disk-io.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #ifdef CONFIG_X86
  49. #include <asm/cpufeature.h>
  50. #endif
  51. static struct extent_io_ops btree_extent_io_ops;
  52. static void end_workqueue_fn(struct btrfs_work *work);
  53. static void free_fs_root(struct btrfs_root *root);
  54. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  55. int read_only);
  56. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  57. struct btrfs_root *root);
  58. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  59. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. /*
  69. * end_io_wq structs are used to do processing in task context when an IO is
  70. * complete. This is used during reads to verify checksums, and it is used
  71. * by writes to insert metadata for new file extents after IO is complete.
  72. */
  73. struct end_io_wq {
  74. struct bio *bio;
  75. bio_end_io_t *end_io;
  76. void *private;
  77. struct btrfs_fs_info *info;
  78. int error;
  79. int metadata;
  80. struct list_head list;
  81. struct btrfs_work work;
  82. };
  83. /*
  84. * async submit bios are used to offload expensive checksumming
  85. * onto the worker threads. They checksum file and metadata bios
  86. * just before they are sent down the IO stack.
  87. */
  88. struct async_submit_bio {
  89. struct inode *inode;
  90. struct bio *bio;
  91. struct list_head list;
  92. extent_submit_bio_hook_t *submit_bio_start;
  93. extent_submit_bio_hook_t *submit_bio_done;
  94. int rw;
  95. int mirror_num;
  96. unsigned long bio_flags;
  97. /*
  98. * bio_offset is optional, can be used if the pages in the bio
  99. * can't tell us where in the file the bio should go
  100. */
  101. u64 bio_offset;
  102. struct btrfs_work work;
  103. int error;
  104. };
  105. /*
  106. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  107. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  108. * the level the eb occupies in the tree.
  109. *
  110. * Different roots are used for different purposes and may nest inside each
  111. * other and they require separate keysets. As lockdep keys should be
  112. * static, assign keysets according to the purpose of the root as indicated
  113. * by btrfs_root->objectid. This ensures that all special purpose roots
  114. * have separate keysets.
  115. *
  116. * Lock-nesting across peer nodes is always done with the immediate parent
  117. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  118. * subclass to avoid triggering lockdep warning in such cases.
  119. *
  120. * The key is set by the readpage_end_io_hook after the buffer has passed
  121. * csum validation but before the pages are unlocked. It is also set by
  122. * btrfs_init_new_buffer on freshly allocated blocks.
  123. *
  124. * We also add a check to make sure the highest level of the tree is the
  125. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  126. * needs update as well.
  127. */
  128. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  129. # if BTRFS_MAX_LEVEL != 8
  130. # error
  131. # endif
  132. static struct btrfs_lockdep_keyset {
  133. u64 id; /* root objectid */
  134. const char *name_stem; /* lock name stem */
  135. char names[BTRFS_MAX_LEVEL + 1][20];
  136. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  137. } btrfs_lockdep_keysets[] = {
  138. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  139. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  140. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  141. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  142. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  143. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  144. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  145. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  146. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  147. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  148. { .id = 0, .name_stem = "tree" },
  149. };
  150. void __init btrfs_init_lockdep(void)
  151. {
  152. int i, j;
  153. /* initialize lockdep class names */
  154. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  155. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  156. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  157. snprintf(ks->names[j], sizeof(ks->names[j]),
  158. "btrfs-%s-%02d", ks->name_stem, j);
  159. }
  160. }
  161. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  162. int level)
  163. {
  164. struct btrfs_lockdep_keyset *ks;
  165. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  166. /* find the matching keyset, id 0 is the default entry */
  167. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  168. if (ks->id == objectid)
  169. break;
  170. lockdep_set_class_and_name(&eb->lock,
  171. &ks->keys[level], ks->names[level]);
  172. }
  173. #endif
  174. /*
  175. * extents on the btree inode are pretty simple, there's one extent
  176. * that covers the entire device
  177. */
  178. static struct extent_map *btree_get_extent(struct inode *inode,
  179. struct page *page, size_t pg_offset, u64 start, u64 len,
  180. int create)
  181. {
  182. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  183. struct extent_map *em;
  184. int ret;
  185. read_lock(&em_tree->lock);
  186. em = lookup_extent_mapping(em_tree, start, len);
  187. if (em) {
  188. em->bdev =
  189. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  190. read_unlock(&em_tree->lock);
  191. goto out;
  192. }
  193. read_unlock(&em_tree->lock);
  194. em = alloc_extent_map();
  195. if (!em) {
  196. em = ERR_PTR(-ENOMEM);
  197. goto out;
  198. }
  199. em->start = 0;
  200. em->len = (u64)-1;
  201. em->block_len = (u64)-1;
  202. em->block_start = 0;
  203. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  204. write_lock(&em_tree->lock);
  205. ret = add_extent_mapping(em_tree, em);
  206. if (ret == -EEXIST) {
  207. free_extent_map(em);
  208. em = lookup_extent_mapping(em_tree, start, len);
  209. if (!em)
  210. em = ERR_PTR(-EIO);
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = ERR_PTR(ret);
  214. }
  215. write_unlock(&em_tree->lock);
  216. out:
  217. return em;
  218. }
  219. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  220. {
  221. return crc32c(seed, data, len);
  222. }
  223. void btrfs_csum_final(u32 crc, char *result)
  224. {
  225. put_unaligned_le32(~crc, result);
  226. }
  227. /*
  228. * compute the csum for a btree block, and either verify it or write it
  229. * into the csum field of the block.
  230. */
  231. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  232. int verify)
  233. {
  234. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  235. char *result = NULL;
  236. unsigned long len;
  237. unsigned long cur_len;
  238. unsigned long offset = BTRFS_CSUM_SIZE;
  239. char *kaddr;
  240. unsigned long map_start;
  241. unsigned long map_len;
  242. int err;
  243. u32 crc = ~(u32)0;
  244. unsigned long inline_result;
  245. len = buf->len - offset;
  246. while (len > 0) {
  247. err = map_private_extent_buffer(buf, offset, 32,
  248. &kaddr, &map_start, &map_len);
  249. if (err)
  250. return 1;
  251. cur_len = min(len, map_len - (offset - map_start));
  252. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  253. crc, cur_len);
  254. len -= cur_len;
  255. offset += cur_len;
  256. }
  257. if (csum_size > sizeof(inline_result)) {
  258. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  259. if (!result)
  260. return 1;
  261. } else {
  262. result = (char *)&inline_result;
  263. }
  264. btrfs_csum_final(crc, result);
  265. if (verify) {
  266. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  267. u32 val;
  268. u32 found = 0;
  269. memcpy(&found, result, csum_size);
  270. read_extent_buffer(buf, &val, 0, csum_size);
  271. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  272. "failed on %llu wanted %X found %X "
  273. "level %d\n",
  274. root->fs_info->sb->s_id,
  275. (unsigned long long)buf->start, val, found,
  276. btrfs_header_level(buf));
  277. if (result != (char *)&inline_result)
  278. kfree(result);
  279. return 1;
  280. }
  281. } else {
  282. write_extent_buffer(buf, result, 0, csum_size);
  283. }
  284. if (result != (char *)&inline_result)
  285. kfree(result);
  286. return 0;
  287. }
  288. /*
  289. * we can't consider a given block up to date unless the transid of the
  290. * block matches the transid in the parent node's pointer. This is how we
  291. * detect blocks that either didn't get written at all or got written
  292. * in the wrong place.
  293. */
  294. static int verify_parent_transid(struct extent_io_tree *io_tree,
  295. struct extent_buffer *eb, u64 parent_transid,
  296. int atomic)
  297. {
  298. struct extent_state *cached_state = NULL;
  299. int ret;
  300. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  301. return 0;
  302. if (atomic)
  303. return -EAGAIN;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state);
  306. if (extent_buffer_uptodate(eb) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(eb);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int failed = 0;
  333. int ret;
  334. int num_copies = 0;
  335. int mirror_num = 0;
  336. int failed_mirror = 0;
  337. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  338. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  339. while (1) {
  340. ret = read_extent_buffer_pages(io_tree, eb, start,
  341. WAIT_COMPLETE,
  342. btree_get_extent, mirror_num);
  343. if (!ret) {
  344. if (!verify_parent_transid(io_tree, eb,
  345. parent_transid, 0))
  346. break;
  347. else
  348. ret = -EIO;
  349. }
  350. /*
  351. * This buffer's crc is fine, but its contents are corrupted, so
  352. * there is no reason to read the other copies, they won't be
  353. * any less wrong.
