common.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #ifdef CONFIG_X86_LOCAL_APIC
  24. #include <asm/mpspec.h>
  25. #include <asm/apic.h>
  26. #include <mach_apic.h>
  27. #include <asm/genapic.h>
  28. #endif
  29. #include <asm/pda.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #include <asm/desc.h>
  33. #include <asm/atomic.h>
  34. #include <asm/proto.h>
  35. #include <asm/sections.h>
  36. #include <asm/setup.h>
  37. #include "cpu.h"
  38. static struct cpu_dev *this_cpu __cpuinitdata;
  39. #ifdef CONFIG_X86_64
  40. /* We need valid kernel segments for data and code in long mode too
  41. * IRET will check the segment types kkeil 2000/10/28
  42. * Also sysret mandates a special GDT layout
  43. */
  44. /* The TLS descriptors are currently at a different place compared to i386.
  45. Hopefully nobody expects them at a fixed place (Wine?) */
  46. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  47. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  48. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  49. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  50. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  51. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  52. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  53. } };
  54. #else
  55. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  56. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  57. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  58. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  59. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  60. /*
  61. * Segments used for calling PnP BIOS have byte granularity.
  62. * They code segments and data segments have fixed 64k limits,
  63. * the transfer segment sizes are set at run time.
  64. */
  65. /* 32-bit code */
  66. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  67. /* 16-bit code */
  68. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  69. /* 16-bit data */
  70. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  71. /* 16-bit data */
  72. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  73. /* 16-bit data */
  74. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  75. /*
  76. * The APM segments have byte granularity and their bases
  77. * are set at run time. All have 64k limits.
  78. */
  79. /* 32-bit code */
  80. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  81. /* 16-bit code */
  82. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  83. /* data */
  84. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  85. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  86. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  87. } };
  88. #endif
  89. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  90. #ifdef CONFIG_X86_32
  91. static int cachesize_override __cpuinitdata = -1;
  92. static int disable_x86_serial_nr __cpuinitdata = 1;
  93. static int __init cachesize_setup(char *str)
  94. {
  95. get_option(&str, &cachesize_override);
  96. return 1;
  97. }
  98. __setup("cachesize=", cachesize_setup);
  99. static int __init x86_fxsr_setup(char *s)
  100. {
  101. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  102. setup_clear_cpu_cap(X86_FEATURE_XMM);
  103. return 1;
  104. }
  105. __setup("nofxsr", x86_fxsr_setup);
  106. static int __init x86_sep_setup(char *s)
  107. {
  108. setup_clear_cpu_cap(X86_FEATURE_SEP);
  109. return 1;
  110. }
  111. __setup("nosep", x86_sep_setup);
  112. /* Standard macro to see if a specific flag is changeable */
  113. static inline int flag_is_changeable_p(u32 flag)
  114. {
  115. u32 f1, f2;
  116. /*
  117. * Cyrix and IDT cpus allow disabling of CPUID
  118. * so the code below may return different results
  119. * when it is executed before and after enabling
  120. * the CPUID. Add "volatile" to not allow gcc to
  121. * optimize the subsequent calls to this function.
