cciss.c 122 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396
  1. /*
  2. * Disk Array driver for HP Smart Array controllers.
  3. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17. * 02111-1307, USA.
  18. *
  19. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/types.h>
  25. #include <linux/pci.h>
  26. #include <linux/kernel.h>
  27. #include <linux/slab.h>
  28. #include <linux/smp_lock.h>
  29. #include <linux/delay.h>
  30. #include <linux/major.h>
  31. #include <linux/fs.h>
  32. #include <linux/bio.h>
  33. #include <linux/blkpg.h>
  34. #include <linux/timer.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/init.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/hdreg.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/compat.h>
  42. #include <linux/mutex.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/io.h>
  45. #include <linux/dma-mapping.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/genhd.h>
  48. #include <linux/completion.h>
  49. #include <scsi/scsi.h>
  50. #include <scsi/sg.h>
  51. #include <scsi/scsi_ioctl.h>
  52. #include <linux/cdrom.h>
  53. #include <linux/scatterlist.h>
  54. #include <linux/kthread.h>
  55. #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  56. #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
  57. #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
  58. /* Embedded module documentation macros - see modules.h */
  59. MODULE_AUTHOR("Hewlett-Packard Company");
  60. MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  61. MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
  62. " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
  63. " Smart Array G2 Series SAS/SATA Controllers");
  64. MODULE_VERSION("3.6.20");
  65. MODULE_LICENSE("GPL");
  66. #include "cciss_cmd.h"
  67. #include "cciss.h"
  68. #include <linux/cciss_ioctl.h>
  69. /* define the PCI info for the cards we can control */
  70. static const struct pci_device_id cciss_pci_device_id[] = {
  71. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
  72. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  73. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  74. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  75. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  76. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  77. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
  78. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
  79. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
  80. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
  81. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
  82. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
  83. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
  84. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
  92. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
  93. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
  94. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
  95. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
  96. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
  97. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
  98. {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
  99. PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  100. {0,}
  101. };
  102. MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
  103. /* board_id = Subsystem Device ID & Vendor ID
  104. * product = Marketing Name for the board
  105. * access = Address of the struct of function pointers
  106. */
  107. static struct board_type products[] = {
  108. {0x40700E11, "Smart Array 5300", &SA5_access},
  109. {0x40800E11, "Smart Array 5i", &SA5B_access},
  110. {0x40820E11, "Smart Array 532", &SA5B_access},
  111. {0x40830E11, "Smart Array 5312", &SA5B_access},
  112. {0x409A0E11, "Smart Array 641", &SA5_access},
  113. {0x409B0E11, "Smart Array 642", &SA5_access},
  114. {0x409C0E11, "Smart Array 6400", &SA5_access},
  115. {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
  116. {0x40910E11, "Smart Array 6i", &SA5_access},
  117. {0x3225103C, "Smart Array P600", &SA5_access},
  118. {0x3223103C, "Smart Array P800", &SA5_access},
  119. {0x3234103C, "Smart Array P400", &SA5_access},
  120. {0x3235103C, "Smart Array P400i", &SA5_access},
  121. {0x3211103C, "Smart Array E200i", &SA5_access},
  122. {0x3212103C, "Smart Array E200", &SA5_access},
  123. {0x3213103C, "Smart Array E200i", &SA5_access},
  124. {0x3214103C, "Smart Array E200i", &SA5_access},
  125. {0x3215103C, "Smart Array E200i", &SA5_access},
  126. {0x3237103C, "Smart Array E500", &SA5_access},
  127. {0x323D103C, "Smart Array P700m", &SA5_access},
  128. {0x3241103C, "Smart Array P212", &SA5_access},
  129. {0x3243103C, "Smart Array P410", &SA5_access},
  130. {0x3245103C, "Smart Array P410i", &SA5_access},
  131. {0x3247103C, "Smart Array P411", &SA5_access},
  132. {0x3249103C, "Smart Array P812", &SA5_access},
  133. {0x324A103C, "Smart Array P712m", &SA5_access},
  134. {0x324B103C, "Smart Array P711m", &SA5_access},
  135. {0xFFFF103C, "Unknown Smart Array", &SA5_access},
  136. };
  137. /* How long to wait (in milliseconds) for board to go into simple mode */
  138. #define MAX_CONFIG_WAIT 30000
  139. #define MAX_IOCTL_CONFIG_WAIT 1000
  140. /*define how many times we will try a command because of bus resets */
  141. #define MAX_CMD_RETRIES 3
  142. #define MAX_CTLR 32
  143. /* Originally cciss driver only supports 8 major numbers */
  144. #define MAX_CTLR_ORIG 8
  145. static ctlr_info_t *hba[MAX_CTLR];
  146. static struct task_struct *cciss_scan_thread;
  147. static DEFINE_MUTEX(scan_mutex);
  148. static LIST_HEAD(scan_q);
  149. static void do_cciss_request(struct request_queue *q);
  150. static irqreturn_t do_cciss_intr(int irq, void *dev_id);
  151. static int cciss_open(struct block_device *bdev, fmode_t mode);
  152. static int cciss_release(struct gendisk *disk, fmode_t mode);
  153. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  154. unsigned int cmd, unsigned long arg);
  155. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
  156. static int cciss_revalidate(struct gendisk *disk);
  157. static int rebuild_lun_table(ctlr_info_t *h, int first_time);
  158. static int deregister_disk(ctlr_info_t *h, int drv_index,
  159. int clear_all);
  160. static void cciss_read_capacity(int ctlr, int logvol, int withirq,
  161. sector_t *total_size, unsigned int *block_size);
  162. static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
  163. sector_t *total_size, unsigned int *block_size);
  164. static void cciss_geometry_inquiry(int ctlr, int logvol,
  165. int withirq, sector_t total_size,
  166. unsigned int block_size, InquiryData_struct *inq_buff,
  167. drive_info_struct *drv);
  168. static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
  169. __u32);
  170. static void start_io(ctlr_info_t *h);
  171. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  172. __u8 page_code, unsigned char *scsi3addr, int cmd_type);
  173. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  174. __u8 page_code, unsigned char scsi3addr[],
  175. int cmd_type);
  176. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  177. int attempt_retry);
  178. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
  179. static void fail_all_cmds(unsigned long ctlr);
  180. static int scan_thread(void *data);
  181. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
  182. #ifdef CONFIG_PROC_FS
  183. static void cciss_procinit(int i);
  184. #else
  185. static void cciss_procinit(int i)
  186. {
  187. }
  188. #endif /* CONFIG_PROC_FS */
  189. #ifdef CONFIG_COMPAT
  190. static int cciss_compat_ioctl(struct block_device *, fmode_t,
  191. unsigned, unsigned long);
  192. #endif
  193. static const struct block_device_operations cciss_fops = {
  194. .owner = THIS_MODULE,
  195. .open = cciss_open,
  196. .release = cciss_release,
  197. .locked_ioctl = cciss_ioctl,
  198. .getgeo = cciss_getgeo,
  199. #ifdef CONFIG_COMPAT
  200. .compat_ioctl = cciss_compat_ioctl,
  201. #endif
  202. .revalidate_disk = cciss_revalidate,
  203. };
  204. /*
  205. * Enqueuing and dequeuing functions for cmdlists.
  206. */
  207. static inline void addQ(struct hlist_head *list, CommandList_struct *c)
  208. {
  209. hlist_add_head(&c->list, list);
  210. }
  211. static inline void removeQ(CommandList_struct *c)
  212. {
  213. /*
  214. * After kexec/dump some commands might still
  215. * be in flight, which the firmware will try
  216. * to complete. Resetting the firmware doesn't work
  217. * with old fw revisions, so we have to mark
  218. * them off as 'stale' to prevent the driver from
  219. * falling over.
  220. */
  221. if (WARN_ON(hlist_unhashed(&c->list))) {
  222. c->cmd_type = CMD_MSG_STALE;
  223. return;
  224. }
  225. hlist_del_init(&c->list);
  226. }
  227. #include "cciss_scsi.c" /* For SCSI tape support */
  228. #define RAID_UNKNOWN 6
  229. #ifdef CONFIG_PROC_FS
  230. /*
  231. * Report information about this controller.
  232. */
  233. #define ENG_GIG 1000000000
  234. #define ENG_GIG_FACTOR (ENG_GIG/512)
  235. #define ENGAGE_SCSI "engage scsi"
  236. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  237. "UNKNOWN"
  238. };
  239. static struct proc_dir_entry *proc_cciss;
  240. static void cciss_seq_show_header(struct seq_file *seq)
  241. {
  242. ctlr_info_t *h = seq->private;
  243. seq_printf(seq, "%s: HP %s Controller\n"
  244. "Board ID: 0x%08lx\n"
  245. "Firmware Version: %c%c%c%c\n"
  246. "IRQ: %d\n"
  247. "Logical drives: %d\n"
  248. "Current Q depth: %d\n"
  249. "Current # commands on controller: %d\n"
  250. "Max Q depth since init: %d\n"
  251. "Max # commands on controller since init: %d\n"
  252. "Max SG entries since init: %d\n",
  253. h->devname,
  254. h->product_name,
  255. (unsigned long)h->board_id,
  256. h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
  257. h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
  258. h->num_luns,
  259. h->Qdepth, h->commands_outstanding,
  260. h->maxQsinceinit, h->max_outstanding, h->maxSG);
  261. #ifdef CONFIG_CISS_SCSI_TAPE
  262. cciss_seq_tape_report(seq, h->ctlr);
  263. #endif /* CONFIG_CISS_SCSI_TAPE */
  264. }
  265. static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
  266. {
  267. ctlr_info_t *h = seq->private;
  268. unsigned ctlr = h->ctlr;
  269. unsigned long flags;
  270. /* prevent displaying bogus info during configuration
  271. * or deconfiguration of a logical volume
  272. */
  273. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  274. if (h->busy_configuring) {
  275. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  276. return ERR_PTR(-EBUSY);
  277. }
  278. h->busy_configuring = 1;
  279. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  280. if (*pos == 0)
  281. cciss_seq_show_header(seq);
  282. return pos;
  283. }
  284. static int cciss_seq_show(struct seq_file *seq, void *v)
  285. {
  286. sector_t vol_sz, vol_sz_frac;
  287. ctlr_info_t *h = seq->private;
  288. unsigned ctlr = h->ctlr;
  289. loff_t *pos = v;
  290. drive_info_struct *drv = &h->drv[*pos];
  291. if (*pos > h->highest_lun)
  292. return 0;
  293. if (drv->heads == 0)
  294. return 0;
  295. vol_sz = drv->nr_blocks;
  296. vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
  297. vol_sz_frac *= 100;
  298. sector_div(vol_sz_frac, ENG_GIG_FACTOR);
  299. if (drv->raid_level > 5)
  300. drv->raid_level = RAID_UNKNOWN;
  301. seq_printf(seq, "cciss/c%dd%d:"
  302. "\t%4u.%02uGB\tRAID %s\n",
  303. ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
  304. raid_label[drv->raid_level]);
  305. return 0;
  306. }
  307. static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  308. {
  309. ctlr_info_t *h = seq->private;
  310. if (*pos > h->highest_lun)
  311. return NULL;
  312. *pos += 1;
  313. return pos;
  314. }
  315. static void cciss_seq_stop(struct seq_file *seq, void *v)
  316. {
  317. ctlr_info_t *h = seq->private;
  318. /* Only reset h->busy_configuring if we succeeded in setting
  319. * it during cciss_seq_start. */
  320. if (v == ERR_PTR(-EBUSY))
  321. return;
  322. h->busy_configuring = 0;
  323. }
  324. static const struct seq_operations cciss_seq_ops = {
  325. .start = cciss_seq_start,
  326. .show = cciss_seq_show,
  327. .next = cciss_seq_next,
  328. .stop = cciss_seq_stop,
  329. };
  330. static int cciss_seq_open(struct inode *inode, struct file *file)
  331. {
  332. int ret = seq_open(file, &cciss_seq_ops);
  333. struct seq_file *seq = file->private_data;
  334. if (!ret)
  335. seq->private = PDE(inode)->data;
  336. return ret;
  337. }
  338. static ssize_t
  339. cciss_proc_write(struct file *file, const char __user *buf,
  340. size_t length, loff_t *ppos)
  341. {
  342. int err;
  343. char *buffer;
  344. #ifndef CONFIG_CISS_SCSI_TAPE
  345. return -EINVAL;
  346. #endif
  347. if (!buf || length > PAGE_SIZE - 1)
  348. return -EINVAL;
  349. buffer = (char *)__get_free_page(GFP_KERNEL);
  350. if (!buffer)
  351. return -ENOMEM;
  352. err = -EFAULT;
  353. if (copy_from_user(buffer, buf, length))
  354. goto out;
  355. buffer[length] = '\0';
  356. #ifdef CONFIG_CISS_SCSI_TAPE
  357. if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
  358. struct seq_file *seq = file->private_data;
  359. ctlr_info_t *h = seq->private;
  360. int rc;
  361. rc = cciss_engage_scsi(h->ctlr);
  362. if (rc != 0)
  363. err = -rc;
  364. else
  365. err = length;
  366. } else
  367. #endif /* CONFIG_CISS_SCSI_TAPE */
  368. err = -EINVAL;
  369. /* might be nice to have "disengage" too, but it's not
  370. safely possible. (only 1 module use count, lock issues.) */
  371. out:
  372. free_page((unsigned long)buffer);
  373. return err;
  374. }
  375. static struct file_operations cciss_proc_fops = {
  376. .owner = THIS_MODULE,
  377. .open = cciss_seq_open,
  378. .read = seq_read,
  379. .llseek = seq_lseek,
  380. .release = seq_release,
  381. .write = cciss_proc_write,
  382. };
  383. static void __devinit cciss_procinit(int i)
  384. {
  385. struct proc_dir_entry *pde;
  386. if (proc_cciss == NULL)
  387. proc_cciss = proc_mkdir("driver/cciss", NULL);
  388. if (!proc_cciss)
  389. return;
  390. pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
  391. S_IROTH, proc_cciss,
  392. &cciss_proc_fops, hba[i]);
  393. }
  394. #endif /* CONFIG_PROC_FS */
  395. #define MAX_PRODUCT_NAME_LEN 19
  396. #define to_hba(n) container_of(n, struct ctlr_info, dev)
  397. #define to_drv(n) container_of(n, drive_info_struct, dev)
  398. static struct device_type cciss_host_type = {
  399. .name = "cciss_host",
  400. };
  401. static ssize_t dev_show_unique_id(struct device *dev,
  402. struct device_attribute *attr,
  403. char *buf)
  404. {
  405. drive_info_struct *drv = to_drv(dev);
  406. struct ctlr_info *h = to_hba(drv->dev.parent);
  407. __u8 sn[16];
  408. unsigned long flags;
  409. int ret = 0;
  410. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  411. if (h->busy_configuring)
  412. ret = -EBUSY;
  413. else
  414. memcpy(sn, drv->serial_no, sizeof(sn));
  415. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  416. if (ret)
  417. return ret;
  418. else
  419. return snprintf(buf, 16 * 2 + 2,
  420. "%02X%02X%02X%02X%02X%02X%02X%02X"
  421. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  422. sn[0], sn[1], sn[2], sn[3],
  423. sn[4], sn[5], sn[6], sn[7],
  424. sn[8], sn[9], sn[10], sn[11],
  425. sn[12], sn[13], sn[14], sn[15]);
  426. }
  427. DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
  428. static ssize_t dev_show_vendor(struct device *dev,
  429. struct device_attribute *attr,
  430. char *buf)
  431. {
  432. drive_info_struct *drv = to_drv(dev);
  433. struct ctlr_info *h = to_hba(drv->dev.parent);
  434. char vendor[VENDOR_LEN + 1];
  435. unsigned long flags;
  436. int ret = 0;
  437. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  438. if (h->busy_configuring)
  439. ret = -EBUSY;
  440. else
  441. memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
  442. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  443. if (ret)
  444. return ret;
  445. else
  446. return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
  447. }
  448. DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
  449. static ssize_t dev_show_model(struct device *dev,
  450. struct device_attribute *attr,
  451. char *buf)
  452. {
  453. drive_info_struct *drv = to_drv(dev);
  454. struct ctlr_info *h = to_hba(drv->dev.parent);
  455. char model[MODEL_LEN + 1];
  456. unsigned long flags;
  457. int ret = 0;
  458. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  459. if (h->busy_configuring)
  460. ret = -EBUSY;
  461. else
  462. memcpy(model, drv->model, MODEL_LEN + 1);
  463. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  464. if (ret)
  465. return ret;
  466. else
  467. return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
  468. }
  469. DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
  470. static ssize_t dev_show_rev(struct device *dev,
  471. struct device_attribute *attr,
  472. char *buf)
  473. {
  474. drive_info_struct *drv = to_drv(dev);
  475. struct ctlr_info *h = to_hba(drv->dev.parent);
  476. char rev[REV_LEN + 1];
  477. unsigned long flags;
  478. int ret = 0;
  479. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  480. if (h->busy_configuring)
  481. ret = -EBUSY;
  482. else
  483. memcpy(rev, drv->rev, REV_LEN + 1);
  484. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  485. if (ret)
  486. return ret;
  487. else
  488. return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
  489. }
  490. DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
  491. static struct attribute *cciss_dev_attrs[] = {
  492. &dev_attr_unique_id.attr,
  493. &dev_attr_model.attr,
  494. &dev_attr_vendor.attr,
  495. &dev_attr_rev.attr,
  496. NULL
  497. };
  498. static struct attribute_group cciss_dev_attr_group = {
  499. .attrs = cciss_dev_attrs,
  500. };
  501. static const struct attribute_group *cciss_dev_attr_groups[] = {
  502. &cciss_dev_attr_group,
  503. NULL
  504. };
  505. static struct device_type cciss_dev_type = {
  506. .name = "cciss_device",
  507. .groups = cciss_dev_attr_groups,
  508. };
  509. static struct bus_type cciss_bus_type = {
  510. .name = "cciss",
  511. };
  512. /*
  513. * Initialize sysfs entry for each controller. This sets up and registers
  514. * the 'cciss#' directory for each individual controller under
  515. * /sys/bus/pci/devices/<dev>/.
  516. */
  517. static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
  518. {
  519. device_initialize(&h->dev);
  520. h->dev.type = &cciss_host_type;
  521. h->dev.bus = &cciss_bus_type;
  522. dev_set_name(&h->dev, "%s", h->devname);
  523. h->dev.parent = &h->pdev->dev;
  524. return device_add(&h->dev);
  525. }
  526. /*
  527. * Remove sysfs entries for an hba.