  354. */
  355. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  356. break;
  357. num_copies = btrfs_num_copies(root->fs_info,
  358. eb->start, eb->len);
  359. if (num_copies == 1)
  360. break;
  361. if (!failed_mirror) {
  362. failed = 1;
  363. failed_mirror = eb->read_mirror;
  364. }
  365. mirror_num++;
  366. if (mirror_num == failed_mirror)
  367. mirror_num++;
  368. if (mirror_num > num_copies)
  369. break;
  370. }
  371. if (failed && !ret && failed_mirror)
  372. repair_eb_io_failure(root, eb, failed_mirror);
  373. return ret;
  374. }
  375. /*
  376. * checksum a dirty tree block before IO. This has extra checks to make sure
  377. * we only fill in the checksum field in the first page of a multi-page block
  378. */
  379. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  380. {
  381. struct extent_io_tree *tree;
  382. u64 start = page_offset(page);
  383. u64 found_start;
  384. struct extent_buffer *eb;
  385. tree = &BTRFS_I(page->mapping->host)->io_tree;
  386. eb = (struct extent_buffer *)page->private;
  387. if (page != eb->pages[0])
  388. return 0;
  389. found_start = btrfs_header_bytenr(eb);
  390. if (found_start != start) {
  391. WARN_ON(1);
  392. return 0;
  393. }
  394. if (!PageUptodate(page)) {
  395. WARN_ON(1);
  396. return 0;
  397. }
  398. csum_tree_block(root, eb, 0);
  399. return 0;
  400. }
  401. static int check_tree_block_fsid(struct btrfs_root *root,
  402. struct extent_buffer *eb)
  403. {
  404. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  405. u8 fsid[BTRFS_UUID_SIZE];
  406. int ret = 1;
  407. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  408. BTRFS_FSID_SIZE);
  409. while (fs_devices) {
  410. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  411. ret = 0;
  412. break;
  413. }
  414. fs_devices = fs_devices->seed;
  415. }
  416. return ret;
  417. }
  418. #define CORRUPT(reason, eb, root, slot) \
  419. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  420. "root=%llu, slot=%d\n", reason, \
  421. (unsigned long long)btrfs_header_bytenr(eb), \
  422. (unsigned long long)root->objectid, slot)
  423. static noinline int check_leaf(struct btrfs_root *root,
  424. struct extent_buffer *leaf)
  425. {
  426. struct btrfs_key key;
  427. struct btrfs_key leaf_key;
  428. u32 nritems = btrfs_header_nritems(leaf);
  429. int slot;
  430. if (nritems == 0)
  431. return 0;
  432. /* Check the 0 item */
  433. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  434. BTRFS_LEAF_DATA_SIZE(root)) {
  435. CORRUPT("invalid item offset size pair", leaf, root, 0);
  436. return -EIO;
  437. }
  438. /*
  439. * Check to make sure each items keys are in the correct order and their
  440. * offsets make sense. We only have to loop through nritems-1 because
  441. * we check the current slot against the next slot, which verifies the
  442. * next slot's offset+size makes sense and that the current's slot
  443. * offset is correct.
  444. */
  445. for (slot = 0; slot < nritems - 1; slot++) {
  446. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  447. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  448. /* Make sure the keys are in the right order */
  449. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  450. CORRUPT("bad key order", leaf, root, slot);
  451. return -EIO;
  452. }
  453. /*
  454. * Make sure the offset and ends are right, remember that the
  455. * item data starts at the end of the leaf and grows towards the
  456. * front.
  457. */
  458. if (btrfs_item_offset_nr(leaf, slot) !=
  459. btrfs_item_end_nr(leaf, slot + 1)) {
  460. CORRUPT("slot offset bad", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Check to make sure that we don't point outside of the leaf,
  465. * just incase all the items are consistent to eachother, but
  466. * all point outside of the leaf.
  467. */
  468. if (btrfs_item_end_nr(leaf, slot) >
  469. BTRFS_LEAF_DATA_SIZE(root)) {
  470. CORRUPT("slot end outside of leaf", leaf, root, slot);
  471. return -EIO;
  472. }
  473. }
  474. return 0;
  475. }
  476. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  477. struct page *page, int max_walk)
  478. {
  479. struct extent_buffer *eb;
  480. u64 start = page_offset(page);
  481. u64 target = start;
  482. u64 min_start;
  483. if (start < max_walk)
  484. min_start = 0;
  485. else
  486. min_start = start - max_walk;
  487. while (start >= min_start) {
  488. eb = find_extent_buffer(tree, start, 0);
  489. if (eb) {
  490. /*
  491. * we found an extent buffer and it contains our page
  492. * horray!
  493. */
  494. if (eb->start <= target &&
  495. eb->start + eb->len > target)
  496. return eb;
  497. /* we found an extent buffer that wasn't for us */
  498. free_extent_buffer(eb);
  499. return NULL;
  500. }
  501. if (start == 0)
  502. break;
  503. start -= PAGE_CACHE_SIZE;
  504. }
  505. return NULL;
  506. }
  507. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  508. struct extent_state *state, int mirror)
  509. {
  510. struct extent_io_tree *tree;
  511. u64 found_start;
  512. int found_level;
  513. struct extent_buffer *eb;
  514. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  515. int ret = 0;
  516. int reads_done;
  517. if (!page->private)
  518. goto out;
  519. tree = &BTRFS_I(page->mapping->host)->io_tree;
  520. eb = (struct extent_buffer *)page->private;
  521. /* the pending IO might have been the only thing that kept this buffer
  522. * in memory. Make sure we have a ref for all this other checks
  523. */
  524. extent_buffer_get(eb);
  525. reads_done = atomic_dec_and_test(&eb->io_pages);
  526. if (!reads_done)
  527. goto err;
  528. eb->read_mirror = mirror;
  529. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  530. ret = -EIO;
  531. goto err;
  532. }
  533. found_start = btrfs_header_bytenr(eb);
  534. if (found_start != eb->start) {
  535. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  536. "%llu %llu\n",
  537. (unsigned long long)found_start,
  538. (unsigned long long)eb->start);
  539. ret = -EIO;
  540. goto err;
  541. }
  542. if (check_tree_block_fsid(root, eb)) {
  543. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  544. (unsigned long long)eb->start);
  545. ret = -EIO;
  546. goto err;
  547. }
  548. found_level = btrfs_header_level(eb);
  549. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  550. eb, found_level);
  551. ret = csum_tree_block(root, eb, 1);
  552. if (ret) {
  553. ret = -EIO;
  554. goto err;
  555. }
  556. /*
  557. * If this is a leaf block and it is corrupt, set the corrupt bit so
  558. * that we don't try and read the other copies of this block, just
  559. * return -EIO.
