huge_memory.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/migrate.h>
  21. #include <asm/tlb.h>
  22. #include <asm/pgalloc.h>
  23. #include "internal.h"
  24. /*
  25. * By default transparent hugepage support is enabled for all mappings
  26. * and khugepaged scans all mappings. Defrag is only invoked by
  27. * khugepaged hugepage allocations and by page faults inside
  28. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29. * allocations.
  30. */
  31. unsigned long transparent_hugepage_flags __read_mostly =
  32. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34. #endif
  35. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37. #endif
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40. /* default scan 8*512 pte (or vmas) every 30 second */
  41. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  42. static unsigned int khugepaged_pages_collapsed;
  43. static unsigned int khugepaged_full_scans;
  44. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  45. /* during fragmentation poll the hugepage allocator once every minute */
  46. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  47. static struct task_struct *khugepaged_thread __read_mostly;
  48. static DEFINE_MUTEX(khugepaged_mutex);
  49. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  50. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  51. /*
  52. * default collapse hugepages if there is at least one pte mapped like
  53. * it would have happened if the vma was large enough during page
  54. * fault.
  55. */
  56. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  57. static int khugepaged(void *none);
  58. static int mm_slots_hash_init(void);
  59. static int khugepaged_slab_init(void);
  60. static void khugepaged_slab_free(void);
  61. #define MM_SLOTS_HASH_HEADS 1024
  62. static struct hlist_head *mm_slots_hash __read_mostly;
  63. static struct kmem_cache *mm_slot_cache __read_mostly;
  64. /**
  65. * struct mm_slot - hash lookup from mm to mm_slot
  66. * @hash: hash collision list
  67. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  68. * @mm: the mm that this information is valid for
  69. */
  70. struct mm_slot {
  71. struct hlist_node hash;
  72. struct list_head mm_node;
  73. struct mm_struct *mm;
  74. };
  75. /**
  76. * struct khugepaged_scan - cursor for scanning
  77. * @mm_head: the head of the mm list to scan
  78. * @mm_slot: the current mm_slot we are scanning
  79. * @address: the next address inside that to be scanned
  80. *
  81. * There is only the one khugepaged_scan instance of this cursor structure.
  82. */
  83. struct khugepaged_scan {
  84. struct list_head mm_head;
  85. struct mm_slot *mm_slot;
  86. unsigned long address;
  87. };
  88. static struct khugepaged_scan khugepaged_scan = {
  89. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  90. };
  91. static int set_recommended_min_free_kbytes(void)
  92. {
  93. struct zone *zone;
  94. int nr_zones = 0;
  95. unsigned long recommended_min;
  96. extern int min_free_kbytes;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. #ifdef CONFIG_SYSFS
  144. static ssize_t double_flag_show(struct kobject *kobj,
  145. struct kobj_attribute *attr, char *buf,
  146. enum transparent_hugepage_flag enabled,
  147. enum transparent_hugepage_flag req_madv)
  148. {
  149. if (test_bit(enabled, &transparent_hugepage_flags)) {
  150. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  151. return sprintf(buf, "[always] madvise never\n");
  152. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  153. return sprintf(buf, "always [madvise] never\n");
  154. else
  155. return sprintf(buf, "always madvise [never]\n");
  156. }
  157. static ssize_t double_flag_store(struct kobject *kobj,
  158. struct kobj_attribute *attr,
  159. const char *buf, size_t count,
  160. enum transparent_hugepage_flag enabled,
  161. enum transparent_hugepage_flag req_madv)
  162. {
  163. if (!memcmp("always", buf,
  164. min(sizeof("always")-1, count))) {
  165. set_bit(enabled, &transparent_hugepage_flags);
  166. clear_bit(req_madv, &transparent_hugepage_flags);
  167. } else if (!memcmp("madvise", buf,
  168. min(sizeof("madvise")-1, count))) {
  169. clear_bit(enabled, &transparent_hugepage_flags);
  170. set_bit(req_madv, &transparent_hugepage_flags);
  171. } else if (!memcmp("never", buf,
  172. min(sizeof("never")-1, count))) {
  173. clear_bit(enabled, &transparent_hugepage_flags);
  174. clear_bit(req_madv, &transparent_hugepage_flags);
  175. } else
  176. return -EINVAL;
  177. return count;
  178. }
  179. static ssize_t enabled_show(struct kobject *kobj,
  180. struct kobj_attribute *attr, char *buf)
  181. {
  182. return double_flag_show(kobj, attr, buf,
  183. TRANSPARENT_HUGEPAGE_FLAG,
  184. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  185. }
  186. static ssize_t enabled_store(struct kobject *kobj,
  187. struct kobj_attribute *attr,
  188. const char *buf, size_t count)
  189. {
  190. ssize_t ret;
  191. ret = double_flag_store(kobj, attr, buf, count,
  192. TRANSPARENT_HUGEPAGE_FLAG,
  193. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  194. if (ret > 0) {
  195. int err;
  196. mutex_lock(&khugepaged_mutex);
  197. err = start_khugepaged();
  198. mutex_unlock(&khugepaged_mutex);
  199. if (err)
  200. ret = err;
  201. }
  202. return ret;
  203. }
  204. static struct kobj_attribute enabled_attr =
  205. __ATTR(enabled, 0644, enabled_show, enabled_store);
  206. static ssize_t single_flag_show(struct kobject *kobj,
  207. struct kobj_attribute *attr, char *buf,
  208. enum transparent_hugepage_flag flag)
  209. {
  210. return sprintf(buf, "%d\n",
  211. !!test_bit(flag, &transparent_hugepage_flags));
  212. }
  213. static ssize_t single_flag_store(struct kobject *kobj,
  214. struct kobj_attribute *attr,
  215. const char *buf, size_t count,
  216. enum transparent_hugepage_flag flag)
  217. {
  218. unsigned long value;
  219. int ret;
  220. ret = kstrtoul(buf, 10, &value);
  221. if (ret < 0)
  222. return ret;
  223. if (value > 1)
  224. return -EINVAL;
  225. if (value)
  226. set_bit(flag, &transparent_hugepage_flags);
  227. else
  228. clear_bit(flag, &transparent_hugepage_flags);
  229. return count;
  230. }
  231. /*
  232. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  233. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  234. * memory just to allocate one more hugepage.
  235. */
  236. static ssize_t defrag_show(struct kobject *kobj,
  237. struct kobj_attribute *attr, char *buf)
  238. {
  239. return double_flag_show(kobj, attr, buf,
  240. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  241. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  242. }
  243. static ssize_t defrag_store(struct kobject *kobj,
  244. struct kobj_attribute *attr,
  245. const char *buf, size_t count)
  246. {
  247. return double_flag_store(kobj, attr, buf, count,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  249. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  250. }
  251. static struct kobj_attribute defrag_attr =
  252. __ATTR(defrag, 0644, defrag_show, defrag_store);
  253. #ifdef CONFIG_DEBUG_VM
  254. static ssize_t debug_cow_show(struct kobject *kobj,
  255. struct kobj_attribute *attr, char *buf)
  256. {
  257. return single_flag_show(kobj, attr, buf,
  258. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  259. }
  260. static ssize_t debug_cow_store(struct kobject *kobj,
  261. struct kobj_attribute *attr,
  262. const char *buf, size_t count)
  263. {
  264. return single_flag_store(kobj, attr, buf, count,
  265. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  266. }
  267. static struct kobj_attribute debug_cow_attr =
  268. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  269. #endif /* CONFIG_DEBUG_VM */
  270. static struct attribute *hugepage_attr[] = {
  271. &enabled_attr.attr,
  272. &defrag_attr.attr,
  273. #ifdef CONFIG_DEBUG_VM
  274. &debug_cow_attr.attr,
  275. #endif
  276. NULL,
  277. };
  278. static struct attribute_group hugepage_attr_group = {
  279. .attrs = hugepage_attr,
  280. };
  281. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  282. struct kobj_attribute *attr,
  283. char *buf)
  284. {
  285. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  286. }
  287. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  288. struct kobj_attribute *attr,
  289. const char *buf, size_t count)
  290. {
  291. unsigned long msecs;
  292. int err;
  293. err = strict_strtoul(buf, 10, &msecs);
  294. if (err || msecs > UINT_MAX)
  295. return -EINVAL;
  296. khugepaged_scan_sleep_millisecs = msecs;
  297. wake_up_interruptible(&khugepaged_wait);
  298. return count;
  299. }
  300. static struct kobj_attribute scan_sleep_millisecs_attr =
  301. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  302. scan_sleep_millisecs_store);
  303. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  304. struct kobj_attribute *attr,
  305. char *buf)
  306. {
  307. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  308. }
  309. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  310. struct kobj_attribute *attr,
  311. const char *buf, size_t count)
  312. {
  313. unsigned long msecs;
  314. int err;
  315. err = strict_strtoul(buf, 10, &msecs);
  316. if (err || msecs > UINT_MAX)
  317. return -EINVAL;
  318. khugepaged_alloc_sleep_millisecs = msecs;
  319. wake_up_interruptible(&khugepaged_wait);
  320. return count;
  321. }
  322. static struct kobj_attribute alloc_sleep_millisecs_attr =
  323. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  324. alloc_sleep_millisecs_store);
  325. static ssize_t pages_to_scan_show(struct kobject *kobj,
  326. struct kobj_attribute *attr,
  327. char *buf)
  328. {
  329. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  330. }
  331. static ssize_t pages_to_scan_store(struct kobject *kobj,
  332. struct kobj_attribute *attr,
  333. const char *buf, size_t count)
  334. {
  335. int err;
  336. unsigned long pages;
  337. err = strict_strtoul(buf, 10, &pages);
  338. if (err || !pages || pages > UINT_MAX)
  339. return -EINVAL;
  340. khugepaged_pages_to_scan = pages;
  341. return count;
  342. }
  343. static struct kobj_attribute pages_to_scan_attr =
  344. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  345. pages_to_scan_store);
  346. static ssize_t pages_collapsed_show(struct kobject *kobj,
  347. struct kobj_attribute *attr,
  348. char *buf)
  349. {
  350. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  351. }
  352. static struct kobj_attribute pages_collapsed_attr =
  353. __ATTR_RO(pages_collapsed);
  354. static ssize_t full_scans_show(struct kobject *kobj,
  355. struct kobj_attribute *attr,
  356. char *buf)
  357. {
  358. return sprintf(buf, "%u\n", khugepaged_full_scans);
  359. }
  360. static struct kobj_attribute full_scans_attr =
  361. __ATTR_RO(full_scans);
  362. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  363. struct kobj_attribute *attr, char *buf)
  364. {
  365. return single_flag_show(kobj, attr, buf,
  366. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  367. }
  368. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  369. struct kobj_attribute *attr,
  370. const char *buf, size_t count)
  371. {
  372. return single_flag_store(kobj, attr, buf, count,
  373. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  374. }
  375. static struct kobj_attribute khugepaged_defrag_attr =
  376. __ATTR(defrag, 0644, khugepaged_defrag_show,
  377. khugepaged_defrag_store);
  378. /*
  379. * max_ptes_none controls if khugepaged should collapse hugepages over
  380. * any unmapped ptes in turn potentially increasing the memory
  381. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  382. * reduce the available free memory in the system as it
  383. * runs. Increasing max_ptes_none will instead potentially reduce the
  384. * free memory in the system during the khugepaged scan.