  122. */
  123. asm volatile ("pushfl\n\t"
  124. "pushfl\n\t"
  125. "popl %0\n\t"
  126. "movl %0,%1\n\t"
  127. "xorl %2,%0\n\t"
  128. "pushl %0\n\t"
  129. "popfl\n\t"
  130. "pushfl\n\t"
  131. "popl %0\n\t"
  132. "popfl\n\t"
  133. : "=&r" (f1), "=&r" (f2)
  134. : "ir" (flag));
  135. return ((f1^f2) & flag) != 0;
  136. }
  137. /* Probe for the CPUID instruction */
  138. static int __cpuinit have_cpuid_p(void)
  139. {
  140. return flag_is_changeable_p(X86_EFLAGS_ID);
  141. }
  142. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  143. {
  144. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  145. /* Disable processor serial number */
  146. unsigned long lo, hi;
  147. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  148. lo |= 0x200000;
  149. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  150. printk(KERN_NOTICE "CPU serial number disabled.\n");
  151. clear_cpu_cap(c, X86_FEATURE_PN);
  152. /* Disabling the serial number may affect the cpuid level */
  153. c->cpuid_level = cpuid_eax(0);
  154. }
  155. }
  156. static int __init x86_serial_nr_setup(char *s)
  157. {
  158. disable_x86_serial_nr = 0;
  159. return 1;
  160. }
  161. __setup("serialnumber", x86_serial_nr_setup);
  162. #else
  163. static inline int flag_is_changeable_p(u32 flag)
  164. {
  165. return 1;
  166. }
  167. /* Probe for the CPUID instruction */
  168. static inline int have_cpuid_p(void)
  169. {
  170. return 1;
  171. }
  172. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  173. {
  174. }
  175. #endif
  176. /*
  177. * Naming convention should be: <Name> [(<Codename>)]
  178. * This table only is used unless init_<vendor>() below doesn't set it;
  179. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  180. *
  181. */
  182. /* Look up CPU names by table lookup. */
  183. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  184. {
  185. struct cpu_model_info *info;
  186. if (c->x86_model >= 16)
  187. return NULL; /* Range check */
  188. if (!this_cpu)
  189. return NULL;
  190. info = this_cpu->c_models;
  191. while (info && info->family) {
  192. if (info->family == c->x86)
  193. return info->model_names[c->x86_model];
  194. info++;
  195. }
  196. return NULL; /* Not found */
  197. }
  198. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  199. /* Current gdt points %fs at the "master" per-cpu area: after this,
  200. * it's on the real one. */
  201. void switch_to_new_gdt(void)
  202. {
  203. struct desc_ptr gdt_descr;
  204. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  205. gdt_descr.size = GDT_SIZE - 1;
  206. load_gdt(&gdt_descr);
  207. #ifdef CONFIG_X86_32
  208. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  209. #endif
  210. }
  211. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  212. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  213. {
  214. #ifdef CONFIG_X86_64
  215. display_cacheinfo(c);
  216. #else
  217. /* Not much we can do here... */
  218. /* Check if at least it has cpuid */
  219. if (c->cpuid_level == -1) {
  220. /* No cpuid. It must be an ancient CPU */
  221. if (c->x86 == 4)
  222. strcpy(c->x86_model_id, "486");
  223. else if (c->x86 == 3)
  224. strcpy(c->x86_model_id, "386");
  225. }
  226. #endif
  227. }
  228. static struct cpu_dev __cpuinitdata default_cpu = {
  229. .c_init = default_init,
  230. .c_vendor = "Unknown",
  231. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  232. };
  233. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  234. {
  235. unsigned int *v;
  236. char *p, *q;
  237. if (c->extended_cpuid_level < 0x80000004)
  238. return;
  239. v = (unsigned int *) c->x86_model_id;
  240. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  241. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  242. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  243. c->x86_model_id[48] = 0;
  244. /* Intel chips right-justify this string for some dumb reason;
  245. undo that brain damage */
  246. p = q = &c->x86_model_id[0];
  247. while (*p == ' ')
  248. p++;
  249. if (p != q) {
  250. while (*p)
  251. *q++ = *p++;
  252. while (q <= &c->x86_model_id[48])
  253. *q++ = '\0'; /* Zero-pad the rest */