  560. */
  561. if (found_level == 0 && check_leaf(root, eb)) {
  562. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  563. ret = -EIO;
  564. }
  565. if (!ret)
  566. set_extent_buffer_uptodate(eb);
  567. err:
  568. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  569. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  570. btree_readahead_hook(root, eb, eb->start, ret);
  571. }
  572. if (ret)
  573. clear_extent_buffer_uptodate(eb);
  574. free_extent_buffer(eb);
  575. out:
  576. return ret;
  577. }
  578. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  579. {
  580. struct extent_buffer *eb;
  581. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  582. eb = (struct extent_buffer *)page->private;
  583. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  584. eb->read_mirror = failed_mirror;
  585. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  586. btree_readahead_hook(root, eb, eb->start, -EIO);
  587. return -EIO; /* we fixed nothing */
  588. }
  589. static void end_workqueue_bio(struct bio *bio, int err)
  590. {
  591. struct end_io_wq *end_io_wq = bio->bi_private;
  592. struct btrfs_fs_info *fs_info;
  593. fs_info = end_io_wq->info;
  594. end_io_wq->error = err;
  595. end_io_wq->work.func = end_workqueue_fn;
  596. end_io_wq->work.flags = 0;
  597. if (bio->bi_rw & REQ_WRITE) {
  598. if (end_io_wq->metadata == 1)
  599. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  600. &end_io_wq->work);
  601. else if (end_io_wq->metadata == 2)
  602. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  603. &end_io_wq->work);
  604. else
  605. btrfs_queue_worker(&fs_info->endio_write_workers,
  606. &end_io_wq->work);
  607. } else {
  608. if (end_io_wq->metadata)
  609. btrfs_queue_worker(&fs_info->endio_meta_workers,
  610. &end_io_wq->work);
  611. else
  612. btrfs_queue_worker(&fs_info->endio_workers,
  613. &end_io_wq->work);
  614. }
  615. }
  616. /*
  617. * For the metadata arg you want
  618. *
  619. * 0 - if data
  620. * 1 - if normal metadta
  621. * 2 - if writing to the free space cache area
  622. */
  623. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  624. int metadata)
  625. {
  626. struct end_io_wq *end_io_wq;
  627. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  628. if (!end_io_wq)
  629. return -ENOMEM;
  630. end_io_wq->private = bio->bi_private;
  631. end_io_wq->end_io = bio->bi_end_io;
  632. end_io_wq->info = info;
  633. end_io_wq->error = 0;
  634. end_io_wq->bio = bio;
  635. end_io_wq->metadata = metadata;
  636. bio->bi_private = end_io_wq;
  637. bio->bi_end_io = end_workqueue_bio;
  638. return 0;
  639. }
  640. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  641. {
  642. unsigned long limit = min_t(unsigned long,
  643. info->workers.max_workers,
  644. info->fs_devices->open_devices);
  645. return 256 * limit;
  646. }
  647. static void run_one_async_start(struct btrfs_work *work)
  648. {
  649. struct async_submit_bio *async;
  650. int ret;
  651. async = container_of(work, struct async_submit_bio, work);
  652. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  653. async->mirror_num, async->bio_flags,
  654. async->bio_offset);
  655. if (ret)
  656. async->error = ret;
  657. }
  658. static void run_one_async_done(struct btrfs_work *work)
  659. {
  660. struct btrfs_fs_info *fs_info;
  661. struct async_submit_bio *async;
  662. int limit;
  663. async = container_of(work, struct async_submit_bio, work);
  664. fs_info = BTRFS_I(async->inode)->root->fs_info;
  665. limit = btrfs_async_submit_limit(fs_info);
  666. limit = limit * 2 / 3;
  667. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  668. waitqueue_active(&fs_info->async_submit_wait))
  669. wake_up(&fs_info->async_submit_wait);
  670. /* If an error occured we just want to clean up the bio and move on */
  671. if (async->error) {
  672. bio_endio(async->bio, async->error);
  673. return;
  674. }
  675. async->submit_bio_done(async->inode, async->rw, async->bio,
  676. async->mirror_num, async->bio_flags,
  677. async->bio_offset);
  678. }
  679. static void run_one_async_free(struct btrfs_work *work)
  680. {
  681. struct async_submit_bio *async;
  682. async = container_of(work, struct async_submit_bio, work);
  683. kfree(async);
  684. }
  685. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  686. int rw, struct bio *bio, int mirror_num,
  687. unsigned long bio_flags,
  688. u64 bio_offset,
  689. extent_submit_bio_hook_t *submit_bio_start,
  690. extent_submit_bio_hook_t *submit_bio_done)
  691. {
  692. struct async_submit_bio *async;
  693. async = kmalloc(sizeof(*async), GFP_NOFS);
  694. if (!async)
  695. return -ENOMEM;
  696. async->inode = inode;
  697. async->rw = rw;
  698. async->bio = bio;
  699. async->mirror_num = mirror_num;
  700. async->submit_bio_start = submit_bio_start;
  701. async->submit_bio_done = submit_bio_done;
  702. async->work.func = run_one_async_start;
  703. async->work.ordered_func = run_one_async_done;
  704. async->work.ordered_free = run_one_async_free;
  705. async->work.flags = 0;
  706. async->bio_flags = bio_flags;
  707. async->bio_offset = bio_offset;
  708. async->error = 0;
  709. atomic_inc(&fs_info->nr_async_submits);
  710. if (rw & REQ_SYNC)
  711. btrfs_set_work_high_prio(&async->work);
  712. btrfs_queue_worker(&fs_info->workers, &async->work);
  713. while (atomic_read(&fs_info->async_submit_draining) &&
  714. atomic_read(&fs_info->nr_async_submits)) {
  715. wait_event(fs_info->async_submit_wait,
  716. (atomic_read(&fs_info->nr_async_submits) == 0));
  717. }
  718. return 0;
  719. }
  720. static int btree_csum_one_bio(struct bio *bio)
  721. {
  722. struct bio_vec *bvec = bio->bi_io_vec;
  723. int bio_index = 0;
  724. struct btrfs_root *root;
  725. int ret = 0;
  726. WARN_ON(bio->bi_vcnt <= 0);
  727. while (bio_index < bio->bi_vcnt) {
  728. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  729. ret = csum_dirty_buffer(root, bvec->bv_page);
  730. if (ret)
  731. break;
  732. bio_index++;
  733. bvec++;
  734. }
  735. return ret;
  736. }
  737. static int __btree_submit_bio_start(struct inode *inode, int rw,
  738. struct bio *bio, int mirror_num,
  739. unsigned long bio_flags,
  740. u64 bio_offset)
  741. {
  742. /*
  743. * when we're called for a write, we're already in the async
  744. * submission context. Just jump into btrfs_map_bio
  745. */
  746. return btree_csum_one_bio(bio);
  747. }
  748. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  749. int mirror_num, unsigned long bio_flags,
  750. u64 bio_offset)
  751. {
  752. int ret;
  753. /*
  754. * when we're called for a write, we're already in the async
  755. * submission context. Just jump into btrfs_map_bio
  756. */
  757. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  758. if (ret)
  759. bio_endio(bio, ret);
  760. return ret;
  761. }
  762. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  763. {
  764. if (bio_flags & EXTENT_BIO_TREE_LOG)
  765. return 0;
  766. #ifdef CONFIG_X86
  767. if (cpu_has_xmm4_2)
  768. return 0;
  769. #endif
  770. return 1;
  771. }
  772. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  773. int mirror_num, unsigned long bio_flags,
  774. u64 bio_offset)
  775. {
  776. int async = check_async_write(inode, bio_flags);
  777. int ret;
  778. if (!(rw & REQ_WRITE)) {
  779. /*
  780. * called for a read, do the setup so that checksum validation
  781. * can happen in the async kernel threads
  782. */
  783. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  784. bio, 1);
  785. if (ret)
  786. goto out_w_error;
  787. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  788. mirror_num, 0);
  789. } else if (!async) {
  790. ret = btree_csum_one_bio(bio);
  791. if (ret)
  792. goto out_w_error;
  793. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  794. mirror_num, 0);
  795. } else {
  796. /*
  797. * kthread helpers are used to submit writes so that
  798. * checksumming can happen in parallel across all CPUs
  799. */
  800. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  801. inode, rw, bio, mirror_num, 0,
  802. bio_offset,
  803. __btree_submit_bio_start,
  804. __btree_submit_bio_done);
  805. }
  806. if (ret) {
  807. out_w_error:
  808. bio_endio(bio, ret);
  809. }
  810. return ret;
  811. }
  812. #ifdef CONFIG_MIGRATION
  813. static int btree_migratepage(struct address_space *mapping,
  814. struct page *newpage, struct page *page,
  815. enum migrate_mode mode)
  816. {
  817. /*
  818. * we can't safely write a btree page from here,
  819. * we haven't done the locking hook
  820. */
  821. if (PageDirty(page))
  822. return -EAGAIN;
  823. /*
  824. * Buffers may be managed in a filesystem specific way.
  825. * We must have no buffers or drop them.
