forcedeth.c 194 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. NvRegUnknownSetupReg6 = 0x008,
  116. #define NVREG_UNKSETUP6_VAL 3
  117. /*
  118. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  119. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  120. */
  121. NvRegPollingInterval = 0x00c,
  122. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  123. #define NVREG_POLL_DEFAULT_CPU 13
  124. NvRegMSIMap0 = 0x020,
  125. NvRegMSIMap1 = 0x024,
  126. NvRegMSIIrqMask = 0x030,
  127. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  128. NvRegMisc1 = 0x080,
  129. #define NVREG_MISC1_PAUSE_TX 0x01
  130. #define NVREG_MISC1_HD 0x02
  131. #define NVREG_MISC1_FORCE 0x3b0f3c
  132. NvRegMacReset = 0x34,
  133. #define NVREG_MAC_RESET_ASSERT 0x0F3
  134. NvRegTransmitterControl = 0x084,
  135. #define NVREG_XMITCTL_START 0x01
  136. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  137. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  138. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  139. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  140. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  141. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  142. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  143. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  144. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  145. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  146. #define NVREG_XMITCTL_DATA_START 0x00100000
  147. #define NVREG_XMITCTL_DATA_READY 0x00010000
  148. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegTxPauseFrameLimit = 0x174,
  236. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  237. NvRegMIIStatus = 0x180,
  238. #define NVREG_MIISTAT_ERROR 0x0001
  239. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  240. #define NVREG_MIISTAT_MASK_RW 0x0007
  241. #define NVREG_MIISTAT_MASK_ALL 0x000f
  242. NvRegMIIMask = 0x184,
  243. #define NVREG_MII_LINKCHANGE 0x0008
  244. NvRegAdapterControl = 0x188,
  245. #define NVREG_ADAPTCTL_START 0x02
  246. #define NVREG_ADAPTCTL_LINKUP 0x04
  247. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  248. #define NVREG_ADAPTCTL_RUNNING 0x100000
  249. #define NVREG_ADAPTCTL_PHYSHIFT 24
  250. NvRegMIISpeed = 0x18c,
  251. #define NVREG_MIISPEED_BIT8 (1<<8)
  252. #define NVREG_MIIDELAY 5
  253. NvRegMIIControl = 0x190,
  254. #define NVREG_MIICTL_INUSE 0x08000
  255. #define NVREG_MIICTL_WRITE 0x00400
  256. #define NVREG_MIICTL_ADDRSHIFT 5
  257. NvRegMIIData = 0x194,
  258. NvRegTxUnicast = 0x1a0,
  259. NvRegTxMulticast = 0x1a4,
  260. NvRegTxBroadcast = 0x1a8,
  261. NvRegWakeUpFlags = 0x200,
  262. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  263. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  264. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  265. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  266. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  267. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  268. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  270. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  271. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  272. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  273. NvRegMgmtUnitGetVersion = 0x204,
  274. #define NVREG_MGMTUNITGETVERSION 0x01
  275. NvRegMgmtUnitVersion = 0x208,
  276. #define NVREG_MGMTUNITVERSION 0x08
  277. NvRegPowerCap = 0x268,
  278. #define NVREG_POWERCAP_D3SUPP (1<<30)
  279. #define NVREG_POWERCAP_D2SUPP (1<<26)
  280. #define NVREG_POWERCAP_D1SUPP (1<<25)
  281. NvRegPowerState = 0x26c,
  282. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  283. #define NVREG_POWERSTATE_VALID 0x0100
  284. #define NVREG_POWERSTATE_MASK 0x0003
  285. #define NVREG_POWERSTATE_D0 0x0000
  286. #define NVREG_POWERSTATE_D1 0x0001
  287. #define NVREG_POWERSTATE_D2 0x0002
  288. #define NVREG_POWERSTATE_D3 0x0003
  289. NvRegMgmtUnitControl = 0x278,
  290. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  291. NvRegTxCnt = 0x280,
  292. NvRegTxZeroReXmt = 0x284,
  293. NvRegTxOneReXmt = 0x288,
  294. NvRegTxManyReXmt = 0x28c,
  295. NvRegTxLateCol = 0x290,
  296. NvRegTxUnderflow = 0x294,
  297. NvRegTxLossCarrier = 0x298,
  298. NvRegTxExcessDef = 0x29c,
  299. NvRegTxRetryErr = 0x2a0,
  300. NvRegRxFrameErr = 0x2a4,
  301. NvRegRxExtraByte = 0x2a8,
  302. NvRegRxLateCol = 0x2ac,
  303. NvRegRxRunt = 0x2b0,
  304. NvRegRxFrameTooLong = 0x2b4,
  305. NvRegRxOverflow = 0x2b8,
  306. NvRegRxFCSErr = 0x2bc,
  307. NvRegRxFrameAlignErr = 0x2c0,
  308. NvRegRxLenErr = 0x2c4,
  309. NvRegRxUnicast = 0x2c8,
  310. NvRegRxMulticast = 0x2cc,
  311. NvRegRxBroadcast = 0x2d0,
  312. NvRegTxDef = 0x2d4,
  313. NvRegTxFrame = 0x2d8,
  314. NvRegRxCnt = 0x2dc,
  315. NvRegTxPause = 0x2e0,
  316. NvRegRxPause = 0x2e4,
  317. NvRegRxDropFrame = 0x2e8,
  318. NvRegVlanControl = 0x300,
  319. #define NVREG_VLANCONTROL_ENABLE 0x2000
  320. NvRegMSIXMap0 = 0x3e0,
  321. NvRegMSIXMap1 = 0x3e4,
  322. NvRegMSIXIrqStatus = 0x3f0,
  323. NvRegPowerState2 = 0x600,
  324. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  325. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  326. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  327. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  328. };
  329. /* Big endian: should work, but is untested */
  330. struct ring_desc {
  331. __le32 buf;
  332. __le32 flaglen;
  333. };
  334. struct ring_desc_ex {
  335. __le32 bufhigh;
  336. __le32 buflow;
  337. __le32 txvlan;
  338. __le32 flaglen;
  339. };
  340. union ring_type {
  341. struct ring_desc* orig;
  342. struct ring_desc_ex* ex;
  343. };
  344. #define FLAG_MASK_V1 0xffff0000
  345. #define FLAG_MASK_V2 0xffffc000
  346. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  347. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  348. #define NV_TX_LASTPACKET (1<<16)
  349. #define NV_TX_RETRYERROR (1<<19)
  350. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  351. #define NV_TX_FORCED_INTERRUPT (1<<24)
  352. #define NV_TX_DEFERRED (1<<26)
  353. #define NV_TX_CARRIERLOST (1<<27)
  354. #define NV_TX_LATECOLLISION (1<<28)
  355. #define NV_TX_UNDERFLOW (1<<29)
  356. #define NV_TX_ERROR (1<<30)
  357. #define NV_TX_VALID (1<<31)
  358. #define NV_TX2_LASTPACKET (1<<29)
  359. #define NV_TX2_RETRYERROR (1<<18)
  360. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  361. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  362. #define NV_TX2_DEFERRED (1<<25)
  363. #define NV_TX2_CARRIERLOST (1<<26)
  364. #define NV_TX2_LATECOLLISION (1<<27)
  365. #define NV_TX2_UNDERFLOW (1<<28)
  366. /* error and valid are the same for both */
  367. #define NV_TX2_ERROR (1<<30)
  368. #define NV_TX2_VALID (1<<31)
  369. #define NV_TX2_TSO (1<<28)
  370. #define NV_TX2_TSO_SHIFT 14
  371. #define NV_TX2_TSO_MAX_SHIFT 14
  372. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  373. #define NV_TX2_CHECKSUM_L3 (1<<27)
  374. #define NV_TX2_CHECKSUM_L4 (1<<26)
  375. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  376. #define NV_RX_DESCRIPTORVALID (1<<16)
  377. #define NV_RX_MISSEDFRAME (1<<17)
  378. #define NV_RX_SUBSTRACT1 (1<<18)
  379. #define NV_RX_ERROR1 (1<<23)
  380. #define NV_RX_ERROR2 (1<<24)
  381. #define NV_RX_ERROR3 (1<<25)
  382. #define NV_RX_ERROR4 (1<<26)
  383. #define NV_RX_CRCERR (1<<27)
  384. #define NV_RX_OVERFLOW (1<<28)
  385. #define NV_RX_FRAMINGERR (1<<29)
  386. #define NV_RX_ERROR (1<<30)
  387. #define NV_RX_AVAIL (1<<31)
  388. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  389. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  390. #define NV_RX2_CHECKSUM_IP (0x10000000)
  391. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  392. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  393. #define NV_RX2_DESCRIPTORVALID (1<<29)
  394. #define NV_RX2_SUBSTRACT1 (1<<25)
  395. #define NV_RX2_ERROR1 (1<<18)
  396. #define NV_RX2_ERROR2 (1<<19)
  397. #define NV_RX2_ERROR3 (1<<20)
  398. #define NV_RX2_ERROR4 (1<<21)
  399. #define NV_RX2_CRCERR (1<<22)
  400. #define NV_RX2_OVERFLOW (1<<23)
  401. #define NV_RX2_FRAMINGERR (1<<24)
  402. /* error and avail are the same for both */
  403. #define NV_RX2_ERROR (1<<30)
  404. #define NV_RX2_AVAIL (1<<31)
  405. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  406. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  407. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  408. /* Miscelaneous hardware related defines: */
  409. #define NV_PCI_REGSZ_VER1 0x270
  410. #define NV_PCI_REGSZ_VER2 0x2d4
  411. #define NV_PCI_REGSZ_VER3 0x604
  412. #define NV_PCI_REGSZ_MAX 0x604
  413. /* various timeout delays: all in usec */
  414. #define NV_TXRX_RESET_DELAY 4
  415. #define NV_TXSTOP_DELAY1 10
  416. #define NV_TXSTOP_DELAY1MAX 500000
  417. #define NV_TXSTOP_DELAY2 100
  418. #define NV_RXSTOP_DELAY1 10
  419. #define NV_RXSTOP_DELAY1MAX 500000
  420. #define NV_RXSTOP_DELAY2 100
  421. #define NV_SETUP5_DELAY 5
  422. #define NV_SETUP5_DELAYMAX 50000
  423. #define NV_POWERUP_DELAY 5
  424. #define NV_POWERUP_DELAYMAX 5000
  425. #define NV_MIIBUSY_DELAY 50
  426. #define NV_MIIPHY_DELAY 10
  427. #define NV_MIIPHY_DELAYMAX 10000
  428. #define NV_MAC_RESET_DELAY 64
  429. #define NV_WAKEUPPATTERNS 5
  430. #define NV_WAKEUPMASKENTRIES 4
  431. /* General driver defaults */
  432. #define NV_WATCHDOG_TIMEO (5*HZ)
  433. #define RX_RING_DEFAULT 512
  434. #define TX_RING_DEFAULT 256
  435. #define RX_RING_MIN 128
  436. #define TX_RING_MIN 64
  437. #define RING_MAX_DESC_VER_1 1024
  438. #define RING_MAX_DESC_VER_2_3 16384
  439. /* rx/tx mac addr + type + vlan + align + slack*/
  440. #define NV_RX_HEADERS (64)
  441. /* even more slack. */
  442. #define NV_RX_ALLOC_PAD (64)
  443. /* maximum mtu size */
  444. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  445. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  446. #define OOM_REFILL (1+HZ/20)
  447. #define POLL_WAIT (1+HZ/100)
  448. #define LINK_TIMEOUT (3*HZ)
  449. #define STATS_INTERVAL (10*HZ)
  450. /*
  451. * desc_ver values:
  452. * The nic supports three different descriptor types:
  453. * - DESC_VER_1: Original
  454. * - DESC_VER_2: support for jumbo frames.
  455. * - DESC_VER_3: 64-bit format.
  456. */
  457. #define DESC_VER_1 1
  458. #define DESC_VER_2 2
  459. #define DESC_VER_3 3
  460. /* PHY defines */
  461. #define PHY_OUI_MARVELL 0x5043
  462. #define PHY_OUI_CICADA 0x03f1
  463. #define PHY_OUI_VITESSE 0x01c1
  464. #define PHY_OUI_REALTEK 0x0732
  465. #define PHY_OUI_REALTEK2 0x0020
  466. #define PHYID1_OUI_MASK 0x03ff
  467. #define PHYID1_OUI_SHFT 6
  468. #define PHYID2_OUI_MASK 0xfc00
  469. #define PHYID2_OUI_SHFT 10
  470. #define PHYID2_MODEL_MASK 0x03f0
  471. #define PHY_MODEL_REALTEK_8211 0x0110
  472. #define PHY_REV_MASK 0x0001
  473. #define PHY_REV_REALTEK_8211B 0x0000
  474. #define PHY_REV_REALTEK_8211C 0x0001
  475. #define PHY_MODEL_REALTEK_8201 0x0200
  476. #define PHY_MODEL_MARVELL_E3016 0x0220
  477. #define PHY_MARVELL_E3016_INITMASK 0x0300
  478. #define PHY_CICADA_INIT1 0x0f000
  479. #define PHY_CICADA_INIT2 0x0e00
  480. #define PHY_CICADA_INIT3 0x01000
  481. #define PHY_CICADA_INIT4 0x0200
  482. #define PHY_CICADA_INIT5 0x0004
  483. #define PHY_CICADA_INIT6 0x02000
  484. #define PHY_VITESSE_INIT_REG1 0x1f
  485. #define PHY_VITESSE_INIT_REG2 0x10
  486. #define PHY_VITESSE_INIT_REG3 0x11
  487. #define PHY_VITESSE_INIT_REG4 0x12
  488. #define PHY_VITESSE_INIT_MSK1 0xc
  489. #define PHY_VITESSE_INIT_MSK2 0x0180
  490. #define PHY_VITESSE_INIT1 0x52b5
  491. #define PHY_VITESSE_INIT2 0xaf8a
  492. #define PHY_VITESSE_INIT3 0x8
  493. #define PHY_VITESSE_INIT4 0x8f8a
  494. #define PHY_VITESSE_INIT5 0xaf86
  495. #define PHY_VITESSE_INIT6 0x8f86
  496. #define PHY_VITESSE_INIT7 0xaf82
  497. #define PHY_VITESSE_INIT8 0x0100
  498. #define PHY_VITESSE_INIT9 0x8f82
  499. #define PHY_VITESSE_INIT10 0x0
  500. #define PHY_REALTEK_INIT_REG1 0x1f
  501. #define PHY_REALTEK_INIT_REG2 0x19
  502. #define PHY_REALTEK_INIT_REG3 0x13
  503. #define PHY_REALTEK_INIT_REG4 0x14
  504. #define PHY_REALTEK_INIT_REG5 0x18
  505. #define PHY_REALTEK_INIT_REG6 0x11
  506. #define PHY_REALTEK_INIT_REG7 0x01
  507. #define PHY_REALTEK_INIT1 0x0000
  508. #define PHY_REALTEK_INIT2 0x8e00
  509. #define PHY_REALTEK_INIT3 0x0001
  510. #define PHY_REALTEK_INIT4 0xad17
  511. #define PHY_REALTEK_INIT5 0xfb54
  512. #define PHY_REALTEK_INIT6 0xf5c7
  513. #define PHY_REALTEK_INIT7 0x1000
  514. #define PHY_REALTEK_INIT8 0x0003
  515. #define PHY_REALTEK_INIT9 0x0008
  516. #define PHY_REALTEK_INIT10 0x0005
  517. #define PHY_REALTEK_INIT11 0x0200
  518. #define PHY_REALTEK_INIT_MSK1 0x0003
  519. #define PHY_GIGABIT 0x0100
  520. #define PHY_TIMEOUT 0x1
  521. #define PHY_ERROR 0x2
  522. #define PHY_100 0x1
  523. #define PHY_1000 0x2
  524. #define PHY_HALF 0x100
  525. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  526. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  527. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  528. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  529. #define NV_PAUSEFRAME_RX_REQ 0x0010
  530. #define NV_PAUSEFRAME_TX_REQ 0x0020
  531. #define NV_PAUSEFRAME_AUTONEG 0x0040
  532. /* MSI/MSI-X defines */
  533. #define NV_MSI_X_MAX_VECTORS 8
  534. #define NV_MSI_X_VECTORS_MASK 0x000f
  535. #define NV_MSI_CAPABLE 0x0010
  536. #define NV_MSI_X_CAPABLE 0x0020
  537. #define NV_MSI_ENABLED 0x0040
  538. #define NV_MSI_X_ENABLED 0x0080
  539. #define NV_MSI_X_VECTOR_ALL 0x0
  540. #define NV_MSI_X_VECTOR_RX 0x0
  541. #define NV_MSI_X_VECTOR_TX 0x1
  542. #define NV_MSI_X_VECTOR_OTHER 0x2
  543. #define NV_MSI_PRIV_OFFSET 0x68
  544. #define NV_MSI_PRIV_VALUE 0xffffffff
  545. #define NV_RESTART_TX 0x1
  546. #define NV_RESTART_RX 0x2
  547. #define NV_TX_LIMIT_COUNT 16
  548. #define NV_DYNAMIC_THRESHOLD 4
  549. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  550. /* statistics */
  551. struct nv_ethtool_str {
  552. char name[ETH_GSTRING_LEN];
  553. };
  554. static const struct nv_ethtool_str nv_estats_str[] = {
  555. { "tx_bytes" },
  556. { "tx_zero_rexmt" },
  557. { "tx_one_rexmt" },
  558. { "tx_many_rexmt" },
  559. { "tx_late_collision" },
  560. { "tx_fifo_errors" },
  561. { "tx_carrier_errors" },
  562. { "tx_excess_deferral" },
  563. { "tx_retry_error" },
  564. { "rx_frame_error" },
  565. { "rx_extra_byte" },
  566. { "rx_late_collision" },
  567. { "rx_runt" },
  568. { "rx_frame_too_long" },
  569. { "rx_over_errors" },
  570. { "rx_crc_errors" },
  571. { "rx_frame_align_error" },
  572. { "rx_length_error" },
  573. { "rx_unicast" },
  574. { "rx_multicast" },
  575. { "rx_broadcast" },
  576. { "rx_packets" },
  577. { "rx_errors_total" },
  578. { "tx_errors_total" },
  579. /* version 2 stats */
  580. { "tx_deferral" },
  581. { "tx_packets" },
  582. { "rx_bytes" },
  583. { "tx_pause" },
  584. { "rx_pause" },
  585. { "rx_drop_frame" },
  586. /* version 3 stats */
  587. { "tx_unicast" },
  588. { "tx_multicast" },
  589. { "tx_broadcast" }
  590. };
  591. struct nv_ethtool_stats {
  592. u64 tx_bytes;
  593. u64 tx_zero_rexmt;
  594. u64 tx_one_rexmt;
  595. u64 tx_many_rexmt;
  596. u64 tx_late_collision;
  597. u64 tx_fifo_errors;
  598. u64 tx_carrier_errors;
  599. u64 tx_excess_deferral;
  600. u64 tx_retry_error;
  601. u64 rx_frame_error;
  602. u64 rx_extra_byte;
  603. u64 rx_late_collision;
  604. u64 rx_runt;
  605. u64 rx_frame_too_long;
  606. u64 rx_over_errors;
  607. u64 rx_crc_errors;
  608. u64 rx_frame_align_error;
  609. u64 rx_length_error;
  610. u64 rx_unicast;
  611. u64 rx_multicast;
  612. u64 rx_broadcast;
  613. u64 rx_packets;
  614. u64 rx_errors_total;
  615. u64 tx_errors_total;
  616. /* version 2 stats */
  617. u64 tx_deferral;
  618. u64 tx_packets;
  619. u64 rx_bytes;
  620. u64 tx_pause;
  621. u64 rx_pause;
  622. u64 rx_drop_frame;
  623. /* version 3 stats */
  624. u64 tx_unicast;
  625. u64 tx_multicast;
  626. u64 tx_broadcast;
  627. };
  628. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  629. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  630. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  631. /* diagnostics */
  632. #define NV_TEST_COUNT_BASE 3
  633. #define NV_TEST_COUNT_EXTENDED 4
  634. static const struct nv_ethtool_str nv_etests_str[] = {
  635. { "link (online/offline)" },
  636. { "register (offline) " },
  637. { "interrupt (offline) " },
  638. { "loopback (offline) " }
  639. };
  640. struct register_test {
  641. __u32 reg;
  642. __u32 mask;
  643. };
  644. static const struct register_test nv_registers_test[] = {
  645. { NvRegUnknownSetupReg6, 0x01 },
  646. { NvRegMisc1, 0x03c },
  647. { NvRegOffloadConfig, 0x03ff },
  648. { NvRegMulticastAddrA, 0xffffffff },
  649. { NvRegTxWatermark, 0x0ff },
  650. { NvRegWakeUpFlags, 0x07777 },
  651. { 0,0 }
  652. };
  653. struct nv_skb_map {
  654. struct sk_buff *skb;
  655. dma_addr_t dma;
  656. unsigned int dma_len;
  657. struct ring_desc_ex *first_tx_desc;
  658. struct nv_skb_map *next_tx_ctx;
  659. };
  660. /*
  661. * SMP locking:
  662. * All hardware access under netdev_priv(dev)->lock, except the performance
  663. * critical parts:
  664. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  665. * by the arch code for interrupts.
  666. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  667. * needs netdev_priv(dev)->lock :-(
  668. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  669. */
  670. /* in dev: base, irq */
  671. struct fe_priv {
  672. spinlock_t lock;
  673. struct net_device *dev;
  674. struct napi_struct napi;
  675. /* General data:
  676. * Locking: spin_lock(&np->lock); */
  677. struct nv_ethtool_stats estats;
  678. int in_shutdown;
  679. u32 linkspeed;
  680. int duplex;
  681. int autoneg;
  682. int fixed_mode;
  683. int phyaddr;
  684. int wolenabled;
  685. unsigned int phy_oui;
  686. unsigned int phy_model;
  687. unsigned int phy_rev;
  688. u16 gigabit;
  689. int intr_test;
  690. int recover_error;
  691. int quiet_count;
  692. /* General data: RO fields */
  693. dma_addr_t ring_addr;
  694. struct pci_dev *pci_dev;
  695. u32 orig_mac[2];
  696. u32 events;
  697. u32 irqmask;
  698. u32 desc_ver;
  699. u32 txrxctl_bits;
  700. u32 vlanctl_bits;
  701. u32 driver_data;
  702. u32 device_id;
  703. u32 register_size;
  704. int rx_csum;
  705. u32 mac_in_use;
  706. int mgmt_version;
  707. int mgmt_sema;
  708. void __iomem *base;
  709. /* rx specific fields.
