namespace.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct vfsmount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct vfsmount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct vfsmount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct vfsmount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct vfsmount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. /*
  137. * vfsmount lock must be held for write
  138. */
  139. unsigned int mnt_get_count(struct vfsmount *mnt)
  140. {
  141. #ifdef CONFIG_SMP
  142. unsigned int count = 0;
  143. int cpu;
  144. for_each_possible_cpu(cpu) {
  145. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  146. }
  147. return count;
  148. #else
  149. return mnt->mnt_count;
  150. #endif
  151. }
  152. static struct vfsmount *alloc_vfsmnt(const char *name)
  153. {
  154. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  155. if (mnt) {
  156. int err;
  157. err = mnt_alloc_id(mnt);
  158. if (err)
  159. goto out_free_cache;
  160. if (name) {
  161. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  162. if (!mnt->mnt_devname)
  163. goto out_free_id;
  164. }
  165. #ifdef CONFIG_SMP
  166. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  167. if (!mnt->mnt_pcp)
  168. goto out_free_devname;
  169. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  170. #else
  171. mnt->mnt_count = 1;
  172. mnt->mnt_writers = 0;
  173. #endif
  174. INIT_LIST_HEAD(&mnt->mnt_hash);
  175. INIT_LIST_HEAD(&mnt->mnt_child);
  176. INIT_LIST_HEAD(&mnt->mnt_mounts);
  177. INIT_LIST_HEAD(&mnt->mnt_list);
  178. INIT_LIST_HEAD(&mnt->mnt_expire);
  179. INIT_LIST_HEAD(&mnt->mnt_share);
  180. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  181. INIT_LIST_HEAD(&mnt->mnt_slave);
  182. #ifdef CONFIG_FSNOTIFY
  183. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  184. #endif
  185. }
  186. return mnt;
  187. #ifdef CONFIG_SMP
  188. out_free_devname:
  189. kfree(mnt->mnt_devname);
  190. #endif
  191. out_free_id:
  192. mnt_free_id(mnt);
  193. out_free_cache:
  194. kmem_cache_free(mnt_cache, mnt);
  195. return NULL;
  196. }
  197. /*
  198. * Most r/o checks on a fs are for operations that take
  199. * discrete amounts of time, like a write() or unlink().
  200. * We must keep track of when those operations start
  201. * (for permission checks) and when they end, so that
  202. * we can determine when writes are able to occur to
  203. * a filesystem.
  204. */
  205. /*
  206. * __mnt_is_readonly: check whether a mount is read-only
  207. * @mnt: the mount to check for its write status
  208. *
  209. * This shouldn't be used directly ouside of the VFS.
  210. * It does not guarantee that the filesystem will stay
  211. * r/w, just that it is right *now*. This can not and
  212. * should not be used in place of IS_RDONLY(inode).
  213. * mnt_want/drop_write() will _keep_ the filesystem
  214. * r/w.
  215. */
  216. int __mnt_is_readonly(struct vfsmount *mnt)
  217. {
  218. if (mnt->mnt_flags & MNT_READONLY)
  219. return 1;
  220. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  221. return 1;
  222. return 0;
  223. }
  224. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  225. static inline void mnt_inc_writers(struct vfsmount *mnt)
  226. {
  227. #ifdef CONFIG_SMP
  228. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  229. #else
  230. mnt->mnt_writers++;
  231. #endif
  232. }
  233. static inline void mnt_dec_writers(struct vfsmount *mnt)
  234. {
  235. #ifdef CONFIG_SMP
  236. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  237. #else
  238. mnt->mnt_writers--;
  239. #endif
  240. }
  241. static unsigned int mnt_get_writers(struct vfsmount *mnt)
  242. {
  243. #ifdef CONFIG_SMP
  244. unsigned int count = 0;
  245. int cpu;
  246. for_each_possible_cpu(cpu) {
  247. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  248. }
  249. return count;
  250. #else
  251. return mnt->mnt_writers;
  252. #endif
  253. }
  254. /*
  255. * Most r/o checks on a fs are for operations that take
  256. * discrete amounts of time, like a write() or unlink().
  257. * We must keep track of when those operations start
  258. * (for permission checks) and when they end, so that
  259. * we can determine when writes are able to occur to
  260. * a filesystem.
  261. */
  262. /**
  263. * mnt_want_write - get write access to a mount
  264. * @mnt: the mount on which to take a write
  265. *
  266. * This tells the low-level filesystem that a write is
  267. * about to be performed to it, and makes sure that
  268. * writes are allowed before returning success. When
  269. * the write operation is finished, mnt_drop_write()
  270. * must be called. This is effectively a refcount.
  271. */
  272. int mnt_want_write(struct vfsmount *mnt)
  273. {
  274. int ret = 0;
  275. preempt_disable();
  276. mnt_inc_writers(mnt);
  277. /*
  278. * The store to mnt_inc_writers must be visible before we pass
  279. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  280. * incremented count after it has set MNT_WRITE_HOLD.
  281. */
  282. smp_mb();
  283. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  284. cpu_relax();
  285. /*
  286. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  287. * be set to match its requirements. So we must not load that until
  288. * MNT_WRITE_HOLD is cleared.
  289. */
  290. smp_rmb();
  291. if (__mnt_is_readonly(mnt)) {
  292. mnt_dec_writers(mnt);
  293. ret = -EROFS;
  294. goto out;
  295. }
  296. out:
  297. preempt_enable();
  298. return ret;
  299. }
  300. EXPORT_SYMBOL_GPL(mnt_want_write);
  301. /**
  302. * mnt_clone_write - get write access to a mount
  303. * @mnt: the mount on which to take a write
  304. *
  305. * This is effectively like mnt_want_write, except
  306. * it must only be used to take an extra write reference
  307. * on a mountpoint that we already know has a write reference
  308. * on it. This allows some optimisation.
  309. *
  310. * After finished, mnt_drop_write must be called as usual to
  311. * drop the reference.
  312. */
  313. int mnt_clone_write(struct vfsmount *mnt)
  314. {
  315. /* superblock may be r/o */
  316. if (__mnt_is_readonly(mnt))
  317. return -EROFS;
  318. preempt_disable();
  319. mnt_inc_writers(mnt);
  320. preempt_enable();
  321. return 0;
  322. }
  323. EXPORT_SYMBOL_GPL(mnt_clone_write);
  324. /**
  325. * mnt_want_write_file - get write access to a file's mount
  326. * @file: the file who's mount on which to take a write
  327. *
  328. * This is like mnt_want_write, but it takes a file and can
  329. * do some optimisations if the file is open for write already
  330. */
  331. int mnt_want_write_file(struct file *file)
  332. {
  333. struct inode *inode = file->f_dentry->d_inode;
  334. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  335. return mnt_want_write(file->f_path.mnt);
  336. else
  337. return mnt_clone_write(file->f_path.mnt);
  338. }
  339. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  340. /**
  341. * mnt_drop_write - give up write access to a mount
  342. * @mnt: the mount on which to give up write access
  343. *
  344. * Tells the low-level filesystem that we are done
  345. * performing writes to it. Must be matched with
  346. * mnt_want_write() call above.
  347. */
  348. void mnt_drop_write(struct vfsmount *mnt)
  349. {
  350. preempt_disable();
  351. mnt_dec_writers(mnt);
  352. preempt_enable();
  353. }
  354. EXPORT_SYMBOL_GPL(mnt_drop_write);
  355. static int mnt_make_readonly(struct vfsmount *mnt)
  356. {
  357. int ret = 0;
  358. br_write_lock(vfsmount_lock);
  359. mnt->mnt_flags |= MNT_WRITE_HOLD;
  360. /*
  361. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  362. * should be visible before we do.
  363. */
  364. smp_mb();
  365. /*
  366. * With writers on hold, if this value is zero, then there are
  367. * definitely no active writers (although held writers may subsequently
  368. * increment the count, they'll have to wait, and decrement it after
  369. * seeing MNT_READONLY).
  370. *
  371. * It is OK to have counter incremented on one CPU and decremented on
  372. * another: the sum will add up correctly. The danger would be when we
  373. * sum up each counter, if we read a counter before it is incremented,
  374. * but then read another CPU's count which it has been subsequently
  375. * decremented from -- we would see more decrements than we should.
  376. * MNT_WRITE_HOLD protects against this scenario, because
  377. * mnt_want_write first increments count, then smp_mb, then spins on
  378. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  379. * we're counting up here.
  380. */
  381. if (mnt_get_writers(mnt) > 0)
  382. ret = -EBUSY;
  383. else
  384. mnt->mnt_flags |= MNT_READONLY;
  385. /*
  386. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  387. * that become unheld will see MNT_READONLY.
  388. */
  389. smp_wmb();
  390. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  391. br_write_unlock(vfsmount_lock);
  392. return ret;
  393. }
  394. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  395. {
  396. br_write_lock(vfsmount_lock);
  397. mnt->mnt_flags &= ~MNT_READONLY;
  398. br_write_unlock(vfsmount_lock);
  399. }
  400. static void free_vfsmnt(struct vfsmount *mnt)
  401. {
  402. kfree(mnt->mnt_devname);
  403. mnt_free_id(mnt);
  404. #ifdef CONFIG_SMP
  405. free_percpu(mnt->mnt_pcp);
  406. #endif
  407. kmem_cache_free(mnt_cache, mnt);
  408. }
  409. /*
  410. * find the first or last mount at @dentry on vfsmount @mnt depending on
  411. * @dir. If @dir is set return the first mount else return the last mount.
  412. * vfsmount_lock must be held for read or write.
