cfq-iosched.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. /*
  20. * tunables
  21. */
  22. /* max queue in one round of service */
  23. static const int cfq_quantum = 8;
  24. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25. /* maximum backwards seek, in KiB */
  26. static const int cfq_back_max = 16 * 1024;
  27. /* penalty of a backwards seek */
  28. static const int cfq_back_penalty = 2;
  29. static const int cfq_slice_sync = HZ / 10;
  30. static int cfq_slice_async = HZ / 25;
  31. static const int cfq_slice_async_rq = 2;
  32. static int cfq_slice_idle = HZ / 125;
  33. static int cfq_group_idle = HZ / 125;
  34. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  35. static const int cfq_hist_divisor = 4;
  36. /*
  37. * offset from end of service tree
  38. */
  39. #define CFQ_IDLE_DELAY (HZ / 5)
  40. /*
  41. * below this threshold, we consider thinktime immediate
  42. */
  43. #define CFQ_MIN_TT (2)
  44. #define CFQ_SLICE_SCALE (5)
  45. #define CFQ_HW_QUEUE_MIN (5)
  46. #define CFQ_SERVICE_SHIFT 12
  47. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  48. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  49. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  50. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  51. #define RQ_CIC(rq) \
  52. ((struct cfq_io_context *) (rq)->elevator_private[0])
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  55. static struct kmem_cache *cfq_pool;
  56. static struct kmem_cache *cfq_ioc_pool;
  57. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  58. static struct completion *ioc_gone;
  59. static DEFINE_SPINLOCK(ioc_gone_lock);
  60. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  61. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  62. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  63. #define sample_valid(samples) ((samples) > 80)
  64. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  65. /*
  66. * Most of our rbtree usage is for sorting with min extraction, so
  67. * if we cache the leftmost node we don't have to walk down the tree
  68. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  69. * move this into the elevator for the rq sorting as well.
  70. */
  71. struct cfq_rb_root {
  72. struct rb_root rb;
  73. struct rb_node *left;
  74. unsigned count;
  75. unsigned total_weight;
  76. u64 min_vdisktime;
  77. struct cfq_ttime ttime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  80. .ttime = {.last_end_request = jiffies,},}
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending priority requests */
  118. int prio_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queues average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. struct cfq_ttime ttime;
  190. };
  191. /*
  192. * Per block device queue structure
  193. */
  194. struct cfq_data {
  195. struct request_queue *queue;
  196. /* Root service tree for cfq_groups */
  197. struct cfq_rb_root grp_service_tree;
  198. struct cfq_group root_group;
  199. /*
  200. * The priority currently being served
  201. */
  202. enum wl_prio_t serving_prio;
  203. enum wl_type_t serving_type;
  204. unsigned long workload_expires;
  205. struct cfq_group *serving_group;
  206. /*
  207. * Each priority tree is sorted by next_request position. These
  208. * trees are used when determining if two or more queues are
  209. * interleaving requests (see cfq_close_cooperator).
  210. */
  211. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  212. unsigned int busy_queues;
  213. unsigned int busy_sync_queues;
  214. int rq_in_driver;
  215. int rq_in_flight[2];
  216. /*
  217. * queue-depth detection
  218. */
  219. int rq_queued;
  220. int hw_tag;
  221. /*
  222. * hw_tag can be
  223. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  224. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  225. * 0 => no NCQ
  226. */
  227. int hw_tag_est_depth;
  228. unsigned int hw_tag_samples;
  229. /*
  230. * idle window management
  231. */
  232. struct timer_list idle_slice_timer;
  233. struct work_struct unplug_work;
  234. struct cfq_queue *active_queue;
  235. struct cfq_io_context *active_cic;
  236. /*
  237. * async queue for each priority case
  238. */
  239. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  240. struct cfq_queue *async_idle_cfqq;
  241. sector_t last_position;
  242. /*
  243. * tunables, see top of file
  244. */
  245. unsigned int cfq_quantum;
  246. unsigned int cfq_fifo_expire[2];
  247. unsigned int cfq_back_penalty;
  248. unsigned int cfq_back_max;
  249. unsigned int cfq_slice[2];
  250. unsigned int cfq_slice_async_rq;
  251. unsigned int cfq_slice_idle;
  252. unsigned int cfq_group_idle;
  253. unsigned int cfq_latency;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. /* Number of groups which are on blkcg->blkg_list */
  263. unsigned int nr_blkcg_linked_grps;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args) \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  343. struct cfq_ttime *ttime, bool group_idle)
  344. {
  345. unsigned long slice;
  346. if (!sample_valid(ttime->ttime_samples))
  347. return false;
  348. if (group_idle)
  349. slice = cfqd->cfq_group_idle;
  350. else
  351. slice = cfqd->cfq_slice_idle;
  352. return ttime->ttime_mean > slice;
  353. }
  354. static inline bool iops_mode(struct cfq_data *cfqd)
  355. {
  356. /*
  357. * If we are not idling on queues and it is a NCQ drive, parallel
  358. * execution of requests is on and measuring time is not possible
  359. * in most of the cases until and unless we drive shallower queue
  360. * depths and that becomes a performance bottleneck. In such cases
  361. * switch to start providing fairness in terms of number of IOs.
  362. */
  363. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  364. return true;
  365. else
  366. return false;
  367. }
  368. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  369. {
  370. if (cfq_class_idle(cfqq))
  371. return IDLE_WORKLOAD;
  372. if (cfq_class_rt(cfqq))
  373. return RT_WORKLOAD;
  374. return BE_WORKLOAD;
  375. }
  376. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  377. {
  378. if (!cfq_cfqq_sync(cfqq))
  379. return ASYNC_WORKLOAD;
  380. if (!cfq_cfqq_idle_window(cfqq))
  381. return SYNC_NOIDLE_WORKLOAD;
  382. return SYNC_WORKLOAD;
  383. }
  384. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  385. struct cfq_data *cfqd,
  386. struct cfq_group *cfqg)
  387. {
  388. if (wl == IDLE_WORKLOAD)
  389. return cfqg->service_tree_idle.count;
  390. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  391. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  392. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  393. }
  394. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  395. struct cfq_group *cfqg)
  396. {
  397. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  398. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  399. }
  400. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  401. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  402. struct io_context *, gfp_t);
  403. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  404. struct io_context *);
  405. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  406. bool is_sync)
  407. {
  408. return cic->cfqq[is_sync];
  409. }
  410. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  411. struct cfq_queue *cfqq, bool is_sync)
  412. {
  413. cic->cfqq[is_sync] = cfqq;
  414. }
  415. #define CIC_DEAD_KEY 1ul
  416. #define CIC_DEAD_INDEX_SHIFT 1
  417. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  418. {
  419. return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  420. }
  421. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  422. {
  423. struct cfq_data *cfqd = cic->key;
  424. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  425. return NULL;
  426. return cfqd;
  427. }
  428. /*
  429. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  430. * set (in which case it could also be direct WRITE).
  431. */
  432. static inline bool cfq_bio_sync(struct bio *bio)
  433. {
  434. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  435. }
  436. /*
  437. * scheduler run of queue, if there are requests pending and no one in the
  438. * driver that will restart queueing
  439. */
  440. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  441. {
  442. if (cfqd->busy_queues) {
  443. cfq_log(cfqd, "schedule dispatch");
  444. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  445. }
  446. }
  447. /*
  448. * Scale schedule slice based on io priority. Use the sync time slice only
  449. * if a queue is marked sync and has sync io queued. A sync queue with async
  450. * io only, should not get full sync slice length.
  451. */
  452. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  453. unsigned short prio)
  454. {
  455. const int base_slice = cfqd->cfq_slice[sync];
  456. WARN_ON(prio >= IOPRIO_BE_NR);
  457. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  458. }
  459. static inline int
  460. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  461. {
  462. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  463. }
  464. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  465. {
  466. u64 d = delta << CFQ_SERVICE_SHIFT;
  467. d = d * BLKIO_WEIGHT_DEFAULT;
  468. do_div(d, cfqg->weight);
  469. return d;
  470. }
  471. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  472. {
  473. s64 delta = (s64)(vdisktime - min_vdisktime);
  474. if (delta > 0)
  475. min_vdisktime = vdisktime;
  476. return min_vdisktime;
  477. }
  478. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  479. {
  480. s64 delta = (s64)(vdisktime - min_vdisktime);
  481. if (delta < 0)
  482. min_vdisktime = vdisktime;
  483. return min_vdisktime;
  484. }
  485. static void update_min_vdisktime(struct cfq_rb_root *st)
  486. {
  487. struct cfq_group *cfqg;
  488. if (st->left) {
  489. cfqg = rb_entry_cfqg(st->left);
  490. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  491. cfqg->vdisktime);
  492. }
  493. }
  494. /*
  495. * get averaged number of queues of RT/BE priority.
  496. * average is updated, with a formula that gives more weight to higher numbers,
  497. * to quickly follows sudden increases and decrease slowly
  498. */
  499. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  500. struct cfq_group *cfqg, bool rt)
  501. {
  502. unsigned min_q, max_q;
  503. unsigned mult = cfq_hist_divisor - 1;
  504. unsigned round = cfq_hist_divisor / 2;
  505. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  506. min_q = min(cfqg->busy_queues_avg[rt], busy);
  507. max_q = max(cfqg->busy_queues_avg[rt], busy);
  508. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  509. cfq_hist_divisor;
  510. return cfqg->busy_queues_avg[rt];
  511. }
  512. static inline unsigned
  513. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  514. {
  515. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  516. return cfq_target_latency * cfqg->weight / st->total_weight;
  517. }
  518. static inline unsigned
  519. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  520. {
  521. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  522. if (cfqd->cfq_latency) {
  523. /*
  524. * interested queues (we consider only the ones with the same
  525. * priority class in the cfq group)
  526. */
  527. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  528. cfq_class_rt(cfqq));
  529. unsigned sync_slice = cfqd->cfq_slice[1];
  530. unsigned expect_latency = sync_slice * iq;
  531. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  532. if (expect_latency > group_slice) {
  533. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  534. /* scale low_slice according to IO priority
  535. * and sync vs async */
  536. unsigned low_slice =
  537. min(slice, base_low_slice * slice / sync_slice);
  538. /* the adapted slice value is scaled to fit all iqs
  539. * into the target latency */
  540. slice = max(slice * group_slice / expect_latency,
  541. low_slice);
  542. }
  543. }
  544. return slice;
  545. }
  546. static inline void
  547. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  548. {
  549. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  550. cfqq->slice_start = jiffies;
  551. cfqq->slice_end = jiffies + slice;
  552. cfqq->allocated_slice = slice;
  553. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  554. }
  555. /*
  556. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  557. * isn't valid until the first request from the dispatch is activated
  558. * and the slice time set.
  559. */
  560. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  561. {
  562. if (cfq_cfqq_slice_new(cfqq))
  563. return false;
  564. if (time_before(jiffies, cfqq->slice_end))
  565. return false;
  566. return true;
  567. }
  568. /*
  569. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  570. * We choose the request that is closest to the head right now. Distance
  571. * behind the head is penalized and only allowed to a certain extent.
  572. */
  573. static struct request *
  574. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  575. {
  576. sector_t s1, s2, d1 = 0, d2 = 0;
  577. unsigned long back_max;
  578. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  579. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  580. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  581. if (rq1 == NULL || rq1 == rq2)
  582. return rq2;
  583. if (rq2 == NULL)
  584. return rq1;
  585. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  586. return rq_is_sync(rq1) ? rq1 : rq2;
  587. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  588. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  589. s1 = blk_rq_pos(rq1);
  590. s2 = blk_rq_pos(rq2);
  591. /*
  592. * by definition, 1KiB is 2 sectors
  593. */
  594. back_max = cfqd->cfq_back_max * 2;
  595. /*
  596. * Strict one way elevator _except_ in the case where we allow
  597. * short backward seeks which are biased as twice the cost of a
  598. * similar forward seek.
  599. */
  600. if (s1 >= last)
  601. d1 = s1 - last;
  602. else if (s1 + back_max >= last)
  603. d1 = (last - s1) * cfqd->cfq_back_penalty;
  604. else
  605. wrap |= CFQ_RQ1_WRAP;
  606. if (s2 >= last)
  607. d2 = s2 - last;
  608. else if (s2 + back_max >= last)
  609. d2 = (last - s2) * cfqd->cfq_back_penalty;
  610. else
  611. wrap |= CFQ_RQ2_WRAP;
  612. /* Found required data */
  613. /*
  614. * By doing switch() on the bit mask "wrap" we avoid having to
  615. * check two variables for all permutations: --> faster!
  616. */
  617. switch (wrap) {
  618. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  619. if (d1 < d2)
  620. return rq1;
  621. else if (d2 < d1)
  622. return rq2;
  623. else {
  624. if (s1 >= s2)
  625. return rq1;
  626. else
  627. return rq2;
  628. }
  629. case CFQ_RQ2_WRAP:
  630. return rq1;
  631. case CFQ_RQ1_WRAP:
  632. return rq2;
  633. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  634. default:
  635. /*
  636. * Since both rqs are wrapped,
  637. * start with the one that's further behind head
  638. * (--> only *one* back seek required),
  639. * since back seek takes more time than forward.