  528. */
  529. static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
  530. {
  531. device_del(&h->dev);
  532. }
  533. /*
  534. * Initialize sysfs for each logical drive. This sets up and registers
  535. * the 'c#d#' directory for each individual logical drive under
  536. * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
  537. * /sys/block/cciss!c#d# to this entry.
  538. */
  539. static int cciss_create_ld_sysfs_entry(struct ctlr_info *h,
  540. drive_info_struct *drv,
  541. int drv_index)
  542. {
  543. device_initialize(&drv->dev);
  544. drv->dev.type = &cciss_dev_type;
  545. drv->dev.bus = &cciss_bus_type;
  546. dev_set_name(&drv->dev, "c%dd%d", h->ctlr, drv_index);
  547. drv->dev.parent = &h->dev;
  548. return device_add(&drv->dev);
  549. }
  550. /*
  551. * Remove sysfs entries for a logical drive.
  552. */
  553. static void cciss_destroy_ld_sysfs_entry(drive_info_struct *drv)
  554. {
  555. device_del(&drv->dev);
  556. }
  557. /*
  558. * For operations that cannot sleep, a command block is allocated at init,
  559. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  560. * which ones are free or in use. For operations that can wait for kmalloc
  561. * to possible sleep, this routine can be called with get_from_pool set to 0.
  562. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
  563. */
  564. static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
  565. {
  566. CommandList_struct *c;
  567. int i;
  568. u64bit temp64;
  569. dma_addr_t cmd_dma_handle, err_dma_handle;
  570. if (!get_from_pool) {
  571. c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
  572. sizeof(CommandList_struct), &cmd_dma_handle);
  573. if (c == NULL)
  574. return NULL;
  575. memset(c, 0, sizeof(CommandList_struct));
  576. c->cmdindex = -1;
  577. c->err_info = (ErrorInfo_struct *)
  578. pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
  579. &err_dma_handle);
  580. if (c->err_info == NULL) {
  581. pci_free_consistent(h->pdev,
  582. sizeof(CommandList_struct), c, cmd_dma_handle);
  583. return NULL;
  584. }
  585. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  586. } else { /* get it out of the controllers pool */
  587. do {
  588. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  589. if (i == h->nr_cmds)
  590. return NULL;
  591. } while (test_and_set_bit
  592. (i & (BITS_PER_LONG - 1),
  593. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  594. #ifdef CCISS_DEBUG
  595. printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
  596. #endif
  597. c = h->cmd_pool + i;
  598. memset(c, 0, sizeof(CommandList_struct));
  599. cmd_dma_handle = h->cmd_pool_dhandle
  600. + i * sizeof(CommandList_struct);
  601. c->err_info = h->errinfo_pool + i;
  602. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  603. err_dma_handle = h->errinfo_pool_dhandle
  604. + i * sizeof(ErrorInfo_struct);
  605. h->nr_allocs++;
  606. c->cmdindex = i;
  607. }
  608. INIT_HLIST_NODE(&c->list);
  609. c->busaddr = (__u32) cmd_dma_handle;
  610. temp64.val = (__u64) err_dma_handle;
  611. c->ErrDesc.Addr.lower = temp64.val32.lower;
  612. c->ErrDesc.Addr.upper = temp64.val32.upper;
  613. c->ErrDesc.Len = sizeof(ErrorInfo_struct);
  614. c->ctlr = h->ctlr;
  615. return c;
  616. }
  617. /*
  618. * Frees a command block that was previously allocated with cmd_alloc().
  619. */
  620. static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
  621. {
  622. int i;
  623. u64bit temp64;
  624. if (!got_from_pool) {
  625. temp64.val32.lower = c->ErrDesc.Addr.lower;
  626. temp64.val32.upper = c->ErrDesc.Addr.upper;
  627. pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
  628. c->err_info, (dma_addr_t) temp64.val);
  629. pci_free_consistent(h->pdev, sizeof(CommandList_struct),
  630. c, (dma_addr_t) c->busaddr);
  631. } else {
  632. i = c - h->cmd_pool;
  633. clear_bit(i & (BITS_PER_LONG - 1),
  634. h->cmd_pool_bits + (i / BITS_PER_LONG));
  635. h->nr_frees++;
  636. }
  637. }
  638. static inline ctlr_info_t *get_host(struct gendisk *disk)
  639. {
  640. return disk->queue->queuedata;
  641. }
  642. static inline drive_info_struct *get_drv(struct gendisk *disk)
  643. {
  644. return disk->private_data;
  645. }
  646. /*
  647. * Open. Make sure the device is really there.
  648. */
  649. static int cciss_open(struct block_device *bdev, fmode_t mode)
  650. {
  651. ctlr_info_t *host = get_host(bdev->bd_disk);
  652. drive_info_struct *drv = get_drv(bdev->bd_disk);
  653. #ifdef CCISS_DEBUG
  654. printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
  655. #endif /* CCISS_DEBUG */
  656. if (host->busy_initializing || drv->busy_configuring)
  657. return -EBUSY;
  658. /*
  659. * Root is allowed to open raw volume zero even if it's not configured
  660. * so array config can still work. Root is also allowed to open any
  661. * volume that has a LUN ID, so it can issue IOCTL to reread the
  662. * disk information. I don't think I really like this
  663. * but I'm already using way to many device nodes to claim another one
  664. * for "raw controller".
  665. */
  666. if (drv->heads == 0) {
  667. if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
  668. /* if not node 0 make sure it is a partition = 0 */
  669. if (MINOR(bdev->bd_dev) & 0x0f) {
  670. return -ENXIO;
  671. /* if it is, make sure we have a LUN ID */
  672. } else if (drv->LunID == 0) {
  673. return -ENXIO;
  674. }
  675. }
  676. if (!capable(CAP_SYS_ADMIN))
  677. return -EPERM;
  678. }
  679. drv->usage_count++;
  680. host->usage_count++;
  681. return 0;
  682. }
  683. /*
  684. * Close. Sync first.
  685. */
  686. static int cciss_release(struct gendisk *disk, fmode_t mode)
  687. {
  688. ctlr_info_t *host = get_host(disk);
  689. drive_info_struct *drv = get_drv(disk);
  690. #ifdef CCISS_DEBUG
  691. printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
  692. #endif /* CCISS_DEBUG */
  693. drv->usage_count--;
  694. host->usage_count--;
  695. return 0;
  696. }
  697. #ifdef CONFIG_COMPAT
  698. static int do_ioctl(struct block_device *bdev, fmode_t mode,
  699. unsigned cmd, unsigned long arg)
  700. {
  701. int ret;
  702. lock_kernel();
  703. ret = cciss_ioctl(bdev, mode, cmd, arg);
  704. unlock_kernel();
  705. return ret;
  706. }
  707. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  708. unsigned cmd, unsigned long arg);
  709. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  710. unsigned cmd, unsigned long arg);
  711. static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
  712. unsigned cmd, unsigned long arg)
  713. {
  714. switch (cmd) {
  715. case CCISS_GETPCIINFO:
  716. case CCISS_GETINTINFO:
  717. case CCISS_SETINTINFO:
  718. case CCISS_GETNODENAME:
  719. case CCISS_SETNODENAME:
  720. case CCISS_GETHEARTBEAT:
  721. case CCISS_GETBUSTYPES:
  722. case CCISS_GETFIRMVER:
  723. case CCISS_GETDRIVVER:
  724. case CCISS_REVALIDVOLS:
  725. case CCISS_DEREGDISK:
  726. case CCISS_REGNEWDISK:
  727. case CCISS_REGNEWD:
  728. case CCISS_RESCANDISK:
  729. case CCISS_GETLUNINFO:
  730. return do_ioctl(bdev, mode, cmd, arg);
  731. case CCISS_PASSTHRU32:
  732. return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
  733. case CCISS_BIG_PASSTHRU32:
  734. return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
  735. default:
  736. return -ENOIOCTLCMD;
  737. }
  738. }
  739. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  740. unsigned cmd, unsigned long arg)
  741. {
  742. IOCTL32_Command_struct __user *arg32 =
  743. (IOCTL32_Command_struct __user *) arg;
  744. IOCTL_Command_struct arg64;
  745. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  746. int err;
  747. u32 cp;
  748. err = 0;
  749. err |=
  750. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  751. sizeof(arg64.LUN_info));
  752. err |=
  753. copy_from_user(&arg64.Request, &arg32->Request,
  754. sizeof(arg64.Request));
  755. err |=
  756. copy_from_user(&arg64.error_info, &arg32->error_info,
  757. sizeof(arg64.error_info));
  758. err |= get_user(arg64.buf_size, &arg32->buf_size);
  759. err |= get_user(cp, &arg32->buf);
  760. arg64.buf = compat_ptr(cp);
  761. err |= copy_to_user(p, &arg64, sizeof(arg64));
  762. if (err)
  763. return -EFAULT;
  764. err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
  765. if (err)
  766. return err;
  767. err |=
  768. copy_in_user(&arg32->error_info, &p->error_info,
  769. sizeof(arg32->error_info));
  770. if (err)
  771. return -EFAULT;
  772. return err;
  773. }
  774. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  775. unsigned cmd, unsigned long arg)
  776. {
  777. BIG_IOCTL32_Command_struct __user *arg32 =
  778. (BIG_IOCTL32_Command_struct __user *) arg;
  779. BIG_IOCTL_Command_struct arg64;
  780. BIG_IOCTL_Command_struct __user *p =
  781. compat_alloc_user_space(sizeof(arg64));
  782. int err;
  783. u32 cp;
  784. err = 0;
  785. err |=
  786. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  787. sizeof(arg64.LUN_info));
  788. err |=
  789. copy_from_user(&arg64.Request, &arg32->Request,
  790. sizeof(arg64.Request));
  791. err |=
  792. copy_from_user(&arg64.error_info, &arg32->error_info,
  793. sizeof(arg64.error_info));
  794. err |= get_user(arg64.buf_size, &arg32->buf_size);
  795. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  796. err |= get_user(cp, &arg32->buf);
  797. arg64.buf = compat_ptr(cp);
  798. err |= copy_to_user(p, &arg64, sizeof(arg64));
  799. if (err)
  800. return -EFAULT;
  801. err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
  802. if (err)
  803. return err;
  804. err |=
  805. copy_in_user(&arg32->error_info, &p->error_info,
  806. sizeof(arg32->error_info));
  807. if (err)
  808. return -EFAULT;
  809. return err;
  810. }
  811. #endif
  812. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  813. {
  814. drive_info_struct *drv = get_drv(bdev->bd_disk);
  815. if (!drv->cylinders)
  816. return -ENXIO;
  817. geo->heads = drv->heads;
  818. geo->sectors = drv->sectors;
  819. geo->cylinders = drv->cylinders;
  820. return 0;
  821. }
  822. static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
  823. {
  824. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  825. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  826. (void)check_for_unit_attention(host, c);
  827. }
  828. /*
  829. * ioctl
  830. */
  831. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  832. unsigned int cmd, unsigned long arg)
  833. {
  834. struct gendisk *disk = bdev->bd_disk;
  835. ctlr_info_t *host = get_host(disk);
  836. drive_info_struct *drv = get_drv(disk);
  837. int ctlr = host->ctlr;
  838. void __user *argp = (void __user *)arg;
  839. #ifdef CCISS_DEBUG
  840. printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
  841. #endif /* CCISS_DEBUG */
  842. switch (cmd) {
  843. case CCISS_GETPCIINFO:
  844. {
  845. cciss_pci_info_struct pciinfo;
  846. if (!arg)
  847. return -EINVAL;
  848. pciinfo.domain = pci_domain_nr(host->pdev->bus);
  849. pciinfo.bus = host->pdev->bus->number;
  850. pciinfo.dev_fn = host->pdev->devfn;
  851. pciinfo.board_id = host->board_id;
  852. if (copy_to_user
  853. (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
  854. return -EFAULT;
  855. return 0;
  856. }
  857. case CCISS_GETINTINFO:
  858. {
  859. cciss_coalint_struct intinfo;
  860. if (!arg)
  861. return -EINVAL;
  862. intinfo.delay =
  863. readl(&host->cfgtable->HostWrite.CoalIntDelay);
  864. intinfo.count =
  865. readl(&host->cfgtable->HostWrite.CoalIntCount);
  866. if (copy_to_user
  867. (argp, &intinfo, sizeof(cciss_coalint_struct)))
  868. return -EFAULT;
  869. return 0;
  870. }
  871. case CCISS_SETINTINFO:
  872. {
  873. cciss_coalint_struct intinfo;
  874. unsigned long flags;
  875. int i;
  876. if (!arg)
  877. return -EINVAL;
  878. if (!capable(CAP_SYS_ADMIN))
  879. return -EPERM;
  880. if (copy_from_user
  881. (&intinfo, argp, sizeof(cciss_coalint_struct)))
  882. return -EFAULT;
  883. if ((intinfo.delay == 0) && (intinfo.count == 0))
  884. {
  885. // printk("cciss_ioctl: delay and count cannot be 0\n");
  886. return -EINVAL;
  887. }
  888. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  889. /* Update the field, and then ring the doorbell */
  890. writel(intinfo.delay,
  891. &(host->cfgtable->HostWrite.CoalIntDelay));
  892. writel(intinfo.count,
  893. &(host->cfgtable->HostWrite.CoalIntCount));
  894. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  895. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  896. if (!(readl(host->vaddr + SA5_DOORBELL)
  897. & CFGTBL_ChangeReq))
  898. break;
  899. /* delay and try again */
  900. udelay(1000);
  901. }
  902. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  903. if (i >= MAX_IOCTL_CONFIG_WAIT)
  904. return -EAGAIN;
  905. return 0;
  906. }
  907. case CCISS_GETNODENAME:
  908. {
  909. NodeName_type NodeName;
  910. int i;
  911. if (!arg)
  912. return -EINVAL;
  913. for (i = 0; i < 16; i++)
  914. NodeName[i] =
  915. readb(&host->cfgtable->ServerName[i]);
  916. if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
  917. return -EFAULT;
  918. return 0;
  919. }
  920. case CCISS_SETNODENAME:
  921. {
  922. NodeName_type NodeName;
  923. unsigned long flags;
  924. int i;
  925. if (!arg)
  926. return -EINVAL;
  927. if (!capable(CAP_SYS_ADMIN))
  928. return -EPERM;
  929. if (copy_from_user
  930. (NodeName, argp, sizeof(NodeName_type)))
  931. return -EFAULT;
  932. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  933. /* Update the field, and then ring the doorbell */
  934. for (i = 0; i < 16; i++)
  935. writeb(NodeName[i],
  936. &host->cfgtable->ServerName[i]);
  937. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  938. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  939. if (!(readl(host->vaddr + SA5_DOORBELL)
  940. & CFGTBL_ChangeReq))
  941. break;
  942. /* delay and try again */
  943. udelay(1000);
  944. }
  945. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  946. if (i >= MAX_IOCTL_CONFIG_WAIT)
  947. return -EAGAIN;
  948. return 0;
  949. }
  950. case CCISS_GETHEARTBEAT:
  951. {
  952. Heartbeat_type heartbeat;
  953. if (!arg)
  954. return -EINVAL;
  955. heartbeat = readl(&host->cfgtable->HeartBeat);
  956. if (copy_to_user
  957. (argp, &heartbeat, sizeof(Heartbeat_type)))
  958. return -EFAULT;
  959. return 0;
  960. }
  961. case CCISS_GETBUSTYPES:
  962. {
  963. BusTypes_type BusTypes;
  964. if (!arg)
  965. return -EINVAL;
  966. BusTypes = readl(&host->cfgtable->BusTypes);
  967. if (copy_to_user
  968. (argp, &BusTypes, sizeof(BusTypes_type)))
  969. return -EFAULT;
  970. return 0;
  971. }
  972. case CCISS_GETFIRMVER:
  973. {
  974. FirmwareVer_type firmware;
  975. if (!arg)
  976. return -EINVAL;
  977. memcpy(firmware, host->firm_ver, 4);
  978. if (copy_to_user
  979. (argp, firmware, sizeof(FirmwareVer_type)))
  980. return -EFAULT;
  981. return 0;
  982. }
  983. case CCISS_GETDRIVVER:
  984. {
  985. DriverVer_type DriverVer = DRIVER_VERSION;
  986. if (!arg)
  987. return -EINVAL;
  988. if (copy_to_user
  989. (argp, &DriverVer, sizeof(DriverVer_type)))
  990. return -EFAULT;
  991. return 0;
  992. }
  993. case CCISS_DEREGDISK:
  994. case CCISS_REGNEWD:
  995. case CCISS_REVALIDVOLS:
  996. return rebuild_lun_table(host, 0);
  997. case CCISS_GETLUNINFO:{
  998. LogvolInfo_struct luninfo;
  999. luninfo.LunID = drv->LunID;
  1000. luninfo.num_opens = drv->usage_count;
  1001. luninfo.num_parts = 0;
  1002. if (copy_to_user(argp, &luninfo,
  1003. sizeof(LogvolInfo_struct)))
  1004. return -EFAULT;
  1005. return 0;
  1006. }
  1007. case CCISS_PASSTHRU:
  1008. {
  1009. IOCTL_Command_struct iocommand;
  1010. CommandList_struct *c;
  1011. char *buff = NULL;
  1012. u64bit temp64;
  1013. unsigned long flags;
  1014. DECLARE_COMPLETION_ONSTACK(wait);
  1015. if (!arg)
  1016. return -EINVAL;
  1017. if (!capable(CAP_SYS_RAWIO))
  1018. return -EPERM;
  1019. if (copy_from_user
  1020. (&iocommand, argp, sizeof(IOCTL_Command_struct)))
  1021. return -EFAULT;
  1022. if ((iocommand.buf_size < 1) &&
  1023. (iocommand.Request.Type.Direction != XFER_NONE)) {
  1024. return -EINVAL;
  1025. }
  1026. #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
  1027. /* Check kmalloc limits */
  1028. if (iocommand.buf_size > 128000)
  1029. return -EINVAL;
  1030. #endif
  1031. if (iocommand.buf_size > 0) {
  1032. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  1033. if (buff == NULL)
  1034. return -EFAULT;
  1035. }
  1036. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  1037. /* Copy the data into the buffer we created */
  1038. if (copy_from_user
  1039. (buff, iocommand.buf, iocommand.buf_size)) {
  1040. kfree(buff);
  1041. return -EFAULT;
  1042. }
  1043. } else {
  1044. memset(buff, 0, iocommand.buf_size);
  1045. }
  1046. if ((c = cmd_alloc(host, 0)) == NULL) {
  1047. kfree(buff);
  1048. return -ENOMEM;
  1049. }
  1050. // Fill in the command type
  1051. c->cmd_type = CMD_IOCTL_PEND;
  1052. // Fill in Command Header
  1053. c->Header.ReplyQueue = 0; // unused in simple mode
  1054. if (iocommand.buf_size > 0) // buffer to fill
  1055. {
  1056. c->Header.SGList = 1;
  1057. c->Header.SGTotal = 1;
  1058. } else // no buffers to fill
  1059. {
  1060. c->Header.SGList = 0;
  1061. c->Header.SGTotal = 0;
  1062. }
  1063. c->Header.LUN = iocommand.LUN_info;
  1064. c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