  385. */
  386. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  387. struct kobj_attribute *attr,
  388. char *buf)
  389. {
  390. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  391. }
  392. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  393. struct kobj_attribute *attr,
  394. const char *buf, size_t count)
  395. {
  396. int err;
  397. unsigned long max_ptes_none;
  398. err = strict_strtoul(buf, 10, &max_ptes_none);
  399. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  400. return -EINVAL;
  401. khugepaged_max_ptes_none = max_ptes_none;
  402. return count;
  403. }
  404. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  405. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  406. khugepaged_max_ptes_none_store);
  407. static struct attribute *khugepaged_attr[] = {
  408. &khugepaged_defrag_attr.attr,
  409. &khugepaged_max_ptes_none_attr.attr,
  410. &pages_to_scan_attr.attr,
  411. &pages_collapsed_attr.attr,
  412. &full_scans_attr.attr,
  413. &scan_sleep_millisecs_attr.attr,
  414. &alloc_sleep_millisecs_attr.attr,
  415. NULL,
  416. };
  417. static struct attribute_group khugepaged_attr_group = {
  418. .attrs = khugepaged_attr,
  419. .name = "khugepaged",
  420. };
  421. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  422. {
  423. int err;
  424. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  425. if (unlikely(!*hugepage_kobj)) {
  426. printk(KERN_ERR "hugepage: failed kobject create\n");
  427. return -ENOMEM;
  428. }
  429. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  430. if (err) {
  431. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  432. goto delete_obj;
  433. }
  434. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  435. if (err) {
  436. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  437. goto remove_hp_group;
  438. }
  439. return 0;
  440. remove_hp_group:
  441. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  442. delete_obj:
  443. kobject_put(*hugepage_kobj);
  444. return err;
  445. }
  446. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  447. {
  448. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  449. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  450. kobject_put(hugepage_kobj);
  451. }
  452. #else
  453. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  454. {
  455. return 0;
  456. }
  457. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  458. {
  459. }
  460. #endif /* CONFIG_SYSFS */
  461. static int __init hugepage_init(void)
  462. {
  463. int err;
  464. struct kobject *hugepage_kobj;
  465. if (!has_transparent_hugepage()) {
  466. transparent_hugepage_flags = 0;
  467. return -EINVAL;
  468. }
  469. err = hugepage_init_sysfs(&hugepage_kobj);
  470. if (err)
  471. return err;
  472. err = khugepaged_slab_init();
  473. if (err)
  474. goto out;
  475. err = mm_slots_hash_init();
  476. if (err) {
  477. khugepaged_slab_free();
  478. goto out;
  479. }
  480. /*
  481. * By default disable transparent hugepages on smaller systems,
  482. * where the extra memory used could hurt more than TLB overhead
  483. * is likely to save. The admin can still enable it through /sys.
  484. */
  485. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  486. transparent_hugepage_flags = 0;
  487. start_khugepaged();
  488. return 0;
  489. out:
  490. hugepage_exit_sysfs(hugepage_kobj);
  491. return err;
  492. }
  493. module_init(hugepage_init)
  494. static int __init setup_transparent_hugepage(char *str)
  495. {
  496. int ret = 0;
  497. if (!str)
  498. goto out;
  499. if (!strcmp(str, "always")) {
  500. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  501. &transparent_hugepage_flags);
  502. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  503. &transparent_hugepage_flags);
  504. ret = 1;
  505. } else if (!strcmp(str, "madvise")) {
  506. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  507. &transparent_hugepage_flags);
  508. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  509. &transparent_hugepage_flags);
  510. ret = 1;
  511. } else if (!strcmp(str, "never")) {
  512. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  513. &transparent_hugepage_flags);
  514. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  515. &transparent_hugepage_flags);
  516. ret = 1;
  517. }
  518. out:
  519. if (!ret)
  520. printk(KERN_WARNING
  521. "transparent_hugepage= cannot parse, ignored\n");
  522. return ret;
  523. }
  524. __setup("transparent_hugepage=", setup_transparent_hugepage);
  525. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  526. {
  527. if (likely(vma->vm_flags & VM_WRITE))
  528. pmd = pmd_mkwrite(pmd);
  529. return pmd;
  530. }
  531. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  532. struct vm_area_struct *vma,
  533. unsigned long haddr, pmd_t *pmd,
  534. struct page *page)
  535. {
  536. pgtable_t pgtable;
  537. VM_BUG_ON(!PageCompound(page));
  538. pgtable = pte_alloc_one(mm, haddr);
  539. if (unlikely(!pgtable))
  540. return VM_FAULT_OOM;
  541. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  542. __SetPageUptodate(page);
  543. spin_lock(&mm->page_table_lock);
  544. if (unlikely(!pmd_none(*pmd))) {
  545. spin_unlock(&mm->page_table_lock);
  546. mem_cgroup_uncharge_page(page);
  547. put_page(page);
  548. pte_free(mm, pgtable);
  549. } else {
  550. pmd_t entry;
  551. entry = mk_pmd(page, vma->vm_page_prot);
  552. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  553. entry = pmd_mkhuge(entry);
  554. /*
  555. * The spinlocking to take the lru_lock inside
  556. * page_add_new_anon_rmap() acts as a full memory
  557. * barrier to be sure clear_huge_page writes become
  558. * visible after the set_pmd_at() write.
  559. */
  560. page_add_new_anon_rmap(page, vma, haddr);
  561. set_pmd_at(mm, haddr, pmd, entry);
  562. pgtable_trans_huge_deposit(mm, pgtable);
  563. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  564. mm->nr_ptes++;
  565. spin_unlock(&mm->page_table_lock);
  566. }
  567. return 0;
  568. }
  569. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  570. {
  571. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  572. }
  573. static inline struct page *alloc_hugepage_vma(int defrag,
  574. struct vm_area_struct *vma,
  575. unsigned long haddr, int nd,
  576. gfp_t extra_gfp)
  577. {
  578. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  579. HPAGE_PMD_ORDER, vma, haddr, nd);
  580. }
  581. #ifndef CONFIG_NUMA
  582. static inline struct page *alloc_hugepage(int defrag)
  583. {
  584. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  585. HPAGE_PMD_ORDER);
  586. }
  587. #endif
  588. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  589. unsigned long address, pmd_t *pmd,
  590. unsigned int flags)
  591. {
  592. struct page *page;
  593. unsigned long haddr = address & HPAGE_PMD_MASK;
  594. pte_t *pte;
  595. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  596. if (unlikely(anon_vma_prepare(vma)))
  597. return VM_FAULT_OOM;
  598. if (unlikely(khugepaged_enter(vma)))
  599. return VM_FAULT_OOM;
  600. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  601. vma, haddr, numa_node_id(), 0);
  602. if (unlikely(!page)) {
  603. count_vm_event(THP_FAULT_FALLBACK);
  604. goto out;
  605. }
  606. count_vm_event(THP_FAULT_ALLOC);
  607. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  608. put_page(page);
  609. goto out;
  610. }
  611. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  612. page))) {
  613. mem_cgroup_uncharge_page(page);
  614. put_page(page);
  615. goto out;
  616. }
  617. return 0;
  618. }
  619. out:
  620. /*
  621. * Use __pte_alloc instead of pte_alloc_map, because we can't
  622. * run pte_offset_map on the pmd, if an huge pmd could
  623. * materialize from under us from a different thread.
  624. */
  625. if (unlikely(pmd_none(*pmd)) &&
  626. unlikely(__pte_alloc(mm, vma, pmd, address)))
  627. return VM_FAULT_OOM;
  628. /* if an huge pmd materialized from under us just retry later */
  629. if (unlikely(pmd_trans_huge(*pmd)))
  630. return 0;
  631. /*
  632. * A regular pmd is established and it can't morph into a huge pmd
  633. * from under us anymore at this point because we hold the mmap_sem
  634. * read mode and khugepaged takes it in write mode. So now it's
  635. * safe to run pte_offset_map().