  640. */
  641. if (s1 <= s2)
  642. return rq1;
  643. else
  644. return rq2;
  645. }
  646. }
  647. /*
  648. * The below is leftmost cache rbtree addon
  649. */
  650. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  651. {
  652. /* Service tree is empty */
  653. if (!root->count)
  654. return NULL;
  655. if (!root->left)
  656. root->left = rb_first(&root->rb);
  657. if (root->left)
  658. return rb_entry(root->left, struct cfq_queue, rb_node);
  659. return NULL;
  660. }
  661. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  662. {
  663. if (!root->left)
  664. root->left = rb_first(&root->rb);
  665. if (root->left)
  666. return rb_entry_cfqg(root->left);
  667. return NULL;
  668. }
  669. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  670. {
  671. rb_erase(n, root);
  672. RB_CLEAR_NODE(n);
  673. }
  674. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  675. {
  676. if (root->left == n)
  677. root->left = NULL;
  678. rb_erase_init(n, &root->rb);
  679. --root->count;
  680. }
  681. /*
  682. * would be nice to take fifo expire time into account as well
  683. */
  684. static struct request *
  685. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  686. struct request *last)
  687. {
  688. struct rb_node *rbnext = rb_next(&last->rb_node);
  689. struct rb_node *rbprev = rb_prev(&last->rb_node);
  690. struct request *next = NULL, *prev = NULL;
  691. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  692. if (rbprev)
  693. prev = rb_entry_rq(rbprev);
  694. if (rbnext)
  695. next = rb_entry_rq(rbnext);
  696. else {
  697. rbnext = rb_first(&cfqq->sort_list);
  698. if (rbnext && rbnext != &last->rb_node)
  699. next = rb_entry_rq(rbnext);
  700. }
  701. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  702. }
  703. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  704. struct cfq_queue *cfqq)
  705. {
  706. /*
  707. * just an approximation, should be ok.
  708. */
  709. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  710. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  711. }
  712. static inline s64
  713. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  714. {
  715. return cfqg->vdisktime - st->min_vdisktime;
  716. }
  717. static void
  718. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  719. {
  720. struct rb_node **node = &st->rb.rb_node;
  721. struct rb_node *parent = NULL;
  722. struct cfq_group *__cfqg;
  723. s64 key = cfqg_key(st, cfqg);
  724. int left = 1;
  725. while (*node != NULL) {
  726. parent = *node;
  727. __cfqg = rb_entry_cfqg(parent);
  728. if (key < cfqg_key(st, __cfqg))
  729. node = &parent->rb_left;
  730. else {
  731. node = &parent->rb_right;
  732. left = 0;
  733. }
  734. }
  735. if (left)
  736. st->left = &cfqg->rb_node;
  737. rb_link_node(&cfqg->rb_node, parent, node);
  738. rb_insert_color(&cfqg->rb_node, &st->rb);
  739. }
  740. static void
  741. cfq_update_group_weight(struct cfq_group *cfqg)
  742. {
  743. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  744. if (cfqg->needs_update) {
  745. cfqg->weight = cfqg->new_weight;
  746. cfqg->needs_update = false;
  747. }
  748. }
  749. static void
  750. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  751. {
  752. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  753. cfq_update_group_weight(cfqg);
  754. __cfq_group_service_tree_add(st, cfqg);
  755. st->total_weight += cfqg->weight;
  756. }
  757. static void
  758. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  759. {
  760. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  761. struct cfq_group *__cfqg;
  762. struct rb_node *n;
  763. cfqg->nr_cfqq++;
  764. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  765. return;
  766. /*
  767. * Currently put the group at the end. Later implement something
  768. * so that groups get lesser vtime based on their weights, so that
  769. * if group does not loose all if it was not continuously backlogged.
  770. */
  771. n = rb_last(&st->rb);
  772. if (n) {
  773. __cfqg = rb_entry_cfqg(n);
  774. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  775. } else
  776. cfqg->vdisktime = st->min_vdisktime;
  777. cfq_group_service_tree_add(st, cfqg);
  778. }
  779. static void
  780. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  781. {
  782. st->total_weight -= cfqg->weight;
  783. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  784. cfq_rb_erase(&cfqg->rb_node, st);
  785. }
  786. static void
  787. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  788. {
  789. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  790. BUG_ON(cfqg->nr_cfqq < 1);
  791. cfqg->nr_cfqq--;
  792. /* If there are other cfq queues under this group, don't delete it */
  793. if (cfqg->nr_cfqq)
  794. return;
  795. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  796. cfq_group_service_tree_del(st, cfqg);
  797. cfqg->saved_workload_slice = 0;
  798. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  799. }
  800. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  801. unsigned int *unaccounted_time)
  802. {
  803. unsigned int slice_used;
  804. /*
  805. * Queue got expired before even a single request completed or
  806. * got expired immediately after first request completion.
  807. */
  808. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  809. /*
  810. * Also charge the seek time incurred to the group, otherwise
  811. * if there are mutiple queues in the group, each can dispatch
  812. * a single request on seeky media and cause lots of seek time
  813. * and group will never know it.
  814. */
  815. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  816. 1);
  817. } else {
  818. slice_used = jiffies - cfqq->slice_start;
  819. if (slice_used > cfqq->allocated_slice) {
  820. *unaccounted_time = slice_used - cfqq->allocated_slice;
  821. slice_used = cfqq->allocated_slice;
  822. }
  823. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  824. *unaccounted_time += cfqq->slice_start -
  825. cfqq->dispatch_start;
  826. }
  827. return slice_used;
  828. }
  829. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  830. struct cfq_queue *cfqq)
  831. {
  832. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  833. unsigned int used_sl, charge, unaccounted_sl = 0;
  834. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  835. - cfqg->service_tree_idle.count;
  836. BUG_ON(nr_sync < 0);
  837. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  838. if (iops_mode(cfqd))
  839. charge = cfqq->slice_dispatch;
  840. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  841. charge = cfqq->allocated_slice;
  842. /* Can't update vdisktime while group is on service tree */
  843. cfq_group_service_tree_del(st, cfqg);
  844. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  845. /* If a new weight was requested, update now, off tree */
  846. cfq_group_service_tree_add(st, cfqg);
  847. /* This group is being expired. Save the context */
  848. if (time_after(cfqd->workload_expires, jiffies)) {
  849. cfqg->saved_workload_slice = cfqd->workload_expires
  850. - jiffies;
  851. cfqg->saved_workload = cfqd->serving_type;
  852. cfqg->saved_serving_prio = cfqd->serving_prio;
  853. } else
  854. cfqg->saved_workload_slice = 0;
  855. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  856. st->min_vdisktime);
  857. cfq_log_cfqq(cfqq->cfqd, cfqq,
  858. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  859. used_sl, cfqq->slice_dispatch, charge,
  860. iops_mode(cfqd), cfqq->nr_sectors);
  861. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  862. unaccounted_sl);
  863. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  864. }
  865. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  866. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  867. {
  868. if (blkg)
  869. return container_of(blkg, struct cfq_group, blkg);
  870. return NULL;
  871. }
  872. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  873. unsigned int weight)
  874. {
  875. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  876. cfqg->new_weight = weight;
  877. cfqg->needs_update = true;
  878. }
  879. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  880. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  881. {
  882. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  883. unsigned int major, minor;
  884. /*
  885. * Add group onto cgroup list. It might happen that bdi->dev is
  886. * not initialized yet. Initialize this new group without major
  887. * and minor info and this info will be filled in once a new thread
  888. * comes for IO.
  889. */
  890. if (bdi->dev) {
  891. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  892. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  893. (void *)cfqd, MKDEV(major, minor));
  894. } else
  895. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  896. (void *)cfqd, 0);
  897. cfqd->nr_blkcg_linked_grps++;
  898. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  899. /* Add group on cfqd list */
  900. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  901. }
  902. /*
  903. * Should be called from sleepable context. No request queue lock as per
  904. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  905. * from sleepable context.
  906. */
  907. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  908. {
  909. struct cfq_group *cfqg = NULL;
  910. int i, j, ret;
  911. struct cfq_rb_root *st;
  912. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  913. if (!cfqg)
  914. return NULL;
  915. for_each_cfqg_st(cfqg, i, j, st)
  916. *st = CFQ_RB_ROOT;
  917. RB_CLEAR_NODE(&cfqg->rb_node);
  918. cfqg->ttime.last_end_request = jiffies;
  919. /*
  920. * Take the initial reference that will be released on destroy
  921. * This can be thought of a joint reference by cgroup and
  922. * elevator which will be dropped by either elevator exit
  923. * or cgroup deletion path depending on who is exiting first.
  924. */
  925. cfqg->ref = 1;
  926. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  927. if (ret) {
  928. kfree(cfqg);
  929. return NULL;
  930. }
  931. return cfqg;
  932. }
  933. static struct cfq_group *
  934. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  935. {
  936. struct cfq_group *cfqg = NULL;
  937. void *key = cfqd;
  938. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  939. unsigned int major, minor;
  940. /*
  941. * This is the common case when there are no blkio cgroups.
  942. * Avoid lookup in this case
  943. */
  944. if (blkcg == &blkio_root_cgroup)
  945. cfqg = &cfqd->root_group;
  946. else
  947. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  948. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  949. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  950. cfqg->blkg.dev = MKDEV(major, minor);
  951. }
  952. return cfqg;
  953. }
  954. /*
  955. * Search for the cfq group current task belongs to. request_queue lock must
  956. * be held.
  957. */
  958. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  959. {
  960. struct blkio_cgroup *blkcg;
  961. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  962. struct request_queue *q = cfqd->queue;
  963. rcu_read_lock();
  964. blkcg = task_blkio_cgroup(current);
  965. cfqg = cfq_find_cfqg(cfqd, blkcg);
  966. if (cfqg) {
  967. rcu_read_unlock();
  968. return cfqg;
  969. }
  970. /*
  971. * Need to allocate a group. Allocation of group also needs allocation
  972. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  973. * we need to drop rcu lock and queue_lock before we call alloc.
  974. *
  975. * Not taking any queue reference here and assuming that queue is
  976. * around by the time we return. CFQ queue allocation code does
  977. * the same. It might be racy though.
  978. */
  979. rcu_read_unlock();
  980. spin_unlock_irq(q->queue_lock);
  981. cfqg = cfq_alloc_cfqg(cfqd);
  982. spin_lock_irq(q->queue_lock);
  983. rcu_read_lock();
  984. blkcg = task_blkio_cgroup(current);
  985. /*
  986. * If some other thread already allocated the group while we were
  987. * not holding queue lock, free up the group
  988. */
  989. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  990. if (__cfqg) {
  991. kfree(cfqg);
  992. rcu_read_unlock();
  993. return __cfqg;
  994. }
  995. if (!cfqg)
  996. cfqg = &cfqd->root_group;
  997. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  998. rcu_read_unlock();
  999. return cfqg;
  1000. }
  1001. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1002. {
  1003. cfqg->ref++;
  1004. return cfqg;
  1005. }
  1006. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1007. {
  1008. /* Currently, all async queues are mapped to root group */
  1009. if (!cfq_cfqq_sync(cfqq))
  1010. cfqg = &cfqq->cfqd->root_group;
  1011. cfqq->cfqg = cfqg;
  1012. /* cfqq reference on cfqg */
  1013. cfqq->cfqg->ref++;
  1014. }
  1015. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1016. {
  1017. struct cfq_rb_root *st;
  1018. int i, j;
  1019. BUG_ON(cfqg->ref <= 0);
  1020. cfqg->ref--;
  1021. if (cfqg->ref)
  1022. return;
  1023. for_each_cfqg_st(cfqg, i, j, st)
  1024. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1025. free_percpu(cfqg->blkg.stats_cpu);
  1026. kfree(cfqg);
  1027. }
  1028. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1029. {
  1030. /* Something wrong if we are trying to remove same group twice */
  1031. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1032. hlist_del_init(&cfqg->cfqd_node);
  1033. BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
  1034. cfqd->nr_blkcg_linked_grps--;
  1035. /*
  1036. * Put the reference taken at the time of creation so that when all
  1037. * queues are gone, group can be destroyed.
  1038. */
  1039. cfq_put_cfqg(cfqg);
  1040. }
  1041. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1042. {
  1043. struct hlist_node *pos, *n;
  1044. struct cfq_group *cfqg;
  1045. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1046. /*
  1047. * If cgroup removal path got to blk_group first and removed
  1048. * it from cgroup list, then it will take care of destroying
  1049. * cfqg also.
  1050. */
  1051. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1052. cfq_destroy_cfqg(cfqd, cfqg);
  1053. }
  1054. }
  1055. /*
  1056. * Blk cgroup controller notification saying that blkio_group object is being
  1057. * delinked as associated cgroup object is going away. That also means that
  1058. * no new IO will come in this group. So get rid of this group as soon as
  1059. * any pending IO in the group is finished.
  1060. *
  1061. * This function is called under rcu_read_lock(). key is the rcu protected
  1062. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1063. * read lock.
  1064. *
  1065. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1066. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1067. * path got to it first.
  1068. */
  1069. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1070. {
  1071. unsigned long flags;
  1072. struct cfq_data *cfqd = key;
  1073. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1074. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1075. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1076. }
  1077. #else /* GROUP_IOSCHED */
  1078. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1079. {
  1080. return &cfqd->root_group;
  1081. }
  1082. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1083. {
  1084. return cfqg;
  1085. }
  1086. static inline void
  1087. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1088. cfqq->cfqg = cfqg;
  1089. }
  1090. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1091. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1092. #endif /* GROUP_IOSCHED */
  1093. /*
  1094. * The cfqd->service_trees holds all pending cfq_queue's that have
  1095. * requests waiting to be processed. It is sorted in the order that
  1096. * we will service the queues.
  1097. */
  1098. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1099. bool add_front)
  1100. {
  1101. struct rb_node **p, *parent;
  1102. struct cfq_queue *__cfqq;
  1103. unsigned long rb_key;
  1104. struct cfq_rb_root *service_tree;
  1105. int left;
  1106. int new_cfqq = 1;
  1107. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1108. cfqq_type(cfqq));
  1109. if (cfq_class_idle(cfqq)) {
  1110. rb_key = CFQ_IDLE_DELAY;
  1111. parent = rb_last(&service_tree->rb);
  1112. if (parent && parent != &cfqq->rb_node) {
  1113. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1114. rb_key += __cfqq->rb_key;
  1115. } else
  1116. rb_key += jiffies;
  1117. } else if (!add_front) {
  1118. /*
  1119. * Get our rb key offset. Subtract any residual slice
  1120. * value carried from last service. A negative resid
  1121. * count indicates slice overrun, and this should position
  1122. * the next service time further away in the tree.