  826. */
  827. if (page_has_private(page) &&
  828. !try_to_release_page(page, GFP_KERNEL))
  829. return -EAGAIN;
  830. return migrate_page(mapping, newpage, page, mode);
  831. }
  832. #endif
  833. static int btree_writepages(struct address_space *mapping,
  834. struct writeback_control *wbc)
  835. {
  836. struct extent_io_tree *tree;
  837. struct btrfs_fs_info *fs_info;
  838. int ret;
  839. tree = &BTRFS_I(mapping->host)->io_tree;
  840. if (wbc->sync_mode == WB_SYNC_NONE) {
  841. if (wbc->for_kupdate)
  842. return 0;
  843. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  844. /* this is a bit racy, but that's ok */
  845. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  846. BTRFS_DIRTY_METADATA_THRESH);
  847. if (ret < 0)
  848. return 0;
  849. }
  850. return btree_write_cache_pages(mapping, wbc);
  851. }
  852. static int btree_readpage(struct file *file, struct page *page)
  853. {
  854. struct extent_io_tree *tree;
  855. tree = &BTRFS_I(page->mapping->host)->io_tree;
  856. return extent_read_full_page(tree, page, btree_get_extent, 0);
  857. }
  858. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  859. {
  860. if (PageWriteback(page) || PageDirty(page))
  861. return 0;
  862. /*
  863. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  864. * slab allocation from alloc_extent_state down the callchain where
  865. * it'd hit a BUG_ON as those flags are not allowed.
  866. */
  867. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  868. return try_release_extent_buffer(page, gfp_flags);
  869. }
  870. static void btree_invalidatepage(struct page *page, unsigned long offset)
  871. {
  872. struct extent_io_tree *tree;
  873. tree = &BTRFS_I(page->mapping->host)->io_tree;
  874. extent_invalidatepage(tree, page, offset);
  875. btree_releasepage(page, GFP_NOFS);
  876. if (PagePrivate(page)) {
  877. printk(KERN_WARNING "btrfs warning page private not zero "
  878. "on page %llu\n", (unsigned long long)page_offset(page));
  879. ClearPagePrivate(page);
  880. set_page_private(page, 0);
  881. page_cache_release(page);
  882. }
  883. }
  884. static int btree_set_page_dirty(struct page *page)
  885. {
  886. #ifdef DEBUG
  887. struct extent_buffer *eb;
  888. BUG_ON(!PagePrivate(page));
  889. eb = (struct extent_buffer *)page->private;
  890. BUG_ON(!eb);
  891. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  892. BUG_ON(!atomic_read(&eb->refs));
  893. btrfs_assert_tree_locked(eb);
  894. #endif
  895. return __set_page_dirty_nobuffers(page);
  896. }
  897. static const struct address_space_operations btree_aops = {
  898. .readpage = btree_readpage,
  899. .writepages = btree_writepages,
  900. .releasepage = btree_releasepage,
  901. .invalidatepage = btree_invalidatepage,
  902. #ifdef CONFIG_MIGRATION
  903. .migratepage = btree_migratepage,
  904. #endif
  905. .set_page_dirty = btree_set_page_dirty,
  906. };
  907. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  908. u64 parent_transid)
  909. {
  910. struct extent_buffer *buf = NULL;
  911. struct inode *btree_inode = root->fs_info->btree_inode;
  912. int ret = 0;
  913. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  914. if (!buf)
  915. return 0;
  916. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  917. buf, 0, WAIT_NONE, btree_get_extent, 0);
  918. free_extent_buffer(buf);
  919. return ret;
  920. }
  921. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  922. int mirror_num, struct extent_buffer **eb)
  923. {
  924. struct extent_buffer *buf = NULL;
  925. struct inode *btree_inode = root->fs_info->btree_inode;
  926. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  927. int ret;
  928. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  929. if (!buf)
  930. return 0;
  931. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  932. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  933. btree_get_extent, mirror_num);
  934. if (ret) {
  935. free_extent_buffer(buf);
  936. return ret;
  937. }
  938. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  939. free_extent_buffer(buf);
  940. return -EIO;
  941. } else if (extent_buffer_uptodate(buf)) {
  942. *eb = buf;
  943. } else {
  944. free_extent_buffer(buf);
  945. }
  946. return 0;
  947. }
  948. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  949. u64 bytenr, u32 blocksize)
  950. {
  951. struct inode *btree_inode = root->fs_info->btree_inode;
  952. struct extent_buffer *eb;
  953. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  954. bytenr, blocksize);
  955. return eb;
  956. }
  957. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  958. u64 bytenr, u32 blocksize)
  959. {
  960. struct inode *btree_inode = root->fs_info->btree_inode;
  961. struct extent_buffer *eb;
  962. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  963. bytenr, blocksize);
  964. return eb;
  965. }
  966. int btrfs_write_tree_block(struct extent_buffer *buf)
  967. {
  968. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  969. buf->start + buf->len - 1);
  970. }
  971. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  972. {
  973. return filemap_fdatawait_range(buf->pages[0]->mapping,
  974. buf->start, buf->start + buf->len - 1);
  975. }
  976. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  977. u32 blocksize, u64 parent_transid)
  978. {
  979. struct extent_buffer *buf = NULL;
  980. int ret;
  981. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  982. if (!buf)
  983. return NULL;
  984. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  985. return buf;
  986. }
  987. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  988. struct extent_buffer *buf)
  989. {
  990. struct btrfs_fs_info *fs_info = root->fs_info;
  991. if (btrfs_header_generation(buf) ==
  992. fs_info->running_transaction->transid) {
  993. btrfs_assert_tree_locked(buf);
  994. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  995. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  996. -buf->len,
  997. fs_info->dirty_metadata_batch);
  998. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  999. btrfs_set_lock_blocking(buf);
  1000. clear_extent_buffer_dirty(buf);
  1001. }
  1002. }
  1003. }
  1004. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1005. u32 stripesize, struct btrfs_root *root,
  1006. struct btrfs_fs_info *fs_info,
  1007. u64 objectid)
  1008. {
  1009. root->node = NULL;
  1010. root->commit_root = NULL;
  1011. root->sectorsize = sectorsize;
  1012. root->nodesize = nodesize;
  1013. root->leafsize = leafsize;
  1014. root->stripesize = stripesize;
  1015. root->ref_cows = 0;
  1016. root->track_dirty = 0;
  1017. root->in_radix = 0;
  1018. root->orphan_item_inserted = 0;
  1019. root->orphan_cleanup_state = 0;
  1020. root->objectid = objectid;
  1021. root->last_trans = 0;
  1022. root->highest_objectid = 0;
  1023. root->name = NULL;
  1024. root->inode_tree = RB_ROOT;
  1025. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1026. root->block_rsv = NULL;
  1027. root->orphan_block_rsv = NULL;
  1028. INIT_LIST_HEAD(&root->dirty_list);
  1029. INIT_LIST_HEAD(&root->root_list);
  1030. INIT_LIST_HEAD(&root->logged_list[0]);
  1031. INIT_LIST_HEAD(&root->logged_list[1]);
  1032. spin_lock_init(&root->orphan_lock);
  1033. spin_lock_init(&root->inode_lock);
  1034. spin_lock_init(&root->accounting_lock);
  1035. spin_lock_init(&root->log_extents_lock[0]);
  1036. spin_lock_init(&root->log_extents_lock[1]);
  1037. mutex_init(&root->objectid_mutex);
  1038. mutex_init(&root->log_mutex);
  1039. init_waitqueue_head(&root->log_writer_wait);
  1040. init_waitqueue_head(&root->log_commit_wait[0]);
  1041. init_waitqueue_head(&root->log_commit_wait[1]);
  1042. atomic_set(&root->log_commit[0], 0);
  1043. atomic_set(&root->log_commit[1], 0);
  1044. atomic_set(&root->log_writers, 0);
  1045. atomic_set(&root->log_batch, 0);
  1046. atomic_set(&root->orphan_inodes, 0);
  1047. root->log_transid = 0;
  1048. root->last_log_commit = 0;
  1049. extent_io_tree_init(&root->dirty_log_pages,
  1050. fs_info->btree_inode->i_mapping);
  1051. memset(&root->root_key, 0, sizeof(root->root_key));
