intel_mid_dma.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255
  1. /*
  2. * intel_mid_dma.c - Intel Langwell DMA Drivers
  3. *
  4. * Copyright (C) 2008-10 Intel Corp
  5. * Author: Vinod Koul <vinod.koul@intel.com>
  6. * The driver design is based on dw_dmac driver
  7. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; version 2 of the License.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along
  19. * with this program; if not, write to the Free Software Foundation, Inc.,
  20. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  21. *
  22. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23. *
  24. *
  25. */
  26. #include <linux/pci.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/intel_mid_dma.h>
  30. #define MAX_CHAN 4 /*max ch across controllers*/
  31. #include "intel_mid_dma_regs.h"
  32. #define INTEL_MID_DMAC1_ID 0x0814
  33. #define INTEL_MID_DMAC2_ID 0x0813
  34. #define INTEL_MID_GP_DMAC2_ID 0x0827
  35. #define INTEL_MFLD_DMAC1_ID 0x0830
  36. #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
  37. #define LNW_PERIPHRAL_MASK_SIZE 0x10
  38. #define LNW_PERIPHRAL_STATUS 0x0
  39. #define LNW_PERIPHRAL_MASK 0x8
  40. struct intel_mid_dma_probe_info {
  41. u8 max_chan;
  42. u8 ch_base;
  43. u16 block_size;
  44. u32 pimr_mask;
  45. };
  46. #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
  47. ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
  48. .max_chan = (_max_chan), \
  49. .ch_base = (_ch_base), \
  50. .block_size = (_block_size), \
  51. .pimr_mask = (_pimr_mask), \
  52. })
  53. /*****************************************************************************
  54. Utility Functions*/
  55. /**
  56. * get_ch_index - convert status to channel
  57. * @status: status mask
  58. * @base: dma ch base value
  59. *
  60. * Modify the status mask and return the channel index needing
  61. * attention (or -1 if neither)
  62. */
  63. static int get_ch_index(int *status, unsigned int base)
  64. {
  65. int i;
  66. for (i = 0; i < MAX_CHAN; i++) {
  67. if (*status & (1 << (i + base))) {
  68. *status = *status & ~(1 << (i + base));
  69. pr_debug("MDMA: index %d New status %x\n", i, *status);
  70. return i;
  71. }
  72. }
  73. return -1;
  74. }
  75. /**
  76. * get_block_ts - calculates dma transaction length
  77. * @len: dma transfer length
  78. * @tx_width: dma transfer src width
  79. * @block_size: dma controller max block size
  80. *
  81. * Based on src width calculate the DMA trsaction length in data items
  82. * return data items or FFFF if exceeds max length for block
  83. */
  84. static int get_block_ts(int len, int tx_width, int block_size)
  85. {
  86. int byte_width = 0, block_ts = 0;
  87. switch (tx_width) {
  88. case LNW_DMA_WIDTH_8BIT:
  89. byte_width = 1;
  90. break;
  91. case LNW_DMA_WIDTH_16BIT:
  92. byte_width = 2;
  93. break;
  94. case LNW_DMA_WIDTH_32BIT:
  95. default:
  96. byte_width = 4;
  97. break;
  98. }
  99. block_ts = len/byte_width;
  100. if (block_ts > block_size)
  101. block_ts = 0xFFFF;
  102. return block_ts;
  103. }
  104. /*****************************************************************************
  105. DMAC1 interrupt Functions*/
  106. /**
  107. * dmac1_mask_periphral_intr - mask the periphral interrupt
  108. * @midc: dma channel for which masking is required
  109. *
  110. * Masks the DMA periphral interrupt
  111. * this is valid for DMAC1 family controllers only
  112. * This controller should have periphral mask registers already mapped
  113. */
  114. static void dmac1_mask_periphral_intr(struct intel_mid_dma_chan *midc)
  115. {
  116. u32 pimr;
  117. struct middma_device *mid = to_middma_device(midc->chan.device);
  118. if (mid->pimr_mask) {
  119. pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
  120. pimr |= mid->pimr_mask;
  121. writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
  122. }
  123. return;
  124. }
  125. /**
  126. * dmac1_unmask_periphral_intr - unmask the periphral interrupt
  127. * @midc: dma channel for which masking is required
  128. *
  129. * UnMasks the DMA periphral interrupt,
  130. * this is valid for DMAC1 family controllers only
  131. * This controller should have periphral mask registers already mapped
  132. */
  133. static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
  134. {
  135. u32 pimr;
  136. struct middma_device *mid = to_middma_device(midc->chan.device);
  137. if (mid->pimr_mask) {
  138. pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
  139. pimr &= ~mid->pimr_mask;
  140. writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
  141. }
  142. return;
  143. }
  144. /**
  145. * enable_dma_interrupt - enable the periphral interrupt
  146. * @midc: dma channel for which enable interrupt is required
  147. *
  148. * Enable the DMA periphral interrupt,
  149. * this is valid for DMAC1 family controllers only
  150. * This controller should have periphral mask registers already mapped
  151. */
  152. static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
  153. {
  154. dmac1_unmask_periphral_intr(midc);
  155. /*en ch interrupts*/
  156. iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
  157. iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
  158. return;
  159. }
  160. /**
  161. * disable_dma_interrupt - disable the periphral interrupt
  162. * @midc: dma channel for which disable interrupt is required
  163. *
  164. * Disable the DMA periphral interrupt,
  165. * this is valid for DMAC1 family controllers only
  166. * This controller should have periphral mask registers already mapped
  167. */
  168. static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
  169. {
  170. /*Check LPE PISR, make sure fwd is disabled*/
  171. dmac1_mask_periphral_intr(midc);
  172. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
  173. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
  174. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
  175. return;
  176. }
  177. /*****************************************************************************
  178. DMA channel helper Functions*/
  179. /**
  180. * mid_desc_get - get a descriptor
  181. * @midc: dma channel for which descriptor is required
  182. *
  183. * Obtain a descriptor for the channel. Returns NULL if none are free.
