writeback.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. /*
  2. * background writeback - scan btree for dirty data and write it to the backing
  3. * device
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. static struct workqueue_struct *dirty_wq;
  12. static void read_dirty(struct closure *);
  13. struct dirty_io {
  14. struct closure cl;
  15. struct cached_dev *dc;
  16. struct bio bio;
  17. };
  18. /* Rate limiting */
  19. static void __update_writeback_rate(struct cached_dev *dc)
  20. {
  21. struct cache_set *c = dc->disk.c;
  22. uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
  23. uint64_t cache_dirty_target =
  24. div_u64(cache_sectors * dc->writeback_percent, 100);
  25. int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
  26. c->cached_dev_sectors);
  27. /* PD controller */
  28. int change = 0;
  29. int64_t error;
  30. int64_t dirty = atomic_long_read(&dc->disk.sectors_dirty);
  31. int64_t derivative = dirty - dc->disk.sectors_dirty_last;
  32. dc->disk.sectors_dirty_last = dirty;
  33. derivative *= dc->writeback_rate_d_term;
  34. derivative = clamp(derivative, -dirty, dirty);
  35. derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
  36. dc->writeback_rate_d_smooth, 0);
  37. /* Avoid divide by zero */
  38. if (!target)
  39. goto out;
  40. error = div64_s64((dirty + derivative - target) << 8, target);
  41. change = div_s64((dc->writeback_rate.rate * error) >> 8,
  42. dc->writeback_rate_p_term_inverse);
  43. /* Don't increase writeback rate if the device isn't keeping up */
  44. if (change > 0 &&
  45. time_after64(local_clock(),
  46. dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
  47. change = 0;
  48. dc->writeback_rate.rate =
  49. clamp_t(int64_t, dc->writeback_rate.rate + change,
  50. 1, NSEC_PER_MSEC);
  51. out:
  52. dc->writeback_rate_derivative = derivative;
  53. dc->writeback_rate_change = change;
  54. dc->writeback_rate_target = target;
  55. schedule_delayed_work(&dc->writeback_rate_update,
  56. dc->writeback_rate_update_seconds * HZ);
  57. }
  58. static void update_writeback_rate(struct work_struct *work)
  59. {
  60. struct cached_dev *dc = container_of(to_delayed_work(work),
  61. struct cached_dev,
  62. writeback_rate_update);
  63. down_read(&dc->writeback_lock);
  64. if (atomic_read(&dc->has_dirty) &&
  65. dc->writeback_percent)
  66. __update_writeback_rate(dc);
  67. up_read(&dc->writeback_lock);
  68. }
  69. static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
  70. {
  71. if (atomic_read(&dc->disk.detaching) ||
  72. !dc->writeback_percent)
  73. return 0;
  74. return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
  75. }
  76. /* Background writeback */
  77. static bool dirty_pred(struct keybuf *buf, struct bkey *k)
  78. {
  79. return KEY_DIRTY(k);
  80. }
  81. static void dirty_init(struct keybuf_key *w)
  82. {
  83. struct dirty_io *io = w->private;
  84. struct bio *bio = &io->bio;
  85. bio_init(bio);
  86. if (!io->dc->writeback_percent)
  87. bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
  88. bio->bi_size = KEY_SIZE(&w->key) << 9;
  89. bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
  90. bio->bi_private = w;
  91. bio->bi_io_vec = bio->bi_inline_vecs;
  92. bch_bio_map(bio, NULL);
  93. }
  94. static void refill_dirty(struct closure *cl)
  95. {
  96. struct cached_dev *dc = container_of(cl, struct cached_dev,
  97. writeback.cl);
  98. struct keybuf *buf = &dc->writeback_keys;
  99. bool searched_from_start = false;
  100. struct bkey end = MAX_KEY;
  101. SET_KEY_INODE(&end, dc->disk.id);
  102. if (!atomic_read(&dc->disk.detaching) &&
  103. !dc->writeback_running)
  104. closure_return(cl);
  105. down_write(&dc->writeback_lock);
  106. if (!atomic_read(&dc->has_dirty)) {
