transaction.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/uuid.h>
  25. #include "ctree.h"
  26. #include "disk-io.h"
  27. #include "transaction.h"
  28. #include "locking.h"
  29. #include "tree-log.h"
  30. #include "inode-map.h"
  31. #include "volumes.h"
  32. #include "dev-replace.h"
  33. #define BTRFS_ROOT_TRANS_TAG 0
  34. void put_transaction(struct btrfs_transaction *transaction)
  35. {
  36. WARN_ON(atomic_read(&transaction->use_count) == 0);
  37. if (atomic_dec_and_test(&transaction->use_count)) {
  38. BUG_ON(!list_empty(&transaction->list));
  39. WARN_ON(transaction->delayed_refs.root.rb_node);
  40. kmem_cache_free(btrfs_transaction_cachep, transaction);
  41. }
  42. }
  43. static noinline void switch_commit_root(struct btrfs_root *root)
  44. {
  45. free_extent_buffer(root->commit_root);
  46. root->commit_root = btrfs_root_node(root);
  47. }
  48. static inline int can_join_transaction(struct btrfs_transaction *trans,
  49. int type)
  50. {
  51. return !(trans->in_commit &&
  52. type != TRANS_JOIN &&
  53. type != TRANS_JOIN_NOLOCK);
  54. }
  55. /*
  56. * either allocate a new transaction or hop into the existing one
  57. */
  58. static noinline int join_transaction(struct btrfs_root *root, int type)
  59. {
  60. struct btrfs_transaction *cur_trans;
  61. struct btrfs_fs_info *fs_info = root->fs_info;
  62. spin_lock(&fs_info->trans_lock);
  63. loop:
  64. /* The file system has been taken offline. No new transactions. */
  65. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  66. spin_unlock(&fs_info->trans_lock);
  67. return -EROFS;
  68. }
  69. if (fs_info->trans_no_join) {
  70. /*
  71. * If we are JOIN_NOLOCK we're already committing a current
  72. * transaction, we just need a handle to deal with something
  73. * when committing the transaction, such as inode cache and
  74. * space cache. It is a special case.
  75. */
  76. if (type != TRANS_JOIN_NOLOCK) {
  77. spin_unlock(&fs_info->trans_lock);
  78. return -EBUSY;
  79. }
  80. }
  81. cur_trans = fs_info->running_transaction;
  82. if (cur_trans) {
  83. if (cur_trans->aborted) {
  84. spin_unlock(&fs_info->trans_lock);
  85. return cur_trans->aborted;
  86. }
  87. if (!can_join_transaction(cur_trans, type)) {
  88. spin_unlock(&fs_info->trans_lock);
  89. return -EBUSY;
  90. }
  91. atomic_inc(&cur_trans->use_count);
  92. atomic_inc(&cur_trans->num_writers);
  93. cur_trans->num_joined++;
  94. spin_unlock(&fs_info->trans_lock);
  95. return 0;
  96. }
  97. spin_unlock(&fs_info->trans_lock);
  98. /*
  99. * If we are ATTACH, we just want to catch the current transaction,
  100. * and commit it. If there is no transaction, just return ENOENT.
  101. */
  102. if (type == TRANS_ATTACH)
  103. return -ENOENT;
  104. cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
  105. if (!cur_trans)
  106. return -ENOMEM;
  107. spin_lock(&fs_info->trans_lock);
  108. if (fs_info->running_transaction) {
  109. /*
  110. * someone started a transaction after we unlocked. Make sure
  111. * to redo the trans_no_join checks above
  112. */
  113. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  114. cur_trans = fs_info->running_transaction;
  115. goto loop;
  116. } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  117. spin_unlock(&fs_info->trans_lock);
  118. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  119. return -EROFS;
  120. }
  121. atomic_set(&cur_trans->num_writers, 1);
  122. cur_trans->num_joined = 0;
  123. init_waitqueue_head(&cur_trans->writer_wait);
  124. init_waitqueue_head(&cur_trans->commit_wait);
  125. cur_trans->in_commit = 0;
  126. cur_trans->blocked = 0;
  127. /*
  128. * One for this trans handle, one so it will live on until we
  129. * commit the transaction.
  130. */
  131. atomic_set(&cur_trans->use_count, 2);
  132. cur_trans->commit_done = 0;
  133. cur_trans->start_time = get_seconds();
  134. cur_trans->delayed_refs.root = RB_ROOT;
  135. cur_trans->delayed_refs.num_entries = 0;
  136. cur_trans->delayed_refs.num_heads_ready = 0;
  137. cur_trans->delayed_refs.num_heads = 0;
  138. cur_trans->delayed_refs.flushing = 0;
  139. cur_trans->delayed_refs.run_delayed_start = 0;
  140. /*
  141. * although the tree mod log is per file system and not per transaction,
  142. * the log must never go across transaction boundaries.
  143. */
  144. smp_mb();
  145. if (!list_empty(&fs_info->tree_mod_seq_list))
  146. WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
  147. "creating a fresh transaction\n");
  148. if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
  149. WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
  150. "creating a fresh transaction\n");
  151. atomic_set(&fs_info->tree_mod_seq, 0);
  152. spin_lock_init(&cur_trans->commit_lock);
  153. spin_lock_init(&cur_trans->delayed_refs.lock);
  154. INIT_LIST_HEAD(&cur_trans->pending_snapshots);
  155. INIT_LIST_HEAD(&cur_trans->ordered_operations);
  156. list_add_tail(&cur_trans->list, &fs_info->trans_list);
  157. extent_io_tree_init(&cur_trans->dirty_pages,
  158. fs_info->btree_inode->i_mapping);
  159. fs_info->generation++;
  160. cur_trans->transid = fs_info->generation;
  161. fs_info->running_transaction = cur_trans;
  162. cur_trans->aborted = 0;
  163. spin_unlock(&fs_info->trans_lock);
  164. return 0;
  165. }
  166. /*
  167. * this does all the record keeping required to make sure that a reference
  168. * counted root is properly recorded in a given transaction. This is required
  169. * to make sure the old root from before we joined the transaction is deleted
  170. * when the transaction commits
  171. */
  172. static int record_root_in_trans(struct btrfs_trans_handle *trans,
  173. struct btrfs_root *root)
  174. {
  175. if (root->ref_cows && root->last_trans < trans->transid) {
  176. WARN_ON(root == root->fs_info->extent_root);
  177. WARN_ON(root->commit_root != root->node);
  178. /*
  179. * see below for in_trans_setup usage rules
  180. * we have the reloc mutex held now, so there
  181. * is only one writer in this function
  182. */
  183. root->in_trans_setup = 1;
  184. /* make sure readers find in_trans_setup before
  185. * they find our root->last_trans update
  186. */
  187. smp_wmb();
  188. spin_lock(&root->fs_info->fs_roots_radix_lock);
  189. if (root->last_trans == trans->transid) {
  190. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  191. return 0;
  192. }
  193. radix_tree_tag_set(&root->fs_info->fs_roots_radix,
  194. (unsigned long)root->root_key.objectid,
  195. BTRFS_ROOT_TRANS_TAG);
  196. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  197. root->last_trans = trans->transid;
  198. /* this is pretty tricky. We don't want to
  199. * take the relocation lock in btrfs_record_root_in_trans
  200. * unless we're really doing the first setup for this root in
  201. * this transaction.
  202. *
  203. * Normally we'd use root->last_trans as a flag to decide
  204. * if we want to take the expensive mutex.
  205. *
  206. * But, we have to set root->last_trans before we
  207. * init the relocation root, otherwise, we trip over warnings
  208. * in ctree.c. The solution used here is to flag ourselves
  209. * with root->in_trans_setup. When this is 1, we're still
  210. * fixing up the reloc trees and everyone must wait.