  636. */
  637. pte = pte_offset_map(pmd, address);
  638. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  639. }
  640. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  641. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  642. struct vm_area_struct *vma)
  643. {
  644. struct page *src_page;
  645. pmd_t pmd;
  646. pgtable_t pgtable;
  647. int ret;
  648. ret = -ENOMEM;
  649. pgtable = pte_alloc_one(dst_mm, addr);
  650. if (unlikely(!pgtable))
  651. goto out;
  652. spin_lock(&dst_mm->page_table_lock);
  653. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  654. ret = -EAGAIN;
  655. pmd = *src_pmd;
  656. if (unlikely(!pmd_trans_huge(pmd))) {
  657. pte_free(dst_mm, pgtable);
  658. goto out_unlock;
  659. }
  660. if (unlikely(pmd_trans_splitting(pmd))) {
  661. /* split huge page running from under us */
  662. spin_unlock(&src_mm->page_table_lock);
  663. spin_unlock(&dst_mm->page_table_lock);
  664. pte_free(dst_mm, pgtable);
  665. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  666. goto out;
  667. }
  668. src_page = pmd_page(pmd);
  669. VM_BUG_ON(!PageHead(src_page));
  670. get_page(src_page);
  671. page_dup_rmap(src_page);
  672. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  673. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  674. pmd = pmd_mkold(pmd_wrprotect(pmd));
  675. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  676. pgtable_trans_huge_deposit(dst_mm, pgtable);
  677. dst_mm->nr_ptes++;
  678. ret = 0;
  679. out_unlock:
  680. spin_unlock(&src_mm->page_table_lock);
  681. spin_unlock(&dst_mm->page_table_lock);
  682. out:
  683. return ret;
  684. }
  685. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  686. struct vm_area_struct *vma,
  687. unsigned long address,
  688. pmd_t *pmd, pmd_t orig_pmd,
  689. struct page *page,
  690. unsigned long haddr)
  691. {
  692. pgtable_t pgtable;
  693. pmd_t _pmd;
  694. int ret = 0, i;
  695. struct page **pages;
  696. unsigned long mmun_start; /* For mmu_notifiers */
  697. unsigned long mmun_end; /* For mmu_notifiers */
  698. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  699. GFP_KERNEL);
  700. if (unlikely(!pages)) {
  701. ret |= VM_FAULT_OOM;
  702. goto out;
  703. }
  704. for (i = 0; i < HPAGE_PMD_NR; i++) {
  705. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  706. __GFP_OTHER_NODE,
  707. vma, address, page_to_nid(page));
  708. if (unlikely(!pages[i] ||
  709. mem_cgroup_newpage_charge(pages[i], mm,
  710. GFP_KERNEL))) {
  711. if (pages[i])
  712. put_page(pages[i]);
  713. mem_cgroup_uncharge_start();
  714. while (--i >= 0) {
  715. mem_cgroup_uncharge_page(pages[i]);
  716. put_page(pages[i]);
  717. }
  718. mem_cgroup_uncharge_end();
  719. kfree(pages);
  720. ret |= VM_FAULT_OOM;
  721. goto out;
  722. }
  723. }
  724. for (i = 0; i < HPAGE_PMD_NR; i++) {
  725. copy_user_highpage(pages[i], page + i,
  726. haddr + PAGE_SIZE * i, vma);
  727. __SetPageUptodate(pages[i]);
  728. cond_resched();
  729. }
  730. mmun_start = haddr;
  731. mmun_end = haddr + HPAGE_PMD_SIZE;
  732. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  733. spin_lock(&mm->page_table_lock);
  734. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  735. goto out_free_pages;
  736. VM_BUG_ON(!PageHead(page));
  737. pmdp_clear_flush(vma, haddr, pmd);
  738. /* leave pmd empty until pte is filled */
  739. pgtable = pgtable_trans_huge_withdraw(mm);
  740. pmd_populate(mm, &_pmd, pgtable);
  741. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  742. pte_t *pte, entry;
  743. entry = mk_pte(pages[i], vma->vm_page_prot);
  744. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  745. page_add_new_anon_rmap(pages[i], vma, haddr);
  746. pte = pte_offset_map(&_pmd, haddr);
  747. VM_BUG_ON(!pte_none(*pte));
  748. set_pte_at(mm, haddr, pte, entry);
  749. pte_unmap(pte);
  750. }
  751. kfree(pages);
  752. smp_wmb(); /* make pte visible before pmd */
  753. pmd_populate(mm, pmd, pgtable);
  754. page_remove_rmap(page);
  755. spin_unlock(&mm->page_table_lock);
  756. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  757. ret |= VM_FAULT_WRITE;
  758. put_page(page);
  759. out:
  760. return ret;
  761. out_free_pages:
  762. spin_unlock(&mm->page_table_lock);
  763. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  764. mem_cgroup_uncharge_start();
  765. for (i = 0; i < HPAGE_PMD_NR; i++) {
  766. mem_cgroup_uncharge_page(pages[i]);
  767. put_page(pages[i]);
  768. }
  769. mem_cgroup_uncharge_end();
  770. kfree(pages);
  771. goto out;
  772. }
  773. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  774. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  775. {
  776. int ret = 0;
  777. struct page *page, *new_page;
  778. unsigned long haddr;
  779. unsigned long mmun_start; /* For mmu_notifiers */
  780. unsigned long mmun_end; /* For mmu_notifiers */
  781. VM_BUG_ON(!vma->anon_vma);
  782. spin_lock(&mm->page_table_lock);
  783. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  784. goto out_unlock;
  785. page = pmd_page(orig_pmd);
  786. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  787. haddr = address & HPAGE_PMD_MASK;
  788. if (page_mapcount(page) == 1) {
  789. pmd_t entry;
  790. entry = pmd_mkyoung(orig_pmd);
  791. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  792. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  793. update_mmu_cache_pmd(vma, address, pmd);
  794. ret |= VM_FAULT_WRITE;
  795. goto out_unlock;
  796. }
  797. get_page(page);
  798. spin_unlock(&mm->page_table_lock);
  799. if (transparent_hugepage_enabled(vma) &&
  800. !transparent_hugepage_debug_cow())
  801. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  802. vma, haddr, numa_node_id(), 0);
  803. else
  804. new_page = NULL;
  805. if (unlikely(!new_page)) {
  806. count_vm_event(THP_FAULT_FALLBACK);
  807. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  808. pmd, orig_pmd, page, haddr);
  809. if (ret & VM_FAULT_OOM)
  810. split_huge_page(page);
  811. put_page(page);
  812. goto out;
  813. }
  814. count_vm_event(THP_FAULT_ALLOC);
  815. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  816. put_page(new_page);
  817. split_huge_page(page);
  818. put_page(page);
  819. ret |= VM_FAULT_OOM;
  820. goto out;
  821. }
  822. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  823. __SetPageUptodate(new_page);
  824. mmun_start = haddr;
  825. mmun_end = haddr + HPAGE_PMD_SIZE;
  826. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  827. spin_lock(&mm->page_table_lock);
  828. put_page(page);
  829. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  830. spin_unlock(&mm->page_table_lock);
  831. mem_cgroup_uncharge_page(new_page);
  832. put_page(new_page);
  833. goto out_mn;
  834. } else {
  835. pmd_t entry;
  836. VM_BUG_ON(!PageHead(page));
  837. entry = mk_pmd(new_page, vma->vm_page_prot);
  838. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  839. entry = pmd_mkhuge(entry);
  840. pmdp_clear_flush(vma, haddr, pmd);
  841. page_add_new_anon_rmap(new_page, vma, haddr);
  842. set_pmd_at(mm, haddr, pmd, entry);
  843. update_mmu_cache_pmd(vma, address, pmd);
  844. page_remove_rmap(page);
  845. put_page(page);
  846. ret |= VM_FAULT_WRITE;
  847. }
  848. spin_unlock(&mm->page_table_lock);
  849. out_mn:
  850. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  851. out:
  852. return ret;
  853. out_unlock:
  854. spin_unlock(&mm->page_table_lock);
  855. return ret;
  856. }
  857. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  858. unsigned long addr,
  859. pmd_t *pmd,
  860. unsigned int flags)
  861. {
  862. struct mm_struct *mm = vma->vm_mm;
  863. struct page *page = NULL;
  864. assert_spin_locked(&mm->page_table_lock);
  865. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  866. goto out;
  867. page = pmd_page(*pmd);
  868. VM_BUG_ON(!PageHead(page));
  869. if (flags & FOLL_TOUCH) {
  870. pmd_t _pmd;
  871. /*
  872. * We should set the dirty bit only for FOLL_WRITE but
  873. * for now the dirty bit in the pmd is meaningless.
  874. * And if the dirty bit will become meaningful and
  875. * we'll only set it with FOLL_WRITE, an atomic
  876. * set_bit will be required on the pmd to set the
  877. * young bit, instead of the current set_pmd_at.