  413. */
  414. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  415. int dir)
  416. {
  417. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  418. struct list_head *tmp = head;
  419. struct vfsmount *p, *found = NULL;
  420. for (;;) {
  421. tmp = dir ? tmp->next : tmp->prev;
  422. p = NULL;
  423. if (tmp == head)
  424. break;
  425. p = list_entry(tmp, struct vfsmount, mnt_hash);
  426. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  427. found = p;
  428. break;
  429. }
  430. }
  431. return found;
  432. }
  433. /*
  434. * lookup_mnt increments the ref count before returning
  435. * the vfsmount struct.
  436. */
  437. struct vfsmount *lookup_mnt(struct path *path)
  438. {
  439. struct vfsmount *child_mnt;
  440. br_read_lock(vfsmount_lock);
  441. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  442. mntget(child_mnt);
  443. br_read_unlock(vfsmount_lock);
  444. return child_mnt;
  445. }
  446. static inline int check_mnt(struct vfsmount *mnt)
  447. {
  448. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  449. }
  450. /*
  451. * vfsmount lock must be held for write
  452. */
  453. static void touch_mnt_namespace(struct mnt_namespace *ns)
  454. {
  455. if (ns) {
  456. ns->event = ++event;
  457. wake_up_interruptible(&ns->poll);
  458. }
  459. }
  460. /*
  461. * vfsmount lock must be held for write
  462. */
  463. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  464. {
  465. if (ns && ns->event != event) {
  466. ns->event = event;
  467. wake_up_interruptible(&ns->poll);
  468. }
  469. }
  470. /*
  471. * Clear dentry's mounted state if it has no remaining mounts.
  472. * vfsmount_lock must be held for write.
  473. */
  474. static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
  475. {
  476. unsigned u;
  477. for (u = 0; u < HASH_SIZE; u++) {
  478. struct vfsmount *p;
  479. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  480. if (p->mnt_mountpoint == dentry)
  481. return;
  482. }
  483. }
  484. spin_lock(&dentry->d_lock);
  485. dentry->d_flags &= ~DCACHE_MOUNTED;
  486. spin_unlock(&dentry->d_lock);
  487. }
  488. /*
  489. * vfsmount lock must be held for write
  490. */
  491. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  492. {
  493. old_path->dentry = mnt->mnt_mountpoint;
  494. old_path->mnt = mnt->mnt_parent;
  495. mnt->mnt_parent = mnt;
  496. mnt->mnt_mountpoint = mnt->mnt_root;
  497. list_del_init(&mnt->mnt_child);
  498. list_del_init(&mnt->mnt_hash);
  499. dentry_reset_mounted(old_path->mnt, old_path->dentry);
  500. }
  501. /*
  502. * vfsmount lock must be held for write
  503. */
  504. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  505. struct vfsmount *child_mnt)
  506. {
  507. child_mnt->mnt_parent = mntget(mnt);
  508. child_mnt->mnt_mountpoint = dget(dentry);
  509. spin_lock(&dentry->d_lock);
  510. dentry->d_flags |= DCACHE_MOUNTED;
  511. spin_unlock(&dentry->d_lock);
  512. }
  513. /*
  514. * vfsmount lock must be held for write
  515. */
  516. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  517. {
  518. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  519. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  520. hash(path->mnt, path->dentry));
  521. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  522. }
  523. static inline void __mnt_make_longterm(struct vfsmount *mnt)
  524. {
  525. #ifdef CONFIG_SMP
  526. atomic_inc(&mnt->mnt_longterm);
  527. #endif
  528. }
  529. /* needs vfsmount lock for write */
  530. static inline void __mnt_make_shortterm(struct vfsmount *mnt)
  531. {
  532. #ifdef CONFIG_SMP
  533. atomic_dec(&mnt->mnt_longterm);
  534. #endif
  535. }
  536. /*
  537. * vfsmount lock must be held for write
  538. */
  539. static void commit_tree(struct vfsmount *mnt)
  540. {
  541. struct vfsmount *parent = mnt->mnt_parent;
  542. struct vfsmount *m;
  543. LIST_HEAD(head);
  544. struct mnt_namespace *n = parent->mnt_ns;
  545. BUG_ON(parent == mnt);
  546. list_add_tail(&head, &mnt->mnt_list);
  547. list_for_each_entry(m, &head, mnt_list) {
  548. m->mnt_ns = n;
  549. __mnt_make_longterm(m);
  550. }
  551. list_splice(&head, n->list.prev);
  552. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  553. hash(parent, mnt->mnt_mountpoint));
  554. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  555. touch_mnt_namespace(n);
  556. }
  557. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  558. {
  559. struct list_head *next = p->mnt_mounts.next;
  560. if (next == &p->mnt_mounts) {
  561. while (1) {
  562. if (p == root)
  563. return NULL;
  564. next = p->mnt_child.next;
  565. if (next != &p->mnt_parent->mnt_mounts)
  566. break;
  567. p = p->mnt_parent;
  568. }
  569. }
  570. return list_entry(next, struct vfsmount, mnt_child);
  571. }
  572. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  573. {
  574. struct list_head *prev = p->mnt_mounts.prev;
  575. while (prev != &p->mnt_mounts) {
  576. p = list_entry(prev, struct vfsmount, mnt_child);
  577. prev = p->mnt_mounts.prev;
  578. }
  579. return p;
  580. }
  581. struct vfsmount *
  582. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  583. {
  584. struct vfsmount *mnt;
  585. struct dentry *root;
  586. if (!type)
  587. return ERR_PTR(-ENODEV);
  588. mnt = alloc_vfsmnt(name);
  589. if (!mnt)
  590. return ERR_PTR(-ENOMEM);
  591. if (flags & MS_KERNMOUNT)
  592. mnt->mnt_flags = MNT_INTERNAL;
  593. root = mount_fs(type, flags, name, data);
  594. if (IS_ERR(root)) {
  595. free_vfsmnt(mnt);
  596. return ERR_CAST(root);
  597. }
  598. mnt->mnt_root = root;
  599. mnt->mnt_sb = root->d_sb;
  600. mnt->mnt_mountpoint = mnt->mnt_root;
  601. mnt->mnt_parent = mnt;
  602. return mnt;
  603. }
  604. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  605. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  606. int flag)
  607. {
  608. struct super_block *sb = old->mnt_sb;
  609. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  610. if (mnt) {
  611. if (flag & (CL_SLAVE | CL_PRIVATE))
  612. mnt->mnt_group_id = 0; /* not a peer of original */
  613. else
  614. mnt->mnt_group_id = old->mnt_group_id;
  615. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  616. int err = mnt_alloc_group_id(mnt);
  617. if (err)
  618. goto out_free;
  619. }
  620. mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
  621. atomic_inc(&sb->s_active);
  622. mnt->mnt_sb = sb;
  623. mnt->mnt_root = dget(root);
  624. mnt->mnt_mountpoint = mnt->mnt_root;
  625. mnt->mnt_parent = mnt;
  626. if (flag & CL_SLAVE) {
  627. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  628. mnt->mnt_master = old;
  629. CLEAR_MNT_SHARED(mnt);
  630. } else if (!(flag & CL_PRIVATE)) {
  631. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  632. list_add(&mnt->mnt_share, &old->mnt_share);
  633. if (IS_MNT_SLAVE(old))
  634. list_add(&mnt->mnt_slave, &old->mnt_slave);
  635. mnt->mnt_master = old->mnt_master;
  636. }
  637. if (flag & CL_MAKE_SHARED)
  638. set_mnt_shared(mnt);
  639. /* stick the duplicate mount on the same expiry list
  640. * as the original if that was on one */
  641. if (flag & CL_EXPIRE) {
  642. if (!list_empty(&old->mnt_expire))
  643. list_add(&mnt->mnt_expire, &old->mnt_expire);
  644. }
  645. }
  646. return mnt;
  647. out_free:
  648. free_vfsmnt(mnt);
  649. return NULL;
  650. }
  651. static inline void mntfree(struct vfsmount *mnt)
  652. {
  653. struct super_block *sb = mnt->mnt_sb;
  654. /*
  655. * This probably indicates that somebody messed
  656. * up a mnt_want/drop_write() pair. If this
  657. * happens, the filesystem was probably unable
  658. * to make r/w->r/o transitions.
  659. */
  660. /*
  661. * The locking used to deal with mnt_count decrement provides barriers,
  662. * so mnt_get_writers() below is safe.
  663. */
  664. WARN_ON(mnt_get_writers(mnt));
  665. fsnotify_vfsmount_delete(mnt);
  666. dput(mnt->mnt_root);
  667. free_vfsmnt(mnt);
  668. deactivate_super(sb);
  669. }
  670. static void mntput_no_expire(struct vfsmount *mnt)
  671. {
  672. put_again:
  673. #ifdef CONFIG_SMP
  674. br_read_lock(vfsmount_lock);
  675. if (likely(atomic_read(&mnt->mnt_longterm))) {
  676. mnt_add_count(mnt, -1);
  677. br_read_unlock(vfsmount_lock);
  678. return;
  679. }
  680. br_read_unlock(vfsmount_lock);
  681. br_write_lock(vfsmount_lock);
  682. mnt_add_count(mnt, -1);
  683. if (mnt_get_count(mnt)) {
  684. br_write_unlock(vfsmount_lock);
  685. return;
  686. }
  687. #else
  688. mnt_add_count(mnt, -1);
  689. if (likely(mnt_get_count(mnt)))
  690. return;
  691. br_write_lock(vfsmount_lock);
  692. #endif
  693. if (unlikely(mnt->mnt_pinned)) {
  694. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  695. mnt->mnt_pinned = 0;
  696. br_write_unlock(vfsmount_lock);
  697. acct_auto_close_mnt(mnt);
  698. goto put_again;
  699. }
  700. br_write_unlock(vfsmount_lock);
  701. mntfree(mnt);
  702. }
  703. void mntput(struct vfsmount *mnt)
  704. {
  705. if (mnt) {
  706. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  707. if (unlikely(mnt->mnt_expiry_mark))
  708. mnt->mnt_expiry_mark = 0;
  709. mntput_no_expire(mnt);
  710. }
  711. }
  712. EXPORT_SYMBOL(mntput);
  713. struct vfsmount *mntget(struct vfsmount *mnt)
  714. {
  715. if (mnt)
  716. mnt_add_count(mnt, 1);
  717. return mnt;
  718. }
  719. EXPORT_SYMBOL(mntget);
  720. void mnt_pin(struct vfsmount *mnt)
  721. {
  722. br_write_lock(vfsmount_lock);
  723. mnt->mnt_pinned++;
  724. br_write_unlock(vfsmount_lock);
  725. }
  726. EXPORT_SYMBOL(mnt_pin);
  727. void mnt_unpin(struct vfsmount *mnt)
  728. {
  729. br_write_lock(vfsmount_lock);
  730. if (mnt->mnt_pinned) {
  731. mnt_add_count(mnt, 1);
  732. mnt->mnt_pinned--;
  733. }
  734. br_write_unlock(vfsmount_lock);
  735. }
  736. EXPORT_SYMBOL(mnt_unpin);
  737. static inline void mangle(struct seq_file *m, const char *s)
  738. {
  739. seq_escape(m, s, " \t\n\\");
  740. }
  741. /*
  742. * Simple .show_options callback for filesystems which don't want to
  743. * implement more complex mount option showing.