  211. *
  212. * When this is zero, they can trust root->last_trans and fly
  213. * through btrfs_record_root_in_trans without having to take the
  214. * lock. smp_wmb() makes sure that all the writes above are
  215. * done before we pop in the zero below
  216. */
  217. btrfs_init_reloc_root(trans, root);
  218. smp_wmb();
  219. root->in_trans_setup = 0;
  220. }
  221. return 0;
  222. }
  223. int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
  224. struct btrfs_root *root)
  225. {
  226. if (!root->ref_cows)
  227. return 0;
  228. /*
  229. * see record_root_in_trans for comments about in_trans_setup usage
  230. * and barriers
  231. */
  232. smp_rmb();
  233. if (root->last_trans == trans->transid &&
  234. !root->in_trans_setup)
  235. return 0;
  236. mutex_lock(&root->fs_info->reloc_mutex);
  237. record_root_in_trans(trans, root);
  238. mutex_unlock(&root->fs_info->reloc_mutex);
  239. return 0;
  240. }
  241. /* wait for commit against the current transaction to become unblocked
  242. * when this is done, it is safe to start a new transaction, but the current
  243. * transaction might not be fully on disk.
  244. */
  245. static void wait_current_trans(struct btrfs_root *root)
  246. {
  247. struct btrfs_transaction *cur_trans;
  248. spin_lock(&root->fs_info->trans_lock);
  249. cur_trans = root->fs_info->running_transaction;
  250. if (cur_trans && cur_trans->blocked) {
  251. atomic_inc(&cur_trans->use_count);
  252. spin_unlock(&root->fs_info->trans_lock);
  253. wait_event(root->fs_info->transaction_wait,
  254. !cur_trans->blocked);
  255. put_transaction(cur_trans);
  256. } else {
  257. spin_unlock(&root->fs_info->trans_lock);
  258. }
  259. }
  260. static int may_wait_transaction(struct btrfs_root *root, int type)
  261. {
  262. if (root->fs_info->log_root_recovering)
  263. return 0;
  264. if (type == TRANS_USERSPACE)
  265. return 1;
  266. if (type == TRANS_START &&
  267. !atomic_read(&root->fs_info->open_ioctl_trans))
  268. return 1;
  269. return 0;
  270. }
  271. static struct btrfs_trans_handle *
  272. start_transaction(struct btrfs_root *root, u64 num_items, int type,
  273. enum btrfs_reserve_flush_enum flush)
  274. {
  275. struct btrfs_trans_handle *h;
  276. struct btrfs_transaction *cur_trans;
  277. u64 num_bytes = 0;
  278. int ret;
  279. u64 qgroup_reserved = 0;
  280. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
  281. return ERR_PTR(-EROFS);
  282. if (current->journal_info) {
  283. WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
  284. h = current->journal_info;
  285. h->use_count++;
  286. WARN_ON(h->use_count > 2);
  287. h->orig_rsv = h->block_rsv;
  288. h->block_rsv = NULL;
  289. goto got_it;
  290. }
  291. /*
  292. * Do the reservation before we join the transaction so we can do all
  293. * the appropriate flushing if need be.
  294. */
  295. if (num_items > 0 && root != root->fs_info->chunk_root) {
  296. if (root->fs_info->quota_enabled &&
  297. is_fstree(root->root_key.objectid)) {
  298. qgroup_reserved = num_items * root->leafsize;
  299. ret = btrfs_qgroup_reserve(root, qgroup_reserved);
  300. if (ret)
  301. return ERR_PTR(ret);
  302. }
  303. num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
  304. ret = btrfs_block_rsv_add(root,
  305. &root->fs_info->trans_block_rsv,
  306. num_bytes, flush);
  307. if (ret)
  308. goto reserve_fail;
  309. }
  310. again:
  311. h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
  312. if (!h) {
  313. ret = -ENOMEM;
  314. goto alloc_fail;
  315. }
  316. /*
  317. * If we are JOIN_NOLOCK we're already committing a transaction and
  318. * waiting on this guy, so we don't need to do the sb_start_intwrite
  319. * because we're already holding a ref. We need this because we could
  320. * have raced in and did an fsync() on a file which can kick a commit
  321. * and then we deadlock with somebody doing a freeze.
  322. *
  323. * If we are ATTACH, it means we just want to catch the current
  324. * transaction and commit it, so we needn't do sb_start_intwrite().
  325. */
  326. if (type < TRANS_JOIN_NOLOCK)
  327. sb_start_intwrite(root->fs_info->sb);
  328. if (may_wait_transaction(root, type))
  329. wait_current_trans(root);
  330. do {
  331. ret = join_transaction(root, type);
  332. if (ret == -EBUSY) {
  333. wait_current_trans(root);
  334. if (unlikely(type == TRANS_ATTACH))
  335. ret = -ENOENT;
  336. }
  337. } while (ret == -EBUSY);
  338. if (ret < 0) {
  339. /* We must get the transaction if we are JOIN_NOLOCK. */
  340. BUG_ON(type == TRANS_JOIN_NOLOCK);
  341. goto join_fail;
  342. }
  343. cur_trans = root->fs_info->running_transaction;
  344. h->transid = cur_trans->transid;
  345. h->transaction = cur_trans;
  346. h->blocks_used = 0;
  347. h->bytes_reserved = 0;
  348. h->root = root;
  349. h->delayed_ref_updates = 0;
  350. h->use_count = 1;
  351. h->adding_csums = 0;
  352. h->block_rsv = NULL;
  353. h->orig_rsv = NULL;
  354. h->aborted = 0;
  355. h->qgroup_reserved = 0;
  356. h->delayed_ref_elem.seq = 0;
  357. h->type = type;
  358. h->allocating_chunk = false;
  359. INIT_LIST_HEAD(&h->qgroup_ref_list);
  360. INIT_LIST_HEAD(&h->new_bgs);
  361. smp_mb();
  362. if (cur_trans->blocked && may_wait_transaction(root, type)) {
  363. btrfs_commit_transaction(h, root);
  364. goto again;
  365. }
  366. if (num_bytes) {
  367. trace_btrfs_space_reservation(root->fs_info, "transaction",
  368. h->transid, num_bytes, 1);
  369. h->block_rsv = &root->fs_info->trans_block_rsv;
  370. h->bytes_reserved = num_bytes;
  371. }
  372. h->qgroup_reserved = qgroup_reserved;
  373. got_it:
  374. btrfs_record_root_in_trans(h, root);
  375. if (!current->journal_info && type != TRANS_USERSPACE)
  376. current->journal_info = h;
  377. return h;
  378. join_fail:
  379. if (type < TRANS_JOIN_NOLOCK)
  380. sb_end_intwrite(root->fs_info->sb);
  381. kmem_cache_free(btrfs_trans_handle_cachep, h);
  382. alloc_fail:
  383. if (num_bytes)
  384. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  385. num_bytes);
  386. reserve_fail:
  387. if (qgroup_reserved)
  388. btrfs_qgroup_free(root, qgroup_reserved);
  389. return ERR_PTR(ret);
  390. }
  391. struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
  392. int num_items)
  393. {
  394. return start_transaction(root, num_items, TRANS_START,
  395. BTRFS_RESERVE_FLUSH_ALL);
  396. }
  397. struct btrfs_trans_handle *btrfs_start_transaction_lflush(
  398. struct btrfs_root *root, int num_items)
  399. {
  400. return start_transaction(root, num_items, TRANS_START,
  401. BTRFS_RESERVE_FLUSH_LIMIT);
  402. }
  403. struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
  404. {
  405. return start_transaction(root, 0, TRANS_JOIN, 0);
  406. }
  407. struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
  408. {
  409. return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
  410. }
  411. struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
  412. {
  413. return start_transaction(root, 0, TRANS_USERSPACE, 0);
  414. }
  415. /*
  416. * btrfs_attach_transaction() - catch the running transaction
  417. *
  418. * It is used when we want to commit the current the transaction, but
  419. * don't want to start a new one.