  184. * Once the descriptor is returned it is private until put on another
  185. * list or freed
  186. */
  187. static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
  188. {
  189. struct intel_mid_dma_desc *desc, *_desc;
  190. struct intel_mid_dma_desc *ret = NULL;
  191. spin_lock_bh(&midc->lock);
  192. list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
  193. if (async_tx_test_ack(&desc->txd)) {
  194. list_del(&desc->desc_node);
  195. ret = desc;
  196. break;
  197. }
  198. }
  199. spin_unlock_bh(&midc->lock);
  200. return ret;
  201. }
  202. /**
  203. * mid_desc_put - put a descriptor
  204. * @midc: dma channel for which descriptor is required
  205. * @desc: descriptor to put
  206. *
  207. * Return a descriptor from lwn_desc_get back to the free pool
  208. */
  209. static void midc_desc_put(struct intel_mid_dma_chan *midc,
  210. struct intel_mid_dma_desc *desc)
  211. {
  212. if (desc) {
  213. spin_lock_bh(&midc->lock);
  214. list_add_tail(&desc->desc_node, &midc->free_list);
  215. spin_unlock_bh(&midc->lock);
  216. }
  217. }
  218. /**
  219. * midc_dostart - begin a DMA transaction
  220. * @midc: channel for which txn is to be started
  221. * @first: first descriptor of series
  222. *
  223. * Load a transaction into the engine. This must be called with midc->lock
  224. * held and bh disabled.
  225. */
  226. static void midc_dostart(struct intel_mid_dma_chan *midc,
  227. struct intel_mid_dma_desc *first)
  228. {
  229. struct middma_device *mid = to_middma_device(midc->chan.device);
  230. /* channel is idle */
  231. if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
  232. /*error*/
  233. pr_err("ERR_MDMA: channel is busy in start\n");
  234. /* The tasklet will hopefully advance the queue... */
  235. return;
  236. }
  237. midc->busy = true;
  238. /*write registers and en*/
  239. iowrite32(first->sar, midc->ch_regs + SAR);
  240. iowrite32(first->dar, midc->ch_regs + DAR);
  241. iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
  242. iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
  243. iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
  244. iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
  245. pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
  246. (int)first->sar, (int)first->dar, first->cfg_hi,
  247. first->cfg_lo, first->ctl_hi, first->ctl_lo);
  248. iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
  249. first->status = DMA_IN_PROGRESS;
  250. }
  251. /**
  252. * midc_descriptor_complete - process completed descriptor
  253. * @midc: channel owning the descriptor
  254. * @desc: the descriptor itself
  255. *
  256. * Process a completed descriptor and perform any callbacks upon
  257. * the completion. The completion handling drops the lock during the
  258. * callbacks but must be called with the lock held.
  259. */
  260. static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
  261. struct intel_mid_dma_desc *desc)
  262. {
  263. struct dma_async_tx_descriptor *txd = &desc->txd;
  264. dma_async_tx_callback callback_txd = NULL;
  265. void *param_txd = NULL;
  266. midc->completed = txd->cookie;
  267. callback_txd = txd->callback;
  268. param_txd = txd->callback_param;
  269. list_move(&desc->desc_node, &midc->free_list);
  270. midc->busy = false;
  271. spin_unlock_bh(&midc->lock);
  272. if (callback_txd) {
  273. pr_debug("MDMA: TXD callback set ... calling\n");
  274. callback_txd(param_txd);
  275. spin_lock_bh(&midc->lock);
  276. return;
  277. }
  278. spin_lock_bh(&midc->lock);
  279. }
  280. /**
  281. * midc_scan_descriptors - check the descriptors in channel
  282. * mark completed when tx is completete
  283. * @mid: device
  284. * @midc: channel to scan
  285. *
  286. * Walk the descriptor chain for the device and process any entries
  287. * that are complete.