  744. *
  745. * See also save_mount_options().
  746. */
  747. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  748. {
  749. const char *options;
  750. rcu_read_lock();
  751. options = rcu_dereference(mnt->mnt_sb->s_options);
  752. if (options != NULL && options[0]) {
  753. seq_putc(m, ',');
  754. mangle(m, options);
  755. }
  756. rcu_read_unlock();
  757. return 0;
  758. }
  759. EXPORT_SYMBOL(generic_show_options);
  760. /*
  761. * If filesystem uses generic_show_options(), this function should be
  762. * called from the fill_super() callback.
  763. *
  764. * The .remount_fs callback usually needs to be handled in a special
  765. * way, to make sure, that previous options are not overwritten if the
  766. * remount fails.
  767. *
  768. * Also note, that if the filesystem's .remount_fs function doesn't
  769. * reset all options to their default value, but changes only newly
  770. * given options, then the displayed options will not reflect reality
  771. * any more.
  772. */
  773. void save_mount_options(struct super_block *sb, char *options)
  774. {
  775. BUG_ON(sb->s_options);
  776. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  777. }
  778. EXPORT_SYMBOL(save_mount_options);
  779. void replace_mount_options(struct super_block *sb, char *options)
  780. {
  781. char *old = sb->s_options;
  782. rcu_assign_pointer(sb->s_options, options);
  783. if (old) {
  784. synchronize_rcu();
  785. kfree(old);
  786. }
  787. }
  788. EXPORT_SYMBOL(replace_mount_options);
  789. #ifdef CONFIG_PROC_FS
  790. /* iterator */
  791. static void *m_start(struct seq_file *m, loff_t *pos)
  792. {
  793. struct proc_mounts *p = m->private;
  794. down_read(&namespace_sem);
  795. return seq_list_start(&p->ns->list, *pos);
  796. }
  797. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  798. {
  799. struct proc_mounts *p = m->private;
  800. return seq_list_next(v, &p->ns->list, pos);
  801. }
  802. static void m_stop(struct seq_file *m, void *v)
  803. {
  804. up_read(&namespace_sem);
  805. }
  806. int mnt_had_events(struct proc_mounts *p)
  807. {
  808. struct mnt_namespace *ns = p->ns;
  809. int res = 0;
  810. br_read_lock(vfsmount_lock);
  811. if (p->m.poll_event != ns->event) {
  812. p->m.poll_event = ns->event;
  813. res = 1;
  814. }
  815. br_read_unlock(vfsmount_lock);
  816. return res;
  817. }
  818. struct proc_fs_info {
  819. int flag;
  820. const char *str;
  821. };
  822. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  823. {
  824. static const struct proc_fs_info fs_info[] = {
  825. { MS_SYNCHRONOUS, ",sync" },
  826. { MS_DIRSYNC, ",dirsync" },
  827. { MS_MANDLOCK, ",mand" },
  828. { 0, NULL }
  829. };
  830. const struct proc_fs_info *fs_infop;
  831. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  832. if (sb->s_flags & fs_infop->flag)
  833. seq_puts(m, fs_infop->str);
  834. }
  835. return security_sb_show_options(m, sb);
  836. }
  837. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  838. {
  839. static const struct proc_fs_info mnt_info[] = {
  840. { MNT_NOSUID, ",nosuid" },
  841. { MNT_NODEV, ",nodev" },
  842. { MNT_NOEXEC, ",noexec" },
  843. { MNT_NOATIME, ",noatime" },
  844. { MNT_NODIRATIME, ",nodiratime" },
  845. { MNT_RELATIME, ",relatime" },
  846. { 0, NULL }
  847. };
  848. const struct proc_fs_info *fs_infop;
  849. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  850. if (mnt->mnt_flags & fs_infop->flag)
  851. seq_puts(m, fs_infop->str);
  852. }
  853. }
  854. static void show_type(struct seq_file *m, struct super_block *sb)
  855. {
  856. mangle(m, sb->s_type->name);
  857. if (sb->s_subtype && sb->s_subtype[0]) {
  858. seq_putc(m, '.');
  859. mangle(m, sb->s_subtype);
  860. }
  861. }
  862. static int show_vfsmnt(struct seq_file *m, void *v)
  863. {
  864. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  865. int err = 0;
  866. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  867. if (mnt->mnt_sb->s_op->show_devname) {
  868. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  869. if (err)
  870. goto out;
  871. } else {
  872. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  873. }
  874. seq_putc(m, ' ');
  875. seq_path(m, &mnt_path, " \t\n\\");
  876. seq_putc(m, ' ');
  877. show_type(m, mnt->mnt_sb);
  878. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  879. err = show_sb_opts(m, mnt->mnt_sb);
  880. if (err)
  881. goto out;
  882. show_mnt_opts(m, mnt);
  883. if (mnt->mnt_sb->s_op->show_options)
  884. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  885. seq_puts(m, " 0 0\n");
  886. out:
  887. return err;
  888. }
  889. const struct seq_operations mounts_op = {
  890. .start = m_start,
  891. .next = m_next,
  892. .stop = m_stop,
  893. .show = show_vfsmnt
  894. };
  895. static int show_mountinfo(struct seq_file *m, void *v)
  896. {
  897. struct proc_mounts *p = m->private;
  898. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  899. struct super_block *sb = mnt->mnt_sb;
  900. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  901. struct path root = p->root;
  902. int err = 0;
  903. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  904. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  905. if (sb->s_op->show_path)
  906. err = sb->s_op->show_path(m, mnt);
  907. else
  908. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  909. if (err)
  910. goto out;
  911. seq_putc(m, ' ');
  912. /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
  913. err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
  914. if (err)
  915. goto out;
  916. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  917. show_mnt_opts(m, mnt);
  918. /* Tagged fields ("foo:X" or "bar") */
  919. if (IS_MNT_SHARED(mnt))
  920. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  921. if (IS_MNT_SLAVE(mnt)) {
  922. int master = mnt->mnt_master->mnt_group_id;
  923. int dom = get_dominating_id(mnt, &p->root);
  924. seq_printf(m, " master:%i", master);
  925. if (dom && dom != master)
  926. seq_printf(m, " propagate_from:%i", dom);
  927. }
  928. if (IS_MNT_UNBINDABLE(mnt))
  929. seq_puts(m, " unbindable");
  930. /* Filesystem specific data */
  931. seq_puts(m, " - ");
  932. show_type(m, sb);
  933. seq_putc(m, ' ');
  934. if (sb->s_op->show_devname)
  935. err = sb->s_op->show_devname(m, mnt);
  936. else
  937. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  938. if (err)
  939. goto out;
  940. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  941. err = show_sb_opts(m, sb);
  942. if (err)
  943. goto out;
  944. if (sb->s_op->show_options)
  945. err = sb->s_op->show_options(m, mnt);
  946. seq_putc(m, '\n');
  947. out:
  948. return err;
  949. }
  950. const struct seq_operations mountinfo_op = {
  951. .start = m_start,
  952. .next = m_next,
  953. .stop = m_stop,
  954. .show = show_mountinfo,
  955. };
  956. static int show_vfsstat(struct seq_file *m, void *v)
  957. {
  958. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  959. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  960. int err = 0;
  961. /* device */
  962. if (mnt->mnt_sb->s_op->show_devname) {
  963. seq_puts(m, "device ");
  964. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  965. } else {
  966. if (mnt->mnt_devname) {
  967. seq_puts(m, "device ");
  968. mangle(m, mnt->mnt_devname);
  969. } else
  970. seq_puts(m, "no device");
  971. }
  972. /* mount point */
  973. seq_puts(m, " mounted on ");
  974. seq_path(m, &mnt_path, " \t\n\\");
  975. seq_putc(m, ' ');
  976. /* file system type */
  977. seq_puts(m, "with fstype ");
  978. show_type(m, mnt->mnt_sb);
  979. /* optional statistics */
  980. if (mnt->mnt_sb->s_op->show_stats) {
  981. seq_putc(m, ' ');
  982. if (!err)
  983. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  984. }
  985. seq_putc(m, '\n');
  986. return err;
  987. }
  988. const struct seq_operations mountstats_op = {
  989. .start = m_start,
  990. .next = m_next,
  991. .stop = m_stop,
  992. .show = show_vfsstat,
  993. };
  994. #endif /* CONFIG_PROC_FS */
  995. /**
  996. * may_umount_tree - check if a mount tree is busy
  997. * @mnt: root of mount tree
  998. *
  999. * This is called to check if a tree of mounts has any
  1000. * open files, pwds, chroots or sub mounts that are
  1001. * busy.