  420. *
  421. * Note: If this function return -ENOENT, it just means there is no
  422. * running transaction. But it is possible that the inactive transaction
  423. * is still in the memory, not fully on disk. If you hope there is no
  424. * inactive transaction in the fs when -ENOENT is returned, you should
  425. * invoke
  426. * btrfs_attach_transaction_barrier()
  427. */
  428. struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
  429. {
  430. return start_transaction(root, 0, TRANS_ATTACH, 0);
  431. }
  432. /*
  433. * btrfs_attach_transaction() - catch the running transaction
  434. *
  435. * It is similar to the above function, the differentia is this one
  436. * will wait for all the inactive transactions until they fully
  437. * complete.
  438. */
  439. struct btrfs_trans_handle *
  440. btrfs_attach_transaction_barrier(struct btrfs_root *root)
  441. {
  442. struct btrfs_trans_handle *trans;
  443. trans = start_transaction(root, 0, TRANS_ATTACH, 0);
  444. if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
  445. btrfs_wait_for_commit(root, 0);
  446. return trans;
  447. }
  448. /* wait for a transaction commit to be fully complete */
  449. static noinline void wait_for_commit(struct btrfs_root *root,
  450. struct btrfs_transaction *commit)
  451. {
  452. wait_event(commit->commit_wait, commit->commit_done);
  453. }
  454. int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
  455. {
  456. struct btrfs_transaction *cur_trans = NULL, *t;
  457. int ret = 0;
  458. if (transid) {
  459. if (transid <= root->fs_info->last_trans_committed)
  460. goto out;
  461. ret = -EINVAL;
  462. /* find specified transaction */
  463. spin_lock(&root->fs_info->trans_lock);
  464. list_for_each_entry(t, &root->fs_info->trans_list, list) {
  465. if (t->transid == transid) {
  466. cur_trans = t;
  467. atomic_inc(&cur_trans->use_count);
  468. ret = 0;
  469. break;
  470. }
  471. if (t->transid > transid) {
  472. ret = 0;
  473. break;
  474. }
  475. }
  476. spin_unlock(&root->fs_info->trans_lock);
  477. /* The specified transaction doesn't exist */
  478. if (!cur_trans)
  479. goto out;
  480. } else {
  481. /* find newest transaction that is committing | committed */
  482. spin_lock(&root->fs_info->trans_lock);
  483. list_for_each_entry_reverse(t, &root->fs_info->trans_list,
  484. list) {
  485. if (t->in_commit) {
  486. if (t->commit_done)
  487. break;
  488. cur_trans = t;
  489. atomic_inc(&cur_trans->use_count);
  490. break;
  491. }
  492. }
  493. spin_unlock(&root->fs_info->trans_lock);
  494. if (!cur_trans)
  495. goto out; /* nothing committing|committed */
  496. }
  497. wait_for_commit(root, cur_trans);
  498. put_transaction(cur_trans);
  499. out:
  500. return ret;
  501. }
  502. void btrfs_throttle(struct btrfs_root *root)
  503. {
  504. if (!atomic_read(&root->fs_info->open_ioctl_trans))
  505. wait_current_trans(root);
  506. }
  507. static int should_end_transaction(struct btrfs_trans_handle *trans,
  508. struct btrfs_root *root)
  509. {
  510. int ret;
  511. ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
  512. return ret ? 1 : 0;
  513. }
  514. int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
  515. struct btrfs_root *root)
  516. {
  517. struct btrfs_transaction *cur_trans = trans->transaction;
  518. int updates;
  519. int err;
  520. smp_mb();
  521. if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
  522. return 1;
  523. updates = trans->delayed_ref_updates;
  524. trans->delayed_ref_updates = 0;
  525. if (updates) {
  526. err = btrfs_run_delayed_refs(trans, root, updates);
  527. if (err) /* Error code will also eval true */
  528. return err;
  529. }
  530. return should_end_transaction(trans, root);
  531. }
  532. static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
  533. struct btrfs_root *root, int throttle)
  534. {
  535. struct btrfs_transaction *cur_trans = trans->transaction;
  536. struct btrfs_fs_info *info = root->fs_info;
  537. int count = 0;
  538. int lock = (trans->type != TRANS_JOIN_NOLOCK);
  539. int err = 0;
  540. if (--trans->use_count) {
  541. trans->block_rsv = trans->orig_rsv;
  542. return 0;
  543. }
  544. /*
  545. * do the qgroup accounting as early as possible
  546. */
  547. err = btrfs_delayed_refs_qgroup_accounting(trans, info);
  548. btrfs_trans_release_metadata(trans, root);
  549. trans->block_rsv = NULL;
  550. /*
  551. * the same root has to be passed to start_transaction and
  552. * end_transaction. Subvolume quota depends on this.
  553. */
  554. WARN_ON(trans->root != root);
  555. if (trans->qgroup_reserved) {
  556. btrfs_qgroup_free(root, trans->qgroup_reserved);
  557. trans->qgroup_reserved = 0;
  558. }
  559. if (!list_empty(&trans->new_bgs))
  560. btrfs_create_pending_block_groups(trans, root);
  561. while (count < 2) {
  562. unsigned long cur = trans->delayed_ref_updates;
  563. trans->delayed_ref_updates = 0;
  564. if (cur &&
  565. trans->transaction->delayed_refs.num_heads_ready > 64) {
  566. trans->delayed_ref_updates = 0;
  567. btrfs_run_delayed_refs(trans, root, cur);
  568. } else {
  569. break;
  570. }
  571. count++;
  572. }
  573. btrfs_trans_release_metadata(trans, root);
  574. trans->block_rsv = NULL;
  575. if (!list_empty(&trans->new_bgs))
  576. btrfs_create_pending_block_groups(trans, root);
  577. if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
  578. should_end_transaction(trans, root)) {
  579. trans->transaction->blocked = 1;
  580. smp_wmb();
  581. }
  582. if (lock && cur_trans->blocked && !cur_trans->in_commit) {
  583. if (throttle) {
  584. /*
  585. * We may race with somebody else here so end up having
  586. * to call end_transaction on ourselves again, so inc
  587. * our use_count.