  1065. // Fill in Request block
  1066. c->Request = iocommand.Request;
  1067. // Fill in the scatter gather information
  1068. if (iocommand.buf_size > 0) {
  1069. temp64.val = pci_map_single(host->pdev, buff,
  1070. iocommand.buf_size,
  1071. PCI_DMA_BIDIRECTIONAL);
  1072. c->SG[0].Addr.lower = temp64.val32.lower;
  1073. c->SG[0].Addr.upper = temp64.val32.upper;
  1074. c->SG[0].Len = iocommand.buf_size;
  1075. c->SG[0].Ext = 0; // we are not chaining
  1076. }
  1077. c->waiting = &wait;
  1078. /* Put the request on the tail of the request queue */
  1079. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1080. addQ(&host->reqQ, c);
  1081. host->Qdepth++;
  1082. start_io(host);
  1083. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1084. wait_for_completion(&wait);
  1085. /* unlock the buffers from DMA */
  1086. temp64.val32.lower = c->SG[0].Addr.lower;
  1087. temp64.val32.upper = c->SG[0].Addr.upper;
  1088. pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
  1089. iocommand.buf_size,
  1090. PCI_DMA_BIDIRECTIONAL);
  1091. check_ioctl_unit_attention(host, c);
  1092. /* Copy the error information out */
  1093. iocommand.error_info = *(c->err_info);
  1094. if (copy_to_user
  1095. (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
  1096. kfree(buff);
  1097. cmd_free(host, c, 0);
  1098. return -EFAULT;
  1099. }
  1100. if (iocommand.Request.Type.Direction == XFER_READ) {
  1101. /* Copy the data out of the buffer we created */
  1102. if (copy_to_user
  1103. (iocommand.buf, buff, iocommand.buf_size)) {
  1104. kfree(buff);
  1105. cmd_free(host, c, 0);
  1106. return -EFAULT;
  1107. }
  1108. }
  1109. kfree(buff);
  1110. cmd_free(host, c, 0);
  1111. return 0;
  1112. }
  1113. case CCISS_BIG_PASSTHRU:{
  1114. BIG_IOCTL_Command_struct *ioc;
  1115. CommandList_struct *c;
  1116. unsigned char **buff = NULL;
  1117. int *buff_size = NULL;
  1118. u64bit temp64;
  1119. unsigned long flags;
  1120. BYTE sg_used = 0;
  1121. int status = 0;
  1122. int i;
  1123. DECLARE_COMPLETION_ONSTACK(wait);
  1124. __u32 left;
  1125. __u32 sz;
  1126. BYTE __user *data_ptr;
  1127. if (!arg)
  1128. return -EINVAL;
  1129. if (!capable(CAP_SYS_RAWIO))
  1130. return -EPERM;
  1131. ioc = (BIG_IOCTL_Command_struct *)
  1132. kmalloc(sizeof(*ioc), GFP_KERNEL);
  1133. if (!ioc) {
  1134. status = -ENOMEM;
  1135. goto cleanup1;
  1136. }
  1137. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  1138. status = -EFAULT;
  1139. goto cleanup1;
  1140. }
  1141. if ((ioc->buf_size < 1) &&
  1142. (ioc->Request.Type.Direction != XFER_NONE)) {
  1143. status = -EINVAL;
  1144. goto cleanup1;
  1145. }
  1146. /* Check kmalloc limits using all SGs */
  1147. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  1148. status = -EINVAL;
  1149. goto cleanup1;
  1150. }
  1151. if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
  1152. status = -EINVAL;
  1153. goto cleanup1;
  1154. }
  1155. buff =
  1156. kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
  1157. if (!buff) {
  1158. status = -ENOMEM;
  1159. goto cleanup1;
  1160. }
  1161. buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
  1162. GFP_KERNEL);
  1163. if (!buff_size) {
  1164. status = -ENOMEM;
  1165. goto cleanup1;
  1166. }
  1167. left = ioc->buf_size;
  1168. data_ptr = ioc->buf;
  1169. while (left) {
  1170. sz = (left >
  1171. ioc->malloc_size) ? ioc->
  1172. malloc_size : left;
  1173. buff_size[sg_used] = sz;
  1174. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  1175. if (buff[sg_used] == NULL) {
  1176. status = -ENOMEM;
  1177. goto cleanup1;
  1178. }
  1179. if (ioc->Request.Type.Direction == XFER_WRITE) {
  1180. if (copy_from_user
  1181. (buff[sg_used], data_ptr, sz)) {
  1182. status = -EFAULT;
  1183. goto cleanup1;
  1184. }
  1185. } else {
  1186. memset(buff[sg_used], 0, sz);
  1187. }
  1188. left -= sz;
  1189. data_ptr += sz;
  1190. sg_used++;
  1191. }
  1192. if ((c = cmd_alloc(host, 0)) == NULL) {
  1193. status = -ENOMEM;
  1194. goto cleanup1;
  1195. }
  1196. c->cmd_type = CMD_IOCTL_PEND;
  1197. c->Header.ReplyQueue = 0;
  1198. if (ioc->buf_size > 0) {
  1199. c->Header.SGList = sg_used;
  1200. c->Header.SGTotal = sg_used;
  1201. } else {
  1202. c->Header.SGList = 0;
  1203. c->Header.SGTotal = 0;
  1204. }
  1205. c->Header.LUN = ioc->LUN_info;
  1206. c->Header.Tag.lower = c->busaddr;
  1207. c->Request = ioc->Request;
  1208. if (ioc->buf_size > 0) {
  1209. int i;
  1210. for (i = 0; i < sg_used; i++) {
  1211. temp64.val =
  1212. pci_map_single(host->pdev, buff[i],
  1213. buff_size[i],
  1214. PCI_DMA_BIDIRECTIONAL);
  1215. c->SG[i].Addr.lower =
  1216. temp64.val32.lower;
  1217. c->SG[i].Addr.upper =
  1218. temp64.val32.upper;
  1219. c->SG[i].Len = buff_size[i];
  1220. c->SG[i].Ext = 0; /* we are not chaining */
  1221. }
  1222. }
  1223. c->waiting = &wait;
  1224. /* Put the request on the tail of the request queue */
  1225. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1226. addQ(&host->reqQ, c);
  1227. host->Qdepth++;
  1228. start_io(host);
  1229. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1230. wait_for_completion(&wait);
  1231. /* unlock the buffers from DMA */
  1232. for (i = 0; i < sg_used; i++) {
  1233. temp64.val32.lower = c->SG[i].Addr.lower;
  1234. temp64.val32.upper = c->SG[i].Addr.upper;
  1235. pci_unmap_single(host->pdev,
  1236. (dma_addr_t) temp64.val, buff_size[i],
  1237. PCI_DMA_BIDIRECTIONAL);
  1238. }
  1239. check_ioctl_unit_attention(host, c);
  1240. /* Copy the error information out */
  1241. ioc->error_info = *(c->err_info);
  1242. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  1243. cmd_free(host, c, 0);
  1244. status = -EFAULT;
  1245. goto cleanup1;
  1246. }
  1247. if (ioc->Request.Type.Direction == XFER_READ) {
  1248. /* Copy the data out of the buffer we created */
  1249. BYTE __user *ptr = ioc->buf;
  1250. for (i = 0; i < sg_used; i++) {
  1251. if (copy_to_user
  1252. (ptr, buff[i], buff_size[i])) {
  1253. cmd_free(host, c, 0);
  1254. status = -EFAULT;
  1255. goto cleanup1;
  1256. }
  1257. ptr += buff_size[i];
  1258. }
  1259. }
  1260. cmd_free(host, c, 0);
  1261. status = 0;
  1262. cleanup1:
  1263. if (buff) {
  1264. for (i = 0; i < sg_used; i++)
  1265. kfree(buff[i]);
  1266. kfree(buff);
  1267. }
  1268. kfree(buff_size);
  1269. kfree(ioc);
  1270. return status;
  1271. }
  1272. /* scsi_cmd_ioctl handles these, below, though some are not */
  1273. /* very meaningful for cciss. SG_IO is the main one people want. */
  1274. case SG_GET_VERSION_NUM:
  1275. case SG_SET_TIMEOUT:
  1276. case SG_GET_TIMEOUT:
  1277. case SG_GET_RESERVED_SIZE:
  1278. case SG_SET_RESERVED_SIZE:
  1279. case SG_EMULATED_HOST:
  1280. case SG_IO:
  1281. case SCSI_IOCTL_SEND_COMMAND:
  1282. return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
  1283. /* scsi_cmd_ioctl would normally handle these, below, but */
  1284. /* they aren't a good fit for cciss, as CD-ROMs are */
  1285. /* not supported, and we don't have any bus/target/lun */
  1286. /* which we present to the kernel. */
  1287. case CDROM_SEND_PACKET:
  1288. case CDROMCLOSETRAY:
  1289. case CDROMEJECT:
  1290. case SCSI_IOCTL_GET_IDLUN:
  1291. case SCSI_IOCTL_GET_BUS_NUMBER:
  1292. default:
  1293. return -ENOTTY;
  1294. }
  1295. }
  1296. static void cciss_check_queues(ctlr_info_t *h)
  1297. {
  1298. int start_queue = h->next_to_run;
  1299. int i;
  1300. /* check to see if we have maxed out the number of commands that can
  1301. * be placed on the queue. If so then exit. We do this check here
  1302. * in case the interrupt we serviced was from an ioctl and did not
  1303. * free any new commands.
  1304. */
  1305. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
  1306. return;
  1307. /* We have room on the queue for more commands. Now we need to queue
  1308. * them up. We will also keep track of the next queue to run so
  1309. * that every queue gets a chance to be started first.
  1310. */
  1311. for (i = 0; i < h->highest_lun + 1; i++) {
  1312. int curr_queue = (start_queue + i) % (h->highest_lun + 1);
  1313. /* make sure the disk has been added and the drive is real
  1314. * because this can be called from the middle of init_one.
  1315. */
  1316. if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
  1317. continue;
  1318. blk_start_queue(h->gendisk[curr_queue]->queue);
  1319. /* check to see if we have maxed out the number of commands
  1320. * that can be placed on the queue.
  1321. */
  1322. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
  1323. if (curr_queue == start_queue) {
  1324. h->next_to_run =
  1325. (start_queue + 1) % (h->highest_lun + 1);
  1326. break;
  1327. } else {
  1328. h->next_to_run = curr_queue;
  1329. break;
  1330. }
  1331. }
  1332. }
  1333. }
  1334. static void cciss_softirq_done(struct request *rq)
  1335. {
  1336. CommandList_struct *cmd = rq->completion_data;
  1337. ctlr_info_t *h = hba[cmd->ctlr];
  1338. unsigned long flags;
  1339. u64bit temp64;
  1340. int i, ddir;
  1341. if (cmd->Request.Type.Direction == XFER_READ)
  1342. ddir = PCI_DMA_FROMDEVICE;
  1343. else
  1344. ddir = PCI_DMA_TODEVICE;
  1345. /* command did not need to be retried */
  1346. /* unmap the DMA mapping for all the scatter gather elements */
  1347. for (i = 0; i < cmd->Header.SGList; i++) {
  1348. temp64.val32.lower = cmd->SG[i].Addr.lower;
  1349. temp64.val32.upper = cmd->SG[i].Addr.upper;
  1350. pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
  1351. }
  1352. #ifdef CCISS_DEBUG
  1353. printk("Done with %p\n", rq);
  1354. #endif /* CCISS_DEBUG */
  1355. /* set the residual count for pc requests */
  1356. if (blk_pc_request(rq))
  1357. rq->resid_len = cmd->err_info->ResidualCnt;
  1358. blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
  1359. spin_lock_irqsave(&h->lock, flags);
  1360. cmd_free(h, cmd, 1);
  1361. cciss_check_queues(h);
  1362. spin_unlock_irqrestore(&h->lock, flags);
  1363. }
  1364. static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
  1365. uint32_t log_unit)
  1366. {
  1367. log_unit = h->drv[log_unit].LunID & 0x03fff;
  1368. memset(&scsi3addr[4], 0, 4);
  1369. memcpy(&scsi3addr[0], &log_unit, 4);
  1370. scsi3addr[3] |= 0x40;
  1371. }
  1372. /* This function gets the SCSI vendor, model, and revision of a logical drive
  1373. * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
  1374. * they cannot be read.
  1375. */
  1376. static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
  1377. char *vendor, char *model, char *rev)
  1378. {
  1379. int rc;
  1380. InquiryData_struct *inq_buf;
  1381. unsigned char scsi3addr[8];
  1382. *vendor = '\0';
  1383. *model = '\0';
  1384. *rev = '\0';
  1385. inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1386. if (!inq_buf)
  1387. return;
  1388. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1389. if (withirq)
  1390. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
  1391. sizeof(InquiryData_struct), 0,
  1392. scsi3addr, TYPE_CMD);
  1393. else
  1394. rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
  1395. sizeof(InquiryData_struct), 0,
  1396. scsi3addr, TYPE_CMD);
  1397. if (rc == IO_OK) {
  1398. memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
  1399. vendor[VENDOR_LEN] = '\0';
  1400. memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
  1401. model[MODEL_LEN] = '\0';
  1402. memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
  1403. rev[REV_LEN] = '\0';
  1404. }
  1405. kfree(inq_buf);
  1406. return;
  1407. }
  1408. /* This function gets the serial number of a logical drive via
  1409. * inquiry page 0x83. Serial no. is 16 bytes. If the serial
  1410. * number cannot be had, for whatever reason, 16 bytes of 0xff
  1411. * are returned instead.
  1412. */
  1413. static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
  1414. unsigned char *serial_no, int buflen)
  1415. {
  1416. #define PAGE_83_INQ_BYTES 64
  1417. int rc;
  1418. unsigned char *buf;
  1419. unsigned char scsi3addr[8];
  1420. if (buflen > 16)
  1421. buflen = 16;
  1422. memset(serial_no, 0xff, buflen);
  1423. buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
  1424. if (!buf)
  1425. return;
  1426. memset(serial_no, 0, buflen);
  1427. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1428. if (withirq)
  1429. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
  1430. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1431. else
  1432. rc = sendcmd(CISS_INQUIRY, ctlr, buf,
  1433. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1434. if (rc == IO_OK)
  1435. memcpy(serial_no, &buf[8], buflen);
  1436. kfree(buf);
  1437. return;
  1438. }
  1439. static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
  1440. int drv_index)
  1441. {
  1442. disk->queue = blk_init_queue(do_cciss_request, &h->lock);
  1443. sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
  1444. disk->major = h->major;
  1445. disk->first_minor = drv_index << NWD_SHIFT;
  1446. disk->fops = &cciss_fops;
  1447. disk->private_data = &h->drv[drv_index];
  1448. disk->driverfs_dev = &h->drv[drv_index].dev;
  1449. /* Set up queue information */
  1450. blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
  1451. /* This is a hardware imposed limit. */
  1452. blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
  1453. /* This is a limit in the driver and could be eliminated. */
  1454. blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
  1455. blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
  1456. blk_queue_softirq_done(disk->queue, cciss_softirq_done);
  1457. disk->queue->queuedata = h;
  1458. blk_queue_logical_block_size(disk->queue,
  1459. h->drv[drv_index].block_size);
  1460. /* Make sure all queue data is written out before */
  1461. /* setting h->drv[drv_index].queue, as setting this */
  1462. /* allows the interrupt handler to start the queue */
  1463. wmb();
  1464. h->drv[drv_index].queue = disk->queue;
  1465. add_disk(disk);
  1466. }
  1467. /* This function will check the usage_count of the drive to be updated/added.
  1468. * If the usage_count is zero and it is a heretofore unknown drive, or,
  1469. * the drive's capacity, geometry, or serial number has changed,
  1470. * then the drive information will be updated and the disk will be
  1471. * re-registered with the kernel. If these conditions don't hold,
  1472. * then it will be left alone for the next reboot. The exception to this
  1473. * is disk 0 which will always be left registered with the kernel since it
  1474. * is also the controller node. Any changes to disk 0 will show up on
  1475. * the next reboot.
  1476. */
  1477. static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
  1478. {
  1479. ctlr_info_t *h = hba[ctlr];
  1480. struct gendisk *disk;
  1481. InquiryData_struct *inq_buff = NULL;
  1482. unsigned int block_size;
  1483. sector_t total_size;
  1484. unsigned long flags = 0;
  1485. int ret = 0;
  1486. drive_info_struct *drvinfo;
  1487. int was_only_controller_node;
  1488. /* Get information about the disk and modify the driver structure */
  1489. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1490. drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
  1491. if (inq_buff == NULL || drvinfo == NULL)
  1492. goto mem_msg;
  1493. /* See if we're trying to update the "controller node"
  1494. * this will happen the when the first logical drive gets
  1495. * created by ACU.
  1496. */
  1497. was_only_controller_node = (drv_index == 0 &&
  1498. h->drv[0].raid_level == -1);
  1499. /* testing to see if 16-byte CDBs are already being used */
  1500. if (h->cciss_read == CCISS_READ_16) {
  1501. cciss_read_capacity_16(h->ctlr, drv_index, 1,
  1502. &total_size, &block_size);
  1503. } else {
  1504. cciss_read_capacity(ctlr, drv_index, 1,
  1505. &total_size, &block_size);
  1506. /* if read_capacity returns all F's this volume is >2TB */
  1507. /* in size so we switch to 16-byte CDB's for all */
  1508. /* read/write ops */
  1509. if (total_size == 0xFFFFFFFFULL) {
  1510. cciss_read_capacity_16(ctlr, drv_index, 1,
  1511. &total_size, &block_size);
  1512. h->cciss_read = CCISS_READ_16;
  1513. h->cciss_write = CCISS_WRITE_16;
  1514. } else {
  1515. h->cciss_read = CCISS_READ_10;
  1516. h->cciss_write = CCISS_WRITE_10;
  1517. }
  1518. }
  1519. cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
  1520. inq_buff, drvinfo);
  1521. drvinfo->block_size = block_size;
  1522. drvinfo->nr_blocks = total_size + 1;
  1523. cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
  1524. drvinfo->model, drvinfo->rev);
  1525. cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
  1526. sizeof(drvinfo->serial_no));
  1527. /* Is it the same disk we already know, and nothing's changed? */
  1528. if (h->drv[drv_index].raid_level != -1 &&
  1529. ((memcmp(drvinfo->serial_no,
  1530. h->drv[drv_index].serial_no, 16) == 0) &&
  1531. drvinfo->block_size == h->drv[drv_index].block_size &&
  1532. drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
  1533. drvinfo->heads == h->drv[drv_index].heads &&
  1534. drvinfo->sectors == h->drv[drv_index].sectors &&
  1535. drvinfo->cylinders == h->drv[drv_index].cylinders))
  1536. /* The disk is unchanged, nothing to update */
  1537. goto freeret;
  1538. /* If we get here it's not the same disk, or something's changed,
  1539. * so we need to * deregister it, and re-register it, if it's not
  1540. * in use.