  1002. */
  1003. int may_umount_tree(struct vfsmount *mnt)
  1004. {
  1005. int actual_refs = 0;
  1006. int minimum_refs = 0;
  1007. struct vfsmount *p;
  1008. /* write lock needed for mnt_get_count */
  1009. br_write_lock(vfsmount_lock);
  1010. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1011. actual_refs += mnt_get_count(p);
  1012. minimum_refs += 2;
  1013. }
  1014. br_write_unlock(vfsmount_lock);
  1015. if (actual_refs > minimum_refs)
  1016. return 0;
  1017. return 1;
  1018. }
  1019. EXPORT_SYMBOL(may_umount_tree);
  1020. /**
  1021. * may_umount - check if a mount point is busy
  1022. * @mnt: root of mount
  1023. *
  1024. * This is called to check if a mount point has any
  1025. * open files, pwds, chroots or sub mounts. If the
  1026. * mount has sub mounts this will return busy
  1027. * regardless of whether the sub mounts are busy.
  1028. *
  1029. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1030. * give false negatives. The main reason why it's here is that we need
  1031. * a non-destructive way to look for easily umountable filesystems.
  1032. */
  1033. int may_umount(struct vfsmount *mnt)
  1034. {
  1035. int ret = 1;
  1036. down_read(&namespace_sem);
  1037. br_write_lock(vfsmount_lock);
  1038. if (propagate_mount_busy(mnt, 2))
  1039. ret = 0;
  1040. br_write_unlock(vfsmount_lock);
  1041. up_read(&namespace_sem);
  1042. return ret;
  1043. }
  1044. EXPORT_SYMBOL(may_umount);
  1045. void release_mounts(struct list_head *head)
  1046. {
  1047. struct vfsmount *mnt;
  1048. while (!list_empty(head)) {
  1049. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  1050. list_del_init(&mnt->mnt_hash);
  1051. if (mnt_has_parent(mnt)) {
  1052. struct dentry *dentry;
  1053. struct vfsmount *m;
  1054. br_write_lock(vfsmount_lock);
  1055. dentry = mnt->mnt_mountpoint;
  1056. m = mnt->mnt_parent;
  1057. mnt->mnt_mountpoint = mnt->mnt_root;
  1058. mnt->mnt_parent = mnt;
  1059. m->mnt_ghosts--;
  1060. br_write_unlock(vfsmount_lock);
  1061. dput(dentry);
  1062. mntput(m);
  1063. }
  1064. mntput(mnt);
  1065. }
  1066. }
  1067. /*
  1068. * vfsmount lock must be held for write
  1069. * namespace_sem must be held for write
  1070. */
  1071. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  1072. {
  1073. LIST_HEAD(tmp_list);
  1074. struct vfsmount *p;
  1075. for (p = mnt; p; p = next_mnt(p, mnt))
  1076. list_move(&p->mnt_hash, &tmp_list);
  1077. if (propagate)
  1078. propagate_umount(&tmp_list);
  1079. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1080. list_del_init(&p->mnt_expire);
  1081. list_del_init(&p->mnt_list);
  1082. __touch_mnt_namespace(p->mnt_ns);
  1083. p->mnt_ns = NULL;
  1084. __mnt_make_shortterm(p);
  1085. list_del_init(&p->mnt_child);
  1086. if (mnt_has_parent(p)) {
  1087. p->mnt_parent->mnt_ghosts++;
  1088. dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
  1089. }
  1090. change_mnt_propagation(p, MS_PRIVATE);
  1091. }
  1092. list_splice(&tmp_list, kill);
  1093. }
  1094. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  1095. static int do_umount(struct vfsmount *mnt, int flags)
  1096. {
  1097. struct super_block *sb = mnt->mnt_sb;
  1098. int retval;
  1099. LIST_HEAD(umount_list);
  1100. retval = security_sb_umount(mnt, flags);
  1101. if (retval)
  1102. return retval;
  1103. /*
  1104. * Allow userspace to request a mountpoint be expired rather than
  1105. * unmounting unconditionally. Unmount only happens if:
  1106. * (1) the mark is already set (the mark is cleared by mntput())
  1107. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1108. */
  1109. if (flags & MNT_EXPIRE) {
  1110. if (mnt == current->fs->root.mnt ||
  1111. flags & (MNT_FORCE | MNT_DETACH))
  1112. return -EINVAL;
  1113. /*
  1114. * probably don't strictly need the lock here if we examined
  1115. * all race cases, but it's a slowpath.
  1116. */
  1117. br_write_lock(vfsmount_lock);
  1118. if (mnt_get_count(mnt) != 2) {
  1119. br_write_unlock(vfsmount_lock);
  1120. return -EBUSY;
  1121. }
  1122. br_write_unlock(vfsmount_lock);
  1123. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1124. return -EAGAIN;
  1125. }
  1126. /*
  1127. * If we may have to abort operations to get out of this
  1128. * mount, and they will themselves hold resources we must
  1129. * allow the fs to do things. In the Unix tradition of
  1130. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1131. * might fail to complete on the first run through as other tasks
  1132. * must return, and the like. Thats for the mount program to worry
  1133. * about for the moment.
  1134. */
  1135. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1136. sb->s_op->umount_begin(sb);
  1137. }
  1138. /*
  1139. * No sense to grab the lock for this test, but test itself looks
  1140. * somewhat bogus. Suggestions for better replacement?
  1141. * Ho-hum... In principle, we might treat that as umount + switch
  1142. * to rootfs. GC would eventually take care of the old vfsmount.
  1143. * Actually it makes sense, especially if rootfs would contain a
  1144. * /reboot - static binary that would close all descriptors and
  1145. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1146. */
  1147. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1148. /*
  1149. * Special case for "unmounting" root ...
  1150. * we just try to remount it readonly.
  1151. */
  1152. down_write(&sb->s_umount);
  1153. if (!(sb->s_flags & MS_RDONLY))
  1154. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1155. up_write(&sb->s_umount);
  1156. return retval;
  1157. }
  1158. down_write(&namespace_sem);
  1159. br_write_lock(vfsmount_lock);
  1160. event++;
  1161. if (!(flags & MNT_DETACH))
  1162. shrink_submounts(mnt, &umount_list);
  1163. retval = -EBUSY;
  1164. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1165. if (!list_empty(&mnt->mnt_list))
  1166. umount_tree(mnt, 1, &umount_list);
  1167. retval = 0;
  1168. }
  1169. br_write_unlock(vfsmount_lock);
  1170. up_write(&namespace_sem);
  1171. release_mounts(&umount_list);
  1172. return retval;
  1173. }
  1174. /*
  1175. * Now umount can handle mount points as well as block devices.
  1176. * This is important for filesystems which use unnamed block devices.
  1177. *
  1178. * We now support a flag for forced unmount like the other 'big iron'
  1179. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1180. */
  1181. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1182. {
  1183. struct path path;
  1184. int retval;
  1185. int lookup_flags = 0;
  1186. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1187. return -EINVAL;
  1188. if (!(flags & UMOUNT_NOFOLLOW))
  1189. lookup_flags |= LOOKUP_FOLLOW;
  1190. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1191. if (retval)
  1192. goto out;
  1193. retval = -EINVAL;
  1194. if (path.dentry != path.mnt->mnt_root)
  1195. goto dput_and_out;
  1196. if (!check_mnt(path.mnt))
  1197. goto dput_and_out;
  1198. retval = -EPERM;
  1199. if (!capable(CAP_SYS_ADMIN))
  1200. goto dput_and_out;
  1201. retval = do_umount(path.mnt, flags);
  1202. dput_and_out:
  1203. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1204. dput(path.dentry);
  1205. mntput_no_expire(path.mnt);
  1206. out:
  1207. return retval;
  1208. }
  1209. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1210. /*
  1211. * The 2.0 compatible umount. No flags.
  1212. */
  1213. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1214. {
  1215. return sys_umount(name, 0);
  1216. }
  1217. #endif
  1218. static int mount_is_safe(struct path *path)
  1219. {
  1220. if (capable(CAP_SYS_ADMIN))
  1221. return 0;
  1222. return -EPERM;
  1223. #ifdef notyet
  1224. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1225. return -EPERM;
  1226. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1227. if (current_uid() != path->dentry->d_inode->i_uid)
  1228. return -EPERM;
  1229. }
  1230. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1231. return -EPERM;
  1232. return 0;
  1233. #endif
  1234. }
  1235. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1236. int flag)
  1237. {
  1238. struct vfsmount *res, *p, *q, *r, *s;
  1239. struct path path;
  1240. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1241. return NULL;
  1242. res = q = clone_mnt(mnt, dentry, flag);
  1243. if (!q)
  1244. goto Enomem;
  1245. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1246. p = mnt;
  1247. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1248. if (!is_subdir(r->mnt_mountpoint, dentry))
  1249. continue;
  1250. for (s = r; s; s = next_mnt(s, r)) {
  1251. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1252. s = skip_mnt_tree(s);
  1253. continue;
  1254. }
  1255. while (p != s->mnt_parent) {
  1256. p = p->mnt_parent;
  1257. q = q->mnt_parent;
  1258. }
  1259. p = s;
  1260. path.mnt = q;
  1261. path.dentry = p->mnt_mountpoint;
  1262. q = clone_mnt(p, p->mnt_root, flag);
  1263. if (!q)
  1264. goto Enomem;
  1265. br_write_lock(vfsmount_lock);
  1266. list_add_tail(&q->mnt_list, &res->mnt_list);
  1267. attach_mnt(q, &path);
  1268. br_write_unlock(vfsmount_lock);
  1269. }
  1270. }
  1271. return res;
  1272. Enomem:
  1273. if (res) {
  1274. LIST_HEAD(umount_list);
  1275. br_write_lock(vfsmount_lock);
  1276. umount_tree(res, 0, &umount_list);
  1277. br_write_unlock(vfsmount_lock);
  1278. release_mounts(&umount_list);
  1279. }
  1280. return NULL;
  1281. }
  1282. struct vfsmount *collect_mounts(struct path *path)
  1283. {
  1284. struct vfsmount *tree;
  1285. down_write(&namespace_sem);
  1286. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1287. up_write(&namespace_sem);
  1288. return tree;
  1289. }
  1290. void drop_collected_mounts(struct vfsmount *mnt)
  1291. {
  1292. LIST_HEAD(umount_list);
  1293. down_write(&namespace_sem);
  1294. br_write_lock(vfsmount_lock);
  1295. umount_tree(mnt, 0, &umount_list);
  1296. br_write_unlock(vfsmount_lock);
  1297. up_write(&namespace_sem);
  1298. release_mounts(&umount_list);
  1299. }
  1300. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1301. struct vfsmount *root)
  1302. {
  1303. struct vfsmount *mnt;
  1304. int res = f(root, arg);
  1305. if (res)
  1306. return res;
  1307. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1308. res = f(mnt, arg);
  1309. if (res)
  1310. return res;
  1311. }
  1312. return 0;
  1313. }
  1314. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1315. {
  1316. struct vfsmount *p;
  1317. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1318. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1319. mnt_release_group_id(p);
  1320. }
  1321. }
  1322. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1323. {
  1324. struct vfsmount *p;
  1325. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1326. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1327. int err = mnt_alloc_group_id(p);
  1328. if (err) {
  1329. cleanup_group_ids(mnt, p);
  1330. return err;
  1331. }
  1332. }
  1333. }
  1334. return 0;
  1335. }
  1336. /*
  1337. * @source_mnt : mount tree to be attached
  1338. * @nd : place the mount tree @source_mnt is attached
  1339. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1340. * store the parent mount and mountpoint dentry.