  1123. */
  1124. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1125. rb_key -= cfqq->slice_resid;
  1126. cfqq->slice_resid = 0;
  1127. } else {
  1128. rb_key = -HZ;
  1129. __cfqq = cfq_rb_first(service_tree);
  1130. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1131. }
  1132. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1133. new_cfqq = 0;
  1134. /*
  1135. * same position, nothing more to do
  1136. */
  1137. if (rb_key == cfqq->rb_key &&
  1138. cfqq->service_tree == service_tree)
  1139. return;
  1140. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1141. cfqq->service_tree = NULL;
  1142. }
  1143. left = 1;
  1144. parent = NULL;
  1145. cfqq->service_tree = service_tree;
  1146. p = &service_tree->rb.rb_node;
  1147. while (*p) {
  1148. struct rb_node **n;
  1149. parent = *p;
  1150. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1151. /*
  1152. * sort by key, that represents service time.
  1153. */
  1154. if (time_before(rb_key, __cfqq->rb_key))
  1155. n = &(*p)->rb_left;
  1156. else {
  1157. n = &(*p)->rb_right;
  1158. left = 0;
  1159. }
  1160. p = n;
  1161. }
  1162. if (left)
  1163. service_tree->left = &cfqq->rb_node;
  1164. cfqq->rb_key = rb_key;
  1165. rb_link_node(&cfqq->rb_node, parent, p);
  1166. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1167. service_tree->count++;
  1168. if (add_front || !new_cfqq)
  1169. return;
  1170. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1171. }
  1172. static struct cfq_queue *
  1173. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1174. sector_t sector, struct rb_node **ret_parent,
  1175. struct rb_node ***rb_link)
  1176. {
  1177. struct rb_node **p, *parent;
  1178. struct cfq_queue *cfqq = NULL;
  1179. parent = NULL;
  1180. p = &root->rb_node;
  1181. while (*p) {
  1182. struct rb_node **n;
  1183. parent = *p;
  1184. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1185. /*
  1186. * Sort strictly based on sector. Smallest to the left,
  1187. * largest to the right.
  1188. */
  1189. if (sector > blk_rq_pos(cfqq->next_rq))
  1190. n = &(*p)->rb_right;
  1191. else if (sector < blk_rq_pos(cfqq->next_rq))
  1192. n = &(*p)->rb_left;
  1193. else
  1194. break;
  1195. p = n;
  1196. cfqq = NULL;
  1197. }
  1198. *ret_parent = parent;
  1199. if (rb_link)
  1200. *rb_link = p;
  1201. return cfqq;
  1202. }
  1203. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1204. {
  1205. struct rb_node **p, *parent;
  1206. struct cfq_queue *__cfqq;
  1207. if (cfqq->p_root) {
  1208. rb_erase(&cfqq->p_node, cfqq->p_root);
  1209. cfqq->p_root = NULL;
  1210. }
  1211. if (cfq_class_idle(cfqq))
  1212. return;
  1213. if (!cfqq->next_rq)
  1214. return;
  1215. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1216. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1217. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1218. if (!__cfqq) {
  1219. rb_link_node(&cfqq->p_node, parent, p);
  1220. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1221. } else
  1222. cfqq->p_root = NULL;
  1223. }
  1224. /*
  1225. * Update cfqq's position in the service tree.
  1226. */
  1227. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1228. {
  1229. /*
  1230. * Resorting requires the cfqq to be on the RR list already.
  1231. */
  1232. if (cfq_cfqq_on_rr(cfqq)) {
  1233. cfq_service_tree_add(cfqd, cfqq, 0);
  1234. cfq_prio_tree_add(cfqd, cfqq);
  1235. }
  1236. }
  1237. /*
  1238. * add to busy list of queues for service, trying to be fair in ordering
  1239. * the pending list according to last request service
  1240. */
  1241. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1242. {
  1243. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1244. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1245. cfq_mark_cfqq_on_rr(cfqq);
  1246. cfqd->busy_queues++;
  1247. if (cfq_cfqq_sync(cfqq))
  1248. cfqd->busy_sync_queues++;
  1249. cfq_resort_rr_list(cfqd, cfqq);
  1250. }
  1251. /*
  1252. * Called when the cfqq no longer has requests pending, remove it from
  1253. * the service tree.
  1254. */
  1255. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1256. {
  1257. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1258. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1259. cfq_clear_cfqq_on_rr(cfqq);
  1260. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1261. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1262. cfqq->service_tree = NULL;
  1263. }
  1264. if (cfqq->p_root) {
  1265. rb_erase(&cfqq->p_node, cfqq->p_root);
  1266. cfqq->p_root = NULL;
  1267. }
  1268. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1269. BUG_ON(!cfqd->busy_queues);
  1270. cfqd->busy_queues--;
  1271. if (cfq_cfqq_sync(cfqq))
  1272. cfqd->busy_sync_queues--;
  1273. }
  1274. /*
  1275. * rb tree support functions
  1276. */
  1277. static void cfq_del_rq_rb(struct request *rq)
  1278. {
  1279. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1280. const int sync = rq_is_sync(rq);
  1281. BUG_ON(!cfqq->queued[sync]);
  1282. cfqq->queued[sync]--;
  1283. elv_rb_del(&cfqq->sort_list, rq);
  1284. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1285. /*
  1286. * Queue will be deleted from service tree when we actually
  1287. * expire it later. Right now just remove it from prio tree
  1288. * as it is empty.
  1289. */
  1290. if (cfqq->p_root) {
  1291. rb_erase(&cfqq->p_node, cfqq->p_root);
  1292. cfqq->p_root = NULL;
  1293. }
  1294. }
  1295. }
  1296. static void cfq_add_rq_rb(struct request *rq)
  1297. {
  1298. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1299. struct cfq_data *cfqd = cfqq->cfqd;
  1300. struct request *prev;
  1301. cfqq->queued[rq_is_sync(rq)]++;
  1302. elv_rb_add(&cfqq->sort_list, rq);
  1303. if (!cfq_cfqq_on_rr(cfqq))
  1304. cfq_add_cfqq_rr(cfqd, cfqq);
  1305. /*
  1306. * check if this request is a better next-serve candidate
  1307. */
  1308. prev = cfqq->next_rq;
  1309. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1310. /*
  1311. * adjust priority tree position, if ->next_rq changes
  1312. */
  1313. if (prev != cfqq->next_rq)
  1314. cfq_prio_tree_add(cfqd, cfqq);
  1315. BUG_ON(!cfqq->next_rq);
  1316. }
  1317. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1318. {
  1319. elv_rb_del(&cfqq->sort_list, rq);
  1320. cfqq->queued[rq_is_sync(rq)]--;
  1321. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1322. rq_data_dir(rq), rq_is_sync(rq));
  1323. cfq_add_rq_rb(rq);
  1324. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1325. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1326. rq_is_sync(rq));
  1327. }
  1328. static struct request *
  1329. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1330. {
  1331. struct task_struct *tsk = current;
  1332. struct cfq_io_context *cic;
  1333. struct cfq_queue *cfqq;
  1334. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1335. if (!cic)
  1336. return NULL;
  1337. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1338. if (cfqq) {
  1339. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1340. return elv_rb_find(&cfqq->sort_list, sector);
  1341. }
  1342. return NULL;
  1343. }
  1344. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1345. {
  1346. struct cfq_data *cfqd = q->elevator->elevator_data;
  1347. cfqd->rq_in_driver++;
  1348. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1349. cfqd->rq_in_driver);
  1350. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1351. }
  1352. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1353. {
  1354. struct cfq_data *cfqd = q->elevator->elevator_data;
  1355. WARN_ON(!cfqd->rq_in_driver);
  1356. cfqd->rq_in_driver--;
  1357. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1358. cfqd->rq_in_driver);
  1359. }
  1360. static void cfq_remove_request(struct request *rq)
  1361. {
  1362. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1363. if (cfqq->next_rq == rq)
  1364. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1365. list_del_init(&rq->queuelist);
  1366. cfq_del_rq_rb(rq);
  1367. cfqq->cfqd->rq_queued--;
  1368. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1369. rq_data_dir(rq), rq_is_sync(rq));
  1370. if (rq->cmd_flags & REQ_PRIO) {
  1371. WARN_ON(!cfqq->prio_pending);
  1372. cfqq->prio_pending--;
  1373. }
  1374. }
  1375. static int cfq_merge(struct request_queue *q, struct request **req,
  1376. struct bio *bio)
  1377. {
  1378. struct cfq_data *cfqd = q->elevator->elevator_data;
  1379. struct request *__rq;
  1380. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1381. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1382. *req = __rq;
  1383. return ELEVATOR_FRONT_MERGE;
  1384. }
  1385. return ELEVATOR_NO_MERGE;
  1386. }
  1387. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1388. int type)
  1389. {
  1390. if (type == ELEVATOR_FRONT_MERGE) {
  1391. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1392. cfq_reposition_rq_rb(cfqq, req);
  1393. }
  1394. }
  1395. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1396. struct bio *bio)
  1397. {
  1398. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1399. bio_data_dir(bio), cfq_bio_sync(bio));
  1400. }
  1401. static void
  1402. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1403. struct request *next)
  1404. {
  1405. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1406. /*
  1407. * reposition in fifo if next is older than rq
  1408. */
  1409. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1410. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1411. list_move(&rq->queuelist, &next->queuelist);
  1412. rq_set_fifo_time(rq, rq_fifo_time(next));
  1413. }
  1414. if (cfqq->next_rq == next)
  1415. cfqq->next_rq = rq;
  1416. cfq_remove_request(next);
  1417. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1418. rq_data_dir(next), rq_is_sync(next));
  1419. }
  1420. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1421. struct bio *bio)
  1422. {
  1423. struct cfq_data *cfqd = q->elevator->elevator_data;
  1424. struct cfq_io_context *cic;
  1425. struct cfq_queue *cfqq;
  1426. /*
  1427. * Disallow merge of a sync bio into an async request.
  1428. */
  1429. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1430. return false;
  1431. /*
  1432. * Lookup the cfqq that this bio will be queued with and allow
  1433. * merge only if rq is queued there. This function can be called
  1434. * from plug merge without queue_lock. In such cases, ioc of @rq
  1435. * and %current are guaranteed to be equal. Avoid lookup which
  1436. * requires queue_lock by using @rq's cic.
  1437. */
  1438. if (current->io_context == RQ_CIC(rq)->ioc) {
  1439. cic = RQ_CIC(rq);
  1440. } else {
  1441. cic = cfq_cic_lookup(cfqd, current->io_context);
  1442. if (!cic)
  1443. return false;
  1444. }
  1445. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1446. return cfqq == RQ_CFQQ(rq);
  1447. }
  1448. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1449. {
  1450. del_timer(&cfqd->idle_slice_timer);
  1451. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1452. }
  1453. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1454. struct cfq_queue *cfqq)
  1455. {
  1456. if (cfqq) {
  1457. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1458. cfqd->serving_prio, cfqd->serving_type);
  1459. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1460. cfqq->slice_start = 0;
  1461. cfqq->dispatch_start = jiffies;
  1462. cfqq->allocated_slice = 0;
  1463. cfqq->slice_end = 0;
  1464. cfqq->slice_dispatch = 0;
  1465. cfqq->nr_sectors = 0;
  1466. cfq_clear_cfqq_wait_request(cfqq);
  1467. cfq_clear_cfqq_must_dispatch(cfqq);
  1468. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1469. cfq_clear_cfqq_fifo_expire(cfqq);
  1470. cfq_mark_cfqq_slice_new(cfqq);
  1471. cfq_del_timer(cfqd, cfqq);
  1472. }
  1473. cfqd->active_queue = cfqq;
  1474. }
  1475. /*
  1476. * current cfqq expired its slice (or was too idle), select new one
  1477. */
  1478. static void
  1479. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1480. bool timed_out)
  1481. {
  1482. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1483. if (cfq_cfqq_wait_request(cfqq))
  1484. cfq_del_timer(cfqd, cfqq);
  1485. cfq_clear_cfqq_wait_request(cfqq);
  1486. cfq_clear_cfqq_wait_busy(cfqq);
  1487. /*
  1488. * If this cfqq is shared between multiple processes, check to
  1489. * make sure that those processes are still issuing I/Os within
  1490. * the mean seek distance. If not, it may be time to break the
  1491. * queues apart again.
  1492. */
  1493. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1494. cfq_mark_cfqq_split_coop(cfqq);
  1495. /*
  1496. * store what was left of this slice, if the queue idled/timed out
  1497. */
  1498. if (timed_out) {
  1499. if (cfq_cfqq_slice_new(cfqq))
  1500. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1501. else
  1502. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1503. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1504. }
  1505. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1506. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1507. cfq_del_cfqq_rr(cfqd, cfqq);
  1508. cfq_resort_rr_list(cfqd, cfqq);
  1509. if (cfqq == cfqd->active_queue)
  1510. cfqd->active_queue = NULL;
  1511. if (cfqd->active_cic) {
  1512. put_io_context(cfqd->active_cic->ioc, cfqd->queue);
  1513. cfqd->active_cic = NULL;
  1514. }
  1515. }
  1516. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1517. {
  1518. struct cfq_queue *cfqq = cfqd->active_queue;
  1519. if (cfqq)
  1520. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1521. }
  1522. /*
  1523. * Get next queue for service. Unless we have a queue preemption,
  1524. * we'll simply select the first cfqq in the service tree.
  1525. */
  1526. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1527. {
  1528. struct cfq_rb_root *service_tree =
  1529. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1530. cfqd->serving_type);
  1531. if (!cfqd->rq_queued)
  1532. return NULL;
  1533. /* There is nothing to dispatch */
  1534. if (!service_tree)
  1535. return NULL;
  1536. if (RB_EMPTY_ROOT(&service_tree->rb))
  1537. return NULL;
  1538. return cfq_rb_first(service_tree);
  1539. }
  1540. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1541. {
  1542. struct cfq_group *cfqg;
  1543. struct cfq_queue *cfqq;
  1544. int i, j;
  1545. struct cfq_rb_root *st;
  1546. if (!cfqd->rq_queued)
  1547. return NULL;
  1548. cfqg = cfq_get_next_cfqg(cfqd);
  1549. if (!cfqg)
  1550. return NULL;
  1551. for_each_cfqg_st(cfqg, i, j, st)
  1552. if ((cfqq = cfq_rb_first(st)) != NULL)
  1553. return cfqq;
  1554. return NULL;
  1555. }
  1556. /*
  1557. * Get and set a new active queue for service.