  588. */
  589. trans->use_count++;
  590. return btrfs_commit_transaction(trans, root);
  591. } else {
  592. wake_up_process(info->transaction_kthread);
  593. }
  594. }
  595. if (trans->type < TRANS_JOIN_NOLOCK)
  596. sb_end_intwrite(root->fs_info->sb);
  597. WARN_ON(cur_trans != info->running_transaction);
  598. WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
  599. atomic_dec(&cur_trans->num_writers);
  600. smp_mb();
  601. if (waitqueue_active(&cur_trans->writer_wait))
  602. wake_up(&cur_trans->writer_wait);
  603. put_transaction(cur_trans);
  604. if (current->journal_info == trans)
  605. current->journal_info = NULL;
  606. if (throttle)
  607. btrfs_run_delayed_iputs(root);
  608. if (trans->aborted ||
  609. test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
  610. err = -EIO;
  611. assert_qgroups_uptodate(trans);
  612. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  613. return err;
  614. }
  615. int btrfs_end_transaction(struct btrfs_trans_handle *trans,
  616. struct btrfs_root *root)
  617. {
  618. int ret;
  619. ret = __btrfs_end_transaction(trans, root, 0);
  620. if (ret)
  621. return ret;
  622. return 0;
  623. }
  624. int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
  625. struct btrfs_root *root)
  626. {
  627. int ret;
  628. ret = __btrfs_end_transaction(trans, root, 1);
  629. if (ret)
  630. return ret;
  631. return 0;
  632. }
  633. int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
  634. struct btrfs_root *root)
  635. {
  636. return __btrfs_end_transaction(trans, root, 1);
  637. }
  638. /*
  639. * when btree blocks are allocated, they have some corresponding bits set for
  640. * them in one of two extent_io trees. This is used to make sure all of
  641. * those extents are sent to disk but does not wait on them
  642. */
  643. int btrfs_write_marked_extents(struct btrfs_root *root,
  644. struct extent_io_tree *dirty_pages, int mark)
  645. {
  646. int err = 0;
  647. int werr = 0;
  648. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  649. struct extent_state *cached_state = NULL;
  650. u64 start = 0;
  651. u64 end;
  652. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  653. mark, &cached_state)) {
  654. convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
  655. mark, &cached_state, GFP_NOFS);
  656. cached_state = NULL;
  657. err = filemap_fdatawrite_range(mapping, start, end);
  658. if (err)
  659. werr = err;
  660. cond_resched();
  661. start = end + 1;
  662. }
  663. if (err)
  664. werr = err;
  665. return werr;
  666. }
  667. /*
  668. * when btree blocks are allocated, they have some corresponding bits set for
  669. * them in one of two extent_io trees. This is used to make sure all of
  670. * those extents are on disk for transaction or log commit. We wait
  671. * on all the pages and clear them from the dirty pages state tree
  672. */
  673. int btrfs_wait_marked_extents(struct btrfs_root *root,
  674. struct extent_io_tree *dirty_pages, int mark)
  675. {
  676. int err = 0;
  677. int werr = 0;
  678. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  679. struct extent_state *cached_state = NULL;
  680. u64 start = 0;
  681. u64 end;
  682. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  683. EXTENT_NEED_WAIT, &cached_state)) {
  684. clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
  685. 0, 0, &cached_state, GFP_NOFS);
  686. err = filemap_fdatawait_range(mapping, start, end);
  687. if (err)
  688. werr = err;
  689. cond_resched();
  690. start = end + 1;
  691. }
  692. if (err)
  693. werr = err;
  694. return werr;
  695. }
  696. /*
  697. * when btree blocks are allocated, they have some corresponding bits set for
  698. * them in one of two extent_io trees. This is used to make sure all of
  699. * those extents are on disk for transaction or log commit
  700. */
  701. int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
  702. struct extent_io_tree *dirty_pages, int mark)
  703. {
  704. int ret;
  705. int ret2;
  706. ret = btrfs_write_marked_extents(root, dirty_pages, mark);
  707. ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
  708. if (ret)
  709. return ret;
  710. if (ret2)
  711. return ret2;
  712. return 0;
  713. }
  714. int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
  715. struct btrfs_root *root)
  716. {
  717. if (!trans || !trans->transaction) {
  718. struct inode *btree_inode;
  719. btree_inode = root->fs_info->btree_inode;
  720. return filemap_write_and_wait(btree_inode->i_mapping);
  721. }
  722. return btrfs_write_and_wait_marked_extents(root,
  723. &trans->transaction->dirty_pages,
  724. EXTENT_DIRTY);
  725. }
  726. /*
  727. * this is used to update the root pointer in the tree of tree roots.
  728. *
  729. * But, in the case of the extent allocation tree, updating the root
  730. * pointer may allocate blocks which may change the root of the extent
  731. * allocation tree.
  732. *
  733. * So, this loops and repeats and makes sure the cowonly root didn't
  734. * change while the root pointer was being updated in the metadata.
  735. */
  736. static int update_cowonly_root(struct btrfs_trans_handle *trans,
  737. struct btrfs_root *root)
  738. {
  739. int ret;
  740. u64 old_root_bytenr;
  741. u64 old_root_used;
  742. struct btrfs_root *tree_root = root->fs_info->tree_root;
  743. old_root_used = btrfs_root_used(&root->root_item);
  744. btrfs_write_dirty_block_groups(trans, root);
  745. while (1) {
  746. old_root_bytenr = btrfs_root_bytenr(&root->root_item);
  747. if (old_root_bytenr == root->node->start &&
  748. old_root_used == btrfs_root_used(&root->root_item))
  749. break;
  750. btrfs_set_root_node(&root->root_item, root->node);
  751. ret = btrfs_update_root(trans, tree_root,
  752. &root->root_key,
  753. &root->root_item);
  754. if (ret)
  755. return ret;
  756. old_root_used = btrfs_root_used(&root->root_item);
  757. ret = btrfs_write_dirty_block_groups(trans, root);
  758. if (ret)
  759. return ret;
  760. }
  761. if (root != root->fs_info->extent_root)
  762. switch_commit_root(root);
  763. return 0;
  764. }
  765. /*
  766. * update all the cowonly tree roots on disk
  767. *
  768. * The error handling in this function may not be obvious. Any of the
  769. * failures will cause the file system to go offline. We still need
  770. * to clean up the delayed refs.
  771. */
  772. static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
  773. struct btrfs_root *root)
  774. {
  775. struct btrfs_fs_info *fs_info = root->fs_info;
  776. struct list_head *next;
  777. struct extent_buffer *eb;
  778. int ret;
  779. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  780. if (ret)
  781. return ret;
  782. eb = btrfs_lock_root_node(fs_info->tree_root);
  783. ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
  784. 0, &eb);
  785. btrfs_tree_unlock(eb);
  786. free_extent_buffer(eb);
  787. if (ret)
  788. return ret;
  789. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  790. if (ret)
  791. return ret;
  792. ret = btrfs_run_dev_stats(trans, root->fs_info);
  793. WARN_ON(ret);
  794. ret = btrfs_run_dev_replace(trans, root->fs_info);
  795. WARN_ON(ret);
  796. ret = btrfs_run_qgroups(trans, root->fs_info);
  797. BUG_ON(ret);
  798. /* run_qgroups might have added some more refs */
  799. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  800. BUG_ON(ret);
  801. while (!list_empty(&fs_info->dirty_cowonly_roots)) {
  802. next = fs_info->dirty_cowonly_roots.next;
  803. list_del_init(next);
  804. root = list_entry(next, struct btrfs_root, dirty_list);
  805. ret = update_cowonly_root(trans, root);
  806. if (ret)
  807. return ret;
  808. }
  809. down_write(&fs_info->extent_commit_sem);
  810. switch_commit_root(fs_info->extent_root);
  811. up_write(&fs_info->extent_commit_sem);
  812. btrfs_after_dev_replace_commit(fs_info);
  813. return 0;
  814. }
  815. /*
  816. * dead roots are old snapshots that need to be deleted. This allocates
  817. * a dirty root struct and adds it into the list of dead roots that need to
  818. * be deleted
  819. */
  820. int btrfs_add_dead_root(struct btrfs_root *root)
  821. {
  822. spin_lock(&root->fs_info->trans_lock);
  823. list_add(&root->root_list, &root->fs_info->dead_roots);
  824. spin_unlock(&root->fs_info->trans_lock);
  825. return 0;
  826. }
  827. /*
  828. * update all the cowonly tree roots on disk
  829. */
  830. static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
  831. struct btrfs_root *root)
  832. {
  833. struct btrfs_root *gang[8];
  834. struct btrfs_fs_info *fs_info = root->fs_info;
  835. int i;
  836. int ret;
  837. int err = 0;
  838. spin_lock(&fs_info->fs_roots_radix_lock);
  839. while (1) {
  840. ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
  841. (void **)gang, 0,
  842. ARRAY_SIZE(gang),
  843. BTRFS_ROOT_TRANS_TAG);
  844. if (ret == 0)
  845. break;
  846. for (i = 0; i < ret; i++) {
  847. root = gang[i];
  848. radix_tree_tag_clear(&fs_info->fs_roots_radix,
  849. (unsigned long)root->root_key.objectid,
  850. BTRFS_ROOT_TRANS_TAG);
  851. spin_unlock(&fs_info->fs_roots_radix_lock);
  852. btrfs_free_log(trans, root);
  853. btrfs_update_reloc_root(trans, root);
  854. btrfs_orphan_commit_root(trans, root);
  855. btrfs_save_ino_cache(root, trans);
  856. /* see comments in should_cow_block() */
  857. root->force_cow = 0;
  858. smp_wmb();
  859. if (root->commit_root != root->node) {
  860. mutex_lock(&root->fs_commit_mutex);
  861. switch_commit_root(root);
  862. btrfs_unpin_free_ino(root);
  863. mutex_unlock(&root->fs_commit_mutex);
  864. btrfs_set_root_node(&root->root_item,
  865. root->node);
  866. }
  867. err = btrfs_update_root(trans, fs_info->tree_root,
  868. &root->root_key,
  869. &root->root_item);
  870. spin_lock(&fs_info->fs_roots_radix_lock);
  871. if (err)
  872. break;
  873. }
  874. }
  875. spin_unlock(&fs_info->fs_roots_radix_lock);
  876. return err;
  877. }
  878. /*
  879. * defrag a given btree.
