ctree.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. static int setup_items_for_insert(struct btrfs_trans_handle *trans,
  40. struct btrfs_root *root, struct btrfs_path *path,
  41. struct btrfs_key *cpu_key, u32 *data_size,
  42. u32 total_data, u32 total_size, int nr);
  43. struct btrfs_path *btrfs_alloc_path(void)
  44. {
  45. struct btrfs_path *path;
  46. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  47. if (path)
  48. path->reada = 1;
  49. return path;
  50. }
  51. /*
  52. * set all locked nodes in the path to blocking locks. This should
  53. * be done before scheduling
  54. */
  55. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  56. {
  57. int i;
  58. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  59. if (p->nodes[i] && p->locks[i])
  60. btrfs_set_lock_blocking(p->nodes[i]);
  61. }
  62. }
  63. /*
  64. * reset all the locked nodes in the patch to spinning locks.
  65. *
  66. * held is used to keep lockdep happy, when lockdep is enabled
  67. * we set held to a blocking lock before we go around and
  68. * retake all the spinlocks in the path. You can safely use NULL
  69. * for held
  70. */
  71. static noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  72. struct extent_buffer *held)
  73. {
  74. int i;
  75. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  76. /* lockdep really cares that we take all of these spinlocks
  77. * in the right order. If any of the locks in the path are not
  78. * currently blocking, it is going to complain. So, make really
  79. * really sure by forcing the path to blocking before we clear
  80. * the path blocking.
  81. */
  82. if (held)
  83. btrfs_set_lock_blocking(held);
  84. btrfs_set_path_blocking(p);
  85. #endif
  86. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  87. if (p->nodes[i] && p->locks[i])
  88. btrfs_clear_lock_blocking(p->nodes[i]);
  89. }
  90. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  91. if (held)
  92. btrfs_clear_lock_blocking(held);
  93. #endif
  94. }
  95. /* this also releases the path */
  96. void btrfs_free_path(struct btrfs_path *p)
  97. {
  98. if (!p)
  99. return;
  100. btrfs_release_path(p);
  101. kmem_cache_free(btrfs_path_cachep, p);
  102. }
  103. /*
  104. * path release drops references on the extent buffers in the path
  105. * and it drops any locks held by this path
  106. *
  107. * It is safe to call this on paths that no locks or extent buffers held.
  108. */
  109. noinline void btrfs_release_path(struct btrfs_path *p)
  110. {
  111. int i;
  112. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  113. p->slots[i] = 0;
  114. if (!p->nodes[i])
  115. continue;
  116. if (p->locks[i]) {
  117. btrfs_tree_unlock(p->nodes[i]);
  118. p->locks[i] = 0;
  119. }
  120. free_extent_buffer(p->nodes[i]);
  121. p->nodes[i] = NULL;
  122. }
  123. }
  124. /*
  125. * safely gets a reference on the root node of a tree. A lock
  126. * is not taken, so a concurrent writer may put a different node
  127. * at the root of the tree. See btrfs_lock_root_node for the
  128. * looping required.
  129. *
  130. * The extent buffer returned by this has a reference taken, so
  131. * it won't disappear. It may stop being the root of the tree
  132. * at any time because there are no locks held.
  133. */
  134. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  135. {
  136. struct extent_buffer *eb;
  137. rcu_read_lock();
  138. eb = rcu_dereference(root->node);
  139. extent_buffer_get(eb);
  140. rcu_read_unlock();
  141. return eb;
  142. }
  143. /* loop around taking references on and locking the root node of the
  144. * tree until you end up with a lock on the root. A locked buffer
  145. * is returned, with a reference held.
  146. */
  147. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  148. {
  149. struct extent_buffer *eb;
  150. while (1) {
  151. eb = btrfs_root_node(root);
  152. btrfs_tree_lock(eb);
  153. if (eb == root->node)
  154. break;
  155. btrfs_tree_unlock(eb);
  156. free_extent_buffer(eb);
  157. }
  158. return eb;
  159. }
  160. /* cowonly root (everything not a reference counted cow subvolume), just get
  161. * put onto a simple dirty list. transaction.c walks this to make sure they
  162. * get properly updated on disk.
  163. */
  164. static void add_root_to_dirty_list(struct btrfs_root *root)
  165. {
  166. if (root->track_dirty && list_empty(&root->dirty_list)) {
  167. list_add(&root->dirty_list,
  168. &root->fs_info->dirty_cowonly_roots);
  169. }
  170. }
  171. /*
  172. * used by snapshot creation to make a copy of a root for a tree with
  173. * a given objectid. The buffer with the new root node is returned in
  174. * cow_ret, and this func returns zero on success or a negative error code.
  175. */
  176. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  177. struct btrfs_root *root,
  178. struct extent_buffer *buf,
  179. struct extent_buffer **cow_ret, u64 new_root_objectid)
  180. {
  181. struct extent_buffer *cow;
  182. int ret = 0;
  183. int level;
  184. struct btrfs_disk_key disk_key;
  185. WARN_ON(root->ref_cows && trans->transid !=
  186. root->fs_info->running_transaction->transid);
  187. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  188. level = btrfs_header_level(buf);
  189. if (level == 0)
  190. btrfs_item_key(buf, &disk_key, 0);
  191. else
  192. btrfs_node_key(buf, &disk_key, 0);
  193. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  194. new_root_objectid, &disk_key, level,
  195. buf->start, 0);
  196. if (IS_ERR(cow))
  197. return PTR_ERR(cow);
  198. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  199. btrfs_set_header_bytenr(cow, cow->start);
  200. btrfs_set_header_generation(cow, trans->transid);
  201. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  202. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  203. BTRFS_HEADER_FLAG_RELOC);
  204. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  205. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  206. else
  207. btrfs_set_header_owner(cow, new_root_objectid);
  208. write_extent_buffer(cow, root->fs_info->fsid,
  209. (unsigned long)btrfs_header_fsid(cow),
  210. BTRFS_FSID_SIZE);
  211. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  212. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  213. ret = btrfs_inc_ref(trans, root, cow, 1);
  214. else
  215. ret = btrfs_inc_ref(trans, root, cow, 0);
  216. if (ret)
  217. return ret;
  218. btrfs_mark_buffer_dirty(cow);
  219. *cow_ret = cow;
  220. return 0;
  221. }
  222. /*
  223. * check if the tree block can be shared by multiple trees
  224. */
  225. int btrfs_block_can_be_shared(struct btrfs_root *root,
  226. struct extent_buffer *buf)
  227. {
  228. /*
  229. * Tree blocks not in refernece counted trees and tree roots
  230. * are never shared. If a block was allocated after the last
  231. * snapshot and the block was not allocated by tree relocation,
  232. * we know the block is not shared.
  233. */
  234. if (root->ref_cows &&
  235. buf != root->node && buf != root->commit_root &&
  236. (btrfs_header_generation(buf) <=
  237. btrfs_root_last_snapshot(&root->root_item) ||
  238. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  239. return 1;
  240. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  241. if (root->ref_cows &&
  242. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  243. return 1;
  244. #endif
  245. return 0;
  246. }
  247. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  248. struct btrfs_root *root,
  249. struct extent_buffer *buf,
  250. struct extent_buffer *cow,
  251. int *last_ref)
  252. {
  253. u64 refs;
  254. u64 owner;
  255. u64 flags;
  256. u64 new_flags = 0;
  257. int ret;
  258. /*
  259. * Backrefs update rules:
  260. *
  261. * Always use full backrefs for extent pointers in tree block
  262. * allocated by tree relocation.
  263. *
  264. * If a shared tree block is no longer referenced by its owner
  265. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  266. * use full backrefs for extent pointers in tree block.
  267. *
  268. * If a tree block is been relocating
  269. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  270. * use full backrefs for extent pointers in tree block.
  271. * The reason for this is some operations (such as drop tree)
  272. * are only allowed for blocks use full backrefs.
  273. */
  274. if (btrfs_block_can_be_shared(root, buf)) {
  275. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  276. buf->len, &refs, &flags);
  277. BUG_ON(ret);
  278. BUG_ON(refs == 0);
  279. } else {
  280. refs = 1;
  281. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  282. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  283. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  284. else
  285. flags = 0;
  286. }
  287. owner = btrfs_header_owner(buf);
  288. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  289. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  290. if (refs > 1) {
  291. if ((owner == root->root_key.objectid ||
  292. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  293. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  294. ret = btrfs_inc_ref(trans, root, buf, 1);
  295. BUG_ON(ret);
  296. if (root->root_key.objectid ==
  297. BTRFS_TREE_RELOC_OBJECTID) {
  298. ret = btrfs_dec_ref(trans, root, buf, 0);
  299. BUG_ON(ret);
  300. ret = btrfs_inc_ref(trans, root, cow, 1);
  301. BUG_ON(ret);
  302. }
  303. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  304. } else {
  305. if (root->root_key.objectid ==
  306. BTRFS_TREE_RELOC_OBJECTID)
  307. ret = btrfs_inc_ref(trans, root, cow, 1);
  308. else
  309. ret = btrfs_inc_ref(trans, root, cow, 0);
  310. BUG_ON(ret);
  311. }
  312. if (new_flags != 0) {
  313. ret = btrfs_set_disk_extent_flags(trans, root,
  314. buf->start,
  315. buf->len,
  316. new_flags, 0);
  317. BUG_ON(ret);
  318. }
  319. } else {
  320. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  321. if (root->root_key.objectid ==
  322. BTRFS_TREE_RELOC_OBJECTID)
  323. ret = btrfs_inc_ref(trans, root, cow, 1);
  324. else
  325. ret = btrfs_inc_ref(trans, root, cow, 0);
  326. BUG_ON(ret);
  327. ret = btrfs_dec_ref(trans, root, buf, 1);
  328. BUG_ON(ret);
  329. }
  330. clean_tree_block(trans, root, buf);
  331. *last_ref = 1;
  332. }
  333. return 0;
  334. }
  335. /*
  336. * does the dirty work in cow of a single block. The parent block (if
  337. * supplied) is updated to point to the new cow copy. The new buffer is marked
  338. * dirty and returned locked. If you modify the block it needs to be marked
  339. * dirty again.
  340. *
  341. * search_start -- an allocation hint for the new block
  342. *
  343. * empty_size -- a hint that you plan on doing more cow. This is the size in
  344. * bytes the allocator should try to find free next to the block it returns.
  345. * This is just a hint and may be ignored by the allocator.
  346. */
  347. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  348. struct btrfs_root *root,
  349. struct extent_buffer *buf,
  350. struct extent_buffer *parent, int parent_slot,
  351. struct extent_buffer **cow_ret,
  352. u64 search_start, u64 empty_size)
  353. {
  354. struct btrfs_disk_key disk_key;
  355. struct extent_buffer *cow;
  356. int level;
  357. int last_ref = 0;
  358. int unlock_orig = 0;
  359. u64 parent_start;
  360. if (*cow_ret == buf)
  361. unlock_orig = 1;
  362. btrfs_assert_tree_locked(buf);
  363. WARN_ON(root->ref_cows && trans->transid !=
  364. root->fs_info->running_transaction->transid);
  365. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  366. level = btrfs_header_level(buf);
  367. if (level == 0)
  368. btrfs_item_key(buf, &disk_key, 0);
  369. else
  370. btrfs_node_key(buf, &disk_key, 0);
  371. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  372. if (parent)
  373. parent_start = parent->start;
  374. else
  375. parent_start = 0;
  376. } else
  377. parent_start = 0;
  378. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  379. root->root_key.objectid, &disk_key,
  380. level, search_start, empty_size);
  381. if (IS_ERR(cow))
  382. return PTR_ERR(cow);
  383. /* cow is set to blocking by btrfs_init_new_buffer */
  384. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  385. btrfs_set_header_bytenr(cow, cow->start);
  386. btrfs_set_header_generation(cow, trans->transid);
  387. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  388. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  389. BTRFS_HEADER_FLAG_RELOC);
  390. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  391. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  392. else
  393. btrfs_set_header_owner(cow, root->root_key.objectid);
  394. write_extent_buffer(cow, root->fs_info->fsid,
  395. (unsigned long)btrfs_header_fsid(cow),
  396. BTRFS_FSID_SIZE);
  397. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  398. if (root->ref_cows)
  399. btrfs_reloc_cow_block(trans, root, buf, cow);
  400. if (buf == root->node) {
  401. WARN_ON(parent && parent != buf);
  402. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  403. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  404. parent_start = buf->start;
  405. else
  406. parent_start = 0;
  407. extent_buffer_get(cow);
  408. rcu_assign_pointer(root->node, cow);
  409. btrfs_free_tree_block(trans, root, buf, parent_start,
  410. last_ref);
  411. free_extent_buffer(buf);
  412. add_root_to_dirty_list(root);
  413. } else {
  414. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  415. parent_start = parent->start;
  416. else
  417. parent_start = 0;
  418. WARN_ON(trans->transid != btrfs_header_generation(parent));
  419. btrfs_set_node_blockptr(parent, parent_slot,
  420. cow->start);
  421. btrfs_set_node_ptr_generation(parent, parent_slot,
  422. trans->transid);
  423. btrfs_mark_buffer_dirty(parent);
  424. btrfs_free_tree_block(trans, root, buf, parent_start,
  425. last_ref);
  426. }
  427. if (unlock_orig)
  428. btrfs_tree_unlock(buf);
  429. free_extent_buffer(buf);
  430. btrfs_mark_buffer_dirty(cow);
  431. *cow_ret = cow;
  432. return 0;
  433. }
  434. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  435. struct btrfs_root *root,
  436. struct extent_buffer *buf)
  437. {
  438. if (btrfs_header_generation(buf) == trans->transid &&
  439. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  440. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  441. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  442. return 0;
  443. return 1;
  444. }
  445. /*
  446. * cows a single block, see __btrfs_cow_block for the real work.