  1341. * (done when source_mnt is moved)
  1342. *
  1343. * NOTE: in the table below explains the semantics when a source mount
  1344. * of a given type is attached to a destination mount of a given type.
  1345. * ---------------------------------------------------------------------------
  1346. * | BIND MOUNT OPERATION |
  1347. * |**************************************************************************
  1348. * | source-->| shared | private | slave | unbindable |
  1349. * | dest | | | | |
  1350. * | | | | | | |
  1351. * | v | | | | |
  1352. * |**************************************************************************
  1353. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1354. * | | | | | |
  1355. * |non-shared| shared (+) | private | slave (*) | invalid |
  1356. * ***************************************************************************
  1357. * A bind operation clones the source mount and mounts the clone on the
  1358. * destination mount.
  1359. *
  1360. * (++) the cloned mount is propagated to all the mounts in the propagation
  1361. * tree of the destination mount and the cloned mount is added to
  1362. * the peer group of the source mount.
  1363. * (+) the cloned mount is created under the destination mount and is marked
  1364. * as shared. The cloned mount is added to the peer group of the source
  1365. * mount.
  1366. * (+++) the mount is propagated to all the mounts in the propagation tree
  1367. * of the destination mount and the cloned mount is made slave
  1368. * of the same master as that of the source mount. The cloned mount
  1369. * is marked as 'shared and slave'.
  1370. * (*) the cloned mount is made a slave of the same master as that of the
  1371. * source mount.
  1372. *
  1373. * ---------------------------------------------------------------------------
  1374. * | MOVE MOUNT OPERATION |
  1375. * |**************************************************************************
  1376. * | source-->| shared | private | slave | unbindable |
  1377. * | dest | | | | |
  1378. * | | | | | | |
  1379. * | v | | | | |
  1380. * |**************************************************************************
  1381. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1382. * | | | | | |
  1383. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1384. * ***************************************************************************
  1385. *
  1386. * (+) the mount is moved to the destination. And is then propagated to
  1387. * all the mounts in the propagation tree of the destination mount.
  1388. * (+*) the mount is moved to the destination.
  1389. * (+++) the mount is moved to the destination and is then propagated to
  1390. * all the mounts belonging to the destination mount's propagation tree.
  1391. * the mount is marked as 'shared and slave'.
  1392. * (*) the mount continues to be a slave at the new location.
  1393. *
  1394. * if the source mount is a tree, the operations explained above is
  1395. * applied to each mount in the tree.
  1396. * Must be called without spinlocks held, since this function can sleep
  1397. * in allocations.
  1398. */
  1399. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1400. struct path *path, struct path *parent_path)
  1401. {
  1402. LIST_HEAD(tree_list);
  1403. struct vfsmount *dest_mnt = path->mnt;
  1404. struct dentry *dest_dentry = path->dentry;
  1405. struct vfsmount *child, *p;
  1406. int err;
  1407. if (IS_MNT_SHARED(dest_mnt)) {
  1408. err = invent_group_ids(source_mnt, true);
  1409. if (err)
  1410. goto out;
  1411. }
  1412. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1413. if (err)
  1414. goto out_cleanup_ids;
  1415. br_write_lock(vfsmount_lock);
  1416. if (IS_MNT_SHARED(dest_mnt)) {
  1417. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1418. set_mnt_shared(p);
  1419. }
  1420. if (parent_path) {
  1421. detach_mnt(source_mnt, parent_path);
  1422. attach_mnt(source_mnt, path);
  1423. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1424. } else {
  1425. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1426. commit_tree(source_mnt);
  1427. }
  1428. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1429. list_del_init(&child->mnt_hash);
  1430. commit_tree(child);
  1431. }
  1432. br_write_unlock(vfsmount_lock);
  1433. return 0;
  1434. out_cleanup_ids:
  1435. if (IS_MNT_SHARED(dest_mnt))
  1436. cleanup_group_ids(source_mnt, NULL);
  1437. out:
  1438. return err;
  1439. }
  1440. static int lock_mount(struct path *path)
  1441. {
  1442. struct vfsmount *mnt;
  1443. retry:
  1444. mutex_lock(&path->dentry->d_inode->i_mutex);
  1445. if (unlikely(cant_mount(path->dentry))) {
  1446. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1447. return -ENOENT;
  1448. }
  1449. down_write(&namespace_sem);
  1450. mnt = lookup_mnt(path);
  1451. if (likely(!mnt))
  1452. return 0;
  1453. up_write(&namespace_sem);
  1454. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1455. path_put(path);
  1456. path->mnt = mnt;
  1457. path->dentry = dget(mnt->mnt_root);
  1458. goto retry;
  1459. }
  1460. static void unlock_mount(struct path *path)
  1461. {
  1462. up_write(&namespace_sem);
  1463. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1464. }
  1465. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1466. {
  1467. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1468. return -EINVAL;
  1469. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1470. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1471. return -ENOTDIR;
  1472. if (d_unlinked(path->dentry))
  1473. return -ENOENT;
  1474. return attach_recursive_mnt(mnt, path, NULL);
  1475. }
  1476. /*
  1477. * Sanity check the flags to change_mnt_propagation.
  1478. */
  1479. static int flags_to_propagation_type(int flags)
  1480. {
  1481. int type = flags & ~(MS_REC | MS_SILENT);
  1482. /* Fail if any non-propagation flags are set */
  1483. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1484. return 0;
  1485. /* Only one propagation flag should be set */
  1486. if (!is_power_of_2(type))
  1487. return 0;
  1488. return type;
  1489. }
  1490. /*
  1491. * recursively change the type of the mountpoint.
  1492. */
  1493. static int do_change_type(struct path *path, int flag)
  1494. {
  1495. struct vfsmount *m, *mnt = path->mnt;
  1496. int recurse = flag & MS_REC;
  1497. int type;
  1498. int err = 0;
  1499. if (!capable(CAP_SYS_ADMIN))
  1500. return -EPERM;
  1501. if (path->dentry != path->mnt->mnt_root)
  1502. return -EINVAL;
  1503. type = flags_to_propagation_type(flag);
  1504. if (!type)
  1505. return -EINVAL;
  1506. down_write(&namespace_sem);
  1507. if (type == MS_SHARED) {
  1508. err = invent_group_ids(mnt, recurse);
  1509. if (err)
  1510. goto out_unlock;
  1511. }
  1512. br_write_lock(vfsmount_lock);
  1513. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1514. change_mnt_propagation(m, type);
  1515. br_write_unlock(vfsmount_lock);
  1516. out_unlock:
  1517. up_write(&namespace_sem);
  1518. return err;
  1519. }
  1520. /*
  1521. * do loopback mount.
  1522. */
  1523. static int do_loopback(struct path *path, char *old_name,
  1524. int recurse)
  1525. {
  1526. LIST_HEAD(umount_list);
  1527. struct path old_path;
  1528. struct vfsmount *mnt = NULL;
  1529. int err = mount_is_safe(path);
  1530. if (err)
  1531. return err;
  1532. if (!old_name || !*old_name)
  1533. return -EINVAL;
  1534. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1535. if (err)
  1536. return err;
  1537. err = lock_mount(path);
  1538. if (err)
  1539. goto out;
  1540. err = -EINVAL;
  1541. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1542. goto out2;
  1543. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1544. goto out2;
  1545. err = -ENOMEM;
  1546. if (recurse)
  1547. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1548. else
  1549. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1550. if (!mnt)
  1551. goto out2;
  1552. err = graft_tree(mnt, path);
  1553. if (err) {
  1554. br_write_lock(vfsmount_lock);
  1555. umount_tree(mnt, 0, &umount_list);
  1556. br_write_unlock(vfsmount_lock);
  1557. }
  1558. out2:
  1559. unlock_mount(path);
  1560. release_mounts(&umount_list);
  1561. out:
  1562. path_put(&old_path);
  1563. return err;
  1564. }
  1565. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1566. {
  1567. int error = 0;
  1568. int readonly_request = 0;
  1569. if (ms_flags & MS_RDONLY)
  1570. readonly_request = 1;
  1571. if (readonly_request == __mnt_is_readonly(mnt))
  1572. return 0;
  1573. if (readonly_request)
  1574. error = mnt_make_readonly(mnt);
  1575. else
  1576. __mnt_unmake_readonly(mnt);
  1577. return error;
  1578. }
  1579. /*
  1580. * change filesystem flags. dir should be a physical root of filesystem.