  710. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  711. */
  712. union ring_type get_rx, put_rx, first_rx, last_rx;
  713. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  714. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  715. struct nv_skb_map *rx_skb;
  716. union ring_type rx_ring;
  717. unsigned int rx_buf_sz;
  718. unsigned int pkt_limit;
  719. struct timer_list oom_kick;
  720. struct timer_list nic_poll;
  721. struct timer_list stats_poll;
  722. u32 nic_poll_irq;
  723. int rx_ring_size;
  724. /* media detection workaround.
  725. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  726. */
  727. int need_linktimer;
  728. unsigned long link_timeout;
  729. /*
  730. * tx specific fields.
  731. */
  732. union ring_type get_tx, put_tx, first_tx, last_tx;
  733. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  734. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  735. struct nv_skb_map *tx_skb;
  736. union ring_type tx_ring;
  737. u32 tx_flags;
  738. int tx_ring_size;
  739. int tx_limit;
  740. u32 tx_pkts_in_progress;
  741. struct nv_skb_map *tx_change_owner;
  742. struct nv_skb_map *tx_end_flip;
  743. int tx_stop;
  744. /* vlan fields */
  745. struct vlan_group *vlangrp;
  746. /* msi/msi-x fields */
  747. u32 msi_flags;
  748. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  749. /* flow control */
  750. u32 pause_flags;
  751. /* power saved state */
  752. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  753. /* for different msi-x irq type */
  754. char name_rx[IFNAMSIZ + 3]; /* -rx */
  755. char name_tx[IFNAMSIZ + 3]; /* -tx */
  756. char name_other[IFNAMSIZ + 6]; /* -other */
  757. };
  758. /*
  759. * Maximum number of loops until we assume that a bit in the irq mask
  760. * is stuck. Overridable with module param.
  761. */
  762. static int max_interrupt_work = 4;
  763. /*
  764. * Optimization can be either throuput mode or cpu mode
  765. *
  766. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  767. * CPU Mode: Interrupts are controlled by a timer.
  768. */
  769. enum {
  770. NV_OPTIMIZATION_MODE_THROUGHPUT,
  771. NV_OPTIMIZATION_MODE_CPU,
  772. NV_OPTIMIZATION_MODE_DYNAMIC
  773. };
  774. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  775. /*
  776. * Poll interval for timer irq
  777. *
  778. * This interval determines how frequent an interrupt is generated.
  779. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  780. * Min = 0, and Max = 65535
  781. */
  782. static int poll_interval = -1;
  783. /*
  784. * MSI interrupts
  785. */
  786. enum {
  787. NV_MSI_INT_DISABLED,
  788. NV_MSI_INT_ENABLED
  789. };
  790. static int msi = NV_MSI_INT_ENABLED;
  791. /*
  792. * MSIX interrupts
  793. */
  794. enum {
  795. NV_MSIX_INT_DISABLED,
  796. NV_MSIX_INT_ENABLED
  797. };
  798. static int msix = NV_MSIX_INT_ENABLED;
  799. /*
  800. * DMA 64bit
  801. */
  802. enum {
  803. NV_DMA_64BIT_DISABLED,
  804. NV_DMA_64BIT_ENABLED
  805. };
  806. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  807. /*
  808. * Crossover Detection
  809. * Realtek 8201 phy + some OEM boards do not work properly.
  810. */
  811. enum {
  812. NV_CROSSOVER_DETECTION_DISABLED,
  813. NV_CROSSOVER_DETECTION_ENABLED
  814. };
  815. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  816. /*
  817. * Power down phy when interface is down (persists through reboot;
  818. * older Linux and other OSes may not power it up again)
  819. */
  820. static int phy_power_down = 0;
  821. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  822. {
  823. return netdev_priv(dev);
  824. }
  825. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  826. {
  827. return ((struct fe_priv *)netdev_priv(dev))->base;
  828. }
  829. static inline void pci_push(u8 __iomem *base)
  830. {
  831. /* force out pending posted writes */
  832. readl(base);
  833. }
  834. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  835. {
  836. return le32_to_cpu(prd->flaglen)
  837. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  838. }
  839. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  840. {
  841. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  842. }
  843. static bool nv_optimized(struct fe_priv *np)
  844. {
  845. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  846. return false;
  847. return true;
  848. }
  849. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  850. int delay, int delaymax, const char *msg)
  851. {
  852. u8 __iomem *base = get_hwbase(dev);
  853. pci_push(base);
  854. do {
  855. udelay(delay);
  856. delaymax -= delay;
  857. if (delaymax < 0) {
  858. if (msg)
  859. printk("%s", msg);
  860. return 1;
  861. }
  862. } while ((readl(base + offset) & mask) != target);
  863. return 0;
  864. }
  865. #define NV_SETUP_RX_RING 0x01
  866. #define NV_SETUP_TX_RING 0x02
  867. static inline u32 dma_low(dma_addr_t addr)
  868. {
  869. return addr;
  870. }
  871. static inline u32 dma_high(dma_addr_t addr)
  872. {
  873. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  874. }
  875. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  876. {
  877. struct fe_priv *np = get_nvpriv(dev);
  878. u8 __iomem *base = get_hwbase(dev);
  879. if (!nv_optimized(np)) {
  880. if (rxtx_flags & NV_SETUP_RX_RING) {
  881. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  882. }
  883. if (rxtx_flags & NV_SETUP_TX_RING) {
  884. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  885. }
  886. } else {
  887. if (rxtx_flags & NV_SETUP_RX_RING) {
  888. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  889. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  890. }
  891. if (rxtx_flags & NV_SETUP_TX_RING) {
  892. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  893. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  894. }
  895. }
  896. }
  897. static void free_rings(struct net_device *dev)
  898. {
  899. struct fe_priv *np = get_nvpriv(dev);
  900. if (!nv_optimized(np)) {
  901. if (np->rx_ring.orig)
  902. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  903. np->rx_ring.orig, np->ring_addr);
  904. } else {
  905. if (np->rx_ring.ex)
  906. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  907. np->rx_ring.ex, np->ring_addr);
  908. }
  909. if (np->rx_skb)
  910. kfree(np->rx_skb);
  911. if (np->tx_skb)
  912. kfree(np->tx_skb);
  913. }
  914. static int using_multi_irqs(struct net_device *dev)
  915. {
  916. struct fe_priv *np = get_nvpriv(dev);
  917. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  918. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  919. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  920. return 0;
  921. else
  922. return 1;
  923. }
  924. static void nv_txrx_gate(struct net_device *dev, bool gate)
  925. {
  926. struct fe_priv *np = get_nvpriv(dev);
  927. u8 __iomem *base = get_hwbase(dev);
  928. u32 powerstate;
  929. if (!np->mac_in_use &&
  930. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  931. powerstate = readl(base + NvRegPowerState2);
  932. if (gate)
  933. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  934. else
  935. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  936. writel(powerstate, base + NvRegPowerState2);
  937. }
  938. }
  939. static void nv_enable_irq(struct net_device *dev)
  940. {
  941. struct fe_priv *np = get_nvpriv(dev);
  942. if (!using_multi_irqs(dev)) {
  943. if (np->msi_flags & NV_MSI_X_ENABLED)
  944. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  945. else
  946. enable_irq(np->pci_dev->irq);
  947. } else {
  948. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  949. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  950. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  951. }
  952. }
  953. static void nv_disable_irq(struct net_device *dev)
  954. {
  955. struct fe_priv *np = get_nvpriv(dev);
  956. if (!using_multi_irqs(dev)) {
  957. if (np->msi_flags & NV_MSI_X_ENABLED)
  958. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  959. else
  960. disable_irq(np->pci_dev->irq);
  961. } else {
  962. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  963. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  964. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  965. }
  966. }
  967. /* In MSIX mode, a write to irqmask behaves as XOR */
  968. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  969. {
  970. u8 __iomem *base = get_hwbase(dev);
  971. writel(mask, base + NvRegIrqMask);
  972. }
  973. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  974. {
  975. struct fe_priv *np = get_nvpriv(dev);
  976. u8 __iomem *base = get_hwbase(dev);
  977. if (np->msi_flags & NV_MSI_X_ENABLED) {
  978. writel(mask, base + NvRegIrqMask);
  979. } else {
  980. if (np->msi_flags & NV_MSI_ENABLED)
  981. writel(0, base + NvRegMSIIrqMask);
  982. writel(0, base + NvRegIrqMask);
  983. }
  984. }
  985. static void nv_napi_enable(struct net_device *dev)
  986. {
  987. #ifdef CONFIG_FORCEDETH_NAPI
  988. struct fe_priv *np = get_nvpriv(dev);
  989. napi_enable(&np->napi);
  990. #endif
  991. }
  992. static void nv_napi_disable(struct net_device *dev)
  993. {
  994. #ifdef CONFIG_FORCEDETH_NAPI
  995. struct fe_priv *np = get_nvpriv(dev);
  996. napi_disable(&np->napi);
  997. #endif
  998. }
  999. #define MII_READ (-1)
  1000. /* mii_rw: read/write a register on the PHY.
  1001. *
  1002. * Caller must guarantee serialization
  1003. */
  1004. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1005. {
  1006. u8 __iomem *base = get_hwbase(dev);
  1007. u32 reg;
  1008. int retval;
  1009. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1010. reg = readl(base + NvRegMIIControl);
  1011. if (reg & NVREG_MIICTL_INUSE) {
  1012. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1013. udelay(NV_MIIBUSY_DELAY);
  1014. }
  1015. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1016. if (value != MII_READ) {
  1017. writel(value, base + NvRegMIIData);
  1018. reg |= NVREG_MIICTL_WRITE;
  1019. }
  1020. writel(reg, base + NvRegMIIControl);
  1021. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1022. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1023. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1024. dev->name, miireg, addr);
  1025. retval = -1;
  1026. } else if (value != MII_READ) {
  1027. /* it was a write operation - fewer failures are detectable */
  1028. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1029. dev->name, value, miireg, addr);
  1030. retval = 0;
  1031. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1032. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1033. dev->name, miireg, addr);
  1034. retval = -1;
  1035. } else {
  1036. retval = readl(base + NvRegMIIData);
  1037. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1038. dev->name, miireg, addr, retval);
  1039. }
  1040. return retval;
  1041. }
  1042. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1043. {
  1044. struct fe_priv *np = netdev_priv(dev);
  1045. u32 miicontrol;
  1046. unsigned int tries = 0;
  1047. miicontrol = BMCR_RESET | bmcr_setup;
  1048. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1049. return -1;
  1050. }
  1051. /* wait for 500ms */
  1052. msleep(500);
  1053. /* must wait till reset is deasserted */
  1054. while (miicontrol & BMCR_RESET) {
  1055. msleep(10);
  1056. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1057. /* FIXME: 100 tries seem excessive */
  1058. if (tries++ > 100)
  1059. return -1;
  1060. }
  1061. return 0;
  1062. }
  1063. static int phy_init(struct net_device *dev)
  1064. {
  1065. struct fe_priv *np = get_nvpriv(dev);
  1066. u8 __iomem *base = get_hwbase(dev);
  1067. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1068. /* phy errata for E3016 phy */
  1069. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1070. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1071. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1072. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1073. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1074. return PHY_ERROR;
  1075. }
  1076. }
  1077. if (np->phy_oui == PHY_OUI_REALTEK) {
  1078. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1079. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1080. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1081. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1082. return PHY_ERROR;
  1083. }
  1084. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1085. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1086. return PHY_ERROR;
  1087. }
  1088. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1089. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1090. return PHY_ERROR;
  1091. }
  1092. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1093. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1094. return PHY_ERROR;
  1095. }
  1096. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1101. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1102. return PHY_ERROR;
  1103. }
  1104. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1105. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1106. return PHY_ERROR;
  1107. }
  1108. }
  1109. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1110. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1111. u32 powerstate = readl(base + NvRegPowerState2);
  1112. /* need to perform hw phy reset */
  1113. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1114. writel(powerstate, base + NvRegPowerState2);
  1115. msleep(25);
  1116. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1117. writel(powerstate, base + NvRegPowerState2);
  1118. msleep(25);
  1119. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1120. reg |= PHY_REALTEK_INIT9;
  1121. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1122. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1123. return PHY_ERROR;
  1124. }
  1125. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1126. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1127. return PHY_ERROR;
  1128. }
  1129. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1130. if (!(reg & PHY_REALTEK_INIT11)) {
  1131. reg |= PHY_REALTEK_INIT11;
  1132. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1133. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1134. return PHY_ERROR;
  1135. }
  1136. }
  1137. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1138. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1139. return PHY_ERROR;
  1140. }
  1141. }
  1142. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1143. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1144. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1145. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1146. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1147. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1148. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1149. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1150. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1151. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1152. phy_reserved |= PHY_REALTEK_INIT7;
  1153. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1154. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1155. return PHY_ERROR;
  1156. }
  1157. }
  1158. }
  1159. }
  1160. /* set advertise register */
  1161. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1162. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1163. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1164. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1165. return PHY_ERROR;
  1166. }
  1167. /* get phy interface type */
  1168. phyinterface = readl(base + NvRegPhyInterface);
  1169. /* see if gigabit phy */
  1170. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1171. if (mii_status & PHY_GIGABIT) {
  1172. np->gigabit = PHY_GIGABIT;
  1173. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1174. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1175. if (phyinterface & PHY_RGMII)
  1176. mii_control_1000 |= ADVERTISE_1000FULL;
  1177. else
  1178. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1179. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1180. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1181. return PHY_ERROR;
  1182. }
  1183. }
  1184. else
  1185. np->gigabit = 0;
  1186. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1187. mii_control |= BMCR_ANENABLE;
  1188. if (np->phy_oui == PHY_OUI_REALTEK &&
  1189. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1190. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1191. /* start autoneg since we already performed hw reset above */
  1192. mii_control |= BMCR_ANRESTART;
  1193. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1194. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1195. return PHY_ERROR;
  1196. }
  1197. } else {
  1198. /* reset the phy
  1199. * (certain phys need bmcr to be setup with reset)
  1200. */
  1201. if (phy_reset(dev, mii_control)) {
  1202. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. }
  1206. /* phy vendor specific configuration */
  1207. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1208. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1209. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1210. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1211. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1212. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1213. return PHY_ERROR;
  1214. }
  1215. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1216. phy_reserved |= PHY_CICADA_INIT5;
  1217. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1218. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1219. return PHY_ERROR;
  1220. }
  1221. }
  1222. if (np->phy_oui == PHY_OUI_CICADA) {
  1223. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1224. phy_reserved |= PHY_CICADA_INIT6;
  1225. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1226. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1227. return PHY_ERROR;
  1228. }
  1229. }
  1230. if (np->phy_oui == PHY_OUI_VITESSE) {
  1231. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1232. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1233. return PHY_ERROR;
  1234. }
  1235. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1236. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1237. return PHY_ERROR;
  1238. }
  1239. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1240. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1241. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1242. return PHY_ERROR;
  1243. }
  1244. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1245. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1246. phy_reserved |= PHY_VITESSE_INIT3;
  1247. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1248. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1249. return PHY_ERROR;
  1250. }
  1251. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1252. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1253. return PHY_ERROR;
  1254. }
  1255. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1256. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1257. return PHY_ERROR;
  1258. }
  1259. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1260. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1261. phy_reserved |= PHY_VITESSE_INIT3;
  1262. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1263. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1264. return PHY_ERROR;
  1265. }
  1266. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1267. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1268. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1269. return PHY_ERROR;
  1270. }
  1271. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1272. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1273. return PHY_ERROR;
  1274. }
  1275. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1276. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1277. return PHY_ERROR;
  1278. }
  1279. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1280. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1281. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1282. return PHY_ERROR;
  1283. }
  1284. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1285. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1286. phy_reserved |= PHY_VITESSE_INIT8;
  1287. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1296. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1297. return PHY_ERROR;
  1298. }
  1299. }
  1300. if (np->phy_oui == PHY_OUI_REALTEK) {
  1301. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1302. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1303. /* reset could have cleared these out, set them back */
  1304. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1305. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1306. return PHY_ERROR;
  1307. }
  1308. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1309. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1310. return PHY_ERROR;
  1311. }
  1312. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1313. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1314. return PHY_ERROR;
  1315. }
  1316. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1317. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1318. return PHY_ERROR;
  1319. }
  1320. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1321. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1322. return PHY_ERROR;
  1323. }
  1324. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1325. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1326. return PHY_ERROR;
  1327. }
  1328. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1329. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1330. return PHY_ERROR;
  1331. }
  1332. }
  1333. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1334. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1335. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1336. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1337. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1338. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1339. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1340. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1341. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1342. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1343. phy_reserved |= PHY_REALTEK_INIT7;
  1344. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1345. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1346. return PHY_ERROR;
  1347. }
  1348. }
  1349. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1350. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1351. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1352. return PHY_ERROR;
  1353. }
  1354. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1355. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1356. phy_reserved |= PHY_REALTEK_INIT3;
  1357. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1358. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1359. return PHY_ERROR;
  1360. }
  1361. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1362. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1363. return PHY_ERROR;
  1364. }
  1365. }
  1366. }
  1367. }
  1368. /* some phys clear out pause advertisment on reset, set it back */
  1369. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1370. /* restart auto negotiation, power down phy */
  1371. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1372. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1373. if (phy_power_down) {
  1374. mii_control |= BMCR_PDOWN;
  1375. }
  1376. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1377. return PHY_ERROR;
  1378. }
  1379. return 0;
  1380. }
  1381. static void nv_start_rx(struct net_device *dev)
  1382. {
  1383. struct fe_priv *np = netdev_priv(dev);
  1384. u8 __iomem *base = get_hwbase(dev);
  1385. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1386. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1387. /* Already running? Stop it. */
  1388. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1389. rx_ctrl &= ~NVREG_RCVCTL_START;
  1390. writel(rx_ctrl, base + NvRegReceiverControl);
  1391. pci_push(base);
  1392. }
  1393. writel(np->linkspeed, base + NvRegLinkSpeed);
  1394. pci_push(base);
  1395. rx_ctrl |= NVREG_RCVCTL_START;
  1396. if (np->mac_in_use)
  1397. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1398. writel(rx_ctrl, base + NvRegReceiverControl);
  1399. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1400. dev->name, np->duplex, np->linkspeed);
  1401. pci_push(base);
  1402. }
  1403. static void nv_stop_rx(struct net_device *dev)
  1404. {
  1405. struct fe_priv *np = netdev_priv(dev);
  1406. u8 __iomem *base = get_hwbase(dev);
  1407. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1408. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1409. if (!np->mac_in_use)
  1410. rx_ctrl &= ~NVREG_RCVCTL_START;
  1411. else
  1412. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1413. writel(rx_ctrl, base + NvRegReceiverControl);
  1414. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1415. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1416. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1417. udelay(NV_RXSTOP_DELAY2);
  1418. if (!np->mac_in_use)
  1419. writel(0, base + NvRegLinkSpeed);
  1420. }
  1421. static void nv_start_tx(struct net_device *dev)
  1422. {
  1423. struct fe_priv *np = netdev_priv(dev);
  1424. u8 __iomem *base = get_hwbase(dev);
  1425. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1426. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1427. tx_ctrl |= NVREG_XMITCTL_START;
  1428. if (np->mac_in_use)
  1429. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1430. writel(tx_ctrl, base + NvRegTransmitterControl);
  1431. pci_push(base);
  1432. }
  1433. static void nv_stop_tx(struct net_device *dev)
  1434. {
  1435. struct fe_priv *np = netdev_priv(dev);
  1436. u8 __iomem *base = get_hwbase(dev);
  1437. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1438. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1439. if (!np->mac_in_use)
  1440. tx_ctrl &= ~NVREG_XMITCTL_START;
  1441. else
  1442. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1443. writel(tx_ctrl, base + NvRegTransmitterControl);
  1444. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1445. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1446. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1447. udelay(NV_TXSTOP_DELAY2);
  1448. if (!np->mac_in_use)
  1449. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1450. base + NvRegTransmitPoll);
  1451. }
  1452. static void nv_start_rxtx(struct net_device *dev)
  1453. {
  1454. nv_start_rx(dev);
  1455. nv_start_tx(dev);
  1456. }
  1457. static void nv_stop_rxtx(struct net_device *dev)
  1458. {
  1459. nv_stop_rx(dev);
  1460. nv_stop_tx(dev);
  1461. }
  1462. static void nv_txrx_reset(struct net_device *dev)
  1463. {
  1464. struct fe_priv *np = netdev_priv(dev);
  1465. u8 __iomem *base = get_hwbase(dev);
  1466. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1467. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1468. pci_push(base);
  1469. udelay(NV_TXRX_RESET_DELAY);
  1470. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1471. pci_push(base);
  1472. }
  1473. static void nv_mac_reset(struct net_device *dev)
  1474. {
  1475. struct fe_priv *np = netdev_priv(dev);
  1476. u8 __iomem *base = get_hwbase(dev);
  1477. u32 temp1, temp2, temp3;
  1478. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1479. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1480. pci_push(base);
  1481. /* save registers since they will be cleared on reset */
  1482. temp1 = readl(base + NvRegMacAddrA);
  1483. temp2 = readl(base + NvRegMacAddrB);
  1484. temp3 = readl(base + NvRegTransmitPoll);
  1485. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1486. pci_push(base);
  1487. udelay(NV_MAC_RESET_DELAY);
  1488. writel(0, base + NvRegMacReset);
  1489. pci_push(base);
  1490. udelay(NV_MAC_RESET_DELAY);
  1491. /* restore saved registers */
  1492. writel(temp1, base + NvRegMacAddrA);
  1493. writel(temp2, base + NvRegMacAddrB);
  1494. writel(temp3, base + NvRegTransmitPoll);
  1495. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1496. pci_push(base);
  1497. }
  1498. static void nv_get_hw_stats(struct net_device *dev)
  1499. {
  1500. struct fe_priv *np = netdev_priv(dev);
  1501. u8 __iomem *base = get_hwbase(dev);
  1502. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1503. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1504. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1505. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1506. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1507. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1508. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1509. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1510. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1511. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1512. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1513. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1514. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1515. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1516. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1517. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1518. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1519. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1520. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1521. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1522. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1523. np->estats.rx_packets =
  1524. np->estats.rx_unicast +
  1525. np->estats.rx_multicast +
  1526. np->estats.rx_broadcast;
  1527. np->estats.rx_errors_total =
  1528. np->estats.rx_crc_errors +
  1529. np->estats.rx_over_errors +
  1530. np->estats.rx_frame_error +
  1531. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1532. np->estats.rx_late_collision +
  1533. np->estats.rx_runt +
  1534. np->estats.rx_frame_too_long;
  1535. np->estats.tx_errors_total =
  1536. np->estats.tx_late_collision +
  1537. np->estats.tx_fifo_errors +
  1538. np->estats.tx_carrier_errors +
  1539. np->estats.tx_excess_deferral +
  1540. np->estats.tx_retry_error;
  1541. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1542. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1543. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1544. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1545. np->estats.tx_pause += readl(base + NvRegTxPause);
  1546. np->estats.rx_pause += readl(base + NvRegRxPause);
  1547. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1548. }
  1549. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1550. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1551. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1552. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1553. }
  1554. }
  1555. /*
  1556. * nv_get_stats: dev->get_stats function
  1557. * Get latest stats value from the nic.