  1052. memset(&root->root_item, 0, sizeof(root->root_item));
  1053. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1054. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1055. root->defrag_trans_start = fs_info->generation;
  1056. init_completion(&root->kobj_unregister);
  1057. root->defrag_running = 0;
  1058. root->root_key.objectid = objectid;
  1059. root->anon_dev = 0;
  1060. spin_lock_init(&root->root_item_lock);
  1061. }
  1062. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1063. struct btrfs_fs_info *fs_info,
  1064. u64 objectid,
  1065. struct btrfs_root *root)
  1066. {
  1067. int ret;
  1068. u32 blocksize;
  1069. u64 generation;
  1070. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1071. tree_root->sectorsize, tree_root->stripesize,
  1072. root, fs_info, objectid);
  1073. ret = btrfs_find_last_root(tree_root, objectid,
  1074. &root->root_item, &root->root_key);
  1075. if (ret > 0)
  1076. return -ENOENT;
  1077. else if (ret < 0)
  1078. return ret;
  1079. generation = btrfs_root_generation(&root->root_item);
  1080. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1081. root->commit_root = NULL;
  1082. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1083. blocksize, generation);
  1084. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1085. free_extent_buffer(root->node);
  1086. root->node = NULL;
  1087. return -EIO;
  1088. }
  1089. root->commit_root = btrfs_root_node(root);
  1090. return 0;
  1091. }
  1092. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1093. {
  1094. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1095. if (root)
  1096. root->fs_info = fs_info;
  1097. return root;
  1098. }
  1099. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1100. struct btrfs_fs_info *fs_info,
  1101. u64 objectid)
  1102. {
  1103. struct extent_buffer *leaf;
  1104. struct btrfs_root *tree_root = fs_info->tree_root;
  1105. struct btrfs_root *root;
  1106. struct btrfs_key key;
  1107. int ret = 0;
  1108. u64 bytenr;
  1109. root = btrfs_alloc_root(fs_info);
  1110. if (!root)
  1111. return ERR_PTR(-ENOMEM);
  1112. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1113. tree_root->sectorsize, tree_root->stripesize,
  1114. root, fs_info, objectid);
  1115. root->root_key.objectid = objectid;
  1116. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1117. root->root_key.offset = 0;
  1118. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1119. 0, objectid, NULL, 0, 0, 0);
  1120. if (IS_ERR(leaf)) {
  1121. ret = PTR_ERR(leaf);
  1122. goto fail;
  1123. }
  1124. bytenr = leaf->start;
  1125. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1126. btrfs_set_header_bytenr(leaf, leaf->start);
  1127. btrfs_set_header_generation(leaf, trans->transid);
  1128. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1129. btrfs_set_header_owner(leaf, objectid);
  1130. root->node = leaf;
  1131. write_extent_buffer(leaf, fs_info->fsid,
  1132. (unsigned long)btrfs_header_fsid(leaf),
  1133. BTRFS_FSID_SIZE);
  1134. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1135. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1136. BTRFS_UUID_SIZE);
  1137. btrfs_mark_buffer_dirty(leaf);
  1138. root->commit_root = btrfs_root_node(root);
  1139. root->track_dirty = 1;
  1140. root->root_item.flags = 0;
  1141. root->root_item.byte_limit = 0;
  1142. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1143. btrfs_set_root_generation(&root->root_item, trans->transid);
  1144. btrfs_set_root_level(&root->root_item, 0);
  1145. btrfs_set_root_refs(&root->root_item, 1);
  1146. btrfs_set_root_used(&root->root_item, leaf->len);
  1147. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1148. btrfs_set_root_dirid(&root->root_item, 0);
  1149. root->root_item.drop_level = 0;
  1150. key.objectid = objectid;
  1151. key.type = BTRFS_ROOT_ITEM_KEY;
  1152. key.offset = 0;
  1153. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1154. if (ret)
  1155. goto fail;
  1156. btrfs_tree_unlock(leaf);
  1157. fail:
  1158. if (ret)
  1159. return ERR_PTR(ret);
  1160. return root;
  1161. }
  1162. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1163. struct btrfs_fs_info *fs_info)
  1164. {
  1165. struct btrfs_root *root;
  1166. struct btrfs_root *tree_root = fs_info->tree_root;
  1167. struct extent_buffer *leaf;
  1168. root = btrfs_alloc_root(fs_info);
  1169. if (!root)
  1170. return ERR_PTR(-ENOMEM);
  1171. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1172. tree_root->sectorsize, tree_root->stripesize,
  1173. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1174. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1175. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1176. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1177. /*
  1178. * log trees do not get reference counted because they go away
  1179. * before a real commit is actually done. They do store pointers
  1180. * to file data extents, and those reference counts still get
  1181. * updated (along with back refs to the log tree).
  1182. */
  1183. root->ref_cows = 0;
  1184. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1185. BTRFS_TREE_LOG_OBJECTID, NULL,
  1186. 0, 0, 0);
  1187. if (IS_ERR(leaf)) {
  1188. kfree(root);
  1189. return ERR_CAST(leaf);
  1190. }
  1191. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1192. btrfs_set_header_bytenr(leaf, leaf->start);
  1193. btrfs_set_header_generation(leaf, trans->transid);
  1194. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1195. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1196. root->node = leaf;
  1197. write_extent_buffer(root->node, root->fs_info->fsid,
  1198. (unsigned long)btrfs_header_fsid(root->node),
  1199. BTRFS_FSID_SIZE);
  1200. btrfs_mark_buffer_dirty(root->node);
  1201. btrfs_tree_unlock(root->node);
  1202. return root;
  1203. }
  1204. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1205. struct btrfs_fs_info *fs_info)
  1206. {
  1207. struct btrfs_root *log_root;
  1208. log_root = alloc_log_tree(trans, fs_info);
  1209. if (IS_ERR(log_root))
  1210. return PTR_ERR(log_root);
  1211. WARN_ON(fs_info->log_root_tree);
  1212. fs_info->log_root_tree = log_root;
  1213. return 0;
  1214. }
  1215. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1216. struct btrfs_root *root)
  1217. {
  1218. struct btrfs_root *log_root;
  1219. struct btrfs_inode_item *inode_item;
  1220. log_root = alloc_log_tree(trans, root->fs_info);
  1221. if (IS_ERR(log_root))
  1222. return PTR_ERR(log_root);
  1223. log_root->last_trans = trans->transid;
  1224. log_root->root_key.offset = root->root_key.objectid;
  1225. inode_item = &log_root->root_item.inode;
  1226. inode_item->generation = cpu_to_le64(1);
  1227. inode_item->size = cpu_to_le64(3);
  1228. inode_item->nlink = cpu_to_le32(1);
  1229. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1230. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1231. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1232. WARN_ON(root->log_root);
  1233. root->log_root = log_root;
  1234. root->log_transid = 0;
  1235. root->last_log_commit = 0;
  1236. return 0;
  1237. }
  1238. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1239. struct btrfs_key *location)
  1240. {
  1241. struct btrfs_root *root;
  1242. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1243. struct btrfs_path *path;
  1244. struct extent_buffer *l;
  1245. u64 generation;
  1246. u32 blocksize;
  1247. int ret = 0;
  1248. int slot;
  1249. root = btrfs_alloc_root(fs_info);
  1250. if (!root)
  1251. return ERR_PTR(-ENOMEM);
  1252. if (location->offset == (u64)-1) {
  1253. ret = find_and_setup_root(tree_root, fs_info,
  1254. location->objectid, root);
  1255. if (ret) {
  1256. kfree(root);
  1257. return ERR_PTR(ret);
  1258. }
  1259. goto out;
  1260. }
  1261. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1262. tree_root->sectorsize, tree_root->stripesize,
  1263. root, fs_info, location->objectid);
  1264. path = btrfs_alloc_path();
  1265. if (!path) {
  1266. kfree(root);
  1267. return ERR_PTR(-ENOMEM);
  1268. }