  1581. * If you've mounted a non-root directory somewhere and want to do remount
  1582. * on it - tough luck.
  1583. */
  1584. static int do_remount(struct path *path, int flags, int mnt_flags,
  1585. void *data)
  1586. {
  1587. int err;
  1588. struct super_block *sb = path->mnt->mnt_sb;
  1589. if (!capable(CAP_SYS_ADMIN))
  1590. return -EPERM;
  1591. if (!check_mnt(path->mnt))
  1592. return -EINVAL;
  1593. if (path->dentry != path->mnt->mnt_root)
  1594. return -EINVAL;
  1595. err = security_sb_remount(sb, data);
  1596. if (err)
  1597. return err;
  1598. down_write(&sb->s_umount);
  1599. if (flags & MS_BIND)
  1600. err = change_mount_flags(path->mnt, flags);
  1601. else
  1602. err = do_remount_sb(sb, flags, data, 0);
  1603. if (!err) {
  1604. br_write_lock(vfsmount_lock);
  1605. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1606. path->mnt->mnt_flags = mnt_flags;
  1607. br_write_unlock(vfsmount_lock);
  1608. }
  1609. up_write(&sb->s_umount);
  1610. if (!err) {
  1611. br_write_lock(vfsmount_lock);
  1612. touch_mnt_namespace(path->mnt->mnt_ns);
  1613. br_write_unlock(vfsmount_lock);
  1614. }
  1615. return err;
  1616. }
  1617. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1618. {
  1619. struct vfsmount *p;
  1620. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1621. if (IS_MNT_UNBINDABLE(p))
  1622. return 1;
  1623. }
  1624. return 0;
  1625. }
  1626. static int do_move_mount(struct path *path, char *old_name)
  1627. {
  1628. struct path old_path, parent_path;
  1629. struct vfsmount *p;
  1630. int err = 0;
  1631. if (!capable(CAP_SYS_ADMIN))
  1632. return -EPERM;
  1633. if (!old_name || !*old_name)
  1634. return -EINVAL;
  1635. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1636. if (err)
  1637. return err;
  1638. err = lock_mount(path);
  1639. if (err < 0)
  1640. goto out;
  1641. err = -EINVAL;
  1642. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1643. goto out1;
  1644. if (d_unlinked(path->dentry))
  1645. goto out1;
  1646. err = -EINVAL;
  1647. if (old_path.dentry != old_path.mnt->mnt_root)
  1648. goto out1;
  1649. if (!mnt_has_parent(old_path.mnt))
  1650. goto out1;
  1651. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1652. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1653. goto out1;
  1654. /*
  1655. * Don't move a mount residing in a shared parent.
  1656. */
  1657. if (old_path.mnt->mnt_parent &&
  1658. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1659. goto out1;
  1660. /*
  1661. * Don't move a mount tree containing unbindable mounts to a destination
  1662. * mount which is shared.
  1663. */
  1664. if (IS_MNT_SHARED(path->mnt) &&
  1665. tree_contains_unbindable(old_path.mnt))
  1666. goto out1;
  1667. err = -ELOOP;
  1668. for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
  1669. if (p == old_path.mnt)
  1670. goto out1;
  1671. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1672. if (err)
  1673. goto out1;
  1674. /* if the mount is moved, it should no longer be expire
  1675. * automatically */
  1676. list_del_init(&old_path.mnt->mnt_expire);
  1677. out1:
  1678. unlock_mount(path);
  1679. out:
  1680. if (!err)
  1681. path_put(&parent_path);
  1682. path_put(&old_path);
  1683. return err;
  1684. }
  1685. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1686. {
  1687. int err;
  1688. const char *subtype = strchr(fstype, '.');
  1689. if (subtype) {
  1690. subtype++;
  1691. err = -EINVAL;
  1692. if (!subtype[0])
  1693. goto err;
  1694. } else
  1695. subtype = "";
  1696. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1697. err = -ENOMEM;
  1698. if (!mnt->mnt_sb->s_subtype)
  1699. goto err;
  1700. return mnt;
  1701. err:
  1702. mntput(mnt);
  1703. return ERR_PTR(err);
  1704. }
  1705. struct vfsmount *
  1706. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1707. {
  1708. struct file_system_type *type = get_fs_type(fstype);
  1709. struct vfsmount *mnt;
  1710. if (!type)
  1711. return ERR_PTR(-ENODEV);
  1712. mnt = vfs_kern_mount(type, flags, name, data);
  1713. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1714. !mnt->mnt_sb->s_subtype)
  1715. mnt = fs_set_subtype(mnt, fstype);
  1716. put_filesystem(type);
  1717. return mnt;
  1718. }
  1719. EXPORT_SYMBOL_GPL(do_kern_mount);
  1720. /*
  1721. * add a mount into a namespace's mount tree
  1722. */
  1723. static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
  1724. {
  1725. int err;
  1726. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1727. err = lock_mount(path);
  1728. if (err)
  1729. return err;
  1730. err = -EINVAL;
  1731. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1732. goto unlock;
  1733. /* Refuse the same filesystem on the same mount point */
  1734. err = -EBUSY;
  1735. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1736. path->mnt->mnt_root == path->dentry)
  1737. goto unlock;
  1738. err = -EINVAL;
  1739. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1740. goto unlock;
  1741. newmnt->mnt_flags = mnt_flags;
  1742. err = graft_tree(newmnt, path);
  1743. unlock:
  1744. unlock_mount(path);
  1745. return err;
  1746. }
  1747. /*
  1748. * create a new mount for userspace and request it to be added into the
  1749. * namespace's tree
  1750. */
  1751. static int do_new_mount(struct path *path, char *type, int flags,
  1752. int mnt_flags, char *name, void *data)
  1753. {
  1754. struct vfsmount *mnt;
  1755. int err;
  1756. if (!type)
  1757. return -EINVAL;
  1758. /* we need capabilities... */
  1759. if (!capable(CAP_SYS_ADMIN))
  1760. return -EPERM;
  1761. mnt = do_kern_mount(type, flags, name, data);
  1762. if (IS_ERR(mnt))
  1763. return PTR_ERR(mnt);
  1764. err = do_add_mount(mnt, path, mnt_flags);
  1765. if (err)
  1766. mntput(mnt);
  1767. return err;
  1768. }
  1769. int finish_automount(struct vfsmount *m, struct path *path)
  1770. {
  1771. int err;
  1772. /* The new mount record should have at least 2 refs to prevent it being
  1773. * expired before we get a chance to add it
  1774. */
  1775. BUG_ON(mnt_get_count(m) < 2);
  1776. if (m->mnt_sb == path->mnt->mnt_sb &&
  1777. m->mnt_root == path->dentry) {
  1778. err = -ELOOP;
  1779. goto fail;
  1780. }
  1781. err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1782. if (!err)
  1783. return 0;
  1784. fail:
  1785. /* remove m from any expiration list it may be on */
  1786. if (!list_empty(&m->mnt_expire)) {
  1787. down_write(&namespace_sem);
  1788. br_write_lock(vfsmount_lock);
  1789. list_del_init(&m->mnt_expire);
  1790. br_write_unlock(vfsmount_lock);
  1791. up_write(&namespace_sem);
  1792. }
  1793. mntput(m);
  1794. mntput(m);
  1795. return err;
  1796. }
  1797. /**
  1798. * mnt_set_expiry - Put a mount on an expiration list
  1799. * @mnt: The mount to list.
  1800. * @expiry_list: The list to add the mount to.
  1801. */
  1802. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1803. {
  1804. down_write(&namespace_sem);
  1805. br_write_lock(vfsmount_lock);
  1806. list_add_tail(&mnt->mnt_expire, expiry_list);
  1807. br_write_unlock(vfsmount_lock);
  1808. up_write(&namespace_sem);
  1809. }
  1810. EXPORT_SYMBOL(mnt_set_expiry);
  1811. /*
  1812. * process a list of expirable mountpoints with the intent of discarding any
  1813. * mountpoints that aren't in use and haven't been touched since last we came
  1814. * here
  1815. */
  1816. void mark_mounts_for_expiry(struct list_head *mounts)
  1817. {
  1818. struct vfsmount *mnt, *next;
  1819. LIST_HEAD(graveyard);
  1820. LIST_HEAD(umounts);
  1821. if (list_empty(mounts))
  1822. return;
  1823. down_write(&namespace_sem);
  1824. br_write_lock(vfsmount_lock);
  1825. /* extract from the expiration list every vfsmount that matches the
  1826. * following criteria:
  1827. * - only referenced by its parent vfsmount
  1828. * - still marked for expiry (marked on the last call here; marks are
  1829. * cleared by mntput())
  1830. */
  1831. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1832. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1833. propagate_mount_busy(mnt, 1))
  1834. continue;
  1835. list_move(&mnt->mnt_expire, &graveyard);
  1836. }
  1837. while (!list_empty(&graveyard)) {
  1838. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1839. touch_mnt_namespace(mnt->mnt_ns);
  1840. umount_tree(mnt, 1, &umounts);
  1841. }
  1842. br_write_unlock(vfsmount_lock);
  1843. up_write(&namespace_sem);
  1844. release_mounts(&umounts);
  1845. }
  1846. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1847. /*
  1848. * Ripoff of 'select_parent()'
  1849. *
  1850. * search the list of submounts for a given mountpoint, and move any
  1851. * shrinkable submounts to the 'graveyard' list.