  1541. * If the disk already exists then deregister it before proceeding
  1542. * (unless it's the first disk (for the controller node).
  1543. */
  1544. if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
  1545. printk(KERN_WARNING "disk %d has changed.\n", drv_index);
  1546. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1547. h->drv[drv_index].busy_configuring = 1;
  1548. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1549. /* deregister_disk sets h->drv[drv_index].queue = NULL
  1550. * which keeps the interrupt handler from starting
  1551. * the queue.
  1552. */
  1553. ret = deregister_disk(h, drv_index, 0);
  1554. h->drv[drv_index].busy_configuring = 0;
  1555. }
  1556. /* If the disk is in use return */
  1557. if (ret)
  1558. goto freeret;
  1559. /* Save the new information from cciss_geometry_inquiry
  1560. * and serial number inquiry.
  1561. */
  1562. h->drv[drv_index].block_size = drvinfo->block_size;
  1563. h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
  1564. h->drv[drv_index].heads = drvinfo->heads;
  1565. h->drv[drv_index].sectors = drvinfo->sectors;
  1566. h->drv[drv_index].cylinders = drvinfo->cylinders;
  1567. h->drv[drv_index].raid_level = drvinfo->raid_level;
  1568. memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
  1569. memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
  1570. memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
  1571. memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
  1572. ++h->num_luns;
  1573. disk = h->gendisk[drv_index];
  1574. set_capacity(disk, h->drv[drv_index].nr_blocks);
  1575. /* If it's not disk 0 (drv_index != 0)
  1576. * or if it was disk 0, but there was previously
  1577. * no actual corresponding configured logical drive
  1578. * (raid_leve == -1) then we want to update the
  1579. * logical drive's information.
  1580. */
  1581. if (drv_index || first_time)
  1582. cciss_add_disk(h, disk, drv_index);
  1583. freeret:
  1584. kfree(inq_buff);
  1585. kfree(drvinfo);
  1586. return;
  1587. mem_msg:
  1588. printk(KERN_ERR "cciss: out of memory\n");
  1589. goto freeret;
  1590. }
  1591. /* This function will find the first index of the controllers drive array
  1592. * that has a -1 for the raid_level and will return that index. This is
  1593. * where new drives will be added. If the index to be returned is greater
  1594. * than the highest_lun index for the controller then highest_lun is set
  1595. * to this new index. If there are no available indexes then -1 is returned.
  1596. * "controller_node" is used to know if this is a real logical drive, or just
  1597. * the controller node, which determines if this counts towards highest_lun.
  1598. */
  1599. static int cciss_find_free_drive_index(int ctlr, int controller_node)
  1600. {
  1601. int i;
  1602. for (i = 0; i < CISS_MAX_LUN; i++) {
  1603. if (hba[ctlr]->drv[i].raid_level == -1) {
  1604. if (i > hba[ctlr]->highest_lun)
  1605. if (!controller_node)
  1606. hba[ctlr]->highest_lun = i;
  1607. return i;
  1608. }
  1609. }
  1610. return -1;
  1611. }
  1612. /* cciss_add_gendisk finds a free hba[]->drv structure
  1613. * and allocates a gendisk if needed, and sets the lunid
  1614. * in the drvinfo structure. It returns the index into
  1615. * the ->drv[] array, or -1 if none are free.
  1616. * is_controller_node indicates whether highest_lun should
  1617. * count this disk, or if it's only being added to provide
  1618. * a means to talk to the controller in case no logical
  1619. * drives have yet been configured.
  1620. */
  1621. static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
  1622. {
  1623. int drv_index;
  1624. drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
  1625. if (drv_index == -1)
  1626. return -1;
  1627. /*Check if the gendisk needs to be allocated */
  1628. if (!h->gendisk[drv_index]) {
  1629. h->gendisk[drv_index] =
  1630. alloc_disk(1 << NWD_SHIFT);
  1631. if (!h->gendisk[drv_index]) {
  1632. printk(KERN_ERR "cciss%d: could not "
  1633. "allocate a new disk %d\n",
  1634. h->ctlr, drv_index);
  1635. return -1;
  1636. }
  1637. }
  1638. h->drv[drv_index].LunID = lunid;
  1639. if (cciss_create_ld_sysfs_entry(h, &h->drv[drv_index], drv_index))
  1640. goto err_free_disk;
  1641. /* Don't need to mark this busy because nobody */
  1642. /* else knows about this disk yet to contend */
  1643. /* for access to it. */
  1644. h->drv[drv_index].busy_configuring = 0;
  1645. wmb();
  1646. return drv_index;
  1647. err_free_disk:
  1648. put_disk(h->gendisk[drv_index]);
  1649. h->gendisk[drv_index] = NULL;
  1650. return -1;
  1651. }
  1652. /* This is for the special case of a controller which
  1653. * has no logical drives. In this case, we still need
  1654. * to register a disk so the controller can be accessed
  1655. * by the Array Config Utility.
  1656. */
  1657. static void cciss_add_controller_node(ctlr_info_t *h)
  1658. {
  1659. struct gendisk *disk;
  1660. int drv_index;
  1661. if (h->gendisk[0] != NULL) /* already did this? Then bail. */
  1662. return;
  1663. drv_index = cciss_add_gendisk(h, 0, 1);
  1664. if (drv_index == -1) {
  1665. printk(KERN_WARNING "cciss%d: could not "
  1666. "add disk 0.\n", h->ctlr);
  1667. return;
  1668. }
  1669. h->drv[drv_index].block_size = 512;
  1670. h->drv[drv_index].nr_blocks = 0;
  1671. h->drv[drv_index].heads = 0;
  1672. h->drv[drv_index].sectors = 0;
  1673. h->drv[drv_index].cylinders = 0;
  1674. h->drv[drv_index].raid_level = -1;
  1675. memset(h->drv[drv_index].serial_no, 0, 16);
  1676. disk = h->gendisk[drv_index];
  1677. cciss_add_disk(h, disk, drv_index);
  1678. }
  1679. /* This function will add and remove logical drives from the Logical
  1680. * drive array of the controller and maintain persistency of ordering
  1681. * so that mount points are preserved until the next reboot. This allows
  1682. * for the removal of logical drives in the middle of the drive array
  1683. * without a re-ordering of those drives.
  1684. * INPUT
  1685. * h = The controller to perform the operations on
  1686. */
  1687. static int rebuild_lun_table(ctlr_info_t *h, int first_time)
  1688. {
  1689. int ctlr = h->ctlr;
  1690. int num_luns;
  1691. ReportLunData_struct *ld_buff = NULL;
  1692. int return_code;
  1693. int listlength = 0;
  1694. int i;
  1695. int drv_found;
  1696. int drv_index = 0;
  1697. __u32 lunid = 0;
  1698. unsigned long flags;
  1699. if (!capable(CAP_SYS_RAWIO))
  1700. return -EPERM;
  1701. /* Set busy_configuring flag for this operation */
  1702. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1703. if (h->busy_configuring) {
  1704. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1705. return -EBUSY;
  1706. }
  1707. h->busy_configuring = 1;
  1708. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1709. ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
  1710. if (ld_buff == NULL)
  1711. goto mem_msg;
  1712. return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
  1713. sizeof(ReportLunData_struct),
  1714. 0, CTLR_LUNID, TYPE_CMD);
  1715. if (return_code == IO_OK)
  1716. listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
  1717. else { /* reading number of logical volumes failed */
  1718. printk(KERN_WARNING "cciss: report logical volume"
  1719. " command failed\n");
  1720. listlength = 0;
  1721. goto freeret;
  1722. }
  1723. num_luns = listlength / 8; /* 8 bytes per entry */
  1724. if (num_luns > CISS_MAX_LUN) {
  1725. num_luns = CISS_MAX_LUN;
  1726. printk(KERN_WARNING "cciss: more luns configured"
  1727. " on controller than can be handled by"
  1728. " this driver.\n");
  1729. }
  1730. if (num_luns == 0)
  1731. cciss_add_controller_node(h);
  1732. /* Compare controller drive array to driver's drive array
  1733. * to see if any drives are missing on the controller due
  1734. * to action of Array Config Utility (user deletes drive)
  1735. * and deregister logical drives which have disappeared.
  1736. */
  1737. for (i = 0; i <= h->highest_lun; i++) {
  1738. int j;
  1739. drv_found = 0;
  1740. /* skip holes in the array from already deleted drives */
  1741. if (h->drv[i].raid_level == -1)
  1742. continue;
  1743. for (j = 0; j < num_luns; j++) {
  1744. memcpy(&lunid, &ld_buff->LUN[j][0], 4);
  1745. lunid = le32_to_cpu(lunid);
  1746. if (h->drv[i].LunID == lunid) {
  1747. drv_found = 1;
  1748. break;
  1749. }
  1750. }
  1751. if (!drv_found) {
  1752. /* Deregister it from the OS, it's gone. */
  1753. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1754. h->drv[i].busy_configuring = 1;
  1755. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1756. return_code = deregister_disk(h, i, 1);
  1757. h->drv[i].busy_configuring = 0;
  1758. }
  1759. }
  1760. /* Compare controller drive array to driver's drive array.
  1761. * Check for updates in the drive information and any new drives
  1762. * on the controller due to ACU adding logical drives, or changing
  1763. * a logical drive's size, etc. Reregister any new/changed drives
  1764. */
  1765. for (i = 0; i < num_luns; i++) {
  1766. int j;
  1767. drv_found = 0;
  1768. memcpy(&lunid, &ld_buff->LUN[i][0], 4);
  1769. lunid = le32_to_cpu(lunid);
  1770. /* Find if the LUN is already in the drive array
  1771. * of the driver. If so then update its info
  1772. * if not in use. If it does not exist then find
  1773. * the first free index and add it.
  1774. */
  1775. for (j = 0; j <= h->highest_lun; j++) {
  1776. if (h->drv[j].raid_level != -1 &&
  1777. h->drv[j].LunID == lunid) {
  1778. drv_index = j;
  1779. drv_found = 1;
  1780. break;
  1781. }
  1782. }
  1783. /* check if the drive was found already in the array */
  1784. if (!drv_found) {
  1785. drv_index = cciss_add_gendisk(h, lunid, 0);
  1786. if (drv_index == -1)
  1787. goto freeret;
  1788. }
  1789. cciss_update_drive_info(ctlr, drv_index, first_time);
  1790. } /* end for */
  1791. freeret:
  1792. kfree(ld_buff);
  1793. h->busy_configuring = 0;
  1794. /* We return -1 here to tell the ACU that we have registered/updated
  1795. * all of the drives that we can and to keep it from calling us
  1796. * additional times.
  1797. */
  1798. return -1;
  1799. mem_msg:
  1800. printk(KERN_ERR "cciss: out of memory\n");
  1801. h->busy_configuring = 0;
  1802. goto freeret;
  1803. }
  1804. /* This function will deregister the disk and it's queue from the
  1805. * kernel. It must be called with the controller lock held and the
  1806. * drv structures busy_configuring flag set. It's parameters are:
  1807. *
  1808. * disk = This is the disk to be deregistered
  1809. * drv = This is the drive_info_struct associated with the disk to be
  1810. * deregistered. It contains information about the disk used
  1811. * by the driver.
  1812. * clear_all = This flag determines whether or not the disk information
  1813. * is going to be completely cleared out and the highest_lun
  1814. * reset. Sometimes we want to clear out information about
  1815. * the disk in preparation for re-adding it. In this case
  1816. * the highest_lun should be left unchanged and the LunID
  1817. * should not be cleared.
  1818. */
  1819. static int deregister_disk(ctlr_info_t *h, int drv_index,
  1820. int clear_all)
  1821. {
  1822. int i;
  1823. struct gendisk *disk;
  1824. drive_info_struct *drv;
  1825. if (!capable(CAP_SYS_RAWIO))
  1826. return -EPERM;
  1827. drv = &h->drv[drv_index];
  1828. disk = h->gendisk[drv_index];
  1829. /* make sure logical volume is NOT is use */
  1830. if (clear_all || (h->gendisk[0] == disk)) {
  1831. if (drv->usage_count > 1)
  1832. return -EBUSY;
  1833. } else if (drv->usage_count > 0)
  1834. return -EBUSY;
  1835. /* invalidate the devices and deregister the disk. If it is disk
  1836. * zero do not deregister it but just zero out it's values. This
  1837. * allows us to delete disk zero but keep the controller registered.
  1838. */
  1839. if (h->gendisk[0] != disk) {
  1840. struct request_queue *q = disk->queue;
  1841. if (disk->flags & GENHD_FL_UP)
  1842. del_gendisk(disk);
  1843. if (q) {
  1844. blk_cleanup_queue(q);
  1845. /* Set drv->queue to NULL so that we do not try
  1846. * to call blk_start_queue on this queue in the
  1847. * interrupt handler
  1848. */
  1849. drv->queue = NULL;
  1850. }
  1851. /* If clear_all is set then we are deleting the logical
  1852. * drive, not just refreshing its info. For drives
  1853. * other than disk 0 we will call put_disk. We do not
  1854. * do this for disk 0 as we need it to be able to
  1855. * configure the controller.
  1856. */
  1857. if (clear_all){
  1858. /* This isn't pretty, but we need to find the
  1859. * disk in our array and NULL our the pointer.
  1860. * This is so that we will call alloc_disk if
  1861. * this index is used again later.
  1862. */
  1863. for (i=0; i < CISS_MAX_LUN; i++){
  1864. if (h->gendisk[i] == disk) {
  1865. h->gendisk[i] = NULL;
  1866. break;
  1867. }
  1868. }
  1869. put_disk(disk);
  1870. }
  1871. } else {
  1872. set_capacity(disk, 0);
  1873. }
  1874. --h->num_luns;
  1875. /* zero out the disk size info */
  1876. drv->nr_blocks = 0;
  1877. drv->block_size = 0;
  1878. drv->heads = 0;
  1879. drv->sectors = 0;
  1880. drv->cylinders = 0;
  1881. drv->raid_level = -1; /* This can be used as a flag variable to
  1882. * indicate that this element of the drive
  1883. * array is free.
  1884. */
  1885. cciss_destroy_ld_sysfs_entry(drv);
  1886. if (clear_all) {
  1887. /* check to see if it was the last disk */
  1888. if (drv == h->drv + h->highest_lun) {
  1889. /* if so, find the new hightest lun */
  1890. int i, newhighest = -1;
  1891. for (i = 0; i <= h->highest_lun; i++) {
  1892. /* if the disk has size > 0, it is available */
  1893. if (h->drv[i].heads)
  1894. newhighest = i;
  1895. }
  1896. h->highest_lun = newhighest;
  1897. }
  1898. drv->LunID = 0;
  1899. }
  1900. return 0;
  1901. }
  1902. static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
  1903. size_t size, __u8 page_code, unsigned char *scsi3addr,
  1904. int cmd_type)
  1905. {
  1906. ctlr_info_t *h = hba[ctlr];
  1907. u64bit buff_dma_handle;
  1908. int status = IO_OK;
  1909. c->cmd_type = CMD_IOCTL_PEND;
  1910. c->Header.ReplyQueue = 0;
  1911. if (buff != NULL) {
  1912. c->Header.SGList = 1;
  1913. c->Header.SGTotal = 1;
  1914. } else {
  1915. c->Header.SGList = 0;
  1916. c->Header.SGTotal = 0;
  1917. }
  1918. c->Header.Tag.lower = c->busaddr;
  1919. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  1920. c->Request.Type.Type = cmd_type;
  1921. if (cmd_type == TYPE_CMD) {
  1922. switch (cmd) {
  1923. case CISS_INQUIRY:
  1924. /* are we trying to read a vital product page */
  1925. if (page_code != 0) {
  1926. c->Request.CDB[1] = 0x01;
  1927. c->Request.CDB[2] = page_code;
  1928. }
  1929. c->Request.CDBLen = 6;
  1930. c->Request.Type.Attribute = ATTR_SIMPLE;
  1931. c->Request.Type.Direction = XFER_READ;
  1932. c->Request.Timeout = 0;
  1933. c->Request.CDB[0] = CISS_INQUIRY;
  1934. c->Request.CDB[4] = size & 0xFF;
  1935. break;
  1936. case CISS_REPORT_LOG:
  1937. case CISS_REPORT_PHYS:
  1938. /* Talking to controller so It's a physical command
  1939. mode = 00 target = 0. Nothing to write.