  447. * This version of it has extra checks so that a block isn't cow'd more than
  448. * once per transaction, as long as it hasn't been written yet
  449. */
  450. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  451. struct btrfs_root *root, struct extent_buffer *buf,
  452. struct extent_buffer *parent, int parent_slot,
  453. struct extent_buffer **cow_ret)
  454. {
  455. u64 search_start;
  456. int ret;
  457. if (trans->transaction != root->fs_info->running_transaction) {
  458. printk(KERN_CRIT "trans %llu running %llu\n",
  459. (unsigned long long)trans->transid,
  460. (unsigned long long)
  461. root->fs_info->running_transaction->transid);
  462. WARN_ON(1);
  463. }
  464. if (trans->transid != root->fs_info->generation) {
  465. printk(KERN_CRIT "trans %llu running %llu\n",
  466. (unsigned long long)trans->transid,
  467. (unsigned long long)root->fs_info->generation);
  468. WARN_ON(1);
  469. }
  470. if (!should_cow_block(trans, root, buf)) {
  471. *cow_ret = buf;
  472. return 0;
  473. }
  474. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  475. if (parent)
  476. btrfs_set_lock_blocking(parent);
  477. btrfs_set_lock_blocking(buf);
  478. ret = __btrfs_cow_block(trans, root, buf, parent,
  479. parent_slot, cow_ret, search_start, 0);
  480. trace_btrfs_cow_block(root, buf, *cow_ret);
  481. return ret;
  482. }
  483. /*
  484. * helper function for defrag to decide if two blocks pointed to by a
  485. * node are actually close by
  486. */
  487. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  488. {
  489. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  490. return 1;
  491. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  492. return 1;
  493. return 0;
  494. }
  495. /*
  496. * compare two keys in a memcmp fashion
  497. */
  498. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  499. {
  500. struct btrfs_key k1;
  501. btrfs_disk_key_to_cpu(&k1, disk);
  502. return btrfs_comp_cpu_keys(&k1, k2);
  503. }
  504. /*
  505. * same as comp_keys only with two btrfs_key's
  506. */
  507. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  508. {
  509. if (k1->objectid > k2->objectid)
  510. return 1;
  511. if (k1->objectid < k2->objectid)
  512. return -1;
  513. if (k1->type > k2->type)
  514. return 1;
  515. if (k1->type < k2->type)
  516. return -1;
  517. if (k1->offset > k2->offset)
  518. return 1;
  519. if (k1->offset < k2->offset)
  520. return -1;
  521. return 0;
  522. }
  523. /*
  524. * this is used by the defrag code to go through all the
  525. * leaves pointed to by a node and reallocate them so that
  526. * disk order is close to key order
  527. */
  528. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  529. struct btrfs_root *root, struct extent_buffer *parent,
  530. int start_slot, int cache_only, u64 *last_ret,
  531. struct btrfs_key *progress)
  532. {
  533. struct extent_buffer *cur;
  534. u64 blocknr;
  535. u64 gen;
  536. u64 search_start = *last_ret;
  537. u64 last_block = 0;
  538. u64 other;
  539. u32 parent_nritems;
  540. int end_slot;
  541. int i;
  542. int err = 0;
  543. int parent_level;
  544. int uptodate;
  545. u32 blocksize;
  546. int progress_passed = 0;
  547. struct btrfs_disk_key disk_key;
  548. parent_level = btrfs_header_level(parent);
  549. if (cache_only && parent_level != 1)
  550. return 0;
  551. if (trans->transaction != root->fs_info->running_transaction)
  552. WARN_ON(1);
  553. if (trans->transid != root->fs_info->generation)
  554. WARN_ON(1);
  555. parent_nritems = btrfs_header_nritems(parent);
  556. blocksize = btrfs_level_size(root, parent_level - 1);
  557. end_slot = parent_nritems;
  558. if (parent_nritems == 1)
  559. return 0;
  560. btrfs_set_lock_blocking(parent);
  561. for (i = start_slot; i < end_slot; i++) {
  562. int close = 1;
  563. if (!parent->map_token) {
  564. map_extent_buffer(parent,
  565. btrfs_node_key_ptr_offset(i),
  566. sizeof(struct btrfs_key_ptr),
  567. &parent->map_token, &parent->kaddr,
  568. &parent->map_start, &parent->map_len,
  569. KM_USER1);
  570. }
  571. btrfs_node_key(parent, &disk_key, i);
  572. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  573. continue;
  574. progress_passed = 1;
  575. blocknr = btrfs_node_blockptr(parent, i);
  576. gen = btrfs_node_ptr_generation(parent, i);
  577. if (last_block == 0)
  578. last_block = blocknr;
  579. if (i > 0) {
  580. other = btrfs_node_blockptr(parent, i - 1);
  581. close = close_blocks(blocknr, other, blocksize);
  582. }
  583. if (!close && i < end_slot - 2) {
  584. other = btrfs_node_blockptr(parent, i + 1);
  585. close = close_blocks(blocknr, other, blocksize);
  586. }
  587. if (close) {
  588. last_block = blocknr;
  589. continue;
  590. }
  591. if (parent->map_token) {
  592. unmap_extent_buffer(parent, parent->map_token,
  593. KM_USER1);
  594. parent->map_token = NULL;
  595. }
  596. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  597. if (cur)
  598. uptodate = btrfs_buffer_uptodate(cur, gen);
  599. else
  600. uptodate = 0;
  601. if (!cur || !uptodate) {
  602. if (cache_only) {
  603. free_extent_buffer(cur);
  604. continue;
  605. }
  606. if (!cur) {
  607. cur = read_tree_block(root, blocknr,
  608. blocksize, gen);
  609. if (!cur)
  610. return -EIO;
  611. } else if (!uptodate) {
  612. btrfs_read_buffer(cur, gen);
  613. }
  614. }
  615. if (search_start == 0)
  616. search_start = last_block;
  617. btrfs_tree_lock(cur);
  618. btrfs_set_lock_blocking(cur);
  619. err = __btrfs_cow_block(trans, root, cur, parent, i,
  620. &cur, search_start,
  621. min(16 * blocksize,
  622. (end_slot - i) * blocksize));
  623. if (err) {
  624. btrfs_tree_unlock(cur);
  625. free_extent_buffer(cur);
  626. break;
  627. }
  628. search_start = cur->start;
  629. last_block = cur->start;
  630. *last_ret = search_start;
  631. btrfs_tree_unlock(cur);
  632. free_extent_buffer(cur);
  633. }
  634. if (parent->map_token) {
  635. unmap_extent_buffer(parent, parent->map_token,
  636. KM_USER1);
  637. parent->map_token = NULL;
  638. }
  639. return err;
  640. }
  641. /*
  642. * The leaf data grows from end-to-front in the node.
  643. * this returns the address of the start of the last item,
  644. * which is the stop of the leaf data stack
  645. */
  646. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  647. struct extent_buffer *leaf)
  648. {
  649. u32 nr = btrfs_header_nritems(leaf);
  650. if (nr == 0)
  651. return BTRFS_LEAF_DATA_SIZE(root);
  652. return btrfs_item_offset_nr(leaf, nr - 1);
  653. }
  654. /*
  655. * search for key in the extent_buffer. The items start at offset p,
  656. * and they are item_size apart. There are 'max' items in p.
  657. *
  658. * the slot in the array is returned via slot, and it points to
  659. * the place where you would insert key if it is not found in
  660. * the array.
  661. *
  662. * slot may point to max if the key is bigger than all of the keys
  663. */
  664. static noinline int generic_bin_search(struct extent_buffer *eb,
  665. unsigned long p,
  666. int item_size, struct btrfs_key *key,
  667. int max, int *slot)
  668. {
  669. int low = 0;
  670. int high = max;
  671. int mid;
  672. int ret;
  673. struct btrfs_disk_key *tmp = NULL;
  674. struct btrfs_disk_key unaligned;
  675. unsigned long offset;
  676. char *map_token = NULL;
  677. char *kaddr = NULL;
  678. unsigned long map_start = 0;
  679. unsigned long map_len = 0;
  680. int err;
  681. while (low < high) {
  682. mid = (low + high) / 2;
  683. offset = p + mid * item_size;
  684. if (!map_token || offset < map_start ||
  685. (offset + sizeof(struct btrfs_disk_key)) >
  686. map_start + map_len) {
  687. if (map_token) {
  688. unmap_extent_buffer(eb, map_token, KM_USER0);
  689. map_token = NULL;
  690. }
  691. err = map_private_extent_buffer(eb, offset,
  692. sizeof(struct btrfs_disk_key),
  693. &map_token, &kaddr,
  694. &map_start, &map_len, KM_USER0);
  695. if (!err) {
  696. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  697. map_start);
  698. } else {
  699. read_extent_buffer(eb, &unaligned,
  700. offset, sizeof(unaligned));
  701. tmp = &unaligned;
  702. }
  703. } else {
  704. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  705. map_start);
  706. }
  707. ret = comp_keys(tmp, key);
  708. if (ret < 0)
  709. low = mid + 1;
  710. else if (ret > 0)
  711. high = mid;
  712. else {
  713. *slot = mid;
  714. if (map_token)
  715. unmap_extent_buffer(eb, map_token, KM_USER0);
  716. return 0;
  717. }
  718. }
  719. *slot = low;
  720. if (map_token)
  721. unmap_extent_buffer(eb, map_token, KM_USER0);
  722. return 1;
  723. }
  724. /*
  725. * simple bin_search frontend that does the right thing for
  726. * leaves vs nodes
  727. */
  728. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  729. int level, int *slot)
  730. {
  731. if (level == 0) {
  732. return generic_bin_search(eb,
  733. offsetof(struct btrfs_leaf, items),
  734. sizeof(struct btrfs_item),
  735. key, btrfs_header_nritems(eb),
  736. slot);
  737. } else {
  738. return generic_bin_search(eb,
  739. offsetof(struct btrfs_node, ptrs),
  740. sizeof(struct btrfs_key_ptr),
  741. key, btrfs_header_nritems(eb),
  742. slot);
  743. }
  744. return -1;
  745. }
  746. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  747. int level, int *slot)
  748. {
  749. return bin_search(eb, key, level, slot);
  750. }
  751. static void root_add_used(struct btrfs_root *root, u32 size)
  752. {
  753. spin_lock(&root->accounting_lock);
  754. btrfs_set_root_used(&root->root_item,
  755. btrfs_root_used(&root->root_item) + size);
  756. spin_unlock(&root->accounting_lock);
  757. }
  758. static void root_sub_used(struct btrfs_root *root, u32 size)
  759. {
  760. spin_lock(&root->accounting_lock);
  761. btrfs_set_root_used(&root->root_item,
  762. btrfs_root_used(&root->root_item) - size);
  763. spin_unlock(&root->accounting_lock);
  764. }
  765. /* given a node and slot number, this reads the blocks it points to. The
  766. * extent buffer is returned with a reference taken (but unlocked).
  767. * NULL is returned on error.
  768. */
  769. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  770. struct extent_buffer *parent, int slot)
  771. {
  772. int level = btrfs_header_level(parent);
  773. if (slot < 0)
  774. return NULL;
  775. if (slot >= btrfs_header_nritems(parent))
  776. return NULL;
  777. BUG_ON(level == 0);
  778. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  779. btrfs_level_size(root, level - 1),
  780. btrfs_node_ptr_generation(parent, slot));
  781. }
  782. /*
  783. * node level balancing, used to make sure nodes are in proper order for
  784. * item deletion. We balance from the top down, so we have to make sure
  785. * that a deletion won't leave an node completely empty later on.
  786. */
  787. static noinline int balance_level(struct btrfs_trans_handle *trans,
  788. struct btrfs_root *root,
  789. struct btrfs_path *path, int level)
  790. {
  791. struct extent_buffer *right = NULL;
  792. struct extent_buffer *mid;
  793. struct extent_buffer *left = NULL;
  794. struct extent_buffer *parent = NULL;
  795. int ret = 0;
  796. int wret;
  797. int pslot;
  798. int orig_slot = path->slots[level];
  799. u64 orig_ptr;
  800. if (level == 0)
  801. return 0;
  802. mid = path->nodes[level];
  803. WARN_ON(!path->locks[level]);
  804. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  805. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  806. if (level < BTRFS_MAX_LEVEL - 1)
  807. parent = path->nodes[level + 1];
  808. pslot = path->slots[level + 1];
  809. /*
  810. * deal with the case where there is only one pointer in the root
  811. * by promoting the node below to a root
  812. */
  813. if (!parent) {
  814. struct extent_buffer *child;
  815. if (btrfs_header_nritems(mid) != 1)
  816. return 0;
  817. /* promote the child to a root */
  818. child = read_node_slot(root, mid, 0);
  819. BUG_ON(!child);
  820. btrfs_tree_lock(child);
  821. btrfs_set_lock_blocking(child);
  822. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  823. if (ret) {
  824. btrfs_tree_unlock(child);
  825. free_extent_buffer(child);
  826. goto enospc;
  827. }
  828. rcu_assign_pointer(root->node, child);
  829. add_root_to_dirty_list(root);
  830. btrfs_tree_unlock(child);
  831. path->locks[level] = 0;
  832. path->nodes[level] = NULL;
  833. clean_tree_block(trans, root, mid);
  834. btrfs_tree_unlock(mid);
  835. /* once for the path */
  836. free_extent_buffer(mid);
  837. root_sub_used(root, mid->len);
  838. btrfs_free_tree_block(trans, root, mid, 0, 1);
  839. /* once for the root ptr */
  840. free_extent_buffer(mid);
  841. return 0;
  842. }
  843. if (btrfs_header_nritems(mid) >
  844. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  845. return 0;
  846. btrfs_header_nritems(mid);
  847. left = read_node_slot(root, parent, pslot - 1);
  848. if (left) {
  849. btrfs_tree_lock(left);
  850. btrfs_set_lock_blocking(left);
  851. wret = btrfs_cow_block(trans, root, left,
  852. parent, pslot - 1, &left);
  853. if (wret) {
  854. ret = wret;
  855. goto enospc;
  856. }
  857. }
  858. right = read_node_slot(root, parent, pslot + 1);
  859. if (right) {
  860. btrfs_tree_lock(right);
  861. btrfs_set_lock_blocking(right);
  862. wret = btrfs_cow_block(trans, root, right,
  863. parent, pslot + 1, &right);
  864. if (wret) {
  865. ret = wret;
  866. goto enospc;
  867. }
  868. }
  869. /* first, try to make some room in the middle buffer */
  870. if (left) {
  871. orig_slot += btrfs_header_nritems(left);
  872. wret = push_node_left(trans, root, left, mid, 1);
  873. if (wret < 0)
  874. ret = wret;
  875. btrfs_header_nritems(mid);
  876. }
  877. /*
  878. * then try to empty the right most buffer into the middle
  879. */
  880. if (right) {
  881. wret = push_node_left(trans, root, mid, right, 1);
  882. if (wret < 0 && wret != -ENOSPC)
  883. ret = wret;
  884. if (btrfs_header_nritems(right) == 0) {
  885. clean_tree_block(trans, root, right);
  886. btrfs_tree_unlock(right);
  887. wret = del_ptr(trans, root, path, level + 1, pslot +
  888. 1);
  889. if (wret)
  890. ret = wret;
  891. root_sub_used(root, right->len);
  892. btrfs_free_tree_block(trans, root, right, 0, 1);
  893. free_extent_buffer(right);
  894. right = NULL;
  895. } else {
  896. struct btrfs_disk_key right_key;
  897. btrfs_node_key(right, &right_key, 0);
  898. btrfs_set_node_key(parent, &right_key, pslot + 1);
  899. btrfs_mark_buffer_dirty(parent);
  900. }
  901. }
  902. if (btrfs_header_nritems(mid) == 1) {
  903. /*
  904. * we're not allowed to leave a node with one item in the
  905. * tree during a delete. A deletion from lower in the tree
  906. * could try to delete the only pointer in this node.
  907. * So, pull some keys from the left.
  908. * There has to be a left pointer at this point because
  909. * otherwise we would have pulled some pointers from the
  910. * right
  911. */
  912. BUG_ON(!left);
  913. wret = balance_node_right(trans, root, mid, left);
  914. if (wret < 0) {
  915. ret = wret;
  916. goto enospc;
  917. }
  918. if (wret == 1) {
  919. wret = push_node_left(trans, root, left, mid, 1);
  920. if (wret < 0)
  921. ret = wret;
  922. }
  923. BUG_ON(wret == 1);
  924. }
  925. if (btrfs_header_nritems(mid) == 0) {
  926. clean_tree_block(trans, root, mid);
  927. btrfs_tree_unlock(mid);
  928. wret = del_ptr(trans, root, path, level + 1, pslot);
  929. if (wret)
  930. ret = wret;
  931. root_sub_used(root, mid->len);
  932. btrfs_free_tree_block(trans, root, mid, 0, 1);
  933. free_extent_buffer(mid);
  934. mid = NULL;
  935. } else {
  936. /* update the parent key to reflect our changes */
  937. struct btrfs_disk_key mid_key;
  938. btrfs_node_key(mid, &mid_key, 0);
  939. btrfs_set_node_key(parent, &mid_key, pslot);
  940. btrfs_mark_buffer_dirty(parent);
  941. }
  942. /* update the path */
  943. if (left) {
  944. if (btrfs_header_nritems(left) > orig_slot) {
  945. extent_buffer_get(left);
  946. /* left was locked after cow */
  947. path->nodes[level] = left;
  948. path->slots[level + 1] -= 1;
  949. path->slots[level] = orig_slot;
  950. if (mid) {
  951. btrfs_tree_unlock(mid);
  952. free_extent_buffer(mid);
  953. }
  954. } else {
  955. orig_slot -= btrfs_header_nritems(left);
  956. path->slots[level] = orig_slot;
  957. }
  958. }
  959. /* double check we haven't messed things up */
  960. if (orig_ptr !=
  961. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  962. BUG();
  963. enospc:
  964. if (right) {
  965. btrfs_tree_unlock(right);
  966. free_extent_buffer(right);
  967. }
  968. if (left) {
  969. if (path->nodes[level] != left)
  970. btrfs_tree_unlock(left);
  971. free_extent_buffer(left);
  972. }
  973. return ret;
  974. }
  975. /* Node balancing for insertion. Here we only split or push nodes around
  976. * when they are completely full. This is also done top down, so we
  977. * have to be pessimistic.