  1852. */
  1853. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1854. {
  1855. struct vfsmount *this_parent = parent;
  1856. struct list_head *next;
  1857. int found = 0;
  1858. repeat:
  1859. next = this_parent->mnt_mounts.next;
  1860. resume:
  1861. while (next != &this_parent->mnt_mounts) {
  1862. struct list_head *tmp = next;
  1863. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1864. next = tmp->next;
  1865. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1866. continue;
  1867. /*
  1868. * Descend a level if the d_mounts list is non-empty.
  1869. */
  1870. if (!list_empty(&mnt->mnt_mounts)) {
  1871. this_parent = mnt;
  1872. goto repeat;
  1873. }
  1874. if (!propagate_mount_busy(mnt, 1)) {
  1875. list_move_tail(&mnt->mnt_expire, graveyard);
  1876. found++;
  1877. }
  1878. }
  1879. /*
  1880. * All done at this level ... ascend and resume the search
  1881. */
  1882. if (this_parent != parent) {
  1883. next = this_parent->mnt_child.next;
  1884. this_parent = this_parent->mnt_parent;
  1885. goto resume;
  1886. }
  1887. return found;
  1888. }
  1889. /*
  1890. * process a list of expirable mountpoints with the intent of discarding any
  1891. * submounts of a specific parent mountpoint
  1892. *
  1893. * vfsmount_lock must be held for write
  1894. */
  1895. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1896. {
  1897. LIST_HEAD(graveyard);
  1898. struct vfsmount *m;
  1899. /* extract submounts of 'mountpoint' from the expiration list */
  1900. while (select_submounts(mnt, &graveyard)) {
  1901. while (!list_empty(&graveyard)) {
  1902. m = list_first_entry(&graveyard, struct vfsmount,
  1903. mnt_expire);
  1904. touch_mnt_namespace(m->mnt_ns);
  1905. umount_tree(m, 1, umounts);
  1906. }
  1907. }
  1908. }
  1909. /*
  1910. * Some copy_from_user() implementations do not return the exact number of
  1911. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1912. * Note that this function differs from copy_from_user() in that it will oops
  1913. * on bad values of `to', rather than returning a short copy.
  1914. */
  1915. static long exact_copy_from_user(void *to, const void __user * from,
  1916. unsigned long n)
  1917. {
  1918. char *t = to;
  1919. const char __user *f = from;
  1920. char c;
  1921. if (!access_ok(VERIFY_READ, from, n))
  1922. return n;
  1923. while (n) {
  1924. if (__get_user(c, f)) {
  1925. memset(t, 0, n);
  1926. break;
  1927. }
  1928. *t++ = c;
  1929. f++;
  1930. n--;
  1931. }
  1932. return n;
  1933. }
  1934. int copy_mount_options(const void __user * data, unsigned long *where)
  1935. {
  1936. int i;
  1937. unsigned long page;
  1938. unsigned long size;
  1939. *where = 0;
  1940. if (!data)
  1941. return 0;
  1942. if (!(page = __get_free_page(GFP_KERNEL)))
  1943. return -ENOMEM;
  1944. /* We only care that *some* data at the address the user
  1945. * gave us is valid. Just in case, we'll zero
  1946. * the remainder of the page.
  1947. */
  1948. /* copy_from_user cannot cross TASK_SIZE ! */
  1949. size = TASK_SIZE - (unsigned long)data;
  1950. if (size > PAGE_SIZE)
  1951. size = PAGE_SIZE;
  1952. i = size - exact_copy_from_user((void *)page, data, size);
  1953. if (!i) {
  1954. free_page(page);
  1955. return -EFAULT;
  1956. }
  1957. if (i != PAGE_SIZE)
  1958. memset((char *)page + i, 0, PAGE_SIZE - i);
  1959. *where = page;
  1960. return 0;
  1961. }
  1962. int copy_mount_string(const void __user *data, char **where)
  1963. {
  1964. char *tmp;
  1965. if (!data) {
  1966. *where = NULL;
  1967. return 0;
  1968. }
  1969. tmp = strndup_user(data, PAGE_SIZE);
  1970. if (IS_ERR(tmp))
  1971. return PTR_ERR(tmp);
  1972. *where = tmp;
  1973. return 0;
  1974. }
  1975. /*
  1976. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1977. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1978. *
  1979. * data is a (void *) that can point to any structure up to
  1980. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1981. * information (or be NULL).
  1982. *
  1983. * Pre-0.97 versions of mount() didn't have a flags word.
  1984. * When the flags word was introduced its top half was required
  1985. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1986. * Therefore, if this magic number is present, it carries no information
  1987. * and must be discarded.
  1988. */
  1989. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1990. unsigned long flags, void *data_page)
  1991. {
  1992. struct path path;
  1993. int retval = 0;
  1994. int mnt_flags = 0;
  1995. /* Discard magic */
  1996. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1997. flags &= ~MS_MGC_MSK;
  1998. /* Basic sanity checks */
  1999. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2000. return -EINVAL;
  2001. if (data_page)
  2002. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2003. /* ... and get the mountpoint */
  2004. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2005. if (retval)
  2006. return retval;
  2007. retval = security_sb_mount(dev_name, &path,
  2008. type_page, flags, data_page);
  2009. if (retval)
  2010. goto dput_out;
  2011. /* Default to relatime unless overriden */
  2012. if (!(flags & MS_NOATIME))
  2013. mnt_flags |= MNT_RELATIME;
  2014. /* Separate the per-mountpoint flags */
  2015. if (flags & MS_NOSUID)
  2016. mnt_flags |= MNT_NOSUID;
  2017. if (flags & MS_NODEV)
  2018. mnt_flags |= MNT_NODEV;
  2019. if (flags & MS_NOEXEC)
  2020. mnt_flags |= MNT_NOEXEC;
  2021. if (flags & MS_NOATIME)
  2022. mnt_flags |= MNT_NOATIME;
  2023. if (flags & MS_NODIRATIME)
  2024. mnt_flags |= MNT_NODIRATIME;
  2025. if (flags & MS_STRICTATIME)
  2026. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2027. if (flags & MS_RDONLY)
  2028. mnt_flags |= MNT_READONLY;
  2029. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2030. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2031. MS_STRICTATIME);
  2032. if (flags & MS_REMOUNT)
  2033. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2034. data_page);
  2035. else if (flags & MS_BIND)
  2036. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2037. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2038. retval = do_change_type(&path, flags);
  2039. else if (flags & MS_MOVE)
  2040. retval = do_move_mount(&path, dev_name);
  2041. else
  2042. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2043. dev_name, data_page);
  2044. dput_out:
  2045. path_put(&path);
  2046. return retval;
  2047. }
  2048. static struct mnt_namespace *alloc_mnt_ns(void)
  2049. {
  2050. struct mnt_namespace *new_ns;
  2051. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2052. if (!new_ns)
  2053. return ERR_PTR(-ENOMEM);
  2054. atomic_set(&new_ns->count, 1);
  2055. new_ns->root = NULL;
  2056. INIT_LIST_HEAD(&new_ns->list);
  2057. init_waitqueue_head(&new_ns->poll);
  2058. new_ns->event = 0;
  2059. return new_ns;
  2060. }
  2061. void mnt_make_longterm(struct vfsmount *mnt)
  2062. {
  2063. __mnt_make_longterm(mnt);
  2064. }
  2065. void mnt_make_shortterm(struct vfsmount *mnt)
  2066. {
  2067. #ifdef CONFIG_SMP
  2068. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2069. return;
  2070. br_write_lock(vfsmount_lock);
  2071. atomic_dec(&mnt->mnt_longterm);
  2072. br_write_unlock(vfsmount_lock);
  2073. #endif
  2074. }
  2075. /*
  2076. * Allocate a new namespace structure and populate it with contents
  2077. * copied from the namespace of the passed in task structure.
  2078. */
  2079. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2080. struct fs_struct *fs)
  2081. {
  2082. struct mnt_namespace *new_ns;
  2083. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2084. struct vfsmount *p, *q;
  2085. new_ns = alloc_mnt_ns();
  2086. if (IS_ERR(new_ns))
  2087. return new_ns;
  2088. down_write(&namespace_sem);
  2089. /* First pass: copy the tree topology */
  2090. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  2091. CL_COPY_ALL | CL_EXPIRE);
  2092. if (!new_ns->root) {
  2093. up_write(&namespace_sem);
  2094. kfree(new_ns);
  2095. return ERR_PTR(-ENOMEM);
  2096. }
  2097. br_write_lock(vfsmount_lock);
  2098. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2099. br_write_unlock(vfsmount_lock);
  2100. /*
  2101. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2102. * as belonging to new namespace. We have already acquired a private
  2103. * fs_struct, so tsk->fs->lock is not needed.