  1558. * Called with read_lock(&dev_base_lock) held for read -
  1559. * only synchronized against unregister_netdevice.
  1560. */
  1561. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1562. {
  1563. struct fe_priv *np = netdev_priv(dev);
  1564. /* If the nic supports hw counters then retrieve latest values */
  1565. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1566. nv_get_hw_stats(dev);
  1567. /* copy to net_device stats */
  1568. dev->stats.tx_bytes = np->estats.tx_bytes;
  1569. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1570. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1571. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1572. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1573. dev->stats.rx_errors = np->estats.rx_errors_total;
  1574. dev->stats.tx_errors = np->estats.tx_errors_total;
  1575. }
  1576. return &dev->stats;
  1577. }
  1578. /*
  1579. * nv_alloc_rx: fill rx ring entries.
  1580. * Return 1 if the allocations for the skbs failed and the
  1581. * rx engine is without Available descriptors
  1582. */
  1583. static int nv_alloc_rx(struct net_device *dev)
  1584. {
  1585. struct fe_priv *np = netdev_priv(dev);
  1586. struct ring_desc* less_rx;
  1587. less_rx = np->get_rx.orig;
  1588. if (less_rx-- == np->first_rx.orig)
  1589. less_rx = np->last_rx.orig;
  1590. while (np->put_rx.orig != less_rx) {
  1591. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1592. if (skb) {
  1593. np->put_rx_ctx->skb = skb;
  1594. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1595. skb->data,
  1596. skb_tailroom(skb),
  1597. PCI_DMA_FROMDEVICE);
  1598. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1599. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1600. wmb();
  1601. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1602. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1603. np->put_rx.orig = np->first_rx.orig;
  1604. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1605. np->put_rx_ctx = np->first_rx_ctx;
  1606. } else {
  1607. return 1;
  1608. }
  1609. }
  1610. return 0;
  1611. }
  1612. static int nv_alloc_rx_optimized(struct net_device *dev)
  1613. {
  1614. struct fe_priv *np = netdev_priv(dev);
  1615. struct ring_desc_ex* less_rx;
  1616. less_rx = np->get_rx.ex;
  1617. if (less_rx-- == np->first_rx.ex)
  1618. less_rx = np->last_rx.ex;
  1619. while (np->put_rx.ex != less_rx) {
  1620. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1621. if (skb) {
  1622. np->put_rx_ctx->skb = skb;
  1623. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1624. skb->data,
  1625. skb_tailroom(skb),
  1626. PCI_DMA_FROMDEVICE);
  1627. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1628. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1629. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1630. wmb();
  1631. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1632. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1633. np->put_rx.ex = np->first_rx.ex;
  1634. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1635. np->put_rx_ctx = np->first_rx_ctx;
  1636. } else {
  1637. return 1;
  1638. }
  1639. }
  1640. return 0;
  1641. }
  1642. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1643. #ifdef CONFIG_FORCEDETH_NAPI
  1644. static void nv_do_rx_refill(unsigned long data)
  1645. {
  1646. struct net_device *dev = (struct net_device *) data;
  1647. struct fe_priv *np = netdev_priv(dev);
  1648. /* Just reschedule NAPI rx processing */
  1649. napi_schedule(&np->napi);
  1650. }
  1651. #else
  1652. static void nv_do_rx_refill(unsigned long data)
  1653. {
  1654. struct net_device *dev = (struct net_device *) data;
  1655. struct fe_priv *np = netdev_priv(dev);
  1656. int retcode;
  1657. if (!using_multi_irqs(dev)) {
  1658. if (np->msi_flags & NV_MSI_X_ENABLED)
  1659. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1660. else
  1661. disable_irq(np->pci_dev->irq);
  1662. } else {
  1663. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1664. }
  1665. if (!nv_optimized(np))
  1666. retcode = nv_alloc_rx(dev);
  1667. else
  1668. retcode = nv_alloc_rx_optimized(dev);
  1669. if (retcode) {
  1670. spin_lock_irq(&np->lock);
  1671. if (!np->in_shutdown)
  1672. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1673. spin_unlock_irq(&np->lock);
  1674. }
  1675. if (!using_multi_irqs(dev)) {
  1676. if (np->msi_flags & NV_MSI_X_ENABLED)
  1677. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1678. else
  1679. enable_irq(np->pci_dev->irq);
  1680. } else {
  1681. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1682. }
  1683. }
  1684. #endif
  1685. static void nv_init_rx(struct net_device *dev)
  1686. {
  1687. struct fe_priv *np = netdev_priv(dev);
  1688. int i;
  1689. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1690. if (!nv_optimized(np))
  1691. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1692. else
  1693. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1694. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1695. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1696. for (i = 0; i < np->rx_ring_size; i++) {
  1697. if (!nv_optimized(np)) {
  1698. np->rx_ring.orig[i].flaglen = 0;
  1699. np->rx_ring.orig[i].buf = 0;
  1700. } else {
  1701. np->rx_ring.ex[i].flaglen = 0;
  1702. np->rx_ring.ex[i].txvlan = 0;
  1703. np->rx_ring.ex[i].bufhigh = 0;
  1704. np->rx_ring.ex[i].buflow = 0;
  1705. }
  1706. np->rx_skb[i].skb = NULL;
  1707. np->rx_skb[i].dma = 0;
  1708. }
  1709. }
  1710. static void nv_init_tx(struct net_device *dev)
  1711. {
  1712. struct fe_priv *np = netdev_priv(dev);
  1713. int i;
  1714. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1715. if (!nv_optimized(np))
  1716. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1717. else
  1718. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1719. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1720. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1721. np->tx_pkts_in_progress = 0;
  1722. np->tx_change_owner = NULL;
  1723. np->tx_end_flip = NULL;
  1724. np->tx_stop = 0;
  1725. for (i = 0; i < np->tx_ring_size; i++) {
  1726. if (!nv_optimized(np)) {
  1727. np->tx_ring.orig[i].flaglen = 0;
  1728. np->tx_ring.orig[i].buf = 0;
  1729. } else {
  1730. np->tx_ring.ex[i].flaglen = 0;
  1731. np->tx_ring.ex[i].txvlan = 0;
  1732. np->tx_ring.ex[i].bufhigh = 0;
  1733. np->tx_ring.ex[i].buflow = 0;
  1734. }
  1735. np->tx_skb[i].skb = NULL;
  1736. np->tx_skb[i].dma = 0;
  1737. np->tx_skb[i].dma_len = 0;
  1738. np->tx_skb[i].first_tx_desc = NULL;
  1739. np->tx_skb[i].next_tx_ctx = NULL;
  1740. }
  1741. }
  1742. static int nv_init_ring(struct net_device *dev)
  1743. {
  1744. struct fe_priv *np = netdev_priv(dev);
  1745. nv_init_tx(dev);
  1746. nv_init_rx(dev);
  1747. if (!nv_optimized(np))
  1748. return nv_alloc_rx(dev);
  1749. else
  1750. return nv_alloc_rx_optimized(dev);
  1751. }
  1752. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1753. {
  1754. struct fe_priv *np = netdev_priv(dev);
  1755. if (tx_skb->dma) {
  1756. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1757. tx_skb->dma_len,
  1758. PCI_DMA_TODEVICE);
  1759. tx_skb->dma = 0;
  1760. }
  1761. if (tx_skb->skb) {
  1762. dev_kfree_skb_any(tx_skb->skb);
  1763. tx_skb->skb = NULL;
  1764. return 1;
  1765. } else {
  1766. return 0;
  1767. }
  1768. }
  1769. static void nv_drain_tx(struct net_device *dev)
  1770. {
  1771. struct fe_priv *np = netdev_priv(dev);
  1772. unsigned int i;
  1773. for (i = 0; i < np->tx_ring_size; i++) {
  1774. if (!nv_optimized(np)) {
  1775. np->tx_ring.orig[i].flaglen = 0;
  1776. np->tx_ring.orig[i].buf = 0;
  1777. } else {
  1778. np->tx_ring.ex[i].flaglen = 0;
  1779. np->tx_ring.ex[i].txvlan = 0;
  1780. np->tx_ring.ex[i].bufhigh = 0;
  1781. np->tx_ring.ex[i].buflow = 0;
  1782. }
  1783. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1784. dev->stats.tx_dropped++;
  1785. np->tx_skb[i].dma = 0;
  1786. np->tx_skb[i].dma_len = 0;
  1787. np->tx_skb[i].first_tx_desc = NULL;
  1788. np->tx_skb[i].next_tx_ctx = NULL;
  1789. }
  1790. np->tx_pkts_in_progress = 0;
  1791. np->tx_change_owner = NULL;
  1792. np->tx_end_flip = NULL;
  1793. }
  1794. static void nv_drain_rx(struct net_device *dev)
  1795. {
  1796. struct fe_priv *np = netdev_priv(dev);
  1797. int i;
  1798. for (i = 0; i < np->rx_ring_size; i++) {
  1799. if (!nv_optimized(np)) {
  1800. np->rx_ring.orig[i].flaglen = 0;
  1801. np->rx_ring.orig[i].buf = 0;
  1802. } else {
  1803. np->rx_ring.ex[i].flaglen = 0;
  1804. np->rx_ring.ex[i].txvlan = 0;
  1805. np->rx_ring.ex[i].bufhigh = 0;
  1806. np->rx_ring.ex[i].buflow = 0;
  1807. }
  1808. wmb();
  1809. if (np->rx_skb[i].skb) {
  1810. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1811. (skb_end_pointer(np->rx_skb[i].skb) -
  1812. np->rx_skb[i].skb->data),
  1813. PCI_DMA_FROMDEVICE);
  1814. dev_kfree_skb(np->rx_skb[i].skb);
  1815. np->rx_skb[i].skb = NULL;
  1816. }
  1817. }
  1818. }
  1819. static void nv_drain_rxtx(struct net_device *dev)
  1820. {
  1821. nv_drain_tx(dev);
  1822. nv_drain_rx(dev);
  1823. }
  1824. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1825. {
  1826. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1827. }
  1828. static void nv_legacybackoff_reseed(struct net_device *dev)
  1829. {
  1830. u8 __iomem *base = get_hwbase(dev);
  1831. u32 reg;
  1832. u32 low;
  1833. int tx_status = 0;
  1834. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1835. get_random_bytes(&low, sizeof(low));
  1836. reg |= low & NVREG_SLOTTIME_MASK;
  1837. /* Need to stop tx before change takes effect.
  1838. * Caller has already gained np->lock.
  1839. */
  1840. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1841. if (tx_status)
  1842. nv_stop_tx(dev);
  1843. nv_stop_rx(dev);
  1844. writel(reg, base + NvRegSlotTime);
  1845. if (tx_status)
  1846. nv_start_tx(dev);
  1847. nv_start_rx(dev);
  1848. }
  1849. /* Gear Backoff Seeds */
  1850. #define BACKOFF_SEEDSET_ROWS 8
  1851. #define BACKOFF_SEEDSET_LFSRS 15
  1852. /* Known Good seed sets */
  1853. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1854. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1855. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1856. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1857. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1858. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1859. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1860. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1861. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1862. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1863. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1864. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1865. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1866. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1867. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1868. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1869. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1870. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1871. static void nv_gear_backoff_reseed(struct net_device *dev)
  1872. {
  1873. u8 __iomem *base = get_hwbase(dev);
  1874. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1875. u32 temp, seedset, combinedSeed;
  1876. int i;
  1877. /* Setup seed for free running LFSR */
  1878. /* We are going to read the time stamp counter 3 times
  1879. and swizzle bits around to increase randomness */
  1880. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1881. miniseed1 &= 0x0fff;
  1882. if (miniseed1 == 0)
  1883. miniseed1 = 0xabc;
  1884. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1885. miniseed2 &= 0x0fff;
  1886. if (miniseed2 == 0)
  1887. miniseed2 = 0xabc;
  1888. miniseed2_reversed =
  1889. ((miniseed2 & 0xF00) >> 8) |
  1890. (miniseed2 & 0x0F0) |
  1891. ((miniseed2 & 0x00F) << 8);
  1892. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1893. miniseed3 &= 0x0fff;
  1894. if (miniseed3 == 0)
  1895. miniseed3 = 0xabc;
  1896. miniseed3_reversed =
  1897. ((miniseed3 & 0xF00) >> 8) |
  1898. (miniseed3 & 0x0F0) |
  1899. ((miniseed3 & 0x00F) << 8);
  1900. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1901. (miniseed2 ^ miniseed3_reversed);
  1902. /* Seeds can not be zero */
  1903. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1904. combinedSeed |= 0x08;
  1905. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1906. combinedSeed |= 0x8000;
  1907. /* No need to disable tx here */
  1908. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1909. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1910. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1911. writel(temp,base + NvRegBackOffControl);
  1912. /* Setup seeds for all gear LFSRs. */
  1913. get_random_bytes(&seedset, sizeof(seedset));
  1914. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1915. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1916. {
  1917. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1918. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1919. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1920. writel(temp, base + NvRegBackOffControl);
  1921. }
  1922. }
  1923. /*
  1924. * nv_start_xmit: dev->hard_start_xmit function
  1925. * Called with netif_tx_lock held.
  1926. */
  1927. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1928. {
  1929. struct fe_priv *np = netdev_priv(dev);
  1930. u32 tx_flags = 0;
  1931. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1932. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1933. unsigned int i;
  1934. u32 offset = 0;
  1935. u32 bcnt;
  1936. u32 size = skb->len-skb->data_len;
  1937. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1938. u32 empty_slots;
  1939. struct ring_desc* put_tx;
  1940. struct ring_desc* start_tx;
  1941. struct ring_desc* prev_tx;
  1942. struct nv_skb_map* prev_tx_ctx;
  1943. unsigned long flags;
  1944. /* add fragments to entries count */
  1945. for (i = 0; i < fragments; i++) {
  1946. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1947. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1948. }
  1949. spin_lock_irqsave(&np->lock, flags);
  1950. empty_slots = nv_get_empty_tx_slots(np);
  1951. if (unlikely(empty_slots <= entries)) {
  1952. netif_stop_queue(dev);
  1953. np->tx_stop = 1;
  1954. spin_unlock_irqrestore(&np->lock, flags);
  1955. return NETDEV_TX_BUSY;
  1956. }
  1957. spin_unlock_irqrestore(&np->lock, flags);
  1958. start_tx = put_tx = np->put_tx.orig;
  1959. /* setup the header buffer */
  1960. do {
  1961. prev_tx = put_tx;
  1962. prev_tx_ctx = np->put_tx_ctx;
  1963. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1964. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1965. PCI_DMA_TODEVICE);
  1966. np->put_tx_ctx->dma_len = bcnt;
  1967. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1968. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1969. tx_flags = np->tx_flags;
  1970. offset += bcnt;
  1971. size -= bcnt;
  1972. if (unlikely(put_tx++ == np->last_tx.orig))
  1973. put_tx = np->first_tx.orig;
  1974. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1975. np->put_tx_ctx = np->first_tx_ctx;
  1976. } while (size);
  1977. /* setup the fragments */
  1978. for (i = 0; i < fragments; i++) {
  1979. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1980. u32 size = frag->size;
  1981. offset = 0;
  1982. do {
  1983. prev_tx = put_tx;
  1984. prev_tx_ctx = np->put_tx_ctx;
  1985. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1986. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1987. PCI_DMA_TODEVICE);
  1988. np->put_tx_ctx->dma_len = bcnt;
  1989. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1990. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1991. offset += bcnt;
  1992. size -= bcnt;
  1993. if (unlikely(put_tx++ == np->last_tx.orig))
  1994. put_tx = np->first_tx.orig;
  1995. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1996. np->put_tx_ctx = np->first_tx_ctx;
  1997. } while (size);
  1998. }
  1999. /* set last fragment flag */
  2000. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  2001. /* save skb in this slot's context area */
  2002. prev_tx_ctx->skb = skb;
  2003. if (skb_is_gso(skb))
  2004. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2005. else
  2006. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2007. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2008. spin_lock_irqsave(&np->lock, flags);
  2009. /* set tx flags */
  2010. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2011. np->put_tx.orig = put_tx;
  2012. spin_unlock_irqrestore(&np->lock, flags);
  2013. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  2014. dev->name, entries, tx_flags_extra);
  2015. {
  2016. int j;
  2017. for (j=0; j<64; j++) {
  2018. if ((j%16) == 0)
  2019. dprintk("\n%03x:", j);
  2020. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2021. }
  2022. dprintk("\n");
  2023. }
  2024. dev->trans_start = jiffies;
  2025. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2026. return NETDEV_TX_OK;
  2027. }
  2028. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2029. {
  2030. struct fe_priv *np = netdev_priv(dev);
  2031. u32 tx_flags = 0;
  2032. u32 tx_flags_extra;
  2033. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2034. unsigned int i;
  2035. u32 offset = 0;
  2036. u32 bcnt;
  2037. u32 size = skb->len-skb->data_len;
  2038. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2039. u32 empty_slots;
  2040. struct ring_desc_ex* put_tx;
  2041. struct ring_desc_ex* start_tx;
  2042. struct ring_desc_ex* prev_tx;
  2043. struct nv_skb_map* prev_tx_ctx;
  2044. struct nv_skb_map* start_tx_ctx;
  2045. unsigned long flags;
  2046. /* add fragments to entries count */
  2047. for (i = 0; i < fragments; i++) {
  2048. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2049. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2050. }
  2051. spin_lock_irqsave(&np->lock, flags);
  2052. empty_slots = nv_get_empty_tx_slots(np);
  2053. if (unlikely(empty_slots <= entries)) {
  2054. netif_stop_queue(dev);
  2055. np->tx_stop = 1;
  2056. spin_unlock_irqrestore(&np->lock, flags);
  2057. return NETDEV_TX_BUSY;
  2058. }
  2059. spin_unlock_irqrestore(&np->lock, flags);
  2060. start_tx = put_tx = np->put_tx.ex;
  2061. start_tx_ctx = np->put_tx_ctx;
  2062. /* setup the header buffer */
  2063. do {
  2064. prev_tx = put_tx;
  2065. prev_tx_ctx = np->put_tx_ctx;
  2066. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2067. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2068. PCI_DMA_TODEVICE);
  2069. np->put_tx_ctx->dma_len = bcnt;
  2070. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2071. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2072. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2073. tx_flags = NV_TX2_VALID;
  2074. offset += bcnt;
  2075. size -= bcnt;
  2076. if (unlikely(put_tx++ == np->last_tx.ex))
  2077. put_tx = np->first_tx.ex;
  2078. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2079. np->put_tx_ctx = np->first_tx_ctx;
  2080. } while (size);
  2081. /* setup the fragments */
  2082. for (i = 0; i < fragments; i++) {
  2083. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2084. u32 size = frag->size;
  2085. offset = 0;
  2086. do {
  2087. prev_tx = put_tx;
  2088. prev_tx_ctx = np->put_tx_ctx;
  2089. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2090. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2091. PCI_DMA_TODEVICE);
  2092. np->put_tx_ctx->dma_len = bcnt;
  2093. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2094. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2095. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2096. offset += bcnt;
  2097. size -= bcnt;
  2098. if (unlikely(put_tx++ == np->last_tx.ex))
  2099. put_tx = np->first_tx.ex;
  2100. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2101. np->put_tx_ctx = np->first_tx_ctx;
  2102. } while (size);
  2103. }
  2104. /* set last fragment flag */
  2105. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2106. /* save skb in this slot's context area */
  2107. prev_tx_ctx->skb = skb;
  2108. if (skb_is_gso(skb))
  2109. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2110. else
  2111. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2112. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2113. /* vlan tag */
  2114. if (likely(!np->vlangrp)) {
  2115. start_tx->txvlan = 0;
  2116. } else {
  2117. if (vlan_tx_tag_present(skb))
  2118. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2119. else
  2120. start_tx->txvlan = 0;
  2121. }
  2122. spin_lock_irqsave(&np->lock, flags);
  2123. if (np->tx_limit) {
  2124. /* Limit the number of outstanding tx. Setup all fragments, but
  2125. * do not set the VALID bit on the first descriptor. Save a pointer
  2126. * to that descriptor and also for next skb_map element.
  2127. */
  2128. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2129. if (!np->tx_change_owner)
  2130. np->tx_change_owner = start_tx_ctx;
  2131. /* remove VALID bit */
  2132. tx_flags &= ~NV_TX2_VALID;
  2133. start_tx_ctx->first_tx_desc = start_tx;
  2134. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2135. np->tx_end_flip = np->put_tx_ctx;
  2136. } else {
  2137. np->tx_pkts_in_progress++;
  2138. }
  2139. }
  2140. /* set tx flags */
  2141. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2142. np->put_tx.ex = put_tx;
  2143. spin_unlock_irqrestore(&np->lock, flags);
  2144. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2145. dev->name, entries, tx_flags_extra);
  2146. {
  2147. int j;
  2148. for (j=0; j<64; j++) {
  2149. if ((j%16) == 0)
  2150. dprintk("\n%03x:", j);
  2151. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2152. }
  2153. dprintk("\n");
  2154. }
  2155. dev->trans_start = jiffies;
  2156. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2157. return NETDEV_TX_OK;
  2158. }
  2159. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2160. {
  2161. struct fe_priv *np = netdev_priv(dev);
  2162. np->tx_pkts_in_progress--;
  2163. if (np->tx_change_owner) {
  2164. np->tx_change_owner->first_tx_desc->flaglen |=
  2165. cpu_to_le32(NV_TX2_VALID);
  2166. np->tx_pkts_in_progress++;
  2167. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2168. if (np->tx_change_owner == np->tx_end_flip)
  2169. np->tx_change_owner = NULL;
  2170. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2171. }
  2172. }
  2173. /*
  2174. * nv_tx_done: check for completed packets, release the skbs.