  880. * Every leaf in the btree is read and defragged.
  881. */
  882. int btrfs_defrag_root(struct btrfs_root *root)
  883. {
  884. struct btrfs_fs_info *info = root->fs_info;
  885. struct btrfs_trans_handle *trans;
  886. int ret;
  887. if (xchg(&root->defrag_running, 1))
  888. return 0;
  889. while (1) {
  890. trans = btrfs_start_transaction(root, 0);
  891. if (IS_ERR(trans))
  892. return PTR_ERR(trans);
  893. ret = btrfs_defrag_leaves(trans, root);
  894. btrfs_end_transaction(trans, root);
  895. btrfs_btree_balance_dirty(info->tree_root);
  896. cond_resched();
  897. if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
  898. break;
  899. if (btrfs_defrag_cancelled(root->fs_info)) {
  900. printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
  901. ret = -EAGAIN;
  902. break;
  903. }
  904. }
  905. root->defrag_running = 0;
  906. return ret;
  907. }
  908. /*
  909. * new snapshots need to be created at a very specific time in the
  910. * transaction commit. This does the actual creation
  911. */
  912. static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
  913. struct btrfs_fs_info *fs_info,
  914. struct btrfs_pending_snapshot *pending)
  915. {
  916. struct btrfs_key key;
  917. struct btrfs_root_item *new_root_item;
  918. struct btrfs_root *tree_root = fs_info->tree_root;
  919. struct btrfs_root *root = pending->root;
  920. struct btrfs_root *parent_root;
  921. struct btrfs_block_rsv *rsv;
  922. struct inode *parent_inode;
  923. struct btrfs_path *path;
  924. struct btrfs_dir_item *dir_item;
  925. struct dentry *parent;
  926. struct dentry *dentry;
  927. struct extent_buffer *tmp;
  928. struct extent_buffer *old;
  929. struct timespec cur_time = CURRENT_TIME;
  930. int ret;
  931. u64 to_reserve = 0;
  932. u64 index = 0;
  933. u64 objectid;
  934. u64 root_flags;
  935. uuid_le new_uuid;
  936. path = btrfs_alloc_path();
  937. if (!path) {
  938. ret = pending->error = -ENOMEM;
  939. goto path_alloc_fail;
  940. }
  941. new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
  942. if (!new_root_item) {
  943. ret = pending->error = -ENOMEM;
  944. goto root_item_alloc_fail;
  945. }
  946. ret = btrfs_find_free_objectid(tree_root, &objectid);
  947. if (ret) {
  948. pending->error = ret;
  949. goto no_free_objectid;
  950. }
  951. btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
  952. if (to_reserve > 0) {
  953. ret = btrfs_block_rsv_add(root, &pending->block_rsv,
  954. to_reserve,
  955. BTRFS_RESERVE_NO_FLUSH);
  956. if (ret) {
  957. pending->error = ret;
  958. goto no_free_objectid;
  959. }
  960. }
  961. ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
  962. objectid, pending->inherit);
  963. if (ret) {
  964. pending->error = ret;
  965. goto no_free_objectid;
  966. }
  967. key.objectid = objectid;
  968. key.offset = (u64)-1;
  969. key.type = BTRFS_ROOT_ITEM_KEY;
  970. rsv = trans->block_rsv;
  971. trans->block_rsv = &pending->block_rsv;
  972. dentry = pending->dentry;
  973. parent = dget_parent(dentry);
  974. parent_inode = parent->d_inode;
  975. parent_root = BTRFS_I(parent_inode)->root;
  976. record_root_in_trans(trans, parent_root);
  977. /*
  978. * insert the directory item
  979. */
  980. ret = btrfs_set_inode_index(parent_inode, &index);
  981. BUG_ON(ret); /* -ENOMEM */
  982. /* check if there is a file/dir which has the same name. */
  983. dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
  984. btrfs_ino(parent_inode),
  985. dentry->d_name.name,
  986. dentry->d_name.len, 0);
  987. if (dir_item != NULL && !IS_ERR(dir_item)) {
  988. pending->error = -EEXIST;
  989. goto fail;
  990. } else if (IS_ERR(dir_item)) {
  991. ret = PTR_ERR(dir_item);
  992. btrfs_abort_transaction(trans, root, ret);
  993. goto fail;
  994. }
  995. btrfs_release_path(path);
  996. /*
  997. * pull in the delayed directory update
  998. * and the delayed inode item
  999. * otherwise we corrupt the FS during
  1000. * snapshot
  1001. */
  1002. ret = btrfs_run_delayed_items(trans, root);
  1003. if (ret) { /* Transaction aborted */
  1004. btrfs_abort_transaction(trans, root, ret);
  1005. goto fail;
  1006. }
  1007. record_root_in_trans(trans, root);
  1008. btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
  1009. memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
  1010. btrfs_check_and_init_root_item(new_root_item);
  1011. root_flags = btrfs_root_flags(new_root_item);
  1012. if (pending->readonly)
  1013. root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
  1014. else
  1015. root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
  1016. btrfs_set_root_flags(new_root_item, root_flags);
  1017. btrfs_set_root_generation_v2(new_root_item,
  1018. trans->transid);
  1019. uuid_le_gen(&new_uuid);
  1020. memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
  1021. memcpy(new_root_item->parent_uuid, root->root_item.uuid,
  1022. BTRFS_UUID_SIZE);
  1023. new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
  1024. new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
  1025. btrfs_set_root_otransid(new_root_item, trans->transid);
  1026. memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
  1027. memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
  1028. btrfs_set_root_stransid(new_root_item, 0);
  1029. btrfs_set_root_rtransid(new_root_item, 0);
  1030. old = btrfs_lock_root_node(root);
  1031. ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
  1032. if (ret) {
  1033. btrfs_tree_unlock(old);
  1034. free_extent_buffer(old);
  1035. btrfs_abort_transaction(trans, root, ret);
  1036. goto fail;
  1037. }
  1038. btrfs_set_lock_blocking(old);
  1039. ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
  1040. /* clean up in any case */
  1041. btrfs_tree_unlock(old);
  1042. free_extent_buffer(old);
  1043. if (ret) {
  1044. btrfs_abort_transaction(trans, root, ret);
  1045. goto fail;
  1046. }
  1047. /* see comments in should_cow_block() */
  1048. root->force_cow = 1;
  1049. smp_wmb();
  1050. btrfs_set_root_node(new_root_item, tmp);
  1051. /* record when the snapshot was created in key.offset */
  1052. key.offset = trans->transid;
  1053. ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
  1054. btrfs_tree_unlock(tmp);
  1055. free_extent_buffer(tmp);