  2104. */
  2105. p = mnt_ns->root;
  2106. q = new_ns->root;
  2107. while (p) {
  2108. q->mnt_ns = new_ns;
  2109. __mnt_make_longterm(q);
  2110. if (fs) {
  2111. if (p == fs->root.mnt) {
  2112. fs->root.mnt = mntget(q);
  2113. __mnt_make_longterm(q);
  2114. mnt_make_shortterm(p);
  2115. rootmnt = p;
  2116. }
  2117. if (p == fs->pwd.mnt) {
  2118. fs->pwd.mnt = mntget(q);
  2119. __mnt_make_longterm(q);
  2120. mnt_make_shortterm(p);
  2121. pwdmnt = p;
  2122. }
  2123. }
  2124. p = next_mnt(p, mnt_ns->root);
  2125. q = next_mnt(q, new_ns->root);
  2126. }
  2127. up_write(&namespace_sem);
  2128. if (rootmnt)
  2129. mntput(rootmnt);
  2130. if (pwdmnt)
  2131. mntput(pwdmnt);
  2132. return new_ns;
  2133. }
  2134. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2135. struct fs_struct *new_fs)
  2136. {
  2137. struct mnt_namespace *new_ns;
  2138. BUG_ON(!ns);
  2139. get_mnt_ns(ns);
  2140. if (!(flags & CLONE_NEWNS))
  2141. return ns;
  2142. new_ns = dup_mnt_ns(ns, new_fs);
  2143. put_mnt_ns(ns);
  2144. return new_ns;
  2145. }
  2146. /**
  2147. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2148. * @mnt: pointer to the new root filesystem mountpoint
  2149. */
  2150. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2151. {
  2152. struct mnt_namespace *new_ns;
  2153. new_ns = alloc_mnt_ns();
  2154. if (!IS_ERR(new_ns)) {
  2155. mnt->mnt_ns = new_ns;
  2156. __mnt_make_longterm(mnt);
  2157. new_ns->root = mnt;
  2158. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2159. } else {
  2160. mntput(mnt);
  2161. }
  2162. return new_ns;
  2163. }
  2164. EXPORT_SYMBOL(create_mnt_ns);
  2165. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2166. {
  2167. struct mnt_namespace *ns;
  2168. struct super_block *s;
  2169. struct path path;
  2170. int err;
  2171. ns = create_mnt_ns(mnt);
  2172. if (IS_ERR(ns))
  2173. return ERR_CAST(ns);
  2174. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2175. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2176. put_mnt_ns(ns);
  2177. if (err)
  2178. return ERR_PTR(err);
  2179. /* trade a vfsmount reference for active sb one */
  2180. s = path.mnt->mnt_sb;
  2181. atomic_inc(&s->s_active);
  2182. mntput(path.mnt);
  2183. /* lock the sucker */
  2184. down_write(&s->s_umount);
  2185. /* ... and return the root of (sub)tree on it */
  2186. return path.dentry;
  2187. }
  2188. EXPORT_SYMBOL(mount_subtree);
  2189. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2190. char __user *, type, unsigned long, flags, void __user *, data)
  2191. {
  2192. int ret;
  2193. char *kernel_type;
  2194. char *kernel_dir;
  2195. char *kernel_dev;
  2196. unsigned long data_page;
  2197. ret = copy_mount_string(type, &kernel_type);
  2198. if (ret < 0)
  2199. goto out_type;
  2200. kernel_dir = getname(dir_name);
  2201. if (IS_ERR(kernel_dir)) {
  2202. ret = PTR_ERR(kernel_dir);
  2203. goto out_dir;
  2204. }
  2205. ret = copy_mount_string(dev_name, &kernel_dev);
  2206. if (ret < 0)
  2207. goto out_dev;
  2208. ret = copy_mount_options(data, &data_page);
  2209. if (ret < 0)
  2210. goto out_data;
  2211. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2212. (void *) data_page);
  2213. free_page(data_page);
  2214. out_data:
  2215. kfree(kernel_dev);
  2216. out_dev:
  2217. putname(kernel_dir);
  2218. out_dir:
  2219. kfree(kernel_type);
  2220. out_type:
  2221. return ret;
  2222. }
  2223. /*
  2224. * pivot_root Semantics:
  2225. * Moves the root file system of the current process to the directory put_old,
  2226. * makes new_root as the new root file system of the current process, and sets
  2227. * root/cwd of all processes which had them on the current root to new_root.
  2228. *
  2229. * Restrictions:
  2230. * The new_root and put_old must be directories, and must not be on the
  2231. * same file system as the current process root. The put_old must be
  2232. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2233. * pointed to by put_old must yield the same directory as new_root. No other
  2234. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2235. *
  2236. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2237. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2238. * in this situation.
  2239. *
  2240. * Notes:
  2241. * - we don't move root/cwd if they are not at the root (reason: if something
  2242. * cared enough to change them, it's probably wrong to force them elsewhere)
  2243. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2244. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2245. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2246. * first.
  2247. */
  2248. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2249. const char __user *, put_old)
  2250. {
  2251. struct vfsmount *tmp;
  2252. struct path new, old, parent_path, root_parent, root;
  2253. int error;
  2254. if (!capable(CAP_SYS_ADMIN))
  2255. return -EPERM;
  2256. error = user_path_dir(new_root, &new);
  2257. if (error)
  2258. goto out0;
  2259. error = user_path_dir(put_old, &old);
  2260. if (error)
  2261. goto out1;
  2262. error = security_sb_pivotroot(&old, &new);
  2263. if (error)
  2264. goto out2;
  2265. get_fs_root(current->fs, &root);
  2266. error = lock_mount(&old);
  2267. if (error)
  2268. goto out3;
  2269. error = -EINVAL;
  2270. if (IS_MNT_SHARED(old.mnt) ||
  2271. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  2272. IS_MNT_SHARED(root.mnt->mnt_parent))
  2273. goto out4;
  2274. if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
  2275. goto out4;
  2276. error = -ENOENT;
  2277. if (d_unlinked(new.dentry))
  2278. goto out4;
  2279. if (d_unlinked(old.dentry))
  2280. goto out4;
  2281. error = -EBUSY;
  2282. if (new.mnt == root.mnt ||
  2283. old.mnt == root.mnt)
  2284. goto out4; /* loop, on the same file system */
  2285. error = -EINVAL;
  2286. if (root.mnt->mnt_root != root.dentry)
  2287. goto out4; /* not a mountpoint */
  2288. if (!mnt_has_parent(root.mnt))
  2289. goto out4; /* not attached */
  2290. if (new.mnt->mnt_root != new.dentry)
  2291. goto out4; /* not a mountpoint */
  2292. if (!mnt_has_parent(new.mnt))
  2293. goto out4; /* not attached */
  2294. /* make sure we can reach put_old from new_root */
  2295. tmp = old.mnt;
  2296. if (tmp != new.mnt) {
  2297. for (;;) {
  2298. if (!mnt_has_parent(tmp))
  2299. goto out4; /* already mounted on put_old */
  2300. if (tmp->mnt_parent == new.mnt)
  2301. break;
  2302. tmp = tmp->mnt_parent;
  2303. }
  2304. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  2305. goto out4;
  2306. } else if (!is_subdir(old.dentry, new.dentry))
  2307. goto out4;
  2308. br_write_lock(vfsmount_lock);
  2309. detach_mnt(new.mnt, &parent_path);
  2310. detach_mnt(root.mnt, &root_parent);
  2311. /* mount old root on put_old */
  2312. attach_mnt(root.mnt, &old);
  2313. /* mount new_root on / */
  2314. attach_mnt(new.mnt, &root_parent);
  2315. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2316. br_write_unlock(vfsmount_lock);
  2317. chroot_fs_refs(&root, &new);
  2318. error = 0;
  2319. out4:
  2320. unlock_mount(&old);
  2321. if (!error) {
  2322. path_put(&root_parent);
  2323. path_put(&parent_path);
  2324. }
  2325. out3:
  2326. path_put(&root);
  2327. out2:
  2328. path_put(&old);
  2329. out1:
  2330. path_put(&new);
  2331. out0:
  2332. return error;
  2333. }
  2334. static void __init init_mount_tree(void)
  2335. {
  2336. struct vfsmount *mnt;
  2337. struct mnt_namespace *ns;
  2338. struct path root;
  2339. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2340. if (IS_ERR(mnt))
  2341. panic("Can't create rootfs");
  2342. ns = create_mnt_ns(mnt);
  2343. if (IS_ERR(ns))
  2344. panic("Can't allocate initial namespace");
  2345. init_task.nsproxy->mnt_ns = ns;
  2346. get_mnt_ns(ns);
  2347. root.mnt = ns->root;
  2348. root.dentry = ns->root->mnt_root;
  2349. set_fs_pwd(current->fs, &root);
  2350. set_fs_root(current->fs, &root);
  2351. }
  2352. void __init mnt_init(void)
  2353. {
  2354. unsigned u;
  2355. int err;
  2356. init_rwsem(&namespace_sem);
  2357. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2358. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2359. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2360. if (!mount_hashtable)
  2361. panic("Failed to allocate mount hash table\n");
  2362. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2363. for (u = 0; u < HASH_SIZE; u++)
  2364. INIT_LIST_HEAD(&mount_hashtable[u]);
  2365. br_lock_init(vfsmount_lock);
  2366. err = sysfs_init();
  2367. if (err)
  2368. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2369. __func__, err);
  2370. fs_kobj = kobject_create_and_add("fs", NULL);
  2371. if (!fs_kobj)
  2372. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2373. init_rootfs();
  2374. init_mount_tree();
  2375. }
  2376. void put_mnt_ns(struct mnt_namespace *ns)
  2377. {
  2378. LIST_HEAD(umount_list);
  2379. if (!atomic_dec_and_test(&ns->count))
  2380. return;
  2381. down_write(&namespace_sem);
  2382. br_write_lock(vfsmount_lock);
  2383. umount_tree(ns->root, 0, &umount_list);
  2384. br_write_unlock(vfsmount_lock);
  2385. up_write(&namespace_sem);
  2386. release_mounts(&umount_list);
  2387. kfree(ns);
  2388. }
  2389. EXPORT_SYMBOL(put_mnt_ns);
  2390. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2391. {
  2392. struct vfsmount *mnt;
  2393. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2394. if (!IS_ERR(mnt)) {
  2395. /*
  2396. * it is a longterm mount, don't release mnt until
  2397. * we unmount before file sys is unregistered
  2398. */
  2399. mnt_make_longterm(mnt);
  2400. }
  2401. return mnt;
  2402. }
  2403. EXPORT_SYMBOL_GPL(kern_mount_data);
  2404. void kern_unmount(struct vfsmount *mnt)
  2405. {
  2406. /* release long term mount so mount point can be released */
  2407. if (!IS_ERR_OR_NULL(mnt)) {
  2408. mnt_make_shortterm(mnt);
  2409. mntput(mnt);
  2410. }
  2411. }
  2412. EXPORT_SYMBOL(kern_unmount);
  2413. bool our_mnt(struct vfsmount *mnt)
  2414. {
  2415. return check_mnt(mnt);
  2416. }