  254. }
  255. }
  256. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  257. {
  258. unsigned int n, dummy, ebx, ecx, edx, l2size;
  259. n = c->extended_cpuid_level;
  260. if (n >= 0x80000005) {
  261. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  262. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  263. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  264. c->x86_cache_size = (ecx>>24) + (edx>>24);
  265. #ifdef CONFIG_X86_64
  266. /* On K8 L1 TLB is inclusive, so don't count it */
  267. c->x86_tlbsize = 0;
  268. #endif
  269. }
  270. if (n < 0x80000006) /* Some chips just has a large L1. */
  271. return;
  272. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  273. l2size = ecx >> 16;
  274. #ifdef CONFIG_X86_64
  275. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  276. #else
  277. /* do processor-specific cache resizing */
  278. if (this_cpu->c_size_cache)
  279. l2size = this_cpu->c_size_cache(c, l2size);
  280. /* Allow user to override all this if necessary. */
  281. if (cachesize_override != -1)
  282. l2size = cachesize_override;
  283. if (l2size == 0)
  284. return; /* Again, no L2 cache is possible */
  285. #endif
  286. c->x86_cache_size = l2size;
  287. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  288. l2size, ecx & 0xFF);
  289. }
  290. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  291. {
  292. #ifdef CONFIG_X86_HT
  293. u32 eax, ebx, ecx, edx;
  294. int index_msb, core_bits;
  295. if (!cpu_has(c, X86_FEATURE_HT))
  296. return;
  297. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  298. goto out;
  299. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  300. return;
  301. cpuid(1, &eax, &ebx, &ecx, &edx);
  302. smp_num_siblings = (ebx & 0xff0000) >> 16;
  303. if (smp_num_siblings == 1) {
  304. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  305. } else if (smp_num_siblings > 1) {
  306. if (smp_num_siblings > NR_CPUS) {
  307. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  308. smp_num_siblings);
  309. smp_num_siblings = 1;
  310. return;
  311. }
  312. index_msb = get_count_order(smp_num_siblings);
  313. #ifdef CONFIG_X86_64
  314. c->phys_proc_id = phys_pkg_id(index_msb);
  315. #else
  316. c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
  317. #endif
  318. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  319. index_msb = get_count_order(smp_num_siblings);
  320. core_bits = get_count_order(c->x86_max_cores);
  321. #ifdef CONFIG_X86_64
  322. c->cpu_core_id = phys_pkg_id(index_msb) &
  323. ((1 << core_bits) - 1);
  324. #else
  325. c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
  326. ((1 << core_bits) - 1);
  327. #endif
  328. }
  329. out:
  330. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  331. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  332. c->phys_proc_id);
  333. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  334. c->cpu_core_id);
  335. }
  336. #endif
  337. }
  338. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  339. {
  340. char *v = c->x86_vendor_id;
  341. int i;
  342. static int printed;
  343. for (i = 0; i < X86_VENDOR_NUM; i++) {
  344. if (!cpu_devs[i])
  345. break;
  346. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  347. (cpu_devs[i]->c_ident[1] &&
  348. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  349. this_cpu = cpu_devs[i];
  350. c->x86_vendor = this_cpu->c_x86_vendor;
  351. return;
  352. }
  353. }
  354. if (!printed) {
  355. printed++;
  356. printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  357. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  358. }
  359. c->x86_vendor = X86_VENDOR_UNKNOWN;
  360. this_cpu = &default_cpu;
  361. }
  362. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  363. {
  364. /* Get vendor name */
  365. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  366. (unsigned int *)&c->x86_vendor_id[0],
  367. (unsigned int *)&c->x86_vendor_id[8],
  368. (unsigned int *)&c->x86_vendor_id[4]);
  369. c->x86 = 4;
  370. /* Intel-defined flags: level 0x00000001 */
  371. if (c->cpuid_level >= 0x00000001) {
  372. u32 junk, tfms, cap0, misc;