  288. */
  289. static void midc_scan_descriptors(struct middma_device *mid,
  290. struct intel_mid_dma_chan *midc)
  291. {
  292. struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
  293. /*tx is complete*/
  294. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  295. if (desc->status == DMA_IN_PROGRESS) {
  296. desc->status = DMA_SUCCESS;
  297. midc_descriptor_complete(midc, desc);
  298. }
  299. }
  300. return;
  301. }
  302. /*****************************************************************************
  303. DMA engine callback Functions*/
  304. /**
  305. * intel_mid_dma_tx_submit - callback to submit DMA transaction
  306. * @tx: dma engine descriptor
  307. *
  308. * Submit the DMA trasaction for this descriptor, start if ch idle
  309. */
  310. static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  311. {
  312. struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
  313. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
  314. dma_cookie_t cookie;
  315. spin_lock_bh(&midc->lock);
  316. cookie = midc->chan.cookie;
  317. if (++cookie < 0)
  318. cookie = 1;
  319. midc->chan.cookie = cookie;
  320. desc->txd.cookie = cookie;
  321. if (list_empty(&midc->active_list)) {
  322. midc_dostart(midc, desc);
  323. list_add_tail(&desc->desc_node, &midc->active_list);
  324. } else {
  325. list_add_tail(&desc->desc_node, &midc->queue);
  326. }
  327. spin_unlock_bh(&midc->lock);
  328. return cookie;
  329. }
  330. /**
  331. * intel_mid_dma_issue_pending - callback to issue pending txn
  332. * @chan: chan where pending trascation needs to be checked and submitted
  333. *
  334. * Call for scan to issue pending descriptors
  335. */
  336. static void intel_mid_dma_issue_pending(struct dma_chan *chan)
  337. {
  338. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  339. spin_lock_bh(&midc->lock);
  340. if (!list_empty(&midc->queue))
  341. midc_scan_descriptors(to_middma_device(chan->device), midc);
  342. spin_unlock_bh(&midc->lock);
  343. }
  344. /**
  345. * intel_mid_dma_tx_status - Return status of txn
  346. * @chan: chan for where status needs to be checked
  347. * @cookie: cookie for txn
  348. * @txstate: DMA txn state
  349. *
  350. * Return status of DMA txn
  351. */
  352. static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
  353. dma_cookie_t cookie,
  354. struct dma_tx_state *txstate)
  355. {
  356. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  357. dma_cookie_t last_used;
  358. dma_cookie_t last_complete;
  359. int ret;
  360. last_complete = midc->completed;
  361. last_used = chan->cookie;
  362. ret = dma_async_is_complete(cookie, last_complete, last_used);
  363. if (ret != DMA_SUCCESS) {
  364. midc_scan_descriptors(to_middma_device(chan->device), midc);
  365. last_complete = midc->completed;
  366. last_used = chan->cookie;
  367. ret = dma_async_is_complete(cookie, last_complete, last_used);
  368. }
  369. if (txstate) {
  370. txstate->last = last_complete;
  371. txstate->used = last_used;
  372. txstate->residue = 0;
  373. }
  374. return ret;
  375. }
  376. /**
  377. * intel_mid_dma_device_control - DMA device control
  378. * @chan: chan for DMA control
  379. * @cmd: control cmd
  380. * @arg: cmd arg value
  381. *
  382. * Perform DMA control command
  383. */
  384. static int intel_mid_dma_device_control(struct dma_chan *chan,
  385. enum dma_ctrl_cmd cmd, unsigned long arg)
  386. {
  387. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  388. struct middma_device *mid = to_middma_device(chan->device);
  389. struct intel_mid_dma_desc *desc, *_desc;
  390. LIST_HEAD(list);
  391. if (cmd != DMA_TERMINATE_ALL)
  392. return -ENXIO;
  393. spin_lock_bh(&midc->lock);
  394. if (midc->busy == false) {
  395. spin_unlock_bh(&midc->lock);
  396. return 0;
  397. }
  398. list_splice_init(&midc->free_list, &list);
  399. midc->descs_allocated = 0;
  400. midc->slave = NULL;
  401. /* Disable interrupts */
  402. disable_dma_interrupt(midc);
  403. spin_unlock_bh(&midc->lock);
  404. list_for_each_entry_safe(desc, _desc, &list, desc_node) {
  405. pr_debug("MDMA: freeing descriptor %p\n", desc);
  406. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  407. }
  408. return 0;
  409. }
  410. /**
  411. * intel_mid_dma_prep_slave_sg - Prep slave sg txn
  412. * @chan: chan for DMA transfer
  413. * @sgl: scatter gather list
  414. * @sg_len: length of sg txn
  415. * @direction: DMA transfer dirtn
  416. * @flags: DMA flags
  417. *
  418. * Do DMA sg txn: NOT supported now
  419. */
  420. static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
  421. struct dma_chan *chan, struct scatterlist *sgl,
  422. unsigned int sg_len, enum dma_data_direction direction,
  423. unsigned long flags)
  424. {
  425. /*not supported now*/
  426. return NULL;
  427. }
  428. /**
  429. * intel_mid_dma_prep_memcpy - Prep memcpy txn
  430. * @chan: chan for DMA transfer