  2175. *
  2176. * Caller must own np->lock.
  2177. */
  2178. static int nv_tx_done(struct net_device *dev, int limit)
  2179. {
  2180. struct fe_priv *np = netdev_priv(dev);
  2181. u32 flags;
  2182. int tx_work = 0;
  2183. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2184. while ((np->get_tx.orig != np->put_tx.orig) &&
  2185. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2186. (tx_work < limit)) {
  2187. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2188. dev->name, flags);
  2189. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2190. np->get_tx_ctx->dma_len,
  2191. PCI_DMA_TODEVICE);
  2192. np->get_tx_ctx->dma = 0;
  2193. if (np->desc_ver == DESC_VER_1) {
  2194. if (flags & NV_TX_LASTPACKET) {
  2195. if (flags & NV_TX_ERROR) {
  2196. if (flags & NV_TX_UNDERFLOW)
  2197. dev->stats.tx_fifo_errors++;
  2198. if (flags & NV_TX_CARRIERLOST)
  2199. dev->stats.tx_carrier_errors++;
  2200. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2201. nv_legacybackoff_reseed(dev);
  2202. dev->stats.tx_errors++;
  2203. } else {
  2204. dev->stats.tx_packets++;
  2205. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2206. }
  2207. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2208. np->get_tx_ctx->skb = NULL;
  2209. tx_work++;
  2210. }
  2211. } else {
  2212. if (flags & NV_TX2_LASTPACKET) {
  2213. if (flags & NV_TX2_ERROR) {
  2214. if (flags & NV_TX2_UNDERFLOW)
  2215. dev->stats.tx_fifo_errors++;
  2216. if (flags & NV_TX2_CARRIERLOST)
  2217. dev->stats.tx_carrier_errors++;
  2218. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2219. nv_legacybackoff_reseed(dev);
  2220. dev->stats.tx_errors++;
  2221. } else {
  2222. dev->stats.tx_packets++;
  2223. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2224. }
  2225. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2226. np->get_tx_ctx->skb = NULL;
  2227. tx_work++;
  2228. }
  2229. }
  2230. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2231. np->get_tx.orig = np->first_tx.orig;
  2232. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2233. np->get_tx_ctx = np->first_tx_ctx;
  2234. }
  2235. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2236. np->tx_stop = 0;
  2237. netif_wake_queue(dev);
  2238. }
  2239. return tx_work;
  2240. }
  2241. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2242. {
  2243. struct fe_priv *np = netdev_priv(dev);
  2244. u32 flags;
  2245. int tx_work = 0;
  2246. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2247. while ((np->get_tx.ex != np->put_tx.ex) &&
  2248. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2249. (tx_work < limit)) {
  2250. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2251. dev->name, flags);
  2252. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2253. np->get_tx_ctx->dma_len,
  2254. PCI_DMA_TODEVICE);
  2255. np->get_tx_ctx->dma = 0;
  2256. if (flags & NV_TX2_LASTPACKET) {
  2257. if (!(flags & NV_TX2_ERROR))
  2258. dev->stats.tx_packets++;
  2259. else {
  2260. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2261. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2262. nv_gear_backoff_reseed(dev);
  2263. else
  2264. nv_legacybackoff_reseed(dev);
  2265. }
  2266. }
  2267. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2268. np->get_tx_ctx->skb = NULL;
  2269. tx_work++;
  2270. if (np->tx_limit) {
  2271. nv_tx_flip_ownership(dev);
  2272. }
  2273. }
  2274. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2275. np->get_tx.ex = np->first_tx.ex;
  2276. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2277. np->get_tx_ctx = np->first_tx_ctx;
  2278. }
  2279. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2280. np->tx_stop = 0;
  2281. netif_wake_queue(dev);
  2282. }
  2283. return tx_work;
  2284. }
  2285. /*
  2286. * nv_tx_timeout: dev->tx_timeout function
  2287. * Called with netif_tx_lock held.
  2288. */
  2289. static void nv_tx_timeout(struct net_device *dev)
  2290. {
  2291. struct fe_priv *np = netdev_priv(dev);
  2292. u8 __iomem *base = get_hwbase(dev);
  2293. u32 status;
  2294. union ring_type put_tx;
  2295. int saved_tx_limit;
  2296. if (np->msi_flags & NV_MSI_X_ENABLED)
  2297. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2298. else
  2299. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2300. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2301. {
  2302. int i;
  2303. printk(KERN_INFO "%s: Ring at %lx\n",
  2304. dev->name, (unsigned long)np->ring_addr);
  2305. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2306. for (i=0;i<=np->register_size;i+= 32) {
  2307. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2308. i,
  2309. readl(base + i + 0), readl(base + i + 4),
  2310. readl(base + i + 8), readl(base + i + 12),
  2311. readl(base + i + 16), readl(base + i + 20),
  2312. readl(base + i + 24), readl(base + i + 28));
  2313. }
  2314. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2315. for (i=0;i<np->tx_ring_size;i+= 4) {
  2316. if (!nv_optimized(np)) {
  2317. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2318. i,
  2319. le32_to_cpu(np->tx_ring.orig[i].buf),
  2320. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2321. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2322. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2323. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2324. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2325. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2326. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2327. } else {
  2328. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2329. i,
  2330. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2331. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2332. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2333. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2334. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2335. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2336. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2337. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2338. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2339. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2340. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2341. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2342. }
  2343. }
  2344. }
  2345. spin_lock_irq(&np->lock);
  2346. /* 1) stop tx engine */
  2347. nv_stop_tx(dev);
  2348. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2349. saved_tx_limit = np->tx_limit;
  2350. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2351. np->tx_stop = 0; /* prevent waking tx queue */
  2352. if (!nv_optimized(np))
  2353. nv_tx_done(dev, np->tx_ring_size);
  2354. else
  2355. nv_tx_done_optimized(dev, np->tx_ring_size);
  2356. /* save current HW postion */
  2357. if (np->tx_change_owner)
  2358. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2359. else
  2360. put_tx = np->put_tx;
  2361. /* 3) clear all tx state */
  2362. nv_drain_tx(dev);
  2363. nv_init_tx(dev);
  2364. /* 4) restore state to current HW position */
  2365. np->get_tx = np->put_tx = put_tx;
  2366. np->tx_limit = saved_tx_limit;
  2367. /* 5) restart tx engine */
  2368. nv_start_tx(dev);
  2369. netif_wake_queue(dev);
  2370. spin_unlock_irq(&np->lock);
  2371. }
  2372. /*
  2373. * Called when the nic notices a mismatch between the actual data len on the
  2374. * wire and the len indicated in the 802 header
  2375. */
  2376. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2377. {
  2378. int hdrlen; /* length of the 802 header */
  2379. int protolen; /* length as stored in the proto field */
  2380. /* 1) calculate len according to header */
  2381. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2382. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2383. hdrlen = VLAN_HLEN;
  2384. } else {
  2385. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2386. hdrlen = ETH_HLEN;
  2387. }
  2388. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2389. dev->name, datalen, protolen, hdrlen);
  2390. if (protolen > ETH_DATA_LEN)
  2391. return datalen; /* Value in proto field not a len, no checks possible */
  2392. protolen += hdrlen;
  2393. /* consistency checks: */
  2394. if (datalen > ETH_ZLEN) {
  2395. if (datalen >= protolen) {
  2396. /* more data on wire than in 802 header, trim of
  2397. * additional data.
  2398. */
  2399. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2400. dev->name, protolen);
  2401. return protolen;
  2402. } else {
  2403. /* less data on wire than mentioned in header.
  2404. * Discard the packet.
  2405. */
  2406. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2407. dev->name);
  2408. return -1;
  2409. }
  2410. } else {
  2411. /* short packet. Accept only if 802 values are also short */
  2412. if (protolen > ETH_ZLEN) {
  2413. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2414. dev->name);
  2415. return -1;
  2416. }
  2417. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2418. dev->name, datalen);
  2419. return datalen;
  2420. }
  2421. }
  2422. static int nv_rx_process(struct net_device *dev, int limit)
  2423. {
  2424. struct fe_priv *np = netdev_priv(dev);
  2425. u32 flags;
  2426. int rx_work = 0;
  2427. struct sk_buff *skb;
  2428. int len;
  2429. while((np->get_rx.orig != np->put_rx.orig) &&
  2430. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2431. (rx_work < limit)) {
  2432. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2433. dev->name, flags);
  2434. /*
  2435. * the packet is for us - immediately tear down the pci mapping.
  2436. * TODO: check if a prefetch of the first cacheline improves
  2437. * the performance.
  2438. */
  2439. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2440. np->get_rx_ctx->dma_len,
  2441. PCI_DMA_FROMDEVICE);
  2442. skb = np->get_rx_ctx->skb;
  2443. np->get_rx_ctx->skb = NULL;
  2444. {
  2445. int j;
  2446. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2447. for (j=0; j<64; j++) {
  2448. if ((j%16) == 0)
  2449. dprintk("\n%03x:", j);
  2450. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2451. }
  2452. dprintk("\n");
  2453. }
  2454. /* look at what we actually got: */
  2455. if (np->desc_ver == DESC_VER_1) {
  2456. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2457. len = flags & LEN_MASK_V1;
  2458. if (unlikely(flags & NV_RX_ERROR)) {
  2459. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2460. len = nv_getlen(dev, skb->data, len);
  2461. if (len < 0) {
  2462. dev->stats.rx_errors++;
  2463. dev_kfree_skb(skb);
  2464. goto next_pkt;
  2465. }
  2466. }
  2467. /* framing errors are soft errors */
  2468. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2469. if (flags & NV_RX_SUBSTRACT1) {
  2470. len--;
  2471. }
  2472. }
  2473. /* the rest are hard errors */
  2474. else {
  2475. if (flags & NV_RX_MISSEDFRAME)
  2476. dev->stats.rx_missed_errors++;
  2477. if (flags & NV_RX_CRCERR)
  2478. dev->stats.rx_crc_errors++;
  2479. if (flags & NV_RX_OVERFLOW)
  2480. dev->stats.rx_over_errors++;
  2481. dev->stats.rx_errors++;
  2482. dev_kfree_skb(skb);
  2483. goto next_pkt;
  2484. }
  2485. }
  2486. } else {
  2487. dev_kfree_skb(skb);
  2488. goto next_pkt;
  2489. }
  2490. } else {
  2491. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2492. len = flags & LEN_MASK_V2;
  2493. if (unlikely(flags & NV_RX2_ERROR)) {
  2494. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2495. len = nv_getlen(dev, skb->data, len);
  2496. if (len < 0) {
  2497. dev->stats.rx_errors++;
  2498. dev_kfree_skb(skb);
  2499. goto next_pkt;
  2500. }
  2501. }
  2502. /* framing errors are soft errors */
  2503. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2504. if (flags & NV_RX2_SUBSTRACT1) {
  2505. len--;
  2506. }
  2507. }
  2508. /* the rest are hard errors */
  2509. else {
  2510. if (flags & NV_RX2_CRCERR)
  2511. dev->stats.rx_crc_errors++;
  2512. if (flags & NV_RX2_OVERFLOW)
  2513. dev->stats.rx_over_errors++;
  2514. dev->stats.rx_errors++;
  2515. dev_kfree_skb(skb);
  2516. goto next_pkt;
  2517. }
  2518. }
  2519. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2520. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2521. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2522. } else {
  2523. dev_kfree_skb(skb);
  2524. goto next_pkt;
  2525. }
  2526. }
  2527. /* got a valid packet - forward it to the network core */
  2528. skb_put(skb, len);
  2529. skb->protocol = eth_type_trans(skb, dev);
  2530. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2531. dev->name, len, skb->protocol);
  2532. #ifdef CONFIG_FORCEDETH_NAPI
  2533. netif_receive_skb(skb);
  2534. #else
  2535. netif_rx(skb);
  2536. #endif
  2537. dev->stats.rx_packets++;
  2538. dev->stats.rx_bytes += len;
  2539. next_pkt:
  2540. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2541. np->get_rx.orig = np->first_rx.orig;
  2542. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2543. np->get_rx_ctx = np->first_rx_ctx;
  2544. rx_work++;
  2545. }
  2546. return rx_work;
  2547. }
  2548. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2549. {
  2550. struct fe_priv *np = netdev_priv(dev);
  2551. u32 flags;
  2552. u32 vlanflags = 0;
  2553. int rx_work = 0;
  2554. struct sk_buff *skb;
  2555. int len;
  2556. while((np->get_rx.ex != np->put_rx.ex) &&
  2557. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2558. (rx_work < limit)) {
  2559. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2560. dev->name, flags);
  2561. /*
  2562. * the packet is for us - immediately tear down the pci mapping.
  2563. * TODO: check if a prefetch of the first cacheline improves
  2564. * the performance.
  2565. */
  2566. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2567. np->get_rx_ctx->dma_len,
  2568. PCI_DMA_FROMDEVICE);
  2569. skb = np->get_rx_ctx->skb;
  2570. np->get_rx_ctx->skb = NULL;
  2571. {
  2572. int j;
  2573. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2574. for (j=0; j<64; j++) {
  2575. if ((j%16) == 0)
  2576. dprintk("\n%03x:", j);
  2577. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2578. }
  2579. dprintk("\n");
  2580. }
  2581. /* look at what we actually got: */
  2582. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2583. len = flags & LEN_MASK_V2;
  2584. if (unlikely(flags & NV_RX2_ERROR)) {
  2585. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2586. len = nv_getlen(dev, skb->data, len);
  2587. if (len < 0) {
  2588. dev_kfree_skb(skb);
  2589. goto next_pkt;
  2590. }
  2591. }
  2592. /* framing errors are soft errors */
  2593. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2594. if (flags & NV_RX2_SUBSTRACT1) {
  2595. len--;
  2596. }
  2597. }
  2598. /* the rest are hard errors */
  2599. else {
  2600. dev_kfree_skb(skb);
  2601. goto next_pkt;
  2602. }
  2603. }
  2604. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2605. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2606. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2607. /* got a valid packet - forward it to the network core */
  2608. skb_put(skb, len);
  2609. skb->protocol = eth_type_trans(skb, dev);
  2610. prefetch(skb->data);
  2611. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2612. dev->name, len, skb->protocol);
  2613. if (likely(!np->vlangrp)) {
  2614. #ifdef CONFIG_FORCEDETH_NAPI
  2615. netif_receive_skb(skb);
  2616. #else
  2617. netif_rx(skb);
  2618. #endif
  2619. } else {
  2620. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2621. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2622. #ifdef CONFIG_FORCEDETH_NAPI
  2623. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2624. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2625. #else
  2626. vlan_hwaccel_rx(skb, np->vlangrp,
  2627. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2628. #endif
  2629. } else {
  2630. #ifdef CONFIG_FORCEDETH_NAPI
  2631. netif_receive_skb(skb);
  2632. #else
  2633. netif_rx(skb);
  2634. #endif
  2635. }
  2636. }
  2637. dev->stats.rx_packets++;
  2638. dev->stats.rx_bytes += len;
  2639. } else {
  2640. dev_kfree_skb(skb);
  2641. }
  2642. next_pkt:
  2643. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2644. np->get_rx.ex = np->first_rx.ex;
  2645. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2646. np->get_rx_ctx = np->first_rx_ctx;
  2647. rx_work++;
  2648. }
  2649. return rx_work;
  2650. }
  2651. static void set_bufsize(struct net_device *dev)
  2652. {
  2653. struct fe_priv *np = netdev_priv(dev);
  2654. if (dev->mtu <= ETH_DATA_LEN)
  2655. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2656. else
  2657. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2658. }
  2659. /*
  2660. * nv_change_mtu: dev->change_mtu function
  2661. * Called with dev_base_lock held for read.
  2662. */
  2663. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2664. {
  2665. struct fe_priv *np = netdev_priv(dev);
  2666. int old_mtu;
  2667. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2668. return -EINVAL;
  2669. old_mtu = dev->mtu;
  2670. dev->mtu = new_mtu;
  2671. /* return early if the buffer sizes will not change */
  2672. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2673. return 0;
  2674. if (old_mtu == new_mtu)
  2675. return 0;
  2676. /* synchronized against open : rtnl_lock() held by caller */
  2677. if (netif_running(dev)) {
  2678. u8 __iomem *base = get_hwbase(dev);
  2679. /*
  2680. * It seems that the nic preloads valid ring entries into an
  2681. * internal buffer. The procedure for flushing everything is
  2682. * guessed, there is probably a simpler approach.
  2683. * Changing the MTU is a rare event, it shouldn't matter.
  2684. */
  2685. nv_disable_irq(dev);
  2686. nv_napi_disable(dev);
  2687. netif_tx_lock_bh(dev);
  2688. netif_addr_lock(dev);
  2689. spin_lock(&np->lock);
  2690. /* stop engines */
  2691. nv_stop_rxtx(dev);
  2692. nv_txrx_reset(dev);
  2693. /* drain rx queue */
  2694. nv_drain_rxtx(dev);
  2695. /* reinit driver view of the rx queue */
  2696. set_bufsize(dev);
  2697. if (nv_init_ring(dev)) {
  2698. if (!np->in_shutdown)
  2699. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2700. }
  2701. /* reinit nic view of the rx queue */
  2702. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2703. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2704. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2705. base + NvRegRingSizes);
  2706. pci_push(base);
  2707. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2708. pci_push(base);
  2709. /* restart rx engine */
  2710. nv_start_rxtx(dev);
  2711. spin_unlock(&np->lock);
  2712. netif_addr_unlock(dev);
  2713. netif_tx_unlock_bh(dev);
  2714. nv_napi_enable(dev);
  2715. nv_enable_irq(dev);
  2716. }
  2717. return 0;
  2718. }
  2719. static void nv_copy_mac_to_hw(struct net_device *dev)
  2720. {
  2721. u8 __iomem *base = get_hwbase(dev);
  2722. u32 mac[2];
  2723. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2724. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2725. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2726. writel(mac[0], base + NvRegMacAddrA);
  2727. writel(mac[1], base + NvRegMacAddrB);
  2728. }
  2729. /*
  2730. * nv_set_mac_address: dev->set_mac_address function
  2731. * Called with rtnl_lock() held.
  2732. */
  2733. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2734. {
  2735. struct fe_priv *np = netdev_priv(dev);
  2736. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2737. if (!is_valid_ether_addr(macaddr->sa_data))
  2738. return -EADDRNOTAVAIL;
  2739. /* synchronized against open : rtnl_lock() held by caller */
  2740. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2741. if (netif_running(dev)) {
  2742. netif_tx_lock_bh(dev);
  2743. netif_addr_lock(dev);
  2744. spin_lock_irq(&np->lock);
  2745. /* stop rx engine */
  2746. nv_stop_rx(dev);
  2747. /* set mac address */
  2748. nv_copy_mac_to_hw(dev);
  2749. /* restart rx engine */
  2750. nv_start_rx(dev);
  2751. spin_unlock_irq(&np->lock);
  2752. netif_addr_unlock(dev);
  2753. netif_tx_unlock_bh(dev);
  2754. } else {
  2755. nv_copy_mac_to_hw(dev);
  2756. }
  2757. return 0;
  2758. }
  2759. /*
  2760. * nv_set_multicast: dev->set_multicast function
  2761. * Called with netif_tx_lock held.
  2762. */
  2763. static void nv_set_multicast(struct net_device *dev)
  2764. {
  2765. struct fe_priv *np = netdev_priv(dev);
  2766. u8 __iomem *base = get_hwbase(dev);
  2767. u32 addr[2];
  2768. u32 mask[2];
  2769. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2770. memset(addr, 0, sizeof(addr));
  2771. memset(mask, 0, sizeof(mask));
  2772. if (dev->flags & IFF_PROMISC) {
  2773. pff |= NVREG_PFF_PROMISC;
  2774. } else {
  2775. pff |= NVREG_PFF_MYADDR;
  2776. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2777. u32 alwaysOff[2];
  2778. u32 alwaysOn[2];
  2779. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2780. if (dev->flags & IFF_ALLMULTI) {
  2781. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2782. } else {
  2783. struct dev_mc_list *walk;
  2784. walk = dev->mc_list;
  2785. while (walk != NULL) {
  2786. u32 a, b;
  2787. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2788. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2789. alwaysOn[0] &= a;
  2790. alwaysOff[0] &= ~a;
  2791. alwaysOn[1] &= b;
  2792. alwaysOff[1] &= ~b;
  2793. walk = walk->next;
  2794. }
  2795. }
  2796. addr[0] = alwaysOn[0];
  2797. addr[1] = alwaysOn[1];
  2798. mask[0] = alwaysOn[0] | alwaysOff[0];
  2799. mask[1] = alwaysOn[1] | alwaysOff[1];
  2800. } else {
  2801. mask[0] = NVREG_MCASTMASKA_NONE;
  2802. mask[1] = NVREG_MCASTMASKB_NONE;
  2803. }
  2804. }
  2805. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2806. pff |= NVREG_PFF_ALWAYS;
  2807. spin_lock_irq(&np->lock);
  2808. nv_stop_rx(dev);
  2809. writel(addr[0], base + NvRegMulticastAddrA);
  2810. writel(addr[1], base + NvRegMulticastAddrB);
  2811. writel(mask[0], base + NvRegMulticastMaskA);
  2812. writel(mask[1], base + NvRegMulticastMaskB);
  2813. writel(pff, base + NvRegPacketFilterFlags);
  2814. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2815. dev->name);
  2816. nv_start_rx(dev);
  2817. spin_unlock_irq(&np->lock);
  2818. }
  2819. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2820. {
  2821. struct fe_priv *np = netdev_priv(dev);
  2822. u8 __iomem *base = get_hwbase(dev);
  2823. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2824. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2825. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2826. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2827. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2828. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2829. } else {
  2830. writel(pff, base + NvRegPacketFilterFlags);
  2831. }
  2832. }
  2833. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2834. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2835. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2836. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2837. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2838. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2839. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2840. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2841. /* limit the number of tx pause frames to a default of 8 */
  2842. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2843. }
  2844. writel(pause_enable, base + NvRegTxPauseFrame);
  2845. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2846. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2847. } else {
  2848. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2849. writel(regmisc, base + NvRegMisc1);
  2850. }
  2851. }
  2852. }
  2853. /**
  2854. * nv_update_linkspeed: Setup the MAC according to the link partner
  2855. * @dev: Network device to be configured
  2856. *
  2857. * The function queries the PHY and checks if there is a link partner.