  373. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  374. c->x86 = (tfms >> 8) & 0xf;
  375. c->x86_model = (tfms >> 4) & 0xf;
  376. c->x86_mask = tfms & 0xf;
  377. if (c->x86 == 0xf)
  378. c->x86 += (tfms >> 20) & 0xff;
  379. if (c->x86 >= 0x6)
  380. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  381. if (cap0 & (1<<19)) {
  382. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  383. c->x86_cache_alignment = c->x86_clflush_size;
  384. }
  385. }
  386. }
  387. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  388. {
  389. u32 tfms, xlvl;
  390. u32 ebx;
  391. /* Intel-defined flags: level 0x00000001 */
  392. if (c->cpuid_level >= 0x00000001) {
  393. u32 capability, excap;
  394. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  395. c->x86_capability[0] = capability;
  396. c->x86_capability[4] = excap;
  397. }
  398. /* AMD-defined flags: level 0x80000001 */
  399. xlvl = cpuid_eax(0x80000000);
  400. c->extended_cpuid_level = xlvl;
  401. if ((xlvl & 0xffff0000) == 0x80000000) {
  402. if (xlvl >= 0x80000001) {
  403. c->x86_capability[1] = cpuid_edx(0x80000001);
  404. c->x86_capability[6] = cpuid_ecx(0x80000001);
  405. }
  406. }
  407. #ifdef CONFIG_X86_64
  408. if (c->extended_cpuid_level >= 0x80000008) {
  409. u32 eax = cpuid_eax(0x80000008);
  410. c->x86_virt_bits = (eax >> 8) & 0xff;
  411. c->x86_phys_bits = eax & 0xff;
  412. }
  413. #endif
  414. if (c->extended_cpuid_level >= 0x80000007)
  415. c->x86_power = cpuid_edx(0x80000007);
  416. }
  417. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  418. {
  419. #ifdef CONFIG_X86_32
  420. int i;
  421. /*
  422. * First of all, decide if this is a 486 or higher
  423. * It's a 486 if we can modify the AC flag
  424. */
  425. if (flag_is_changeable_p(X86_EFLAGS_AC))
  426. c->x86 = 4;
  427. else
  428. c->x86 = 3;
  429. for (i = 0; i < X86_VENDOR_NUM; i++)
  430. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  431. c->x86_vendor_id[0] = 0;
  432. cpu_devs[i]->c_identify(c);
  433. if (c->x86_vendor_id[0]) {
  434. get_cpu_vendor(c);
  435. break;
  436. }
  437. }
  438. #endif
  439. }
  440. /*
  441. * Do minimum CPU detection early.
  442. * Fields really needed: vendor, cpuid_level, family, model, mask,
  443. * cache alignment.
  444. * The others are not touched to avoid unwanted side effects.
  445. *
  446. * WARNING: this function is only called on the BP. Don't add code here
  447. * that is supposed to run on all CPUs.
  448. */
  449. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  450. {
  451. #ifdef CONFIG_X86_64
  452. c->x86_clflush_size = 64;
  453. #else
  454. c->x86_clflush_size = 32;
  455. #endif
  456. c->x86_cache_alignment = c->x86_clflush_size;
  457. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  458. c->extended_cpuid_level = 0;
  459. if (!have_cpuid_p())
  460. identify_cpu_without_cpuid(c);
  461. /* cyrix could have cpuid enabled via c_identify()*/
  462. if (!have_cpuid_p())
  463. return;
  464. cpu_detect(c);
  465. get_cpu_vendor(c);
  466. get_cpu_cap(c);
  467. if (this_cpu->c_early_init)
  468. this_cpu->c_early_init(c);
  469. validate_pat_support(c);
  470. }
  471. void __init early_cpu_init(void)
  472. {
  473. struct cpu_dev **cdev;
  474. int count = 0;
  475. printk("KERNEL supported cpus:\n");
  476. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  477. struct cpu_dev *cpudev = *cdev;
  478. unsigned int j;
  479. if (count >= X86_VENDOR_NUM)
  480. break;
  481. cpu_devs[count] = cpudev;
  482. count++;
  483. for (j = 0; j < 2; j++) {
  484. if (!cpudev->c_ident[j])
  485. continue;
  486. printk(" %s %s\n", cpudev->c_vendor,
  487. cpudev->c_ident[j]);
  488. }
  489. }
  490. early_identify_cpu(&boot_cpu_data);
  491. }
  492. /*
  493. * The NOPL instruction is supposed to exist on all CPUs with
  494. * family >= 6; unfortunately, that's not true in practice because
  495. * of early VIA chips and (more importantly) broken virtualizers that
  496. * are not easy to detect. In the latter case it doesn't even *fail*
  497. * reliably, so probing for it doesn't even work. Disable it completely
  498. * unless we can find a reliable way to detect all the broken cases.