  978. */
  979. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  980. struct btrfs_root *root,
  981. struct btrfs_path *path, int level)
  982. {
  983. struct extent_buffer *right = NULL;
  984. struct extent_buffer *mid;
  985. struct extent_buffer *left = NULL;
  986. struct extent_buffer *parent = NULL;
  987. int ret = 0;
  988. int wret;
  989. int pslot;
  990. int orig_slot = path->slots[level];
  991. if (level == 0)
  992. return 1;
  993. mid = path->nodes[level];
  994. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  995. if (level < BTRFS_MAX_LEVEL - 1)
  996. parent = path->nodes[level + 1];
  997. pslot = path->slots[level + 1];
  998. if (!parent)
  999. return 1;
  1000. left = read_node_slot(root, parent, pslot - 1);
  1001. /* first, try to make some room in the middle buffer */
  1002. if (left) {
  1003. u32 left_nr;
  1004. btrfs_tree_lock(left);
  1005. btrfs_set_lock_blocking(left);
  1006. left_nr = btrfs_header_nritems(left);
  1007. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1008. wret = 1;
  1009. } else {
  1010. ret = btrfs_cow_block(trans, root, left, parent,
  1011. pslot - 1, &left);
  1012. if (ret)
  1013. wret = 1;
  1014. else {
  1015. wret = push_node_left(trans, root,
  1016. left, mid, 0);
  1017. }
  1018. }
  1019. if (wret < 0)
  1020. ret = wret;
  1021. if (wret == 0) {
  1022. struct btrfs_disk_key disk_key;
  1023. orig_slot += left_nr;
  1024. btrfs_node_key(mid, &disk_key, 0);
  1025. btrfs_set_node_key(parent, &disk_key, pslot);
  1026. btrfs_mark_buffer_dirty(parent);
  1027. if (btrfs_header_nritems(left) > orig_slot) {
  1028. path->nodes[level] = left;
  1029. path->slots[level + 1] -= 1;
  1030. path->slots[level] = orig_slot;
  1031. btrfs_tree_unlock(mid);
  1032. free_extent_buffer(mid);
  1033. } else {
  1034. orig_slot -=
  1035. btrfs_header_nritems(left);
  1036. path->slots[level] = orig_slot;
  1037. btrfs_tree_unlock(left);
  1038. free_extent_buffer(left);
  1039. }
  1040. return 0;
  1041. }
  1042. btrfs_tree_unlock(left);
  1043. free_extent_buffer(left);
  1044. }
  1045. right = read_node_slot(root, parent, pslot + 1);
  1046. /*
  1047. * then try to empty the right most buffer into the middle
  1048. */
  1049. if (right) {
  1050. u32 right_nr;
  1051. btrfs_tree_lock(right);
  1052. btrfs_set_lock_blocking(right);
  1053. right_nr = btrfs_header_nritems(right);
  1054. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1055. wret = 1;
  1056. } else {
  1057. ret = btrfs_cow_block(trans, root, right,
  1058. parent, pslot + 1,
  1059. &right);
  1060. if (ret)
  1061. wret = 1;
  1062. else {
  1063. wret = balance_node_right(trans, root,
  1064. right, mid);
  1065. }
  1066. }
  1067. if (wret < 0)
  1068. ret = wret;
  1069. if (wret == 0) {
  1070. struct btrfs_disk_key disk_key;
  1071. btrfs_node_key(right, &disk_key, 0);
  1072. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1073. btrfs_mark_buffer_dirty(parent);
  1074. if (btrfs_header_nritems(mid) <= orig_slot) {
  1075. path->nodes[level] = right;
  1076. path->slots[level + 1] += 1;
  1077. path->slots[level] = orig_slot -
  1078. btrfs_header_nritems(mid);
  1079. btrfs_tree_unlock(mid);
  1080. free_extent_buffer(mid);
  1081. } else {
  1082. btrfs_tree_unlock(right);
  1083. free_extent_buffer(right);
  1084. }
  1085. return 0;
  1086. }
  1087. btrfs_tree_unlock(right);
  1088. free_extent_buffer(right);
  1089. }
  1090. return 1;
  1091. }
  1092. /*
  1093. * readahead one full node of leaves, finding things that are close
  1094. * to the block in 'slot', and triggering ra on them.
  1095. */
  1096. static void reada_for_search(struct btrfs_root *root,
  1097. struct btrfs_path *path,
  1098. int level, int slot, u64 objectid)
  1099. {
  1100. struct extent_buffer *node;
  1101. struct btrfs_disk_key disk_key;
  1102. u32 nritems;
  1103. u64 search;
  1104. u64 target;
  1105. u64 nread = 0;
  1106. int direction = path->reada;
  1107. struct extent_buffer *eb;
  1108. u32 nr;
  1109. u32 blocksize;
  1110. u32 nscan = 0;
  1111. if (level != 1)
  1112. return;
  1113. if (!path->nodes[level])
  1114. return;
  1115. node = path->nodes[level];
  1116. search = btrfs_node_blockptr(node, slot);
  1117. blocksize = btrfs_level_size(root, level - 1);
  1118. eb = btrfs_find_tree_block(root, search, blocksize);
  1119. if (eb) {
  1120. free_extent_buffer(eb);
  1121. return;
  1122. }
  1123. target = search;
  1124. nritems = btrfs_header_nritems(node);
  1125. nr = slot;
  1126. while (1) {
  1127. if (direction < 0) {
  1128. if (nr == 0)
  1129. break;
  1130. nr--;
  1131. } else if (direction > 0) {
  1132. nr++;
  1133. if (nr >= nritems)
  1134. break;
  1135. }
  1136. if (path->reada < 0 && objectid) {
  1137. btrfs_node_key(node, &disk_key, nr);
  1138. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1139. break;
  1140. }
  1141. search = btrfs_node_blockptr(node, nr);
  1142. if ((search <= target && target - search <= 65536) ||
  1143. (search > target && search - target <= 65536)) {
  1144. readahead_tree_block(root, search, blocksize,
  1145. btrfs_node_ptr_generation(node, nr));
  1146. nread += blocksize;
  1147. }
  1148. nscan++;
  1149. if ((nread > 65536 || nscan > 32))
  1150. break;
  1151. }
  1152. }
  1153. /*
  1154. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1155. * cache
  1156. */
  1157. static noinline int reada_for_balance(struct btrfs_root *root,
  1158. struct btrfs_path *path, int level)
  1159. {
  1160. int slot;
  1161. int nritems;
  1162. struct extent_buffer *parent;
  1163. struct extent_buffer *eb;
  1164. u64 gen;
  1165. u64 block1 = 0;
  1166. u64 block2 = 0;
  1167. int ret = 0;
  1168. int blocksize;
  1169. parent = path->nodes[level + 1];
  1170. if (!parent)
  1171. return 0;
  1172. nritems = btrfs_header_nritems(parent);
  1173. slot = path->slots[level + 1];
  1174. blocksize = btrfs_level_size(root, level);
  1175. if (slot > 0) {
  1176. block1 = btrfs_node_blockptr(parent, slot - 1);
  1177. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1178. eb = btrfs_find_tree_block(root, block1, blocksize);
  1179. if (eb && btrfs_buffer_uptodate(eb, gen))
  1180. block1 = 0;
  1181. free_extent_buffer(eb);
  1182. }
  1183. if (slot + 1 < nritems) {
  1184. block2 = btrfs_node_blockptr(parent, slot + 1);
  1185. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1186. eb = btrfs_find_tree_block(root, block2, blocksize);
  1187. if (eb && btrfs_buffer_uptodate(eb, gen))
  1188. block2 = 0;
  1189. free_extent_buffer(eb);
  1190. }
  1191. if (block1 || block2) {
  1192. ret = -EAGAIN;
  1193. /* release the whole path */
  1194. btrfs_release_path(path);
  1195. /* read the blocks */
  1196. if (block1)
  1197. readahead_tree_block(root, block1, blocksize, 0);
  1198. if (block2)
  1199. readahead_tree_block(root, block2, blocksize, 0);
  1200. if (block1) {
  1201. eb = read_tree_block(root, block1, blocksize, 0);
  1202. free_extent_buffer(eb);
  1203. }
  1204. if (block2) {
  1205. eb = read_tree_block(root, block2, blocksize, 0);
  1206. free_extent_buffer(eb);
  1207. }
  1208. }
  1209. return ret;
  1210. }
  1211. /*
  1212. * when we walk down the tree, it is usually safe to unlock the higher layers
  1213. * in the tree. The exceptions are when our path goes through slot 0, because
  1214. * operations on the tree might require changing key pointers higher up in the
  1215. * tree.
  1216. *
  1217. * callers might also have set path->keep_locks, which tells this code to keep
  1218. * the lock if the path points to the last slot in the block. This is part of
  1219. * walking through the tree, and selecting the next slot in the higher block.
  1220. *
  1221. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1222. * if lowest_unlock is 1, level 0 won't be unlocked
  1223. */
  1224. static noinline void unlock_up(struct btrfs_path *path, int level,
  1225. int lowest_unlock)
  1226. {
  1227. int i;
  1228. int skip_level = level;
  1229. int no_skips = 0;
  1230. struct extent_buffer *t;
  1231. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1232. if (!path->nodes[i])
  1233. break;
  1234. if (!path->locks[i])
  1235. break;
  1236. if (!no_skips && path->slots[i] == 0) {
  1237. skip_level = i + 1;
  1238. continue;
  1239. }
  1240. if (!no_skips && path->keep_locks) {
  1241. u32 nritems;
  1242. t = path->nodes[i];
  1243. nritems = btrfs_header_nritems(t);
  1244. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1245. skip_level = i + 1;
  1246. continue;
  1247. }
  1248. }
  1249. if (skip_level < i && i >= lowest_unlock)
  1250. no_skips = 1;
  1251. t = path->nodes[i];
  1252. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1253. btrfs_tree_unlock(t);
  1254. path->locks[i] = 0;
  1255. }
  1256. }
  1257. }
  1258. /*
  1259. * This releases any locks held in the path starting at level and
  1260. * going all the way up to the root.
  1261. *
  1262. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1263. * corner cases, such as COW of the block at slot zero in the node. This
  1264. * ignores those rules, and it should only be called when there are no
  1265. * more updates to be done higher up in the tree.
  1266. */
  1267. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1268. {
  1269. int i;
  1270. if (path->keep_locks)
  1271. return;
  1272. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1273. if (!path->nodes[i])
  1274. continue;
  1275. if (!path->locks[i])
  1276. continue;
  1277. btrfs_tree_unlock(path->nodes[i]);
  1278. path->locks[i] = 0;
  1279. }
  1280. }
  1281. /*
  1282. * helper function for btrfs_search_slot. The goal is to find a block
  1283. * in cache without setting the path to blocking. If we find the block
  1284. * we return zero and the path is unchanged.
  1285. *
  1286. * If we can't find the block, we set the path blocking and do some
  1287. * reada. -EAGAIN is returned and the search must be repeated.
  1288. */
  1289. static int
  1290. read_block_for_search(struct btrfs_trans_handle *trans,
  1291. struct btrfs_root *root, struct btrfs_path *p,
  1292. struct extent_buffer **eb_ret, int level, int slot,
  1293. struct btrfs_key *key)
  1294. {
  1295. u64 blocknr;
  1296. u64 gen;
  1297. u32 blocksize;
  1298. struct extent_buffer *b = *eb_ret;
  1299. struct extent_buffer *tmp;
  1300. int ret;
  1301. blocknr = btrfs_node_blockptr(b, slot);
  1302. gen = btrfs_node_ptr_generation(b, slot);
  1303. blocksize = btrfs_level_size(root, level - 1);
  1304. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1305. if (tmp) {
  1306. if (btrfs_buffer_uptodate(tmp, 0)) {
  1307. if (btrfs_buffer_uptodate(tmp, gen)) {
  1308. /*
  1309. * we found an up to date block without
  1310. * sleeping, return
  1311. * right away
  1312. */
  1313. *eb_ret = tmp;
  1314. return 0;
  1315. }
  1316. /* the pages were up to date, but we failed
  1317. * the generation number check. Do a full
  1318. * read for the generation number that is correct.
  1319. * We must do this without dropping locks so
  1320. * we can trust our generation number
  1321. */
  1322. free_extent_buffer(tmp);
  1323. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1324. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1325. *eb_ret = tmp;
  1326. return 0;
  1327. }
  1328. free_extent_buffer(tmp);
  1329. btrfs_release_path(p);
  1330. return -EIO;
  1331. }
  1332. }
  1333. /*
  1334. * reduce lock contention at high levels
  1335. * of the btree by dropping locks before
  1336. * we read. Don't release the lock on the current
  1337. * level because we need to walk this node to figure
  1338. * out which blocks to read.
  1339. */
  1340. btrfs_unlock_up_safe(p, level + 1);
  1341. btrfs_set_path_blocking(p);
  1342. free_extent_buffer(tmp);
  1343. if (p->reada)
  1344. reada_for_search(root, p, level, slot, key->objectid);
  1345. btrfs_release_path(p);
  1346. ret = -EAGAIN;
  1347. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1348. if (tmp) {
  1349. /*
  1350. * If the read above didn't mark this buffer up to date,
  1351. * it will never end up being up to date. Set ret to EIO now
  1352. * and give up so that our caller doesn't loop forever
  1353. * on our EAGAINs.
  1354. */
  1355. if (!btrfs_buffer_uptodate(tmp, 0))
  1356. ret = -EIO;
  1357. free_extent_buffer(tmp);
  1358. }
  1359. return ret;
  1360. }
  1361. /*
  1362. * helper function for btrfs_search_slot. This does all of the checks
  1363. * for node-level blocks and does any balancing required based on
  1364. * the ins_len.
  1365. *
  1366. * If no extra work was required, zero is returned. If we had to
  1367. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1368. * start over
  1369. */
  1370. static int
  1371. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1372. struct btrfs_root *root, struct btrfs_path *p,
  1373. struct extent_buffer *b, int level, int ins_len)
  1374. {
  1375. int ret;
  1376. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1377. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1378. int sret;
  1379. sret = reada_for_balance(root, p, level);
  1380. if (sret)
  1381. goto again;
  1382. btrfs_set_path_blocking(p);
  1383. sret = split_node(trans, root, p, level);
  1384. btrfs_clear_path_blocking(p, NULL);
  1385. BUG_ON(sret > 0);
  1386. if (sret) {
  1387. ret = sret;
  1388. goto done;
  1389. }
  1390. b = p->nodes[level];
  1391. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1392. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1393. int sret;
  1394. sret = reada_for_balance(root, p, level);
  1395. if (sret)
  1396. goto again;
  1397. btrfs_set_path_blocking(p);
  1398. sret = balance_level(trans, root, p, level);
  1399. btrfs_clear_path_blocking(p, NULL);
  1400. if (sret) {
  1401. ret = sret;
  1402. goto done;
  1403. }
  1404. b = p->nodes[level];
  1405. if (!b) {
  1406. btrfs_release_path(p);
  1407. goto again;
  1408. }
  1409. BUG_ON(btrfs_header_nritems(b) == 1);
  1410. }
  1411. return 0;
  1412. again:
  1413. ret = -EAGAIN;
  1414. done:
  1415. return ret;
  1416. }
  1417. /*
  1418. * look for key in the tree. path is filled in with nodes along the way
  1419. * if key is found, we return zero and you can find the item in the leaf
  1420. * level of the path (level 0)
  1421. *
  1422. * If the key isn't found, the path points to the slot where it should
  1423. * be inserted, and 1 is returned. If there are other errors during the
  1424. * search a negative error number is returned.
  1425. *
  1426. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1427. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1428. * possible)
  1429. */
  1430. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1431. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1432. ins_len, int cow)
  1433. {
  1434. struct extent_buffer *b;
  1435. int slot;
  1436. int ret;
  1437. int err;
  1438. int level;
  1439. int lowest_unlock = 1;
  1440. u8 lowest_level = 0;
  1441. lowest_level = p->lowest_level;
  1442. WARN_ON(lowest_level && ins_len > 0);
  1443. WARN_ON(p->nodes[0] != NULL);
  1444. if (ins_len < 0)
  1445. lowest_unlock = 2;
  1446. again:
  1447. if (p->search_commit_root) {
  1448. b = root->commit_root;
  1449. extent_buffer_get(b);
  1450. if (!p->skip_locking)
  1451. btrfs_tree_lock(b);
  1452. } else {
  1453. if (p->skip_locking)
  1454. b = btrfs_root_node(root);
  1455. else
  1456. b = btrfs_lock_root_node(root);
  1457. }
  1458. while (b) {
  1459. level = btrfs_header_level(b);
  1460. /*
  1461. * setup the path here so we can release it under lock
  1462. * contention with the cow code
  1463. */
  1464. p->nodes[level] = b;
  1465. if (!p->skip_locking)
  1466. p->locks[level] = 1;
  1467. if (cow) {
  1468. /*
  1469. * if we don't really need to cow this block
  1470. * then we don't want to set the path blocking,
  1471. * so we test it here
  1472. */
  1473. if (!should_cow_block(trans, root, b))
  1474. goto cow_done;
  1475. btrfs_set_path_blocking(p);
  1476. err = btrfs_cow_block(trans, root, b,
  1477. p->nodes[level + 1],
  1478. p->slots[level + 1], &b);
  1479. if (err) {
  1480. ret = err;
  1481. goto done;
  1482. }
  1483. }
  1484. cow_done:
  1485. BUG_ON(!cow && ins_len);
  1486. if (level != btrfs_header_level(b))
  1487. WARN_ON(1);
  1488. level = btrfs_header_level(b);
  1489. p->nodes[level] = b;
  1490. if (!p->skip_locking)
  1491. p->locks[level] = 1;
  1492. btrfs_clear_path_blocking(p, NULL);
  1493. /*
  1494. * we have a lock on b and as long as we aren't changing
  1495. * the tree, there is no way to for the items in b to change.
  1496. * It is safe to drop the lock on our parent before we
  1497. * go through the expensive btree search on b.
  1498. *
  1499. * If cow is true, then we might be changing slot zero,
  1500. * which may require changing the parent. So, we can't
  1501. * drop the lock until after we know which slot we're
  1502. * operating on.