  1269. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1270. if (ret == 0) {
  1271. l = path->nodes[0];
  1272. slot = path->slots[0];
  1273. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1274. memcpy(&root->root_key, location, sizeof(*location));
  1275. }
  1276. btrfs_free_path(path);
  1277. if (ret) {
  1278. kfree(root);
  1279. if (ret > 0)
  1280. ret = -ENOENT;
  1281. return ERR_PTR(ret);
  1282. }
  1283. generation = btrfs_root_generation(&root->root_item);
  1284. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1285. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1286. blocksize, generation);
  1287. root->commit_root = btrfs_root_node(root);
  1288. BUG_ON(!root->node); /* -ENOMEM */
  1289. out:
  1290. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1291. root->ref_cows = 1;
  1292. btrfs_check_and_init_root_item(&root->root_item);
  1293. }
  1294. return root;
  1295. }
  1296. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1297. struct btrfs_key *location)
  1298. {
  1299. struct btrfs_root *root;
  1300. int ret;
  1301. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1302. return fs_info->tree_root;
  1303. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1304. return fs_info->extent_root;
  1305. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1306. return fs_info->chunk_root;
  1307. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1308. return fs_info->dev_root;
  1309. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1310. return fs_info->csum_root;
  1311. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1312. return fs_info->quota_root ? fs_info->quota_root :
  1313. ERR_PTR(-ENOENT);
  1314. again:
  1315. spin_lock(&fs_info->fs_roots_radix_lock);
  1316. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1317. (unsigned long)location->objectid);
  1318. spin_unlock(&fs_info->fs_roots_radix_lock);
  1319. if (root)
  1320. return root;
  1321. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1322. if (IS_ERR(root))
  1323. return root;
  1324. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1325. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1326. GFP_NOFS);
  1327. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1328. ret = -ENOMEM;
  1329. goto fail;
  1330. }
  1331. btrfs_init_free_ino_ctl(root);
  1332. mutex_init(&root->fs_commit_mutex);
  1333. spin_lock_init(&root->cache_lock);
  1334. init_waitqueue_head(&root->cache_wait);
  1335. ret = get_anon_bdev(&root->anon_dev);
  1336. if (ret)
  1337. goto fail;
  1338. if (btrfs_root_refs(&root->root_item) == 0) {
  1339. ret = -ENOENT;
  1340. goto fail;
  1341. }
  1342. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1343. if (ret < 0)
  1344. goto fail;
  1345. if (ret == 0)
  1346. root->orphan_item_inserted = 1;
  1347. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1348. if (ret)
  1349. goto fail;
  1350. spin_lock(&fs_info->fs_roots_radix_lock);
  1351. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1352. (unsigned long)root->root_key.objectid,
  1353. root);
  1354. if (ret == 0)
  1355. root->in_radix = 1;
  1356. spin_unlock(&fs_info->fs_roots_radix_lock);
  1357. radix_tree_preload_end();
  1358. if (ret) {
  1359. if (ret == -EEXIST) {
  1360. free_fs_root(root);
  1361. goto again;
  1362. }
  1363. goto fail;
  1364. }
  1365. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1366. root->root_key.objectid);
  1367. WARN_ON(ret);
  1368. return root;
  1369. fail:
  1370. free_fs_root(root);
  1371. return ERR_PTR(ret);
  1372. }
  1373. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1374. {
  1375. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1376. int ret = 0;
  1377. struct btrfs_device *device;
  1378. struct backing_dev_info *bdi;
  1379. rcu_read_lock();
  1380. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1381. if (!device->bdev)
  1382. continue;
  1383. bdi = blk_get_backing_dev_info(device->bdev);
  1384. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1385. ret = 1;
  1386. break;
  1387. }
  1388. }
  1389. rcu_read_unlock();
  1390. return ret;
  1391. }
  1392. /*
  1393. * If this fails, caller must call bdi_destroy() to get rid of the
  1394. * bdi again.
  1395. */
  1396. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1397. {
  1398. int err;
  1399. bdi->capabilities = BDI_CAP_MAP_COPY;
  1400. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1401. if (err)
  1402. return err;
  1403. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1404. bdi->congested_fn = btrfs_congested_fn;
  1405. bdi->congested_data = info;
  1406. return 0;
  1407. }
  1408. /*
  1409. * called by the kthread helper functions to finally call the bio end_io
  1410. * functions. This is where read checksum verification actually happens
  1411. */
  1412. static void end_workqueue_fn(struct btrfs_work *work)
  1413. {
  1414. struct bio *bio;
  1415. struct end_io_wq *end_io_wq;
  1416. struct btrfs_fs_info *fs_info;
  1417. int error;
  1418. end_io_wq = container_of(work, struct end_io_wq, work);
  1419. bio = end_io_wq->bio;
  1420. fs_info = end_io_wq->info;
  1421. error = end_io_wq->error;
  1422. bio->bi_private = end_io_wq->private;
  1423. bio->bi_end_io = end_io_wq->end_io;
  1424. kfree(end_io_wq);
  1425. bio_endio(bio, error);
  1426. }
  1427. static int cleaner_kthread(void *arg)
  1428. {
  1429. struct btrfs_root *root = arg;
  1430. do {
  1431. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1432. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1433. btrfs_run_delayed_iputs(root);
  1434. btrfs_clean_old_snapshots(root);
  1435. mutex_unlock(&root->fs_info->cleaner_mutex);
  1436. btrfs_run_defrag_inodes(root->fs_info);
  1437. }
  1438. if (!try_to_freeze()) {
  1439. set_current_state(TASK_INTERRUPTIBLE);
  1440. if (!kthread_should_stop())
  1441. schedule();
  1442. __set_current_state(TASK_RUNNING);
  1443. }
  1444. } while (!kthread_should_stop());
  1445. return 0;
  1446. }
  1447. static int transaction_kthread(void *arg)
  1448. {
  1449. struct btrfs_root *root = arg;
  1450. struct btrfs_trans_handle *trans;
  1451. struct btrfs_transaction *cur;
  1452. u64 transid;
  1453. unsigned long now;
  1454. unsigned long delay;
  1455. bool cannot_commit;
  1456. do {
  1457. cannot_commit = false;
  1458. delay = HZ * 30;
  1459. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1460. spin_lock(&root->fs_info->trans_lock);
  1461. cur = root->fs_info->running_transaction;
  1462. if (!cur) {
  1463. spin_unlock(&root->fs_info->trans_lock);
  1464. goto sleep;
  1465. }
  1466. now = get_seconds();
  1467. if (!cur->blocked &&
  1468. (now < cur->start_time || now - cur->start_time < 30)) {
  1469. spin_unlock(&root->fs_info->trans_lock);
  1470. delay = HZ * 5;
  1471. goto sleep;
  1472. }
  1473. transid = cur->transid;
  1474. spin_unlock(&root->fs_info->trans_lock);
  1475. /* If the file system is aborted, this will always fail. */
  1476. trans = btrfs_attach_transaction(root);
  1477. if (IS_ERR(trans)) {
  1478. if (PTR_ERR(trans) != -ENOENT)
  1479. cannot_commit = true;
  1480. goto sleep;
  1481. }
  1482. if (transid == trans->transid) {
  1483. btrfs_commit_transaction(trans, root);
  1484. } else {
  1485. btrfs_end_transaction(trans, root);
  1486. }
  1487. sleep:
  1488. wake_up_process(root->fs_info->cleaner_kthread);
  1489. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1490. if (!try_to_freeze()) {
  1491. set_current_state(TASK_INTERRUPTIBLE);
  1492. if (!kthread_should_stop() &&
  1493. (!btrfs_transaction_blocked(root->fs_info) ||
  1494. cannot_commit))
  1495. schedule_timeout(delay);
  1496. __set_current_state(TASK_RUNNING);
  1497. }
  1498. } while (!kthread_should_stop());
  1499. return 0;
  1500. }
  1501. /*
  1502. * this will find the highest generation in the array of
  1503. * root backups. The index of the highest array is returned,
  1504. * or -1 if we can't find anything.
  1505. *
  1506. * We check to make sure the array is valid by comparing the
  1507. * generation of the latest root in the array with the generation
  1508. * in the super block. If they don't match we pitch it.