  499. */
  500. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  501. {
  502. clear_cpu_cap(c, X86_FEATURE_NOPL);
  503. }
  504. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  505. {
  506. c->extended_cpuid_level = 0;
  507. if (!have_cpuid_p())
  508. identify_cpu_without_cpuid(c);
  509. /* cyrix could have cpuid enabled via c_identify()*/
  510. if (!have_cpuid_p())
  511. return;
  512. cpu_detect(c);
  513. get_cpu_vendor(c);
  514. get_cpu_cap(c);
  515. if (c->cpuid_level >= 0x00000001) {
  516. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  517. #ifdef CONFIG_X86_32
  518. # ifdef CONFIG_X86_HT
  519. c->apicid = phys_pkg_id(c->initial_apicid, 0);
  520. # else
  521. c->apicid = c->initial_apicid;
  522. # endif
  523. #endif
  524. #ifdef CONFIG_X86_HT
  525. c->phys_proc_id = c->initial_apicid;
  526. #endif
  527. }
  528. get_model_name(c); /* Default name */
  529. init_scattered_cpuid_features(c);
  530. detect_nopl(c);
  531. }
  532. /*
  533. * This does the hard work of actually picking apart the CPU stuff...
  534. */
  535. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  536. {
  537. int i;
  538. c->loops_per_jiffy = loops_per_jiffy;
  539. c->x86_cache_size = -1;
  540. c->x86_vendor = X86_VENDOR_UNKNOWN;
  541. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  542. c->x86_vendor_id[0] = '\0'; /* Unset */
  543. c->x86_model_id[0] = '\0'; /* Unset */
  544. c->x86_max_cores = 1;
  545. c->x86_coreid_bits = 0;
  546. #ifdef CONFIG_X86_64
  547. c->x86_clflush_size = 64;
  548. #else
  549. c->cpuid_level = -1; /* CPUID not detected */
  550. c->x86_clflush_size = 32;
  551. #endif
  552. c->x86_cache_alignment = c->x86_clflush_size;
  553. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  554. generic_identify(c);
  555. if (this_cpu->c_identify)
  556. this_cpu->c_identify(c);
  557. #ifdef CONFIG_X86_64
  558. c->apicid = phys_pkg_id(0);
  559. #endif
  560. /*
  561. * Vendor-specific initialization. In this section we
  562. * canonicalize the feature flags, meaning if there are
  563. * features a certain CPU supports which CPUID doesn't
  564. * tell us, CPUID claiming incorrect flags, or other bugs,
  565. * we handle them here.
  566. *
  567. * At the end of this section, c->x86_capability better
  568. * indicate the features this CPU genuinely supports!
  569. */
  570. if (this_cpu->c_init)
  571. this_cpu->c_init(c);
  572. /* Disable the PN if appropriate */
  573. squash_the_stupid_serial_number(c);
  574. /*
  575. * The vendor-specific functions might have changed features. Now
  576. * we do "generic changes."
  577. */
  578. /* If the model name is still unset, do table lookup. */
  579. if (!c->x86_model_id[0]) {
  580. char *p;
  581. p = table_lookup_model(c);
  582. if (p)
  583. strcpy(c->x86_model_id, p);
  584. else
  585. /* Last resort... */
  586. sprintf(c->x86_model_id, "%02x/%02x",
  587. c->x86, c->x86_model);
  588. }
  589. #ifdef CONFIG_X86_64
  590. detect_ht(c);
  591. #endif
  592. /*
  593. * On SMP, boot_cpu_data holds the common feature set between
  594. * all CPUs; so make sure that we indicate which features are
  595. * common between the CPUs. The first time this routine gets
  596. * executed, c == &boot_cpu_data.
