmemmap_alloc_block(unsigned long size, int node);
  1375. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1376. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1377. int vmemmap_populate_basepages(struct page *start_page,
  1378. unsigned long pages, int node);
  1379. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1380. void vmemmap_populate_print_last(void);
  1381. enum mf_flags {
  1382. MF_COUNT_INCREASED = 1 << 0,
  1383. MF_ACTION_REQUIRED = 1 << 1,
  1384. MF_MUST_KILL = 1 << 2,
  1385. };
  1386. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1387. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1388. extern int unpoison_memory(unsigned long pfn);
  1389. extern int sysctl_memory_failure_early_kill;
  1390. extern int sysctl_memory_failure_recovery;
  1391. extern void shake_page(struct page *p, int access);
  1392. extern atomic_long_t mce_bad_pages;
  1393. extern int soft_offline_page(struct page *page, int flags);
  1394. extern void dump_page(struct page *page);
  1395. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1396. extern void clear_huge_page(struct page *page,
  1397. unsigned long addr,
  1398. unsigned int pages_per_huge_page);
  1399. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1400. unsigned long addr, struct vm_area_struct *vma,
  1401. unsigned int pages_per_huge_page);
  1402. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1403. #ifdef CONFIG_DEBUG_PAGEALLOC
  1404. extern unsigned int _debug_guardpage_minorder;
  1405. static inline unsigned int debug_guardpage_minorder(void)
  1406. {
  1407. return _debug_guardpage_minorder;
  1408. }
  1409. static inline bool page_is_guard(struct page *page)
  1410. {
  1411. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1412. }
  1413. #else
  1414. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1415. static inline bool page_is_guard(struct page *page) { return false; }
  1416. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1417. #endif /* __KERNEL__ */
  1418. #endif /* _LINUX_MM_H */