  107. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  108. bch_write_bdev_super(dc, NULL);
  109. up_write(&dc->writeback_lock);
  110. closure_return(cl);
  111. }
  112. if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
  113. buf->last_scanned = KEY(dc->disk.id, 0, 0);
  114. searched_from_start = true;
  115. }
  116. bch_refill_keybuf(dc->disk.c, buf, &end);
  117. if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
  118. /* Searched the entire btree - delay awhile */
  119. if (RB_EMPTY_ROOT(&buf->keys)) {
  120. atomic_set(&dc->has_dirty, 0);
  121. cached_dev_put(dc);
  122. }
  123. if (!atomic_read(&dc->disk.detaching))
  124. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  125. }
  126. up_write(&dc->writeback_lock);
  127. ratelimit_reset(&dc->writeback_rate);
  128. /* Punt to workqueue only so we don't recurse and blow the stack */
  129. continue_at(cl, read_dirty, dirty_wq);
  130. }
  131. void bch_writeback_queue(struct cached_dev *dc)
  132. {
  133. if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
  134. if (!atomic_read(&dc->disk.detaching))
  135. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  136. continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
  137. }
  138. }
  139. void bch_writeback_add(struct cached_dev *dc, unsigned sectors)
  140. {
  141. atomic_long_add(sectors, &dc->disk.sectors_dirty);
  142. if (!atomic_read(&dc->has_dirty) &&
  143. !atomic_xchg(&dc->has_dirty, 1)) {
  144. atomic_inc(&dc->count);
  145. if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
  146. SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
  147. /* XXX: should do this synchronously */
  148. bch_write_bdev_super(dc, NULL);
  149. }
  150. bch_writeback_queue(dc);
  151. if (dc->writeback_percent)
  152. schedule_delayed_work(&dc->writeback_rate_update,
  153. dc->writeback_rate_update_seconds * HZ);
  154. }
  155. }
  156. /* Background writeback - IO loop */
  157. static void dirty_io_destructor(struct closure *cl)
  158. {
  159. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  160. kfree(io);
  161. }
  162. static void write_dirty_finish(struct closure *cl)
  163. {
  164. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  165. struct keybuf_key *w = io->bio.bi_private;
  166. struct cached_dev *dc = io->dc;
  167. struct bio_vec *bv = bio_iovec_idx(&io->bio, io->bio.bi_vcnt);
  168. while (bv-- != io->bio.bi_io_vec)
  169. __free_page(bv->bv_page);
  170. /* This is kind of a dumb way of signalling errors. */
  171. if (KEY_DIRTY(&w->key)) {
  172. unsigned i;
  173. struct btree_op op;
  174. bch_btree_op_init_stack(&op);
  175. op.type = BTREE_REPLACE;
  176. bkey_copy(&op.replace, &w->key);
  177. SET_KEY_DIRTY(&w->key, false);
  178. bch_keylist_add(&op.keys, &w->key);
  179. for (i = 0; i < KEY_PTRS(&w->key); i++)
  180. atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
  181. pr_debug("clearing %s", pkey(&w->key));
  182. bch_btree_insert(&op, dc->disk.c);
  183. closure_sync(&op.cl);
  184. atomic_long_inc(op.insert_collision
  185. ? &dc->disk.c->writeback_keys_failed
  186. : &dc->disk.c->writeback_keys_done);
  187. }
  188. bch_keybuf_del(&dc->writeback_keys, w);
  189. atomic_dec_bug(&dc->in_flight);
  190. closure_wake_up(&dc->writeback_wait);
  191. closure_return_with_destructor(cl, dirty_io_destructor);
  192. }
  193. static void dirty_endio(struct bio *bio, int error)
  194. {
  195. struct keybuf_key *w = bio->bi_private;
  196. struct dirty_io *io = w->private;
  197. if (error)
  198. SET_KEY_DIRTY(&w->key, false);
  199. closure_put(&io->cl);
  200. }
  201. static void write_dirty(struct closure *cl)
  202. {
  203. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  204. struct keybuf_key *w = io->bio.bi_private;
  205. dirty_init(w);
  206. io->bio.bi_rw = WRITE;