  597. */
  598. if (c != &boot_cpu_data) {
  599. /* AND the already accumulated flags with these */
  600. for (i = 0; i < NCAPINTS; i++)
  601. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  602. }
  603. /* Clear all flags overriden by options */
  604. for (i = 0; i < NCAPINTS; i++)
  605. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  606. #ifdef CONFIG_X86_MCE
  607. /* Init Machine Check Exception if available. */
  608. mcheck_init(c);
  609. #endif
  610. select_idle_routine(c);
  611. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  612. numa_add_cpu(smp_processor_id());
  613. #endif
  614. }
  615. #ifdef CONFIG_X86_64
  616. static void vgetcpu_set_mode(void)
  617. {
  618. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  619. vgetcpu_mode = VGETCPU_RDTSCP;
  620. else
  621. vgetcpu_mode = VGETCPU_LSL;
  622. }
  623. #endif
  624. void __init identify_boot_cpu(void)
  625. {
  626. identify_cpu(&boot_cpu_data);
  627. #ifdef CONFIG_X86_32
  628. sysenter_setup();
  629. enable_sep_cpu();
  630. #else
  631. vgetcpu_set_mode();
  632. #endif
  633. }
  634. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  635. {
  636. BUG_ON(c == &boot_cpu_data);
  637. identify_cpu(c);
  638. #ifdef CONFIG_X86_32
  639. enable_sep_cpu();
  640. #endif
  641. mtrr_ap_init();
  642. }
  643. struct msr_range {
  644. unsigned min;
  645. unsigned max;
  646. };
  647. static struct msr_range msr_range_array[] __cpuinitdata = {
  648. { 0x00000000, 0x00000418},
  649. { 0xc0000000, 0xc000040b},
  650. { 0xc0010000, 0xc0010142},
  651. { 0xc0011000, 0xc001103b},
  652. };
  653. static void __cpuinit print_cpu_msr(void)
  654. {
  655. unsigned index;
  656. u64 val;
  657. int i;
  658. unsigned index_min, index_max;
  659. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  660. index_min = msr_range_array[i].min;
  661. index_max = msr_range_array[i].max;
  662. for (index = index_min; index < index_max; index++) {
  663. if (rdmsrl_amd_safe(index, &val))
  664. continue;
  665. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  666. }
  667. }
  668. }
  669. static int show_msr __cpuinitdata;
  670. static __init int setup_show_msr(char *arg)
  671. {
  672. int num;
  673. get_option(&arg, &num);
  674. if (num > 0)
  675. show_msr = num;
  676. return 1;
  677. }
  678. __setup("show_msr=", setup_show_msr);
  679. static __init int setup_noclflush(char *arg)
  680. {
  681. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  682. return 1;
  683. }
  684. __setup("noclflush", setup_noclflush);
  685. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  686. {
  687. char *vendor = NULL;
  688. if (c->x86_vendor < X86_VENDOR_NUM)
  689. vendor = this_cpu->c_vendor;
  690. else if (c->cpuid_level >= 0)
  691. vendor = c->x86_vendor_id;
  692. if (vendor && !strstr(c->x86_model_id, vendor))
  693. printk(KERN_CONT "%s ", vendor);
  694. if (c->x86_model_id[0])
  695. printk(KERN_CONT "%s", c->x86_model_id);
  696. else
  697. printk(KERN_CONT "%d86", c->x86);
  698. if (c->x86_mask || c->cpuid_level >= 0)
  699. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  700. else
  701. printk(KERN_CONT "\n");
  702. #ifdef CONFIG_SMP
  703. if (c->cpu_index < show_msr)
  704. print_cpu_msr();
  705. #else
  706. if (show_msr)
  707. print_cpu_msr();
  708. #endif
  709. }
  710. static __init int setup_disablecpuid(char *arg)
  711. {
  712. int bit;
  713. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  714. setup_clear_cpu_cap(bit);
  715. else
  716. return 0;
  717. return 1;
  718. }
  719. __setup("clearcpuid=", setup_disablecpuid);
  720. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  721. #ifdef CONFIG_X86_64
  722. struct x8664_pda **_cpu_pda __read_mostly;
  723. EXPORT_SYMBOL(_cpu_pda);
  724. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  725. char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
  726. void __cpuinit pda_init(int cpu)
  727. {
  728. struct x8664_pda *pda = cpu_pda(cpu);
  729. /* Setup up data that may be needed in __get_free_pages early */
  730. loadsegment(fs, 0);
  731. loadsegment(gs, 0);
  732. /* Memory clobbers used to order PDA accessed */
  733. mb();
  734. wrmsrl(MSR_GS_BASE, pda);
  735. mb();
  736. pda->cpunumber = cpu;
  737. pda->irqcount = -1;
  738. pda->kernelstack = (unsigned long)stack_thread_info() -
  739. PDA_STACKOFFSET + THREAD_SIZE;