  2858. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2859. * set to 10 MBit HD.
  2860. *
  2861. * The function returns 0 if there is no link partner and 1 if there is
  2862. * a good link partner.
  2863. */
  2864. static int nv_update_linkspeed(struct net_device *dev)
  2865. {
  2866. struct fe_priv *np = netdev_priv(dev);
  2867. u8 __iomem *base = get_hwbase(dev);
  2868. int adv = 0;
  2869. int lpa = 0;
  2870. int adv_lpa, adv_pause, lpa_pause;
  2871. int newls = np->linkspeed;
  2872. int newdup = np->duplex;
  2873. int mii_status;
  2874. int retval = 0;
  2875. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2876. u32 txrxFlags = 0;
  2877. u32 phy_exp;
  2878. /* BMSR_LSTATUS is latched, read it twice:
  2879. * we want the current value.
  2880. */
  2881. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2882. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2883. if (!(mii_status & BMSR_LSTATUS)) {
  2884. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2885. dev->name);
  2886. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2887. newdup = 0;
  2888. retval = 0;
  2889. goto set_speed;
  2890. }
  2891. if (np->autoneg == 0) {
  2892. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2893. dev->name, np->fixed_mode);
  2894. if (np->fixed_mode & LPA_100FULL) {
  2895. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2896. newdup = 1;
  2897. } else if (np->fixed_mode & LPA_100HALF) {
  2898. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2899. newdup = 0;
  2900. } else if (np->fixed_mode & LPA_10FULL) {
  2901. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2902. newdup = 1;
  2903. } else {
  2904. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2905. newdup = 0;
  2906. }
  2907. retval = 1;
  2908. goto set_speed;
  2909. }
  2910. /* check auto negotiation is complete */
  2911. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2912. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2913. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2914. newdup = 0;
  2915. retval = 0;
  2916. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2917. goto set_speed;
  2918. }
  2919. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2920. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2921. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2922. dev->name, adv, lpa);
  2923. retval = 1;
  2924. if (np->gigabit == PHY_GIGABIT) {
  2925. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2926. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2927. if ((control_1000 & ADVERTISE_1000FULL) &&
  2928. (status_1000 & LPA_1000FULL)) {
  2929. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2930. dev->name);
  2931. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2932. newdup = 1;
  2933. goto set_speed;
  2934. }
  2935. }
  2936. /* FIXME: handle parallel detection properly */
  2937. adv_lpa = lpa & adv;
  2938. if (adv_lpa & LPA_100FULL) {
  2939. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2940. newdup = 1;
  2941. } else if (adv_lpa & LPA_100HALF) {
  2942. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2943. newdup = 0;
  2944. } else if (adv_lpa & LPA_10FULL) {
  2945. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2946. newdup = 1;
  2947. } else if (adv_lpa & LPA_10HALF) {
  2948. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2949. newdup = 0;
  2950. } else {
  2951. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2952. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2953. newdup = 0;
  2954. }
  2955. set_speed:
  2956. if (np->duplex == newdup && np->linkspeed == newls)
  2957. return retval;
  2958. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2959. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2960. np->duplex = newdup;
  2961. np->linkspeed = newls;
  2962. /* The transmitter and receiver must be restarted for safe update */
  2963. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2964. txrxFlags |= NV_RESTART_TX;
  2965. nv_stop_tx(dev);
  2966. }
  2967. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2968. txrxFlags |= NV_RESTART_RX;
  2969. nv_stop_rx(dev);
  2970. }
  2971. if (np->gigabit == PHY_GIGABIT) {
  2972. phyreg = readl(base + NvRegSlotTime);
  2973. phyreg &= ~(0x3FF00);
  2974. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2975. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2976. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2977. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2978. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2979. writel(phyreg, base + NvRegSlotTime);
  2980. }
  2981. phyreg = readl(base + NvRegPhyInterface);
  2982. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2983. if (np->duplex == 0)
  2984. phyreg |= PHY_HALF;
  2985. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2986. phyreg |= PHY_100;
  2987. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2988. phyreg |= PHY_1000;
  2989. writel(phyreg, base + NvRegPhyInterface);
  2990. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2991. if (phyreg & PHY_RGMII) {
  2992. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2993. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2994. } else {
  2995. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2996. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2997. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2998. else
  2999. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  3000. } else {
  3001. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  3002. }
  3003. }
  3004. } else {
  3005. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  3006. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  3007. else
  3008. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  3009. }
  3010. writel(txreg, base + NvRegTxDeferral);
  3011. if (np->desc_ver == DESC_VER_1) {
  3012. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  3013. } else {
  3014. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3015. txreg = NVREG_TX_WM_DESC2_3_1000;
  3016. else
  3017. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3018. }
  3019. writel(txreg, base + NvRegTxWatermark);
  3020. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  3021. base + NvRegMisc1);
  3022. pci_push(base);
  3023. writel(np->linkspeed, base + NvRegLinkSpeed);
  3024. pci_push(base);
  3025. pause_flags = 0;
  3026. /* setup pause frame */
  3027. if (np->duplex != 0) {
  3028. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3029. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  3030. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  3031. switch (adv_pause) {
  3032. case ADVERTISE_PAUSE_CAP:
  3033. if (lpa_pause & LPA_PAUSE_CAP) {
  3034. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3035. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3036. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3037. }
  3038. break;
  3039. case ADVERTISE_PAUSE_ASYM:
  3040. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3041. {
  3042. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3043. }
  3044. break;
  3045. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3046. if (lpa_pause & LPA_PAUSE_CAP)
  3047. {
  3048. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3049. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3050. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3051. }
  3052. if (lpa_pause == LPA_PAUSE_ASYM)
  3053. {
  3054. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3055. }
  3056. break;
  3057. }
  3058. } else {
  3059. pause_flags = np->pause_flags;
  3060. }
  3061. }
  3062. nv_update_pause(dev, pause_flags);
  3063. if (txrxFlags & NV_RESTART_TX)
  3064. nv_start_tx(dev);
  3065. if (txrxFlags & NV_RESTART_RX)
  3066. nv_start_rx(dev);
  3067. return retval;
  3068. }
  3069. static void nv_linkchange(struct net_device *dev)
  3070. {
  3071. if (nv_update_linkspeed(dev)) {
  3072. if (!netif_carrier_ok(dev)) {
  3073. netif_carrier_on(dev);
  3074. printk(KERN_INFO "%s: link up.\n", dev->name);
  3075. nv_txrx_gate(dev, false);
  3076. nv_start_rx(dev);
  3077. }
  3078. } else {
  3079. if (netif_carrier_ok(dev)) {
  3080. netif_carrier_off(dev);
  3081. printk(KERN_INFO "%s: link down.\n", dev->name);
  3082. nv_txrx_gate(dev, true);
  3083. nv_stop_rx(dev);
  3084. }
  3085. }
  3086. }
  3087. static void nv_link_irq(struct net_device *dev)
  3088. {
  3089. u8 __iomem *base = get_hwbase(dev);
  3090. u32 miistat;
  3091. miistat = readl(base + NvRegMIIStatus);
  3092. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3093. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3094. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3095. nv_linkchange(dev);
  3096. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3097. }
  3098. static void nv_msi_workaround(struct fe_priv *np)
  3099. {
  3100. /* Need to toggle the msi irq mask within the ethernet device,
  3101. * otherwise, future interrupts will not be detected.
  3102. */
  3103. if (np->msi_flags & NV_MSI_ENABLED) {
  3104. u8 __iomem *base = np->base;
  3105. writel(0, base + NvRegMSIIrqMask);
  3106. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3107. }
  3108. }
  3109. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3110. {
  3111. struct fe_priv *np = netdev_priv(dev);
  3112. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3113. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3114. /* transition to poll based interrupts */
  3115. np->quiet_count = 0;
  3116. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3117. np->irqmask = NVREG_IRQMASK_CPU;
  3118. return 1;
  3119. }
  3120. } else {
  3121. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3122. np->quiet_count++;
  3123. } else {
  3124. /* reached a period of low activity, switch
  3125. to per tx/rx packet interrupts */
  3126. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3127. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3128. return 1;
  3129. }
  3130. }
  3131. }
  3132. }
  3133. return 0;
  3134. }
  3135. static irqreturn_t nv_nic_irq(int foo, void *data)
  3136. {
  3137. struct net_device *dev = (struct net_device *) data;
  3138. struct fe_priv *np = netdev_priv(dev);
  3139. u8 __iomem *base = get_hwbase(dev);
  3140. #ifndef CONFIG_FORCEDETH_NAPI
  3141. int total_work = 0;
  3142. int loop_count = 0;
  3143. #endif
  3144. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3145. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3146. np->events = readl(base + NvRegIrqStatus);
  3147. writel(np->events, base + NvRegIrqStatus);
  3148. } else {
  3149. np->events = readl(base + NvRegMSIXIrqStatus);
  3150. writel(np->events, base + NvRegMSIXIrqStatus);
  3151. }
  3152. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3153. if (!(np->events & np->irqmask))
  3154. return IRQ_NONE;
  3155. nv_msi_workaround(np);
  3156. #ifdef CONFIG_FORCEDETH_NAPI
  3157. napi_schedule(&np->napi);
  3158. /* Disable furthur irq's
  3159. (msix not enabled with napi) */
  3160. writel(0, base + NvRegIrqMask);
  3161. #else
  3162. do
  3163. {
  3164. int work = 0;
  3165. if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
  3166. if (unlikely(nv_alloc_rx(dev))) {
  3167. spin_lock(&np->lock);
  3168. if (!np->in_shutdown)
  3169. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3170. spin_unlock(&np->lock);
  3171. }
  3172. }
  3173. spin_lock(&np->lock);
  3174. work += nv_tx_done(dev, TX_WORK_PER_LOOP);
  3175. spin_unlock(&np->lock);
  3176. if (!work)
  3177. break;
  3178. total_work += work;
  3179. loop_count++;
  3180. }
  3181. while (loop_count < max_interrupt_work);
  3182. if (nv_change_interrupt_mode(dev, total_work)) {
  3183. /* setup new irq mask */
  3184. writel(np->irqmask, base + NvRegIrqMask);
  3185. }
  3186. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3187. spin_lock(&np->lock);
  3188. nv_link_irq(dev);
  3189. spin_unlock(&np->lock);
  3190. }
  3191. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3192. spin_lock(&np->lock);
  3193. nv_linkchange(dev);
  3194. spin_unlock(&np->lock);
  3195. np->link_timeout = jiffies + LINK_TIMEOUT;
  3196. }
  3197. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3198. spin_lock(&np->lock);
  3199. /* disable interrupts on the nic */
  3200. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3201. writel(0, base + NvRegIrqMask);
  3202. else
  3203. writel(np->irqmask, base + NvRegIrqMask);
  3204. pci_push(base);
  3205. if (!np->in_shutdown) {
  3206. np->nic_poll_irq = np->irqmask;
  3207. np->recover_error = 1;
  3208. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3209. }
  3210. spin_unlock(&np->lock);
  3211. }
  3212. #endif
  3213. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3214. return IRQ_HANDLED;
  3215. }
  3216. /**
  3217. * All _optimized functions are used to help increase performance
  3218. * (reduce CPU and increase throughput). They use descripter version 3,
  3219. * compiler directives, and reduce memory accesses.
  3220. */
  3221. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3222. {
  3223. struct net_device *dev = (struct net_device *) data;
  3224. struct fe_priv *np = netdev_priv(dev);
  3225. u8 __iomem *base = get_hwbase(dev);
  3226. #ifndef CONFIG_FORCEDETH_NAPI
  3227. int total_work = 0;
  3228. int loop_count = 0;
  3229. #endif
  3230. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3231. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3232. np->events = readl(base + NvRegIrqStatus);
  3233. writel(np->events, base + NvRegIrqStatus);
  3234. } else {
  3235. np->events = readl(base + NvRegMSIXIrqStatus);
  3236. writel(np->events, base + NvRegMSIXIrqStatus);
  3237. }
  3238. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3239. if (!(np->events & np->irqmask))
  3240. return IRQ_NONE;
  3241. nv_msi_workaround(np);
  3242. #ifdef CONFIG_FORCEDETH_NAPI
  3243. napi_schedule(&np->napi);
  3244. /* Disable furthur irq's
  3245. (msix not enabled with napi) */
  3246. writel(0, base + NvRegIrqMask);
  3247. #else
  3248. do
  3249. {
  3250. int work = 0;
  3251. if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
  3252. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3253. spin_lock(&np->lock);
  3254. if (!np->in_shutdown)
  3255. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3256. spin_unlock(&np->lock);
  3257. }
  3258. }
  3259. spin_lock(&np->lock);
  3260. work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3261. spin_unlock(&np->lock);
  3262. if (!work)
  3263. break;
  3264. total_work += work;
  3265. loop_count++;
  3266. }
  3267. while (loop_count < max_interrupt_work);
  3268. if (nv_change_interrupt_mode(dev, total_work)) {
  3269. /* setup new irq mask */
  3270. writel(np->irqmask, base + NvRegIrqMask);
  3271. }
  3272. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3273. spin_lock(&np->lock);
  3274. nv_link_irq(dev);
  3275. spin_unlock(&np->lock);
  3276. }
  3277. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3278. spin_lock(&np->lock);
  3279. nv_linkchange(dev);
  3280. spin_unlock(&np->lock);
  3281. np->link_timeout = jiffies + LINK_TIMEOUT;
  3282. }
  3283. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3284. spin_lock(&np->lock);
  3285. /* disable interrupts on the nic */
  3286. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3287. writel(0, base + NvRegIrqMask);
  3288. else
  3289. writel(np->irqmask, base + NvRegIrqMask);
  3290. pci_push(base);
  3291. if (!np->in_shutdown) {
  3292. np->nic_poll_irq = np->irqmask;
  3293. np->recover_error = 1;
  3294. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3295. }
  3296. spin_unlock(&np->lock);
  3297. }
  3298. #endif
  3299. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3300. return IRQ_HANDLED;
  3301. }
  3302. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3303. {
  3304. struct net_device *dev = (struct net_device *) data;
  3305. struct fe_priv *np = netdev_priv(dev);
  3306. u8 __iomem *base = get_hwbase(dev);
  3307. u32 events;
  3308. int i;
  3309. unsigned long flags;
  3310. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3311. for (i=0; ; i++) {
  3312. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3313. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3314. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3315. if (!(events & np->irqmask))
  3316. break;
  3317. spin_lock_irqsave(&np->lock, flags);
  3318. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3319. spin_unlock_irqrestore(&np->lock, flags);
  3320. if (unlikely(i > max_interrupt_work)) {
  3321. spin_lock_irqsave(&np->lock, flags);
  3322. /* disable interrupts on the nic */
  3323. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3324. pci_push(base);
  3325. if (!np->in_shutdown) {
  3326. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3327. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3328. }
  3329. spin_unlock_irqrestore(&np->lock, flags);
  3330. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3331. break;
  3332. }
  3333. }
  3334. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3335. return IRQ_RETVAL(i);
  3336. }
  3337. #ifdef CONFIG_FORCEDETH_NAPI
  3338. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3339. {
  3340. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3341. struct net_device *dev = np->dev;
  3342. u8 __iomem *base = get_hwbase(dev);
  3343. unsigned long flags;
  3344. int retcode;
  3345. int tx_work, rx_work;
  3346. if (!nv_optimized(np)) {
  3347. spin_lock_irqsave(&np->lock, flags);
  3348. tx_work = nv_tx_done(dev, np->tx_ring_size);
  3349. spin_unlock_irqrestore(&np->lock, flags);
  3350. rx_work = nv_rx_process(dev, budget);
  3351. retcode = nv_alloc_rx(dev);
  3352. } else {
  3353. spin_lock_irqsave(&np->lock, flags);
  3354. tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
  3355. spin_unlock_irqrestore(&np->lock, flags);
  3356. rx_work = nv_rx_process_optimized(dev, budget);
  3357. retcode = nv_alloc_rx_optimized(dev);
  3358. }
  3359. if (retcode) {
  3360. spin_lock_irqsave(&np->lock, flags);
  3361. if (!np->in_shutdown)
  3362. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3363. spin_unlock_irqrestore(&np->lock, flags);
  3364. }
  3365. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3366. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3367. spin_lock_irqsave(&np->lock, flags);
  3368. nv_link_irq(dev);
  3369. spin_unlock_irqrestore(&np->lock, flags);
  3370. }
  3371. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3372. spin_lock_irqsave(&np->lock, flags);
  3373. nv_linkchange(dev);
  3374. spin_unlock_irqrestore(&np->lock, flags);
  3375. np->link_timeout = jiffies + LINK_TIMEOUT;
  3376. }
  3377. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3378. spin_lock_irqsave(&np->lock, flags);
  3379. if (!np->in_shutdown) {
  3380. np->nic_poll_irq = np->irqmask;
  3381. np->recover_error = 1;
  3382. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3383. }
  3384. spin_unlock_irqrestore(&np->lock, flags);
  3385. napi_complete(napi);
  3386. return rx_work;
  3387. }
  3388. if (rx_work < budget) {
  3389. /* re-enable interrupts
  3390. (msix not enabled in napi) */
  3391. napi_complete(napi);
  3392. writel(np->irqmask, base + NvRegIrqMask);
  3393. }
  3394. return rx_work;
  3395. }
  3396. #endif
  3397. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3398. {
  3399. struct net_device *dev = (struct net_device *) data;
  3400. struct fe_priv *np = netdev_priv(dev);
  3401. u8 __iomem *base = get_hwbase(dev);
  3402. u32 events;
  3403. int i;
  3404. unsigned long flags;
  3405. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3406. for (i=0; ; i++) {
  3407. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3408. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3409. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3410. if (!(events & np->irqmask))
  3411. break;
  3412. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3413. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3414. spin_lock_irqsave(&np->lock, flags);
  3415. if (!np->in_shutdown)
  3416. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3417. spin_unlock_irqrestore(&np->lock, flags);
  3418. }
  3419. }
  3420. if (unlikely(i > max_interrupt_work)) {
  3421. spin_lock_irqsave(&np->lock, flags);
  3422. /* disable interrupts on the nic */
  3423. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3424. pci_push(base);
  3425. if (!np->in_shutdown) {
  3426. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3427. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3428. }
  3429. spin_unlock_irqrestore(&np->lock, flags);
  3430. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3431. break;
  3432. }
  3433. }
  3434. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3435. return IRQ_RETVAL(i);
  3436. }
  3437. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3438. {
  3439. struct net_device *dev = (struct net_device *) data;
  3440. struct fe_priv *np = netdev_priv(dev);
  3441. u8 __iomem *base = get_hwbase(dev);
  3442. u32 events;
  3443. int i;
  3444. unsigned long flags;
  3445. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3446. for (i=0; ; i++) {
  3447. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3448. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3449. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3450. if (!(events & np->irqmask))
  3451. break;
  3452. /* check tx in case we reached max loop limit in tx isr */
  3453. spin_lock_irqsave(&np->lock, flags);
  3454. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3455. spin_unlock_irqrestore(&np->lock, flags);
  3456. if (events & NVREG_IRQ_LINK) {
  3457. spin_lock_irqsave(&np->lock, flags);
  3458. nv_link_irq(dev);
  3459. spin_unlock_irqrestore(&np->lock, flags);
  3460. }
  3461. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3462. spin_lock_irqsave(&np->lock, flags);
  3463. nv_linkchange(dev);
  3464. spin_unlock_irqrestore(&np->lock, flags);
  3465. np->link_timeout = jiffies + LINK_TIMEOUT;
  3466. }
  3467. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3468. spin_lock_irq(&np->lock);
  3469. /* disable interrupts on the nic */
  3470. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3471. pci_push(base);
  3472. if (!np->in_shutdown) {
  3473. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3474. np->recover_error = 1;
  3475. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3476. }
  3477. spin_unlock_irq(&np->lock);
  3478. break;
  3479. }
  3480. if (unlikely(i > max_interrupt_work)) {
  3481. spin_lock_irqsave(&np->lock, flags);
  3482. /* disable interrupts on the nic */
  3483. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3484. pci_push(base);
  3485. if (!np->in_shutdown) {
  3486. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3487. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3488. }
  3489. spin_unlock_irqrestore(&np->lock, flags);
  3490. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3491. break;
  3492. }
  3493. }
  3494. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3495. return IRQ_RETVAL(i);
  3496. }
  3497. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3498. {
  3499. struct net_device *dev = (struct net_device *) data;
  3500. struct fe_priv *np = netdev_priv(dev);
  3501. u8 __iomem *base = get_hwbase(dev);
  3502. u32 events;
  3503. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3504. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3505. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3506. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3507. } else {
  3508. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3509. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3510. }
  3511. pci_push(base);
  3512. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3513. if (!(events & NVREG_IRQ_TIMER))
  3514. return IRQ_RETVAL(0);
  3515. nv_msi_workaround(np);
  3516. spin_lock(&np->lock);
  3517. np->intr_test = 1;
  3518. spin_unlock(&np->lock);
  3519. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3520. return IRQ_RETVAL(1);
  3521. }
  3522. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3523. {
  3524. u8 __iomem *base = get_hwbase(dev);
  3525. int i;
  3526. u32 msixmap = 0;
  3527. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3528. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3529. * the remaining 8 interrupts.