  878. */
  879. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  880. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  881. }
  882. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  883. if (page->mapping && trylock_page(page)) {
  884. lru_add_drain();
  885. if (page->mapping)
  886. mlock_vma_page(page);
  887. unlock_page(page);
  888. }
  889. }
  890. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  891. VM_BUG_ON(!PageCompound(page));
  892. if (flags & FOLL_GET)
  893. get_page_foll(page);
  894. out:
  895. return page;
  896. }
  897. /* NUMA hinting page fault entry point for trans huge pmds */
  898. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  899. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  900. {
  901. struct page *page;
  902. unsigned long haddr = addr & HPAGE_PMD_MASK;
  903. int target_nid;
  904. int current_nid = -1;
  905. bool migrated;
  906. bool page_locked = false;
  907. spin_lock(&mm->page_table_lock);
  908. if (unlikely(!pmd_same(pmd, *pmdp)))
  909. goto out_unlock;
  910. page = pmd_page(pmd);
  911. get_page(page);
  912. current_nid = page_to_nid(page);
  913. count_vm_numa_event(NUMA_HINT_FAULTS);
  914. if (current_nid == numa_node_id())
  915. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  916. target_nid = mpol_misplaced(page, vma, haddr);
  917. if (target_nid == -1) {
  918. put_page(page);
  919. goto clear_pmdnuma;
  920. }
  921. /* Acquire the page lock to serialise THP migrations */
  922. spin_unlock(&mm->page_table_lock);
  923. lock_page(page);
  924. page_locked = true;
  925. /* Confirm the PTE did not while locked */
  926. spin_lock(&mm->page_table_lock);
  927. if (unlikely(!pmd_same(pmd, *pmdp))) {
  928. unlock_page(page);
  929. put_page(page);
  930. goto out_unlock;
  931. }
  932. spin_unlock(&mm->page_table_lock);
  933. /* Migrate the THP to the requested node */
  934. migrated = migrate_misplaced_transhuge_page(mm, vma,
  935. pmdp, pmd, addr,
  936. page, target_nid);
  937. if (migrated)
  938. current_nid = target_nid;
  939. else {
  940. spin_lock(&mm->page_table_lock);
  941. if (unlikely(!pmd_same(pmd, *pmdp))) {
  942. unlock_page(page);
  943. goto out_unlock;
  944. }
  945. goto clear_pmdnuma;
  946. }
  947. task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
  948. return 0;
  949. clear_pmdnuma:
  950. pmd = pmd_mknonnuma(pmd);
  951. set_pmd_at(mm, haddr, pmdp, pmd);
  952. VM_BUG_ON(pmd_numa(*pmdp));
  953. update_mmu_cache_pmd(vma, addr, pmdp);
  954. if (page_locked)
  955. unlock_page(page);
  956. out_unlock:
  957. spin_unlock(&mm->page_table_lock);
  958. if (current_nid != -1)
  959. task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
  960. return 0;
  961. }
  962. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  963. pmd_t *pmd, unsigned long addr)
  964. {
  965. int ret = 0;
  966. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  967. struct page *page;
  968. pgtable_t pgtable;
  969. pmd_t orig_pmd;
  970. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  971. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  972. page = pmd_page(orig_pmd);
  973. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  974. page_remove_rmap(page);
  975. VM_BUG_ON(page_mapcount(page) < 0);
  976. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  977. VM_BUG_ON(!PageHead(page));
  978. tlb->mm->nr_ptes--;
  979. spin_unlock(&tlb->mm->page_table_lock);
  980. tlb_remove_page(tlb, page);
  981. pte_free(tlb->mm, pgtable);
  982. ret = 1;
  983. }
  984. return ret;
  985. }
  986. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  987. unsigned long addr, unsigned long end,
  988. unsigned char *vec)
  989. {
  990. int ret = 0;
  991. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  992. /*
  993. * All logical pages in the range are present
  994. * if backed by a huge page.
  995. */
  996. spin_unlock(&vma->vm_mm->page_table_lock);
  997. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  998. ret = 1;
  999. }
  1000. return ret;
  1001. }
  1002. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1003. unsigned long old_addr,
  1004. unsigned long new_addr, unsigned long old_end,
  1005. pmd_t *old_pmd, pmd_t *new_pmd)
  1006. {
  1007. int ret = 0;
  1008. pmd_t pmd;
  1009. struct mm_struct *mm = vma->vm_mm;
  1010. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1011. (new_addr & ~HPAGE_PMD_MASK) ||
  1012. old_end - old_addr < HPAGE_PMD_SIZE ||
  1013. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1014. goto out;
  1015. /*
  1016. * The destination pmd shouldn't be established, free_pgtables()
  1017. * should have release it.
  1018. */
  1019. if (WARN_ON(!pmd_none(*new_pmd))) {
  1020. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1021. goto out;
  1022. }
  1023. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1024. if (ret == 1) {
  1025. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1026. VM_BUG_ON(!pmd_none(*new_pmd));
  1027. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1028. spin_unlock(&mm->page_table_lock);
  1029. }
  1030. out:
  1031. return ret;
  1032. }
  1033. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1034. unsigned long addr, pgprot_t newprot, int prot_numa)
  1035. {
  1036. struct mm_struct *mm = vma->vm_mm;
  1037. int ret = 0;
  1038. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1039. pmd_t entry;
  1040. entry = pmdp_get_and_clear(mm, addr, pmd);
  1041. if (!prot_numa)
  1042. entry = pmd_modify(entry, newprot);
  1043. else {
  1044. struct page *page = pmd_page(*pmd);
  1045. /* only check non-shared pages */
  1046. if (page_mapcount(page) == 1 &&
  1047. !pmd_numa(*pmd)) {
  1048. entry = pmd_mknuma(entry);
  1049. }
  1050. }
  1051. set_pmd_at(mm, addr, pmd, entry);
  1052. spin_unlock(&vma->vm_mm->page_table_lock);
  1053. ret = 1;
  1054. }
  1055. return ret;
  1056. }
  1057. /*
  1058. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1059. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1060. *
  1061. * Note that if it returns 1, this routine returns without unlocking page
  1062. * table locks. So callers must unlock them.
  1063. */
  1064. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1065. {
  1066. spin_lock(&vma->vm_mm->page_table_lock);
  1067. if (likely(pmd_trans_huge(*pmd))) {
  1068. if (unlikely(pmd_trans_splitting(*pmd))) {
  1069. spin_unlock(&vma->vm_mm->page_table_lock);
  1070. wait_split_huge_page(vma->anon_vma, pmd);
  1071. return -1;
  1072. } else {
  1073. /* Thp mapped by 'pmd' is stable, so we can
  1074. * handle it as it is. */
  1075. return 1;
  1076. }
  1077. }
  1078. spin_unlock(&vma->vm_mm->page_table_lock);
  1079. return 0;
  1080. }
  1081. pmd_t *page_check_address_pmd(struct page *page,
  1082. struct mm_struct *mm,
  1083. unsigned long address,
  1084. enum page_check_address_pmd_flag flag)
  1085. {
  1086. pgd_t *pgd;
  1087. pud_t *pud;
  1088. pmd_t *pmd, *ret = NULL;
  1089. if (address & ~HPAGE_PMD_MASK)
  1090. goto out;
  1091. pgd = pgd_offset(mm, address);
  1092. if (!pgd_present(*pgd))
  1093. goto out;
  1094. pud = pud_offset(pgd, address);
  1095. if (!pud_present(*pud))
  1096. goto out;
  1097. pmd = pmd_offset(pud, address);
  1098. if (pmd_none(*pmd))
  1099. goto out;
  1100. if (pmd_page(*pmd) != page)
  1101. goto out;
  1102. /*
  1103. * split_vma() may create temporary aliased mappings. There is
  1104. * no risk as long as all huge pmd are found and have their
  1105. * splitting bit set before __split_huge_page_refcount
  1106. * runs. Finding the same huge pmd more than once during the
  1107. * same rmap walk is not a problem.
  1108. */
  1109. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1110. pmd_trans_splitting(*pmd))
  1111. goto out;
  1112. if (pmd_trans_huge(*pmd)) {
  1113. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1114. !pmd_trans_splitting(*pmd));
  1115. ret = pmd;
  1116. }
  1117. out:
  1118. return ret;
  1119. }
  1120. static int __split_huge_page_splitting(struct page *page,
  1121. struct vm_area_struct *vma,
  1122. unsigned long address)
  1123. {
  1124. struct mm_struct *mm = vma->vm_mm;
  1125. pmd_t *pmd;
  1126. int ret = 0;
  1127. /* For mmu_notifiers */
  1128. const unsigned long mmun_start = address;
  1129. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1130. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1131. spin_lock(&mm->page_table_lock);
  1132. pmd = page_check_address_pmd(page, mm, address,
  1133. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1134. if (pmd) {
  1135. /*
  1136. * We can't temporarily set the pmd to null in order
  1137. * to split it, the pmd must remain marked huge at all
  1138. * times or the VM won't take the pmd_trans_huge paths
  1139. * and it won't wait on the anon_vma->root->mutex to
  1140. * serialize against split_huge_page*.
  1141. */
  1142. pmdp_splitting_flush(vma, address, pmd);
  1143. ret = 1;
  1144. }
  1145. spin_unlock(&mm->page_table_lock);
  1146. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1147. return ret;
  1148. }
  1149. static void __split_huge_page_refcount(struct page *page)
  1150. {
  1151. int i;
  1152. struct zone *zone = page_zone(page);
  1153. struct lruvec *lruvec;
  1154. int tail_count = 0;
  1155. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1156. spin_lock_irq(&zone->lru_lock);
  1157. lruvec = mem_cgroup_page_lruvec(page, zone);
  1158. compound_lock(page);
  1159. /* complete memcg works before add pages to LRU */
  1160. mem_cgroup_split_huge_fixup(page);
  1161. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1162. struct page *page_tail = page + i;
  1163. /* tail_page->_mapcount cannot change */
  1164. BUG_ON(page_mapcount(page_tail) < 0);
  1165. tail_count += page_mapcount(page_tail);
  1166. /* check for overflow */
  1167. BUG_ON(tail_count < 0);
  1168. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1169. /*
  1170. * tail_page->_count is zero and not changing from
  1171. * under us. But get_page_unless_zero() may be running
  1172. * from under us on the tail_page. If we used
  1173. * atomic_set() below instead of atomic_add(), we
  1174. * would then run atomic_set() concurrently with
  1175. * get_page_unless_zero(), and atomic_set() is
  1176. * implemented in C not using locked ops. spin_unlock
  1177. * on x86 sometime uses locked ops because of PPro
  1178. * errata 66, 92, so unless somebody can guarantee
  1179. * atomic_set() here would be safe on all archs (and
  1180. * not only on x86), it's safer to use atomic_add().