  740. pda->active_mm = &init_mm;
  741. pda->mmu_state = 0;
  742. if (cpu == 0) {
  743. /* others are initialized in smpboot.c */
  744. pda->pcurrent = &init_task;
  745. pda->irqstackptr = boot_cpu_stack;
  746. pda->irqstackptr += IRQSTACKSIZE - 64;
  747. } else {
  748. if (!pda->irqstackptr) {
  749. pda->irqstackptr = (char *)
  750. __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
  751. if (!pda->irqstackptr)
  752. panic("cannot allocate irqstack for cpu %d",
  753. cpu);
  754. pda->irqstackptr += IRQSTACKSIZE - 64;
  755. }
  756. if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
  757. pda->nodenumber = cpu_to_node(cpu);
  758. }
  759. }
  760. char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
  761. DEBUG_STKSZ] __page_aligned_bss;
  762. extern asmlinkage void ignore_sysret(void);
  763. /* May not be marked __init: used by software suspend */
  764. void syscall_init(void)
  765. {
  766. /*
  767. * LSTAR and STAR live in a bit strange symbiosis.
  768. * They both write to the same internal register. STAR allows to
  769. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  770. */
  771. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  772. wrmsrl(MSR_LSTAR, system_call);
  773. wrmsrl(MSR_CSTAR, ignore_sysret);
  774. #ifdef CONFIG_IA32_EMULATION
  775. syscall32_cpu_init();
  776. #endif
  777. /* Flags to clear on syscall */
  778. wrmsrl(MSR_SYSCALL_MASK,
  779. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  780. }
  781. unsigned long kernel_eflags;
  782. /*
  783. * Copies of the original ist values from the tss are only accessed during
  784. * debugging, no special alignment required.
  785. */
  786. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  787. #else
  788. /* Make sure %fs is initialized properly in idle threads */
  789. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  790. {
  791. memset(regs, 0, sizeof(struct pt_regs));
  792. regs->fs = __KERNEL_PERCPU;
  793. return regs;
  794. }
  795. #endif
  796. /*
  797. * cpu_init() initializes state that is per-CPU. Some data is already
  798. * initialized (naturally) in the bootstrap process, such as the GDT
  799. * and IDT. We reload them nevertheless, this function acts as a
  800. * 'CPU state barrier', nothing should get across.
  801. * A lot of state is already set up in PDA init for 64 bit
  802. */
  803. #ifdef CONFIG_X86_64
  804. void __cpuinit cpu_init(void)
  805. {
  806. int cpu = stack_smp_processor_id();
  807. struct tss_struct *t = &per_cpu(init_tss, cpu);
  808. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  809. unsigned long v;
  810. char *estacks = NULL;
  811. struct task_struct *me;
  812. int i;
  813. /* CPU 0 is initialised in head64.c */
  814. if (cpu != 0)
  815. pda_init(cpu);
  816. else
  817. estacks = boot_exception_stacks;
  818. me = current;
  819. if (cpu_test_and_set(cpu, cpu_initialized))
  820. panic("CPU#%d already initialized!\n", cpu);
  821. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  822. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  823. /*
  824. * Initialize the per-CPU GDT with the boot GDT,
  825. * and set up the GDT descriptor:
  826. */
  827. switch_to_new_gdt();
  828. load_idt((const struct desc_ptr *)&idt_descr);
  829. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  830. syscall_init();
  831. wrmsrl(MSR_FS_BASE, 0);
  832. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  833. barrier();
  834. check_efer();
  835. if (cpu != 0 && x2apic)
  836. enable_x2apic();
  837. /*
  838. * set up and load the per-CPU TSS
  839. */
  840. if (!orig_ist->ist[0]) {
  841. static const unsigned int order[N_EXCEPTION_STACKS] = {
  842. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
  843. [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
  844. };
  845. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  846. if (cpu) {
  847. estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
  848. if (!estacks)
  849. panic("Cannot allocate exception "
  850. "stack %ld %d\n", v, cpu);
  851. }
  852. estacks += PAGE_SIZE << order[v];
  853. orig_ist->ist[v] = t->x86_tss.ist[v] =
  854. (unsigned long)estacks;
  855. }
  856. }
  857. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  858. /*
  859. * <= is required because the CPU will access up to
  860. * 8 bits beyond the end of the IO permission bitmap.