  1940. */
  1941. c->Request.CDBLen = 12;
  1942. c->Request.Type.Attribute = ATTR_SIMPLE;
  1943. c->Request.Type.Direction = XFER_READ;
  1944. c->Request.Timeout = 0;
  1945. c->Request.CDB[0] = cmd;
  1946. c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
  1947. c->Request.CDB[7] = (size >> 16) & 0xFF;
  1948. c->Request.CDB[8] = (size >> 8) & 0xFF;
  1949. c->Request.CDB[9] = size & 0xFF;
  1950. break;
  1951. case CCISS_READ_CAPACITY:
  1952. c->Request.CDBLen = 10;
  1953. c->Request.Type.Attribute = ATTR_SIMPLE;
  1954. c->Request.Type.Direction = XFER_READ;
  1955. c->Request.Timeout = 0;
  1956. c->Request.CDB[0] = cmd;
  1957. break;
  1958. case CCISS_READ_CAPACITY_16:
  1959. c->Request.CDBLen = 16;
  1960. c->Request.Type.Attribute = ATTR_SIMPLE;
  1961. c->Request.Type.Direction = XFER_READ;
  1962. c->Request.Timeout = 0;
  1963. c->Request.CDB[0] = cmd;
  1964. c->Request.CDB[1] = 0x10;
  1965. c->Request.CDB[10] = (size >> 24) & 0xFF;
  1966. c->Request.CDB[11] = (size >> 16) & 0xFF;
  1967. c->Request.CDB[12] = (size >> 8) & 0xFF;
  1968. c->Request.CDB[13] = size & 0xFF;
  1969. c->Request.Timeout = 0;
  1970. c->Request.CDB[0] = cmd;
  1971. break;
  1972. case CCISS_CACHE_FLUSH:
  1973. c->Request.CDBLen = 12;
  1974. c->Request.Type.Attribute = ATTR_SIMPLE;
  1975. c->Request.Type.Direction = XFER_WRITE;
  1976. c->Request.Timeout = 0;
  1977. c->Request.CDB[0] = BMIC_WRITE;
  1978. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  1979. break;
  1980. case TEST_UNIT_READY:
  1981. c->Request.CDBLen = 6;
  1982. c->Request.Type.Attribute = ATTR_SIMPLE;
  1983. c->Request.Type.Direction = XFER_NONE;
  1984. c->Request.Timeout = 0;
  1985. break;
  1986. default:
  1987. printk(KERN_WARNING
  1988. "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
  1989. return IO_ERROR;
  1990. }
  1991. } else if (cmd_type == TYPE_MSG) {
  1992. switch (cmd) {
  1993. case 0: /* ABORT message */
  1994. c->Request.CDBLen = 12;
  1995. c->Request.Type.Attribute = ATTR_SIMPLE;
  1996. c->Request.Type.Direction = XFER_WRITE;
  1997. c->Request.Timeout = 0;
  1998. c->Request.CDB[0] = cmd; /* abort */
  1999. c->Request.CDB[1] = 0; /* abort a command */
  2000. /* buff contains the tag of the command to abort */
  2001. memcpy(&c->Request.CDB[4], buff, 8);
  2002. break;
  2003. case 1: /* RESET message */
  2004. c->Request.CDBLen = 16;
  2005. c->Request.Type.Attribute = ATTR_SIMPLE;
  2006. c->Request.Type.Direction = XFER_NONE;
  2007. c->Request.Timeout = 0;
  2008. memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
  2009. c->Request.CDB[0] = cmd; /* reset */
  2010. c->Request.CDB[1] = 0x03; /* reset a target */
  2011. break;
  2012. case 3: /* No-Op message */
  2013. c->Request.CDBLen = 1;
  2014. c->Request.Type.Attribute = ATTR_SIMPLE;
  2015. c->Request.Type.Direction = XFER_WRITE;
  2016. c->Request.Timeout = 0;
  2017. c->Request.CDB[0] = cmd;
  2018. break;
  2019. default:
  2020. printk(KERN_WARNING
  2021. "cciss%d: unknown message type %d\n", ctlr, cmd);
  2022. return IO_ERROR;
  2023. }
  2024. } else {
  2025. printk(KERN_WARNING
  2026. "cciss%d: unknown command type %d\n", ctlr, cmd_type);
  2027. return IO_ERROR;
  2028. }
  2029. /* Fill in the scatter gather information */
  2030. if (size > 0) {
  2031. buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
  2032. buff, size,
  2033. PCI_DMA_BIDIRECTIONAL);
  2034. c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
  2035. c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
  2036. c->SG[0].Len = size;
  2037. c->SG[0].Ext = 0; /* we are not chaining */
  2038. }
  2039. return status;
  2040. }
  2041. static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
  2042. {
  2043. switch (c->err_info->ScsiStatus) {
  2044. case SAM_STAT_GOOD:
  2045. return IO_OK;
  2046. case SAM_STAT_CHECK_CONDITION:
  2047. switch (0xf & c->err_info->SenseInfo[2]) {
  2048. case 0: return IO_OK; /* no sense */
  2049. case 1: return IO_OK; /* recovered error */
  2050. default:
  2051. printk(KERN_WARNING "cciss%d: cmd 0x%02x "
  2052. "check condition, sense key = 0x%02x\n",
  2053. h->ctlr, c->Request.CDB[0],
  2054. c->err_info->SenseInfo[2]);
  2055. }
  2056. break;
  2057. default:
  2058. printk(KERN_WARNING "cciss%d: cmd 0x%02x"
  2059. "scsi status = 0x%02x\n", h->ctlr,
  2060. c->Request.CDB[0], c->err_info->ScsiStatus);
  2061. break;
  2062. }
  2063. return IO_ERROR;
  2064. }
  2065. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
  2066. {
  2067. int return_status = IO_OK;
  2068. if (c->err_info->CommandStatus == CMD_SUCCESS)
  2069. return IO_OK;
  2070. switch (c->err_info->CommandStatus) {
  2071. case CMD_TARGET_STATUS:
  2072. return_status = check_target_status(h, c);
  2073. break;
  2074. case CMD_DATA_UNDERRUN:
  2075. case CMD_DATA_OVERRUN:
  2076. /* expected for inquiry and report lun commands */
  2077. break;
  2078. case CMD_INVALID:
  2079. printk(KERN_WARNING "cciss: cmd 0x%02x is "
  2080. "reported invalid\n", c->Request.CDB[0]);
  2081. return_status = IO_ERROR;
  2082. break;
  2083. case CMD_PROTOCOL_ERR:
  2084. printk(KERN_WARNING "cciss: cmd 0x%02x has "
  2085. "protocol error \n", c->Request.CDB[0]);
  2086. return_status = IO_ERROR;
  2087. break;
  2088. case CMD_HARDWARE_ERR:
  2089. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2090. " hardware error\n", c->Request.CDB[0]);
  2091. return_status = IO_ERROR;
  2092. break;
  2093. case CMD_CONNECTION_LOST:
  2094. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2095. "connection lost\n", c->Request.CDB[0]);
  2096. return_status = IO_ERROR;
  2097. break;
  2098. case CMD_ABORTED:
  2099. printk(KERN_WARNING "cciss: cmd 0x%02x was "
  2100. "aborted\n", c->Request.CDB[0]);
  2101. return_status = IO_ERROR;
  2102. break;
  2103. case CMD_ABORT_FAILED:
  2104. printk(KERN_WARNING "cciss: cmd 0x%02x reports "
  2105. "abort failed\n", c->Request.CDB[0]);
  2106. return_status = IO_ERROR;
  2107. break;
  2108. case CMD_UNSOLICITED_ABORT:
  2109. printk(KERN_WARNING
  2110. "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
  2111. c->Request.CDB[0]);
  2112. return_status = IO_NEEDS_RETRY;
  2113. break;
  2114. default:
  2115. printk(KERN_WARNING "cciss: cmd 0x%02x returned "
  2116. "unknown status %x\n", c->Request.CDB[0],
  2117. c->err_info->CommandStatus);
  2118. return_status = IO_ERROR;
  2119. }
  2120. return return_status;
  2121. }
  2122. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  2123. int attempt_retry)
  2124. {
  2125. DECLARE_COMPLETION_ONSTACK(wait);
  2126. u64bit buff_dma_handle;
  2127. unsigned long flags;
  2128. int return_status = IO_OK;
  2129. resend_cmd2:
  2130. c->waiting = &wait;
  2131. /* Put the request on the tail of the queue and send it */
  2132. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2133. addQ(&h->reqQ, c);
  2134. h->Qdepth++;
  2135. start_io(h);
  2136. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  2137. wait_for_completion(&wait);
  2138. if (c->err_info->CommandStatus == 0 || !attempt_retry)
  2139. goto command_done;
  2140. return_status = process_sendcmd_error(h, c);
  2141. if (return_status == IO_NEEDS_RETRY &&
  2142. c->retry_count < MAX_CMD_RETRIES) {
  2143. printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
  2144. c->Request.CDB[0]);
  2145. c->retry_count++;
  2146. /* erase the old error information */
  2147. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2148. return_status = IO_OK;
  2149. INIT_COMPLETION(wait);
  2150. goto resend_cmd2;
  2151. }
  2152. command_done:
  2153. /* unlock the buffers from DMA */
  2154. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2155. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2156. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2157. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2158. return return_status;
  2159. }
  2160. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  2161. __u8 page_code, unsigned char scsi3addr[],
  2162. int cmd_type)
  2163. {
  2164. ctlr_info_t *h = hba[ctlr];
  2165. CommandList_struct *c;
  2166. int return_status;
  2167. c = cmd_alloc(h, 0);
  2168. if (!c)
  2169. return -ENOMEM;
  2170. return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2171. scsi3addr, cmd_type);
  2172. if (return_status == IO_OK)
  2173. return_status = sendcmd_withirq_core(h, c, 1);
  2174. cmd_free(h, c, 0);
  2175. return return_status;
  2176. }
  2177. static void cciss_geometry_inquiry(int ctlr, int logvol,
  2178. int withirq, sector_t total_size,
  2179. unsigned int block_size,
  2180. InquiryData_struct *inq_buff,
  2181. drive_info_struct *drv)
  2182. {
  2183. int return_code;
  2184. unsigned long t;
  2185. unsigned char scsi3addr[8];
  2186. memset(inq_buff, 0, sizeof(InquiryData_struct));
  2187. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2188. if (withirq)
  2189. return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
  2190. inq_buff, sizeof(*inq_buff),
  2191. 0xC1, scsi3addr, TYPE_CMD);
  2192. else
  2193. return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
  2194. sizeof(*inq_buff), 0xC1, scsi3addr,
  2195. TYPE_CMD);
  2196. if (return_code == IO_OK) {
  2197. if (inq_buff->data_byte[8] == 0xFF) {
  2198. printk(KERN_WARNING
  2199. "cciss: reading geometry failed, volume "
  2200. "does not support reading geometry\n");
  2201. drv->heads = 255;
  2202. drv->sectors = 32; // Sectors per track
  2203. drv->cylinders = total_size + 1;
  2204. drv->raid_level = RAID_UNKNOWN;
  2205. } else {
  2206. drv->heads = inq_buff->data_byte[6];
  2207. drv->sectors = inq_buff->data_byte[7];
  2208. drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
  2209. drv->cylinders += inq_buff->data_byte[5];
  2210. drv->raid_level = inq_buff->data_byte[8];
  2211. }
  2212. drv->block_size = block_size;
  2213. drv->nr_blocks = total_size + 1;
  2214. t = drv->heads * drv->sectors;
  2215. if (t > 1) {
  2216. sector_t real_size = total_size + 1;
  2217. unsigned long rem = sector_div(real_size, t);
  2218. if (rem)
  2219. real_size++;
  2220. drv->cylinders = real_size;
  2221. }
  2222. } else { /* Get geometry failed */
  2223. printk(KERN_WARNING "cciss: reading geometry failed\n");
  2224. }
  2225. printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
  2226. drv->heads, drv->sectors, drv->cylinders);
  2227. }
  2228. static void
  2229. cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
  2230. unsigned int *block_size)
  2231. {
  2232. ReadCapdata_struct *buf;
  2233. int return_code;
  2234. unsigned char scsi3addr[8];
  2235. buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
  2236. if (!buf) {
  2237. printk(KERN_WARNING "cciss: out of memory\n");
  2238. return;
  2239. }
  2240. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2241. if (withirq)
  2242. return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
  2243. ctlr, buf, sizeof(ReadCapdata_struct),
  2244. 0, scsi3addr, TYPE_CMD);
  2245. else
  2246. return_code = sendcmd(CCISS_READ_CAPACITY,
  2247. ctlr, buf, sizeof(ReadCapdata_struct),
  2248. 0, scsi3addr, TYPE_CMD);
  2249. if (return_code == IO_OK) {
  2250. *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
  2251. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2252. } else { /* read capacity command failed */
  2253. printk(KERN_WARNING "cciss: read capacity failed\n");
  2254. *total_size = 0;
  2255. *block_size = BLOCK_SIZE;
  2256. }
  2257. if (*total_size != 0)
  2258. printk(KERN_INFO " blocks= %llu block_size= %d\n",
  2259. (unsigned long long)*total_size+1, *block_size);
  2260. kfree(buf);
  2261. }
  2262. static void
  2263. cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
  2264. {
  2265. ReadCapdata_struct_16 *buf;
  2266. int return_code;
  2267. unsigned char scsi3addr[8];
  2268. buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
  2269. if (!buf) {
  2270. printk(KERN_WARNING "cciss: out of memory\n");
  2271. return;
  2272. }
  2273. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2274. if (withirq) {
  2275. return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
  2276. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2277. 0, scsi3addr, TYPE_CMD);
  2278. }
  2279. else {
  2280. return_code = sendcmd(CCISS_READ_CAPACITY_16,
  2281. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2282. 0, scsi3addr, TYPE_CMD);
  2283. }
  2284. if (return_code == IO_OK) {
  2285. *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
  2286. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2287. } else { /* read capacity command failed */
  2288. printk(KERN_WARNING "cciss: read capacity failed\n");
  2289. *total_size = 0;
  2290. *block_size = BLOCK_SIZE;
  2291. }
  2292. printk(KERN_INFO " blocks= %llu block_size= %d\n",
  2293. (unsigned long long)*total_size+1, *block_size);
  2294. kfree(buf);
  2295. }
  2296. static int cciss_revalidate(struct gendisk *disk)
  2297. {
  2298. ctlr_info_t *h = get_host(disk);
  2299. drive_info_struct *drv = get_drv(disk);
  2300. int logvol;
  2301. int FOUND = 0;
  2302. unsigned int block_size;
  2303. sector_t total_size;
  2304. InquiryData_struct *inq_buff = NULL;
  2305. for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
  2306. if (h->drv[logvol].LunID == drv->LunID) {
  2307. FOUND = 1;
  2308. break;
  2309. }
  2310. }
  2311. if (!FOUND)
  2312. return 1;
  2313. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  2314. if (inq_buff == NULL) {
  2315. printk(KERN_WARNING "cciss: out of memory\n");
  2316. return 1;
  2317. }
  2318. if (h->cciss_read == CCISS_READ_10) {
  2319. cciss_read_capacity(h->ctlr, logvol, 1,
  2320. &total_size, &block_size);
  2321. } else {
  2322. cciss_read_capacity_16(h->ctlr, logvol, 1,
  2323. &total_size, &block_size);
  2324. }
  2325. cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
  2326. inq_buff, drv);
  2327. blk_queue_logical_block_size(drv->queue, drv->block_size);
  2328. set_capacity(disk, drv->nr_blocks);
  2329. kfree(inq_buff);
  2330. return 0;
  2331. }
  2332. /*
  2333. * Wait polling for a command to complete.
  2334. * The memory mapped FIFO is polled for the completion.
  2335. * Used only at init time, interrupts from the HBA are disabled.
  2336. */
  2337. static unsigned long pollcomplete(int ctlr)
  2338. {
  2339. unsigned long done;
  2340. int i;
  2341. /* Wait (up to 20 seconds) for a command to complete */
  2342. for (i = 20 * HZ; i > 0; i--) {
  2343. done = hba[ctlr]->access.command_completed(hba[ctlr]);
  2344. if (done == FIFO_EMPTY)
  2345. schedule_timeout_uninterruptible(1);
  2346. else
  2347. return done;
  2348. }
  2349. /* Invalid address to tell caller we ran out of time */
  2350. return 1;
  2351. }
  2352. /* Send command c to controller h and poll for it to complete.
  2353. * Turns interrupts off on the board. Used at driver init time
  2354. * and during SCSI error recovery.
  2355. */
  2356. static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
  2357. {
  2358. int i;
  2359. unsigned long complete;
  2360. int status = IO_ERROR;
  2361. u64bit buff_dma_handle;
  2362. resend_cmd1:
  2363. /* Disable interrupt on the board. */
  2364. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  2365. /* Make sure there is room in the command FIFO */
  2366. /* Actually it should be completely empty at this time */
  2367. /* unless we are in here doing error handling for the scsi */
  2368. /* tape side of the driver. */
  2369. for (i = 200000; i > 0; i--) {
  2370. /* if fifo isn't full go */
  2371. if (!(h->access.fifo_full(h)))
  2372. break;
  2373. udelay(10);
  2374. printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
  2375. " waiting!\n", h->ctlr);
  2376. }
  2377. h->access.submit_command(h, c); /* Send the cmd */
  2378. do {
  2379. complete = pollcomplete(h->ctlr);
  2380. #ifdef CCISS_DEBUG
  2381. printk(KERN_DEBUG "cciss: command completed\n");
  2382. #endif /* CCISS_DEBUG */
  2383. if (complete == 1) {
  2384. printk(KERN_WARNING
  2385. "cciss cciss%d: SendCmd Timeout out, "
  2386. "No command list address returned!\n", h->ctlr);
  2387. status = IO_ERROR;
  2388. break;
  2389. }
  2390. /* Make sure it's the command we're expecting. */
  2391. if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
  2392. printk(KERN_WARNING "cciss%d: Unexpected command "
  2393. "completion.\n", h->ctlr);
  2394. continue;
  2395. }
  2396. /* It is our command. If no error, we're done. */
  2397. if (!(complete & CISS_ERROR_BIT)) {
  2398. status = IO_OK;
  2399. break;
  2400. }
  2401. /* There is an error... */
  2402. /* if data overrun or underun on Report command ignore it */
  2403. if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
  2404. (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
  2405. (c->Request.CDB[0] == CISS_INQUIRY)) &&
  2406. ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
  2407. (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
  2408. complete = c->busaddr;
  2409. status = IO_OK;
  2410. break;
  2411. }
  2412. if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
  2413. printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
  2414. h->ctlr, c);
  2415. if (c->retry_count < MAX_CMD_RETRIES) {
  2416. printk(KERN_WARNING "cciss%d: retrying %p\n",
  2417. h->ctlr, c);
  2418. c->retry_count++;
  2419. /* erase the old error information */
  2420. memset(c->err_info, 0, sizeof(c->err_info));
  2421. goto resend_cmd1;
  2422. }
  2423. printk(KERN_WARNING "cciss%d: retried %p too many "
  2424. "times\n", h->ctlr, c);
  2425. status = IO_ERROR;
  2426. break;
  2427. }
  2428. if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
  2429. printk(KERN_WARNING "cciss%d: command could not be "
  2430. "aborted.\n", h->ctlr);
  2431. status = IO_ERROR;
  2432. break;
  2433. }
  2434. if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
  2435. status = check_target_status(h, c);
  2436. break;
  2437. }
  2438. printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
  2439. printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
  2440. c->Request.CDB[0], c->err_info->CommandStatus);
  2441. status = IO_ERROR;
  2442. break;
  2443. } while (1);
  2444. /* unlock the data buffer from DMA */
  2445. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2446. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2447. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2448. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2449. return status;
  2450. }
  2451. /*
  2452. * Send a command to the controller, and wait for it to complete.
  2453. * Used at init time, and during SCSI error recovery.