  3530. */
  3531. for (i = 0; i < 8; i++) {
  3532. if ((irqmask >> i) & 0x1) {
  3533. msixmap |= vector << (i << 2);
  3534. }
  3535. }
  3536. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3537. msixmap = 0;
  3538. for (i = 0; i < 8; i++) {
  3539. if ((irqmask >> (i + 8)) & 0x1) {
  3540. msixmap |= vector << (i << 2);
  3541. }
  3542. }
  3543. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3544. }
  3545. static int nv_request_irq(struct net_device *dev, int intr_test)
  3546. {
  3547. struct fe_priv *np = get_nvpriv(dev);
  3548. u8 __iomem *base = get_hwbase(dev);
  3549. int ret = 1;
  3550. int i;
  3551. irqreturn_t (*handler)(int foo, void *data);
  3552. if (intr_test) {
  3553. handler = nv_nic_irq_test;
  3554. } else {
  3555. if (nv_optimized(np))
  3556. handler = nv_nic_irq_optimized;
  3557. else
  3558. handler = nv_nic_irq;
  3559. }
  3560. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3561. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3562. np->msi_x_entry[i].entry = i;
  3563. }
  3564. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3565. np->msi_flags |= NV_MSI_X_ENABLED;
  3566. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3567. /* Request irq for rx handling */
  3568. sprintf(np->name_rx, "%s-rx", dev->name);
  3569. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3570. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3571. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3572. pci_disable_msix(np->pci_dev);
  3573. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3574. goto out_err;
  3575. }
  3576. /* Request irq for tx handling */
  3577. sprintf(np->name_tx, "%s-tx", dev->name);
  3578. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3579. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3580. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3581. pci_disable_msix(np->pci_dev);
  3582. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3583. goto out_free_rx;
  3584. }
  3585. /* Request irq for link and timer handling */
  3586. sprintf(np->name_other, "%s-other", dev->name);
  3587. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3588. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3589. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3590. pci_disable_msix(np->pci_dev);
  3591. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3592. goto out_free_tx;
  3593. }
  3594. /* map interrupts to their respective vector */
  3595. writel(0, base + NvRegMSIXMap0);
  3596. writel(0, base + NvRegMSIXMap1);
  3597. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3598. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3599. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3600. } else {
  3601. /* Request irq for all interrupts */
  3602. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3603. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3604. pci_disable_msix(np->pci_dev);
  3605. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3606. goto out_err;
  3607. }
  3608. /* map interrupts to vector 0 */
  3609. writel(0, base + NvRegMSIXMap0);
  3610. writel(0, base + NvRegMSIXMap1);
  3611. }
  3612. }
  3613. }
  3614. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3615. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3616. np->msi_flags |= NV_MSI_ENABLED;
  3617. dev->irq = np->pci_dev->irq;
  3618. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3619. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3620. pci_disable_msi(np->pci_dev);
  3621. np->msi_flags &= ~NV_MSI_ENABLED;
  3622. dev->irq = np->pci_dev->irq;
  3623. goto out_err;
  3624. }
  3625. /* map interrupts to vector 0 */
  3626. writel(0, base + NvRegMSIMap0);
  3627. writel(0, base + NvRegMSIMap1);
  3628. /* enable msi vector 0 */
  3629. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3630. }
  3631. }
  3632. if (ret != 0) {
  3633. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3634. goto out_err;
  3635. }
  3636. return 0;
  3637. out_free_tx:
  3638. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3639. out_free_rx:
  3640. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3641. out_err:
  3642. return 1;
  3643. }
  3644. static void nv_free_irq(struct net_device *dev)
  3645. {
  3646. struct fe_priv *np = get_nvpriv(dev);
  3647. int i;
  3648. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3649. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3650. free_irq(np->msi_x_entry[i].vector, dev);
  3651. }
  3652. pci_disable_msix(np->pci_dev);
  3653. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3654. } else {
  3655. free_irq(np->pci_dev->irq, dev);
  3656. if (np->msi_flags & NV_MSI_ENABLED) {
  3657. pci_disable_msi(np->pci_dev);
  3658. np->msi_flags &= ~NV_MSI_ENABLED;
  3659. }
  3660. }
  3661. }
  3662. static void nv_do_nic_poll(unsigned long data)
  3663. {
  3664. struct net_device *dev = (struct net_device *) data;
  3665. struct fe_priv *np = netdev_priv(dev);
  3666. u8 __iomem *base = get_hwbase(dev);
  3667. u32 mask = 0;
  3668. /*
  3669. * First disable irq(s) and then
  3670. * reenable interrupts on the nic, we have to do this before calling
  3671. * nv_nic_irq because that may decide to do otherwise
  3672. */
  3673. if (!using_multi_irqs(dev)) {
  3674. if (np->msi_flags & NV_MSI_X_ENABLED)
  3675. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3676. else
  3677. disable_irq_lockdep(np->pci_dev->irq);
  3678. mask = np->irqmask;
  3679. } else {
  3680. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3681. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3682. mask |= NVREG_IRQ_RX_ALL;
  3683. }
  3684. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3685. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3686. mask |= NVREG_IRQ_TX_ALL;
  3687. }
  3688. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3689. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3690. mask |= NVREG_IRQ_OTHER;
  3691. }
  3692. }
  3693. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3694. if (np->recover_error) {
  3695. np->recover_error = 0;
  3696. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3697. if (netif_running(dev)) {
  3698. netif_tx_lock_bh(dev);
  3699. netif_addr_lock(dev);
  3700. spin_lock(&np->lock);
  3701. /* stop engines */
  3702. nv_stop_rxtx(dev);
  3703. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3704. nv_mac_reset(dev);
  3705. nv_txrx_reset(dev);
  3706. /* drain rx queue */
  3707. nv_drain_rxtx(dev);
  3708. /* reinit driver view of the rx queue */
  3709. set_bufsize(dev);
  3710. if (nv_init_ring(dev)) {
  3711. if (!np->in_shutdown)
  3712. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3713. }
  3714. /* reinit nic view of the rx queue */
  3715. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3716. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3717. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3718. base + NvRegRingSizes);
  3719. pci_push(base);
  3720. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3721. pci_push(base);
  3722. /* clear interrupts */
  3723. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3724. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3725. else
  3726. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3727. /* restart rx engine */
  3728. nv_start_rxtx(dev);
  3729. spin_unlock(&np->lock);
  3730. netif_addr_unlock(dev);
  3731. netif_tx_unlock_bh(dev);
  3732. }
  3733. }
  3734. writel(mask, base + NvRegIrqMask);
  3735. pci_push(base);
  3736. if (!using_multi_irqs(dev)) {
  3737. np->nic_poll_irq = 0;
  3738. if (nv_optimized(np))
  3739. nv_nic_irq_optimized(0, dev);
  3740. else
  3741. nv_nic_irq(0, dev);
  3742. if (np->msi_flags & NV_MSI_X_ENABLED)
  3743. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3744. else
  3745. enable_irq_lockdep(np->pci_dev->irq);
  3746. } else {
  3747. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3748. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3749. nv_nic_irq_rx(0, dev);
  3750. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3751. }
  3752. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3753. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3754. nv_nic_irq_tx(0, dev);
  3755. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3756. }
  3757. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3758. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3759. nv_nic_irq_other(0, dev);
  3760. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3761. }
  3762. }
  3763. }
  3764. #ifdef CONFIG_NET_POLL_CONTROLLER
  3765. static void nv_poll_controller(struct net_device *dev)
  3766. {
  3767. nv_do_nic_poll((unsigned long) dev);
  3768. }
  3769. #endif
  3770. static void nv_do_stats_poll(unsigned long data)
  3771. {
  3772. struct net_device *dev = (struct net_device *) data;
  3773. struct fe_priv *np = netdev_priv(dev);
  3774. nv_get_hw_stats(dev);
  3775. if (!np->in_shutdown)
  3776. mod_timer(&np->stats_poll,
  3777. round_jiffies(jiffies + STATS_INTERVAL));
  3778. }
  3779. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3780. {
  3781. struct fe_priv *np = netdev_priv(dev);
  3782. strcpy(info->driver, DRV_NAME);
  3783. strcpy(info->version, FORCEDETH_VERSION);
  3784. strcpy(info->bus_info, pci_name(np->pci_dev));
  3785. }
  3786. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3787. {
  3788. struct fe_priv *np = netdev_priv(dev);
  3789. wolinfo->supported = WAKE_MAGIC;
  3790. spin_lock_irq(&np->lock);
  3791. if (np->wolenabled)
  3792. wolinfo->wolopts = WAKE_MAGIC;
  3793. spin_unlock_irq(&np->lock);
  3794. }
  3795. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3796. {
  3797. struct fe_priv *np = netdev_priv(dev);
  3798. u8 __iomem *base = get_hwbase(dev);
  3799. u32 flags = 0;
  3800. if (wolinfo->wolopts == 0) {
  3801. np->wolenabled = 0;
  3802. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3803. np->wolenabled = 1;
  3804. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3805. }
  3806. if (netif_running(dev)) {
  3807. spin_lock_irq(&np->lock);
  3808. writel(flags, base + NvRegWakeUpFlags);
  3809. spin_unlock_irq(&np->lock);
  3810. }
  3811. return 0;
  3812. }
  3813. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3814. {
  3815. struct fe_priv *np = netdev_priv(dev);
  3816. int adv;
  3817. spin_lock_irq(&np->lock);
  3818. ecmd->port = PORT_MII;
  3819. if (!netif_running(dev)) {
  3820. /* We do not track link speed / duplex setting if the
  3821. * interface is disabled. Force a link check */
  3822. if (nv_update_linkspeed(dev)) {
  3823. if (!netif_carrier_ok(dev))
  3824. netif_carrier_on(dev);
  3825. } else {
  3826. if (netif_carrier_ok(dev))
  3827. netif_carrier_off(dev);
  3828. }
  3829. }
  3830. if (netif_carrier_ok(dev)) {
  3831. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3832. case NVREG_LINKSPEED_10:
  3833. ecmd->speed = SPEED_10;
  3834. break;
  3835. case NVREG_LINKSPEED_100:
  3836. ecmd->speed = SPEED_100;
  3837. break;
  3838. case NVREG_LINKSPEED_1000:
  3839. ecmd->speed = SPEED_1000;
  3840. break;
  3841. }
  3842. ecmd->duplex = DUPLEX_HALF;
  3843. if (np->duplex)
  3844. ecmd->duplex = DUPLEX_FULL;
  3845. } else {
  3846. ecmd->speed = -1;
  3847. ecmd->duplex = -1;
  3848. }
  3849. ecmd->autoneg = np->autoneg;
  3850. ecmd->advertising = ADVERTISED_MII;
  3851. if (np->autoneg) {
  3852. ecmd->advertising |= ADVERTISED_Autoneg;
  3853. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3854. if (adv & ADVERTISE_10HALF)
  3855. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3856. if (adv & ADVERTISE_10FULL)
  3857. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3858. if (adv & ADVERTISE_100HALF)
  3859. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3860. if (adv & ADVERTISE_100FULL)
  3861. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3862. if (np->gigabit == PHY_GIGABIT) {
  3863. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3864. if (adv & ADVERTISE_1000FULL)
  3865. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3866. }
  3867. }
  3868. ecmd->supported = (SUPPORTED_Autoneg |
  3869. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3870. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3871. SUPPORTED_MII);
  3872. if (np->gigabit == PHY_GIGABIT)
  3873. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3874. ecmd->phy_address = np->phyaddr;
  3875. ecmd->transceiver = XCVR_EXTERNAL;
  3876. /* ignore maxtxpkt, maxrxpkt for now */
  3877. spin_unlock_irq(&np->lock);
  3878. return 0;
  3879. }
  3880. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3881. {
  3882. struct fe_priv *np = netdev_priv(dev);
  3883. if (ecmd->port != PORT_MII)
  3884. return -EINVAL;
  3885. if (ecmd->transceiver != XCVR_EXTERNAL)
  3886. return -EINVAL;
  3887. if (ecmd->phy_address != np->phyaddr) {
  3888. /* TODO: support switching between multiple phys. Should be
  3889. * trivial, but not enabled due to lack of test hardware. */
  3890. return -EINVAL;
  3891. }
  3892. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3893. u32 mask;
  3894. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3895. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3896. if (np->gigabit == PHY_GIGABIT)
  3897. mask |= ADVERTISED_1000baseT_Full;
  3898. if ((ecmd->advertising & mask) == 0)
  3899. return -EINVAL;
  3900. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3901. /* Note: autonegotiation disable, speed 1000 intentionally
  3902. * forbidden - noone should need that. */
  3903. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3904. return -EINVAL;
  3905. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3906. return -EINVAL;
  3907. } else {
  3908. return -EINVAL;
  3909. }
  3910. netif_carrier_off(dev);
  3911. if (netif_running(dev)) {
  3912. unsigned long flags;
  3913. nv_disable_irq(dev);
  3914. netif_tx_lock_bh(dev);
  3915. netif_addr_lock(dev);
  3916. /* with plain spinlock lockdep complains */
  3917. spin_lock_irqsave(&np->lock, flags);
  3918. /* stop engines */
  3919. /* FIXME:
  3920. * this can take some time, and interrupts are disabled
  3921. * due to spin_lock_irqsave, but let's hope no daemon
  3922. * is going to change the settings very often...
  3923. * Worst case:
  3924. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3925. * + some minor delays, which is up to a second approximately
  3926. */
  3927. nv_stop_rxtx(dev);
  3928. spin_unlock_irqrestore(&np->lock, flags);
  3929. netif_addr_unlock(dev);
  3930. netif_tx_unlock_bh(dev);
  3931. }
  3932. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3933. int adv, bmcr;
  3934. np->autoneg = 1;
  3935. /* advertise only what has been requested */
  3936. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3937. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3938. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3939. adv |= ADVERTISE_10HALF;
  3940. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3941. adv |= ADVERTISE_10FULL;
  3942. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3943. adv |= ADVERTISE_100HALF;
  3944. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3945. adv |= ADVERTISE_100FULL;
  3946. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3947. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3948. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3949. adv |= ADVERTISE_PAUSE_ASYM;
  3950. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3951. if (np->gigabit == PHY_GIGABIT) {
  3952. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3953. adv &= ~ADVERTISE_1000FULL;
  3954. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3955. adv |= ADVERTISE_1000FULL;
  3956. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3957. }
  3958. if (netif_running(dev))
  3959. printk(KERN_INFO "%s: link down.\n", dev->name);
  3960. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3961. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3962. bmcr |= BMCR_ANENABLE;
  3963. /* reset the phy in order for settings to stick,
  3964. * and cause autoneg to start */
  3965. if (phy_reset(dev, bmcr)) {
  3966. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3967. return -EINVAL;
  3968. }
  3969. } else {
  3970. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3971. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3972. }
  3973. } else {
  3974. int adv, bmcr;
  3975. np->autoneg = 0;
  3976. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3977. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3978. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3979. adv |= ADVERTISE_10HALF;
  3980. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3981. adv |= ADVERTISE_10FULL;
  3982. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3983. adv |= ADVERTISE_100HALF;
  3984. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3985. adv |= ADVERTISE_100FULL;
  3986. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3987. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3988. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3989. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3990. }
  3991. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3992. adv |= ADVERTISE_PAUSE_ASYM;
  3993. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3994. }
  3995. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3996. np->fixed_mode = adv;
  3997. if (np->gigabit == PHY_GIGABIT) {
  3998. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3999. adv &= ~ADVERTISE_1000FULL;
  4000. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  4001. }
  4002. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4003. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  4004. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  4005. bmcr |= BMCR_FULLDPLX;
  4006. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  4007. bmcr |= BMCR_SPEED100;
  4008. if (np->phy_oui == PHY_OUI_MARVELL) {
  4009. /* reset the phy in order for forced mode settings to stick */
  4010. if (phy_reset(dev, bmcr)) {
  4011. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4012. return -EINVAL;
  4013. }
  4014. } else {
  4015. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4016. if (netif_running(dev)) {
  4017. /* Wait a bit and then reconfigure the nic. */
  4018. udelay(10);
  4019. nv_linkchange(dev);
  4020. }
  4021. }
  4022. }
  4023. if (netif_running(dev)) {
  4024. nv_start_rxtx(dev);
  4025. nv_enable_irq(dev);
  4026. }
  4027. return 0;
  4028. }
  4029. #define FORCEDETH_REGS_VER 1
  4030. static int nv_get_regs_len(struct net_device *dev)
  4031. {
  4032. struct fe_priv *np = netdev_priv(dev);
  4033. return np->register_size;
  4034. }
  4035. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4036. {
  4037. struct fe_priv *np = netdev_priv(dev);
  4038. u8 __iomem *base = get_hwbase(dev);
  4039. u32 *rbuf = buf;
  4040. int i;
  4041. regs->version = FORCEDETH_REGS_VER;
  4042. spin_lock_irq(&np->lock);
  4043. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4044. rbuf[i] = readl(base + i*sizeof(u32));
  4045. spin_unlock_irq(&np->lock);
  4046. }
  4047. static int nv_nway_reset(struct net_device *dev)
  4048. {
  4049. struct fe_priv *np = netdev_priv(dev);
  4050. int ret;
  4051. if (np->autoneg) {
  4052. int bmcr;
  4053. netif_carrier_off(dev);
  4054. if (netif_running(dev)) {
  4055. nv_disable_irq(dev);
  4056. netif_tx_lock_bh(dev);
  4057. netif_addr_lock(dev);
  4058. spin_lock(&np->lock);
  4059. /* stop engines */
  4060. nv_stop_rxtx(dev);
  4061. spin_unlock(&np->lock);
  4062. netif_addr_unlock(dev);
  4063. netif_tx_unlock_bh(dev);
  4064. printk(KERN_INFO "%s: link down.\n", dev->name);
  4065. }
  4066. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4067. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4068. bmcr |= BMCR_ANENABLE;
  4069. /* reset the phy in order for settings to stick*/
  4070. if (phy_reset(dev, bmcr)) {
  4071. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4072. return -EINVAL;
  4073. }
  4074. } else {
  4075. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4076. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4077. }
  4078. if (netif_running(dev)) {
  4079. nv_start_rxtx(dev);
  4080. nv_enable_irq(dev);
  4081. }
  4082. ret = 0;
  4083. } else {
  4084. ret = -EINVAL;
  4085. }
  4086. return ret;
  4087. }
  4088. static int nv_set_tso(struct net_device *dev, u32 value)
  4089. {
  4090. struct fe_priv *np = netdev_priv(dev);
  4091. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4092. return ethtool_op_set_tso(dev, value);
  4093. else
  4094. return -EOPNOTSUPP;
  4095. }
  4096. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4097. {
  4098. struct fe_priv *np = netdev_priv(dev);
  4099. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4100. ring->rx_mini_max_pending = 0;
  4101. ring->rx_jumbo_max_pending = 0;
  4102. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4103. ring->rx_pending = np->rx_ring_size;
  4104. ring->rx_mini_pending = 0;
  4105. ring->rx_jumbo_pending = 0;
  4106. ring->tx_pending = np->tx_ring_size;
  4107. }
  4108. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4109. {
  4110. struct fe_priv *np = netdev_priv(dev);
  4111. u8 __iomem *base = get_hwbase(dev);
  4112. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4113. dma_addr_t ring_addr;
  4114. if (ring->rx_pending < RX_RING_MIN ||
  4115. ring->tx_pending < TX_RING_MIN ||
  4116. ring->rx_mini_pending != 0 ||
  4117. ring->rx_jumbo_pending != 0 ||
  4118. (np->desc_ver == DESC_VER_1 &&
  4119. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4120. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4121. (np->desc_ver != DESC_VER_1 &&
  4122. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4123. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4124. return -EINVAL;
  4125. }
  4126. /* allocate new rings */
  4127. if (!nv_optimized(np)) {
  4128. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4129. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4130. &ring_addr);
  4131. } else {
  4132. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4133. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4134. &ring_addr);
  4135. }
  4136. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4137. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4138. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4139. /* fall back to old rings */
  4140. if (!nv_optimized(np)) {
  4141. if (rxtx_ring)
  4142. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4143. rxtx_ring, ring_addr);
  4144. } else {
  4145. if (rxtx_ring)
  4146. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4147. rxtx_ring, ring_addr);
  4148. }
  4149. if (rx_skbuff)
  4150. kfree(rx_skbuff);
  4151. if (tx_skbuff)
  4152. kfree(tx_skbuff);
  4153. goto exit;
  4154. }
  4155. if (netif_running(dev)) {
  4156. nv_disable_irq(dev);
  4157. nv_napi_disable(dev);
  4158. netif_tx_lock_bh(dev);
  4159. netif_addr_lock(dev);
  4160. spin_lock(&np->lock);
  4161. /* stop engines */
  4162. nv_stop_rxtx(dev);
  4163. nv_txrx_reset(dev);
  4164. /* drain queues */
  4165. nv_drain_rxtx(dev);
  4166. /* delete queues */
  4167. free_rings(dev);
  4168. }
  4169. /* set new values */
  4170. np->rx_ring_size = ring->rx_pending;
  4171. np->tx_ring_size = ring->tx_pending;
  4172. if (!nv_optimized(np)) {
  4173. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4174. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4175. } else {
  4176. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4177. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4178. }
  4179. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4180. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4181. np->ring_addr = ring_addr;
  4182. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4183. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4184. if (netif_running(dev)) {
  4185. /* reinit driver view of the queues */
  4186. set_bufsize(dev);
  4187. if (nv_init_ring(dev)) {
  4188. if (!np->in_shutdown)