  1558. */
  1559. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1560. struct cfq_queue *cfqq)
  1561. {
  1562. if (!cfqq)
  1563. cfqq = cfq_get_next_queue(cfqd);
  1564. __cfq_set_active_queue(cfqd, cfqq);
  1565. return cfqq;
  1566. }
  1567. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1568. struct request *rq)
  1569. {
  1570. if (blk_rq_pos(rq) >= cfqd->last_position)
  1571. return blk_rq_pos(rq) - cfqd->last_position;
  1572. else
  1573. return cfqd->last_position - blk_rq_pos(rq);
  1574. }
  1575. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1576. struct request *rq)
  1577. {
  1578. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1579. }
  1580. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1581. struct cfq_queue *cur_cfqq)
  1582. {
  1583. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1584. struct rb_node *parent, *node;
  1585. struct cfq_queue *__cfqq;
  1586. sector_t sector = cfqd->last_position;
  1587. if (RB_EMPTY_ROOT(root))
  1588. return NULL;
  1589. /*
  1590. * First, if we find a request starting at the end of the last
  1591. * request, choose it.
  1592. */
  1593. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1594. if (__cfqq)
  1595. return __cfqq;
  1596. /*
  1597. * If the exact sector wasn't found, the parent of the NULL leaf
  1598. * will contain the closest sector.
  1599. */
  1600. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1601. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1602. return __cfqq;
  1603. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1604. node = rb_next(&__cfqq->p_node);
  1605. else
  1606. node = rb_prev(&__cfqq->p_node);
  1607. if (!node)
  1608. return NULL;
  1609. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1610. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1611. return __cfqq;
  1612. return NULL;
  1613. }
  1614. /*
  1615. * cfqd - obvious
  1616. * cur_cfqq - passed in so that we don't decide that the current queue is
  1617. * closely cooperating with itself.
  1618. *
  1619. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1620. * one request, and that cfqd->last_position reflects a position on the disk
  1621. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1622. * assumption.
  1623. */
  1624. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1625. struct cfq_queue *cur_cfqq)
  1626. {
  1627. struct cfq_queue *cfqq;
  1628. if (cfq_class_idle(cur_cfqq))
  1629. return NULL;
  1630. if (!cfq_cfqq_sync(cur_cfqq))
  1631. return NULL;
  1632. if (CFQQ_SEEKY(cur_cfqq))
  1633. return NULL;
  1634. /*
  1635. * Don't search priority tree if it's the only queue in the group.
  1636. */
  1637. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1638. return NULL;
  1639. /*
  1640. * We should notice if some of the queues are cooperating, eg
  1641. * working closely on the same area of the disk. In that case,
  1642. * we can group them together and don't waste time idling.
  1643. */
  1644. cfqq = cfqq_close(cfqd, cur_cfqq);
  1645. if (!cfqq)
  1646. return NULL;
  1647. /* If new queue belongs to different cfq_group, don't choose it */
  1648. if (cur_cfqq->cfqg != cfqq->cfqg)
  1649. return NULL;
  1650. /*
  1651. * It only makes sense to merge sync queues.
  1652. */
  1653. if (!cfq_cfqq_sync(cfqq))
  1654. return NULL;
  1655. if (CFQQ_SEEKY(cfqq))
  1656. return NULL;
  1657. /*
  1658. * Do not merge queues of different priority classes
  1659. */
  1660. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1661. return NULL;
  1662. return cfqq;
  1663. }
  1664. /*
  1665. * Determine whether we should enforce idle window for this queue.
  1666. */
  1667. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1668. {
  1669. enum wl_prio_t prio = cfqq_prio(cfqq);
  1670. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1671. BUG_ON(!service_tree);
  1672. BUG_ON(!service_tree->count);
  1673. if (!cfqd->cfq_slice_idle)
  1674. return false;
  1675. /* We never do for idle class queues. */
  1676. if (prio == IDLE_WORKLOAD)
  1677. return false;
  1678. /* We do for queues that were marked with idle window flag. */
  1679. if (cfq_cfqq_idle_window(cfqq) &&
  1680. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1681. return true;
  1682. /*
  1683. * Otherwise, we do only if they are the last ones
  1684. * in their service tree.
  1685. */
  1686. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1687. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1688. return true;
  1689. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1690. service_tree->count);
  1691. return false;
  1692. }
  1693. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1694. {
  1695. struct cfq_queue *cfqq = cfqd->active_queue;
  1696. struct cfq_io_context *cic;
  1697. unsigned long sl, group_idle = 0;
  1698. /*
  1699. * SSD device without seek penalty, disable idling. But only do so
  1700. * for devices that support queuing, otherwise we still have a problem
  1701. * with sync vs async workloads.
  1702. */
  1703. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1704. return;
  1705. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1706. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1707. /*
  1708. * idle is disabled, either manually or by past process history
  1709. */
  1710. if (!cfq_should_idle(cfqd, cfqq)) {
  1711. /* no queue idling. Check for group idling */
  1712. if (cfqd->cfq_group_idle)
  1713. group_idle = cfqd->cfq_group_idle;
  1714. else
  1715. return;
  1716. }
  1717. /*
  1718. * still active requests from this queue, don't idle
  1719. */
  1720. if (cfqq->dispatched)
  1721. return;
  1722. /*
  1723. * task has exited, don't wait
  1724. */
  1725. cic = cfqd->active_cic;
  1726. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1727. return;
  1728. /*
  1729. * If our average think time is larger than the remaining time
  1730. * slice, then don't idle. This avoids overrunning the allotted
  1731. * time slice.
  1732. */
  1733. if (sample_valid(cic->ttime.ttime_samples) &&
  1734. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1735. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1736. cic->ttime.ttime_mean);
  1737. return;
  1738. }
  1739. /* There are other queues in the group, don't do group idle */
  1740. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1741. return;
  1742. cfq_mark_cfqq_wait_request(cfqq);
  1743. if (group_idle)
  1744. sl = cfqd->cfq_group_idle;
  1745. else
  1746. sl = cfqd->cfq_slice_idle;
  1747. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1748. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1749. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1750. group_idle ? 1 : 0);
  1751. }
  1752. /*
  1753. * Move request from internal lists to the request queue dispatch list.
  1754. */
  1755. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1756. {
  1757. struct cfq_data *cfqd = q->elevator->elevator_data;
  1758. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1759. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1760. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1761. cfq_remove_request(rq);
  1762. cfqq->dispatched++;
  1763. (RQ_CFQG(rq))->dispatched++;
  1764. elv_dispatch_sort(q, rq);
  1765. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1766. cfqq->nr_sectors += blk_rq_sectors(rq);
  1767. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1768. rq_data_dir(rq), rq_is_sync(rq));
  1769. }
  1770. /*
  1771. * return expired entry, or NULL to just start from scratch in rbtree
  1772. */
  1773. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1774. {
  1775. struct request *rq = NULL;
  1776. if (cfq_cfqq_fifo_expire(cfqq))
  1777. return NULL;
  1778. cfq_mark_cfqq_fifo_expire(cfqq);
  1779. if (list_empty(&cfqq->fifo))
  1780. return NULL;
  1781. rq = rq_entry_fifo(cfqq->fifo.next);
  1782. if (time_before(jiffies, rq_fifo_time(rq)))
  1783. rq = NULL;
  1784. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1785. return rq;
  1786. }
  1787. static inline int
  1788. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1789. {
  1790. const int base_rq = cfqd->cfq_slice_async_rq;
  1791. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1792. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1793. }
  1794. /*
  1795. * Must be called with the queue_lock held.
  1796. */
  1797. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1798. {
  1799. int process_refs, io_refs;
  1800. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1801. process_refs = cfqq->ref - io_refs;
  1802. BUG_ON(process_refs < 0);
  1803. return process_refs;
  1804. }
  1805. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1806. {
  1807. int process_refs, new_process_refs;
  1808. struct cfq_queue *__cfqq;
  1809. /*
  1810. * If there are no process references on the new_cfqq, then it is
  1811. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1812. * chain may have dropped their last reference (not just their
  1813. * last process reference).
  1814. */
  1815. if (!cfqq_process_refs(new_cfqq))
  1816. return;
  1817. /* Avoid a circular list and skip interim queue merges */
  1818. while ((__cfqq = new_cfqq->new_cfqq)) {
  1819. if (__cfqq == cfqq)
  1820. return;
  1821. new_cfqq = __cfqq;
  1822. }
  1823. process_refs = cfqq_process_refs(cfqq);
  1824. new_process_refs = cfqq_process_refs(new_cfqq);
  1825. /*
  1826. * If the process for the cfqq has gone away, there is no
  1827. * sense in merging the queues.
  1828. */
  1829. if (process_refs == 0 || new_process_refs == 0)
  1830. return;
  1831. /*
  1832. * Merge in the direction of the lesser amount of work.
  1833. */
  1834. if (new_process_refs >= process_refs) {
  1835. cfqq->new_cfqq = new_cfqq;
  1836. new_cfqq->ref += process_refs;
  1837. } else {
  1838. new_cfqq->new_cfqq = cfqq;
  1839. cfqq->ref += new_process_refs;
  1840. }
  1841. }
  1842. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1843. struct cfq_group *cfqg, enum wl_prio_t prio)
  1844. {
  1845. struct cfq_queue *queue;
  1846. int i;
  1847. bool key_valid = false;
  1848. unsigned long lowest_key = 0;
  1849. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1850. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1851. /* select the one with lowest rb_key */
  1852. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1853. if (queue &&
  1854. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1855. lowest_key = queue->rb_key;
  1856. cur_best = i;
  1857. key_valid = true;
  1858. }
  1859. }
  1860. return cur_best;
  1861. }
  1862. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1863. {
  1864. unsigned slice;
  1865. unsigned count;
  1866. struct cfq_rb_root *st;
  1867. unsigned group_slice;
  1868. enum wl_prio_t original_prio = cfqd->serving_prio;
  1869. /* Choose next priority. RT > BE > IDLE */
  1870. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1871. cfqd->serving_prio = RT_WORKLOAD;
  1872. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1873. cfqd->serving_prio = BE_WORKLOAD;
  1874. else {
  1875. cfqd->serving_prio = IDLE_WORKLOAD;
  1876. cfqd->workload_expires = jiffies + 1;
  1877. return;
  1878. }
  1879. if (original_prio != cfqd->serving_prio)
  1880. goto new_workload;
  1881. /*
  1882. * For RT and BE, we have to choose also the type
  1883. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1884. * expiration time
  1885. */
  1886. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1887. count = st->count;
  1888. /*
  1889. * check workload expiration, and that we still have other queues ready
  1890. */
  1891. if (count && !time_after(jiffies, cfqd->workload_expires))
  1892. return;
  1893. new_workload:
  1894. /* otherwise select new workload type */
  1895. cfqd->serving_type =
  1896. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1897. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1898. count = st->count;
  1899. /*
  1900. * the workload slice is computed as a fraction of target latency
  1901. * proportional to the number of queues in that workload, over
  1902. * all the queues in the same priority class
  1903. */
  1904. group_slice = cfq_group_slice(cfqd, cfqg);
  1905. slice = group_slice * count /
  1906. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1907. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1908. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1909. unsigned int tmp;
  1910. /*
  1911. * Async queues are currently system wide. Just taking
  1912. * proportion of queues with-in same group will lead to higher
  1913. * async ratio system wide as generally root group is going
  1914. * to have higher weight. A more accurate thing would be to
  1915. * calculate system wide asnc/sync ratio.
  1916. */
  1917. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1918. tmp = tmp/cfqd->busy_queues;
  1919. slice = min_t(unsigned, slice, tmp);
  1920. /* async workload slice is scaled down according to
  1921. * the sync/async slice ratio. */
  1922. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1923. } else
  1924. /* sync workload slice is at least 2 * cfq_slice_idle */
  1925. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1926. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1927. cfq_log(cfqd, "workload slice:%d", slice);
  1928. cfqd->workload_expires = jiffies + slice;
  1929. }
  1930. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1931. {
  1932. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1933. struct cfq_group *cfqg;
  1934. if (RB_EMPTY_ROOT(&st->rb))
  1935. return NULL;
  1936. cfqg = cfq_rb_first_group(st);
  1937. update_min_vdisktime(st);
  1938. return cfqg;
  1939. }
  1940. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1941. {
  1942. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1943. cfqd->serving_group = cfqg;
  1944. /* Restore the workload type data */
  1945. if (cfqg->saved_workload_slice) {
  1946. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1947. cfqd->serving_type = cfqg->saved_workload;
  1948. cfqd->serving_prio = cfqg->saved_serving_prio;
  1949. } else
  1950. cfqd->workload_expires = jiffies - 1;
  1951. choose_service_tree(cfqd, cfqg);
  1952. }
  1953. /*
  1954. * Select a queue for service. If we have a current active queue,
  1955. * check whether to continue servicing it, or retrieve and set a new one.
  1956. */
  1957. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1958. {
  1959. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1960. cfqq = cfqd->active_queue;
  1961. if (!cfqq)
  1962. goto new_queue;
  1963. if (!cfqd->rq_queued)
  1964. return NULL;
  1965. /*
  1966. * We were waiting for group to get backlogged. Expire the queue
  1967. */
  1968. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1969. goto expire;
  1970. /*
  1971. * The active queue has run out of time, expire it and select new.
  1972. */
  1973. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1974. /*
  1975. * If slice had not expired at the completion of last request
  1976. * we might not have turned on wait_busy flag. Don't expire
  1977. * the queue yet. Allow the group to get backlogged.
  1978. *
  1979. * The very fact that we have used the slice, that means we
  1980. * have been idling all along on this queue and it should be
  1981. * ok to wait for this request to complete.