  2454. */
  2455. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  2456. __u8 page_code, unsigned char *scsi3addr, int cmd_type)
  2457. {
  2458. CommandList_struct *c;
  2459. int status;
  2460. c = cmd_alloc(hba[ctlr], 1);
  2461. if (!c) {
  2462. printk(KERN_WARNING "cciss: unable to get memory");
  2463. return IO_ERROR;
  2464. }
  2465. status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2466. scsi3addr, cmd_type);
  2467. if (status == IO_OK)
  2468. status = sendcmd_core(hba[ctlr], c);
  2469. cmd_free(hba[ctlr], c, 1);
  2470. return status;
  2471. }
  2472. /*
  2473. * Map (physical) PCI mem into (virtual) kernel space
  2474. */
  2475. static void __iomem *remap_pci_mem(ulong base, ulong size)
  2476. {
  2477. ulong page_base = ((ulong) base) & PAGE_MASK;
  2478. ulong page_offs = ((ulong) base) - page_base;
  2479. void __iomem *page_remapped = ioremap(page_base, page_offs + size);
  2480. return page_remapped ? (page_remapped + page_offs) : NULL;
  2481. }
  2482. /*
  2483. * Takes jobs of the Q and sends them to the hardware, then puts it on
  2484. * the Q to wait for completion.
  2485. */
  2486. static void start_io(ctlr_info_t *h)
  2487. {
  2488. CommandList_struct *c;
  2489. while (!hlist_empty(&h->reqQ)) {
  2490. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  2491. /* can't do anything if fifo is full */
  2492. if ((h->access.fifo_full(h))) {
  2493. printk(KERN_WARNING "cciss: fifo full\n");
  2494. break;
  2495. }
  2496. /* Get the first entry from the Request Q */
  2497. removeQ(c);
  2498. h->Qdepth--;
  2499. /* Tell the controller execute command */
  2500. h->access.submit_command(h, c);
  2501. /* Put job onto the completed Q */
  2502. addQ(&h->cmpQ, c);
  2503. }
  2504. }
  2505. /* Assumes that CCISS_LOCK(h->ctlr) is held. */
  2506. /* Zeros out the error record and then resends the command back */
  2507. /* to the controller */
  2508. static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
  2509. {
  2510. /* erase the old error information */
  2511. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2512. /* add it to software queue and then send it to the controller */
  2513. addQ(&h->reqQ, c);
  2514. h->Qdepth++;
  2515. if (h->Qdepth > h->maxQsinceinit)
  2516. h->maxQsinceinit = h->Qdepth;
  2517. start_io(h);
  2518. }
  2519. static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
  2520. unsigned int msg_byte, unsigned int host_byte,
  2521. unsigned int driver_byte)
  2522. {
  2523. /* inverse of macros in scsi.h */
  2524. return (scsi_status_byte & 0xff) |
  2525. ((msg_byte & 0xff) << 8) |
  2526. ((host_byte & 0xff) << 16) |
  2527. ((driver_byte & 0xff) << 24);
  2528. }
  2529. static inline int evaluate_target_status(ctlr_info_t *h,
  2530. CommandList_struct *cmd, int *retry_cmd)
  2531. {
  2532. unsigned char sense_key;
  2533. unsigned char status_byte, msg_byte, host_byte, driver_byte;
  2534. int error_value;
  2535. *retry_cmd = 0;
  2536. /* If we get in here, it means we got "target status", that is, scsi status */
  2537. status_byte = cmd->err_info->ScsiStatus;
  2538. driver_byte = DRIVER_OK;
  2539. msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
  2540. if (blk_pc_request(cmd->rq))
  2541. host_byte = DID_PASSTHROUGH;
  2542. else
  2543. host_byte = DID_OK;
  2544. error_value = make_status_bytes(status_byte, msg_byte,
  2545. host_byte, driver_byte);
  2546. if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
  2547. if (!blk_pc_request(cmd->rq))
  2548. printk(KERN_WARNING "cciss: cmd %p "
  2549. "has SCSI Status 0x%x\n",
  2550. cmd, cmd->err_info->ScsiStatus);
  2551. return error_value;
  2552. }
  2553. /* check the sense key */
  2554. sense_key = 0xf & cmd->err_info->SenseInfo[2];
  2555. /* no status or recovered error */
  2556. if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
  2557. error_value = 0;
  2558. if (check_for_unit_attention(h, cmd)) {
  2559. *retry_cmd = !blk_pc_request(cmd->rq);
  2560. return 0;
  2561. }
  2562. if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
  2563. if (error_value != 0)
  2564. printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
  2565. " sense key = 0x%x\n", cmd, sense_key);
  2566. return error_value;
  2567. }
  2568. /* SG_IO or similar, copy sense data back */
  2569. if (cmd->rq->sense) {
  2570. if (cmd->rq->sense_len > cmd->err_info->SenseLen)
  2571. cmd->rq->sense_len = cmd->err_info->SenseLen;
  2572. memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
  2573. cmd->rq->sense_len);
  2574. } else
  2575. cmd->rq->sense_len = 0;
  2576. return error_value;
  2577. }
  2578. /* checks the status of the job and calls complete buffers to mark all
  2579. * buffers for the completed job. Note that this function does not need
  2580. * to hold the hba/queue lock.
  2581. */
  2582. static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
  2583. int timeout)
  2584. {
  2585. int retry_cmd = 0;
  2586. struct request *rq = cmd->rq;
  2587. rq->errors = 0;
  2588. if (timeout)
  2589. rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
  2590. if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
  2591. goto after_error_processing;
  2592. switch (cmd->err_info->CommandStatus) {
  2593. case CMD_TARGET_STATUS:
  2594. rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
  2595. break;
  2596. case CMD_DATA_UNDERRUN:
  2597. if (blk_fs_request(cmd->rq)) {
  2598. printk(KERN_WARNING "cciss: cmd %p has"
  2599. " completed with data underrun "
  2600. "reported\n", cmd);
  2601. cmd->rq->resid_len = cmd->err_info->ResidualCnt;
  2602. }
  2603. break;
  2604. case CMD_DATA_OVERRUN:
  2605. if (blk_fs_request(cmd->rq))
  2606. printk(KERN_WARNING "cciss: cmd %p has"
  2607. " completed with data overrun "
  2608. "reported\n", cmd);
  2609. break;
  2610. case CMD_INVALID:
  2611. printk(KERN_WARNING "cciss: cmd %p is "
  2612. "reported invalid\n", cmd);
  2613. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2614. cmd->err_info->CommandStatus, DRIVER_OK,
  2615. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2616. break;
  2617. case CMD_PROTOCOL_ERR:
  2618. printk(KERN_WARNING "cciss: cmd %p has "
  2619. "protocol error \n", cmd);
  2620. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2621. cmd->err_info->CommandStatus, DRIVER_OK,
  2622. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2623. break;
  2624. case CMD_HARDWARE_ERR:
  2625. printk(KERN_WARNING "cciss: cmd %p had "
  2626. " hardware error\n", cmd);
  2627. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2628. cmd->err_info->CommandStatus, DRIVER_OK,
  2629. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2630. break;
  2631. case CMD_CONNECTION_LOST:
  2632. printk(KERN_WARNING "cciss: cmd %p had "
  2633. "connection lost\n", cmd);
  2634. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2635. cmd->err_info->CommandStatus, DRIVER_OK,
  2636. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2637. break;
  2638. case CMD_ABORTED:
  2639. printk(KERN_WARNING "cciss: cmd %p was "
  2640. "aborted\n", cmd);
  2641. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2642. cmd->err_info->CommandStatus, DRIVER_OK,
  2643. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2644. break;
  2645. case CMD_ABORT_FAILED:
  2646. printk(KERN_WARNING "cciss: cmd %p reports "
  2647. "abort failed\n", cmd);
  2648. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2649. cmd->err_info->CommandStatus, DRIVER_OK,
  2650. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2651. break;
  2652. case CMD_UNSOLICITED_ABORT:
  2653. printk(KERN_WARNING "cciss%d: unsolicited "
  2654. "abort %p\n", h->ctlr, cmd);
  2655. if (cmd->retry_count < MAX_CMD_RETRIES) {
  2656. retry_cmd = 1;
  2657. printk(KERN_WARNING
  2658. "cciss%d: retrying %p\n", h->ctlr, cmd);
  2659. cmd->retry_count++;
  2660. } else
  2661. printk(KERN_WARNING
  2662. "cciss%d: %p retried too "
  2663. "many times\n", h->ctlr, cmd);
  2664. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2665. cmd->err_info->CommandStatus, DRIVER_OK,
  2666. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2667. break;
  2668. case CMD_TIMEOUT:
  2669. printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
  2670. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2671. cmd->err_info->CommandStatus, DRIVER_OK,
  2672. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2673. break;
  2674. default:
  2675. printk(KERN_WARNING "cciss: cmd %p returned "
  2676. "unknown status %x\n", cmd,
  2677. cmd->err_info->CommandStatus);
  2678. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2679. cmd->err_info->CommandStatus, DRIVER_OK,
  2680. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2681. }
  2682. after_error_processing:
  2683. /* We need to return this command */
  2684. if (retry_cmd) {
  2685. resend_cciss_cmd(h, cmd);
  2686. return;
  2687. }
  2688. cmd->rq->completion_data = cmd;
  2689. blk_complete_request(cmd->rq);
  2690. }
  2691. /*
  2692. * Get a request and submit it to the controller.
  2693. */
  2694. static void do_cciss_request(struct request_queue *q)
  2695. {
  2696. ctlr_info_t *h = q->queuedata;
  2697. CommandList_struct *c;
  2698. sector_t start_blk;
  2699. int seg;
  2700. struct request *creq;
  2701. u64bit temp64;
  2702. struct scatterlist tmp_sg[MAXSGENTRIES];
  2703. drive_info_struct *drv;
  2704. int i, dir;
  2705. /* We call start_io here in case there is a command waiting on the
  2706. * queue that has not been sent.
  2707. */
  2708. if (blk_queue_plugged(q))
  2709. goto startio;
  2710. queue:
  2711. creq = blk_peek_request(q);
  2712. if (!creq)
  2713. goto startio;
  2714. BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
  2715. if ((c = cmd_alloc(h, 1)) == NULL)
  2716. goto full;
  2717. blk_start_request(creq);
  2718. spin_unlock_irq(q->queue_lock);
  2719. c->cmd_type = CMD_RWREQ;
  2720. c->rq = creq;
  2721. /* fill in the request */
  2722. drv = creq->rq_disk->private_data;
  2723. c->Header.ReplyQueue = 0; // unused in simple mode
  2724. /* got command from pool, so use the command block index instead */
  2725. /* for direct lookups. */
  2726. /* The first 2 bits are reserved for controller error reporting. */
  2727. c->Header.Tag.lower = (c->cmdindex << 3);
  2728. c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
  2729. c->Header.LUN.LogDev.VolId = drv->LunID;
  2730. c->Header.LUN.LogDev.Mode = 1;
  2731. c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
  2732. c->Request.Type.Type = TYPE_CMD; // It is a command.
  2733. c->Request.Type.Attribute = ATTR_SIMPLE;
  2734. c->Request.Type.Direction =
  2735. (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
  2736. c->Request.Timeout = 0; // Don't time out
  2737. c->Request.CDB[0] =
  2738. (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
  2739. start_blk = blk_rq_pos(creq);
  2740. #ifdef CCISS_DEBUG
  2741. printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
  2742. (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
  2743. #endif /* CCISS_DEBUG */
  2744. sg_init_table(tmp_sg, MAXSGENTRIES);
  2745. seg = blk_rq_map_sg(q, creq, tmp_sg);
  2746. /* get the DMA records for the setup */
  2747. if (c->Request.Type.Direction == XFER_READ)
  2748. dir = PCI_DMA_FROMDEVICE;
  2749. else
  2750. dir = PCI_DMA_TODEVICE;
  2751. for (i = 0; i < seg; i++) {
  2752. c->SG[i].Len = tmp_sg[i].length;
  2753. temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
  2754. tmp_sg[i].offset,
  2755. tmp_sg[i].length, dir);
  2756. c->SG[i].Addr.lower = temp64.val32.lower;
  2757. c->SG[i].Addr.upper = temp64.val32.upper;
  2758. c->SG[i].Ext = 0; // we are not chaining
  2759. }
  2760. /* track how many SG entries we are using */
  2761. if (seg > h->maxSG)
  2762. h->maxSG = seg;
  2763. #ifdef CCISS_DEBUG
  2764. printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
  2765. blk_rq_sectors(creq), seg);
  2766. #endif /* CCISS_DEBUG */
  2767. c->Header.SGList = c->Header.SGTotal = seg;
  2768. if (likely(blk_fs_request(creq))) {
  2769. if(h->cciss_read == CCISS_READ_10) {
  2770. c->Request.CDB[1] = 0;
  2771. c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
  2772. c->Request.CDB[3] = (start_blk >> 16) & 0xff;
  2773. c->Request.CDB[4] = (start_blk >> 8) & 0xff;
  2774. c->Request.CDB[5] = start_blk & 0xff;
  2775. c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
  2776. c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
  2777. c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
  2778. c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
  2779. } else {
  2780. u32 upper32 = upper_32_bits(start_blk);
  2781. c->Request.CDBLen = 16;
  2782. c->Request.CDB[1]= 0;
  2783. c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
  2784. c->Request.CDB[3]= (upper32 >> 16) & 0xff;
  2785. c->Request.CDB[4]= (upper32 >> 8) & 0xff;
  2786. c->Request.CDB[5]= upper32 & 0xff;
  2787. c->Request.CDB[6]= (start_blk >> 24) & 0xff;
  2788. c->Request.CDB[7]= (start_blk >> 16) & 0xff;
  2789. c->Request.CDB[8]= (start_blk >> 8) & 0xff;
  2790. c->Request.CDB[9]= start_blk & 0xff;
  2791. c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
  2792. c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
  2793. c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
  2794. c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
  2795. c->Request.CDB[14] = c->Request.CDB[15] = 0;
  2796. }
  2797. } else if (blk_pc_request(creq)) {
  2798. c->Request.CDBLen = creq->cmd_len;
  2799. memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
  2800. } else {
  2801. printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
  2802. BUG();
  2803. }
  2804. spin_lock_irq(q->queue_lock);
  2805. addQ(&h->reqQ, c);
  2806. h->Qdepth++;
  2807. if (h->Qdepth > h->maxQsinceinit)
  2808. h->maxQsinceinit = h->Qdepth;
  2809. goto queue;
  2810. full:
  2811. blk_stop_queue(q);
  2812. startio:
  2813. /* We will already have the driver lock here so not need
  2814. * to lock it.
  2815. */
  2816. start_io(h);
  2817. }
  2818. static inline unsigned long get_next_completion(ctlr_info_t *h)
  2819. {
  2820. return h->access.command_completed(h);
  2821. }
  2822. static inline int interrupt_pending(ctlr_info_t *h)
  2823. {
  2824. return h->access.intr_pending(h);
  2825. }
  2826. static inline long interrupt_not_for_us(ctlr_info_t *h)
  2827. {
  2828. return (((h->access.intr_pending(h) == 0) ||
  2829. (h->interrupts_enabled == 0)));
  2830. }
  2831. static irqreturn_t do_cciss_intr(int irq, void *dev_id)
  2832. {
  2833. ctlr_info_t *h = dev_id;
  2834. CommandList_struct *c;
  2835. unsigned long flags;
  2836. __u32 a, a1, a2;
  2837. if (interrupt_not_for_us(h))
  2838. return IRQ_NONE;
  2839. /*
  2840. * If there are completed commands in the completion queue,
  2841. * we had better do something about it.
  2842. */
  2843. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2844. while (interrupt_pending(h)) {
  2845. while ((a = get_next_completion(h)) != FIFO_EMPTY) {
  2846. a1 = a;
  2847. if ((a & 0x04)) {
  2848. a2 = (a >> 3);
  2849. if (a2 >= h->nr_cmds) {
  2850. printk(KERN_WARNING
  2851. "cciss: controller cciss%d failed, stopping.\n",
  2852. h->ctlr);
  2853. fail_all_cmds(h->ctlr);
  2854. return IRQ_HANDLED;
  2855. }
  2856. c = h->cmd_pool + a2;
  2857. a = c->busaddr;
  2858. } else {
  2859. struct hlist_node *tmp;
  2860. a &= ~3;
  2861. c = NULL;
  2862. hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
  2863. if (c->busaddr == a)
  2864. break;
  2865. }
  2866. }
  2867. /*
  2868. * If we've found the command, take it off the
  2869. * completion Q and free it
  2870. */
  2871. if (c && c->busaddr == a) {
  2872. removeQ(c);
  2873. if (c->cmd_type == CMD_RWREQ) {
  2874. complete_command(h, c, 0);
  2875. } else if (c->cmd_type == CMD_IOCTL_PEND) {
  2876. complete(c->waiting);
  2877. }
  2878. # ifdef CONFIG_CISS_SCSI_TAPE
  2879. else if (c->cmd_type == CMD_SCSI)
  2880. complete_scsi_command(c, 0, a1);
  2881. # endif
  2882. continue;
  2883. }
  2884. }
  2885. }
  2886. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  2887. return IRQ_HANDLED;
  2888. }
  2889. /**
  2890. * add_to_scan_list() - add controller to rescan queue
  2891. * @h: Pointer to the controller.
  2892. *
  2893. * Adds the controller to the rescan queue if not already on the queue.
  2894. *
  2895. * returns 1 if added to the queue, 0 if skipped (could be on the
  2896. * queue already, or the controller could be initializing or shutting
  2897. * down).
  2898. **/
  2899. static int add_to_scan_list(struct ctlr_info *h)
  2900. {
  2901. struct ctlr_info *test_h;
  2902. int found = 0;
  2903. int ret = 0;
  2904. if (h->busy_initializing)
  2905. return 0;
  2906. if (!mutex_trylock(&h->busy_shutting_down))
  2907. return 0;
  2908. mutex_lock(&scan_mutex);
  2909. list_for_each_entry(test_h, &scan_q, scan_list) {
  2910. if (test_h == h) {
  2911. found = 1;
  2912. break;
  2913. }
  2914. }
  2915. if (!found && !h->busy_scanning) {
  2916. INIT_COMPLETION(h->scan_wait);
  2917. list_add_tail(&h->scan_list, &scan_q);
  2918. ret = 1;
  2919. }
  2920. mutex_unlock(&scan_mutex);
  2921. mutex_unlock(&h->busy_shutting_down);
  2922. return ret;
  2923. }
  2924. /**
  2925. * remove_from_scan_list() - remove controller from rescan queue
  2926. * @h: Pointer to the controller.
  2927. *
  2928. * Removes the controller from the rescan queue if present. Blocks if
  2929. * the controller is currently conducting a rescan.