  1509. */
  1510. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1511. {
  1512. u64 cur;
  1513. int newest_index = -1;
  1514. struct btrfs_root_backup *root_backup;
  1515. int i;
  1516. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1517. root_backup = info->super_copy->super_roots + i;
  1518. cur = btrfs_backup_tree_root_gen(root_backup);
  1519. if (cur == newest_gen)
  1520. newest_index = i;
  1521. }
  1522. /* check to see if we actually wrapped around */
  1523. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1524. root_backup = info->super_copy->super_roots;
  1525. cur = btrfs_backup_tree_root_gen(root_backup);
  1526. if (cur == newest_gen)
  1527. newest_index = 0;
  1528. }
  1529. return newest_index;
  1530. }
  1531. /*
  1532. * find the oldest backup so we know where to store new entries
  1533. * in the backup array. This will set the backup_root_index
  1534. * field in the fs_info struct
  1535. */
  1536. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1537. u64 newest_gen)
  1538. {
  1539. int newest_index = -1;
  1540. newest_index = find_newest_super_backup(info, newest_gen);
  1541. /* if there was garbage in there, just move along */
  1542. if (newest_index == -1) {
  1543. info->backup_root_index = 0;
  1544. } else {
  1545. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1546. }
  1547. }
  1548. /*
  1549. * copy all the root pointers into the super backup array.
  1550. * this will bump the backup pointer by one when it is
  1551. * done
  1552. */
  1553. static void backup_super_roots(struct btrfs_fs_info *info)
  1554. {
  1555. int next_backup;
  1556. struct btrfs_root_backup *root_backup;
  1557. int last_backup;
  1558. next_backup = info->backup_root_index;
  1559. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1560. BTRFS_NUM_BACKUP_ROOTS;
  1561. /*
  1562. * just overwrite the last backup if we're at the same generation
  1563. * this happens only at umount
  1564. */
  1565. root_backup = info->super_for_commit->super_roots + last_backup;
  1566. if (btrfs_backup_tree_root_gen(root_backup) ==
  1567. btrfs_header_generation(info->tree_root->node))
  1568. next_backup = last_backup;
  1569. root_backup = info->super_for_commit->super_roots + next_backup;
  1570. /*
  1571. * make sure all of our padding and empty slots get zero filled
  1572. * regardless of which ones we use today
  1573. */
  1574. memset(root_backup, 0, sizeof(*root_backup));
  1575. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1576. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1577. btrfs_set_backup_tree_root_gen(root_backup,
  1578. btrfs_header_generation(info->tree_root->node));
  1579. btrfs_set_backup_tree_root_level(root_backup,
  1580. btrfs_header_level(info->tree_root->node));
  1581. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1582. btrfs_set_backup_chunk_root_gen(root_backup,
  1583. btrfs_header_generation(info->chunk_root->node));
  1584. btrfs_set_backup_chunk_root_level(root_backup,
  1585. btrfs_header_level(info->chunk_root->node));
  1586. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1587. btrfs_set_backup_extent_root_gen(root_backup,
  1588. btrfs_header_generation(info->extent_root->node));
  1589. btrfs_set_backup_extent_root_level(root_backup,
  1590. btrfs_header_level(info->extent_root->node));
  1591. /*
  1592. * we might commit during log recovery, which happens before we set
  1593. * the fs_root. Make sure it is valid before we fill it in.
  1594. */
  1595. if (info->fs_root && info->fs_root->node) {
  1596. btrfs_set_backup_fs_root(root_backup,
  1597. info->fs_root->node->start);
  1598. btrfs_set_backup_fs_root_gen(root_backup,
  1599. btrfs_header_generation(info->fs_root->node));
  1600. btrfs_set_backup_fs_root_level(root_backup,
  1601. btrfs_header_level(info->fs_root->node));
  1602. }
  1603. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1604. btrfs_set_backup_dev_root_gen(root_backup,
  1605. btrfs_header_generation(info->dev_root->node));
  1606. btrfs_set_backup_dev_root_level(root_backup,
  1607. btrfs_header_level(info->dev_root->node));
  1608. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1609. btrfs_set_backup_csum_root_gen(root_backup,
  1610. btrfs_header_generation(info->csum_root->node));
  1611. btrfs_set_backup_csum_root_level(root_backup,
  1612. btrfs_header_level(info->csum_root->node));
  1613. btrfs_set_backup_total_bytes(root_backup,
  1614. btrfs_super_total_bytes(info->super_copy));
  1615. btrfs_set_backup_bytes_used(root_backup,
  1616. btrfs_super_bytes_used(info->super_copy));
  1617. btrfs_set_backup_num_devices(root_backup,
  1618. btrfs_super_num_devices(info->super_copy));
  1619. /*
  1620. * if we don't copy this out to the super_copy, it won't get remembered
  1621. * for the next commit
  1622. */
  1623. memcpy(&info->super_copy->super_roots,
  1624. &info->super_for_commit->super_roots,
  1625. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1626. }
  1627. /*
  1628. * this copies info out of the root backup array and back into
  1629. * the in-memory super block. It is meant to help iterate through
  1630. * the array, so you send it the number of backups you've already
  1631. * tried and the last backup index you used.
  1632. *
  1633. * this returns -1 when it has tried all the backups
  1634. */
  1635. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1636. struct btrfs_super_block *super,
  1637. int *num_backups_tried, int *backup_index)
  1638. {
  1639. struct btrfs_root_backup *root_backup;
  1640. int newest = *backup_index;
  1641. if (*num_backups_tried == 0) {
  1642. u64 gen = btrfs_super_generation(super);
  1643. newest = find_newest_super_backup(info, gen);
  1644. if (newest == -1)
  1645. return -1;
  1646. *backup_index = newest;
  1647. *num_backups_tried = 1;
  1648. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1649. /* we've tried all the backups, all done */
  1650. return -1;
  1651. } else {
  1652. /* jump to the next oldest backup */
  1653. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1654. BTRFS_NUM_BACKUP_ROOTS;
  1655. *backup_index = newest;
  1656. *num_backups_tried += 1;
  1657. }
  1658. root_backup = super->super_roots + newest;
  1659. btrfs_set_super_generation(super,
  1660. btrfs_backup_tree_root_gen(root_backup));
  1661. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1662. btrfs_set_super_root_level(super,
  1663. btrfs_backup_tree_root_level(root_backup));
  1664. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1665. /*
  1666. * fixme: the total bytes and num_devices need to match or we should
  1667. * need a fsck
  1668. */
  1669. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1670. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1671. return 0;
  1672. }
  1673. /* helper to cleanup tree roots */
  1674. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1675. {
  1676. free_extent_buffer(info->tree_root->node);
  1677. free_extent_buffer(info->tree_root->commit_root);
  1678. free_extent_buffer(info->dev_root->node);
  1679. free_extent_buffer(info->dev_root->commit_root);
  1680. free_extent_buffer(info->extent_root->node);
  1681. free_extent_buffer(info->extent_root->commit_root);
  1682. free_extent_buffer(info->csum_root->node);
  1683. free_extent_buffer(info->csum_root->commit_root);
  1684. if (info->quota_root) {
  1685. free_extent_buffer(info->quota_root->node);
  1686. free_extent_buffer(info->quota_root->commit_root);
  1687. }
  1688. info->tree_root->node = NULL;
  1689. info->tree_root->commit_root = NULL;
  1690. info->dev_root->node = NULL;
  1691. info->dev_root->commit_root = NULL;
  1692. info->extent_root->node = NULL;
  1693. info->extent_root->commit_root = NULL;
  1694. info->csum_root->node = NULL;
  1695. info->csum_root->commit_root = NULL;
  1696. if (info->quota_root) {
  1697. info->quota_root->node = NULL;
  1698. info->quota_root->commit_root = NULL;
  1699. }
  1700. if (chunk_root) {
  1701. free_extent_buffer(info->chunk_root->node);
  1702. free_extent_buffer(info->chunk_root->commit_root);
  1703. info->chunk_root->node = NULL;
  1704. info->chunk_root->commit_root = NULL;
  1705. }
  1706. }
  1707. int open_ctree(struct super_block *sb,
  1708. struct btrfs_fs_devices *fs_devices,
  1709. char *options)
  1710. {
  1711. u32 sectorsize;
  1712. u32 nodesize;
  1713. u32 leafsize;
  1714. u32 blocksize;
  1715. u32 stripesize;
  1716. u64 generation;
  1717. u64 features;
  1718. struct btrfs_key location;
  1719. struct buffer_head *bh;
  1720. struct btrfs_super_block *disk_super;
  1721. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1722. struct btrfs_root *tree_root;