  1056. if (ret) {
  1057. btrfs_abort_transaction(trans, root, ret);
  1058. goto fail;
  1059. }
  1060. /*
  1061. * insert root back/forward references
  1062. */
  1063. ret = btrfs_add_root_ref(trans, tree_root, objectid,
  1064. parent_root->root_key.objectid,
  1065. btrfs_ino(parent_inode), index,
  1066. dentry->d_name.name, dentry->d_name.len);
  1067. if (ret) {
  1068. btrfs_abort_transaction(trans, root, ret);
  1069. goto fail;
  1070. }
  1071. key.offset = (u64)-1;
  1072. pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
  1073. if (IS_ERR(pending->snap)) {
  1074. ret = PTR_ERR(pending->snap);
  1075. btrfs_abort_transaction(trans, root, ret);
  1076. goto fail;
  1077. }
  1078. ret = btrfs_reloc_post_snapshot(trans, pending);
  1079. if (ret) {
  1080. btrfs_abort_transaction(trans, root, ret);
  1081. goto fail;
  1082. }
  1083. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  1084. if (ret) {
  1085. btrfs_abort_transaction(trans, root, ret);
  1086. goto fail;
  1087. }
  1088. ret = btrfs_insert_dir_item(trans, parent_root,
  1089. dentry->d_name.name, dentry->d_name.len,
  1090. parent_inode, &key,
  1091. BTRFS_FT_DIR, index);
  1092. /* We have check then name at the beginning, so it is impossible. */
  1093. BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
  1094. if (ret) {
  1095. btrfs_abort_transaction(trans, root, ret);
  1096. goto fail;
  1097. }
  1098. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  1099. dentry->d_name.len * 2);
  1100. parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
  1101. ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
  1102. if (ret)
  1103. btrfs_abort_transaction(trans, root, ret);
  1104. fail:
  1105. dput(parent);
  1106. trans->block_rsv = rsv;
  1107. no_free_objectid:
  1108. kfree(new_root_item);
  1109. root_item_alloc_fail:
  1110. btrfs_free_path(path);
  1111. path_alloc_fail:
  1112. btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
  1113. return ret;
  1114. }
  1115. /*
  1116. * create all the snapshots we've scheduled for creation
  1117. */
  1118. static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
  1119. struct btrfs_fs_info *fs_info)
  1120. {
  1121. struct btrfs_pending_snapshot *pending;
  1122. struct list_head *head = &trans->transaction->pending_snapshots;
  1123. list_for_each_entry(pending, head, list)
  1124. create_pending_snapshot(trans, fs_info, pending);
  1125. return 0;
  1126. }
  1127. static void update_super_roots(struct btrfs_root *root)
  1128. {
  1129. struct btrfs_root_item *root_item;
  1130. struct btrfs_super_block *super;
  1131. super = root->fs_info->super_copy;
  1132. root_item = &root->fs_info->chunk_root->root_item;
  1133. super->chunk_root = root_item->bytenr;
  1134. super->chunk_root_generation = root_item->generation;
  1135. super->chunk_root_level = root_item->level;
  1136. root_item = &root->fs_info->tree_root->root_item;
  1137. super->root = root_item->bytenr;
  1138. super->generation = root_item->generation;
  1139. super->root_level = root_item->level;
  1140. if (btrfs_test_opt(root, SPACE_CACHE))
  1141. super->cache_generation = root_item->generation;
  1142. }
  1143. int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
  1144. {
  1145. int ret = 0;
  1146. spin_lock(&info->trans_lock);
  1147. if (info->running_transaction)
  1148. ret = info->running_transaction->in_commit;
  1149. spin_unlock(&info->trans_lock);
  1150. return ret;
  1151. }
  1152. int btrfs_transaction_blocked(struct btrfs_fs_info *info)
  1153. {
  1154. int ret = 0;
  1155. spin_lock(&info->trans_lock);
  1156. if (info->running_transaction)
  1157. ret = info->running_transaction->blocked;
  1158. spin_unlock(&info->trans_lock);
  1159. return ret;
  1160. }
  1161. /*
  1162. * wait for the current transaction commit to start and block subsequent
  1163. * transaction joins
  1164. */
  1165. static void wait_current_trans_commit_start(struct btrfs_root *root,
  1166. struct btrfs_transaction *trans)
  1167. {
  1168. wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
  1169. }
  1170. /*
  1171. * wait for the current transaction to start and then become unblocked.
  1172. * caller holds ref.
  1173. */
  1174. static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
  1175. struct btrfs_transaction *trans)
  1176. {
  1177. wait_event(root->fs_info->transaction_wait,
  1178. trans->commit_done || (trans->in_commit && !trans->blocked));
  1179. }
  1180. /*
  1181. * commit transactions asynchronously. once btrfs_commit_transaction_async
  1182. * returns, any subsequent transaction will not be allowed to join.
  1183. */
  1184. struct btrfs_async_commit {
  1185. struct btrfs_trans_handle *newtrans;
  1186. struct btrfs_root *root;
  1187. struct work_struct work;
  1188. };
  1189. static void do_async_commit(struct work_struct *work)
  1190. {
  1191. struct btrfs_async_commit *ac =
  1192. container_of(work, struct btrfs_async_commit, work);
  1193. /*
  1194. * We've got freeze protection passed with the transaction.
  1195. * Tell lockdep about it.
  1196. */
  1197. if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
  1198. rwsem_acquire_read(
  1199. &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
  1200. 0, 1, _THIS_IP_);
  1201. current->journal_info = ac->newtrans;
  1202. btrfs_commit_transaction(ac->newtrans, ac->root);
  1203. kfree(ac);
  1204. }
  1205. int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
  1206. struct btrfs_root *root,
  1207. int wait_for_unblock)
  1208. {
  1209. struct btrfs_async_commit *ac;
  1210. struct btrfs_transaction *cur_trans;
  1211. ac = kmalloc(sizeof(*ac), GFP_NOFS);
  1212. if (!ac)
  1213. return -ENOMEM;
  1214. INIT_WORK(&ac->work, do_async_commit);
  1215. ac->root = root;
  1216. ac->newtrans = btrfs_join_transaction(root);
  1217. if (IS_ERR(ac->newtrans)) {
  1218. int err = PTR_ERR(ac->newtrans);
  1219. kfree(ac);
  1220. return err;
  1221. }
  1222. /* take transaction reference */
  1223. cur_trans = trans->transaction;
  1224. atomic_inc(&cur_trans->use_count);
  1225. btrfs_end_transaction(trans, root);
  1226. /*
  1227. * Tell lockdep we've released the freeze rwsem, since the
  1228. * async commit thread will be the one to unlock it.