  431. * @dest: destn address
  432. * @src: src address
  433. * @len: DMA transfer len
  434. * @flags: DMA flags
  435. *
  436. * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
  437. * The periphral txn details should be filled in slave structure properly
  438. * Returns the descriptor for this txn
  439. */
  440. static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
  441. struct dma_chan *chan, dma_addr_t dest,
  442. dma_addr_t src, size_t len, unsigned long flags)
  443. {
  444. struct intel_mid_dma_chan *midc;
  445. struct intel_mid_dma_desc *desc = NULL;
  446. struct intel_mid_dma_slave *mids;
  447. union intel_mid_dma_ctl_lo ctl_lo;
  448. union intel_mid_dma_ctl_hi ctl_hi;
  449. union intel_mid_dma_cfg_lo cfg_lo;
  450. union intel_mid_dma_cfg_hi cfg_hi;
  451. enum intel_mid_dma_width width = 0;
  452. pr_debug("MDMA: Prep for memcpy\n");
  453. WARN_ON(!chan);
  454. if (!len)
  455. return NULL;
  456. mids = chan->private;
  457. WARN_ON(!mids);
  458. midc = to_intel_mid_dma_chan(chan);
  459. WARN_ON(!midc);
  460. pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
  461. midc->dma->pci_id, midc->ch_id, len);
  462. pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
  463. mids->cfg_mode, mids->dirn, mids->hs_mode, mids->src_width);
  464. /*calculate CFG_LO*/
  465. if (mids->hs_mode == LNW_DMA_SW_HS) {
  466. cfg_lo.cfg_lo = 0;
  467. cfg_lo.cfgx.hs_sel_dst = 1;
  468. cfg_lo.cfgx.hs_sel_src = 1;
  469. } else if (mids->hs_mode == LNW_DMA_HW_HS)
  470. cfg_lo.cfg_lo = 0x00000;
  471. /*calculate CFG_HI*/
  472. if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
  473. /*SW HS only*/
  474. cfg_hi.cfg_hi = 0;
  475. } else {
  476. cfg_hi.cfg_hi = 0;
  477. if (midc->dma->pimr_mask) {
  478. cfg_hi.cfgx.protctl = 0x0; /*default value*/
  479. cfg_hi.cfgx.fifo_mode = 1;
  480. if (mids->dirn == DMA_TO_DEVICE) {
  481. cfg_hi.cfgx.src_per = 0;
  482. if (mids->device_instance == 0)
  483. cfg_hi.cfgx.dst_per = 3;
  484. if (mids->device_instance == 1)
  485. cfg_hi.cfgx.dst_per = 1;
  486. } else if (mids->dirn == DMA_FROM_DEVICE) {
  487. if (mids->device_instance == 0)
  488. cfg_hi.cfgx.src_per = 2;
  489. if (mids->device_instance == 1)
  490. cfg_hi.cfgx.src_per = 0;
  491. cfg_hi.cfgx.dst_per = 0;
  492. }
  493. } else {
  494. cfg_hi.cfgx.protctl = 0x1; /*default value*/
  495. cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
  496. midc->ch_id - midc->dma->chan_base;
  497. }
  498. }
  499. /*calculate CTL_HI*/
  500. ctl_hi.ctlx.reser = 0;
  501. width = mids->src_width;
  502. ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
  503. pr_debug("MDMA:calc len %d for block size %d\n",
  504. ctl_hi.ctlx.block_ts, midc->dma->block_size);
  505. /*calculate CTL_LO*/
  506. ctl_lo.ctl_lo = 0;
  507. ctl_lo.ctlx.int_en = 1;
  508. ctl_lo.ctlx.dst_tr_width = mids->dst_width;
  509. ctl_lo.ctlx.src_tr_width = mids->src_width;
  510. ctl_lo.ctlx.dst_msize = mids->src_msize;
  511. ctl_lo.ctlx.src_msize = mids->dst_msize;
  512. if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
  513. ctl_lo.ctlx.tt_fc = 0;
  514. ctl_lo.ctlx.sinc = 0;
  515. ctl_lo.ctlx.dinc = 0;
  516. } else {
  517. if (mids->dirn == DMA_TO_DEVICE) {
  518. ctl_lo.ctlx.sinc = 0;
  519. ctl_lo.ctlx.dinc = 2;
  520. ctl_lo.ctlx.tt_fc = 1;
  521. } else if (mids->dirn == DMA_FROM_DEVICE) {
  522. ctl_lo.ctlx.sinc = 2;
  523. ctl_lo.ctlx.dinc = 0;
  524. ctl_lo.ctlx.tt_fc = 2;
  525. }
  526. }
  527. pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
  528. ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
  529. enable_dma_interrupt(midc);
  530. desc = midc_desc_get(midc);
  531. if (desc == NULL)
  532. goto err_desc_get;
  533. desc->sar = src;
  534. desc->dar = dest ;
  535. desc->len = len;
  536. desc->cfg_hi = cfg_hi.cfg_hi;
  537. desc->cfg_lo = cfg_lo.cfg_lo;
  538. desc->ctl_lo = ctl_lo.ctl_lo;
  539. desc->ctl_hi = ctl_hi.ctl_hi;
  540. desc->width = width;
  541. desc->dirn = mids->dirn;
  542. return &desc->txd;
  543. err_desc_get:
  544. pr_err("ERR_MDMA: Failed to get desc\n");
  545. midc_desc_put(midc, desc);
  546. return NULL;
  547. }
  548. /**
  549. * intel_mid_dma_free_chan_resources - Frees dma resources
  550. * @chan: chan requiring attention
  551. *
  552. * Frees the allocated resources on this DMA chan
  553. */
  554. static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
  555. {
  556. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  557. struct middma_device *mid = to_middma_device(chan->device);
  558. struct intel_mid_dma_desc *desc, *_desc;
  559. if (true == midc->busy) {
  560. /*trying to free ch in use!!!!!*/
  561. pr_err("ERR_MDMA: trying to free ch in use\n");
  562. }
  563. pm_runtime_put(&mid->pdev->dev);
  564. spin_lock_bh(&midc->lock);
  565. midc->descs_allocated = 0;
  566. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  567. list_del(&desc->desc_node);