  1181. */
  1182. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1183. &page_tail->_count);
  1184. /* after clearing PageTail the gup refcount can be released */
  1185. smp_mb();
  1186. /*
  1187. * retain hwpoison flag of the poisoned tail page:
  1188. * fix for the unsuitable process killed on Guest Machine(KVM)
  1189. * by the memory-failure.
  1190. */
  1191. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1192. page_tail->flags |= (page->flags &
  1193. ((1L << PG_referenced) |
  1194. (1L << PG_swapbacked) |
  1195. (1L << PG_mlocked) |
  1196. (1L << PG_uptodate)));
  1197. page_tail->flags |= (1L << PG_dirty);
  1198. /* clear PageTail before overwriting first_page */
  1199. smp_wmb();
  1200. /*
  1201. * __split_huge_page_splitting() already set the
  1202. * splitting bit in all pmd that could map this
  1203. * hugepage, that will ensure no CPU can alter the
  1204. * mapcount on the head page. The mapcount is only
  1205. * accounted in the head page and it has to be
  1206. * transferred to all tail pages in the below code. So
  1207. * for this code to be safe, the split the mapcount
  1208. * can't change. But that doesn't mean userland can't
  1209. * keep changing and reading the page contents while
  1210. * we transfer the mapcount, so the pmd splitting
  1211. * status is achieved setting a reserved bit in the
  1212. * pmd, not by clearing the present bit.
  1213. */
  1214. page_tail->_mapcount = page->_mapcount;
  1215. BUG_ON(page_tail->mapping);
  1216. page_tail->mapping = page->mapping;
  1217. page_tail->index = page->index + i;
  1218. page_xchg_last_nid(page_tail, page_last_nid(page));
  1219. BUG_ON(!PageAnon(page_tail));
  1220. BUG_ON(!PageUptodate(page_tail));
  1221. BUG_ON(!PageDirty(page_tail));
  1222. BUG_ON(!PageSwapBacked(page_tail));
  1223. lru_add_page_tail(page, page_tail, lruvec);
  1224. }
  1225. atomic_sub(tail_count, &page->_count);
  1226. BUG_ON(atomic_read(&page->_count) <= 0);
  1227. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1228. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1229. ClearPageCompound(page);
  1230. compound_unlock(page);
  1231. spin_unlock_irq(&zone->lru_lock);
  1232. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1233. struct page *page_tail = page + i;
  1234. BUG_ON(page_count(page_tail) <= 0);
  1235. /*
  1236. * Tail pages may be freed if there wasn't any mapping
  1237. * like if add_to_swap() is running on a lru page that
  1238. * had its mapping zapped. And freeing these pages
  1239. * requires taking the lru_lock so we do the put_page
  1240. * of the tail pages after the split is complete.
  1241. */
  1242. put_page(page_tail);
  1243. }
  1244. /*
  1245. * Only the head page (now become a regular page) is required
  1246. * to be pinned by the caller.
  1247. */
  1248. BUG_ON(page_count(page) <= 0);
  1249. }
  1250. static int __split_huge_page_map(struct page *page,
  1251. struct vm_area_struct *vma,
  1252. unsigned long address)
  1253. {
  1254. struct mm_struct *mm = vma->vm_mm;
  1255. pmd_t *pmd, _pmd;
  1256. int ret = 0, i;
  1257. pgtable_t pgtable;
  1258. unsigned long haddr;
  1259. spin_lock(&mm->page_table_lock);
  1260. pmd = page_check_address_pmd(page, mm, address,
  1261. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1262. if (pmd) {
  1263. pgtable = pgtable_trans_huge_withdraw(mm);
  1264. pmd_populate(mm, &_pmd, pgtable);
  1265. haddr = address;
  1266. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1267. pte_t *pte, entry;
  1268. BUG_ON(PageCompound(page+i));
  1269. entry = mk_pte(page + i, vma->vm_page_prot);
  1270. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1271. if (!pmd_write(*pmd))
  1272. entry = pte_wrprotect(entry);
  1273. else
  1274. BUG_ON(page_mapcount(page) != 1);
  1275. if (!pmd_young(*pmd))
  1276. entry = pte_mkold(entry);
  1277. if (pmd_numa(*pmd))
  1278. entry = pte_mknuma(entry);
  1279. pte = pte_offset_map(&_pmd, haddr);
  1280. BUG_ON(!pte_none(*pte));
  1281. set_pte_at(mm, haddr, pte, entry);
  1282. pte_unmap(pte);
  1283. }
  1284. smp_wmb(); /* make pte visible before pmd */
  1285. /*
  1286. * Up to this point the pmd is present and huge and
  1287. * userland has the whole access to the hugepage
  1288. * during the split (which happens in place). If we
  1289. * overwrite the pmd with the not-huge version
  1290. * pointing to the pte here (which of course we could
  1291. * if all CPUs were bug free), userland could trigger
  1292. * a small page size TLB miss on the small sized TLB
  1293. * while the hugepage TLB entry is still established
  1294. * in the huge TLB. Some CPU doesn't like that. See
  1295. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1296. * Erratum 383 on page 93. Intel should be safe but is
  1297. * also warns that it's only safe if the permission
  1298. * and cache attributes of the two entries loaded in
  1299. * the two TLB is identical (which should be the case
  1300. * here). But it is generally safer to never allow
  1301. * small and huge TLB entries for the same virtual
  1302. * address to be loaded simultaneously. So instead of
  1303. * doing "pmd_populate(); flush_tlb_range();" we first
  1304. * mark the current pmd notpresent (atomically because
  1305. * here the pmd_trans_huge and pmd_trans_splitting
  1306. * must remain set at all times on the pmd until the
  1307. * split is complete for this pmd), then we flush the
  1308. * SMP TLB and finally we write the non-huge version
  1309. * of the pmd entry with pmd_populate.
  1310. */
  1311. pmdp_invalidate(vma, address, pmd);
  1312. pmd_populate(mm, pmd, pgtable);
  1313. ret = 1;
  1314. }
  1315. spin_unlock(&mm->page_table_lock);
  1316. return ret;
  1317. }
  1318. /* must be called with anon_vma->root->mutex hold */
  1319. static void __split_huge_page(struct page *page,
  1320. struct anon_vma *anon_vma)
  1321. {
  1322. int mapcount, mapcount2;
  1323. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1324. struct anon_vma_chain *avc;
  1325. BUG_ON(!PageHead(page));
  1326. BUG_ON(PageTail(page));
  1327. mapcount = 0;
  1328. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1329. struct vm_area_struct *vma = avc->vma;
  1330. unsigned long addr = vma_address(page, vma);
  1331. BUG_ON(is_vma_temporary_stack(vma));
  1332. mapcount += __split_huge_page_splitting(page, vma, addr);
  1333. }
  1334. /*
  1335. * It is critical that new vmas are added to the tail of the
  1336. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1337. * and establishes a child pmd before
  1338. * __split_huge_page_splitting() freezes the parent pmd (so if
  1339. * we fail to prevent copy_huge_pmd() from running until the
  1340. * whole __split_huge_page() is complete), we will still see
  1341. * the newly established pmd of the child later during the
  1342. * walk, to be able to set it as pmd_trans_splitting too.
  1343. */
  1344. if (mapcount != page_mapcount(page))
  1345. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1346. mapcount, page_mapcount(page));
  1347. BUG_ON(mapcount != page_mapcount(page));
  1348. __split_huge_page_refcount(page);
  1349. mapcount2 = 0;
  1350. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1351. struct vm_area_struct *vma = avc->vma;
  1352. unsigned long addr = vma_address(page, vma);
  1353. BUG_ON(is_vma_temporary_stack(vma));
  1354. mapcount2 += __split_huge_page_map(page, vma, addr);
  1355. }
  1356. if (mapcount != mapcount2)
  1357. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1358. mapcount, mapcount2, page_mapcount(page));
  1359. BUG_ON(mapcount != mapcount2);
  1360. }
  1361. int split_huge_page(struct page *page)
  1362. {
  1363. struct anon_vma *anon_vma;
  1364. int ret = 1;
  1365. BUG_ON(!PageAnon(page));
  1366. anon_vma = page_lock_anon_vma(page);
  1367. if (!anon_vma)
  1368. goto out;
  1369. ret = 0;
  1370. if (!PageCompound(page))
  1371. goto out_unlock;
  1372. BUG_ON(!PageSwapBacked(page));
  1373. __split_huge_page(page, anon_vma);
  1374. count_vm_event(THP_SPLIT);
  1375. BUG_ON(PageCompound(page));
  1376. out_unlock:
  1377. page_unlock_anon_vma(anon_vma);
  1378. out:
  1379. return ret;
  1380. }
  1381. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1382. int hugepage_madvise(struct vm_area_struct *vma,
  1383. unsigned long *vm_flags, int advice)
  1384. {
  1385. struct mm_struct *mm = vma->vm_mm;
  1386. switch (advice) {
  1387. case MADV_HUGEPAGE:
  1388. /*
  1389. * Be somewhat over-protective like KSM for now!
  1390. */
  1391. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1392. return -EINVAL;
  1393. if (mm->def_flags & VM_NOHUGEPAGE)
  1394. return -EINVAL;
  1395. *vm_flags &= ~VM_NOHUGEPAGE;
  1396. *vm_flags |= VM_HUGEPAGE;
  1397. /*
  1398. * If the vma become good for khugepaged to scan,
  1399. * register it here without waiting a page fault that
  1400. * may not happen any time soon.