  861. */
  862. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  863. t->io_bitmap[i] = ~0UL;
  864. atomic_inc(&init_mm.mm_count);
  865. me->active_mm = &init_mm;
  866. if (me->mm)
  867. BUG();
  868. enter_lazy_tlb(&init_mm, me);
  869. load_sp0(t, &current->thread);
  870. set_tss_desc(cpu, t);
  871. load_TR_desc();
  872. load_LDT(&init_mm.context);
  873. #ifdef CONFIG_KGDB
  874. /*
  875. * If the kgdb is connected no debug regs should be altered. This
  876. * is only applicable when KGDB and a KGDB I/O module are built
  877. * into the kernel and you are using early debugging with
  878. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  879. */
  880. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  881. arch_kgdb_ops.correct_hw_break();
  882. else {
  883. #endif
  884. /*
  885. * Clear all 6 debug registers:
  886. */
  887. set_debugreg(0UL, 0);
  888. set_debugreg(0UL, 1);
  889. set_debugreg(0UL, 2);
  890. set_debugreg(0UL, 3);
  891. set_debugreg(0UL, 6);
  892. set_debugreg(0UL, 7);
  893. #ifdef CONFIG_KGDB
  894. /* If the kgdb is connected no debug regs should be altered. */
  895. }
  896. #endif
  897. fpu_init();
  898. raw_local_save_flags(kernel_eflags);
  899. if (is_uv_system())
  900. uv_cpu_init();
  901. }
  902. #else
  903. void __cpuinit cpu_init(void)
  904. {
  905. int cpu = smp_processor_id();
  906. struct task_struct *curr = current;
  907. struct tss_struct *t = &per_cpu(init_tss, cpu);
  908. struct thread_struct *thread = &curr->thread;
  909. if (cpu_test_and_set(cpu, cpu_initialized)) {
  910. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  911. for (;;) local_irq_enable();
  912. }
  913. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  914. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  915. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  916. load_idt(&idt_descr);
  917. switch_to_new_gdt();
  918. /*
  919. * Set up and load the per-CPU TSS and LDT
  920. */
  921. atomic_inc(&init_mm.mm_count);
  922. curr->active_mm = &init_mm;
  923. if (curr->mm)
  924. BUG();
  925. enter_lazy_tlb(&init_mm, curr);
  926. load_sp0(t, thread);
  927. set_tss_desc(cpu, t);
  928. load_TR_desc();
  929. load_LDT(&init_mm.context);
  930. #ifdef CONFIG_DOUBLEFAULT
  931. /* Set up doublefault TSS pointer in the GDT */
  932. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  933. #endif
  934. /* Clear %gs. */
  935. asm volatile ("mov %0, %%gs" : : "r" (0));
  936. /* Clear all 6 debug registers: */
  937. set_debugreg(0, 0);
  938. set_debugreg(0, 1);
  939. set_debugreg(0, 2);
  940. set_debugreg(0, 3);
  941. set_debugreg(0, 6);
  942. set_debugreg(0, 7);
  943. /*
  944. * Force FPU initialization:
  945. */
  946. if (cpu_has_xsave)
  947. current_thread_info()->status = TS_XSAVE;
  948. else
  949. current_thread_info()->status = 0;
  950. clear_used_math();
  951. mxcsr_feature_mask_init();
  952. /*
  953. * Boot processor to setup the FP and extended state context info.
  954. */
  955. if (smp_processor_id() == boot_cpu_id)
  956. init_thread_xstate();
  957. xsave_init();
  958. }
  959. #endif