  568. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  569. }
  570. list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
  571. list_del(&desc->desc_node);
  572. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  573. }
  574. list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
  575. list_del(&desc->desc_node);
  576. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  577. }
  578. spin_unlock_bh(&midc->lock);
  579. midc->in_use = false;
  580. midc->busy = false;
  581. /* Disable CH interrupts */
  582. iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
  583. iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
  584. }
  585. /**
  586. * intel_mid_dma_alloc_chan_resources - Allocate dma resources
  587. * @chan: chan requiring attention
  588. *
  589. * Allocates DMA resources on this chan
  590. * Return the descriptors allocated
  591. */
  592. static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
  593. {
  594. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  595. struct middma_device *mid = to_middma_device(chan->device);
  596. struct intel_mid_dma_desc *desc;
  597. dma_addr_t phys;
  598. int i = 0;
  599. pm_runtime_get_sync(&mid->pdev->dev);
  600. if (mid->state == SUSPENDED) {
  601. if (dma_resume(mid->pdev)) {
  602. pr_err("ERR_MDMA: resume failed");
  603. return -EFAULT;
  604. }
  605. }
  606. /* ASSERT: channel is idle */
  607. if (test_ch_en(mid->dma_base, midc->ch_id)) {
  608. /*ch is not idle*/
  609. pr_err("ERR_MDMA: ch not idle\n");
  610. pm_runtime_put(&mid->pdev->dev);
  611. return -EIO;
  612. }
  613. midc->completed = chan->cookie = 1;
  614. spin_lock_bh(&midc->lock);
  615. while (midc->descs_allocated < DESCS_PER_CHANNEL) {
  616. spin_unlock_bh(&midc->lock);
  617. desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
  618. if (!desc) {
  619. pr_err("ERR_MDMA: desc failed\n");
  620. pm_runtime_put(&mid->pdev->dev);
  621. return -ENOMEM;
  622. /*check*/
  623. }
  624. dma_async_tx_descriptor_init(&desc->txd, chan);
  625. desc->txd.tx_submit = intel_mid_dma_tx_submit;
  626. desc->txd.flags = DMA_CTRL_ACK;
  627. desc->txd.phys = phys;
  628. spin_lock_bh(&midc->lock);
  629. i = ++midc->descs_allocated;
  630. list_add_tail(&desc->desc_node, &midc->free_list);
  631. }
  632. spin_unlock_bh(&midc->lock);
  633. midc->in_use = true;
  634. midc->busy = false;
  635. pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
  636. return i;
  637. }
  638. /**
  639. * midc_handle_error - Handle DMA txn error
  640. * @mid: controller where error occured
  641. * @midc: chan where error occured
  642. *
  643. * Scan the descriptor for error
  644. */
  645. static void midc_handle_error(struct middma_device *mid,
  646. struct intel_mid_dma_chan *midc)
  647. {
  648. midc_scan_descriptors(mid, midc);
  649. }
  650. /**
  651. * dma_tasklet - DMA interrupt tasklet
  652. * @data: tasklet arg (the controller structure)
  653. *
  654. * Scan the controller for interrupts for completion/error
  655. * Clear the interrupt and call for handling completion/error
  656. */
  657. static void dma_tasklet(unsigned long data)
  658. {
  659. struct middma_device *mid = NULL;
  660. struct intel_mid_dma_chan *midc = NULL;
  661. u32 status;
  662. int i;
  663. mid = (struct middma_device *)data;
  664. if (mid == NULL) {
  665. pr_err("ERR_MDMA: tasklet Null param\n");
  666. return;
  667. }
  668. pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
  669. status = ioread32(mid->dma_base + RAW_TFR);
  670. pr_debug("MDMA:RAW_TFR %x\n", status);
  671. status &= mid->intr_mask;
  672. while (status) {
  673. /*txn interrupt*/
  674. i = get_ch_index(&status, mid->chan_base);
  675. if (i < 0) {
  676. pr_err("ERR_MDMA:Invalid ch index %x\n", i);
  677. return;
  678. }
  679. midc = &mid->ch[i];
  680. if (midc == NULL) {
  681. pr_err("ERR_MDMA:Null param midc\n");
  682. return;
  683. }
  684. pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
  685. status, midc->ch_id, i);
  686. /*clearing this interrupts first*/
  687. iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
  688. iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_BLOCK);
  689. spin_lock_bh(&midc->lock);
  690. midc_scan_descriptors(mid, midc);
  691. pr_debug("MDMA:Scan of desc... complete, unmasking\n");
  692. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  693. mid->dma_base + MASK_TFR);
  694. spin_unlock_bh(&midc->lock);
  695. }
  696. status = ioread32(mid->dma_base + RAW_ERR);
  697. status &= mid->intr_mask;
  698. while (status) {
  699. /*err interrupt*/
  700. i = get_ch_index(&status, mid->chan_base);
  701. if (i < 0) {
  702. pr_err("ERR_MDMA:Invalid ch index %x\n", i);
  703. return;
  704. }
  705. midc = &mid->ch[i];
  706. if (midc == NULL) {
  707. pr_err("ERR_MDMA:Null param midc\n");
  708. return;
  709. }
  710. pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