  1982. */
  1983. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1984. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1985. cfqq = NULL;
  1986. goto keep_queue;
  1987. } else
  1988. goto check_group_idle;
  1989. }
  1990. /*
  1991. * The active queue has requests and isn't expired, allow it to
  1992. * dispatch.
  1993. */
  1994. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1995. goto keep_queue;
  1996. /*
  1997. * If another queue has a request waiting within our mean seek
  1998. * distance, let it run. The expire code will check for close
  1999. * cooperators and put the close queue at the front of the service
  2000. * tree. If possible, merge the expiring queue with the new cfqq.
  2001. */
  2002. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  2003. if (new_cfqq) {
  2004. if (!cfqq->new_cfqq)
  2005. cfq_setup_merge(cfqq, new_cfqq);
  2006. goto expire;
  2007. }
  2008. /*
  2009. * No requests pending. If the active queue still has requests in
  2010. * flight or is idling for a new request, allow either of these
  2011. * conditions to happen (or time out) before selecting a new queue.
  2012. */
  2013. if (timer_pending(&cfqd->idle_slice_timer)) {
  2014. cfqq = NULL;
  2015. goto keep_queue;
  2016. }
  2017. /*
  2018. * This is a deep seek queue, but the device is much faster than
  2019. * the queue can deliver, don't idle
  2020. **/
  2021. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2022. (cfq_cfqq_slice_new(cfqq) ||
  2023. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2024. cfq_clear_cfqq_deep(cfqq);
  2025. cfq_clear_cfqq_idle_window(cfqq);
  2026. }
  2027. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2028. cfqq = NULL;
  2029. goto keep_queue;
  2030. }
  2031. /*
  2032. * If group idle is enabled and there are requests dispatched from
  2033. * this group, wait for requests to complete.
  2034. */
  2035. check_group_idle:
  2036. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2037. cfqq->cfqg->dispatched &&
  2038. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2039. cfqq = NULL;
  2040. goto keep_queue;
  2041. }
  2042. expire:
  2043. cfq_slice_expired(cfqd, 0);
  2044. new_queue:
  2045. /*
  2046. * Current queue expired. Check if we have to switch to a new
  2047. * service tree
  2048. */
  2049. if (!new_cfqq)
  2050. cfq_choose_cfqg(cfqd);
  2051. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2052. keep_queue:
  2053. return cfqq;
  2054. }
  2055. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2056. {
  2057. int dispatched = 0;
  2058. while (cfqq->next_rq) {
  2059. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2060. dispatched++;
  2061. }
  2062. BUG_ON(!list_empty(&cfqq->fifo));
  2063. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2064. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2065. return dispatched;
  2066. }
  2067. /*
  2068. * Drain our current requests. Used for barriers and when switching
  2069. * io schedulers on-the-fly.
  2070. */
  2071. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2072. {
  2073. struct cfq_queue *cfqq;
  2074. int dispatched = 0;
  2075. /* Expire the timeslice of the current active queue first */
  2076. cfq_slice_expired(cfqd, 0);
  2077. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2078. __cfq_set_active_queue(cfqd, cfqq);
  2079. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2080. }
  2081. BUG_ON(cfqd->busy_queues);
  2082. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2083. return dispatched;
  2084. }
  2085. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2086. struct cfq_queue *cfqq)
  2087. {
  2088. /* the queue hasn't finished any request, can't estimate */
  2089. if (cfq_cfqq_slice_new(cfqq))
  2090. return true;
  2091. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2092. cfqq->slice_end))
  2093. return true;
  2094. return false;
  2095. }
  2096. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2097. {
  2098. unsigned int max_dispatch;
  2099. /*
  2100. * Drain async requests before we start sync IO
  2101. */
  2102. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2103. return false;
  2104. /*
  2105. * If this is an async queue and we have sync IO in flight, let it wait
  2106. */
  2107. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2108. return false;
  2109. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2110. if (cfq_class_idle(cfqq))
  2111. max_dispatch = 1;
  2112. /*
  2113. * Does this cfqq already have too much IO in flight?
  2114. */
  2115. if (cfqq->dispatched >= max_dispatch) {
  2116. bool promote_sync = false;
  2117. /*
  2118. * idle queue must always only have a single IO in flight
  2119. */
  2120. if (cfq_class_idle(cfqq))
  2121. return false;
  2122. /*
  2123. * If there is only one sync queue
  2124. * we can ignore async queue here and give the sync
  2125. * queue no dispatch limit. The reason is a sync queue can
  2126. * preempt async queue, limiting the sync queue doesn't make
  2127. * sense. This is useful for aiostress test.
  2128. */
  2129. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2130. promote_sync = true;
  2131. /*
  2132. * We have other queues, don't allow more IO from this one
  2133. */
  2134. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2135. !promote_sync)
  2136. return false;
  2137. /*
  2138. * Sole queue user, no limit
  2139. */
  2140. if (cfqd->busy_queues == 1 || promote_sync)
  2141. max_dispatch = -1;
  2142. else
  2143. /*
  2144. * Normally we start throttling cfqq when cfq_quantum/2
  2145. * requests have been dispatched. But we can drive
  2146. * deeper queue depths at the beginning of slice
  2147. * subjected to upper limit of cfq_quantum.
  2148. * */
  2149. max_dispatch = cfqd->cfq_quantum;
  2150. }
  2151. /*
  2152. * Async queues must wait a bit before being allowed dispatch.
  2153. * We also ramp up the dispatch depth gradually for async IO,
  2154. * based on the last sync IO we serviced
  2155. */
  2156. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2157. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2158. unsigned int depth;
  2159. depth = last_sync / cfqd->cfq_slice[1];
  2160. if (!depth && !cfqq->dispatched)
  2161. depth = 1;
  2162. if (depth < max_dispatch)
  2163. max_dispatch = depth;
  2164. }
  2165. /*
  2166. * If we're below the current max, allow a dispatch
  2167. */
  2168. return cfqq->dispatched < max_dispatch;
  2169. }
  2170. /*
  2171. * Dispatch a request from cfqq, moving them to the request queue
  2172. * dispatch list.
  2173. */
  2174. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2175. {
  2176. struct request *rq;
  2177. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2178. if (!cfq_may_dispatch(cfqd, cfqq))
  2179. return false;
  2180. /*
  2181. * follow expired path, else get first next available
  2182. */
  2183. rq = cfq_check_fifo(cfqq);
  2184. if (!rq)
  2185. rq = cfqq->next_rq;
  2186. /*
  2187. * insert request into driver dispatch list
  2188. */
  2189. cfq_dispatch_insert(cfqd->queue, rq);
  2190. if (!cfqd->active_cic) {
  2191. struct cfq_io_context *cic = RQ_CIC(rq);
  2192. atomic_long_inc(&cic->ioc->refcount);
  2193. cfqd->active_cic = cic;
  2194. }
  2195. return true;
  2196. }
  2197. /*
  2198. * Find the cfqq that we need to service and move a request from that to the
  2199. * dispatch list
  2200. */
  2201. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2202. {
  2203. struct cfq_data *cfqd = q->elevator->elevator_data;
  2204. struct cfq_queue *cfqq;
  2205. if (!cfqd->busy_queues)
  2206. return 0;
  2207. if (unlikely(force))
  2208. return cfq_forced_dispatch(cfqd);
  2209. cfqq = cfq_select_queue(cfqd);
  2210. if (!cfqq)
  2211. return 0;
  2212. /*
  2213. * Dispatch a request from this cfqq, if it is allowed
  2214. */
  2215. if (!cfq_dispatch_request(cfqd, cfqq))
  2216. return 0;
  2217. cfqq->slice_dispatch++;
  2218. cfq_clear_cfqq_must_dispatch(cfqq);
  2219. /*
  2220. * expire an async queue immediately if it has used up its slice. idle
  2221. * queue always expire after 1 dispatch round.
  2222. */
  2223. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2224. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2225. cfq_class_idle(cfqq))) {
  2226. cfqq->slice_end = jiffies + 1;
  2227. cfq_slice_expired(cfqd, 0);
  2228. }
  2229. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2230. return 1;
  2231. }
  2232. /*
  2233. * task holds one reference to the queue, dropped when task exits. each rq
  2234. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2235. *
  2236. * Each cfq queue took a reference on the parent group. Drop it now.
  2237. * queue lock must be held here.
  2238. */
  2239. static void cfq_put_queue(struct cfq_queue *cfqq)
  2240. {
  2241. struct cfq_data *cfqd = cfqq->cfqd;
  2242. struct cfq_group *cfqg;
  2243. BUG_ON(cfqq->ref <= 0);
  2244. cfqq->ref--;
  2245. if (cfqq->ref)
  2246. return;
  2247. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2248. BUG_ON(rb_first(&cfqq->sort_list));
  2249. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2250. cfqg = cfqq->cfqg;
  2251. if (unlikely(cfqd->active_queue == cfqq)) {
  2252. __cfq_slice_expired(cfqd, cfqq, 0);
  2253. cfq_schedule_dispatch(cfqd);
  2254. }
  2255. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2256. kmem_cache_free(cfq_pool, cfqq);
  2257. cfq_put_cfqg(cfqg);
  2258. }
  2259. /*
  2260. * Call func for each cic attached to this ioc.
  2261. */
  2262. static void
  2263. call_for_each_cic(struct io_context *ioc,
  2264. void (*func)(struct io_context *, struct cfq_io_context *))
  2265. {
  2266. struct cfq_io_context *cic;
  2267. struct hlist_node *n;
  2268. rcu_read_lock();
  2269. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2270. func(ioc, cic);
  2271. rcu_read_unlock();
  2272. }
  2273. static void cfq_cic_free_rcu(struct rcu_head *head)
  2274. {
  2275. struct cfq_io_context *cic;
  2276. cic = container_of(head, struct cfq_io_context, rcu_head);
  2277. kmem_cache_free(cfq_ioc_pool, cic);
  2278. elv_ioc_count_dec(cfq_ioc_count);
  2279. if (ioc_gone) {
  2280. /*
  2281. * CFQ scheduler is exiting, grab exit lock and check
  2282. * the pending io context count. If it hits zero,
  2283. * complete ioc_gone and set it back to NULL
  2284. */
  2285. spin_lock(&ioc_gone_lock);
  2286. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2287. complete(ioc_gone);
  2288. ioc_gone = NULL;
  2289. }
  2290. spin_unlock(&ioc_gone_lock);
  2291. }
  2292. }
  2293. static void cfq_cic_free(struct cfq_io_context *cic)
  2294. {
  2295. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2296. }
  2297. static void cfq_release_cic(struct cfq_io_context *cic)
  2298. {
  2299. struct io_context *ioc = cic->ioc;
  2300. unsigned long dead_key = (unsigned long) cic->key;
  2301. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2302. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2303. hlist_del_rcu(&cic->cic_list);
  2304. cfq_cic_free(cic);
  2305. }
  2306. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2307. {
  2308. unsigned long flags;
  2309. spin_lock_irqsave(&ioc->lock, flags);
  2310. cfq_release_cic(cic);
  2311. spin_unlock_irqrestore(&ioc->lock, flags);
  2312. }
  2313. /*
  2314. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2315. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2316. * and ->trim() which is called with the task lock held
  2317. */
  2318. static void cfq_free_io_context(struct io_context *ioc)
  2319. {
  2320. /*
  2321. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2322. * so no more cic's are allowed to be linked into this ioc. So it
  2323. * should be ok to iterate over the known list, we will see all cic's
  2324. * since no new ones are added.
  2325. */
  2326. call_for_each_cic(ioc, cic_free_func);
  2327. }
  2328. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2329. {
  2330. struct cfq_queue *__cfqq, *next;
  2331. /*
  2332. * If this queue was scheduled to merge with another queue, be
  2333. * sure to drop the reference taken on that queue (and others in
  2334. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2335. */
  2336. __cfqq = cfqq->new_cfqq;
  2337. while (__cfqq) {
  2338. if (__cfqq == cfqq) {
  2339. WARN(1, "cfqq->new_cfqq loop detected\n");
  2340. break;
  2341. }
  2342. next = __cfqq->new_cfqq;
  2343. cfq_put_queue(__cfqq);
  2344. __cfqq = next;
  2345. }
  2346. }
  2347. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2348. {
  2349. if (unlikely(cfqq == cfqd->active_queue)) {
  2350. __cfq_slice_expired(cfqd, cfqq, 0);
  2351. cfq_schedule_dispatch(cfqd);
  2352. }
  2353. cfq_put_cooperator(cfqq);
  2354. cfq_put_queue(cfqq);
  2355. }
  2356. static void cfq_exit_cic(struct cfq_io_context *cic)
  2357. {
  2358. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2359. struct io_context *ioc = cic->ioc;
  2360. list_del_init(&cic->queue_list);
  2361. cic->key = cfqd_dead_key(cfqd);
  2362. /*
  2363. * Both setting lookup hint to and clearing it from @cic are done
  2364. * under queue_lock. If it's not pointing to @cic now, it never
  2365. * will. Hint assignment itself can race safely.