  1503. */
  1504. if (!cow)
  1505. btrfs_unlock_up_safe(p, level + 1);
  1506. ret = bin_search(b, key, level, &slot);
  1507. if (level != 0) {
  1508. int dec = 0;
  1509. if (ret && slot > 0) {
  1510. dec = 1;
  1511. slot -= 1;
  1512. }
  1513. p->slots[level] = slot;
  1514. err = setup_nodes_for_search(trans, root, p, b, level,
  1515. ins_len);
  1516. if (err == -EAGAIN)
  1517. goto again;
  1518. if (err) {
  1519. ret = err;
  1520. goto done;
  1521. }
  1522. b = p->nodes[level];
  1523. slot = p->slots[level];
  1524. unlock_up(p, level, lowest_unlock);
  1525. if (level == lowest_level) {
  1526. if (dec)
  1527. p->slots[level]++;
  1528. goto done;
  1529. }
  1530. err = read_block_for_search(trans, root, p,
  1531. &b, level, slot, key);
  1532. if (err == -EAGAIN)
  1533. goto again;
  1534. if (err) {
  1535. ret = err;
  1536. goto done;
  1537. }
  1538. if (!p->skip_locking) {
  1539. btrfs_clear_path_blocking(p, NULL);
  1540. err = btrfs_try_spin_lock(b);
  1541. if (!err) {
  1542. btrfs_set_path_blocking(p);
  1543. btrfs_tree_lock(b);
  1544. btrfs_clear_path_blocking(p, b);
  1545. }
  1546. }
  1547. } else {
  1548. p->slots[level] = slot;
  1549. if (ins_len > 0 &&
  1550. btrfs_leaf_free_space(root, b) < ins_len) {
  1551. btrfs_set_path_blocking(p);
  1552. err = split_leaf(trans, root, key,
  1553. p, ins_len, ret == 0);
  1554. btrfs_clear_path_blocking(p, NULL);
  1555. BUG_ON(err > 0);
  1556. if (err) {
  1557. ret = err;
  1558. goto done;
  1559. }
  1560. }
  1561. if (!p->search_for_split)
  1562. unlock_up(p, level, lowest_unlock);
  1563. goto done;
  1564. }
  1565. }
  1566. ret = 1;
  1567. done:
  1568. /*
  1569. * we don't really know what they plan on doing with the path
  1570. * from here on, so for now just mark it as blocking
  1571. */
  1572. if (!p->leave_spinning)
  1573. btrfs_set_path_blocking(p);
  1574. if (ret < 0)
  1575. btrfs_release_path(p);
  1576. return ret;
  1577. }
  1578. /*
  1579. * adjust the pointers going up the tree, starting at level
  1580. * making sure the right key of each node is points to 'key'.
  1581. * This is used after shifting pointers to the left, so it stops
  1582. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1583. * higher levels
  1584. *
  1585. * If this fails to write a tree block, it returns -1, but continues
  1586. * fixing up the blocks in ram so the tree is consistent.
  1587. */
  1588. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1589. struct btrfs_root *root, struct btrfs_path *path,
  1590. struct btrfs_disk_key *key, int level)
  1591. {
  1592. int i;
  1593. int ret = 0;
  1594. struct extent_buffer *t;
  1595. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1596. int tslot = path->slots[i];
  1597. if (!path->nodes[i])
  1598. break;
  1599. t = path->nodes[i];
  1600. btrfs_set_node_key(t, key, tslot);
  1601. btrfs_mark_buffer_dirty(path->nodes[i]);
  1602. if (tslot != 0)
  1603. break;
  1604. }
  1605. return ret;
  1606. }
  1607. /*
  1608. * update item key.
  1609. *
  1610. * This function isn't completely safe. It's the caller's responsibility
  1611. * that the new key won't break the order
  1612. */
  1613. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1614. struct btrfs_root *root, struct btrfs_path *path,
  1615. struct btrfs_key *new_key)
  1616. {
  1617. struct btrfs_disk_key disk_key;
  1618. struct extent_buffer *eb;
  1619. int slot;
  1620. eb = path->nodes[0];
  1621. slot = path->slots[0];
  1622. if (slot > 0) {
  1623. btrfs_item_key(eb, &disk_key, slot - 1);
  1624. if (comp_keys(&disk_key, new_key) >= 0)
  1625. return -1;
  1626. }
  1627. if (slot < btrfs_header_nritems(eb) - 1) {
  1628. btrfs_item_key(eb, &disk_key, slot + 1);
  1629. if (comp_keys(&disk_key, new_key) <= 0)
  1630. return -1;
  1631. }
  1632. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1633. btrfs_set_item_key(eb, &disk_key, slot);
  1634. btrfs_mark_buffer_dirty(eb);
  1635. if (slot == 0)
  1636. fixup_low_keys(trans, root, path, &disk_key, 1);
  1637. return 0;
  1638. }
  1639. /*
  1640. * try to push data from one node into the next node left in the
  1641. * tree.
  1642. *
  1643. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1644. * error, and > 0 if there was no room in the left hand block.
  1645. */
  1646. static int push_node_left(struct btrfs_trans_handle *trans,
  1647. struct btrfs_root *root, struct extent_buffer *dst,
  1648. struct extent_buffer *src, int empty)
  1649. {
  1650. int push_items = 0;
  1651. int src_nritems;
  1652. int dst_nritems;
  1653. int ret = 0;
  1654. src_nritems = btrfs_header_nritems(src);
  1655. dst_nritems = btrfs_header_nritems(dst);
  1656. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1657. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1658. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1659. if (!empty && src_nritems <= 8)
  1660. return 1;
  1661. if (push_items <= 0)
  1662. return 1;
  1663. if (empty) {
  1664. push_items = min(src_nritems, push_items);
  1665. if (push_items < src_nritems) {
  1666. /* leave at least 8 pointers in the node if
  1667. * we aren't going to empty it
  1668. */
  1669. if (src_nritems - push_items < 8) {
  1670. if (push_items <= 8)
  1671. return 1;
  1672. push_items -= 8;
  1673. }
  1674. }
  1675. } else
  1676. push_items = min(src_nritems - 8, push_items);
  1677. copy_extent_buffer(dst, src,
  1678. btrfs_node_key_ptr_offset(dst_nritems),
  1679. btrfs_node_key_ptr_offset(0),
  1680. push_items * sizeof(struct btrfs_key_ptr));
  1681. if (push_items < src_nritems) {
  1682. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1683. btrfs_node_key_ptr_offset(push_items),
  1684. (src_nritems - push_items) *
  1685. sizeof(struct btrfs_key_ptr));
  1686. }
  1687. btrfs_set_header_nritems(src, src_nritems - push_items);
  1688. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1689. btrfs_mark_buffer_dirty(src);
  1690. btrfs_mark_buffer_dirty(dst);
  1691. return ret;
  1692. }
  1693. /*
  1694. * try to push data from one node into the next node right in the
  1695. * tree.
  1696. *
  1697. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1698. * error, and > 0 if there was no room in the right hand block.
  1699. *
  1700. * this will only push up to 1/2 the contents of the left node over
  1701. */
  1702. static int balance_node_right(struct btrfs_trans_handle *trans,
  1703. struct btrfs_root *root,
  1704. struct extent_buffer *dst,
  1705. struct extent_buffer *src)
  1706. {
  1707. int push_items = 0;
  1708. int max_push;
  1709. int src_nritems;
  1710. int dst_nritems;
  1711. int ret = 0;
  1712. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1713. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1714. src_nritems = btrfs_header_nritems(src);
  1715. dst_nritems = btrfs_header_nritems(dst);
  1716. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1717. if (push_items <= 0)
  1718. return 1;
  1719. if (src_nritems < 4)
  1720. return 1;
  1721. max_push = src_nritems / 2 + 1;
  1722. /* don't try to empty the node */
  1723. if (max_push >= src_nritems)
  1724. return 1;
  1725. if (max_push < push_items)
  1726. push_items = max_push;
  1727. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1728. btrfs_node_key_ptr_offset(0),
  1729. (dst_nritems) *
  1730. sizeof(struct btrfs_key_ptr));
  1731. copy_extent_buffer(dst, src,
  1732. btrfs_node_key_ptr_offset(0),
  1733. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1734. push_items * sizeof(struct btrfs_key_ptr));
  1735. btrfs_set_header_nritems(src, src_nritems - push_items);
  1736. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1737. btrfs_mark_buffer_dirty(src);
  1738. btrfs_mark_buffer_dirty(dst);
  1739. return ret;
  1740. }
  1741. /*
  1742. * helper function to insert a new root level in the tree.
  1743. * A new node is allocated, and a single item is inserted to
  1744. * point to the existing root
  1745. *
  1746. * returns zero on success or < 0 on failure.
  1747. */
  1748. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1749. struct btrfs_root *root,
  1750. struct btrfs_path *path, int level)
  1751. {
  1752. u64 lower_gen;
  1753. struct extent_buffer *lower;
  1754. struct extent_buffer *c;
  1755. struct extent_buffer *old;
  1756. struct btrfs_disk_key lower_key;
  1757. BUG_ON(path->nodes[level]);
  1758. BUG_ON(path->nodes[level-1] != root->node);
  1759. lower = path->nodes[level-1];
  1760. if (level == 1)
  1761. btrfs_item_key(lower, &lower_key, 0);
  1762. else
  1763. btrfs_node_key(lower, &lower_key, 0);
  1764. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1765. root->root_key.objectid, &lower_key,
  1766. level, root->node->start, 0);
  1767. if (IS_ERR(c))
  1768. return PTR_ERR(c);
  1769. root_add_used(root, root->nodesize);
  1770. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1771. btrfs_set_header_nritems(c, 1);
  1772. btrfs_set_header_level(c, level);
  1773. btrfs_set_header_bytenr(c, c->start);
  1774. btrfs_set_header_generation(c, trans->transid);
  1775. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1776. btrfs_set_header_owner(c, root->root_key.objectid);
  1777. write_extent_buffer(c, root->fs_info->fsid,
  1778. (unsigned long)btrfs_header_fsid(c),
  1779. BTRFS_FSID_SIZE);
  1780. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1781. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1782. BTRFS_UUID_SIZE);
  1783. btrfs_set_node_key(c, &lower_key, 0);
  1784. btrfs_set_node_blockptr(c, 0, lower->start);
  1785. lower_gen = btrfs_header_generation(lower);
  1786. WARN_ON(lower_gen != trans->transid);
  1787. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1788. btrfs_mark_buffer_dirty(c);
  1789. old = root->node;
  1790. rcu_assign_pointer(root->node, c);
  1791. /* the super has an extra ref to root->node */
  1792. free_extent_buffer(old);
  1793. add_root_to_dirty_list(root);
  1794. extent_buffer_get(c);
  1795. path->nodes[level] = c;
  1796. path->locks[level] = 1;
  1797. path->slots[level] = 0;
  1798. return 0;
  1799. }
  1800. /*
  1801. * worker function to insert a single pointer in a node.
  1802. * the node should have enough room for the pointer already
  1803. *
  1804. * slot and level indicate where you want the key to go, and
  1805. * blocknr is the block the key points to.
  1806. *
  1807. * returns zero on success and < 0 on any error
  1808. */
  1809. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1810. *root, struct btrfs_path *path, struct btrfs_disk_key
  1811. *key, u64 bytenr, int slot, int level)
  1812. {
  1813. struct extent_buffer *lower;
  1814. int nritems;
  1815. BUG_ON(!path->nodes[level]);
  1816. btrfs_assert_tree_locked(path->nodes[level]);
  1817. lower = path->nodes[level];
  1818. nritems = btrfs_header_nritems(lower);
  1819. BUG_ON(slot > nritems);
  1820. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1821. BUG();
  1822. if (slot != nritems) {
  1823. memmove_extent_buffer(lower,
  1824. btrfs_node_key_ptr_offset(slot + 1),
  1825. btrfs_node_key_ptr_offset(slot),
  1826. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1827. }
  1828. btrfs_set_node_key(lower, key, slot);
  1829. btrfs_set_node_blockptr(lower, slot, bytenr);
  1830. WARN_ON(trans->transid == 0);
  1831. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1832. btrfs_set_header_nritems(lower, nritems + 1);
  1833. btrfs_mark_buffer_dirty(lower);
  1834. return 0;
  1835. }
  1836. /*
  1837. * split the node at the specified level in path in two.
  1838. * The path is corrected to point to the appropriate node after the split
  1839. *
  1840. * Before splitting this tries to make some room in the node by pushing
  1841. * left and right, if either one works, it returns right away.