  711. status, midc->ch_id, i);
  712. iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
  713. spin_lock_bh(&midc->lock);
  714. midc_handle_error(mid, midc);
  715. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  716. mid->dma_base + MASK_ERR);
  717. spin_unlock_bh(&midc->lock);
  718. }
  719. pr_debug("MDMA:Exiting takslet...\n");
  720. return;
  721. }
  722. static void dma_tasklet1(unsigned long data)
  723. {
  724. pr_debug("MDMA:in takslet1...\n");
  725. return dma_tasklet(data);
  726. }
  727. static void dma_tasklet2(unsigned long data)
  728. {
  729. pr_debug("MDMA:in takslet2...\n");
  730. return dma_tasklet(data);
  731. }
  732. /**
  733. * intel_mid_dma_interrupt - DMA ISR
  734. * @irq: IRQ where interrupt occurred
  735. * @data: ISR cllback data (the controller structure)
  736. *
  737. * See if this is our interrupt if so then schedule the tasklet
  738. * otherwise ignore
  739. */
  740. static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
  741. {
  742. struct middma_device *mid = data;
  743. u32 tfr_status, err_status;
  744. int call_tasklet = 0;
  745. tfr_status = ioread32(mid->dma_base + RAW_TFR);
  746. err_status = ioread32(mid->dma_base + RAW_ERR);
  747. if (!tfr_status && !err_status)
  748. return IRQ_NONE;
  749. /*DMA Interrupt*/
  750. pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
  751. if (!mid) {
  752. pr_err("ERR_MDMA:null pointer mid\n");
  753. return -EINVAL;
  754. }
  755. pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
  756. tfr_status &= mid->intr_mask;
  757. if (tfr_status) {
  758. /*need to disable intr*/
  759. iowrite32((tfr_status << 8), mid->dma_base + MASK_TFR);
  760. pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
  761. call_tasklet = 1;
  762. }
  763. err_status &= mid->intr_mask;
  764. if (err_status) {
  765. iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
  766. call_tasklet = 1;
  767. }
  768. if (call_tasklet)
  769. tasklet_schedule(&mid->tasklet);
  770. return IRQ_HANDLED;
  771. }
  772. static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
  773. {
  774. return intel_mid_dma_interrupt(irq, data);
  775. }
  776. static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
  777. {
  778. return intel_mid_dma_interrupt(irq, data);
  779. }
  780. /**
  781. * mid_setup_dma - Setup the DMA controller
  782. * @pdev: Controller PCI device structure
  783. *
  784. * Initilize the DMA controller, channels, registers with DMA engine,
  785. * ISR. Initilize DMA controller channels.
  786. */
  787. static int mid_setup_dma(struct pci_dev *pdev)
  788. {
  789. struct middma_device *dma = pci_get_drvdata(pdev);
  790. int err, i;
  791. unsigned int irq_level;
  792. /* DMA coherent memory pool for DMA descriptor allocations */
  793. dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
  794. sizeof(struct intel_mid_dma_desc),
  795. 32, 0);
  796. if (NULL == dma->dma_pool) {
  797. pr_err("ERR_MDMA:pci_pool_create failed\n");
  798. err = -ENOMEM;
  799. kfree(dma);
  800. goto err_dma_pool;
  801. }
  802. INIT_LIST_HEAD(&dma->common.channels);
  803. dma->pci_id = pdev->device;
  804. if (dma->pimr_mask) {
  805. dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
  806. LNW_PERIPHRAL_MASK_SIZE);
  807. if (dma->mask_reg == NULL) {
  808. pr_err("ERR_MDMA:Cant map periphral intr space !!\n");
  809. return -ENOMEM;
  810. }
  811. } else
  812. dma->mask_reg = NULL;
  813. pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
  814. /*init CH structures*/
  815. dma->intr_mask = 0;
  816. dma->state = RUNNING;
  817. for (i = 0; i < dma->max_chan; i++) {
  818. struct intel_mid_dma_chan *midch = &dma->ch[i];
  819. midch->chan.device = &dma->common;
  820. midch->chan.cookie = 1;
  821. midch->chan.chan_id = i;
  822. midch->ch_id = dma->chan_base + i;
  823. pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
  824. midch->dma_base = dma->dma_base;
  825. midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
  826. midch->dma = dma;
  827. dma->intr_mask |= 1 << (dma->chan_base + i);
  828. spin_lock_init(&midch->lock);
  829. INIT_LIST_HEAD(&midch->active_list);
  830. INIT_LIST_HEAD(&midch->queue);
  831. INIT_LIST_HEAD(&midch->free_list);
  832. /*mask interrupts*/
  833. iowrite32(MASK_INTR_REG(midch->ch_id),
  834. dma->dma_base + MASK_BLOCK);
  835. iowrite32(MASK_INTR_REG(midch->ch_id),
  836. dma->dma_base + MASK_SRC_TRAN);
  837. iowrite32(MASK_INTR_REG(midch->ch_id),
  838. dma->dma_base + MASK_DST_TRAN);
  839. iowrite32(MASK_INTR_REG(midch->ch_id),
  840. dma->dma_base + MASK_ERR);
  841. iowrite32(MASK_INTR_REG(midch->ch_id),
  842. dma->dma_base + MASK_TFR);
  843. disable_dma_interrupt(midch);
  844. list_add_tail(&midch->chan.device_node, &dma->common.channels);
  845. }
  846. pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
  847. /*init dma structure*/