  2930. **/
  2931. static void remove_from_scan_list(struct ctlr_info *h)
  2932. {
  2933. struct ctlr_info *test_h, *tmp_h;
  2934. int scanning = 0;
  2935. mutex_lock(&scan_mutex);
  2936. list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
  2937. if (test_h == h) {
  2938. list_del(&h->scan_list);
  2939. complete_all(&h->scan_wait);
  2940. mutex_unlock(&scan_mutex);
  2941. return;
  2942. }
  2943. }
  2944. if (&h->busy_scanning)
  2945. scanning = 0;
  2946. mutex_unlock(&scan_mutex);
  2947. if (scanning)
  2948. wait_for_completion(&h->scan_wait);
  2949. }
  2950. /**
  2951. * scan_thread() - kernel thread used to rescan controllers
  2952. * @data: Ignored.
  2953. *
  2954. * A kernel thread used scan for drive topology changes on
  2955. * controllers. The thread processes only one controller at a time
  2956. * using a queue. Controllers are added to the queue using
  2957. * add_to_scan_list() and removed from the queue either after done
  2958. * processing or using remove_from_scan_list().
  2959. *
  2960. * returns 0.
  2961. **/
  2962. static int scan_thread(void *data)
  2963. {
  2964. struct ctlr_info *h;
  2965. while (1) {
  2966. set_current_state(TASK_INTERRUPTIBLE);
  2967. schedule();
  2968. if (kthread_should_stop())
  2969. break;
  2970. while (1) {
  2971. mutex_lock(&scan_mutex);
  2972. if (list_empty(&scan_q)) {
  2973. mutex_unlock(&scan_mutex);
  2974. break;
  2975. }
  2976. h = list_entry(scan_q.next,
  2977. struct ctlr_info,
  2978. scan_list);
  2979. list_del(&h->scan_list);
  2980. h->busy_scanning = 1;
  2981. mutex_unlock(&scan_mutex);
  2982. if (h) {
  2983. rebuild_lun_table(h, 0);
  2984. complete_all(&h->scan_wait);
  2985. mutex_lock(&scan_mutex);
  2986. h->busy_scanning = 0;
  2987. mutex_unlock(&scan_mutex);
  2988. }
  2989. }
  2990. }
  2991. return 0;
  2992. }
  2993. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
  2994. {
  2995. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  2996. return 0;
  2997. switch (c->err_info->SenseInfo[12]) {
  2998. case STATE_CHANGED:
  2999. printk(KERN_WARNING "cciss%d: a state change "
  3000. "detected, command retried\n", h->ctlr);
  3001. return 1;
  3002. break;
  3003. case LUN_FAILED:
  3004. printk(KERN_WARNING "cciss%d: LUN failure "
  3005. "detected, action required\n", h->ctlr);
  3006. return 1;
  3007. break;
  3008. case REPORT_LUNS_CHANGED:
  3009. printk(KERN_WARNING "cciss%d: report LUN data "
  3010. "changed\n", h->ctlr);
  3011. add_to_scan_list(h);
  3012. wake_up_process(cciss_scan_thread);
  3013. return 1;
  3014. break;
  3015. case POWER_OR_RESET:
  3016. printk(KERN_WARNING "cciss%d: a power on "
  3017. "or device reset detected\n", h->ctlr);
  3018. return 1;
  3019. break;
  3020. case UNIT_ATTENTION_CLEARED:
  3021. printk(KERN_WARNING "cciss%d: unit attention "
  3022. "cleared by another initiator\n", h->ctlr);
  3023. return 1;
  3024. break;
  3025. default:
  3026. printk(KERN_WARNING "cciss%d: unknown "
  3027. "unit attention detected\n", h->ctlr);
  3028. return 1;
  3029. }
  3030. }
  3031. /*
  3032. * We cannot read the structure directly, for portability we must use
  3033. * the io functions.
  3034. * This is for debug only.
  3035. */
  3036. #ifdef CCISS_DEBUG
  3037. static void print_cfg_table(CfgTable_struct *tb)
  3038. {
  3039. int i;
  3040. char temp_name[17];
  3041. printk("Controller Configuration information\n");
  3042. printk("------------------------------------\n");
  3043. for (i = 0; i < 4; i++)
  3044. temp_name[i] = readb(&(tb->Signature[i]));
  3045. temp_name[4] = '\0';
  3046. printk(" Signature = %s\n", temp_name);
  3047. printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
  3048. printk(" Transport methods supported = 0x%x\n",
  3049. readl(&(tb->TransportSupport)));
  3050. printk(" Transport methods active = 0x%x\n",
  3051. readl(&(tb->TransportActive)));
  3052. printk(" Requested transport Method = 0x%x\n",
  3053. readl(&(tb->HostWrite.TransportRequest)));
  3054. printk(" Coalesce Interrupt Delay = 0x%x\n",
  3055. readl(&(tb->HostWrite.CoalIntDelay)));
  3056. printk(" Coalesce Interrupt Count = 0x%x\n",
  3057. readl(&(tb->HostWrite.CoalIntCount)));
  3058. printk(" Max outstanding commands = 0x%d\n",
  3059. readl(&(tb->CmdsOutMax)));
  3060. printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
  3061. for (i = 0; i < 16; i++)
  3062. temp_name[i] = readb(&(tb->ServerName[i]));
  3063. temp_name[16] = '\0';
  3064. printk(" Server Name = %s\n", temp_name);
  3065. printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
  3066. }
  3067. #endif /* CCISS_DEBUG */
  3068. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3069. {
  3070. int i, offset, mem_type, bar_type;
  3071. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3072. return 0;
  3073. offset = 0;
  3074. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3075. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3076. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3077. offset += 4;
  3078. else {
  3079. mem_type = pci_resource_flags(pdev, i) &
  3080. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3081. switch (mem_type) {
  3082. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3083. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3084. offset += 4; /* 32 bit */
  3085. break;
  3086. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3087. offset += 8;
  3088. break;
  3089. default: /* reserved in PCI 2.2 */
  3090. printk(KERN_WARNING
  3091. "Base address is invalid\n");
  3092. return -1;
  3093. break;
  3094. }
  3095. }
  3096. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3097. return i + 1;
  3098. }
  3099. return -1;
  3100. }
  3101. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3102. * controllers that are capable. If not, we use IO-APIC mode.
  3103. */
  3104. static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
  3105. struct pci_dev *pdev, __u32 board_id)
  3106. {
  3107. #ifdef CONFIG_PCI_MSI
  3108. int err;
  3109. struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
  3110. {0, 2}, {0, 3}
  3111. };
  3112. /* Some boards advertise MSI but don't really support it */
  3113. if ((board_id == 0x40700E11) ||
  3114. (board_id == 0x40800E11) ||
  3115. (board_id == 0x40820E11) || (board_id == 0x40830E11))
  3116. goto default_int_mode;
  3117. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
  3118. err = pci_enable_msix(pdev, cciss_msix_entries, 4);
  3119. if (!err) {
  3120. c->intr[0] = cciss_msix_entries[0].vector;
  3121. c->intr[1] = cciss_msix_entries[1].vector;
  3122. c->intr[2] = cciss_msix_entries[2].vector;
  3123. c->intr[3] = cciss_msix_entries[3].vector;
  3124. c->msix_vector = 1;
  3125. return;
  3126. }
  3127. if (err > 0) {
  3128. printk(KERN_WARNING "cciss: only %d MSI-X vectors "
  3129. "available\n", err);
  3130. goto default_int_mode;
  3131. } else {
  3132. printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
  3133. err);
  3134. goto default_int_mode;
  3135. }
  3136. }
  3137. if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
  3138. if (!pci_enable_msi(pdev)) {
  3139. c->msi_vector = 1;
  3140. } else {
  3141. printk(KERN_WARNING "cciss: MSI init failed\n");
  3142. }
  3143. }
  3144. default_int_mode:
  3145. #endif /* CONFIG_PCI_MSI */
  3146. /* if we get here we're going to use the default interrupt mode */
  3147. c->intr[SIMPLE_MODE_INT] = pdev->irq;
  3148. return;
  3149. }
  3150. static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
  3151. {
  3152. ushort subsystem_vendor_id, subsystem_device_id, command;
  3153. __u32 board_id, scratchpad = 0;
  3154. __u64 cfg_offset;
  3155. __u32 cfg_base_addr;
  3156. __u64 cfg_base_addr_index;
  3157. int i, err;
  3158. /* check to see if controller has been disabled */
  3159. /* BEFORE trying to enable it */
  3160. (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
  3161. if (!(command & 0x02)) {
  3162. printk(KERN_WARNING
  3163. "cciss: controller appears to be disabled\n");
  3164. return -ENODEV;
  3165. }
  3166. err = pci_enable_device(pdev);
  3167. if (err) {
  3168. printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
  3169. return err;
  3170. }
  3171. err = pci_request_regions(pdev, "cciss");
  3172. if (err) {
  3173. printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
  3174. "aborting\n");
  3175. return err;
  3176. }
  3177. subsystem_vendor_id = pdev->subsystem_vendor;
  3178. subsystem_device_id = pdev->subsystem_device;
  3179. board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
  3180. subsystem_vendor_id);
  3181. #ifdef CCISS_DEBUG
  3182. printk("command = %x\n", command);
  3183. printk("irq = %x\n", pdev->irq);
  3184. printk("board_id = %x\n", board_id);
  3185. #endif /* CCISS_DEBUG */
  3186. /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
  3187. * else we use the IO-APIC interrupt assigned to us by system ROM.
  3188. */
  3189. cciss_interrupt_mode(c, pdev, board_id);
  3190. /* find the memory BAR */
  3191. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3192. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
  3193. break;
  3194. }
  3195. if (i == DEVICE_COUNT_RESOURCE) {
  3196. printk(KERN_WARNING "cciss: No memory BAR found\n");
  3197. err = -ENODEV;
  3198. goto err_out_free_res;
  3199. }
  3200. c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
  3201. * already removed
  3202. */
  3203. #ifdef CCISS_DEBUG
  3204. printk("address 0 = %lx\n", c->paddr);
  3205. #endif /* CCISS_DEBUG */
  3206. c->vaddr = remap_pci_mem(c->paddr, 0x250);
  3207. /* Wait for the board to become ready. (PCI hotplug needs this.)
  3208. * We poll for up to 120 secs, once per 100ms. */
  3209. for (i = 0; i < 1200; i++) {
  3210. scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
  3211. if (scratchpad == CCISS_FIRMWARE_READY)
  3212. break;
  3213. set_current_state(TASK_INTERRUPTIBLE);
  3214. schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
  3215. }
  3216. if (scratchpad != CCISS_FIRMWARE_READY) {
  3217. printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
  3218. err = -ENODEV;
  3219. goto err_out_free_res;
  3220. }
  3221. /* get the address index number */
  3222. cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
  3223. cfg_base_addr &= (__u32) 0x0000ffff;
  3224. #ifdef CCISS_DEBUG
  3225. printk("cfg base address = %x\n", cfg_base_addr);
  3226. #endif /* CCISS_DEBUG */
  3227. cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
  3228. #ifdef CCISS_DEBUG
  3229. printk("cfg base address index = %llx\n",
  3230. (unsigned long long)cfg_base_addr_index);
  3231. #endif /* CCISS_DEBUG */
  3232. if (cfg_base_addr_index == -1) {
  3233. printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
  3234. err = -ENODEV;
  3235. goto err_out_free_res;
  3236. }
  3237. cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
  3238. #ifdef CCISS_DEBUG
  3239. printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
  3240. #endif /* CCISS_DEBUG */
  3241. c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
  3242. cfg_base_addr_index) +
  3243. cfg_offset, sizeof(CfgTable_struct));
  3244. c->board_id = board_id;
  3245. #ifdef CCISS_DEBUG
  3246. print_cfg_table(c->cfgtable);
  3247. #endif /* CCISS_DEBUG */
  3248. /* Some controllers support Zero Memory Raid (ZMR).
  3249. * When configured in ZMR mode the number of supported
  3250. * commands drops to 64. So instead of just setting an
  3251. * arbitrary value we make the driver a little smarter.
  3252. * We read the config table to tell us how many commands
  3253. * are supported on the controller then subtract 4 to
  3254. * leave a little room for ioctl calls.
  3255. */
  3256. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3257. for (i = 0; i < ARRAY_SIZE(products); i++) {
  3258. if (board_id == products[i].board_id) {
  3259. c->product_name = products[i].product_name;
  3260. c->access = *(products[i].access);
  3261. c->nr_cmds = c->max_commands - 4;
  3262. break;
  3263. }
  3264. }
  3265. if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
  3266. (readb(&c->cfgtable->Signature[1]) != 'I') ||
  3267. (readb(&c->cfgtable->Signature[2]) != 'S') ||
  3268. (readb(&c->cfgtable->Signature[3]) != 'S')) {
  3269. printk("Does not appear to be a valid CISS config table\n");
  3270. err = -ENODEV;
  3271. goto err_out_free_res;
  3272. }
  3273. /* We didn't find the controller in our list. We know the
  3274. * signature is valid. If it's an HP device let's try to
  3275. * bind to the device and fire it up. Otherwise we bail.
  3276. */
  3277. if (i == ARRAY_SIZE(products)) {
  3278. if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
  3279. c->product_name = products[i-1].product_name;
  3280. c->access = *(products[i-1].access);
  3281. c->nr_cmds = c->max_commands - 4;
  3282. printk(KERN_WARNING "cciss: This is an unknown "
  3283. "Smart Array controller.\n"
  3284. "cciss: Please update to the latest driver "
  3285. "available from www.hp.com.\n");
  3286. } else {
  3287. printk(KERN_WARNING "cciss: Sorry, I don't know how"
  3288. " to access the Smart Array controller %08lx\n"
  3289. , (unsigned long)board_id);
  3290. err = -ENODEV;
  3291. goto err_out_free_res;
  3292. }
  3293. }
  3294. #ifdef CONFIG_X86
  3295. {
  3296. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3297. __u32 prefetch;
  3298. prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
  3299. prefetch |= 0x100;
  3300. writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
  3301. }
  3302. #endif
  3303. /* Disabling DMA prefetch and refetch for the P600.
  3304. * An ASIC bug may result in accesses to invalid memory addresses.
  3305. * We've disabled prefetch for some time now. Testing with XEN
  3306. * kernels revealed a bug in the refetch if dom0 resides on a P600.
  3307. */
  3308. if(board_id == 0x3225103C) {
  3309. __u32 dma_prefetch;
  3310. __u32 dma_refetch;
  3311. dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
  3312. dma_prefetch |= 0x8000;
  3313. writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
  3314. pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
  3315. dma_refetch |= 0x1;
  3316. pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
  3317. }
  3318. #ifdef CCISS_DEBUG
  3319. printk("Trying to put board into Simple mode\n");
  3320. #endif /* CCISS_DEBUG */
  3321. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3322. /* Update the field, and then ring the doorbell */
  3323. writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
  3324. writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
  3325. /* under certain very rare conditions, this can take awhile.
  3326. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3327. * as we enter this code.) */
  3328. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3329. if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  3330. break;
  3331. /* delay and try again */
  3332. set_current_state(TASK_INTERRUPTIBLE);
  3333. schedule_timeout(msecs_to_jiffies(1));
  3334. }
  3335. #ifdef CCISS_DEBUG
  3336. printk(KERN_DEBUG "I counter got to %d %x\n", i,
  3337. readl(c->vaddr + SA5_DOORBELL));
  3338. #endif /* CCISS_DEBUG */
  3339. #ifdef CCISS_DEBUG
  3340. print_cfg_table(c->cfgtable);
  3341. #endif /* CCISS_DEBUG */
  3342. if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
  3343. printk(KERN_WARNING "cciss: unable to get board into"
  3344. " simple mode\n");
  3345. err = -ENODEV;
  3346. goto err_out_free_res;
  3347. }
  3348. return 0;
  3349. err_out_free_res:
  3350. /*
  3351. * Deliberately omit pci_disable_device(): it does something nasty to
  3352. * Smart Array controllers that pci_enable_device does not undo
  3353. */
  3354. pci_release_regions(pdev);
  3355. return err;
  3356. }
  3357. /* Function to find the first free pointer into our hba[] array
  3358. * Returns -1 if no free entries are left.