  2366. */
  2367. if (rcu_dereference_raw(ioc->ioc_data) == cic)
  2368. rcu_assign_pointer(ioc->ioc_data, NULL);
  2369. if (cic->cfqq[BLK_RW_ASYNC]) {
  2370. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2371. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2372. }
  2373. if (cic->cfqq[BLK_RW_SYNC]) {
  2374. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2375. cic->cfqq[BLK_RW_SYNC] = NULL;
  2376. }
  2377. }
  2378. static struct cfq_io_context *
  2379. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2380. {
  2381. struct cfq_io_context *cic;
  2382. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2383. cfqd->queue->node);
  2384. if (cic) {
  2385. cic->ttime.last_end_request = jiffies;
  2386. INIT_LIST_HEAD(&cic->queue_list);
  2387. INIT_HLIST_NODE(&cic->cic_list);
  2388. cic->exit = cfq_exit_cic;
  2389. cic->release = cfq_release_cic;
  2390. elv_ioc_count_inc(cfq_ioc_count);
  2391. }
  2392. return cic;
  2393. }
  2394. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2395. {
  2396. struct task_struct *tsk = current;
  2397. int ioprio_class;
  2398. if (!cfq_cfqq_prio_changed(cfqq))
  2399. return;
  2400. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2401. switch (ioprio_class) {
  2402. default:
  2403. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2404. case IOPRIO_CLASS_NONE:
  2405. /*
  2406. * no prio set, inherit CPU scheduling settings
  2407. */
  2408. cfqq->ioprio = task_nice_ioprio(tsk);
  2409. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2410. break;
  2411. case IOPRIO_CLASS_RT:
  2412. cfqq->ioprio = task_ioprio(ioc);
  2413. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2414. break;
  2415. case IOPRIO_CLASS_BE:
  2416. cfqq->ioprio = task_ioprio(ioc);
  2417. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2418. break;
  2419. case IOPRIO_CLASS_IDLE:
  2420. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2421. cfqq->ioprio = 7;
  2422. cfq_clear_cfqq_idle_window(cfqq);
  2423. break;
  2424. }
  2425. /*
  2426. * keep track of original prio settings in case we have to temporarily
  2427. * elevate the priority of this queue
  2428. */
  2429. cfqq->org_ioprio = cfqq->ioprio;
  2430. cfq_clear_cfqq_prio_changed(cfqq);
  2431. }
  2432. static void changed_ioprio(struct cfq_io_context *cic)
  2433. {
  2434. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2435. struct cfq_queue *cfqq;
  2436. if (unlikely(!cfqd))
  2437. return;
  2438. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2439. if (cfqq) {
  2440. struct cfq_queue *new_cfqq;
  2441. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2442. GFP_ATOMIC);
  2443. if (new_cfqq) {
  2444. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2445. cfq_put_queue(cfqq);
  2446. }
  2447. }
  2448. cfqq = cic->cfqq[BLK_RW_SYNC];
  2449. if (cfqq)
  2450. cfq_mark_cfqq_prio_changed(cfqq);
  2451. }
  2452. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2453. pid_t pid, bool is_sync)
  2454. {
  2455. RB_CLEAR_NODE(&cfqq->rb_node);
  2456. RB_CLEAR_NODE(&cfqq->p_node);
  2457. INIT_LIST_HEAD(&cfqq->fifo);
  2458. cfqq->ref = 0;
  2459. cfqq->cfqd = cfqd;
  2460. cfq_mark_cfqq_prio_changed(cfqq);
  2461. if (is_sync) {
  2462. if (!cfq_class_idle(cfqq))
  2463. cfq_mark_cfqq_idle_window(cfqq);
  2464. cfq_mark_cfqq_sync(cfqq);
  2465. }
  2466. cfqq->pid = pid;
  2467. }
  2468. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2469. static void changed_cgroup(struct cfq_io_context *cic)
  2470. {
  2471. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2472. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2473. struct request_queue *q;
  2474. if (unlikely(!cfqd))
  2475. return;
  2476. q = cfqd->queue;
  2477. if (sync_cfqq) {
  2478. /*
  2479. * Drop reference to sync queue. A new sync queue will be
  2480. * assigned in new group upon arrival of a fresh request.
  2481. */
  2482. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2483. cic_set_cfqq(cic, NULL, 1);
  2484. cfq_put_queue(sync_cfqq);
  2485. }
  2486. }
  2487. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2488. static struct cfq_queue *
  2489. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2490. struct io_context *ioc, gfp_t gfp_mask)
  2491. {
  2492. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2493. struct cfq_io_context *cic;
  2494. struct cfq_group *cfqg;
  2495. retry:
  2496. cfqg = cfq_get_cfqg(cfqd);
  2497. cic = cfq_cic_lookup(cfqd, ioc);
  2498. /* cic always exists here */
  2499. cfqq = cic_to_cfqq(cic, is_sync);
  2500. /*
  2501. * Always try a new alloc if we fell back to the OOM cfqq
  2502. * originally, since it should just be a temporary situation.
  2503. */
  2504. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2505. cfqq = NULL;
  2506. if (new_cfqq) {
  2507. cfqq = new_cfqq;
  2508. new_cfqq = NULL;
  2509. } else if (gfp_mask & __GFP_WAIT) {
  2510. spin_unlock_irq(cfqd->queue->queue_lock);
  2511. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2512. gfp_mask | __GFP_ZERO,
  2513. cfqd->queue->node);
  2514. spin_lock_irq(cfqd->queue->queue_lock);
  2515. if (new_cfqq)
  2516. goto retry;
  2517. } else {
  2518. cfqq = kmem_cache_alloc_node(cfq_pool,
  2519. gfp_mask | __GFP_ZERO,
  2520. cfqd->queue->node);
  2521. }
  2522. if (cfqq) {
  2523. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2524. cfq_init_prio_data(cfqq, ioc);
  2525. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2526. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2527. } else
  2528. cfqq = &cfqd->oom_cfqq;
  2529. }
  2530. if (new_cfqq)
  2531. kmem_cache_free(cfq_pool, new_cfqq);
  2532. return cfqq;
  2533. }
  2534. static struct cfq_queue **
  2535. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2536. {
  2537. switch (ioprio_class) {
  2538. case IOPRIO_CLASS_RT:
  2539. return &cfqd->async_cfqq[0][ioprio];
  2540. case IOPRIO_CLASS_BE:
  2541. return &cfqd->async_cfqq[1][ioprio];
  2542. case IOPRIO_CLASS_IDLE:
  2543. return &cfqd->async_idle_cfqq;
  2544. default:
  2545. BUG();
  2546. }
  2547. }
  2548. static struct cfq_queue *
  2549. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2550. gfp_t gfp_mask)
  2551. {
  2552. const int ioprio = task_ioprio(ioc);
  2553. const int ioprio_class = task_ioprio_class(ioc);
  2554. struct cfq_queue **async_cfqq = NULL;
  2555. struct cfq_queue *cfqq = NULL;
  2556. if (!is_sync) {
  2557. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2558. cfqq = *async_cfqq;
  2559. }
  2560. if (!cfqq)
  2561. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2562. /*
  2563. * pin the queue now that it's allocated, scheduler exit will prune it
  2564. */
  2565. if (!is_sync && !(*async_cfqq)) {
  2566. cfqq->ref++;
  2567. *async_cfqq = cfqq;
  2568. }
  2569. cfqq->ref++;
  2570. return cfqq;
  2571. }
  2572. /*
  2573. * We drop cfq io contexts lazily, so we may find a dead one.
  2574. */
  2575. static void
  2576. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2577. struct cfq_io_context *cic)
  2578. {
  2579. unsigned long flags;
  2580. WARN_ON(!list_empty(&cic->queue_list));
  2581. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2582. spin_lock_irqsave(&ioc->lock, flags);
  2583. BUG_ON(rcu_dereference_check(ioc->ioc_data,
  2584. lockdep_is_held(&ioc->lock)) == cic);
  2585. radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
  2586. hlist_del_rcu(&cic->cic_list);
  2587. spin_unlock_irqrestore(&ioc->lock, flags);
  2588. cfq_cic_free(cic);
  2589. }
  2590. /**
  2591. * cfq_cic_lookup - lookup cfq_io_context
  2592. * @cfqd: the associated cfq_data
  2593. * @ioc: the associated io_context
  2594. *
  2595. * Look up cfq_io_context associated with @cfqd - @ioc pair. Must be
  2596. * called with queue_lock held.
  2597. */
  2598. static struct cfq_io_context *
  2599. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2600. {
  2601. struct cfq_io_context *cic;
  2602. lockdep_assert_held(cfqd->queue->queue_lock);
  2603. if (unlikely(!ioc))
  2604. return NULL;
  2605. rcu_read_lock();
  2606. /*
  2607. * we maintain a last-hit cache, to avoid browsing over the tree
  2608. */
  2609. cic = rcu_dereference(ioc->ioc_data);
  2610. if (cic && cic->key == cfqd)
  2611. goto out;
  2612. do {
  2613. cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
  2614. if (!cic)
  2615. break;
  2616. if (likely(cic->key == cfqd)) {
  2617. /* hint assignment itself can race safely */
  2618. rcu_assign_pointer(ioc->ioc_data, cic);
  2619. break;
  2620. }
  2621. cfq_drop_dead_cic(cfqd, ioc, cic);
  2622. } while (1);
  2623. out:
  2624. rcu_read_unlock();
  2625. return cic;
  2626. }
  2627. /**
  2628. * cfq_create_cic - create and link a cfq_io_context
  2629. * @cfqd: cfqd of interest
  2630. * @gfp_mask: allocation mask
  2631. *
  2632. * Make sure cfq_io_context linking %current->io_context and @cfqd exists.
  2633. * If ioc and/or cic doesn't exist, they will be created using @gfp_mask.
  2634. */
  2635. static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
  2636. {
  2637. struct request_queue *q = cfqd->queue;
  2638. struct cfq_io_context *cic = NULL;
  2639. struct io_context *ioc;
  2640. int ret = -ENOMEM;
  2641. might_sleep_if(gfp_mask & __GFP_WAIT);
  2642. /* allocate stuff */
  2643. ioc = current_io_context(gfp_mask, q->node);
  2644. if (!ioc)
  2645. goto out;
  2646. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2647. if (!cic)
  2648. goto out;
  2649. ret = radix_tree_preload(gfp_mask);
  2650. if (ret)
  2651. goto out;
  2652. cic->ioc = ioc;
  2653. cic->key = cfqd;
  2654. cic->q = cfqd->queue;
  2655. /* lock both q and ioc and try to link @cic */
  2656. spin_lock_irq(q->queue_lock);
  2657. spin_lock(&ioc->lock);
  2658. ret = radix_tree_insert(&ioc->radix_root, q->id, cic);
  2659. if (likely(!ret)) {
  2660. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2661. list_add(&cic->queue_list, &cfqd->cic_list);
  2662. cic = NULL;
  2663. } else if (ret == -EEXIST) {
  2664. /* someone else already did it */
  2665. ret = 0;
  2666. }
  2667. spin_unlock(&ioc->lock);
  2668. spin_unlock_irq(q->queue_lock);
  2669. radix_tree_preload_end();
  2670. out:
  2671. if (ret)
  2672. printk(KERN_ERR "cfq: cic link failed!\n");
  2673. if (cic)
  2674. cfq_cic_free(cic);
  2675. return ret;
  2676. }
  2677. /**
  2678. * cfq_get_io_context - acquire cfq_io_context and bump refcnt on io_context
  2679. * @cfqd: cfqd to setup cic for
  2680. * @gfp_mask: allocation mask
  2681. *
  2682. * Return cfq_io_context associating @cfqd and %current->io_context and
  2683. * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
  2684. * using @gfp_mask.
  2685. *
  2686. * Must be called under queue_lock which may be released and re-acquired.
  2687. * This function also may sleep depending on @gfp_mask.
  2688. */
  2689. static struct cfq_io_context *
  2690. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2691. {
  2692. struct request_queue *q = cfqd->queue;
  2693. struct cfq_io_context *cic = NULL;
  2694. struct io_context *ioc;
  2695. int err;
  2696. lockdep_assert_held(q->queue_lock);
  2697. while (true) {
  2698. /* fast path */
  2699. ioc = current->io_context;
  2700. if (likely(ioc)) {
  2701. cic = cfq_cic_lookup(cfqd, ioc);
  2702. if (likely(cic))
  2703. break;
  2704. }
  2705. /* slow path - unlock, create missing ones and retry */
  2706. spin_unlock_irq(q->queue_lock);
  2707. err = cfq_create_cic(cfqd, gfp_mask);
  2708. spin_lock_irq(q->queue_lock);
  2709. if (err)
  2710. return NULL;
  2711. }
  2712. /* bump @ioc's refcnt and handle changed notifications */
  2713. get_io_context(ioc);
  2714. if (unlikely(cic->changed)) {
  2715. if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
  2716. changed_ioprio(cic);
  2717. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2718. if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
  2719. changed_cgroup(cic);
  2720. #endif
  2721. }
  2722. return cic;
  2723. }
  2724. static void
  2725. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2726. {
  2727. unsigned long elapsed = jiffies - ttime->last_end_request;
  2728. elapsed = min(elapsed, 2UL * slice_idle);
  2729. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2730. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2731. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2732. }
  2733. static void
  2734. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2735. struct cfq_io_context *cic)
  2736. {
  2737. if (cfq_cfqq_sync(cfqq)) {
  2738. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2739. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2740. cfqd->cfq_slice_idle);
  2741. }
  2742. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2743. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2744. #endif
  2745. }
  2746. static void
  2747. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2748. struct request *rq)
  2749. {
  2750. sector_t sdist = 0;
  2751. sector_t n_sec = blk_rq_sectors(rq);
  2752. if (cfqq->last_request_pos) {
  2753. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2754. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2755. else
  2756. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2757. }
  2758. cfqq->seek_history <<= 1;
  2759. if (blk_queue_nonrot(cfqd->queue))
  2760. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2761. else
  2762. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2763. }
  2764. /*
  2765. * Disable idle window if the process thinks too long or seeks so much that
  2766. * it doesn't matter
  2767. */
  2768. static void
  2769. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2770. struct cfq_io_context *cic)
  2771. {
  2772. int old_idle, enable_idle;
  2773. /*
  2774. * Don't idle for async or idle io prio class
  2775. */
  2776. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2777. return;
  2778. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2779. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2780. cfq_mark_cfqq_deep(cfqq);
  2781. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2782. enable_idle = 0;
  2783. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2784. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2785. enable_idle = 0;
  2786. else if (sample_valid(cic->ttime.ttime_samples)) {
  2787. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2788. enable_idle = 0;
  2789. else
  2790. enable_idle = 1;
  2791. }
  2792. if (old_idle != enable_idle) {
  2793. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2794. if (enable_idle)
  2795. cfq_mark_cfqq_idle_window(cfqq);
  2796. else
  2797. cfq_clear_cfqq_idle_window(cfqq);
  2798. }
  2799. }
  2800. /*
  2801. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2802. * no or if we aren't sure, a 1 will cause a preempt.