  848. dma_cap_zero(dma->common.cap_mask);
  849. dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
  850. dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
  851. dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
  852. dma->common.dev = &pdev->dev;
  853. dma->common.chancnt = dma->max_chan;
  854. dma->common.device_alloc_chan_resources =
  855. intel_mid_dma_alloc_chan_resources;
  856. dma->common.device_free_chan_resources =
  857. intel_mid_dma_free_chan_resources;
  858. dma->common.device_tx_status = intel_mid_dma_tx_status;
  859. dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
  860. dma->common.device_issue_pending = intel_mid_dma_issue_pending;
  861. dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
  862. dma->common.device_control = intel_mid_dma_device_control;
  863. /*enable dma cntrl*/
  864. iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
  865. /*register irq */
  866. if (dma->pimr_mask) {
  867. irq_level = IRQF_SHARED;
  868. pr_debug("MDMA:Requesting irq shared for DMAC1\n");
  869. err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
  870. IRQF_SHARED, "INTEL_MID_DMAC1", dma);
  871. if (0 != err)
  872. goto err_irq;
  873. } else {
  874. dma->intr_mask = 0x03;
  875. irq_level = 0;
  876. pr_debug("MDMA:Requesting irq for DMAC2\n");
  877. err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
  878. 0, "INTEL_MID_DMAC2", dma);
  879. if (0 != err)
  880. goto err_irq;
  881. }
  882. /*register device w/ engine*/
  883. err = dma_async_device_register(&dma->common);
  884. if (0 != err) {
  885. pr_err("ERR_MDMA:device_register failed: %d\n", err);
  886. goto err_engine;
  887. }
  888. if (dma->pimr_mask) {
  889. pr_debug("setting up tasklet1 for DMAC1\n");
  890. tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
  891. } else {
  892. pr_debug("setting up tasklet2 for DMAC2\n");
  893. tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
  894. }
  895. return 0;
  896. err_engine:
  897. free_irq(pdev->irq, dma);
  898. err_irq:
  899. pci_pool_destroy(dma->dma_pool);
  900. kfree(dma);
  901. err_dma_pool:
  902. pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
  903. return err;
  904. }
  905. /**
  906. * middma_shutdown - Shutdown the DMA controller
  907. * @pdev: Controller PCI device structure
  908. *
  909. * Called by remove
  910. * Unregister DMa controller, clear all structures and free interrupt
  911. */
  912. static void middma_shutdown(struct pci_dev *pdev)
  913. {
  914. struct middma_device *device = pci_get_drvdata(pdev);
  915. dma_async_device_unregister(&device->common);
  916. pci_pool_destroy(device->dma_pool);
  917. if (device->mask_reg)
  918. iounmap(device->mask_reg);
  919. if (device->dma_base)
  920. iounmap(device->dma_base);
  921. free_irq(pdev->irq, device);
  922. return;
  923. }
  924. /**
  925. * intel_mid_dma_probe - PCI Probe
  926. * @pdev: Controller PCI device structure
  927. * @id: pci device id structure
  928. *
  929. * Initilize the PCI device, map BARs, query driver data.
  930. * Call setup_dma to complete contoller and chan initilzation
  931. */
  932. static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
  933. const struct pci_device_id *id)
  934. {
  935. struct middma_device *device;
  936. u32 base_addr, bar_size;
  937. struct intel_mid_dma_probe_info *info;
  938. int err;
  939. pr_debug("MDMA: probe for %x\n", pdev->device);
  940. info = (void *)id->driver_data;
  941. pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
  942. info->max_chan, info->ch_base,
  943. info->block_size, info->pimr_mask);
  944. err = pci_enable_device(pdev);
  945. if (err)
  946. goto err_enable_device;
  947. err = pci_request_regions(pdev, "intel_mid_dmac");
  948. if (err)
  949. goto err_request_regions;
  950. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  951. if (err)
  952. goto err_set_dma_mask;
  953. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  954. if (err)
  955. goto err_set_dma_mask;
  956. device = kzalloc(sizeof(*device), GFP_KERNEL);
  957. if (!device) {
  958. pr_err("ERR_MDMA:kzalloc failed probe\n");
  959. err = -ENOMEM;
  960. goto err_kzalloc;
  961. }
  962. device->pdev = pci_dev_get(pdev);
  963. base_addr = pci_resource_start(pdev, 0);
  964. bar_size = pci_resource_len(pdev, 0);
  965. device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
  966. if (!device->dma_base) {
  967. pr_err("ERR_MDMA:ioremap failed\n");
  968. err = -ENOMEM;
  969. goto err_ioremap;
  970. }
  971. pci_set_drvdata(pdev, device);
  972. pci_set_master(pdev);
  973. device->max_chan = info->max_chan;
  974. device->chan_base = info->ch_base;
  975. device->block_size = info->block_size;
  976. device->pimr_mask = info->pimr_mask;
  977. err = mid_setup_dma(pdev);
  978. if (err)
  979. goto err_dma;
  980. pm_runtime_set_active(&pdev->dev);
  981. pm_runtime_enable(&pdev->dev);
  982. pm_runtime_allow(&pdev->dev);