  4189. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4190. }
  4191. /* reinit nic view of the queues */
  4192. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4193. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4194. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4195. base + NvRegRingSizes);
  4196. pci_push(base);
  4197. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4198. pci_push(base);
  4199. /* restart engines */
  4200. nv_start_rxtx(dev);
  4201. spin_unlock(&np->lock);
  4202. netif_addr_unlock(dev);
  4203. netif_tx_unlock_bh(dev);
  4204. nv_napi_enable(dev);
  4205. nv_enable_irq(dev);
  4206. }
  4207. return 0;
  4208. exit:
  4209. return -ENOMEM;
  4210. }
  4211. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4212. {
  4213. struct fe_priv *np = netdev_priv(dev);
  4214. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4215. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4216. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4217. }
  4218. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4219. {
  4220. struct fe_priv *np = netdev_priv(dev);
  4221. int adv, bmcr;
  4222. if ((!np->autoneg && np->duplex == 0) ||
  4223. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4224. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4225. dev->name);
  4226. return -EINVAL;
  4227. }
  4228. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4229. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4230. return -EINVAL;
  4231. }
  4232. netif_carrier_off(dev);
  4233. if (netif_running(dev)) {
  4234. nv_disable_irq(dev);
  4235. netif_tx_lock_bh(dev);
  4236. netif_addr_lock(dev);
  4237. spin_lock(&np->lock);
  4238. /* stop engines */
  4239. nv_stop_rxtx(dev);
  4240. spin_unlock(&np->lock);
  4241. netif_addr_unlock(dev);
  4242. netif_tx_unlock_bh(dev);
  4243. }
  4244. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4245. if (pause->rx_pause)
  4246. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4247. if (pause->tx_pause)
  4248. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4249. if (np->autoneg && pause->autoneg) {
  4250. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4251. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4252. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4253. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4254. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4255. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4256. adv |= ADVERTISE_PAUSE_ASYM;
  4257. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4258. if (netif_running(dev))
  4259. printk(KERN_INFO "%s: link down.\n", dev->name);
  4260. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4261. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4262. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4263. } else {
  4264. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4265. if (pause->rx_pause)
  4266. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4267. if (pause->tx_pause)
  4268. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4269. if (!netif_running(dev))
  4270. nv_update_linkspeed(dev);
  4271. else
  4272. nv_update_pause(dev, np->pause_flags);
  4273. }
  4274. if (netif_running(dev)) {
  4275. nv_start_rxtx(dev);
  4276. nv_enable_irq(dev);
  4277. }
  4278. return 0;
  4279. }
  4280. static u32 nv_get_rx_csum(struct net_device *dev)
  4281. {
  4282. struct fe_priv *np = netdev_priv(dev);
  4283. return (np->rx_csum) != 0;
  4284. }
  4285. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4286. {
  4287. struct fe_priv *np = netdev_priv(dev);
  4288. u8 __iomem *base = get_hwbase(dev);
  4289. int retcode = 0;
  4290. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4291. if (data) {
  4292. np->rx_csum = 1;
  4293. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4294. } else {
  4295. np->rx_csum = 0;
  4296. /* vlan is dependent on rx checksum offload */
  4297. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4298. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4299. }
  4300. if (netif_running(dev)) {
  4301. spin_lock_irq(&np->lock);
  4302. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4303. spin_unlock_irq(&np->lock);
  4304. }
  4305. } else {
  4306. return -EINVAL;
  4307. }
  4308. return retcode;
  4309. }
  4310. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4311. {
  4312. struct fe_priv *np = netdev_priv(dev);
  4313. if (np->driver_data & DEV_HAS_CHECKSUM)
  4314. return ethtool_op_set_tx_csum(dev, data);
  4315. else
  4316. return -EOPNOTSUPP;
  4317. }
  4318. static int nv_set_sg(struct net_device *dev, u32 data)
  4319. {
  4320. struct fe_priv *np = netdev_priv(dev);
  4321. if (np->driver_data & DEV_HAS_CHECKSUM)
  4322. return ethtool_op_set_sg(dev, data);
  4323. else
  4324. return -EOPNOTSUPP;
  4325. }
  4326. static int nv_get_sset_count(struct net_device *dev, int sset)
  4327. {
  4328. struct fe_priv *np = netdev_priv(dev);
  4329. switch (sset) {
  4330. case ETH_SS_TEST:
  4331. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4332. return NV_TEST_COUNT_EXTENDED;
  4333. else
  4334. return NV_TEST_COUNT_BASE;
  4335. case ETH_SS_STATS:
  4336. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4337. return NV_DEV_STATISTICS_V3_COUNT;
  4338. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4339. return NV_DEV_STATISTICS_V2_COUNT;
  4340. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4341. return NV_DEV_STATISTICS_V1_COUNT;
  4342. else
  4343. return 0;
  4344. default:
  4345. return -EOPNOTSUPP;
  4346. }
  4347. }
  4348. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4349. {
  4350. struct fe_priv *np = netdev_priv(dev);
  4351. /* update stats */
  4352. nv_do_stats_poll((unsigned long)dev);
  4353. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4354. }
  4355. static int nv_link_test(struct net_device *dev)
  4356. {
  4357. struct fe_priv *np = netdev_priv(dev);
  4358. int mii_status;
  4359. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4360. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4361. /* check phy link status */
  4362. if (!(mii_status & BMSR_LSTATUS))
  4363. return 0;
  4364. else
  4365. return 1;
  4366. }
  4367. static int nv_register_test(struct net_device *dev)
  4368. {
  4369. u8 __iomem *base = get_hwbase(dev);
  4370. int i = 0;
  4371. u32 orig_read, new_read;
  4372. do {
  4373. orig_read = readl(base + nv_registers_test[i].reg);
  4374. /* xor with mask to toggle bits */
  4375. orig_read ^= nv_registers_test[i].mask;
  4376. writel(orig_read, base + nv_registers_test[i].reg);
  4377. new_read = readl(base + nv_registers_test[i].reg);
  4378. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4379. return 0;
  4380. /* restore original value */
  4381. orig_read ^= nv_registers_test[i].mask;
  4382. writel(orig_read, base + nv_registers_test[i].reg);
  4383. } while (nv_registers_test[++i].reg != 0);
  4384. return 1;
  4385. }
  4386. static int nv_interrupt_test(struct net_device *dev)
  4387. {
  4388. struct fe_priv *np = netdev_priv(dev);
  4389. u8 __iomem *base = get_hwbase(dev);
  4390. int ret = 1;
  4391. int testcnt;
  4392. u32 save_msi_flags, save_poll_interval = 0;
  4393. if (netif_running(dev)) {
  4394. /* free current irq */
  4395. nv_free_irq(dev);
  4396. save_poll_interval = readl(base+NvRegPollingInterval);
  4397. }
  4398. /* flag to test interrupt handler */
  4399. np->intr_test = 0;
  4400. /* setup test irq */
  4401. save_msi_flags = np->msi_flags;
  4402. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4403. np->msi_flags |= 0x001; /* setup 1 vector */
  4404. if (nv_request_irq(dev, 1))
  4405. return 0;
  4406. /* setup timer interrupt */
  4407. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4408. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4409. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4410. /* wait for at least one interrupt */
  4411. msleep(100);
  4412. spin_lock_irq(&np->lock);
  4413. /* flag should be set within ISR */
  4414. testcnt = np->intr_test;
  4415. if (!testcnt)
  4416. ret = 2;
  4417. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4418. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4419. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4420. else
  4421. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4422. spin_unlock_irq(&np->lock);
  4423. nv_free_irq(dev);
  4424. np->msi_flags = save_msi_flags;
  4425. if (netif_running(dev)) {
  4426. writel(save_poll_interval, base + NvRegPollingInterval);
  4427. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4428. /* restore original irq */
  4429. if (nv_request_irq(dev, 0))
  4430. return 0;
  4431. }
  4432. return ret;
  4433. }
  4434. static int nv_loopback_test(struct net_device *dev)
  4435. {
  4436. struct fe_priv *np = netdev_priv(dev);
  4437. u8 __iomem *base = get_hwbase(dev);
  4438. struct sk_buff *tx_skb, *rx_skb;
  4439. dma_addr_t test_dma_addr;
  4440. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4441. u32 flags;
  4442. int len, i, pkt_len;
  4443. u8 *pkt_data;
  4444. u32 filter_flags = 0;
  4445. u32 misc1_flags = 0;
  4446. int ret = 1;
  4447. if (netif_running(dev)) {
  4448. nv_disable_irq(dev);
  4449. filter_flags = readl(base + NvRegPacketFilterFlags);
  4450. misc1_flags = readl(base + NvRegMisc1);
  4451. } else {
  4452. nv_txrx_reset(dev);
  4453. }
  4454. /* reinit driver view of the rx queue */
  4455. set_bufsize(dev);
  4456. nv_init_ring(dev);
  4457. /* setup hardware for loopback */
  4458. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4459. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4460. /* reinit nic view of the rx queue */
  4461. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4462. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4463. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4464. base + NvRegRingSizes);
  4465. pci_push(base);
  4466. /* restart rx engine */
  4467. nv_start_rxtx(dev);
  4468. /* setup packet for tx */
  4469. pkt_len = ETH_DATA_LEN;
  4470. tx_skb = dev_alloc_skb(pkt_len);
  4471. if (!tx_skb) {
  4472. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4473. " of %s\n", dev->name);
  4474. ret = 0;
  4475. goto out;
  4476. }
  4477. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4478. skb_tailroom(tx_skb),
  4479. PCI_DMA_FROMDEVICE);
  4480. pkt_data = skb_put(tx_skb, pkt_len);
  4481. for (i = 0; i < pkt_len; i++)
  4482. pkt_data[i] = (u8)(i & 0xff);
  4483. if (!nv_optimized(np)) {
  4484. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4485. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4486. } else {
  4487. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4488. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4489. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4490. }
  4491. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4492. pci_push(get_hwbase(dev));
  4493. msleep(500);
  4494. /* check for rx of the packet */
  4495. if (!nv_optimized(np)) {
  4496. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4497. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4498. } else {
  4499. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4500. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4501. }
  4502. if (flags & NV_RX_AVAIL) {
  4503. ret = 0;
  4504. } else if (np->desc_ver == DESC_VER_1) {
  4505. if (flags & NV_RX_ERROR)
  4506. ret = 0;
  4507. } else {
  4508. if (flags & NV_RX2_ERROR) {
  4509. ret = 0;
  4510. }
  4511. }
  4512. if (ret) {
  4513. if (len != pkt_len) {
  4514. ret = 0;
  4515. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4516. dev->name, len, pkt_len);
  4517. } else {
  4518. rx_skb = np->rx_skb[0].skb;
  4519. for (i = 0; i < pkt_len; i++) {
  4520. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4521. ret = 0;
  4522. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4523. dev->name, i);
  4524. break;
  4525. }
  4526. }
  4527. }
  4528. } else {
  4529. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4530. }
  4531. pci_unmap_page(np->pci_dev, test_dma_addr,
  4532. (skb_end_pointer(tx_skb) - tx_skb->data),
  4533. PCI_DMA_TODEVICE);
  4534. dev_kfree_skb_any(tx_skb);
  4535. out:
  4536. /* stop engines */
  4537. nv_stop_rxtx(dev);
  4538. nv_txrx_reset(dev);
  4539. /* drain rx queue */
  4540. nv_drain_rxtx(dev);
  4541. if (netif_running(dev)) {
  4542. writel(misc1_flags, base + NvRegMisc1);
  4543. writel(filter_flags, base + NvRegPacketFilterFlags);
  4544. nv_enable_irq(dev);
  4545. }
  4546. return ret;
  4547. }
  4548. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4549. {
  4550. struct fe_priv *np = netdev_priv(dev);
  4551. u8 __iomem *base = get_hwbase(dev);
  4552. int result;
  4553. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4554. if (!nv_link_test(dev)) {
  4555. test->flags |= ETH_TEST_FL_FAILED;
  4556. buffer[0] = 1;
  4557. }
  4558. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4559. if (netif_running(dev)) {
  4560. netif_stop_queue(dev);
  4561. nv_napi_disable(dev);
  4562. netif_tx_lock_bh(dev);
  4563. netif_addr_lock(dev);
  4564. spin_lock_irq(&np->lock);
  4565. nv_disable_hw_interrupts(dev, np->irqmask);
  4566. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4567. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4568. } else {
  4569. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4570. }
  4571. /* stop engines */
  4572. nv_stop_rxtx(dev);
  4573. nv_txrx_reset(dev);
  4574. /* drain rx queue */
  4575. nv_drain_rxtx(dev);
  4576. spin_unlock_irq(&np->lock);
  4577. netif_addr_unlock(dev);
  4578. netif_tx_unlock_bh(dev);
  4579. }
  4580. if (!nv_register_test(dev)) {
  4581. test->flags |= ETH_TEST_FL_FAILED;
  4582. buffer[1] = 1;
  4583. }
  4584. result = nv_interrupt_test(dev);
  4585. if (result != 1) {
  4586. test->flags |= ETH_TEST_FL_FAILED;
  4587. buffer[2] = 1;
  4588. }
  4589. if (result == 0) {
  4590. /* bail out */
  4591. return;
  4592. }
  4593. if (!nv_loopback_test(dev)) {
  4594. test->flags |= ETH_TEST_FL_FAILED;
  4595. buffer[3] = 1;
  4596. }
  4597. if (netif_running(dev)) {
  4598. /* reinit driver view of the rx queue */
  4599. set_bufsize(dev);
  4600. if (nv_init_ring(dev)) {
  4601. if (!np->in_shutdown)
  4602. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4603. }
  4604. /* reinit nic view of the rx queue */
  4605. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4606. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4607. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4608. base + NvRegRingSizes);
  4609. pci_push(base);
  4610. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4611. pci_push(base);
  4612. /* restart rx engine */
  4613. nv_start_rxtx(dev);
  4614. netif_start_queue(dev);
  4615. nv_napi_enable(dev);
  4616. nv_enable_hw_interrupts(dev, np->irqmask);
  4617. }
  4618. }
  4619. }
  4620. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4621. {
  4622. switch (stringset) {
  4623. case ETH_SS_STATS:
  4624. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4625. break;
  4626. case ETH_SS_TEST:
  4627. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4628. break;
  4629. }
  4630. }
  4631. static const struct ethtool_ops ops = {
  4632. .get_drvinfo = nv_get_drvinfo,
  4633. .get_link = ethtool_op_get_link,
  4634. .get_wol = nv_get_wol,
  4635. .set_wol = nv_set_wol,
  4636. .get_settings = nv_get_settings,
  4637. .set_settings = nv_set_settings,
  4638. .get_regs_len = nv_get_regs_len,
  4639. .get_regs = nv_get_regs,
  4640. .nway_reset = nv_nway_reset,
  4641. .set_tso = nv_set_tso,
  4642. .get_ringparam = nv_get_ringparam,
  4643. .set_ringparam = nv_set_ringparam,
  4644. .get_pauseparam = nv_get_pauseparam,
  4645. .set_pauseparam = nv_set_pauseparam,
  4646. .get_rx_csum = nv_get_rx_csum,
  4647. .set_rx_csum = nv_set_rx_csum,
  4648. .set_tx_csum = nv_set_tx_csum,
  4649. .set_sg = nv_set_sg,
  4650. .get_strings = nv_get_strings,
  4651. .get_ethtool_stats = nv_get_ethtool_stats,
  4652. .get_sset_count = nv_get_sset_count,
  4653. .self_test = nv_self_test,
  4654. };
  4655. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4656. {
  4657. struct fe_priv *np = get_nvpriv(dev);
  4658. spin_lock_irq(&np->lock);
  4659. /* save vlan group */
  4660. np->vlangrp = grp;
  4661. if (grp) {
  4662. /* enable vlan on MAC */
  4663. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4664. } else {
  4665. /* disable vlan on MAC */
  4666. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4667. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4668. }
  4669. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4670. spin_unlock_irq(&np->lock);
  4671. }
  4672. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4673. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4674. {
  4675. struct fe_priv *np = netdev_priv(dev);
  4676. u8 __iomem *base = get_hwbase(dev);
  4677. int i;
  4678. u32 tx_ctrl, mgmt_sema;
  4679. for (i = 0; i < 10; i++) {
  4680. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4681. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4682. break;
  4683. msleep(500);
  4684. }
  4685. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4686. return 0;
  4687. for (i = 0; i < 2; i++) {
  4688. tx_ctrl = readl(base + NvRegTransmitterControl);
  4689. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4690. writel(tx_ctrl, base + NvRegTransmitterControl);
  4691. /* verify that semaphore was acquired */
  4692. tx_ctrl = readl(base + NvRegTransmitterControl);
  4693. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4694. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4695. np->mgmt_sema = 1;
  4696. return 1;
  4697. }
  4698. else
  4699. udelay(50);
  4700. }
  4701. return 0;
  4702. }
  4703. static void nv_mgmt_release_sema(struct net_device *dev)
  4704. {
  4705. struct fe_priv *np = netdev_priv(dev);
  4706. u8 __iomem *base = get_hwbase(dev);
  4707. u32 tx_ctrl;
  4708. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4709. if (np->mgmt_sema) {
  4710. tx_ctrl = readl(base + NvRegTransmitterControl);
  4711. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4712. writel(tx_ctrl, base + NvRegTransmitterControl);
  4713. }
  4714. }
  4715. }
  4716. static int nv_mgmt_get_version(struct net_device *dev)
  4717. {
  4718. struct fe_priv *np = netdev_priv(dev);
  4719. u8 __iomem *base = get_hwbase(dev);
  4720. u32 data_ready = readl(base + NvRegTransmitterControl);
  4721. u32 data_ready2 = 0;
  4722. unsigned long start;
  4723. int ready = 0;
  4724. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4725. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4726. start = jiffies;
  4727. while (time_before(jiffies, start + 5*HZ)) {
  4728. data_ready2 = readl(base + NvRegTransmitterControl);
  4729. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4730. ready = 1;
  4731. break;
  4732. }
  4733. schedule_timeout_uninterruptible(1);
  4734. }
  4735. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4736. return 0;
  4737. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4738. return 1;
  4739. }
  4740. static int nv_open(struct net_device *dev)
  4741. {
  4742. struct fe_priv *np = netdev_priv(dev);
  4743. u8 __iomem *base = get_hwbase(dev);
  4744. int ret = 1;
  4745. int oom, i;
  4746. u32 low;
  4747. dprintk(KERN_DEBUG "nv_open: begin\n");
  4748. /* power up phy */
  4749. mii_rw(dev, np->phyaddr, MII_BMCR,
  4750. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4751. nv_txrx_gate(dev, false);
  4752. /* erase previous misconfiguration */
  4753. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4754. nv_mac_reset(dev);
  4755. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4756. writel(0, base + NvRegMulticastAddrB);
  4757. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4758. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4759. writel(0, base + NvRegPacketFilterFlags);
  4760. writel(0, base + NvRegTransmitterControl);
  4761. writel(0, base + NvRegReceiverControl);
  4762. writel(0, base + NvRegAdapterControl);
  4763. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4764. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4765. /* initialize descriptor rings */
  4766. set_bufsize(dev);
  4767. oom = nv_init_ring(dev);
  4768. writel(0, base + NvRegLinkSpeed);
  4769. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4770. nv_txrx_reset(dev);
  4771. writel(0, base + NvRegUnknownSetupReg6);
  4772. np->in_shutdown = 0;
  4773. /* give hw rings */
  4774. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4775. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4776. base + NvRegRingSizes);
  4777. writel(np->linkspeed, base + NvRegLinkSpeed);
  4778. if (np->desc_ver == DESC_VER_1)
  4779. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4780. else
  4781. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4782. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4783. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4784. pci_push(base);
  4785. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4786. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4787. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4788. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4789. writel(0, base + NvRegMIIMask);
  4790. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4791. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4792. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4793. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4794. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4795. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4796. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4797. get_random_bytes(&low, sizeof(low));
  4798. low &= NVREG_SLOTTIME_MASK;
  4799. if (np->desc_ver == DESC_VER_1) {
  4800. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4801. } else {
  4802. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4803. /* setup legacy backoff */
  4804. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4805. } else {
  4806. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4807. nv_gear_backoff_reseed(dev);
  4808. }
  4809. }
  4810. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4811. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4812. if (poll_interval == -1) {
  4813. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4814. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4815. else
  4816. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4817. }
  4818. else
  4819. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4820. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4821. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4822. base + NvRegAdapterControl);
  4823. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4824. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4825. if (np->wolenabled)
  4826. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4827. i = readl(base + NvRegPowerState);
  4828. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4829. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4830. pci_push(base);
  4831. udelay(10);
  4832. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4833. nv_disable_hw_interrupts(dev, np->irqmask);
  4834. pci_push(base);
  4835. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4836. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4837. pci_push(base);
  4838. if (nv_request_irq(dev, 0)) {
  4839. goto out_drain;
  4840. }
  4841. /* ask for interrupts */
  4842. nv_enable_hw_interrupts(dev, np->irqmask);
  4843. spin_lock_irq(&np->lock);
  4844. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4845. writel(0, base + NvRegMulticastAddrB);
  4846. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4847. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4848. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4849. /* One manual link speed update: Interrupts are enabled, future link
  4850. * speed changes cause interrupts and are handled by nv_link_irq().