  207. io->bio.bi_sector = KEY_START(&w->key);
  208. io->bio.bi_bdev = io->dc->bdev;
  209. io->bio.bi_end_io = dirty_endio;
  210. trace_bcache_write_dirty(&io->bio);
  211. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  212. continue_at(cl, write_dirty_finish, dirty_wq);
  213. }
  214. static void read_dirty_endio(struct bio *bio, int error)
  215. {
  216. struct keybuf_key *w = bio->bi_private;
  217. struct dirty_io *io = w->private;
  218. bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
  219. error, "reading dirty data from cache");
  220. dirty_endio(bio, error);
  221. }
  222. static void read_dirty_submit(struct closure *cl)
  223. {
  224. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  225. trace_bcache_read_dirty(&io->bio);
  226. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  227. continue_at(cl, write_dirty, dirty_wq);
  228. }
  229. static void read_dirty(struct closure *cl)
  230. {
  231. struct cached_dev *dc = container_of(cl, struct cached_dev,
  232. writeback.cl);
  233. unsigned delay = writeback_delay(dc, 0);
  234. struct keybuf_key *w;
  235. struct dirty_io *io;
  236. /*
  237. * XXX: if we error, background writeback just spins. Should use some
  238. * mempools.
  239. */
  240. while (1) {
  241. w = bch_keybuf_next(&dc->writeback_keys);
  242. if (!w)
  243. break;
  244. BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
  245. if (delay > 0 &&
  246. (KEY_START(&w->key) != dc->last_read ||
  247. jiffies_to_msecs(delay) > 50)) {
  248. w->private = NULL;
  249. closure_delay(&dc->writeback, delay);
  250. continue_at(cl, read_dirty, dirty_wq);
  251. }
  252. dc->last_read = KEY_OFFSET(&w->key);
  253. io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
  254. * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
  255. GFP_KERNEL);
  256. if (!io)
  257. goto err;
  258. w->private = io;
  259. io->dc = dc;
  260. dirty_init(w);
  261. io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
  262. io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
  263. &w->key, 0)->bdev;
  264. io->bio.bi_rw = READ;
  265. io->bio.bi_end_io = read_dirty_endio;
  266. if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
  267. goto err_free;
  268. pr_debug("%s", pkey(&w->key));
  269. closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
  270. delay = writeback_delay(dc, KEY_SIZE(&w->key));
  271. atomic_inc(&dc->in_flight);
  272. if (!closure_wait_event(&dc->writeback_wait, cl,
  273. atomic_read(&dc->in_flight) < 64))
  274. continue_at(cl, read_dirty, dirty_wq);
  275. }
  276. if (0) {
  277. err_free:
  278. kfree(w->private);
  279. err:
  280. bch_keybuf_del(&dc->writeback_keys, w);
  281. }
  282. refill_dirty(cl);
  283. }
  284. void bch_cached_dev_writeback_init(struct cached_dev *dc)
  285. {
  286. closure_init_unlocked(&dc->writeback);
  287. init_rwsem(&dc->writeback_lock);
  288. bch_keybuf_init(&dc->writeback_keys, dirty_pred);
  289. dc->writeback_metadata = true;
  290. dc->writeback_running = true;
  291. dc->writeback_percent = 10;
  292. dc->writeback_delay = 30;
  293. dc->writeback_rate.rate = 1024;
  294. dc->writeback_rate_update_seconds = 30;
  295. dc->writeback_rate_d_term = 16;
  296. dc->writeback_rate_p_term_inverse = 64;
  297. dc->writeback_rate_d_smooth = 8;
  298. INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
  299. schedule_delayed_work(&dc->writeback_rate_update,
  300. dc->writeback_rate_update_seconds * HZ);
  301. }
  302. void bch_writeback_exit(void)
  303. {
  304. if (dirty_wq)
  305. destroy_workqueue(dirty_wq);
  306. }
  307. int __init bch_writeback_init(void)
  308. {
  309. dirty_wq = create_singlethread_workqueue("bcache_writeback");
  310. if (!dirty_wq)
  311. return -ENOMEM;
  312. return 0;
  313. }