  1842. *
  1843. * returns 0 on success and < 0 on failure
  1844. */
  1845. static noinline int split_node(struct btrfs_trans_handle *trans,
  1846. struct btrfs_root *root,
  1847. struct btrfs_path *path, int level)
  1848. {
  1849. struct extent_buffer *c;
  1850. struct extent_buffer *split;
  1851. struct btrfs_disk_key disk_key;
  1852. int mid;
  1853. int ret;
  1854. int wret;
  1855. u32 c_nritems;
  1856. c = path->nodes[level];
  1857. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1858. if (c == root->node) {
  1859. /* trying to split the root, lets make a new one */
  1860. ret = insert_new_root(trans, root, path, level + 1);
  1861. if (ret)
  1862. return ret;
  1863. } else {
  1864. ret = push_nodes_for_insert(trans, root, path, level);
  1865. c = path->nodes[level];
  1866. if (!ret && btrfs_header_nritems(c) <
  1867. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1868. return 0;
  1869. if (ret < 0)
  1870. return ret;
  1871. }
  1872. c_nritems = btrfs_header_nritems(c);
  1873. mid = (c_nritems + 1) / 2;
  1874. btrfs_node_key(c, &disk_key, mid);
  1875. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1876. root->root_key.objectid,
  1877. &disk_key, level, c->start, 0);
  1878. if (IS_ERR(split))
  1879. return PTR_ERR(split);
  1880. root_add_used(root, root->nodesize);
  1881. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1882. btrfs_set_header_level(split, btrfs_header_level(c));
  1883. btrfs_set_header_bytenr(split, split->start);
  1884. btrfs_set_header_generation(split, trans->transid);
  1885. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1886. btrfs_set_header_owner(split, root->root_key.objectid);
  1887. write_extent_buffer(split, root->fs_info->fsid,
  1888. (unsigned long)btrfs_header_fsid(split),
  1889. BTRFS_FSID_SIZE);
  1890. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1891. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1892. BTRFS_UUID_SIZE);
  1893. copy_extent_buffer(split, c,
  1894. btrfs_node_key_ptr_offset(0),
  1895. btrfs_node_key_ptr_offset(mid),
  1896. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1897. btrfs_set_header_nritems(split, c_nritems - mid);
  1898. btrfs_set_header_nritems(c, mid);
  1899. ret = 0;
  1900. btrfs_mark_buffer_dirty(c);
  1901. btrfs_mark_buffer_dirty(split);
  1902. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1903. path->slots[level + 1] + 1,
  1904. level + 1);
  1905. if (wret)
  1906. ret = wret;
  1907. if (path->slots[level] >= mid) {
  1908. path->slots[level] -= mid;
  1909. btrfs_tree_unlock(c);
  1910. free_extent_buffer(c);
  1911. path->nodes[level] = split;
  1912. path->slots[level + 1] += 1;
  1913. } else {
  1914. btrfs_tree_unlock(split);
  1915. free_extent_buffer(split);
  1916. }
  1917. return ret;
  1918. }
  1919. /*
  1920. * how many bytes are required to store the items in a leaf. start
  1921. * and nr indicate which items in the leaf to check. This totals up the
  1922. * space used both by the item structs and the item data
  1923. */
  1924. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1925. {
  1926. int data_len;
  1927. int nritems = btrfs_header_nritems(l);
  1928. int end = min(nritems, start + nr) - 1;
  1929. if (!nr)
  1930. return 0;
  1931. data_len = btrfs_item_end_nr(l, start);
  1932. data_len = data_len - btrfs_item_offset_nr(l, end);
  1933. data_len += sizeof(struct btrfs_item) * nr;
  1934. WARN_ON(data_len < 0);
  1935. return data_len;
  1936. }
  1937. /*
  1938. * The space between the end of the leaf items and
  1939. * the start of the leaf data. IOW, how much room
  1940. * the leaf has left for both items and data
  1941. */
  1942. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  1943. struct extent_buffer *leaf)
  1944. {
  1945. int nritems = btrfs_header_nritems(leaf);
  1946. int ret;
  1947. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1948. if (ret < 0) {
  1949. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  1950. "used %d nritems %d\n",
  1951. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1952. leaf_space_used(leaf, 0, nritems), nritems);
  1953. }
  1954. return ret;
  1955. }
  1956. /*
  1957. * min slot controls the lowest index we're willing to push to the
  1958. * right. We'll push up to and including min_slot, but no lower
  1959. */
  1960. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  1961. struct btrfs_root *root,
  1962. struct btrfs_path *path,
  1963. int data_size, int empty,
  1964. struct extent_buffer *right,
  1965. int free_space, u32 left_nritems,
  1966. u32 min_slot)
  1967. {
  1968. struct extent_buffer *left = path->nodes[0];
  1969. struct extent_buffer *upper = path->nodes[1];
  1970. struct btrfs_disk_key disk_key;
  1971. int slot;
  1972. u32 i;
  1973. int push_space = 0;
  1974. int push_items = 0;
  1975. struct btrfs_item *item;
  1976. u32 nr;
  1977. u32 right_nritems;
  1978. u32 data_end;
  1979. u32 this_item_size;
  1980. if (empty)
  1981. nr = 0;
  1982. else
  1983. nr = max_t(u32, 1, min_slot);
  1984. if (path->slots[0] >= left_nritems)
  1985. push_space += data_size;
  1986. slot = path->slots[1];
  1987. i = left_nritems - 1;
  1988. while (i >= nr) {
  1989. item = btrfs_item_nr(left, i);
  1990. if (!empty && push_items > 0) {
  1991. if (path->slots[0] > i)
  1992. break;
  1993. if (path->slots[0] == i) {
  1994. int space = btrfs_leaf_free_space(root, left);
  1995. if (space + push_space * 2 > free_space)
  1996. break;
  1997. }
  1998. }
  1999. if (path->slots[0] == i)
  2000. push_space += data_size;
  2001. if (!left->map_token) {
  2002. map_extent_buffer(left, (unsigned long)item,
  2003. sizeof(struct btrfs_item),
  2004. &left->map_token, &left->kaddr,
  2005. &left->map_start, &left->map_len,
  2006. KM_USER1);
  2007. }
  2008. this_item_size = btrfs_item_size(left, item);
  2009. if (this_item_size + sizeof(*item) + push_space > free_space)
  2010. break;
  2011. push_items++;
  2012. push_space += this_item_size + sizeof(*item);
  2013. if (i == 0)
  2014. break;
  2015. i--;
  2016. }
  2017. if (left->map_token) {
  2018. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2019. left->map_token = NULL;
  2020. }
  2021. if (push_items == 0)
  2022. goto out_unlock;
  2023. if (!empty && push_items == left_nritems)
  2024. WARN_ON(1);
  2025. /* push left to right */
  2026. right_nritems = btrfs_header_nritems(right);
  2027. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2028. push_space -= leaf_data_end(root, left);
  2029. /* make room in the right data area */
  2030. data_end = leaf_data_end(root, right);
  2031. memmove_extent_buffer(right,
  2032. btrfs_leaf_data(right) + data_end - push_space,
  2033. btrfs_leaf_data(right) + data_end,
  2034. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2035. /* copy from the left data area */
  2036. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2037. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2038. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2039. push_space);
  2040. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2041. btrfs_item_nr_offset(0),
  2042. right_nritems * sizeof(struct btrfs_item));
  2043. /* copy the items from left to right */
  2044. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2045. btrfs_item_nr_offset(left_nritems - push_items),
  2046. push_items * sizeof(struct btrfs_item));
  2047. /* update the item pointers */
  2048. right_nritems += push_items;
  2049. btrfs_set_header_nritems(right, right_nritems);
  2050. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2051. for (i = 0; i < right_nritems; i++) {
  2052. item = btrfs_item_nr(right, i);
  2053. if (!right->map_token) {
  2054. map_extent_buffer(right, (unsigned long)item,
  2055. sizeof(struct btrfs_item),
  2056. &right->map_token, &right->kaddr,
  2057. &right->map_start, &right->map_len,
  2058. KM_USER1);
  2059. }
  2060. push_space -= btrfs_item_size(right, item);
  2061. btrfs_set_item_offset(right, item, push_space);
  2062. }
  2063. if (right->map_token) {
  2064. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2065. right->map_token = NULL;
  2066. }
  2067. left_nritems -= push_items;
  2068. btrfs_set_header_nritems(left, left_nritems);
  2069. if (left_nritems)
  2070. btrfs_mark_buffer_dirty(left);
  2071. else
  2072. clean_tree_block(trans, root, left);
  2073. btrfs_mark_buffer_dirty(right);
  2074. btrfs_item_key(right, &disk_key, 0);
  2075. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2076. btrfs_mark_buffer_dirty(upper);
  2077. /* then fixup the leaf pointer in the path */
  2078. if (path->slots[0] >= left_nritems) {
  2079. path->slots[0] -= left_nritems;
  2080. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2081. clean_tree_block(trans, root, path->nodes[0]);
  2082. btrfs_tree_unlock(path->nodes[0]);
  2083. free_extent_buffer(path->nodes[0]);
  2084. path->nodes[0] = right;
  2085. path->slots[1] += 1;
  2086. } else {
  2087. btrfs_tree_unlock(right);
  2088. free_extent_buffer(right);
  2089. }
  2090. return 0;
  2091. out_unlock:
  2092. btrfs_tree_unlock(right);
  2093. free_extent_buffer(right);
  2094. return 1;
  2095. }
  2096. /*
  2097. * push some data in the path leaf to the right, trying to free up at
  2098. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2099. *
  2100. * returns 1 if the push failed because the other node didn't have enough
  2101. * room, 0 if everything worked out and < 0 if there were major errors.
  2102. *
  2103. * this will push starting from min_slot to the end of the leaf. It won't
  2104. * push any slot lower than min_slot
  2105. */
  2106. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2107. *root, struct btrfs_path *path,
  2108. int min_data_size, int data_size,
  2109. int empty, u32 min_slot)
  2110. {
  2111. struct extent_buffer *left = path->nodes[0];
  2112. struct extent_buffer *right;
  2113. struct extent_buffer *upper;
  2114. int slot;
  2115. int free_space;
  2116. u32 left_nritems;
  2117. int ret;
  2118. if (!path->nodes[1])
  2119. return 1;
  2120. slot = path->slots[1];
  2121. upper = path->nodes[1];
  2122. if (slot >= btrfs_header_nritems(upper) - 1)
  2123. return 1;
  2124. btrfs_assert_tree_locked(path->nodes[1]);
  2125. right = read_node_slot(root, upper, slot + 1);
  2126. if (right == NULL)
  2127. return 1;
  2128. btrfs_tree_lock(right);
  2129. btrfs_set_lock_blocking(right);
  2130. free_space = btrfs_leaf_free_space(root, right);
  2131. if (free_space < data_size)
  2132. goto out_unlock;
  2133. /* cow and double check */
  2134. ret = btrfs_cow_block(trans, root, right, upper,
  2135. slot + 1, &right);
  2136. if (ret)
  2137. goto out_unlock;
  2138. free_space = btrfs_leaf_free_space(root, right);
  2139. if (free_space < data_size)
  2140. goto out_unlock;
  2141. left_nritems = btrfs_header_nritems(left);
  2142. if (left_nritems == 0)
  2143. goto out_unlock;
  2144. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2145. right, free_space, left_nritems, min_slot);
  2146. out_unlock:
  2147. btrfs_tree_unlock(right);
  2148. free_extent_buffer(right);
  2149. return 1;
  2150. }
  2151. /*
  2152. * push some data in the path leaf to the left, trying to free up at
  2153. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2154. *
  2155. * max_slot can put a limit on how far into the leaf we'll push items. The
  2156. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2157. * items
  2158. */
  2159. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2160. struct btrfs_root *root,
  2161. struct btrfs_path *path, int data_size,
  2162. int empty, struct extent_buffer *left,
  2163. int free_space, u32 right_nritems,
  2164. u32 max_slot)
  2165. {
  2166. struct btrfs_disk_key disk_key;
  2167. struct extent_buffer *right = path->nodes[0];
  2168. int i;
  2169. int push_space = 0;
  2170. int push_items = 0;
  2171. struct btrfs_item *item;
  2172. u32 old_left_nritems;
  2173. u32 nr;
  2174. int ret = 0;
  2175. int wret;
  2176. u32 this_item_size;
  2177. u32 old_left_item_size;
  2178. if (empty)
  2179. nr = min(right_nritems, max_slot);
  2180. else
  2181. nr = min(right_nritems - 1, max_slot);
  2182. for (i = 0; i < nr; i++) {
  2183. item = btrfs_item_nr(right, i);
  2184. if (!right->map_token) {
  2185. map_extent_buffer(right, (unsigned long)item,
  2186. sizeof(struct btrfs_item),
  2187. &right->map_token, &right->kaddr,
  2188. &right->map_start, &right->map_len,
  2189. KM_USER1);
  2190. }
  2191. if (!empty && push_items > 0) {
  2192. if (path->slots[0] < i)
  2193. break;
  2194. if (path->slots[0] == i) {
  2195. int space = btrfs_leaf_free_space(root, right);
  2196. if (space + push_space * 2 > free_space)
  2197. break;
  2198. }
  2199. }
  2200. if (path->slots[0] == i)
  2201. push_space += data_size;
  2202. this_item_size = btrfs_item_size(right, item);
  2203. if (this_item_size + sizeof(*item) + push_space > free_space)
  2204. break;
  2205. push_items++;
  2206. push_space += this_item_size + sizeof(*item);
  2207. }
  2208. if (right->map_token) {
  2209. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2210. right->map_token = NULL;
  2211. }
  2212. if (push_items == 0) {
  2213. ret = 1;
  2214. goto out;
  2215. }
  2216. if (!empty && push_items == btrfs_header_nritems(right))
  2217. WARN_ON(1);
  2218. /* push data from right to left */
  2219. copy_extent_buffer(left, right,
  2220. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2221. btrfs_item_nr_offset(0),
  2222. push_items * sizeof(struct btrfs_item));
  2223. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2224. btrfs_item_offset_nr(right, push_items - 1);
  2225. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2226. leaf_data_end(root, left) - push_space,
  2227. btrfs_leaf_data(right) +
  2228. btrfs_item_offset_nr(right, push_items - 1),
  2229. push_space);
  2230. old_left_nritems = btrfs_header_nritems(left);
  2231. BUG_ON(old_left_nritems <= 0);
  2232. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2233. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2234. u32 ioff;
  2235. item = btrfs_item_nr(left, i);
  2236. if (!left->map_token) {
  2237. map_extent_buffer(left, (unsigned long)item,
  2238. sizeof(struct btrfs_item),
  2239. &left->map_token, &left->kaddr,
  2240. &left->map_start, &left->map_len,
  2241. KM_USER1);
  2242. }
  2243. ioff = btrfs_item_offset(left, item);
  2244. btrfs_set_item_offset(left, item,
  2245. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2246. }
  2247. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2248. if (left->map_token) {
  2249. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2250. left->map_token = NULL;
  2251. }
  2252. /* fixup right node */
  2253. if (push_items > right_nritems) {
  2254. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2255. right_nritems);
  2256. WARN_ON(1);
  2257. }
  2258. if (push_items < right_nritems) {
  2259. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2260. leaf_data_end(root, right);
  2261. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2262. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2263. btrfs_leaf_data(right) +
  2264. leaf_data_end(root, right), push_space);
  2265. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2266. btrfs_item_nr_offset(push_items),
  2267. (btrfs_header_nritems(right) - push_items) *
  2268. sizeof(struct btrfs_item));
  2269. }
  2270. right_nritems -= push_items;
  2271. btrfs_set_header_nritems(right, right_nritems);
  2272. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2273. for (i = 0; i < right_nritems; i++) {
  2274. item = btrfs_item_nr(right, i);
  2275. if (!right->map_token) {
  2276. map_extent_buffer(right, (unsigned long)item,
  2277. sizeof(struct btrfs_item),
  2278. &right->map_token, &right->kaddr,
  2279. &right->map_start, &right->map_len,
  2280. KM_USER1);
  2281. }
  2282. push_space = push_space - btrfs_item_size(right, item);
  2283. btrfs_set_item_offset(right, item, push_space);
  2284. }
  2285. if (right->map_token) {
  2286. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2287. right->map_token = NULL;
  2288. }
  2289. btrfs_mark_buffer_dirty(left);
  2290. if (right_nritems)
  2291. btrfs_mark_buffer_dirty(right);
  2292. else
  2293. clean_tree_block(trans, root, right);
  2294. btrfs_item_key(right, &disk_key, 0);
  2295. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2296. if (wret)
  2297. ret = wret;
  2298. /* then fixup the leaf pointer in the path */
  2299. if (path->slots[0] < push_items) {
  2300. path->slots[0] += old_left_nritems;
  2301. btrfs_tree_unlock(path->nodes[0]);
  2302. free_extent_buffer(path->nodes[0]);
  2303. path->nodes[0] = left;
  2304. path->slots[1] -= 1;
  2305. } else {
  2306. btrfs_tree_unlock(left);
  2307. free_extent_buffer(left);
  2308. path->slots[0] -= push_items;
  2309. }
  2310. BUG_ON(path->slots[0] < 0);
  2311. return ret;
  2312. out:
  2313. btrfs_tree_unlock(left);
  2314. free_extent_buffer(left);
  2315. return ret;
  2316. }
  2317. /*
  2318. * push some data in the path leaf to the left, trying to free up at
  2319. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2320. *
  2321. * max_slot can put a limit on how far into the leaf we'll push items. The
  2322. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2323. * items
  2324. */
  2325. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2326. *root, struct btrfs_path *path, int min_data_size,
  2327. int data_size, int empty, u32 max_slot)
  2328. {
  2329. struct extent_buffer *right = path->nodes[0];
  2330. struct extent_buffer *left;
  2331. int slot;
  2332. int free_space;
  2333. u32 right_nritems;
  2334. int ret = 0;
  2335. slot = path->slots[1];
  2336. if (slot == 0)
  2337. return 1;
  2338. if (!path->nodes[1])
  2339. return 1;
  2340. right_nritems = btrfs_header_nritems(right);
  2341. if (right_nritems == 0)
  2342. return 1;
  2343. btrfs_assert_tree_locked(path->nodes[1]);
  2344. left = read_node_slot(root, path->nodes[1], slot - 1);
  2345. if (left == NULL)
  2346. return 1;
  2347. btrfs_tree_lock(left);
  2348. btrfs_set_lock_blocking(left);
  2349. free_space = btrfs_leaf_free_space(root, left);
  2350. if (free_space < data_size) {
  2351. ret = 1;
  2352. goto out;
  2353. }
  2354. /* cow and double check */
  2355. ret = btrfs_cow_block(trans, root, left,
  2356. path->nodes[1], slot - 1, &left);
  2357. if (ret) {
  2358. /* we hit -ENOSPC, but it isn't fatal here */
  2359. ret = 1;
  2360. goto out;
  2361. }
  2362. free_space = btrfs_leaf_free_space(root, left);
  2363. if (free_space < data_size) {
  2364. ret = 1;
  2365. goto out;
  2366. }
  2367. return __push_leaf_left(trans, root, path, min_data_size,
  2368. empty, left, free_space, right_nritems,
  2369. max_slot);
  2370. out:
  2371. btrfs_tree_unlock(left);
  2372. free_extent_buffer(left);
  2373. return ret;
  2374. }
  2375. /*
  2376. * split the path's leaf in two, making sure there is at least data_size
  2377. * available for the resulting leaf level of the path.
  2378. *
  2379. * returns 0 if all went well and < 0 on failure.
  2380. */
  2381. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2382. struct btrfs_root *root,
  2383. struct btrfs_path *path,
  2384. struct extent_buffer *l,
  2385. struct extent_buffer *right,
  2386. int slot, int mid, int nritems)
  2387. {
  2388. int data_copy_size;
  2389. int rt_data_off;
  2390. int i;
  2391. int ret = 0;
  2392. int wret;
  2393. struct btrfs_disk_key disk_key;
  2394. nritems = nritems - mid;
  2395. btrfs_set_header_nritems(right, nritems);
  2396. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2397. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2398. btrfs_item_nr_offset(mid),
  2399. nritems * sizeof(struct btrfs_item));
  2400. copy_extent_buffer(right, l,
  2401. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2402. data_copy_size, btrfs_leaf_data(l) +
  2403. leaf_data_end(root, l), data_copy_size);
  2404. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2405. btrfs_item_end_nr(l, mid);
  2406. for (i = 0; i < nritems; i++) {
  2407. struct btrfs_item *item = btrfs_item_nr(right, i);
  2408. u32 ioff;
  2409. if (!right->map_token) {
  2410. map_extent_buffer(right, (unsigned long)item,
  2411. sizeof(struct btrfs_item),
  2412. &right->map_token, &right->kaddr,
  2413. &right->map_start, &right->map_len,
  2414. KM_USER1);
  2415. }
  2416. ioff = btrfs_item_offset(right, item);
  2417. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2418. }
  2419. if (right->map_token) {
  2420. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2421. right->map_token = NULL;
  2422. }
  2423. btrfs_set_header_nritems(l, mid);
  2424. ret = 0;
  2425. btrfs_item_key(right, &disk_key, 0);
  2426. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2427. path->slots[1] + 1, 1);
  2428. if (wret)
  2429. ret = wret;
  2430. btrfs_mark_buffer_dirty(right);
  2431. btrfs_mark_buffer_dirty(l);
  2432. BUG_ON(path->slots[0] != slot);
  2433. if (mid <= slot) {
  2434. btrfs_tree_unlock(path->nodes[0]);
  2435. free_extent_buffer(path->nodes[0]);
  2436. path->nodes[0] = right;
  2437. path->slots[0] -= mid;
  2438. path->slots[1] += 1;
  2439. } else {
  2440. btrfs_tree_unlock(right);
  2441. free_extent_buffer(right);
  2442. }
  2443. BUG_ON(path->slots[0] < 0);
  2444. return ret;
  2445. }
  2446. /*
  2447. * double splits happen when we need to insert a big item in the middle
  2448. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2449. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2450. * A B C
  2451. *
  2452. * We avoid this by trying to push the items on either side of our target
  2453. * into the adjacent leaves. If all goes well we can avoid the double split
  2454. * completely.