  2803. */
  2804. static bool
  2805. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2806. struct request *rq)
  2807. {
  2808. struct cfq_queue *cfqq;
  2809. cfqq = cfqd->active_queue;
  2810. if (!cfqq)
  2811. return false;
  2812. if (cfq_class_idle(new_cfqq))
  2813. return false;
  2814. if (cfq_class_idle(cfqq))
  2815. return true;
  2816. /*
  2817. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2818. */
  2819. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2820. return false;
  2821. /*
  2822. * if the new request is sync, but the currently running queue is
  2823. * not, let the sync request have priority.
  2824. */
  2825. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2826. return true;
  2827. if (new_cfqq->cfqg != cfqq->cfqg)
  2828. return false;
  2829. if (cfq_slice_used(cfqq))
  2830. return true;
  2831. /* Allow preemption only if we are idling on sync-noidle tree */
  2832. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2833. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2834. new_cfqq->service_tree->count == 2 &&
  2835. RB_EMPTY_ROOT(&cfqq->sort_list))
  2836. return true;
  2837. /*
  2838. * So both queues are sync. Let the new request get disk time if
  2839. * it's a metadata request and the current queue is doing regular IO.
  2840. */
  2841. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2842. return true;
  2843. /*
  2844. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2845. */
  2846. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2847. return true;
  2848. /* An idle queue should not be idle now for some reason */
  2849. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2850. return true;
  2851. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2852. return false;
  2853. /*
  2854. * if this request is as-good as one we would expect from the
  2855. * current cfqq, let it preempt
  2856. */
  2857. if (cfq_rq_close(cfqd, cfqq, rq))
  2858. return true;
  2859. return false;
  2860. }
  2861. /*
  2862. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2863. * let it have half of its nominal slice.
  2864. */
  2865. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2866. {
  2867. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2868. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2869. cfq_slice_expired(cfqd, 1);
  2870. /*
  2871. * workload type is changed, don't save slice, otherwise preempt
  2872. * doesn't happen
  2873. */
  2874. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2875. cfqq->cfqg->saved_workload_slice = 0;
  2876. /*
  2877. * Put the new queue at the front of the of the current list,
  2878. * so we know that it will be selected next.
  2879. */
  2880. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2881. cfq_service_tree_add(cfqd, cfqq, 1);
  2882. cfqq->slice_end = 0;
  2883. cfq_mark_cfqq_slice_new(cfqq);
  2884. }
  2885. /*
  2886. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2887. * something we should do about it
  2888. */
  2889. static void
  2890. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2891. struct request *rq)
  2892. {
  2893. struct cfq_io_context *cic = RQ_CIC(rq);
  2894. cfqd->rq_queued++;
  2895. if (rq->cmd_flags & REQ_PRIO)
  2896. cfqq->prio_pending++;
  2897. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2898. cfq_update_io_seektime(cfqd, cfqq, rq);
  2899. cfq_update_idle_window(cfqd, cfqq, cic);
  2900. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2901. if (cfqq == cfqd->active_queue) {
  2902. /*
  2903. * Remember that we saw a request from this process, but
  2904. * don't start queuing just yet. Otherwise we risk seeing lots
  2905. * of tiny requests, because we disrupt the normal plugging
  2906. * and merging. If the request is already larger than a single
  2907. * page, let it rip immediately. For that case we assume that
  2908. * merging is already done. Ditto for a busy system that
  2909. * has other work pending, don't risk delaying until the
  2910. * idle timer unplug to continue working.
  2911. */
  2912. if (cfq_cfqq_wait_request(cfqq)) {
  2913. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2914. cfqd->busy_queues > 1) {
  2915. cfq_del_timer(cfqd, cfqq);
  2916. cfq_clear_cfqq_wait_request(cfqq);
  2917. __blk_run_queue(cfqd->queue);
  2918. } else {
  2919. cfq_blkiocg_update_idle_time_stats(
  2920. &cfqq->cfqg->blkg);
  2921. cfq_mark_cfqq_must_dispatch(cfqq);
  2922. }
  2923. }
  2924. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2925. /*
  2926. * not the active queue - expire current slice if it is
  2927. * idle and has expired it's mean thinktime or this new queue
  2928. * has some old slice time left and is of higher priority or
  2929. * this new queue is RT and the current one is BE
  2930. */
  2931. cfq_preempt_queue(cfqd, cfqq);
  2932. __blk_run_queue(cfqd->queue);
  2933. }
  2934. }
  2935. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2936. {
  2937. struct cfq_data *cfqd = q->elevator->elevator_data;
  2938. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2939. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2940. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2941. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2942. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2943. cfq_add_rq_rb(rq);
  2944. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2945. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2946. rq_is_sync(rq));
  2947. cfq_rq_enqueued(cfqd, cfqq, rq);
  2948. }
  2949. /*
  2950. * Update hw_tag based on peak queue depth over 50 samples under
  2951. * sufficient load.
  2952. */
  2953. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2954. {
  2955. struct cfq_queue *cfqq = cfqd->active_queue;
  2956. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2957. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2958. if (cfqd->hw_tag == 1)
  2959. return;
  2960. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2961. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2962. return;
  2963. /*
  2964. * If active queue hasn't enough requests and can idle, cfq might not
  2965. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2966. * case
  2967. */
  2968. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2969. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2970. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2971. return;
  2972. if (cfqd->hw_tag_samples++ < 50)
  2973. return;
  2974. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2975. cfqd->hw_tag = 1;
  2976. else
  2977. cfqd->hw_tag = 0;
  2978. }
  2979. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2980. {
  2981. struct cfq_io_context *cic = cfqd->active_cic;
  2982. /* If the queue already has requests, don't wait */
  2983. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2984. return false;
  2985. /* If there are other queues in the group, don't wait */
  2986. if (cfqq->cfqg->nr_cfqq > 1)
  2987. return false;
  2988. /* the only queue in the group, but think time is big */
  2989. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2990. return false;
  2991. if (cfq_slice_used(cfqq))
  2992. return true;
  2993. /* if slice left is less than think time, wait busy */
  2994. if (cic && sample_valid(cic->ttime.ttime_samples)
  2995. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2996. return true;
  2997. /*
  2998. * If think times is less than a jiffy than ttime_mean=0 and above
  2999. * will not be true. It might happen that slice has not expired yet
  3000. * but will expire soon (4-5 ns) during select_queue(). To cover the
  3001. * case where think time is less than a jiffy, mark the queue wait
  3002. * busy if only 1 jiffy is left in the slice.
  3003. */
  3004. if (cfqq->slice_end - jiffies == 1)
  3005. return true;
  3006. return false;
  3007. }
  3008. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  3009. {
  3010. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3011. struct cfq_data *cfqd = cfqq->cfqd;
  3012. const int sync = rq_is_sync(rq);
  3013. unsigned long now;
  3014. now = jiffies;
  3015. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  3016. !!(rq->cmd_flags & REQ_NOIDLE));
  3017. cfq_update_hw_tag(cfqd);
  3018. WARN_ON(!cfqd->rq_in_driver);
  3019. WARN_ON(!cfqq->dispatched);
  3020. cfqd->rq_in_driver--;
  3021. cfqq->dispatched--;
  3022. (RQ_CFQG(rq))->dispatched--;
  3023. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  3024. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  3025. rq_data_dir(rq), rq_is_sync(rq));
  3026. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3027. if (sync) {
  3028. struct cfq_rb_root *service_tree;
  3029. RQ_CIC(rq)->ttime.last_end_request = now;
  3030. if (cfq_cfqq_on_rr(cfqq))
  3031. service_tree = cfqq->service_tree;
  3032. else
  3033. service_tree = service_tree_for(cfqq->cfqg,
  3034. cfqq_prio(cfqq), cfqq_type(cfqq));
  3035. service_tree->ttime.last_end_request = now;
  3036. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3037. cfqd->last_delayed_sync = now;
  3038. }
  3039. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3040. cfqq->cfqg->ttime.last_end_request = now;
  3041. #endif
  3042. /*
  3043. * If this is the active queue, check if it needs to be expired,
  3044. * or if we want to idle in case it has no pending requests.
  3045. */
  3046. if (cfqd->active_queue == cfqq) {
  3047. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3048. if (cfq_cfqq_slice_new(cfqq)) {
  3049. cfq_set_prio_slice(cfqd, cfqq);
  3050. cfq_clear_cfqq_slice_new(cfqq);
  3051. }
  3052. /*
  3053. * Should we wait for next request to come in before we expire
  3054. * the queue.
  3055. */
  3056. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3057. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3058. if (!cfqd->cfq_slice_idle)
  3059. extend_sl = cfqd->cfq_group_idle;
  3060. cfqq->slice_end = jiffies + extend_sl;
  3061. cfq_mark_cfqq_wait_busy(cfqq);
  3062. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3063. }
  3064. /*
  3065. * Idling is not enabled on:
  3066. * - expired queues
  3067. * - idle-priority queues
  3068. * - async queues
  3069. * - queues with still some requests queued
  3070. * - when there is a close cooperator
  3071. */
  3072. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3073. cfq_slice_expired(cfqd, 1);
  3074. else if (sync && cfqq_empty &&
  3075. !cfq_close_cooperator(cfqd, cfqq)) {
  3076. cfq_arm_slice_timer(cfqd);
  3077. }
  3078. }
  3079. if (!cfqd->rq_in_driver)
  3080. cfq_schedule_dispatch(cfqd);
  3081. }
  3082. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3083. {
  3084. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3085. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3086. return ELV_MQUEUE_MUST;
  3087. }
  3088. return ELV_MQUEUE_MAY;
  3089. }
  3090. static int cfq_may_queue(struct request_queue *q, int rw)
  3091. {
  3092. struct cfq_data *cfqd = q->elevator->elevator_data;
  3093. struct task_struct *tsk = current;
  3094. struct cfq_io_context *cic;
  3095. struct cfq_queue *cfqq;
  3096. /*
  3097. * don't force setup of a queue from here, as a call to may_queue
  3098. * does not necessarily imply that a request actually will be queued.
  3099. * so just lookup a possibly existing queue, or return 'may queue'
  3100. * if that fails
  3101. */
  3102. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3103. if (!cic)
  3104. return ELV_MQUEUE_MAY;
  3105. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3106. if (cfqq) {
  3107. cfq_init_prio_data(cfqq, cic->ioc);
  3108. return __cfq_may_queue(cfqq);
  3109. }
  3110. return ELV_MQUEUE_MAY;
  3111. }
  3112. /*
  3113. * queue lock held here
  3114. */
  3115. static void cfq_put_request(struct request *rq)
  3116. {
  3117. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3118. if (cfqq) {
  3119. const int rw = rq_data_dir(rq);
  3120. BUG_ON(!cfqq->allocated[rw]);
  3121. cfqq->allocated[rw]--;
  3122. put_io_context(RQ_CIC(rq)->ioc, cfqq->cfqd->queue);
  3123. rq->elevator_private[0] = NULL;
  3124. rq->elevator_private[1] = NULL;
  3125. /* Put down rq reference on cfqg */
  3126. cfq_put_cfqg(RQ_CFQG(rq));
  3127. rq->elevator_private[2] = NULL;
  3128. cfq_put_queue(cfqq);
  3129. }
  3130. }
  3131. static struct cfq_queue *
  3132. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3133. struct cfq_queue *cfqq)
  3134. {
  3135. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3136. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3137. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3138. cfq_put_queue(cfqq);
  3139. return cic_to_cfqq(cic, 1);
  3140. }
  3141. /*
  3142. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3143. * was the last process referring to said cfqq.
  3144. */
  3145. static struct cfq_queue *
  3146. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3147. {
  3148. if (cfqq_process_refs(cfqq) == 1) {
  3149. cfqq->pid = current->pid;
  3150. cfq_clear_cfqq_coop(cfqq);
  3151. cfq_clear_cfqq_split_coop(cfqq);
  3152. return cfqq;
  3153. }
  3154. cic_set_cfqq(cic, NULL, 1);
  3155. cfq_put_cooperator(cfqq);
  3156. cfq_put_queue(cfqq);
  3157. return NULL;
  3158. }
  3159. /*
  3160. * Allocate cfq data structures associated with this request.
  3161. */
  3162. static int
  3163. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3164. {
  3165. struct cfq_data *cfqd = q->elevator->elevator_data;
  3166. struct cfq_io_context *cic;
  3167. const int rw = rq_data_dir(rq);
  3168. const bool is_sync = rq_is_sync(rq);
  3169. struct cfq_queue *cfqq;
  3170. might_sleep_if(gfp_mask & __GFP_WAIT);
  3171. spin_lock_irq(q->queue_lock);
  3172. cic = cfq_get_io_context(cfqd, gfp_mask);
  3173. if (!cic)
  3174. goto queue_fail;
  3175. new_queue:
  3176. cfqq = cic_to_cfqq(cic, is_sync);
  3177. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3178. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3179. cic_set_cfqq(cic, cfqq, is_sync);
  3180. } else {
  3181. /*
  3182. * If the queue was seeky for too long, break it apart.
  3183. */
  3184. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3185. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3186. cfqq = split_cfqq(cic, cfqq);
  3187. if (!cfqq)
  3188. goto new_queue;
  3189. }
  3190. /*
  3191. * Check to see if this queue is scheduled to merge with
  3192. * another, closely cooperating queue. The merging of
  3193. * queues happens here as it must be done in process context.
  3194. * The reference on new_cfqq was taken in merge_cfqqs.