  1401. */
  1402. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1403. return -ENOMEM;
  1404. break;
  1405. case MADV_NOHUGEPAGE:
  1406. /*
  1407. * Be somewhat over-protective like KSM for now!
  1408. */
  1409. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1410. return -EINVAL;
  1411. *vm_flags &= ~VM_HUGEPAGE;
  1412. *vm_flags |= VM_NOHUGEPAGE;
  1413. /*
  1414. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1415. * this vma even if we leave the mm registered in khugepaged if
  1416. * it got registered before VM_NOHUGEPAGE was set.
  1417. */
  1418. break;
  1419. }
  1420. return 0;
  1421. }
  1422. static int __init khugepaged_slab_init(void)
  1423. {
  1424. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1425. sizeof(struct mm_slot),
  1426. __alignof__(struct mm_slot), 0, NULL);
  1427. if (!mm_slot_cache)
  1428. return -ENOMEM;
  1429. return 0;
  1430. }
  1431. static void __init khugepaged_slab_free(void)
  1432. {
  1433. kmem_cache_destroy(mm_slot_cache);
  1434. mm_slot_cache = NULL;
  1435. }
  1436. static inline struct mm_slot *alloc_mm_slot(void)
  1437. {
  1438. if (!mm_slot_cache) /* initialization failed */
  1439. return NULL;
  1440. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1441. }
  1442. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1443. {
  1444. kmem_cache_free(mm_slot_cache, mm_slot);
  1445. }
  1446. static int __init mm_slots_hash_init(void)
  1447. {
  1448. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1449. GFP_KERNEL);
  1450. if (!mm_slots_hash)
  1451. return -ENOMEM;
  1452. return 0;
  1453. }
  1454. #if 0
  1455. static void __init mm_slots_hash_free(void)
  1456. {
  1457. kfree(mm_slots_hash);
  1458. mm_slots_hash = NULL;
  1459. }
  1460. #endif
  1461. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1462. {
  1463. struct mm_slot *mm_slot;
  1464. struct hlist_head *bucket;
  1465. struct hlist_node *node;
  1466. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1467. % MM_SLOTS_HASH_HEADS];
  1468. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1469. if (mm == mm_slot->mm)
  1470. return mm_slot;
  1471. }
  1472. return NULL;
  1473. }
  1474. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1475. struct mm_slot *mm_slot)
  1476. {
  1477. struct hlist_head *bucket;
  1478. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1479. % MM_SLOTS_HASH_HEADS];
  1480. mm_slot->mm = mm;
  1481. hlist_add_head(&mm_slot->hash, bucket);
  1482. }
  1483. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1484. {
  1485. return atomic_read(&mm->mm_users) == 0;
  1486. }
  1487. int __khugepaged_enter(struct mm_struct *mm)
  1488. {
  1489. struct mm_slot *mm_slot;
  1490. int wakeup;
  1491. mm_slot = alloc_mm_slot();
  1492. if (!mm_slot)
  1493. return -ENOMEM;
  1494. /* __khugepaged_exit() must not run from under us */
  1495. VM_BUG_ON(khugepaged_test_exit(mm));
  1496. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1497. free_mm_slot(mm_slot);
  1498. return 0;
  1499. }
  1500. spin_lock(&khugepaged_mm_lock);
  1501. insert_to_mm_slots_hash(mm, mm_slot);
  1502. /*
  1503. * Insert just behind the scanning cursor, to let the area settle
  1504. * down a little.
  1505. */
  1506. wakeup = list_empty(&khugepaged_scan.mm_head);
  1507. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1508. spin_unlock(&khugepaged_mm_lock);
  1509. atomic_inc(&mm->mm_count);
  1510. if (wakeup)
  1511. wake_up_interruptible(&khugepaged_wait);
  1512. return 0;
  1513. }
  1514. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1515. {
  1516. unsigned long hstart, hend;
  1517. if (!vma->anon_vma)
  1518. /*
  1519. * Not yet faulted in so we will register later in the
  1520. * page fault if needed.
  1521. */
  1522. return 0;
  1523. if (vma->vm_ops)
  1524. /* khugepaged not yet working on file or special mappings */
  1525. return 0;
  1526. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1527. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1528. hend = vma->vm_end & HPAGE_PMD_MASK;
  1529. if (hstart < hend)
  1530. return khugepaged_enter(vma);
  1531. return 0;
  1532. }
  1533. void __khugepaged_exit(struct mm_struct *mm)
  1534. {
  1535. struct mm_slot *mm_slot;
  1536. int free = 0;
  1537. spin_lock(&khugepaged_mm_lock);
  1538. mm_slot = get_mm_slot(mm);
  1539. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1540. hlist_del(&mm_slot->hash);
  1541. list_del(&mm_slot->mm_node);
  1542. free = 1;
  1543. }
  1544. spin_unlock(&khugepaged_mm_lock);
  1545. if (free) {
  1546. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1547. free_mm_slot(mm_slot);
  1548. mmdrop(mm);
  1549. } else if (mm_slot) {
  1550. /*
  1551. * This is required to serialize against
  1552. * khugepaged_test_exit() (which is guaranteed to run
  1553. * under mmap sem read mode). Stop here (after we
  1554. * return all pagetables will be destroyed) until
  1555. * khugepaged has finished working on the pagetables
  1556. * under the mmap_sem.
  1557. */
  1558. down_write(&mm->mmap_sem);
  1559. up_write(&mm->mmap_sem);
  1560. }
  1561. }
  1562. static void release_pte_page(struct page *page)
  1563. {
  1564. /* 0 stands for page_is_file_cache(page) == false */
  1565. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1566. unlock_page(page);
  1567. putback_lru_page(page);
  1568. }
  1569. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1570. {
  1571. while (--_pte >= pte) {
  1572. pte_t pteval = *_pte;
  1573. if (!pte_none(pteval))
  1574. release_pte_page(pte_page(pteval));
  1575. }
  1576. }
  1577. static void release_all_pte_pages(pte_t *pte)
  1578. {
  1579. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1580. }
  1581. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1582. unsigned long address,
  1583. pte_t *pte)
  1584. {
  1585. struct page *page;
  1586. pte_t *_pte;
  1587. int referenced = 0, isolated = 0, none = 0;
  1588. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1589. _pte++, address += PAGE_SIZE) {
  1590. pte_t pteval = *_pte;
  1591. if (pte_none(pteval)) {
  1592. if (++none <= khugepaged_max_ptes_none)
  1593. continue;
  1594. else {
  1595. release_pte_pages(pte, _pte);
  1596. goto out;
  1597. }
  1598. }
  1599. if (!pte_present(pteval) || !pte_write(pteval)) {
  1600. release_pte_pages(pte, _pte);
  1601. goto out;
  1602. }
  1603. page = vm_normal_page(vma, address, pteval);
  1604. if (unlikely(!page)) {
  1605. release_pte_pages(pte, _pte);
  1606. goto out;
  1607. }
  1608. VM_BUG_ON(PageCompound(page));
  1609. BUG_ON(!PageAnon(page));
  1610. VM_BUG_ON(!PageSwapBacked(page));
  1611. /* cannot use mapcount: can't collapse if there's a gup pin */
  1612. if (page_count(page) != 1) {
  1613. release_pte_pages(pte, _pte);
  1614. goto out;
  1615. }
  1616. /*
  1617. * We can do it before isolate_lru_page because the
  1618. * page can't be freed from under us. NOTE: PG_lock
  1619. * is needed to serialize against split_huge_page
  1620. * when invoked from the VM.
  1621. */
  1622. if (!trylock_page(page)) {
  1623. release_pte_pages(pte, _pte);
  1624. goto out;
  1625. }
  1626. /*
  1627. * Isolate the page to avoid collapsing an hugepage
  1628. * currently in use by the VM.
  1629. */
  1630. if (isolate_lru_page(page)) {
  1631. unlock_page(page);
  1632. release_pte_pages(pte, _pte);
  1633. goto out;
  1634. }
  1635. /* 0 stands for page_is_file_cache(page) == false */
  1636. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1637. VM_BUG_ON(!PageLocked(page));
  1638. VM_BUG_ON(PageLRU(page));
  1639. /* If there is no mapped pte young don't collapse the page */
  1640. if (pte_young(pteval) || PageReferenced(page) ||
  1641. mmu_notifier_test_young(vma->vm_mm, address))
  1642. referenced = 1;
  1643. }
  1644. if (unlikely(!referenced))
  1645. release_all_pte_pages(pte);
  1646. else
  1647. isolated = 1;
  1648. out:
  1649. return isolated;
  1650. }
  1651. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1652. struct vm_area_struct *vma,
  1653. unsigned long address,
  1654. spinlock_t *ptl)
  1655. {
  1656. pte_t *_pte;
  1657. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1658. pte_t pteval = *_pte;
  1659. struct page *src_page;
  1660. if (pte_none(pteval)) {
  1661. clear_user_highpage(page, address);
  1662. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1663. } else {
  1664. src_page = pte_page(pteval);
  1665. copy_user_highpage(page, src_page, address, vma);
  1666. VM_BUG_ON(page_mapcount(src_page) != 1);
  1667. release_pte_page(src_page);
  1668. /*
  1669. * ptl mostly unnecessary, but preempt has to
  1670. * be disabled to update the per-cpu stats
  1671. * inside page_remove_rmap().
  1672. */
  1673. spin_lock(ptl);
  1674. /*
  1675. * paravirt calls inside pte_clear here are
  1676. * superfluous.