  983. return 0;
  984. err_dma:
  985. iounmap(device->dma_base);
  986. err_ioremap:
  987. pci_dev_put(pdev);
  988. kfree(device);
  989. err_kzalloc:
  990. err_set_dma_mask:
  991. pci_release_regions(pdev);
  992. pci_disable_device(pdev);
  993. err_request_regions:
  994. err_enable_device:
  995. pr_err("ERR_MDMA:Probe failed %d\n", err);
  996. return err;
  997. }
  998. /**
  999. * intel_mid_dma_remove - PCI remove
  1000. * @pdev: Controller PCI device structure
  1001. *
  1002. * Free up all resources and data
  1003. * Call shutdown_dma to complete contoller and chan cleanup
  1004. */
  1005. static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
  1006. {
  1007. struct middma_device *device = pci_get_drvdata(pdev);
  1008. middma_shutdown(pdev);
  1009. pci_dev_put(pdev);
  1010. kfree(device);
  1011. pci_release_regions(pdev);
  1012. pci_disable_device(pdev);
  1013. }
  1014. /* Power Management */
  1015. /*
  1016. * dma_suspend - PCI suspend function
  1017. *
  1018. * @pci: PCI device structure
  1019. * @state: PM message
  1020. *
  1021. * This function is called by OS when a power event occurs
  1022. */
  1023. int dma_suspend(struct pci_dev *pci, pm_message_t state)
  1024. {
  1025. int i;
  1026. struct middma_device *device = pci_get_drvdata(pci);
  1027. pr_debug("MDMA: dma_suspend called\n");
  1028. for (i = 0; i < device->max_chan; i++) {
  1029. if (device->ch[i].in_use)
  1030. return -EAGAIN;
  1031. }
  1032. device->state = SUSPENDED;
  1033. pci_set_drvdata(pci, device);
  1034. pci_save_state(pci);
  1035. pci_disable_device(pci);
  1036. pci_set_power_state(pci, PCI_D3hot);
  1037. return 0;
  1038. }
  1039. /**
  1040. * dma_resume - PCI resume function
  1041. *
  1042. * @pci: PCI device structure
  1043. *
  1044. * This function is called by OS when a power event occurs
  1045. */
  1046. int dma_resume(struct pci_dev *pci)
  1047. {
  1048. int ret;
  1049. struct middma_device *device = pci_get_drvdata(pci);
  1050. pr_debug("MDMA: dma_resume called\n");
  1051. pci_set_power_state(pci, PCI_D0);
  1052. pci_restore_state(pci);
  1053. ret = pci_enable_device(pci);
  1054. if (ret) {
  1055. pr_err("MDMA: device cant be enabled for %x\n", pci->device);
  1056. return ret;
  1057. }
  1058. device->state = RUNNING;
  1059. iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
  1060. pci_set_drvdata(pci, device);
  1061. return 0;
  1062. }
  1063. static int dma_runtime_suspend(struct device *dev)
  1064. {
  1065. struct pci_dev *pci_dev = to_pci_dev(dev);
  1066. return dma_suspend(pci_dev, PMSG_SUSPEND);
  1067. }
  1068. static int dma_runtime_resume(struct device *dev)
  1069. {
  1070. struct pci_dev *pci_dev = to_pci_dev(dev);
  1071. return dma_resume(pci_dev);
  1072. }
  1073. static int dma_runtime_idle(struct device *dev)
  1074. {
  1075. struct pci_dev *pdev = to_pci_dev(dev);
  1076. struct middma_device *device = pci_get_drvdata(pdev);
  1077. int i;
  1078. for (i = 0; i < device->max_chan; i++) {
  1079. if (device->ch[i].in_use)
  1080. return -EAGAIN;
  1081. }
  1082. return pm_schedule_suspend(dev, 0);
  1083. }
  1084. /******************************************************************************
  1085. * PCI stuff
  1086. */
  1087. static struct pci_device_id intel_mid_dma_ids[] = {
  1088. { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
  1089. { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
  1090. { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
  1091. { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
  1092. { 0, }
  1093. };
  1094. MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
  1095. static const struct dev_pm_ops intel_mid_dma_pm = {
  1096. .runtime_suspend = dma_runtime_suspend,
  1097. .runtime_resume = dma_runtime_resume,
  1098. .runtime_idle = dma_runtime_idle,
  1099. };
  1100. static struct pci_driver intel_mid_dma_pci = {
  1101. .name = "Intel MID DMA",
  1102. .id_table = intel_mid_dma_ids,
  1103. .probe = intel_mid_dma_probe,
  1104. .remove = __devexit_p(intel_mid_dma_remove),
  1105. #ifdef CONFIG_PM
  1106. .suspend = dma_suspend,
  1107. .resume = dma_resume,
  1108. .driver = {
  1109. .pm = &intel_mid_dma_pm,
  1110. },
  1111. #endif
  1112. };
  1113. static int __init intel_mid_dma_init(void)
  1114. {
  1115. pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
  1116. INTEL_MID_DMA_DRIVER_VERSION);
  1117. return pci_register_driver(&intel_mid_dma_pci);
  1118. }
  1119. fs_initcall(intel_mid_dma_init);
  1120. static void __exit intel_mid_dma_exit(void)
  1121. {
  1122. pci_unregister_driver(&intel_mid_dma_pci);
  1123. }
  1124. module_exit(intel_mid_dma_exit);
  1125. MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
  1126. MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
  1127. MODULE_LICENSE("GPL v2");
  1128. MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);