  2455. */
  2456. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2457. struct btrfs_root *root,
  2458. struct btrfs_path *path,
  2459. int data_size)
  2460. {
  2461. int ret;
  2462. int progress = 0;
  2463. int slot;
  2464. u32 nritems;
  2465. slot = path->slots[0];
  2466. /*
  2467. * try to push all the items after our slot into the
  2468. * right leaf
  2469. */
  2470. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2471. if (ret < 0)
  2472. return ret;
  2473. if (ret == 0)
  2474. progress++;
  2475. nritems = btrfs_header_nritems(path->nodes[0]);
  2476. /*
  2477. * our goal is to get our slot at the start or end of a leaf. If
  2478. * we've done so we're done
  2479. */
  2480. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2481. return 0;
  2482. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2483. return 0;
  2484. /* try to push all the items before our slot into the next leaf */
  2485. slot = path->slots[0];
  2486. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2487. if (ret < 0)
  2488. return ret;
  2489. if (ret == 0)
  2490. progress++;
  2491. if (progress)
  2492. return 0;
  2493. return 1;
  2494. }
  2495. /*
  2496. * split the path's leaf in two, making sure there is at least data_size
  2497. * available for the resulting leaf level of the path.
  2498. *
  2499. * returns 0 if all went well and < 0 on failure.
  2500. */
  2501. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2502. struct btrfs_root *root,
  2503. struct btrfs_key *ins_key,
  2504. struct btrfs_path *path, int data_size,
  2505. int extend)
  2506. {
  2507. struct btrfs_disk_key disk_key;
  2508. struct extent_buffer *l;
  2509. u32 nritems;
  2510. int mid;
  2511. int slot;
  2512. struct extent_buffer *right;
  2513. int ret = 0;
  2514. int wret;
  2515. int split;
  2516. int num_doubles = 0;
  2517. int tried_avoid_double = 0;
  2518. l = path->nodes[0];
  2519. slot = path->slots[0];
  2520. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2521. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2522. return -EOVERFLOW;
  2523. /* first try to make some room by pushing left and right */
  2524. if (data_size) {
  2525. wret = push_leaf_right(trans, root, path, data_size,
  2526. data_size, 0, 0);
  2527. if (wret < 0)
  2528. return wret;
  2529. if (wret) {
  2530. wret = push_leaf_left(trans, root, path, data_size,
  2531. data_size, 0, (u32)-1);
  2532. if (wret < 0)
  2533. return wret;
  2534. }
  2535. l = path->nodes[0];
  2536. /* did the pushes work? */
  2537. if (btrfs_leaf_free_space(root, l) >= data_size)
  2538. return 0;
  2539. }
  2540. if (!path->nodes[1]) {
  2541. ret = insert_new_root(trans, root, path, 1);
  2542. if (ret)
  2543. return ret;
  2544. }
  2545. again:
  2546. split = 1;
  2547. l = path->nodes[0];
  2548. slot = path->slots[0];
  2549. nritems = btrfs_header_nritems(l);
  2550. mid = (nritems + 1) / 2;
  2551. if (mid <= slot) {
  2552. if (nritems == 1 ||
  2553. leaf_space_used(l, mid, nritems - mid) + data_size >
  2554. BTRFS_LEAF_DATA_SIZE(root)) {
  2555. if (slot >= nritems) {
  2556. split = 0;
  2557. } else {
  2558. mid = slot;
  2559. if (mid != nritems &&
  2560. leaf_space_used(l, mid, nritems - mid) +
  2561. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2562. if (data_size && !tried_avoid_double)
  2563. goto push_for_double;
  2564. split = 2;
  2565. }
  2566. }
  2567. }
  2568. } else {
  2569. if (leaf_space_used(l, 0, mid) + data_size >
  2570. BTRFS_LEAF_DATA_SIZE(root)) {
  2571. if (!extend && data_size && slot == 0) {
  2572. split = 0;
  2573. } else if ((extend || !data_size) && slot == 0) {
  2574. mid = 1;
  2575. } else {
  2576. mid = slot;
  2577. if (mid != nritems &&
  2578. leaf_space_used(l, mid, nritems - mid) +
  2579. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2580. if (data_size && !tried_avoid_double)
  2581. goto push_for_double;
  2582. split = 2 ;
  2583. }
  2584. }
  2585. }
  2586. }
  2587. if (split == 0)
  2588. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2589. else
  2590. btrfs_item_key(l, &disk_key, mid);
  2591. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2592. root->root_key.objectid,
  2593. &disk_key, 0, l->start, 0);
  2594. if (IS_ERR(right))
  2595. return PTR_ERR(right);
  2596. root_add_used(root, root->leafsize);
  2597. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2598. btrfs_set_header_bytenr(right, right->start);
  2599. btrfs_set_header_generation(right, trans->transid);
  2600. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2601. btrfs_set_header_owner(right, root->root_key.objectid);
  2602. btrfs_set_header_level(right, 0);
  2603. write_extent_buffer(right, root->fs_info->fsid,
  2604. (unsigned long)btrfs_header_fsid(right),
  2605. BTRFS_FSID_SIZE);
  2606. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2607. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2608. BTRFS_UUID_SIZE);
  2609. if (split == 0) {
  2610. if (mid <= slot) {
  2611. btrfs_set_header_nritems(right, 0);
  2612. wret = insert_ptr(trans, root, path,
  2613. &disk_key, right->start,
  2614. path->slots[1] + 1, 1);
  2615. if (wret)
  2616. ret = wret;
  2617. btrfs_tree_unlock(path->nodes[0]);
  2618. free_extent_buffer(path->nodes[0]);
  2619. path->nodes[0] = right;
  2620. path->slots[0] = 0;
  2621. path->slots[1] += 1;
  2622. } else {
  2623. btrfs_set_header_nritems(right, 0);
  2624. wret = insert_ptr(trans, root, path,
  2625. &disk_key,
  2626. right->start,
  2627. path->slots[1], 1);
  2628. if (wret)
  2629. ret = wret;
  2630. btrfs_tree_unlock(path->nodes[0]);
  2631. free_extent_buffer(path->nodes[0]);
  2632. path->nodes[0] = right;
  2633. path->slots[0] = 0;
  2634. if (path->slots[1] == 0) {
  2635. wret = fixup_low_keys(trans, root,
  2636. path, &disk_key, 1);
  2637. if (wret)
  2638. ret = wret;
  2639. }
  2640. }
  2641. btrfs_mark_buffer_dirty(right);
  2642. return ret;
  2643. }
  2644. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2645. BUG_ON(ret);
  2646. if (split == 2) {
  2647. BUG_ON(num_doubles != 0);
  2648. num_doubles++;
  2649. goto again;
  2650. }
  2651. return ret;
  2652. push_for_double:
  2653. push_for_double_split(trans, root, path, data_size);
  2654. tried_avoid_double = 1;
  2655. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2656. return 0;
  2657. goto again;
  2658. }
  2659. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2660. struct btrfs_root *root,
  2661. struct btrfs_path *path, int ins_len)
  2662. {
  2663. struct btrfs_key key;
  2664. struct extent_buffer *leaf;
  2665. struct btrfs_file_extent_item *fi;
  2666. u64 extent_len = 0;
  2667. u32 item_size;
  2668. int ret;
  2669. leaf = path->nodes[0];
  2670. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2671. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2672. key.type != BTRFS_EXTENT_CSUM_KEY);
  2673. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2674. return 0;
  2675. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2676. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2677. fi = btrfs_item_ptr(leaf, path->slots[0],
  2678. struct btrfs_file_extent_item);
  2679. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2680. }
  2681. btrfs_release_path(path);
  2682. path->keep_locks = 1;
  2683. path->search_for_split = 1;
  2684. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2685. path->search_for_split = 0;
  2686. if (ret < 0)
  2687. goto err;
  2688. ret = -EAGAIN;
  2689. leaf = path->nodes[0];
  2690. /* if our item isn't there or got smaller, return now */
  2691. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2692. goto err;
  2693. /* the leaf has changed, it now has room. return now */
  2694. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2695. goto err;
  2696. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2697. fi = btrfs_item_ptr(leaf, path->slots[0],
  2698. struct btrfs_file_extent_item);
  2699. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2700. goto err;
  2701. }
  2702. btrfs_set_path_blocking(path);
  2703. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2704. if (ret)
  2705. goto err;
  2706. path->keep_locks = 0;
  2707. btrfs_unlock_up_safe(path, 1);
  2708. return 0;
  2709. err:
  2710. path->keep_locks = 0;
  2711. return ret;
  2712. }
  2713. static noinline int split_item(struct btrfs_trans_handle *trans,
  2714. struct btrfs_root *root,
  2715. struct btrfs_path *path,
  2716. struct btrfs_key *new_key,
  2717. unsigned long split_offset)
  2718. {
  2719. struct extent_buffer *leaf;
  2720. struct btrfs_item *item;
  2721. struct btrfs_item *new_item;
  2722. int slot;
  2723. char *buf;
  2724. u32 nritems;
  2725. u32 item_size;
  2726. u32 orig_offset;
  2727. struct btrfs_disk_key disk_key;
  2728. leaf = path->nodes[0];
  2729. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2730. btrfs_set_path_blocking(path);
  2731. item = btrfs_item_nr(leaf, path->slots[0]);
  2732. orig_offset = btrfs_item_offset(leaf, item);
  2733. item_size = btrfs_item_size(leaf, item);
  2734. buf = kmalloc(item_size, GFP_NOFS);
  2735. if (!buf)
  2736. return -ENOMEM;
  2737. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2738. path->slots[0]), item_size);
  2739. slot = path->slots[0] + 1;
  2740. nritems = btrfs_header_nritems(leaf);
  2741. if (slot != nritems) {
  2742. /* shift the items */
  2743. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2744. btrfs_item_nr_offset(slot),
  2745. (nritems - slot) * sizeof(struct btrfs_item));
  2746. }
  2747. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2748. btrfs_set_item_key(leaf, &disk_key, slot);
  2749. new_item = btrfs_item_nr(leaf, slot);
  2750. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2751. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2752. btrfs_set_item_offset(leaf, item,
  2753. orig_offset + item_size - split_offset);
  2754. btrfs_set_item_size(leaf, item, split_offset);
  2755. btrfs_set_header_nritems(leaf, nritems + 1);
  2756. /* write the data for the start of the original item */
  2757. write_extent_buffer(leaf, buf,
  2758. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2759. split_offset);
  2760. /* write the data for the new item */
  2761. write_extent_buffer(leaf, buf + split_offset,
  2762. btrfs_item_ptr_offset(leaf, slot),
  2763. item_size - split_offset);
  2764. btrfs_mark_buffer_dirty(leaf);
  2765. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2766. kfree(buf);
  2767. return 0;
  2768. }
  2769. /*
  2770. * This function splits a single item into two items,
  2771. * giving 'new_key' to the new item and splitting the
  2772. * old one at split_offset (from the start of the item).
  2773. *
  2774. * The path may be released by this operation. After
  2775. * the split, the path is pointing to the old item. The
  2776. * new item is going to be in the same node as the old one.
  2777. *
  2778. * Note, the item being split must be smaller enough to live alone on
  2779. * a tree block with room for one extra struct btrfs_item
  2780. *
  2781. * This allows us to split the item in place, keeping a lock on the
  2782. * leaf the entire time.
  2783. */
  2784. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2785. struct btrfs_root *root,
  2786. struct btrfs_path *path,
  2787. struct btrfs_key *new_key,
  2788. unsigned long split_offset)
  2789. {
  2790. int ret;
  2791. ret = setup_leaf_for_split(trans, root, path,
  2792. sizeof(struct btrfs_item));
  2793. if (ret)
  2794. return ret;
  2795. ret = split_item(trans, root, path, new_key, split_offset);
  2796. return ret;
  2797. }
  2798. /*
  2799. * This function duplicate a item, giving 'new_key' to the new item.
  2800. * It guarantees both items live in the same tree leaf and the new item
  2801. * is contiguous with the original item.
  2802. *
  2803. * This allows us to split file extent in place, keeping a lock on the
  2804. * leaf the entire time.
  2805. */
  2806. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2807. struct btrfs_root *root,
  2808. struct btrfs_path *path,
  2809. struct btrfs_key *new_key)
  2810. {
  2811. struct extent_buffer *leaf;
  2812. int ret;
  2813. u32 item_size;
  2814. leaf = path->nodes[0];
  2815. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2816. ret = setup_leaf_for_split(trans, root, path,
  2817. item_size + sizeof(struct btrfs_item));
  2818. if (ret)
  2819. return ret;
  2820. path->slots[0]++;
  2821. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2822. item_size, item_size +
  2823. sizeof(struct btrfs_item), 1);
  2824. BUG_ON(ret);
  2825. leaf = path->nodes[0];
  2826. memcpy_extent_buffer(leaf,
  2827. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2828. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2829. item_size);
  2830. return 0;
  2831. }
  2832. /*
  2833. * make the item pointed to by the path smaller. new_size indicates
  2834. * how small to make it, and from_end tells us if we just chop bytes
  2835. * off the end of the item or if we shift the item to chop bytes off
  2836. * the front.
  2837. */
  2838. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2839. struct btrfs_root *root,
  2840. struct btrfs_path *path,
  2841. u32 new_size, int from_end)
  2842. {
  2843. int ret = 0;
  2844. int slot;
  2845. struct extent_buffer *leaf;
  2846. struct btrfs_item *item;
  2847. u32 nritems;
  2848. unsigned int data_end;
  2849. unsigned int old_data_start;
  2850. unsigned int old_size;
  2851. unsigned int size_diff;
  2852. int i;
  2853. leaf = path->nodes[0];
  2854. slot = path->slots[0];
  2855. old_size = btrfs_item_size_nr(leaf, slot);
  2856. if (old_size == new_size)
  2857. return 0;
  2858. nritems = btrfs_header_nritems(leaf);
  2859. data_end = leaf_data_end(root, leaf);
  2860. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2861. size_diff = old_size - new_size;
  2862. BUG_ON(slot < 0);
  2863. BUG_ON(slot >= nritems);
  2864. /*
  2865. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2866. */
  2867. /* first correct the data pointers */
  2868. for (i = slot; i < nritems; i++) {
  2869. u32 ioff;
  2870. item = btrfs_item_nr(leaf, i);
  2871. if (!leaf->map_token) {
  2872. map_extent_buffer(leaf, (unsigned long)item,
  2873. sizeof(struct btrfs_item),
  2874. &leaf->map_token, &leaf->kaddr,
  2875. &leaf->map_start, &leaf->map_len,
  2876. KM_USER1);
  2877. }
  2878. ioff = btrfs_item_offset(leaf, item);
  2879. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2880. }
  2881. if (leaf->map_token) {
  2882. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2883. leaf->map_token = NULL;
  2884. }
  2885. /* shift the data */
  2886. if (from_end) {
  2887. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2888. data_end + size_diff, btrfs_leaf_data(leaf) +
  2889. data_end, old_data_start + new_size - data_end);
  2890. } else {
  2891. struct btrfs_disk_key disk_key;
  2892. u64 offset;
  2893. btrfs_item_key(leaf, &disk_key, slot);
  2894. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2895. unsigned long ptr;
  2896. struct btrfs_file_extent_item *fi;
  2897. fi = btrfs_item_ptr(leaf, slot,
  2898. struct btrfs_file_extent_item);
  2899. fi = (struct btrfs_file_extent_item *)(
  2900. (unsigned long)fi - size_diff);
  2901. if (btrfs_file_extent_type(leaf, fi) ==
  2902. BTRFS_FILE_EXTENT_INLINE) {
  2903. ptr = btrfs_item_ptr_offset(leaf, slot);
  2904. memmove_extent_buffer(leaf, ptr,
  2905. (unsigned long)fi,
  2906. offsetof(struct btrfs_file_extent_item,
  2907. disk_bytenr));
  2908. }
  2909. }
  2910. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2911. data_end + size_diff, btrfs_leaf_data(leaf) +
  2912. data_end, old_data_start - data_end);
  2913. offset = btrfs_disk_key_offset(&disk_key);
  2914. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2915. btrfs_set_item_key(leaf, &disk_key, slot);
  2916. if (slot == 0)
  2917. fixup_low_keys(trans, root, path, &disk_key, 1);
  2918. }
  2919. item = btrfs_item_nr(leaf, slot);
  2920. btrfs_set_item_size(leaf, item, new_size);
  2921. btrfs_mark_buffer_dirty(leaf);
  2922. ret = 0;
  2923. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2924. btrfs_print_leaf(root, leaf);
  2925. BUG();
  2926. }
  2927. return ret;
  2928. }
  2929. /*
  2930. * make the item pointed to by the path bigger, data_size is the new size.