  1677. */
  1678. pte_clear(vma->vm_mm, address, _pte);
  1679. page_remove_rmap(src_page);
  1680. spin_unlock(ptl);
  1681. free_page_and_swap_cache(src_page);
  1682. }
  1683. address += PAGE_SIZE;
  1684. page++;
  1685. }
  1686. }
  1687. static void khugepaged_alloc_sleep(void)
  1688. {
  1689. wait_event_freezable_timeout(khugepaged_wait, false,
  1690. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1691. }
  1692. #ifdef CONFIG_NUMA
  1693. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1694. {
  1695. if (IS_ERR(*hpage)) {
  1696. if (!*wait)
  1697. return false;
  1698. *wait = false;
  1699. *hpage = NULL;
  1700. khugepaged_alloc_sleep();
  1701. } else if (*hpage) {
  1702. put_page(*hpage);
  1703. *hpage = NULL;
  1704. }
  1705. return true;
  1706. }
  1707. static struct page
  1708. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1709. struct vm_area_struct *vma, unsigned long address,
  1710. int node)
  1711. {
  1712. VM_BUG_ON(*hpage);
  1713. /*
  1714. * Allocate the page while the vma is still valid and under
  1715. * the mmap_sem read mode so there is no memory allocation
  1716. * later when we take the mmap_sem in write mode. This is more
  1717. * friendly behavior (OTOH it may actually hide bugs) to
  1718. * filesystems in userland with daemons allocating memory in
  1719. * the userland I/O paths. Allocating memory with the
  1720. * mmap_sem in read mode is good idea also to allow greater
  1721. * scalability.
  1722. */
  1723. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1724. node, __GFP_OTHER_NODE);
  1725. /*
  1726. * After allocating the hugepage, release the mmap_sem read lock in
  1727. * preparation for taking it in write mode.
  1728. */
  1729. up_read(&mm->mmap_sem);
  1730. if (unlikely(!*hpage)) {
  1731. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1732. *hpage = ERR_PTR(-ENOMEM);
  1733. return NULL;
  1734. }
  1735. count_vm_event(THP_COLLAPSE_ALLOC);
  1736. return *hpage;
  1737. }
  1738. #else
  1739. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1740. {
  1741. struct page *hpage;
  1742. do {
  1743. hpage = alloc_hugepage(khugepaged_defrag());
  1744. if (!hpage) {
  1745. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1746. if (!*wait)
  1747. return NULL;
  1748. *wait = false;
  1749. khugepaged_alloc_sleep();
  1750. } else
  1751. count_vm_event(THP_COLLAPSE_ALLOC);
  1752. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1753. return hpage;
  1754. }
  1755. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1756. {
  1757. if (!*hpage)
  1758. *hpage = khugepaged_alloc_hugepage(wait);
  1759. if (unlikely(!*hpage))
  1760. return false;
  1761. return true;
  1762. }
  1763. static struct page
  1764. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1765. struct vm_area_struct *vma, unsigned long address,
  1766. int node)
  1767. {
  1768. up_read(&mm->mmap_sem);
  1769. VM_BUG_ON(!*hpage);
  1770. return *hpage;
  1771. }
  1772. #endif
  1773. static void collapse_huge_page(struct mm_struct *mm,
  1774. unsigned long address,
  1775. struct page **hpage,
  1776. struct vm_area_struct *vma,
  1777. int node)
  1778. {
  1779. pgd_t *pgd;
  1780. pud_t *pud;
  1781. pmd_t *pmd, _pmd;
  1782. pte_t *pte;
  1783. pgtable_t pgtable;
  1784. struct page *new_page;
  1785. spinlock_t *ptl;
  1786. int isolated;
  1787. unsigned long hstart, hend;
  1788. unsigned long mmun_start; /* For mmu_notifiers */
  1789. unsigned long mmun_end; /* For mmu_notifiers */
  1790. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1791. /* release the mmap_sem read lock. */
  1792. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1793. if (!new_page)
  1794. return;
  1795. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1796. return;
  1797. /*
  1798. * Prevent all access to pagetables with the exception of
  1799. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1800. * handled by the anon_vma lock + PG_lock.
  1801. */
  1802. down_write(&mm->mmap_sem);
  1803. if (unlikely(khugepaged_test_exit(mm)))
  1804. goto out;
  1805. vma = find_vma(mm, address);
  1806. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1807. hend = vma->vm_end & HPAGE_PMD_MASK;
  1808. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1809. goto out;
  1810. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1811. (vma->vm_flags & VM_NOHUGEPAGE))
  1812. goto out;
  1813. if (!vma->anon_vma || vma->vm_ops)
  1814. goto out;
  1815. if (is_vma_temporary_stack(vma))
  1816. goto out;
  1817. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1818. pgd = pgd_offset(mm, address);
  1819. if (!pgd_present(*pgd))
  1820. goto out;
  1821. pud = pud_offset(pgd, address);
  1822. if (!pud_present(*pud))
  1823. goto out;
  1824. pmd = pmd_offset(pud, address);
  1825. /* pmd can't go away or become huge under us */
  1826. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1827. goto out;
  1828. anon_vma_lock(vma->anon_vma);
  1829. pte = pte_offset_map(pmd, address);
  1830. ptl = pte_lockptr(mm, pmd);
  1831. mmun_start = address;
  1832. mmun_end = address + HPAGE_PMD_SIZE;
  1833. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1834. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1835. /*
  1836. * After this gup_fast can't run anymore. This also removes
  1837. * any huge TLB entry from the CPU so we won't allow
  1838. * huge and small TLB entries for the same virtual address
  1839. * to avoid the risk of CPU bugs in that area.
  1840. */
  1841. _pmd = pmdp_clear_flush(vma, address, pmd);
  1842. spin_unlock(&mm->page_table_lock);
  1843. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1844. spin_lock(ptl);
  1845. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1846. spin_unlock(ptl);
  1847. if (unlikely(!isolated)) {
  1848. pte_unmap(pte);
  1849. spin_lock(&mm->page_table_lock);
  1850. BUG_ON(!pmd_none(*pmd));
  1851. set_pmd_at(mm, address, pmd, _pmd);
  1852. spin_unlock(&mm->page_table_lock);
  1853. anon_vma_unlock(vma->anon_vma);
  1854. goto out;
  1855. }
  1856. /*
  1857. * All pages are isolated and locked so anon_vma rmap
  1858. * can't run anymore.
  1859. */
  1860. anon_vma_unlock(vma->anon_vma);
  1861. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1862. pte_unmap(pte);
  1863. __SetPageUptodate(new_page);
  1864. pgtable = pmd_pgtable(_pmd);
  1865. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1866. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1867. _pmd = pmd_mkhuge(_pmd);
  1868. /*
  1869. * spin_lock() below is not the equivalent of smp_wmb(), so
  1870. * this is needed to avoid the copy_huge_page writes to become
  1871. * visible after the set_pmd_at() write.
  1872. */
  1873. smp_wmb();
  1874. spin_lock(&mm->page_table_lock);
  1875. BUG_ON(!pmd_none(*pmd));
  1876. page_add_new_anon_rmap(new_page, vma, address);
  1877. set_pmd_at(mm, address, pmd, _pmd);
  1878. update_mmu_cache_pmd(vma, address, pmd);
  1879. pgtable_trans_huge_deposit(mm, pgtable);
  1880. spin_unlock(&mm->page_table_lock);
  1881. *hpage = NULL;
  1882. khugepaged_pages_collapsed++;
  1883. out_up_write:
  1884. up_write(&mm->mmap_sem);
  1885. return;
  1886. out:
  1887. mem_cgroup_uncharge_page(new_page);
  1888. goto out_up_write;
  1889. }
  1890. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1891. struct vm_area_struct *vma,
  1892. unsigned long address,
  1893. struct page **hpage)
  1894. {
  1895. pgd_t *pgd;
  1896. pud_t *pud;
  1897. pmd_t *pmd;
  1898. pte_t *pte, *_pte;
  1899. int ret = 0, referenced = 0, none = 0;
  1900. struct page *page;
  1901. unsigned long _address;
  1902. spinlock_t *ptl;
  1903. int node = -1;
  1904. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1905. pgd = pgd_offset(mm, address);
  1906. if (!pgd_present(*pgd))
  1907. goto out;
  1908. pud = pud_offset(pgd, address);
  1909. if (!pud_present(*pud))
  1910. goto out;
  1911. pmd = pmd_offset(pud, address);
  1912. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1913. goto out;
  1914. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1915. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1916. _pte++, _address += PAGE_SIZE) {
  1917. pte_t pteval = *_pte;
  1918. if (pte_none(pteval)) {
  1919. if (++none <= khugepaged_max_ptes_none)
  1920. continue;
  1921. else
  1922. goto out_unmap;
  1923. }
  1924. if (!pte_present(pteval) || !pte_write(pteval))
  1925. goto out_unmap;
  1926. page = vm_normal_page(vma, _address, pteval);
  1927. if (unlikely(!page))
  1928. goto out_unmap;
  1929. /*
  1930. * Chose the node of the first page. This could
  1931. * be more sophisticated and look at more pages,
  1932. * but isn't for now.
  1933. */
  1934. if (node == -1)
  1935. node = page_to_nid(page);
  1936. VM_BUG_ON(PageCompound(page));
  1937. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1938. goto out_unmap;
  1939. /* cannot use mapcount: can't collapse if there's a gup pin */
  1940. if (page_count(page) != 1)
  1941. goto out_unmap;
  1942. if (pte_young(pteval) || PageReferenced(page) ||
  1943. mmu_notifier_test_young(vma->vm_mm, address))
  1944. referenced = 1;
  1945. }
  1946. if (referenced)
  1947. ret = 1;
  1948. out_unmap:
  1949. pte_unmap_unlock(pte, ptl);
  1950. if (ret)
  1951. /* collapse_huge_page will return with the mmap_sem released */
  1952. collapse_huge_page(mm, address, hpage, vma, node);
  1953. out:
  1954. return ret;
  1955. }
  1956. static void collect_mm_slot(struct mm_slot *mm_slot)
  1957. {
  1958. struct mm_struct *mm = mm_slot->mm;
  1959. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1960. if (khugepaged_test_exit(mm)) {
  1961. /* free mm_slot */
  1962. hlist_del(&mm_slot->hash);
  1963. list_del(&mm_slot->mm_node);
  1964. /*
  1965. * Not strictly needed because the mm exited already.