  4851. */
  4852. {
  4853. u32 miistat;
  4854. miistat = readl(base + NvRegMIIStatus);
  4855. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4856. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4857. }
  4858. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4859. * to init hw */
  4860. np->linkspeed = 0;
  4861. ret = nv_update_linkspeed(dev);
  4862. nv_start_rxtx(dev);
  4863. netif_start_queue(dev);
  4864. nv_napi_enable(dev);
  4865. if (ret) {
  4866. netif_carrier_on(dev);
  4867. } else {
  4868. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4869. netif_carrier_off(dev);
  4870. }
  4871. if (oom)
  4872. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4873. /* start statistics timer */
  4874. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4875. mod_timer(&np->stats_poll,
  4876. round_jiffies(jiffies + STATS_INTERVAL));
  4877. spin_unlock_irq(&np->lock);
  4878. return 0;
  4879. out_drain:
  4880. nv_drain_rxtx(dev);
  4881. return ret;
  4882. }
  4883. static int nv_close(struct net_device *dev)
  4884. {
  4885. struct fe_priv *np = netdev_priv(dev);
  4886. u8 __iomem *base;
  4887. spin_lock_irq(&np->lock);
  4888. np->in_shutdown = 1;
  4889. spin_unlock_irq(&np->lock);
  4890. nv_napi_disable(dev);
  4891. synchronize_irq(np->pci_dev->irq);
  4892. del_timer_sync(&np->oom_kick);
  4893. del_timer_sync(&np->nic_poll);
  4894. del_timer_sync(&np->stats_poll);
  4895. netif_stop_queue(dev);
  4896. spin_lock_irq(&np->lock);
  4897. nv_stop_rxtx(dev);
  4898. nv_txrx_reset(dev);
  4899. /* disable interrupts on the nic or we will lock up */
  4900. base = get_hwbase(dev);
  4901. nv_disable_hw_interrupts(dev, np->irqmask);
  4902. pci_push(base);
  4903. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4904. spin_unlock_irq(&np->lock);
  4905. nv_free_irq(dev);
  4906. nv_drain_rxtx(dev);
  4907. if (np->wolenabled || !phy_power_down) {
  4908. nv_txrx_gate(dev, false);
  4909. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4910. nv_start_rx(dev);
  4911. } else {
  4912. /* power down phy */
  4913. mii_rw(dev, np->phyaddr, MII_BMCR,
  4914. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4915. nv_txrx_gate(dev, true);
  4916. }
  4917. /* FIXME: power down nic */
  4918. return 0;
  4919. }
  4920. static const struct net_device_ops nv_netdev_ops = {
  4921. .ndo_open = nv_open,
  4922. .ndo_stop = nv_close,
  4923. .ndo_get_stats = nv_get_stats,
  4924. .ndo_start_xmit = nv_start_xmit,
  4925. .ndo_tx_timeout = nv_tx_timeout,
  4926. .ndo_change_mtu = nv_change_mtu,
  4927. .ndo_validate_addr = eth_validate_addr,
  4928. .ndo_set_mac_address = nv_set_mac_address,
  4929. .ndo_set_multicast_list = nv_set_multicast,
  4930. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4931. #ifdef CONFIG_NET_POLL_CONTROLLER
  4932. .ndo_poll_controller = nv_poll_controller,
  4933. #endif
  4934. };
  4935. static const struct net_device_ops nv_netdev_ops_optimized = {
  4936. .ndo_open = nv_open,
  4937. .ndo_stop = nv_close,
  4938. .ndo_get_stats = nv_get_stats,
  4939. .ndo_start_xmit = nv_start_xmit_optimized,
  4940. .ndo_tx_timeout = nv_tx_timeout,
  4941. .ndo_change_mtu = nv_change_mtu,
  4942. .ndo_validate_addr = eth_validate_addr,
  4943. .ndo_set_mac_address = nv_set_mac_address,
  4944. .ndo_set_multicast_list = nv_set_multicast,
  4945. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4946. #ifdef CONFIG_NET_POLL_CONTROLLER
  4947. .ndo_poll_controller = nv_poll_controller,
  4948. #endif
  4949. };
  4950. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4951. {
  4952. struct net_device *dev;
  4953. struct fe_priv *np;
  4954. unsigned long addr;
  4955. u8 __iomem *base;
  4956. int err, i;
  4957. u32 powerstate, txreg;
  4958. u32 phystate_orig = 0, phystate;
  4959. int phyinitialized = 0;
  4960. static int printed_version;
  4961. if (!printed_version++)
  4962. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4963. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4964. dev = alloc_etherdev(sizeof(struct fe_priv));
  4965. err = -ENOMEM;
  4966. if (!dev)
  4967. goto out;
  4968. np = netdev_priv(dev);
  4969. np->dev = dev;
  4970. np->pci_dev = pci_dev;
  4971. spin_lock_init(&np->lock);
  4972. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4973. init_timer(&np->oom_kick);
  4974. np->oom_kick.data = (unsigned long) dev;
  4975. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4976. init_timer(&np->nic_poll);
  4977. np->nic_poll.data = (unsigned long) dev;
  4978. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4979. init_timer(&np->stats_poll);
  4980. np->stats_poll.data = (unsigned long) dev;
  4981. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4982. err = pci_enable_device(pci_dev);
  4983. if (err)
  4984. goto out_free;
  4985. pci_set_master(pci_dev);
  4986. err = pci_request_regions(pci_dev, DRV_NAME);
  4987. if (err < 0)
  4988. goto out_disable;
  4989. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4990. np->register_size = NV_PCI_REGSZ_VER3;
  4991. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4992. np->register_size = NV_PCI_REGSZ_VER2;
  4993. else
  4994. np->register_size = NV_PCI_REGSZ_VER1;
  4995. err = -EINVAL;
  4996. addr = 0;
  4997. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4998. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4999. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  5000. pci_resource_len(pci_dev, i),
  5001. pci_resource_flags(pci_dev, i));
  5002. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  5003. pci_resource_len(pci_dev, i) >= np->register_size) {
  5004. addr = pci_resource_start(pci_dev, i);
  5005. break;
  5006. }
  5007. }
  5008. if (i == DEVICE_COUNT_RESOURCE) {
  5009. dev_printk(KERN_INFO, &pci_dev->dev,
  5010. "Couldn't find register window\n");
  5011. goto out_relreg;
  5012. }
  5013. /* copy of driver data */
  5014. np->driver_data = id->driver_data;
  5015. /* copy of device id */
  5016. np->device_id = id->device;
  5017. /* handle different descriptor versions */
  5018. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  5019. /* packet format 3: supports 40-bit addressing */
  5020. np->desc_ver = DESC_VER_3;
  5021. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  5022. if (dma_64bit) {
  5023. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  5024. dev_printk(KERN_INFO, &pci_dev->dev,
  5025. "64-bit DMA failed, using 32-bit addressing\n");
  5026. else
  5027. dev->features |= NETIF_F_HIGHDMA;
  5028. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  5029. dev_printk(KERN_INFO, &pci_dev->dev,
  5030. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  5031. }
  5032. }
  5033. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5034. /* packet format 2: supports jumbo frames */
  5035. np->desc_ver = DESC_VER_2;
  5036. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5037. } else {
  5038. /* original packet format */
  5039. np->desc_ver = DESC_VER_1;
  5040. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5041. }
  5042. np->pkt_limit = NV_PKTLIMIT_1;
  5043. if (id->driver_data & DEV_HAS_LARGEDESC)
  5044. np->pkt_limit = NV_PKTLIMIT_2;
  5045. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5046. np->rx_csum = 1;
  5047. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5048. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5049. dev->features |= NETIF_F_TSO;
  5050. }
  5051. np->vlanctl_bits = 0;
  5052. if (id->driver_data & DEV_HAS_VLAN) {
  5053. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5054. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5055. }
  5056. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5057. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5058. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5059. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5060. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5061. }
  5062. err = -ENOMEM;
  5063. np->base = ioremap(addr, np->register_size);
  5064. if (!np->base)
  5065. goto out_relreg;
  5066. dev->base_addr = (unsigned long)np->base;
  5067. dev->irq = pci_dev->irq;
  5068. np->rx_ring_size = RX_RING_DEFAULT;
  5069. np->tx_ring_size = TX_RING_DEFAULT;
  5070. if (!nv_optimized(np)) {
  5071. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5072. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5073. &np->ring_addr);
  5074. if (!np->rx_ring.orig)
  5075. goto out_unmap;
  5076. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5077. } else {
  5078. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5079. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5080. &np->ring_addr);
  5081. if (!np->rx_ring.ex)
  5082. goto out_unmap;
  5083. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5084. }
  5085. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5086. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5087. if (!np->rx_skb || !np->tx_skb)
  5088. goto out_freering;
  5089. if (!nv_optimized(np))
  5090. dev->netdev_ops = &nv_netdev_ops;
  5091. else
  5092. dev->netdev_ops = &nv_netdev_ops_optimized;
  5093. #ifdef CONFIG_FORCEDETH_NAPI
  5094. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5095. #endif
  5096. SET_ETHTOOL_OPS(dev, &ops);
  5097. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5098. pci_set_drvdata(pci_dev, dev);
  5099. /* read the mac address */
  5100. base = get_hwbase(dev);
  5101. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5102. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5103. /* check the workaround bit for correct mac address order */
  5104. txreg = readl(base + NvRegTransmitPoll);
  5105. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5106. /* mac address is already in correct order */
  5107. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5108. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5109. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5110. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5111. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5112. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5113. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5114. /* mac address is already in correct order */
  5115. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5116. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5117. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5118. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5119. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5120. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5121. /*
  5122. * Set orig mac address back to the reversed version.
  5123. * This flag will be cleared during low power transition.
  5124. * Therefore, we should always put back the reversed address.
  5125. */
  5126. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5127. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5128. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5129. } else {
  5130. /* need to reverse mac address to correct order */
  5131. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5132. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5133. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5134. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5135. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5136. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5137. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5138. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5139. }
  5140. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5141. if (!is_valid_ether_addr(dev->perm_addr)) {
  5142. /*
  5143. * Bad mac address. At least one bios sets the mac address
  5144. * to 01:23:45:67:89:ab
  5145. */
  5146. dev_printk(KERN_ERR, &pci_dev->dev,
  5147. "Invalid Mac address detected: %pM\n",
  5148. dev->dev_addr);
  5149. dev_printk(KERN_ERR, &pci_dev->dev,
  5150. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5151. dev->dev_addr[0] = 0x00;
  5152. dev->dev_addr[1] = 0x00;
  5153. dev->dev_addr[2] = 0x6c;
  5154. get_random_bytes(&dev->dev_addr[3], 3);
  5155. }
  5156. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5157. pci_name(pci_dev), dev->dev_addr);
  5158. /* set mac address */
  5159. nv_copy_mac_to_hw(dev);
  5160. /* Workaround current PCI init glitch: wakeup bits aren't
  5161. * being set from PCI PM capability.
  5162. */
  5163. device_init_wakeup(&pci_dev->dev, 1);
  5164. /* disable WOL */
  5165. writel(0, base + NvRegWakeUpFlags);
  5166. np->wolenabled = 0;
  5167. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5168. /* take phy and nic out of low power mode */
  5169. powerstate = readl(base + NvRegPowerState2);
  5170. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5171. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5172. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5173. pci_dev->revision >= 0xA3)
  5174. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5175. writel(powerstate, base + NvRegPowerState2);
  5176. }
  5177. if (np->desc_ver == DESC_VER_1) {
  5178. np->tx_flags = NV_TX_VALID;
  5179. } else {
  5180. np->tx_flags = NV_TX2_VALID;
  5181. }
  5182. np->msi_flags = 0;
  5183. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5184. np->msi_flags |= NV_MSI_CAPABLE;
  5185. }
  5186. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5187. /* msix has had reported issues when modifying irqmask
  5188. as in the case of napi, therefore, disable for now
  5189. */
  5190. #ifndef CONFIG_FORCEDETH_NAPI
  5191. np->msi_flags |= NV_MSI_X_CAPABLE;
  5192. #endif
  5193. }
  5194. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5195. np->irqmask = NVREG_IRQMASK_CPU;
  5196. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5197. np->msi_flags |= 0x0001;
  5198. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5199. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5200. /* start off in throughput mode */
  5201. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5202. /* remove support for msix mode */
  5203. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5204. } else {
  5205. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5206. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5207. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5208. np->msi_flags |= 0x0003;
  5209. }
  5210. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5211. np->irqmask |= NVREG_IRQ_TIMER;
  5212. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5213. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5214. np->need_linktimer = 1;
  5215. np->link_timeout = jiffies + LINK_TIMEOUT;
  5216. } else {
  5217. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5218. np->need_linktimer = 0;
  5219. }
  5220. /* Limit the number of tx's outstanding for hw bug */
  5221. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5222. np->tx_limit = 1;
  5223. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5224. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5225. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5226. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5227. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5228. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5229. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5230. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5231. pci_dev->revision >= 0xA2)
  5232. np->tx_limit = 0;
  5233. }
  5234. /* clear phy state and temporarily halt phy interrupts */
  5235. writel(0, base + NvRegMIIMask);
  5236. phystate = readl(base + NvRegAdapterControl);
  5237. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5238. phystate_orig = 1;
  5239. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5240. writel(phystate, base + NvRegAdapterControl);
  5241. }
  5242. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5243. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5244. /* management unit running on the mac? */
  5245. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5246. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5247. nv_mgmt_acquire_sema(dev) &&
  5248. nv_mgmt_get_version(dev)) {
  5249. np->mac_in_use = 1;
  5250. if (np->mgmt_version > 0) {
  5251. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5252. }
  5253. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5254. pci_name(pci_dev), np->mac_in_use);
  5255. /* management unit setup the phy already? */
  5256. if (np->mac_in_use &&
  5257. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5258. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5259. /* phy is inited by mgmt unit */
  5260. phyinitialized = 1;
  5261. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5262. pci_name(pci_dev));
  5263. } else {
  5264. /* we need to init the phy */
  5265. }
  5266. }
  5267. }
  5268. /* find a suitable phy */
  5269. for (i = 1; i <= 32; i++) {
  5270. int id1, id2;
  5271. int phyaddr = i & 0x1F;
  5272. spin_lock_irq(&np->lock);
  5273. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5274. spin_unlock_irq(&np->lock);
  5275. if (id1 < 0 || id1 == 0xffff)
  5276. continue;
  5277. spin_lock_irq(&np->lock);
  5278. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5279. spin_unlock_irq(&np->lock);
  5280. if (id2 < 0 || id2 == 0xffff)
  5281. continue;
  5282. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5283. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5284. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5285. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5286. pci_name(pci_dev), id1, id2, phyaddr);
  5287. np->phyaddr = phyaddr;
  5288. np->phy_oui = id1 | id2;
  5289. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5290. if (np->phy_oui == PHY_OUI_REALTEK2)
  5291. np->phy_oui = PHY_OUI_REALTEK;
  5292. /* Setup phy revision for Realtek */
  5293. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5294. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5295. break;
  5296. }
  5297. if (i == 33) {
  5298. dev_printk(KERN_INFO, &pci_dev->dev,
  5299. "open: Could not find a valid PHY.\n");
  5300. goto out_error;
  5301. }
  5302. if (!phyinitialized) {
  5303. /* reset it */
  5304. phy_init(dev);
  5305. } else {
  5306. /* see if it is a gigabit phy */
  5307. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5308. if (mii_status & PHY_GIGABIT) {
  5309. np->gigabit = PHY_GIGABIT;
  5310. }
  5311. }
  5312. /* set default link speed settings */
  5313. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5314. np->duplex = 0;
  5315. np->autoneg = 1;
  5316. err = register_netdev(dev);
  5317. if (err) {
  5318. dev_printk(KERN_INFO, &pci_dev->dev,
  5319. "unable to register netdev: %d\n", err);
  5320. goto out_error;
  5321. }
  5322. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5323. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5324. dev->name,
  5325. np->phy_oui,
  5326. np->phyaddr,
  5327. dev->dev_addr[0],
  5328. dev->dev_addr[1],
  5329. dev->dev_addr[2],
  5330. dev->dev_addr[3],
  5331. dev->dev_addr[4],
  5332. dev->dev_addr[5]);
  5333. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5334. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5335. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5336. "csum " : "",
  5337. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5338. "vlan " : "",
  5339. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5340. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5341. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5342. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5343. np->need_linktimer ? "lnktim " : "",
  5344. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5345. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5346. np->desc_ver);
  5347. return 0;
  5348. out_error:
  5349. if (phystate_orig)
  5350. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5351. pci_set_drvdata(pci_dev, NULL);
  5352. out_freering:
  5353. free_rings(dev);
  5354. out_unmap:
  5355. iounmap(get_hwbase(dev));
  5356. out_relreg:
  5357. pci_release_regions(pci_dev);
  5358. out_disable:
  5359. pci_disable_device(pci_dev);
  5360. out_free:
  5361. free_netdev(dev);
  5362. out:
  5363. return err;
  5364. }
  5365. static void nv_restore_phy(struct net_device *dev)
  5366. {
  5367. struct fe_priv *np = netdev_priv(dev);
  5368. u16 phy_reserved, mii_control;
  5369. if (np->phy_oui == PHY_OUI_REALTEK &&
  5370. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5371. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5372. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5373. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5374. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5375. phy_reserved |= PHY_REALTEK_INIT8;
  5376. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5377. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5378. /* restart auto negotiation */
  5379. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5380. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5381. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5382. }
  5383. }
  5384. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5385. {
  5386. struct net_device *dev = pci_get_drvdata(pci_dev);
  5387. struct fe_priv *np = netdev_priv(dev);
  5388. u8 __iomem *base = get_hwbase(dev);
  5389. /* special op: write back the misordered MAC address - otherwise
  5390. * the next nv_probe would see a wrong address.
  5391. */
  5392. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5393. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5394. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5395. base + NvRegTransmitPoll);
  5396. }
  5397. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5398. {
  5399. struct net_device *dev = pci_get_drvdata(pci_dev);
  5400. unregister_netdev(dev);
  5401. nv_restore_mac_addr(pci_dev);
  5402. /* restore any phy related changes */
  5403. nv_restore_phy(dev);
  5404. nv_mgmt_release_sema(dev);
  5405. /* free all structures */
  5406. free_rings(dev);
  5407. iounmap(get_hwbase(dev));
  5408. pci_release_regions(pci_dev);
  5409. pci_disable_device(pci_dev);
  5410. free_netdev(dev);
  5411. pci_set_drvdata(pci_dev, NULL);
  5412. }
  5413. #ifdef CONFIG_PM
  5414. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5415. {
  5416. struct net_device *dev = pci_get_drvdata(pdev);
  5417. struct fe_priv *np = netdev_priv(dev);
  5418. u8 __iomem *base = get_hwbase(dev);
  5419. int i;
  5420. if (netif_running(dev)) {
  5421. // Gross.
  5422. nv_close(dev);
  5423. }
  5424. netif_device_detach(dev);
  5425. /* save non-pci configuration space */
  5426. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5427. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5428. pci_save_state(pdev);
  5429. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5430. pci_disable_device(pdev);
  5431. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5432. return 0;
  5433. }
  5434. static int nv_resume(struct pci_dev *pdev)
  5435. {
  5436. struct net_device *dev = pci_get_drvdata(pdev);
  5437. struct fe_priv *np = netdev_priv(dev);
  5438. u8 __iomem *base = get_hwbase(dev);
  5439. int i, rc = 0;
  5440. pci_set_power_state(pdev, PCI_D0);
  5441. pci_restore_state(pdev);
  5442. /* ack any pending wake events, disable PME */
  5443. pci_enable_wake(pdev, PCI_D0, 0);
  5444. /* restore non-pci configuration space */
  5445. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5446. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5447. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5448. /* restore phy state, including autoneg */
  5449. phy_init(dev);
  5450. netif_device_attach(dev);
  5451. if (netif_running(dev)) {
  5452. rc = nv_open(dev);
  5453. nv_set_multicast(dev);
  5454. }
  5455. return rc;
  5456. }
  5457. static void nv_shutdown(struct pci_dev *pdev)
  5458. {
  5459. struct net_device *dev = pci_get_drvdata(pdev);
  5460. struct fe_priv *np = netdev_priv(dev);
  5461. if (netif_running(dev))
  5462. nv_close(dev);
  5463. /*
  5464. * Restore the MAC so a kernel started by kexec won't get confused.
  5465. * If we really go for poweroff, we must not restore the MAC,
  5466. * otherwise the MAC for WOL will be reversed at least on some boards.
  5467. */
  5468. if (system_state != SYSTEM_POWER_OFF) {
  5469. nv_restore_mac_addr(pdev);
  5470. }
  5471. pci_disable_device(pdev);
  5472. /*
  5473. * Apparently it is not possible to reinitialise from D3 hot,
  5474. * only put the device into D3 if we really go for poweroff.
  5475. */
  5476. if (system_state == SYSTEM_POWER_OFF) {
  5477. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5478. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5479. pci_set_power_state(pdev, PCI_D3hot);
  5480. }
  5481. }
  5482. #else
  5483. #define nv_suspend NULL
  5484. #define nv_shutdown NULL
  5485. #define nv_resume NULL
  5486. #endif /* CONFIG_PM */
  5487. static struct pci_device_id pci_tbl[] = {
  5488. { /* nForce Ethernet Controller */
  5489. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5490. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5491. },
  5492. { /* nForce2 Ethernet Controller */
  5493. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5494. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5495. },
  5496. { /* nForce3 Ethernet Controller */
  5497. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5498. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5499. },
  5500. { /* nForce3 Ethernet Controller */
  5501. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5502. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5503. },
  5504. { /* nForce3 Ethernet Controller */
  5505. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5506. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5507. },
  5508. { /* nForce3 Ethernet Controller */
  5509. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5510. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5511. },
  5512. { /* nForce3 Ethernet Controller */
  5513. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5514. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5515. },
  5516. { /* CK804 Ethernet Controller */
  5517. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5518. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5519. },
  5520. { /* CK804 Ethernet Controller */
  5521. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5522. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5523. },
  5524. { /* MCP04 Ethernet Controller */
  5525. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5526. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5527. },
  5528. { /* MCP04 Ethernet Controller */
  5529. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5530. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5531. },
  5532. { /* MCP51 Ethernet Controller */
  5533. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5534. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5535. },
  5536. { /* MCP51 Ethernet Controller */
  5537. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5538. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5539. },
  5540. { /* MCP55 Ethernet Controller */
  5541. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5542. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5543. },
  5544. { /* MCP55 Ethernet Controller */
  5545. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5546. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5547. },
  5548. { /* MCP61 Ethernet Controller */
  5549. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5550. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5551. },
  5552. { /* MCP61 Ethernet Controller */
  5553. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5554. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5555. },
  5556. { /* MCP61 Ethernet Controller */
  5557. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5558. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5559. },
  5560. { /* MCP61 Ethernet Controller */
  5561. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5562. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5563. },
  5564. { /* MCP65 Ethernet Controller */
  5565. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5566. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5567. },
  5568. { /* MCP65 Ethernet Controller */
  5569. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5570. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5571. },
  5572. { /* MCP65 Ethernet Controller */
  5573. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5574. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5575. },
  5576. { /* MCP65 Ethernet Controller */
  5577. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5578. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5579. },
  5580. { /* MCP67 Ethernet Controller */
  5581. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5582. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5583. },
  5584. { /* MCP67 Ethernet Controller */
  5585. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5586. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5587. },
  5588. { /* MCP67 Ethernet Controller */
  5589. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5590. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5591. },
  5592. { /* MCP67 Ethernet Controller */
  5593. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5594. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5595. },
  5596. { /* MCP73 Ethernet Controller */
  5597. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5598. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5599. },
  5600. { /* MCP73 Ethernet Controller */
  5601. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5602. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5603. },
  5604. { /* MCP73 Ethernet Controller */
  5605. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5606. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5607. },
  5608. { /* MCP73 Ethernet Controller */
  5609. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5610. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5611. },
  5612. { /* MCP77 Ethernet Controller */
  5613. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5614. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5615. },
  5616. { /* MCP77 Ethernet Controller */
  5617. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5618. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5619. },
  5620. { /* MCP77 Ethernet Controller */
  5621. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5622. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5623. },
  5624. { /* MCP77 Ethernet Controller */
  5625. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5626. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5627. },
  5628. { /* MCP79 Ethernet Controller */
  5629. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5630. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5631. },
  5632. { /* MCP79 Ethernet Controller */
  5633. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5634. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5635. },
  5636. { /* MCP79 Ethernet Controller */
  5637. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5638. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5639. },
  5640. { /* MCP79 Ethernet Controller */
  5641. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5642. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5643. },
  5644. {0,},
  5645. };
  5646. static struct pci_driver driver = {
  5647. .name = DRV_NAME,
  5648. .id_table = pci_tbl,
  5649. .probe = nv_probe,
  5650. .remove = __devexit_p(nv_remove),
  5651. .suspend = nv_suspend,
  5652. .resume = nv_resume,
  5653. .shutdown = nv_shutdown,
  5654. };
  5655. static int __init init_nic(void)
  5656. {
  5657. return pci_register_driver(&driver);
  5658. }
  5659. static void __exit exit_nic(void)
  5660. {
  5661. pci_unregister_driver(&driver);
  5662. }
  5663. module_param(max_interrupt_work, int, 0);
  5664. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5665. module_param(optimization_mode, int, 0);
  5666. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5667. module_param(poll_interval, int, 0);
  5668. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5669. module_param(msi, int, 0);
  5670. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5671. module_param(msix, int, 0);
  5672. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5673. module_param(dma_64bit, int, 0);
  5674. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5675. module_param(phy_cross, int, 0);
  5676. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5677. module_param(phy_power_down, int, 0);
  5678. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5679. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5680. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5681. MODULE_LICENSE("GPL");
  5682. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5683. module_init(init_nic);
  5684. module_exit(exit_nic);