  1229. */
  1230. if (trans->type < TRANS_JOIN_NOLOCK)
  1231. rwsem_release(
  1232. &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
  1233. 1, _THIS_IP_);
  1234. schedule_work(&ac->work);
  1235. /* wait for transaction to start and unblock */
  1236. if (wait_for_unblock)
  1237. wait_current_trans_commit_start_and_unblock(root, cur_trans);
  1238. else
  1239. wait_current_trans_commit_start(root, cur_trans);
  1240. if (current->journal_info == trans)
  1241. current->journal_info = NULL;
  1242. put_transaction(cur_trans);
  1243. return 0;
  1244. }
  1245. static void cleanup_transaction(struct btrfs_trans_handle *trans,
  1246. struct btrfs_root *root, int err)
  1247. {
  1248. struct btrfs_transaction *cur_trans = trans->transaction;
  1249. WARN_ON(trans->use_count > 1);
  1250. btrfs_abort_transaction(trans, root, err);
  1251. spin_lock(&root->fs_info->trans_lock);
  1252. list_del_init(&cur_trans->list);
  1253. if (cur_trans == root->fs_info->running_transaction) {
  1254. root->fs_info->running_transaction = NULL;
  1255. root->fs_info->trans_no_join = 0;
  1256. }
  1257. spin_unlock(&root->fs_info->trans_lock);
  1258. btrfs_cleanup_one_transaction(trans->transaction, root);
  1259. put_transaction(cur_trans);
  1260. put_transaction(cur_trans);
  1261. trace_btrfs_transaction_commit(root);
  1262. btrfs_scrub_continue(root);
  1263. if (current->journal_info == trans)
  1264. current->journal_info = NULL;
  1265. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1266. }
  1267. static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
  1268. struct btrfs_root *root)
  1269. {
  1270. int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
  1271. int snap_pending = 0;
  1272. int ret;
  1273. if (!flush_on_commit) {
  1274. spin_lock(&root->fs_info->trans_lock);
  1275. if (!list_empty(&trans->transaction->pending_snapshots))
  1276. snap_pending = 1;
  1277. spin_unlock(&root->fs_info->trans_lock);
  1278. }
  1279. if (flush_on_commit || snap_pending) {
  1280. ret = btrfs_start_delalloc_inodes(root, 1);
  1281. if (ret)
  1282. return ret;
  1283. btrfs_wait_ordered_extents(root, 1);
  1284. }
  1285. ret = btrfs_run_delayed_items(trans, root);
  1286. if (ret)
  1287. return ret;
  1288. /*
  1289. * running the delayed items may have added new refs. account
  1290. * them now so that they hinder processing of more delayed refs
  1291. * as little as possible.
  1292. */
  1293. btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
  1294. /*
  1295. * rename don't use btrfs_join_transaction, so, once we
  1296. * set the transaction to blocked above, we aren't going
  1297. * to get any new ordered operations. We can safely run
  1298. * it here and no for sure that nothing new will be added
  1299. * to the list
  1300. */
  1301. ret = btrfs_run_ordered_operations(trans, root, 1);
  1302. return ret;
  1303. }
  1304. /*
  1305. * btrfs_transaction state sequence:
  1306. * in_commit = 0, blocked = 0 (initial)
  1307. * in_commit = 1, blocked = 1
  1308. * blocked = 0
  1309. * commit_done = 1
  1310. */
  1311. int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
  1312. struct btrfs_root *root)
  1313. {
  1314. unsigned long joined = 0;
  1315. struct btrfs_transaction *cur_trans = trans->transaction;
  1316. struct btrfs_transaction *prev_trans = NULL;
  1317. DEFINE_WAIT(wait);
  1318. int ret;
  1319. int should_grow = 0;
  1320. unsigned long now = get_seconds();
  1321. ret = btrfs_run_ordered_operations(trans, root, 0);
  1322. if (ret) {
  1323. btrfs_abort_transaction(trans, root, ret);
  1324. btrfs_end_transaction(trans, root);
  1325. return ret;
  1326. }
  1327. /* Stop the commit early if ->aborted is set */
  1328. if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
  1329. ret = cur_trans->aborted;
  1330. btrfs_end_transaction(trans, root);
  1331. return ret;
  1332. }
  1333. /* make a pass through all the delayed refs we have so far
  1334. * any runnings procs may add more while we are here
  1335. */
  1336. ret = btrfs_run_delayed_refs(trans, root, 0);
  1337. if (ret) {
  1338. btrfs_end_transaction(trans, root);
  1339. return ret;
  1340. }
  1341. btrfs_trans_release_metadata(trans, root);
  1342. trans->block_rsv = NULL;
  1343. if (trans->qgroup_reserved) {
  1344. btrfs_qgroup_free(root, trans->qgroup_reserved);
  1345. trans->qgroup_reserved = 0;
  1346. }
  1347. cur_trans = trans->transaction;
  1348. /*
  1349. * set the flushing flag so procs in this transaction have to
  1350. * start sending their work down.
  1351. */
  1352. cur_trans->delayed_refs.flushing = 1;
  1353. if (!list_empty(&trans->new_bgs))
  1354. btrfs_create_pending_block_groups(trans, root);
  1355. ret = btrfs_run_delayed_refs(trans, root, 0);
  1356. if (ret) {
  1357. btrfs_end_transaction(trans, root);
  1358. return ret;
  1359. }
  1360. spin_lock(&cur_trans->commit_lock);
  1361. if (cur_trans->in_commit) {
  1362. spin_unlock(&cur_trans->commit_lock);
  1363. atomic_inc(&cur_trans->use_count);
  1364. ret = btrfs_end_transaction(trans, root);
  1365. wait_for_commit(root, cur_trans);
  1366. put_transaction(cur_trans);
  1367. return ret;
  1368. }
  1369. trans->transaction->in_commit = 1;
  1370. trans->transaction->blocked = 1;
  1371. spin_unlock(&cur_trans->commit_lock);
  1372. wake_up(&root->fs_info->transaction_blocked_wait);
  1373. spin_lock(&root->fs_info->trans_lock);
  1374. if (cur_trans->list.prev != &root->fs_info->trans_list) {
  1375. prev_trans = list_entry(cur_trans->list.prev,
  1376. struct btrfs_transaction, list);
  1377. if (!prev_trans->commit_done) {
  1378. atomic_inc(&prev_trans->use_count);
  1379. spin_unlock(&root->fs_info->trans_lock);
  1380. wait_for_commit(root, prev_trans);
  1381. put_transaction(prev_trans);
  1382. } else {
  1383. spin_unlock(&root->fs_info->trans_lock);
  1384. }
  1385. } else {
  1386. spin_unlock(&root->fs_info->trans_lock);
  1387. }
  1388. if (!btrfs_test_opt(root, SSD) &&
  1389. (now < cur_trans->start_time || now - cur_trans->start_time < 1))
  1390. should_grow = 1;
  1391. do {
  1392. joined = cur_trans->num_joined;
  1393. WARN_ON(cur_trans != trans->transaction);
  1394. ret = btrfs_flush_all_pending_stuffs(trans, root);
  1395. if (ret)
  1396. goto cleanup_transaction;
  1397. prepare_to_wait(&cur_trans->writer_wait, &wait,
  1398. TASK_UNINTERRUPTIBLE);
  1399. if (atomic_read(&cur_trans->num_writers) > 1)
  1400. schedule_timeout(MAX_SCHEDULE_TIMEOUT);
  1401. else if (should_grow)
  1402. schedule_timeout(1);
  1403. finish_wait(&cur_trans->writer_wait, &wait);
  1404. } while (atomic_read(&cur_trans->num_writers) > 1 ||
  1405. (should_grow && cur_trans->num_joined != joined));
  1406. ret = btrfs_flush_all_pending_stuffs(trans, root);
  1407. if (ret)
  1408. goto cleanup_transaction;
  1409. /*
  1410. * Ok now we need to make sure to block out any other joins while we
  1411. * commit the transaction. We could have started a join before setting
  1412. * no_join so make sure to wait for num_writers to == 1 again.
  1413. */
  1414. spin_lock(&root->fs_info->trans_lock);
  1415. root->fs_info->trans_no_join = 1;
  1416. spin_unlock(&root->fs_info->trans_lock);
  1417. wait_event(cur_trans->writer_wait,
  1418. atomic_read(&cur_trans->num_writers) == 1);
  1419. /* ->aborted might be set after the previous check, so check it */
  1420. if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
  1421. ret = cur_trans->aborted;
  1422. goto cleanup_transaction;
  1423. }
  1424. /*
  1425. * the reloc mutex makes sure that we stop
  1426. * the balancing code from coming in and moving
  1427. * extents around in the middle of the commit
  1428. */
  1429. mutex_lock(&root->fs_info->reloc_mutex);
  1430. /*
  1431. * We needn't worry about the delayed items because we will
  1432. * deal with them in create_pending_snapshot(), which is the
  1433. * core function of the snapshot creation.