  1966. *
  1967. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1968. */
  1969. /* khugepaged_mm_lock actually not necessary for the below */
  1970. free_mm_slot(mm_slot);
  1971. mmdrop(mm);
  1972. }
  1973. }
  1974. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1975. struct page **hpage)
  1976. __releases(&khugepaged_mm_lock)
  1977. __acquires(&khugepaged_mm_lock)
  1978. {
  1979. struct mm_slot *mm_slot;
  1980. struct mm_struct *mm;
  1981. struct vm_area_struct *vma;
  1982. int progress = 0;
  1983. VM_BUG_ON(!pages);
  1984. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1985. if (khugepaged_scan.mm_slot)
  1986. mm_slot = khugepaged_scan.mm_slot;
  1987. else {
  1988. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1989. struct mm_slot, mm_node);
  1990. khugepaged_scan.address = 0;
  1991. khugepaged_scan.mm_slot = mm_slot;
  1992. }
  1993. spin_unlock(&khugepaged_mm_lock);
  1994. mm = mm_slot->mm;
  1995. down_read(&mm->mmap_sem);
  1996. if (unlikely(khugepaged_test_exit(mm)))
  1997. vma = NULL;
  1998. else
  1999. vma = find_vma(mm, khugepaged_scan.address);
  2000. progress++;
  2001. for (; vma; vma = vma->vm_next) {
  2002. unsigned long hstart, hend;
  2003. cond_resched();
  2004. if (unlikely(khugepaged_test_exit(mm))) {
  2005. progress++;
  2006. break;
  2007. }
  2008. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  2009. !khugepaged_always()) ||
  2010. (vma->vm_flags & VM_NOHUGEPAGE)) {
  2011. skip:
  2012. progress++;
  2013. continue;
  2014. }
  2015. if (!vma->anon_vma || vma->vm_ops)
  2016. goto skip;
  2017. if (is_vma_temporary_stack(vma))
  2018. goto skip;
  2019. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  2020. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2021. hend = vma->vm_end & HPAGE_PMD_MASK;
  2022. if (hstart >= hend)
  2023. goto skip;
  2024. if (khugepaged_scan.address > hend)
  2025. goto skip;
  2026. if (khugepaged_scan.address < hstart)
  2027. khugepaged_scan.address = hstart;
  2028. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2029. while (khugepaged_scan.address < hend) {
  2030. int ret;
  2031. cond_resched();
  2032. if (unlikely(khugepaged_test_exit(mm)))
  2033. goto breakouterloop;
  2034. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2035. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2036. hend);
  2037. ret = khugepaged_scan_pmd(mm, vma,
  2038. khugepaged_scan.address,
  2039. hpage);
  2040. /* move to next address */
  2041. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2042. progress += HPAGE_PMD_NR;
  2043. if (ret)
  2044. /* we released mmap_sem so break loop */
  2045. goto breakouterloop_mmap_sem;
  2046. if (progress >= pages)
  2047. goto breakouterloop;
  2048. }
  2049. }
  2050. breakouterloop:
  2051. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2052. breakouterloop_mmap_sem:
  2053. spin_lock(&khugepaged_mm_lock);
  2054. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2055. /*
  2056. * Release the current mm_slot if this mm is about to die, or
  2057. * if we scanned all vmas of this mm.
  2058. */
  2059. if (khugepaged_test_exit(mm) || !vma) {
  2060. /*
  2061. * Make sure that if mm_users is reaching zero while
  2062. * khugepaged runs here, khugepaged_exit will find
  2063. * mm_slot not pointing to the exiting mm.
  2064. */
  2065. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2066. khugepaged_scan.mm_slot = list_entry(
  2067. mm_slot->mm_node.next,
  2068. struct mm_slot, mm_node);
  2069. khugepaged_scan.address = 0;
  2070. } else {
  2071. khugepaged_scan.mm_slot = NULL;
  2072. khugepaged_full_scans++;
  2073. }
  2074. collect_mm_slot(mm_slot);
  2075. }
  2076. return progress;
  2077. }
  2078. static int khugepaged_has_work(void)
  2079. {
  2080. return !list_empty(&khugepaged_scan.mm_head) &&
  2081. khugepaged_enabled();
  2082. }
  2083. static int khugepaged_wait_event(void)
  2084. {
  2085. return !list_empty(&khugepaged_scan.mm_head) ||
  2086. kthread_should_stop();
  2087. }
  2088. static void khugepaged_do_scan(void)
  2089. {
  2090. struct page *hpage = NULL;
  2091. unsigned int progress = 0, pass_through_head = 0;
  2092. unsigned int pages = khugepaged_pages_to_scan;
  2093. bool wait = true;
  2094. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2095. while (progress < pages) {
  2096. if (!khugepaged_prealloc_page(&hpage, &wait))
  2097. break;
  2098. cond_resched();
  2099. if (unlikely(kthread_should_stop() || freezing(current)))
  2100. break;
  2101. spin_lock(&khugepaged_mm_lock);
  2102. if (!khugepaged_scan.mm_slot)
  2103. pass_through_head++;
  2104. if (khugepaged_has_work() &&
  2105. pass_through_head < 2)
  2106. progress += khugepaged_scan_mm_slot(pages - progress,
  2107. &hpage);
  2108. else
  2109. progress = pages;
  2110. spin_unlock(&khugepaged_mm_lock);
  2111. }
  2112. if (!IS_ERR_OR_NULL(hpage))
  2113. put_page(hpage);
  2114. }
  2115. static void khugepaged_wait_work(void)
  2116. {
  2117. try_to_freeze();
  2118. if (khugepaged_has_work()) {
  2119. if (!khugepaged_scan_sleep_millisecs)
  2120. return;
  2121. wait_event_freezable_timeout(khugepaged_wait,
  2122. kthread_should_stop(),
  2123. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2124. return;
  2125. }
  2126. if (khugepaged_enabled())
  2127. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2128. }
  2129. static int khugepaged(void *none)
  2130. {
  2131. struct mm_slot *mm_slot;
  2132. set_freezable();
  2133. set_user_nice(current, 19);
  2134. while (!kthread_should_stop()) {
  2135. khugepaged_do_scan();
  2136. khugepaged_wait_work();
  2137. }
  2138. spin_lock(&khugepaged_mm_lock);
  2139. mm_slot = khugepaged_scan.mm_slot;
  2140. khugepaged_scan.mm_slot = NULL;
  2141. if (mm_slot)
  2142. collect_mm_slot(mm_slot);
  2143. spin_unlock(&khugepaged_mm_lock);
  2144. return 0;
  2145. }
  2146. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2147. {
  2148. struct page *page;
  2149. spin_lock(&mm->page_table_lock);
  2150. if (unlikely(!pmd_trans_huge(*pmd))) {
  2151. spin_unlock(&mm->page_table_lock);
  2152. return;
  2153. }
  2154. page = pmd_page(*pmd);
  2155. VM_BUG_ON(!page_count(page));
  2156. get_page(page);
  2157. spin_unlock(&mm->page_table_lock);
  2158. split_huge_page(page);
  2159. put_page(page);
  2160. BUG_ON(pmd_trans_huge(*pmd));
  2161. }
  2162. static void split_huge_page_address(struct mm_struct *mm,
  2163. unsigned long address)
  2164. {
  2165. pgd_t *pgd;
  2166. pud_t *pud;
  2167. pmd_t *pmd;
  2168. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2169. pgd = pgd_offset(mm, address);
  2170. if (!pgd_present(*pgd))
  2171. return;
  2172. pud = pud_offset(pgd, address);
  2173. if (!pud_present(*pud))
  2174. return;
  2175. pmd = pmd_offset(pud, address);
  2176. if (!pmd_present(*pmd))
  2177. return;
  2178. /*
  2179. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2180. * materialize from under us.
  2181. */
  2182. split_huge_page_pmd(mm, pmd);
  2183. }
  2184. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2185. unsigned long start,
  2186. unsigned long end,
  2187. long adjust_next)
  2188. {
  2189. /*
  2190. * If the new start address isn't hpage aligned and it could
  2191. * previously contain an hugepage: check if we need to split
  2192. * an huge pmd.
  2193. */
  2194. if (start & ~HPAGE_PMD_MASK &&
  2195. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2196. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2197. split_huge_page_address(vma->vm_mm, start);
  2198. /*
  2199. * If the new end address isn't hpage aligned and it could
  2200. * previously contain an hugepage: check if we need to split
  2201. * an huge pmd.
  2202. */
  2203. if (end & ~HPAGE_PMD_MASK &&
  2204. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2205. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2206. split_huge_page_address(vma->vm_mm, end);
  2207. /*
  2208. * If we're also updating the vma->vm_next->vm_start, if the new
  2209. * vm_next->vm_start isn't page aligned and it could previously
  2210. * contain an hugepage: check if we need to split an huge pmd.
  2211. */
  2212. if (adjust_next > 0) {
  2213. struct vm_area_struct *next = vma->vm_next;
  2214. unsigned long nstart = next->vm_start;
  2215. nstart += adjust_next << PAGE_SHIFT;
  2216. if (nstart & ~HPAGE_PMD_MASK &&
  2217. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2218. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2219. split_huge_page_address(next->vm_mm, nstart);
  2220. }
  2221. }