  2931. */
  2932. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2933. struct btrfs_root *root, struct btrfs_path *path,
  2934. u32 data_size)
  2935. {
  2936. int ret = 0;
  2937. int slot;
  2938. struct extent_buffer *leaf;
  2939. struct btrfs_item *item;
  2940. u32 nritems;
  2941. unsigned int data_end;
  2942. unsigned int old_data;
  2943. unsigned int old_size;
  2944. int i;
  2945. leaf = path->nodes[0];
  2946. nritems = btrfs_header_nritems(leaf);
  2947. data_end = leaf_data_end(root, leaf);
  2948. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2949. btrfs_print_leaf(root, leaf);
  2950. BUG();
  2951. }
  2952. slot = path->slots[0];
  2953. old_data = btrfs_item_end_nr(leaf, slot);
  2954. BUG_ON(slot < 0);
  2955. if (slot >= nritems) {
  2956. btrfs_print_leaf(root, leaf);
  2957. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2958. slot, nritems);
  2959. BUG_ON(1);
  2960. }
  2961. /*
  2962. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2963. */
  2964. /* first correct the data pointers */
  2965. for (i = slot; i < nritems; i++) {
  2966. u32 ioff;
  2967. item = btrfs_item_nr(leaf, i);
  2968. if (!leaf->map_token) {
  2969. map_extent_buffer(leaf, (unsigned long)item,
  2970. sizeof(struct btrfs_item),
  2971. &leaf->map_token, &leaf->kaddr,
  2972. &leaf->map_start, &leaf->map_len,
  2973. KM_USER1);
  2974. }
  2975. ioff = btrfs_item_offset(leaf, item);
  2976. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2977. }
  2978. if (leaf->map_token) {
  2979. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2980. leaf->map_token = NULL;
  2981. }
  2982. /* shift the data */
  2983. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2984. data_end - data_size, btrfs_leaf_data(leaf) +
  2985. data_end, old_data - data_end);
  2986. data_end = old_data;
  2987. old_size = btrfs_item_size_nr(leaf, slot);
  2988. item = btrfs_item_nr(leaf, slot);
  2989. btrfs_set_item_size(leaf, item, old_size + data_size);
  2990. btrfs_mark_buffer_dirty(leaf);
  2991. ret = 0;
  2992. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2993. btrfs_print_leaf(root, leaf);
  2994. BUG();
  2995. }
  2996. return ret;
  2997. }
  2998. /*
  2999. * Given a key and some data, insert items into the tree.
  3000. * This does all the path init required, making room in the tree if needed.
  3001. * Returns the number of keys that were inserted.
  3002. */
  3003. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3004. struct btrfs_root *root,
  3005. struct btrfs_path *path,
  3006. struct btrfs_key *cpu_key, u32 *data_size,
  3007. int nr)
  3008. {
  3009. struct extent_buffer *leaf;
  3010. struct btrfs_item *item;
  3011. int ret = 0;
  3012. int slot;
  3013. int i;
  3014. u32 nritems;
  3015. u32 total_data = 0;
  3016. u32 total_size = 0;
  3017. unsigned int data_end;
  3018. struct btrfs_disk_key disk_key;
  3019. struct btrfs_key found_key;
  3020. for (i = 0; i < nr; i++) {
  3021. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3022. BTRFS_LEAF_DATA_SIZE(root)) {
  3023. break;
  3024. nr = i;
  3025. }
  3026. total_data += data_size[i];
  3027. total_size += data_size[i] + sizeof(struct btrfs_item);
  3028. }
  3029. BUG_ON(nr == 0);
  3030. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3031. if (ret == 0)
  3032. return -EEXIST;
  3033. if (ret < 0)
  3034. goto out;
  3035. leaf = path->nodes[0];
  3036. nritems = btrfs_header_nritems(leaf);
  3037. data_end = leaf_data_end(root, leaf);
  3038. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3039. for (i = nr; i >= 0; i--) {
  3040. total_data -= data_size[i];
  3041. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3042. if (total_size < btrfs_leaf_free_space(root, leaf))
  3043. break;
  3044. }
  3045. nr = i;
  3046. }
  3047. slot = path->slots[0];
  3048. BUG_ON(slot < 0);
  3049. if (slot != nritems) {
  3050. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3051. item = btrfs_item_nr(leaf, slot);
  3052. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3053. /* figure out how many keys we can insert in here */
  3054. total_data = data_size[0];
  3055. for (i = 1; i < nr; i++) {
  3056. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3057. break;
  3058. total_data += data_size[i];
  3059. }
  3060. nr = i;
  3061. if (old_data < data_end) {
  3062. btrfs_print_leaf(root, leaf);
  3063. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3064. slot, old_data, data_end);
  3065. BUG_ON(1);
  3066. }
  3067. /*
  3068. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3069. */
  3070. /* first correct the data pointers */
  3071. WARN_ON(leaf->map_token);
  3072. for (i = slot; i < nritems; i++) {
  3073. u32 ioff;
  3074. item = btrfs_item_nr(leaf, i);
  3075. if (!leaf->map_token) {
  3076. map_extent_buffer(leaf, (unsigned long)item,
  3077. sizeof(struct btrfs_item),
  3078. &leaf->map_token, &leaf->kaddr,
  3079. &leaf->map_start, &leaf->map_len,
  3080. KM_USER1);
  3081. }
  3082. ioff = btrfs_item_offset(leaf, item);
  3083. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3084. }
  3085. if (leaf->map_token) {
  3086. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3087. leaf->map_token = NULL;
  3088. }
  3089. /* shift the items */
  3090. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3091. btrfs_item_nr_offset(slot),
  3092. (nritems - slot) * sizeof(struct btrfs_item));
  3093. /* shift the data */
  3094. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3095. data_end - total_data, btrfs_leaf_data(leaf) +
  3096. data_end, old_data - data_end);
  3097. data_end = old_data;
  3098. } else {
  3099. /*
  3100. * this sucks but it has to be done, if we are inserting at
  3101. * the end of the leaf only insert 1 of the items, since we
  3102. * have no way of knowing whats on the next leaf and we'd have
  3103. * to drop our current locks to figure it out
  3104. */
  3105. nr = 1;
  3106. }
  3107. /* setup the item for the new data */
  3108. for (i = 0; i < nr; i++) {
  3109. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3110. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3111. item = btrfs_item_nr(leaf, slot + i);
  3112. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3113. data_end -= data_size[i];
  3114. btrfs_set_item_size(leaf, item, data_size[i]);
  3115. }
  3116. btrfs_set_header_nritems(leaf, nritems + nr);
  3117. btrfs_mark_buffer_dirty(leaf);
  3118. ret = 0;
  3119. if (slot == 0) {
  3120. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3121. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3122. }
  3123. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3124. btrfs_print_leaf(root, leaf);
  3125. BUG();
  3126. }
  3127. out:
  3128. if (!ret)
  3129. ret = nr;
  3130. return ret;
  3131. }
  3132. /*
  3133. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3134. * to save stack depth by doing the bulk of the work in a function
  3135. * that doesn't call btrfs_search_slot
  3136. */
  3137. static noinline_for_stack int
  3138. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3139. struct btrfs_root *root, struct btrfs_path *path,
  3140. struct btrfs_key *cpu_key, u32 *data_size,
  3141. u32 total_data, u32 total_size, int nr)
  3142. {
  3143. struct btrfs_item *item;
  3144. int i;
  3145. u32 nritems;
  3146. unsigned int data_end;
  3147. struct btrfs_disk_key disk_key;
  3148. int ret;
  3149. struct extent_buffer *leaf;
  3150. int slot;
  3151. leaf = path->nodes[0];
  3152. slot = path->slots[0];
  3153. nritems = btrfs_header_nritems(leaf);
  3154. data_end = leaf_data_end(root, leaf);
  3155. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3156. btrfs_print_leaf(root, leaf);
  3157. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3158. total_size, btrfs_leaf_free_space(root, leaf));
  3159. BUG();
  3160. }
  3161. if (slot != nritems) {
  3162. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3163. if (old_data < data_end) {
  3164. btrfs_print_leaf(root, leaf);
  3165. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3166. slot, old_data, data_end);
  3167. BUG_ON(1);
  3168. }
  3169. /*
  3170. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3171. */
  3172. /* first correct the data pointers */
  3173. WARN_ON(leaf->map_token);
  3174. for (i = slot; i < nritems; i++) {
  3175. u32 ioff;
  3176. item = btrfs_item_nr(leaf, i);
  3177. if (!leaf->map_token) {
  3178. map_extent_buffer(leaf, (unsigned long)item,
  3179. sizeof(struct btrfs_item),
  3180. &leaf->map_token, &leaf->kaddr,
  3181. &leaf->map_start, &leaf->map_len,
  3182. KM_USER1);
  3183. }
  3184. ioff = btrfs_item_offset(leaf, item);
  3185. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3186. }
  3187. if (leaf->map_token) {
  3188. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3189. leaf->map_token = NULL;
  3190. }
  3191. /* shift the items */
  3192. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3193. btrfs_item_nr_offset(slot),
  3194. (nritems - slot) * sizeof(struct btrfs_item));
  3195. /* shift the data */
  3196. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3197. data_end - total_data, btrfs_leaf_data(leaf) +
  3198. data_end, old_data - data_end);
  3199. data_end = old_data;
  3200. }
  3201. /* setup the item for the new data */
  3202. for (i = 0; i < nr; i++) {
  3203. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3204. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3205. item = btrfs_item_nr(leaf, slot + i);
  3206. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3207. data_end -= data_size[i];
  3208. btrfs_set_item_size(leaf, item, data_size[i]);
  3209. }
  3210. btrfs_set_header_nritems(leaf, nritems + nr);
  3211. ret = 0;
  3212. if (slot == 0) {
  3213. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3214. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3215. }
  3216. btrfs_unlock_up_safe(path, 1);
  3217. btrfs_mark_buffer_dirty(leaf);
  3218. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3219. btrfs_print_leaf(root, leaf);
  3220. BUG();
  3221. }
  3222. return ret;
  3223. }
  3224. /*
  3225. * Given a key and some data, insert items into the tree.
  3226. * This does all the path init required, making room in the tree if needed.
  3227. */
  3228. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3229. struct btrfs_root *root,
  3230. struct btrfs_path *path,
  3231. struct btrfs_key *cpu_key, u32 *data_size,
  3232. int nr)
  3233. {
  3234. int ret = 0;
  3235. int slot;
  3236. int i;
  3237. u32 total_size = 0;
  3238. u32 total_data = 0;
  3239. for (i = 0; i < nr; i++)
  3240. total_data += data_size[i];
  3241. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3242. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3243. if (ret == 0)
  3244. return -EEXIST;
  3245. if (ret < 0)
  3246. goto out;
  3247. slot = path->slots[0];
  3248. BUG_ON(slot < 0);
  3249. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3250. total_data, total_size, nr);
  3251. out:
  3252. return ret;
  3253. }
  3254. /*
  3255. * Given a key and some data, insert an item into the tree.
  3256. * This does all the path init required, making room in the tree if needed.
  3257. */
  3258. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3259. *root, struct btrfs_key *cpu_key, void *data, u32
  3260. data_size)
  3261. {
  3262. int ret = 0;
  3263. struct btrfs_path *path;
  3264. struct extent_buffer *leaf;
  3265. unsigned long ptr;
  3266. path = btrfs_alloc_path();
  3267. if (!path)
  3268. return -ENOMEM;
  3269. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3270. if (!ret) {
  3271. leaf = path->nodes[0];
  3272. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3273. write_extent_buffer(leaf, data, ptr, data_size);
  3274. btrfs_mark_buffer_dirty(leaf);
  3275. }
  3276. btrfs_free_path(path);
  3277. return ret;
  3278. }
  3279. /*
  3280. * delete the pointer from a given node.
  3281. *
  3282. * the tree should have been previously balanced so the deletion does not
  3283. * empty a node.
  3284. */
  3285. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3286. struct btrfs_path *path, int level, int slot)
  3287. {
  3288. struct extent_buffer *parent = path->nodes[level];
  3289. u32 nritems;
  3290. int ret = 0;
  3291. int wret;
  3292. nritems = btrfs_header_nritems(parent);
  3293. if (slot != nritems - 1) {
  3294. memmove_extent_buffer(parent,
  3295. btrfs_node_key_ptr_offset(slot),
  3296. btrfs_node_key_ptr_offset(slot + 1),
  3297. sizeof(struct btrfs_key_ptr) *
  3298. (nritems - slot - 1));
  3299. }
  3300. nritems--;
  3301. btrfs_set_header_nritems(parent, nritems);
  3302. if (nritems == 0 && parent == root->node) {
  3303. BUG_ON(btrfs_header_level(root->node) != 1);
  3304. /* just turn the root into a leaf and break */
  3305. btrfs_set_header_level(root->node, 0);
  3306. } else if (slot == 0) {
  3307. struct btrfs_disk_key disk_key;
  3308. btrfs_node_key(parent, &disk_key, 0);
  3309. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3310. if (wret)
  3311. ret = wret;
  3312. }
  3313. btrfs_mark_buffer_dirty(parent);
  3314. return ret;
  3315. }
  3316. /*
  3317. * a helper function to delete the leaf pointed to by path->slots[1] and
  3318. * path->nodes[1].
  3319. *
  3320. * This deletes the pointer in path->nodes[1] and frees the leaf
  3321. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3322. *
  3323. * The path must have already been setup for deleting the leaf, including
  3324. * all the proper balancing. path->nodes[1] must be locked.
  3325. */
  3326. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3327. struct btrfs_root *root,
  3328. struct btrfs_path *path,
  3329. struct extent_buffer *leaf)
  3330. {
  3331. int ret;
  3332. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3333. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3334. if (ret)
  3335. return ret;
  3336. /*
  3337. * btrfs_free_extent is expensive, we want to make sure we
  3338. * aren't holding any locks when we call it
  3339. */
  3340. btrfs_unlock_up_safe(path, 0);
  3341. root_sub_used(root, leaf->len);
  3342. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3343. return 0;
  3344. }
  3345. /*
  3346. * delete the item at the leaf level in path. If that empties
  3347. * the leaf, remove it from the tree
  3348. */
  3349. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3350. struct btrfs_path *path, int slot, int nr)
  3351. {
  3352. struct extent_buffer *leaf;
  3353. struct btrfs_item *item;
  3354. int last_off;
  3355. int dsize = 0;
  3356. int ret = 0;
  3357. int wret;
  3358. int i;
  3359. u32 nritems;
  3360. leaf = path->nodes[0];
  3361. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3362. for (i = 0; i < nr; i++)
  3363. dsize += btrfs_item_size_nr(leaf, slot + i);
  3364. nritems = btrfs_header_nritems(leaf);
  3365. if (slot + nr != nritems) {
  3366. int data_end = leaf_data_end(root, leaf);
  3367. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3368. data_end + dsize,
  3369. btrfs_leaf_data(leaf) + data_end,
  3370. last_off - data_end);
  3371. for (i = slot + nr; i < nritems; i++) {
  3372. u32 ioff;
  3373. item = btrfs_item_nr(leaf, i);
  3374. if (!leaf->map_token) {
  3375. map_extent_buffer(leaf, (unsigned long)item,
  3376. sizeof(struct btrfs_item),
  3377. &leaf->map_token, &leaf->kaddr,
  3378. &leaf->map_start, &leaf->map_len,
  3379. KM_USER1);
  3380. }
  3381. ioff = btrfs_item_offset(leaf, item);
  3382. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3383. }
  3384. if (leaf->map_token) {
  3385. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3386. leaf->map_token = NULL;
  3387. }
  3388. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3389. btrfs_item_nr_offset(slot + nr),
  3390. sizeof(struct btrfs_item) *
  3391. (nritems - slot - nr));
  3392. }
  3393. btrfs_set_header_nritems(leaf, nritems - nr);
  3394. nritems -= nr;
  3395. /* delete the leaf if we've emptied it */
  3396. if (nritems == 0) {
  3397. if (leaf == root->node) {
  3398. btrfs_set_header_level(leaf, 0);
  3399. } else {
  3400. btrfs_set_path_blocking(path);
  3401. clean_tree_block(trans, root, leaf);
  3402. ret = btrfs_del_leaf(trans, root, path, leaf);
  3403. BUG_ON(ret);
  3404. }
  3405. } else {
  3406. int used = leaf_space_used(leaf, 0, nritems);
  3407. if (slot == 0) {
  3408. struct btrfs_disk_key disk_key;
  3409. btrfs_item_key(leaf, &disk_key, 0);
  3410. wret = fixup_low_keys(trans, root, path,
  3411. &disk_key, 1);
  3412. if (wret)
  3413. ret = wret;
  3414. }
  3415. /* delete the leaf if it is mostly empty */
  3416. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3417. /* push_leaf_left fixes the path.