  1434. */
  1435. ret = create_pending_snapshots(trans, root->fs_info);
  1436. if (ret) {
  1437. mutex_unlock(&root->fs_info->reloc_mutex);
  1438. goto cleanup_transaction;
  1439. }
  1440. /*
  1441. * We insert the dir indexes of the snapshots and update the inode
  1442. * of the snapshots' parents after the snapshot creation, so there
  1443. * are some delayed items which are not dealt with. Now deal with
  1444. * them.
  1445. *
  1446. * We needn't worry that this operation will corrupt the snapshots,
  1447. * because all the tree which are snapshoted will be forced to COW
  1448. * the nodes and leaves.
  1449. */
  1450. ret = btrfs_run_delayed_items(trans, root);
  1451. if (ret) {
  1452. mutex_unlock(&root->fs_info->reloc_mutex);
  1453. goto cleanup_transaction;
  1454. }
  1455. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  1456. if (ret) {
  1457. mutex_unlock(&root->fs_info->reloc_mutex);
  1458. goto cleanup_transaction;
  1459. }
  1460. /*
  1461. * make sure none of the code above managed to slip in a
  1462. * delayed item
  1463. */
  1464. btrfs_assert_delayed_root_empty(root);
  1465. WARN_ON(cur_trans != trans->transaction);
  1466. btrfs_scrub_pause(root);
  1467. /* btrfs_commit_tree_roots is responsible for getting the
  1468. * various roots consistent with each other. Every pointer
  1469. * in the tree of tree roots has to point to the most up to date
  1470. * root for every subvolume and other tree. So, we have to keep
  1471. * the tree logging code from jumping in and changing any
  1472. * of the trees.
  1473. *
  1474. * At this point in the commit, there can't be any tree-log
  1475. * writers, but a little lower down we drop the trans mutex
  1476. * and let new people in. By holding the tree_log_mutex
  1477. * from now until after the super is written, we avoid races
  1478. * with the tree-log code.
  1479. */
  1480. mutex_lock(&root->fs_info->tree_log_mutex);
  1481. ret = commit_fs_roots(trans, root);
  1482. if (ret) {
  1483. mutex_unlock(&root->fs_info->tree_log_mutex);
  1484. mutex_unlock(&root->fs_info->reloc_mutex);
  1485. goto cleanup_transaction;
  1486. }
  1487. /* commit_fs_roots gets rid of all the tree log roots, it is now
  1488. * safe to free the root of tree log roots
  1489. */
  1490. btrfs_free_log_root_tree(trans, root->fs_info);
  1491. ret = commit_cowonly_roots(trans, root);
  1492. if (ret) {
  1493. mutex_unlock(&root->fs_info->tree_log_mutex);
  1494. mutex_unlock(&root->fs_info->reloc_mutex);
  1495. goto cleanup_transaction;
  1496. }
  1497. /*
  1498. * The tasks which save the space cache and inode cache may also
  1499. * update ->aborted, check it.
  1500. */
  1501. if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
  1502. ret = cur_trans->aborted;
  1503. mutex_unlock(&root->fs_info->tree_log_mutex);
  1504. mutex_unlock(&root->fs_info->reloc_mutex);
  1505. goto cleanup_transaction;
  1506. }
  1507. btrfs_prepare_extent_commit(trans, root);
  1508. cur_trans = root->fs_info->running_transaction;
  1509. btrfs_set_root_node(&root->fs_info->tree_root->root_item,
  1510. root->fs_info->tree_root->node);
  1511. switch_commit_root(root->fs_info->tree_root);
  1512. btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
  1513. root->fs_info->chunk_root->node);
  1514. switch_commit_root(root->fs_info->chunk_root);
  1515. assert_qgroups_uptodate(trans);
  1516. update_super_roots(root);
  1517. if (!root->fs_info->log_root_recovering) {
  1518. btrfs_set_super_log_root(root->fs_info->super_copy, 0);
  1519. btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
  1520. }
  1521. memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
  1522. sizeof(*root->fs_info->super_copy));
  1523. trans->transaction->blocked = 0;
  1524. spin_lock(&root->fs_info->trans_lock);
  1525. root->fs_info->running_transaction = NULL;
  1526. root->fs_info->trans_no_join = 0;
  1527. spin_unlock(&root->fs_info->trans_lock);
  1528. mutex_unlock(&root->fs_info->reloc_mutex);
  1529. wake_up(&root->fs_info->transaction_wait);
  1530. ret = btrfs_write_and_wait_transaction(trans, root);
  1531. if (ret) {
  1532. btrfs_error(root->fs_info, ret,
  1533. "Error while writing out transaction.");
  1534. mutex_unlock(&root->fs_info->tree_log_mutex);
  1535. goto cleanup_transaction;
  1536. }
  1537. ret = write_ctree_super(trans, root, 0);
  1538. if (ret) {
  1539. mutex_unlock(&root->fs_info->tree_log_mutex);
  1540. goto cleanup_transaction;
  1541. }
  1542. /*
  1543. * the super is written, we can safely allow the tree-loggers
  1544. * to go about their business
  1545. */
  1546. mutex_unlock(&root->fs_info->tree_log_mutex);
  1547. btrfs_finish_extent_commit(trans, root);
  1548. cur_trans->commit_done = 1;
  1549. root->fs_info->last_trans_committed = cur_trans->transid;
  1550. wake_up(&cur_trans->commit_wait);
  1551. spin_lock(&root->fs_info->trans_lock);
  1552. list_del_init(&cur_trans->list);
  1553. spin_unlock(&root->fs_info->trans_lock);
  1554. put_transaction(cur_trans);
  1555. put_transaction(cur_trans);
  1556. if (trans->type < TRANS_JOIN_NOLOCK)
  1557. sb_end_intwrite(root->fs_info->sb);
  1558. trace_btrfs_transaction_commit(root);
  1559. btrfs_scrub_continue(root);
  1560. if (current->journal_info == trans)
  1561. current->journal_info = NULL;
  1562. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1563. if (current != root->fs_info->transaction_kthread)
  1564. btrfs_run_delayed_iputs(root);
  1565. return ret;
  1566. cleanup_transaction:
  1567. btrfs_trans_release_metadata(trans, root);
  1568. trans->block_rsv = NULL;
  1569. if (trans->qgroup_reserved) {
  1570. btrfs_qgroup_free(root, trans->qgroup_reserved);
  1571. trans->qgroup_reserved = 0;
  1572. }
  1573. btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
  1574. // WARN_ON(1);
  1575. if (current->journal_info == trans)
  1576. current->journal_info = NULL;
  1577. cleanup_transaction(trans, root, ret);
  1578. return ret;
  1579. }
  1580. /*
  1581. * interface function to delete all the snapshots we have scheduled for deletion
  1582. */
  1583. int btrfs_clean_old_snapshots(struct btrfs_root *root)
  1584. {
  1585. LIST_HEAD(list);
  1586. struct btrfs_fs_info *fs_info = root->fs_info;
  1587. spin_lock(&fs_info->trans_lock);
  1588. list_splice_init(&fs_info->dead_roots, &list);
  1589. spin_unlock(&fs_info->trans_lock);
  1590. while (!list_empty(&list)) {
  1591. int ret;
  1592. root = list_entry(list.next, struct btrfs_root, root_list);
  1593. list_del(&root->root_list);
  1594. btrfs_kill_all_delayed_nodes(root);
  1595. if (btrfs_header_backref_rev(root->node) <
  1596. BTRFS_MIXED_BACKREF_REV)
  1597. ret = btrfs_drop_snapshot(root, NULL, 0, 0);
  1598. else
  1599. ret =btrfs_drop_snapshot(root, NULL, 1, 0);
  1600. BUG_ON(ret < 0);
  1601. }
  1602. return 0;
  1603. }