  3195. */
  3196. if (cfqq->new_cfqq)
  3197. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3198. }
  3199. cfqq->allocated[rw]++;
  3200. cfqq->ref++;
  3201. rq->elevator_private[0] = cic;
  3202. rq->elevator_private[1] = cfqq;
  3203. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3204. spin_unlock_irq(q->queue_lock);
  3205. return 0;
  3206. queue_fail:
  3207. cfq_schedule_dispatch(cfqd);
  3208. spin_unlock_irq(q->queue_lock);
  3209. cfq_log(cfqd, "set_request fail");
  3210. return 1;
  3211. }
  3212. static void cfq_kick_queue(struct work_struct *work)
  3213. {
  3214. struct cfq_data *cfqd =
  3215. container_of(work, struct cfq_data, unplug_work);
  3216. struct request_queue *q = cfqd->queue;
  3217. spin_lock_irq(q->queue_lock);
  3218. __blk_run_queue(cfqd->queue);
  3219. spin_unlock_irq(q->queue_lock);
  3220. }
  3221. /*
  3222. * Timer running if the active_queue is currently idling inside its time slice
  3223. */
  3224. static void cfq_idle_slice_timer(unsigned long data)
  3225. {
  3226. struct cfq_data *cfqd = (struct cfq_data *) data;
  3227. struct cfq_queue *cfqq;
  3228. unsigned long flags;
  3229. int timed_out = 1;
  3230. cfq_log(cfqd, "idle timer fired");
  3231. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3232. cfqq = cfqd->active_queue;
  3233. if (cfqq) {
  3234. timed_out = 0;
  3235. /*
  3236. * We saw a request before the queue expired, let it through
  3237. */
  3238. if (cfq_cfqq_must_dispatch(cfqq))
  3239. goto out_kick;
  3240. /*
  3241. * expired
  3242. */
  3243. if (cfq_slice_used(cfqq))
  3244. goto expire;
  3245. /*
  3246. * only expire and reinvoke request handler, if there are
  3247. * other queues with pending requests
  3248. */
  3249. if (!cfqd->busy_queues)
  3250. goto out_cont;
  3251. /*
  3252. * not expired and it has a request pending, let it dispatch
  3253. */
  3254. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3255. goto out_kick;
  3256. /*
  3257. * Queue depth flag is reset only when the idle didn't succeed
  3258. */
  3259. cfq_clear_cfqq_deep(cfqq);
  3260. }
  3261. expire:
  3262. cfq_slice_expired(cfqd, timed_out);
  3263. out_kick:
  3264. cfq_schedule_dispatch(cfqd);
  3265. out_cont:
  3266. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3267. }
  3268. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3269. {
  3270. del_timer_sync(&cfqd->idle_slice_timer);
  3271. cancel_work_sync(&cfqd->unplug_work);
  3272. }
  3273. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3274. {
  3275. int i;
  3276. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3277. if (cfqd->async_cfqq[0][i])
  3278. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3279. if (cfqd->async_cfqq[1][i])
  3280. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3281. }
  3282. if (cfqd->async_idle_cfqq)
  3283. cfq_put_queue(cfqd->async_idle_cfqq);
  3284. }
  3285. static void cfq_exit_queue(struct elevator_queue *e)
  3286. {
  3287. struct cfq_data *cfqd = e->elevator_data;
  3288. struct request_queue *q = cfqd->queue;
  3289. bool wait = false;
  3290. cfq_shutdown_timer_wq(cfqd);
  3291. spin_lock_irq(q->queue_lock);
  3292. if (cfqd->active_queue)
  3293. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3294. while (!list_empty(&cfqd->cic_list)) {
  3295. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3296. struct cfq_io_context,
  3297. queue_list);
  3298. struct io_context *ioc = cic->ioc;
  3299. spin_lock(&ioc->lock);
  3300. cfq_exit_cic(cic);
  3301. cfq_release_cic(cic);
  3302. spin_unlock(&ioc->lock);
  3303. }
  3304. cfq_put_async_queues(cfqd);
  3305. cfq_release_cfq_groups(cfqd);
  3306. /*
  3307. * If there are groups which we could not unlink from blkcg list,
  3308. * wait for a rcu period for them to be freed.
  3309. */
  3310. if (cfqd->nr_blkcg_linked_grps)
  3311. wait = true;
  3312. spin_unlock_irq(q->queue_lock);
  3313. cfq_shutdown_timer_wq(cfqd);
  3314. /*
  3315. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3316. * Do this wait only if there are other unlinked groups out
  3317. * there. This can happen if cgroup deletion path claimed the
  3318. * responsibility of cleaning up a group before queue cleanup code
  3319. * get to the group.
  3320. *
  3321. * Do not call synchronize_rcu() unconditionally as there are drivers
  3322. * which create/delete request queue hundreds of times during scan/boot
  3323. * and synchronize_rcu() can take significant time and slow down boot.
  3324. */
  3325. if (wait)
  3326. synchronize_rcu();
  3327. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3328. /* Free up per cpu stats for root group */
  3329. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3330. #endif
  3331. kfree(cfqd);
  3332. }
  3333. static void *cfq_init_queue(struct request_queue *q)
  3334. {
  3335. struct cfq_data *cfqd;
  3336. int i, j;
  3337. struct cfq_group *cfqg;
  3338. struct cfq_rb_root *st;
  3339. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3340. if (!cfqd)
  3341. return NULL;
  3342. /* Init root service tree */
  3343. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3344. /* Init root group */
  3345. cfqg = &cfqd->root_group;
  3346. for_each_cfqg_st(cfqg, i, j, st)
  3347. *st = CFQ_RB_ROOT;
  3348. RB_CLEAR_NODE(&cfqg->rb_node);
  3349. /* Give preference to root group over other groups */
  3350. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3351. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3352. /*
  3353. * Set root group reference to 2. One reference will be dropped when
  3354. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3355. * Other reference will remain there as we don't want to delete this
  3356. * group as it is statically allocated and gets destroyed when
  3357. * throtl_data goes away.
  3358. */
  3359. cfqg->ref = 2;
  3360. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3361. kfree(cfqg);
  3362. kfree(cfqd);
  3363. return NULL;
  3364. }
  3365. rcu_read_lock();
  3366. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3367. (void *)cfqd, 0);
  3368. rcu_read_unlock();
  3369. cfqd->nr_blkcg_linked_grps++;
  3370. /* Add group on cfqd->cfqg_list */
  3371. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3372. #endif
  3373. /*
  3374. * Not strictly needed (since RB_ROOT just clears the node and we
  3375. * zeroed cfqd on alloc), but better be safe in case someone decides
  3376. * to add magic to the rb code
  3377. */
  3378. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3379. cfqd->prio_trees[i] = RB_ROOT;
  3380. /*
  3381. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3382. * Grab a permanent reference to it, so that the normal code flow
  3383. * will not attempt to free it.
  3384. */
  3385. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3386. cfqd->oom_cfqq.ref++;
  3387. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3388. INIT_LIST_HEAD(&cfqd->cic_list);
  3389. cfqd->queue = q;
  3390. init_timer(&cfqd->idle_slice_timer);
  3391. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3392. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3393. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3394. cfqd->cfq_quantum = cfq_quantum;
  3395. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3396. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3397. cfqd->cfq_back_max = cfq_back_max;
  3398. cfqd->cfq_back_penalty = cfq_back_penalty;
  3399. cfqd->cfq_slice[0] = cfq_slice_async;
  3400. cfqd->cfq_slice[1] = cfq_slice_sync;
  3401. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3402. cfqd->cfq_slice_idle = cfq_slice_idle;
  3403. cfqd->cfq_group_idle = cfq_group_idle;
  3404. cfqd->cfq_latency = 1;
  3405. cfqd->hw_tag = -1;
  3406. /*
  3407. * we optimistically start assuming sync ops weren't delayed in last
  3408. * second, in order to have larger depth for async operations.
  3409. */
  3410. cfqd->last_delayed_sync = jiffies - HZ;
  3411. return cfqd;
  3412. }
  3413. static void cfq_slab_kill(void)
  3414. {
  3415. /*
  3416. * Caller already ensured that pending RCU callbacks are completed,
  3417. * so we should have no busy allocations at this point.
  3418. */
  3419. if (cfq_pool)
  3420. kmem_cache_destroy(cfq_pool);
  3421. if (cfq_ioc_pool)
  3422. kmem_cache_destroy(cfq_ioc_pool);
  3423. }
  3424. static int __init cfq_slab_setup(void)
  3425. {
  3426. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3427. if (!cfq_pool)
  3428. goto fail;
  3429. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3430. if (!cfq_ioc_pool)
  3431. goto fail;
  3432. return 0;
  3433. fail:
  3434. cfq_slab_kill();
  3435. return -ENOMEM;
  3436. }
  3437. /*
  3438. * sysfs parts below -->
  3439. */
  3440. static ssize_t
  3441. cfq_var_show(unsigned int var, char *page)
  3442. {
  3443. return sprintf(page, "%d\n", var);
  3444. }
  3445. static ssize_t
  3446. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3447. {
  3448. char *p = (char *) page;
  3449. *var = simple_strtoul(p, &p, 10);
  3450. return count;
  3451. }
  3452. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3453. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3454. { \
  3455. struct cfq_data *cfqd = e->elevator_data; \
  3456. unsigned int __data = __VAR; \
  3457. if (__CONV) \
  3458. __data = jiffies_to_msecs(__data); \
  3459. return cfq_var_show(__data, (page)); \
  3460. }
  3461. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3462. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3463. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3464. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3465. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3466. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3467. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3468. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3469. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3470. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3471. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3472. #undef SHOW_FUNCTION
  3473. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3474. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3475. { \
  3476. struct cfq_data *cfqd = e->elevator_data; \
  3477. unsigned int __data; \
  3478. int ret = cfq_var_store(&__data, (page), count); \
  3479. if (__data < (MIN)) \
  3480. __data = (MIN); \
  3481. else if (__data > (MAX)) \
  3482. __data = (MAX); \
  3483. if (__CONV) \
  3484. *(__PTR) = msecs_to_jiffies(__data); \
  3485. else \
  3486. *(__PTR) = __data; \
  3487. return ret; \
  3488. }
  3489. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3490. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3491. UINT_MAX, 1);
  3492. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3493. UINT_MAX, 1);
  3494. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3495. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3496. UINT_MAX, 0);
  3497. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3498. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3499. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3500. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3501. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3502. UINT_MAX, 0);
  3503. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3504. #undef STORE_FUNCTION
  3505. #define CFQ_ATTR(name) \
  3506. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3507. static struct elv_fs_entry cfq_attrs[] = {
  3508. CFQ_ATTR(quantum),
  3509. CFQ_ATTR(fifo_expire_sync),
  3510. CFQ_ATTR(fifo_expire_async),
  3511. CFQ_ATTR(back_seek_max),
  3512. CFQ_ATTR(back_seek_penalty),
  3513. CFQ_ATTR(slice_sync),
  3514. CFQ_ATTR(slice_async),
  3515. CFQ_ATTR(slice_async_rq),
  3516. CFQ_ATTR(slice_idle),
  3517. CFQ_ATTR(group_idle),
  3518. CFQ_ATTR(low_latency),
  3519. __ATTR_NULL
  3520. };
  3521. static struct elevator_type iosched_cfq = {
  3522. .ops = {
  3523. .elevator_merge_fn = cfq_merge,
  3524. .elevator_merged_fn = cfq_merged_request,
  3525. .elevator_merge_req_fn = cfq_merged_requests,
  3526. .elevator_allow_merge_fn = cfq_allow_merge,
  3527. .elevator_bio_merged_fn = cfq_bio_merged,
  3528. .elevator_dispatch_fn = cfq_dispatch_requests,
  3529. .elevator_add_req_fn = cfq_insert_request,
  3530. .elevator_activate_req_fn = cfq_activate_request,
  3531. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3532. .elevator_completed_req_fn = cfq_completed_request,
  3533. .elevator_former_req_fn = elv_rb_former_request,
  3534. .elevator_latter_req_fn = elv_rb_latter_request,
  3535. .elevator_set_req_fn = cfq_set_request,
  3536. .elevator_put_req_fn = cfq_put_request,
  3537. .elevator_may_queue_fn = cfq_may_queue,
  3538. .elevator_init_fn = cfq_init_queue,
  3539. .elevator_exit_fn = cfq_exit_queue,
  3540. .trim = cfq_free_io_context,
  3541. },
  3542. .elevator_attrs = cfq_attrs,
  3543. .elevator_name = "cfq",
  3544. .elevator_owner = THIS_MODULE,
  3545. };
  3546. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3547. static struct blkio_policy_type blkio_policy_cfq = {
  3548. .ops = {
  3549. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3550. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3551. },
  3552. .plid = BLKIO_POLICY_PROP,
  3553. };
  3554. #else
  3555. static struct blkio_policy_type blkio_policy_cfq;
  3556. #endif
  3557. static int __init cfq_init(void)
  3558. {
  3559. /*
  3560. * could be 0 on HZ < 1000 setups
  3561. */
  3562. if (!cfq_slice_async)
  3563. cfq_slice_async = 1;
  3564. if (!cfq_slice_idle)
  3565. cfq_slice_idle = 1;
  3566. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3567. if (!cfq_group_idle)
  3568. cfq_group_idle = 1;
  3569. #else
  3570. cfq_group_idle = 0;
  3571. #endif
  3572. if (cfq_slab_setup())
  3573. return -ENOMEM;
  3574. elv_register(&iosched_cfq);
  3575. blkio_policy_register(&blkio_policy_cfq);
  3576. return 0;
  3577. }
  3578. static void __exit cfq_exit(void)
  3579. {
  3580. DECLARE_COMPLETION_ONSTACK(all_gone);
  3581. blkio_policy_unregister(&blkio_policy_cfq);
  3582. elv_unregister(&iosched_cfq);
  3583. ioc_gone = &all_gone;
  3584. /* ioc_gone's update must be visible before reading ioc_count */
  3585. smp_wmb();
  3586. /*
  3587. * this also protects us from entering cfq_slab_kill() with
  3588. * pending RCU callbacks
  3589. */
  3590. if (elv_ioc_count_read(cfq_ioc_count))
  3591. wait_for_completion(&all_gone);
  3592. cfq_slab_kill();
  3593. }
  3594. module_init(cfq_init);
  3595. module_exit(cfq_exit);
  3596. MODULE_AUTHOR("Jens Axboe");
  3597. MODULE_LICENSE("GPL");
  3598. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");