  3359. */
  3360. static int alloc_cciss_hba(void)
  3361. {
  3362. int i;
  3363. for (i = 0; i < MAX_CTLR; i++) {
  3364. if (!hba[i]) {
  3365. ctlr_info_t *p;
  3366. p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
  3367. if (!p)
  3368. goto Enomem;
  3369. hba[i] = p;
  3370. return i;
  3371. }
  3372. }
  3373. printk(KERN_WARNING "cciss: This driver supports a maximum"
  3374. " of %d controllers.\n", MAX_CTLR);
  3375. return -1;
  3376. Enomem:
  3377. printk(KERN_ERR "cciss: out of memory.\n");
  3378. return -1;
  3379. }
  3380. static void free_hba(int i)
  3381. {
  3382. ctlr_info_t *p = hba[i];
  3383. int n;
  3384. hba[i] = NULL;
  3385. for (n = 0; n < CISS_MAX_LUN; n++)
  3386. put_disk(p->gendisk[n]);
  3387. kfree(p);
  3388. }
  3389. /* Send a message CDB to the firmware. */
  3390. static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
  3391. {
  3392. typedef struct {
  3393. CommandListHeader_struct CommandHeader;
  3394. RequestBlock_struct Request;
  3395. ErrDescriptor_struct ErrorDescriptor;
  3396. } Command;
  3397. static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
  3398. Command *cmd;
  3399. dma_addr_t paddr64;
  3400. uint32_t paddr32, tag;
  3401. void __iomem *vaddr;
  3402. int i, err;
  3403. vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
  3404. if (vaddr == NULL)
  3405. return -ENOMEM;
  3406. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  3407. CCISS commands, so they must be allocated from the lower 4GiB of
  3408. memory. */
  3409. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3410. if (err) {
  3411. iounmap(vaddr);
  3412. return -ENOMEM;
  3413. }
  3414. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  3415. if (cmd == NULL) {
  3416. iounmap(vaddr);
  3417. return -ENOMEM;
  3418. }
  3419. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  3420. although there's no guarantee, we assume that the address is at
  3421. least 4-byte aligned (most likely, it's page-aligned). */
  3422. paddr32 = paddr64;
  3423. cmd->CommandHeader.ReplyQueue = 0;
  3424. cmd->CommandHeader.SGList = 0;
  3425. cmd->CommandHeader.SGTotal = 0;
  3426. cmd->CommandHeader.Tag.lower = paddr32;
  3427. cmd->CommandHeader.Tag.upper = 0;
  3428. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  3429. cmd->Request.CDBLen = 16;
  3430. cmd->Request.Type.Type = TYPE_MSG;
  3431. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  3432. cmd->Request.Type.Direction = XFER_NONE;
  3433. cmd->Request.Timeout = 0; /* Don't time out */
  3434. cmd->Request.CDB[0] = opcode;
  3435. cmd->Request.CDB[1] = type;
  3436. memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
  3437. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
  3438. cmd->ErrorDescriptor.Addr.upper = 0;
  3439. cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
  3440. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  3441. for (i = 0; i < 10; i++) {
  3442. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  3443. if ((tag & ~3) == paddr32)
  3444. break;
  3445. schedule_timeout_uninterruptible(HZ);
  3446. }
  3447. iounmap(vaddr);
  3448. /* we leak the DMA buffer here ... no choice since the controller could
  3449. still complete the command. */
  3450. if (i == 10) {
  3451. printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
  3452. opcode, type);
  3453. return -ETIMEDOUT;
  3454. }
  3455. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  3456. if (tag & 2) {
  3457. printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
  3458. opcode, type);
  3459. return -EIO;
  3460. }
  3461. printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
  3462. opcode, type);
  3463. return 0;
  3464. }
  3465. #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
  3466. #define cciss_noop(p) cciss_message(p, 3, 0)
  3467. static __devinit int cciss_reset_msi(struct pci_dev *pdev)
  3468. {
  3469. /* the #defines are stolen from drivers/pci/msi.h. */
  3470. #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
  3471. #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
  3472. int pos;
  3473. u16 control = 0;
  3474. pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
  3475. if (pos) {
  3476. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3477. if (control & PCI_MSI_FLAGS_ENABLE) {
  3478. printk(KERN_INFO "cciss: resetting MSI\n");
  3479. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
  3480. }
  3481. }
  3482. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  3483. if (pos) {
  3484. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3485. if (control & PCI_MSIX_FLAGS_ENABLE) {
  3486. printk(KERN_INFO "cciss: resetting MSI-X\n");
  3487. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
  3488. }
  3489. }
  3490. return 0;
  3491. }
  3492. /* This does a hard reset of the controller using PCI power management
  3493. * states. */
  3494. static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
  3495. {
  3496. u16 pmcsr, saved_config_space[32];
  3497. int i, pos;
  3498. printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
  3499. /* This is very nearly the same thing as
  3500. pci_save_state(pci_dev);
  3501. pci_set_power_state(pci_dev, PCI_D3hot);
  3502. pci_set_power_state(pci_dev, PCI_D0);
  3503. pci_restore_state(pci_dev);
  3504. but we can't use these nice canned kernel routines on
  3505. kexec, because they also check the MSI/MSI-X state in PCI
  3506. configuration space and do the wrong thing when it is
  3507. set/cleared. Also, the pci_save/restore_state functions
  3508. violate the ordering requirements for restoring the
  3509. configuration space from the CCISS document (see the
  3510. comment below). So we roll our own .... */
  3511. for (i = 0; i < 32; i++)
  3512. pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
  3513. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3514. if (pos == 0) {
  3515. printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
  3516. return -ENODEV;
  3517. }
  3518. /* Quoting from the Open CISS Specification: "The Power
  3519. * Management Control/Status Register (CSR) controls the power
  3520. * state of the device. The normal operating state is D0,
  3521. * CSR=00h. The software off state is D3, CSR=03h. To reset
  3522. * the controller, place the interface device in D3 then to
  3523. * D0, this causes a secondary PCI reset which will reset the
  3524. * controller." */
  3525. /* enter the D3hot power management state */
  3526. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  3527. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3528. pmcsr |= PCI_D3hot;
  3529. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3530. schedule_timeout_uninterruptible(HZ >> 1);
  3531. /* enter the D0 power management state */
  3532. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3533. pmcsr |= PCI_D0;
  3534. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3535. schedule_timeout_uninterruptible(HZ >> 1);
  3536. /* Restore the PCI configuration space. The Open CISS
  3537. * Specification says, "Restore the PCI Configuration
  3538. * Registers, offsets 00h through 60h. It is important to
  3539. * restore the command register, 16-bits at offset 04h,
  3540. * last. Do not restore the configuration status register,
  3541. * 16-bits at offset 06h." Note that the offset is 2*i. */
  3542. for (i = 0; i < 32; i++) {
  3543. if (i == 2 || i == 3)
  3544. continue;
  3545. pci_write_config_word(pdev, 2*i, saved_config_space[i]);
  3546. }
  3547. wmb();
  3548. pci_write_config_word(pdev, 4, saved_config_space[2]);
  3549. return 0;
  3550. }
  3551. /*
  3552. * This is it. Find all the controllers and register them. I really hate
  3553. * stealing all these major device numbers.
  3554. * returns the number of block devices registered.
  3555. */
  3556. static int __devinit cciss_init_one(struct pci_dev *pdev,
  3557. const struct pci_device_id *ent)
  3558. {
  3559. int i;
  3560. int j = 0;
  3561. int rc;
  3562. int dac, return_code;
  3563. InquiryData_struct *inq_buff;
  3564. if (reset_devices) {
  3565. /* Reset the controller with a PCI power-cycle */
  3566. if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
  3567. return -ENODEV;
  3568. /* Now try to get the controller to respond to a no-op. Some
  3569. devices (notably the HP Smart Array 5i Controller) need
  3570. up to 30 seconds to respond. */
  3571. for (i=0; i<30; i++) {
  3572. if (cciss_noop(pdev) == 0)
  3573. break;
  3574. schedule_timeout_uninterruptible(HZ);
  3575. }
  3576. if (i == 30) {
  3577. printk(KERN_ERR "cciss: controller seems dead\n");
  3578. return -EBUSY;
  3579. }
  3580. }
  3581. i = alloc_cciss_hba();
  3582. if (i < 0)
  3583. return -1;
  3584. hba[i]->busy_initializing = 1;
  3585. INIT_HLIST_HEAD(&hba[i]->cmpQ);
  3586. INIT_HLIST_HEAD(&hba[i]->reqQ);
  3587. mutex_init(&hba[i]->busy_shutting_down);
  3588. if (cciss_pci_init(hba[i], pdev) != 0)
  3589. goto clean0;
  3590. sprintf(hba[i]->devname, "cciss%d", i);
  3591. hba[i]->ctlr = i;
  3592. hba[i]->pdev = pdev;
  3593. init_completion(&hba[i]->scan_wait);
  3594. if (cciss_create_hba_sysfs_entry(hba[i]))
  3595. goto clean0;
  3596. /* configure PCI DMA stuff */
  3597. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
  3598. dac = 1;
  3599. else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
  3600. dac = 0;
  3601. else {
  3602. printk(KERN_ERR "cciss: no suitable DMA available\n");
  3603. goto clean1;
  3604. }
  3605. /*
  3606. * register with the major number, or get a dynamic major number
  3607. * by passing 0 as argument. This is done for greater than
  3608. * 8 controller support.
  3609. */
  3610. if (i < MAX_CTLR_ORIG)
  3611. hba[i]->major = COMPAQ_CISS_MAJOR + i;
  3612. rc = register_blkdev(hba[i]->major, hba[i]->devname);
  3613. if (rc == -EBUSY || rc == -EINVAL) {
  3614. printk(KERN_ERR
  3615. "cciss: Unable to get major number %d for %s "
  3616. "on hba %d\n", hba[i]->major, hba[i]->devname, i);
  3617. goto clean1;
  3618. } else {
  3619. if (i >= MAX_CTLR_ORIG)
  3620. hba[i]->major = rc;
  3621. }
  3622. /* make sure the board interrupts are off */
  3623. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
  3624. if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
  3625. IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
  3626. printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
  3627. hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
  3628. goto clean2;
  3629. }
  3630. printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
  3631. hba[i]->devname, pdev->device, pci_name(pdev),
  3632. hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
  3633. hba[i]->cmd_pool_bits =
  3634. kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3635. * sizeof(unsigned long), GFP_KERNEL);
  3636. hba[i]->cmd_pool = (CommandList_struct *)
  3637. pci_alloc_consistent(hba[i]->pdev,
  3638. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3639. &(hba[i]->cmd_pool_dhandle));
  3640. hba[i]->errinfo_pool = (ErrorInfo_struct *)
  3641. pci_alloc_consistent(hba[i]->pdev,
  3642. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3643. &(hba[i]->errinfo_pool_dhandle));
  3644. if ((hba[i]->cmd_pool_bits == NULL)
  3645. || (hba[i]->cmd_pool == NULL)
  3646. || (hba[i]->errinfo_pool == NULL)) {
  3647. printk(KERN_ERR "cciss: out of memory");
  3648. goto clean4;
  3649. }
  3650. spin_lock_init(&hba[i]->lock);
  3651. /* Initialize the pdev driver private data.
  3652. have it point to hba[i]. */
  3653. pci_set_drvdata(pdev, hba[i]);
  3654. /* command and error info recs zeroed out before
  3655. they are used */
  3656. memset(hba[i]->cmd_pool_bits, 0,
  3657. DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3658. * sizeof(unsigned long));
  3659. hba[i]->num_luns = 0;
  3660. hba[i]->highest_lun = -1;
  3661. for (j = 0; j < CISS_MAX_LUN; j++) {
  3662. hba[i]->drv[j].raid_level = -1;
  3663. hba[i]->drv[j].queue = NULL;
  3664. hba[i]->gendisk[j] = NULL;
  3665. }
  3666. cciss_scsi_setup(i);
  3667. /* Turn the interrupts on so we can service requests */
  3668. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
  3669. /* Get the firmware version */
  3670. inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  3671. if (inq_buff == NULL) {
  3672. printk(KERN_ERR "cciss: out of memory\n");
  3673. goto clean4;
  3674. }
  3675. return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
  3676. sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
  3677. if (return_code == IO_OK) {
  3678. hba[i]->firm_ver[0] = inq_buff->data_byte[32];
  3679. hba[i]->firm_ver[1] = inq_buff->data_byte[33];
  3680. hba[i]->firm_ver[2] = inq_buff->data_byte[34];
  3681. hba[i]->firm_ver[3] = inq_buff->data_byte[35];
  3682. } else { /* send command failed */
  3683. printk(KERN_WARNING "cciss: unable to determine firmware"
  3684. " version of controller\n");
  3685. }
  3686. kfree(inq_buff);
  3687. cciss_procinit(i);
  3688. hba[i]->cciss_max_sectors = 2048;
  3689. rebuild_lun_table(hba[i], 1);
  3690. hba[i]->busy_initializing = 0;
  3691. return 1;
  3692. clean4:
  3693. kfree(hba[i]->cmd_pool_bits);
  3694. if (hba[i]->cmd_pool)
  3695. pci_free_consistent(hba[i]->pdev,
  3696. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3697. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3698. if (hba[i]->errinfo_pool)
  3699. pci_free_consistent(hba[i]->pdev,
  3700. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3701. hba[i]->errinfo_pool,
  3702. hba[i]->errinfo_pool_dhandle);
  3703. free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
  3704. clean2:
  3705. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3706. clean1:
  3707. cciss_destroy_hba_sysfs_entry(hba[i]);
  3708. clean0:
  3709. hba[i]->busy_initializing = 0;
  3710. /* cleanup any queues that may have been initialized */
  3711. for (j=0; j <= hba[i]->highest_lun; j++){
  3712. drive_info_struct *drv = &(hba[i]->drv[j]);
  3713. if (drv->queue)
  3714. blk_cleanup_queue(drv->queue);
  3715. }
  3716. /*
  3717. * Deliberately omit pci_disable_device(): it does something nasty to
  3718. * Smart Array controllers that pci_enable_device does not undo
  3719. */
  3720. pci_release_regions(pdev);
  3721. pci_set_drvdata(pdev, NULL);
  3722. free_hba(i);
  3723. return -1;
  3724. }
  3725. static void cciss_shutdown(struct pci_dev *pdev)
  3726. {
  3727. ctlr_info_t *tmp_ptr;
  3728. int i;
  3729. char flush_buf[4];
  3730. int return_code;
  3731. tmp_ptr = pci_get_drvdata(pdev);
  3732. if (tmp_ptr == NULL)
  3733. return;
  3734. i = tmp_ptr->ctlr;
  3735. if (hba[i] == NULL)
  3736. return;
  3737. /* Turn board interrupts off and send the flush cache command */
  3738. /* sendcmd will turn off interrupt, and send the flush...
  3739. * To write all data in the battery backed cache to disks */
  3740. memset(flush_buf, 0, 4);
  3741. return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
  3742. CTLR_LUNID, TYPE_CMD);
  3743. if (return_code == IO_OK) {
  3744. printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
  3745. } else {
  3746. printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
  3747. }
  3748. free_irq(hba[i]->intr[2], hba[i]);
  3749. }
  3750. static void __devexit cciss_remove_one(struct pci_dev *pdev)
  3751. {
  3752. ctlr_info_t *tmp_ptr;
  3753. int i, j;
  3754. if (pci_get_drvdata(pdev) == NULL) {
  3755. printk(KERN_ERR "cciss: Unable to remove device \n");
  3756. return;
  3757. }
  3758. tmp_ptr = pci_get_drvdata(pdev);
  3759. i = tmp_ptr->ctlr;
  3760. if (hba[i] == NULL) {
  3761. printk(KERN_ERR "cciss: device appears to "
  3762. "already be removed \n");
  3763. return;
  3764. }
  3765. mutex_lock(&hba[i]->busy_shutting_down);
  3766. remove_from_scan_list(hba[i]);
  3767. remove_proc_entry(hba[i]->devname, proc_cciss);
  3768. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3769. /* remove it from the disk list */
  3770. for (j = 0; j < CISS_MAX_LUN; j++) {
  3771. struct gendisk *disk = hba[i]->gendisk[j];
  3772. if (disk) {
  3773. struct request_queue *q = disk->queue;
  3774. if (disk->flags & GENHD_FL_UP)
  3775. del_gendisk(disk);
  3776. if (q)
  3777. blk_cleanup_queue(q);
  3778. }
  3779. if (hba[i]->drv[j].raid_level != -1)
  3780. cciss_destroy_ld_sysfs_entry(&hba[i]->drv[j]);
  3781. }
  3782. #ifdef CONFIG_CISS_SCSI_TAPE
  3783. cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
  3784. #endif
  3785. cciss_shutdown(pdev);
  3786. #ifdef CONFIG_PCI_MSI
  3787. if (hba[i]->msix_vector)
  3788. pci_disable_msix(hba[i]->pdev);
  3789. else if (hba[i]->msi_vector)
  3790. pci_disable_msi(hba[i]->pdev);
  3791. #endif /* CONFIG_PCI_MSI */
  3792. iounmap(hba[i]->vaddr);
  3793. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
  3794. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3795. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3796. hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
  3797. kfree(hba[i]->cmd_pool_bits);
  3798. /*
  3799. * Deliberately omit pci_disable_device(): it does something nasty to
  3800. * Smart Array controllers that pci_enable_device does not undo
  3801. */
  3802. pci_release_regions(pdev);
  3803. pci_set_drvdata(pdev, NULL);
  3804. cciss_destroy_hba_sysfs_entry(hba[i]);
  3805. mutex_unlock(&hba[i]->busy_shutting_down);
  3806. free_hba(i);
  3807. }
  3808. static struct pci_driver cciss_pci_driver = {
  3809. .name = "cciss",
  3810. .probe = cciss_init_one,
  3811. .remove = __devexit_p(cciss_remove_one),
  3812. .id_table = cciss_pci_device_id, /* id_table */
  3813. .shutdown = cciss_shutdown,
  3814. };
  3815. /*
  3816. * This is it. Register the PCI driver information for the cards we control
  3817. * the OS will call our registered routines when it finds one of our cards.
  3818. */
  3819. static int __init cciss_init(void)
  3820. {
  3821. int err;
  3822. /*
  3823. * The hardware requires that commands are aligned on a 64-bit
  3824. * boundary. Given that we use pci_alloc_consistent() to allocate an
  3825. * array of them, the size must be a multiple of 8 bytes.
  3826. */
  3827. BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
  3828. printk(KERN_INFO DRIVER_NAME "\n");
  3829. err = bus_register(&cciss_bus_type);
  3830. if (err)
  3831. return err;
  3832. /* Start the scan thread */
  3833. cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
  3834. if (IS_ERR(cciss_scan_thread)) {
  3835. err = PTR_ERR(cciss_scan_thread);
  3836. goto err_bus_unregister;
  3837. }
  3838. /* Register for our PCI devices */
  3839. err = pci_register_driver(&cciss_pci_driver);
  3840. if (err)
  3841. goto err_thread_stop;
  3842. return 0;
  3843. err_thread_stop:
  3844. kthread_stop(cciss_scan_thread);
  3845. err_bus_unregister:
  3846. bus_unregister(&cciss_bus_type);
  3847. return err;
  3848. }
  3849. static void __exit cciss_cleanup(void)
  3850. {
  3851. int i;
  3852. pci_unregister_driver(&cciss_pci_driver);
  3853. /* double check that all controller entrys have been removed */
  3854. for (i = 0; i < MAX_CTLR; i++) {
  3855. if (hba[i] != NULL) {
  3856. printk(KERN_WARNING "cciss: had to remove"
  3857. " controller %d\n", i);
  3858. cciss_remove_one(hba[i]->pdev);
  3859. }
  3860. }
  3861. kthread_stop(cciss_scan_thread);
  3862. remove_proc_entry("driver/cciss", NULL);
  3863. bus_unregister(&cciss_bus_type);
  3864. }
  3865. static void fail_all_cmds(unsigned long ctlr)
  3866. {
  3867. /* If we get here, the board is apparently dead. */
  3868. ctlr_info_t *h = hba[ctlr];
  3869. CommandList_struct *c;
  3870. unsigned long flags;
  3871. printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
  3872. h->alive = 0; /* the controller apparently died... */
  3873. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  3874. pci_disable_device(h->pdev); /* Make sure it is really dead. */
  3875. /* move everything off the request queue onto the completed queue */
  3876. while (!hlist_empty(&h->reqQ)) {
  3877. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  3878. removeQ(c);
  3879. h->Qdepth--;
  3880. addQ(&h->cmpQ, c);
  3881. }
  3882. /* Now, fail everything on the completed queue with a HW error */
  3883. while (!hlist_empty(&h->cmpQ)) {
  3884. c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
  3885. removeQ(c);
  3886. if (c->cmd_type != CMD_MSG_STALE)
  3887. c->err_info->CommandStatus = CMD_HARDWARE_ERR;
  3888. if (c->cmd_type == CMD_RWREQ) {
  3889. complete_command(h, c, 0);
  3890. } else if (c->cmd_type == CMD_IOCTL_PEND)
  3891. complete(c->waiting);
  3892. #ifdef CONFIG_CISS_SCSI_TAPE
  3893. else if (c->cmd_type == CMD_SCSI)
  3894. complete_scsi_command(c, 0, 0);
  3895. #endif
  3896. }
  3897. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  3898. return;
  3899. }
  3900. module_init(cciss_init);
  3901. module_exit(cciss_cleanup);