  3418. * make sure the path still points to our leaf
  3419. * for possible call to del_ptr below
  3420. */
  3421. slot = path->slots[1];
  3422. extent_buffer_get(leaf);
  3423. btrfs_set_path_blocking(path);
  3424. wret = push_leaf_left(trans, root, path, 1, 1,
  3425. 1, (u32)-1);
  3426. if (wret < 0 && wret != -ENOSPC)
  3427. ret = wret;
  3428. if (path->nodes[0] == leaf &&
  3429. btrfs_header_nritems(leaf)) {
  3430. wret = push_leaf_right(trans, root, path, 1,
  3431. 1, 1, 0);
  3432. if (wret < 0 && wret != -ENOSPC)
  3433. ret = wret;
  3434. }
  3435. if (btrfs_header_nritems(leaf) == 0) {
  3436. path->slots[1] = slot;
  3437. ret = btrfs_del_leaf(trans, root, path, leaf);
  3438. BUG_ON(ret);
  3439. free_extent_buffer(leaf);
  3440. } else {
  3441. /* if we're still in the path, make sure
  3442. * we're dirty. Otherwise, one of the
  3443. * push_leaf functions must have already
  3444. * dirtied this buffer
  3445. */
  3446. if (path->nodes[0] == leaf)
  3447. btrfs_mark_buffer_dirty(leaf);
  3448. free_extent_buffer(leaf);
  3449. }
  3450. } else {
  3451. btrfs_mark_buffer_dirty(leaf);
  3452. }
  3453. }
  3454. return ret;
  3455. }
  3456. /*
  3457. * search the tree again to find a leaf with lesser keys
  3458. * returns 0 if it found something or 1 if there are no lesser leaves.
  3459. * returns < 0 on io errors.
  3460. *
  3461. * This may release the path, and so you may lose any locks held at the
  3462. * time you call it.
  3463. */
  3464. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3465. {
  3466. struct btrfs_key key;
  3467. struct btrfs_disk_key found_key;
  3468. int ret;
  3469. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3470. if (key.offset > 0)
  3471. key.offset--;
  3472. else if (key.type > 0)
  3473. key.type--;
  3474. else if (key.objectid > 0)
  3475. key.objectid--;
  3476. else
  3477. return 1;
  3478. btrfs_release_path(path);
  3479. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3480. if (ret < 0)
  3481. return ret;
  3482. btrfs_item_key(path->nodes[0], &found_key, 0);
  3483. ret = comp_keys(&found_key, &key);
  3484. if (ret < 0)
  3485. return 0;
  3486. return 1;
  3487. }
  3488. /*
  3489. * A helper function to walk down the tree starting at min_key, and looking
  3490. * for nodes or leaves that are either in cache or have a minimum
  3491. * transaction id. This is used by the btree defrag code, and tree logging
  3492. *
  3493. * This does not cow, but it does stuff the starting key it finds back
  3494. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3495. * key and get a writable path.
  3496. *
  3497. * This does lock as it descends, and path->keep_locks should be set
  3498. * to 1 by the caller.
  3499. *
  3500. * This honors path->lowest_level to prevent descent past a given level
  3501. * of the tree.
  3502. *
  3503. * min_trans indicates the oldest transaction that you are interested
  3504. * in walking through. Any nodes or leaves older than min_trans are
  3505. * skipped over (without reading them).
  3506. *
  3507. * returns zero if something useful was found, < 0 on error and 1 if there
  3508. * was nothing in the tree that matched the search criteria.
  3509. */
  3510. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3511. struct btrfs_key *max_key,
  3512. struct btrfs_path *path, int cache_only,
  3513. u64 min_trans)
  3514. {
  3515. struct extent_buffer *cur;
  3516. struct btrfs_key found_key;
  3517. int slot;
  3518. int sret;
  3519. u32 nritems;
  3520. int level;
  3521. int ret = 1;
  3522. WARN_ON(!path->keep_locks);
  3523. again:
  3524. cur = btrfs_lock_root_node(root);
  3525. level = btrfs_header_level(cur);
  3526. WARN_ON(path->nodes[level]);
  3527. path->nodes[level] = cur;
  3528. path->locks[level] = 1;
  3529. if (btrfs_header_generation(cur) < min_trans) {
  3530. ret = 1;
  3531. goto out;
  3532. }
  3533. while (1) {
  3534. nritems = btrfs_header_nritems(cur);
  3535. level = btrfs_header_level(cur);
  3536. sret = bin_search(cur, min_key, level, &slot);
  3537. /* at the lowest level, we're done, setup the path and exit */
  3538. if (level == path->lowest_level) {
  3539. if (slot >= nritems)
  3540. goto find_next_key;
  3541. ret = 0;
  3542. path->slots[level] = slot;
  3543. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3544. goto out;
  3545. }
  3546. if (sret && slot > 0)
  3547. slot--;
  3548. /*
  3549. * check this node pointer against the cache_only and
  3550. * min_trans parameters. If it isn't in cache or is too
  3551. * old, skip to the next one.
  3552. */
  3553. while (slot < nritems) {
  3554. u64 blockptr;
  3555. u64 gen;
  3556. struct extent_buffer *tmp;
  3557. struct btrfs_disk_key disk_key;
  3558. blockptr = btrfs_node_blockptr(cur, slot);
  3559. gen = btrfs_node_ptr_generation(cur, slot);
  3560. if (gen < min_trans) {
  3561. slot++;
  3562. continue;
  3563. }
  3564. if (!cache_only)
  3565. break;
  3566. if (max_key) {
  3567. btrfs_node_key(cur, &disk_key, slot);
  3568. if (comp_keys(&disk_key, max_key) >= 0) {
  3569. ret = 1;
  3570. goto out;
  3571. }
  3572. }
  3573. tmp = btrfs_find_tree_block(root, blockptr,
  3574. btrfs_level_size(root, level - 1));
  3575. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3576. free_extent_buffer(tmp);
  3577. break;
  3578. }
  3579. if (tmp)
  3580. free_extent_buffer(tmp);
  3581. slot++;
  3582. }
  3583. find_next_key:
  3584. /*
  3585. * we didn't find a candidate key in this node, walk forward
  3586. * and find another one
  3587. */
  3588. if (slot >= nritems) {
  3589. path->slots[level] = slot;
  3590. btrfs_set_path_blocking(path);
  3591. sret = btrfs_find_next_key(root, path, min_key, level,
  3592. cache_only, min_trans);
  3593. if (sret == 0) {
  3594. btrfs_release_path(path);
  3595. goto again;
  3596. } else {
  3597. goto out;
  3598. }
  3599. }
  3600. /* save our key for returning back */
  3601. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3602. path->slots[level] = slot;
  3603. if (level == path->lowest_level) {
  3604. ret = 0;
  3605. unlock_up(path, level, 1);
  3606. goto out;
  3607. }
  3608. btrfs_set_path_blocking(path);
  3609. cur = read_node_slot(root, cur, slot);
  3610. BUG_ON(!cur);
  3611. btrfs_tree_lock(cur);
  3612. path->locks[level - 1] = 1;
  3613. path->nodes[level - 1] = cur;
  3614. unlock_up(path, level, 1);
  3615. btrfs_clear_path_blocking(path, NULL);
  3616. }
  3617. out:
  3618. if (ret == 0)
  3619. memcpy(min_key, &found_key, sizeof(found_key));
  3620. btrfs_set_path_blocking(path);
  3621. return ret;
  3622. }
  3623. /*
  3624. * this is similar to btrfs_next_leaf, but does not try to preserve
  3625. * and fixup the path. It looks for and returns the next key in the
  3626. * tree based on the current path and the cache_only and min_trans
  3627. * parameters.
  3628. *
  3629. * 0 is returned if another key is found, < 0 if there are any errors
  3630. * and 1 is returned if there are no higher keys in the tree
  3631. *
  3632. * path->keep_locks should be set to 1 on the search made before
  3633. * calling this function.
  3634. */
  3635. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3636. struct btrfs_key *key, int level,
  3637. int cache_only, u64 min_trans)
  3638. {
  3639. int slot;
  3640. struct extent_buffer *c;
  3641. WARN_ON(!path->keep_locks);
  3642. while (level < BTRFS_MAX_LEVEL) {
  3643. if (!path->nodes[level])
  3644. return 1;
  3645. slot = path->slots[level] + 1;
  3646. c = path->nodes[level];
  3647. next:
  3648. if (slot >= btrfs_header_nritems(c)) {
  3649. int ret;
  3650. int orig_lowest;
  3651. struct btrfs_key cur_key;
  3652. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3653. !path->nodes[level + 1])
  3654. return 1;
  3655. if (path->locks[level + 1]) {
  3656. level++;
  3657. continue;
  3658. }
  3659. slot = btrfs_header_nritems(c) - 1;
  3660. if (level == 0)
  3661. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3662. else
  3663. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3664. orig_lowest = path->lowest_level;
  3665. btrfs_release_path(path);
  3666. path->lowest_level = level;
  3667. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3668. 0, 0);
  3669. path->lowest_level = orig_lowest;
  3670. if (ret < 0)
  3671. return ret;
  3672. c = path->nodes[level];
  3673. slot = path->slots[level];
  3674. if (ret == 0)
  3675. slot++;
  3676. goto next;
  3677. }
  3678. if (level == 0)
  3679. btrfs_item_key_to_cpu(c, key, slot);
  3680. else {
  3681. u64 blockptr = btrfs_node_blockptr(c, slot);
  3682. u64 gen = btrfs_node_ptr_generation(c, slot);
  3683. if (cache_only) {
  3684. struct extent_buffer *cur;
  3685. cur = btrfs_find_tree_block(root, blockptr,
  3686. btrfs_level_size(root, level - 1));
  3687. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3688. slot++;
  3689. if (cur)
  3690. free_extent_buffer(cur);
  3691. goto next;
  3692. }
  3693. free_extent_buffer(cur);
  3694. }
  3695. if (gen < min_trans) {
  3696. slot++;
  3697. goto next;
  3698. }
  3699. btrfs_node_key_to_cpu(c, key, slot);
  3700. }
  3701. return 0;
  3702. }
  3703. return 1;
  3704. }
  3705. /*
  3706. * search the tree again to find a leaf with greater keys
  3707. * returns 0 if it found something or 1 if there are no greater leaves.
  3708. * returns < 0 on io errors.
  3709. */
  3710. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3711. {
  3712. int slot;
  3713. int level;
  3714. struct extent_buffer *c;
  3715. struct extent_buffer *next;
  3716. struct btrfs_key key;
  3717. u32 nritems;
  3718. int ret;
  3719. int old_spinning = path->leave_spinning;
  3720. int force_blocking = 0;
  3721. nritems = btrfs_header_nritems(path->nodes[0]);
  3722. if (nritems == 0)
  3723. return 1;
  3724. /*
  3725. * we take the blocks in an order that upsets lockdep. Using
  3726. * blocking mode is the only way around it.
  3727. */
  3728. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3729. force_blocking = 1;
  3730. #endif
  3731. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3732. again:
  3733. level = 1;
  3734. next = NULL;
  3735. btrfs_release_path(path);
  3736. path->keep_locks = 1;
  3737. if (!force_blocking)
  3738. path->leave_spinning = 1;
  3739. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3740. path->keep_locks = 0;
  3741. if (ret < 0)
  3742. return ret;
  3743. nritems = btrfs_header_nritems(path->nodes[0]);
  3744. /*
  3745. * by releasing the path above we dropped all our locks. A balance
  3746. * could have added more items next to the key that used to be
  3747. * at the very end of the block. So, check again here and
  3748. * advance the path if there are now more items available.
  3749. */
  3750. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3751. if (ret == 0)
  3752. path->slots[0]++;
  3753. ret = 0;
  3754. goto done;
  3755. }
  3756. while (level < BTRFS_MAX_LEVEL) {
  3757. if (!path->nodes[level]) {
  3758. ret = 1;
  3759. goto done;
  3760. }
  3761. slot = path->slots[level] + 1;
  3762. c = path->nodes[level];
  3763. if (slot >= btrfs_header_nritems(c)) {
  3764. level++;
  3765. if (level == BTRFS_MAX_LEVEL) {
  3766. ret = 1;
  3767. goto done;
  3768. }
  3769. continue;
  3770. }
  3771. if (next) {
  3772. btrfs_tree_unlock(next);
  3773. free_extent_buffer(next);
  3774. }
  3775. next = c;
  3776. ret = read_block_for_search(NULL, root, path, &next, level,
  3777. slot, &key);
  3778. if (ret == -EAGAIN)
  3779. goto again;
  3780. if (ret < 0) {
  3781. btrfs_release_path(path);
  3782. goto done;
  3783. }
  3784. if (!path->skip_locking) {
  3785. ret = btrfs_try_spin_lock(next);
  3786. if (!ret) {
  3787. btrfs_set_path_blocking(path);
  3788. btrfs_tree_lock(next);
  3789. if (!force_blocking)
  3790. btrfs_clear_path_blocking(path, next);
  3791. }
  3792. if (force_blocking)
  3793. btrfs_set_lock_blocking(next);
  3794. }
  3795. break;
  3796. }
  3797. path->slots[level] = slot;
  3798. while (1) {
  3799. level--;
  3800. c = path->nodes[level];
  3801. if (path->locks[level])
  3802. btrfs_tree_unlock(c);
  3803. free_extent_buffer(c);
  3804. path->nodes[level] = next;
  3805. path->slots[level] = 0;
  3806. if (!path->skip_locking)
  3807. path->locks[level] = 1;
  3808. if (!level)
  3809. break;
  3810. ret = read_block_for_search(NULL, root, path, &next, level,
  3811. 0, &key);
  3812. if (ret == -EAGAIN)
  3813. goto again;
  3814. if (ret < 0) {
  3815. btrfs_release_path(path);
  3816. goto done;
  3817. }
  3818. if (!path->skip_locking) {
  3819. btrfs_assert_tree_locked(path->nodes[level]);
  3820. ret = btrfs_try_spin_lock(next);
  3821. if (!ret) {
  3822. btrfs_set_path_blocking(path);
  3823. btrfs_tree_lock(next);
  3824. if (!force_blocking)
  3825. btrfs_clear_path_blocking(path, next);
  3826. }
  3827. if (force_blocking)
  3828. btrfs_set_lock_blocking(next);
  3829. }
  3830. }
  3831. ret = 0;
  3832. done:
  3833. unlock_up(path, 0, 1);
  3834. path->leave_spinning = old_spinning;
  3835. if (!old_spinning)
  3836. btrfs_set_path_blocking(path);
  3837. return ret;
  3838. }
  3839. /*
  3840. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3841. * searching until it gets past min_objectid or finds an item of 'type'
  3842. *
  3843. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3844. */
  3845. int btrfs_previous_item(struct btrfs_root *root,
  3846. struct btrfs_path *path, u64 min_objectid,
  3847. int type)
  3848. {
  3849. struct btrfs_key found_key;
  3850. struct extent_buffer *leaf;
  3851. u32 nritems;
  3852. int ret;
  3853. while (1) {
  3854. if (path->slots[0] == 0) {
  3855. btrfs_set_path_blocking(path);
  3856. ret = btrfs_prev_leaf(root, path);
  3857. if (ret != 0)
  3858. return ret;
  3859. } else {
  3860. path->slots[0]--;
  3861. }
  3862. leaf = path->nodes[0];
  3863. nritems = btrfs_header_nritems(leaf);
  3864. if (nritems == 0)
  3865. return 1;
  3866. if (path->slots[0] == nritems)
  3867. path->slots[0]--;
  3868. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3869. if (found_key.objectid < min_objectid)
  3870. break;
  3871. if (found_key.type == type)
  3872. return 0;
  3873. if (found_key.objectid == min_objectid &&
  3874. found_key.type < type)
  3875. break;
  3876. }
  3877. return 1;
  3878. }