  1723. struct btrfs_root *extent_root;
  1724. struct btrfs_root *csum_root;
  1725. struct btrfs_root *chunk_root;
  1726. struct btrfs_root *dev_root;
  1727. struct btrfs_root *quota_root;
  1728. struct btrfs_root *log_tree_root;
  1729. int ret;
  1730. int err = -EINVAL;
  1731. int num_backups_tried = 0;
  1732. int backup_index = 0;
  1733. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1734. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1735. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1736. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1737. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1738. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1739. if (!tree_root || !extent_root || !csum_root ||
  1740. !chunk_root || !dev_root || !quota_root) {
  1741. err = -ENOMEM;
  1742. goto fail;
  1743. }
  1744. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1745. if (ret) {
  1746. err = ret;
  1747. goto fail;
  1748. }
  1749. ret = setup_bdi(fs_info, &fs_info->bdi);
  1750. if (ret) {
  1751. err = ret;
  1752. goto fail_srcu;
  1753. }
  1754. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1755. if (ret) {
  1756. err = ret;
  1757. goto fail_bdi;
  1758. }
  1759. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1760. (1 + ilog2(nr_cpu_ids));
  1761. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1762. if (ret) {
  1763. err = ret;
  1764. goto fail_dirty_metadata_bytes;
  1765. }
  1766. fs_info->btree_inode = new_inode(sb);
  1767. if (!fs_info->btree_inode) {
  1768. err = -ENOMEM;
  1769. goto fail_delalloc_bytes;
  1770. }
  1771. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1772. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1773. INIT_LIST_HEAD(&fs_info->trans_list);
  1774. INIT_LIST_HEAD(&fs_info->dead_roots);
  1775. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1776. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1777. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1778. spin_lock_init(&fs_info->delalloc_lock);
  1779. spin_lock_init(&fs_info->trans_lock);
  1780. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1781. spin_lock_init(&fs_info->delayed_iput_lock);
  1782. spin_lock_init(&fs_info->defrag_inodes_lock);
  1783. spin_lock_init(&fs_info->free_chunk_lock);
  1784. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1785. rwlock_init(&fs_info->tree_mod_log_lock);
  1786. mutex_init(&fs_info->reloc_mutex);
  1787. seqlock_init(&fs_info->profiles_lock);
  1788. init_completion(&fs_info->kobj_unregister);
  1789. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1790. INIT_LIST_HEAD(&fs_info->space_info);
  1791. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1792. btrfs_mapping_init(&fs_info->mapping_tree);
  1793. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1794. BTRFS_BLOCK_RSV_GLOBAL);
  1795. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1796. BTRFS_BLOCK_RSV_DELALLOC);
  1797. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1798. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1799. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1800. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1801. BTRFS_BLOCK_RSV_DELOPS);
  1802. atomic_set(&fs_info->nr_async_submits, 0);
  1803. atomic_set(&fs_info->async_delalloc_pages, 0);
  1804. atomic_set(&fs_info->async_submit_draining, 0);
  1805. atomic_set(&fs_info->nr_async_bios, 0);
  1806. atomic_set(&fs_info->defrag_running, 0);
  1807. atomic_set(&fs_info->tree_mod_seq, 0);
  1808. fs_info->sb = sb;
  1809. fs_info->max_inline = 8192 * 1024;
  1810. fs_info->metadata_ratio = 0;
  1811. fs_info->defrag_inodes = RB_ROOT;
  1812. fs_info->trans_no_join = 0;
  1813. fs_info->free_chunk_space = 0;
  1814. fs_info->tree_mod_log = RB_ROOT;
  1815. /* readahead state */
  1816. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1817. spin_lock_init(&fs_info->reada_lock);
  1818. fs_info->thread_pool_size = min_t(unsigned long,
  1819. num_online_cpus() + 2, 8);
  1820. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1821. spin_lock_init(&fs_info->ordered_extent_lock);
  1822. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1823. GFP_NOFS);
  1824. if (!fs_info->delayed_root) {
  1825. err = -ENOMEM;
  1826. goto fail_iput;
  1827. }
  1828. btrfs_init_delayed_root(fs_info->delayed_root);
  1829. mutex_init(&fs_info->scrub_lock);
  1830. atomic_set(&fs_info->scrubs_running, 0);
  1831. atomic_set(&fs_info->scrub_pause_req, 0);
  1832. atomic_set(&fs_info->scrubs_paused, 0);
  1833. atomic_set(&fs_info->scrub_cancel_req, 0);
  1834. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1835. init_rwsem(&fs_info->scrub_super_lock);
  1836. fs_info->scrub_workers_refcnt = 0;
  1837. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1838. fs_info->check_integrity_print_mask = 0;
  1839. #endif
  1840. spin_lock_init(&fs_info->balance_lock);
  1841. mutex_init(&fs_info->balance_mutex);
  1842. atomic_set(&fs_info->balance_running, 0);
  1843. atomic_set(&fs_info->balance_pause_req, 0);
  1844. atomic_set(&fs_info->balance_cancel_req, 0);
  1845. fs_info->balance_ctl = NULL;
  1846. init_waitqueue_head(&fs_info->balance_wait_q);
  1847. sb->s_blocksize = 4096;
  1848. sb->s_blocksize_bits = blksize_bits(4096);
  1849. sb->s_bdi = &fs_info->bdi;
  1850. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1851. set_nlink(fs_info->btree_inode, 1);
  1852. /*
  1853. * we set the i_size on the btree inode to the max possible int.
  1854. * the real end of the address space is determined by all of
  1855. * the devices in the system
  1856. */
  1857. fs_info->btree_inode->i_size = OFFSET_MAX;
  1858. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1859. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1860. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1861. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1862. fs_info->btree_inode->i_mapping);
  1863. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1864. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1865. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1866. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1867. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1868. sizeof(struct btrfs_key));
  1869. set_bit(BTRFS_INODE_DUMMY,
  1870. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1871. insert_inode_hash(fs_info->btree_inode);
  1872. spin_lock_init(&fs_info->block_group_cache_lock);
  1873. fs_info->block_group_cache_tree = RB_ROOT;
  1874. fs_info->first_logical_byte = (u64)-1;
  1875. extent_io_tree_init(&fs_info->freed_extents[0],
  1876. fs_info->btree_inode->i_mapping);
  1877. extent_io_tree_init(&fs_info->freed_extents[1],
  1878. fs_info->btree_inode->i_mapping);
  1879. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1880. fs_info->do_barriers = 1;
  1881. mutex_init(&fs_info->ordered_operations_mutex);
  1882. mutex_init(&fs_info->tree_log_mutex);
  1883. mutex_init(&fs_info->chunk_mutex);
  1884. mutex_init(&fs_info->transaction_kthread_mutex);
  1885. mutex_init(&fs_info->cleaner_mutex);
  1886. mutex_init(&fs_info->volume_mutex);
  1887. init_rwsem(&fs_info->extent_commit_sem);
  1888. init_rwsem(&fs_info->cleanup_work_sem);
  1889. init_rwsem(&fs_info->subvol_sem);
  1890. fs_info->dev_replace.lock_owner = 0;
  1891. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1892. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1893. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1894. mutex_init(&fs_info->dev_replace.lock);
  1895. spin_lock_init(&fs_info->qgroup_lock);
  1896. fs_info->qgroup_tree = RB_ROOT;
  1897. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1898. fs_info->qgroup_seq = 1;
  1899. fs_info->quota_enabled = 0;
  1900. fs_info->pending_quota_state = 0;
  1901. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1902. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1903. init_waitqueue_head(&fs_info->transaction_throttle);
  1904. init_waitqueue_head(&fs_info->transaction_wait);
  1905. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1906. init_waitqueue_head(&fs_info->async_submit_wait);
  1907. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1908. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1909. invalidate_bdev(fs_devices->latest_bdev);
  1910. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1911. if (!bh) {
  1912. err = -EINVAL;
  1913. goto fail_alloc;
  1914. }
  1915. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1916. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1917. sizeof(*fs_info->super_for_commit));
  1918. brelse(bh);
  1919. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1920. disk_super = fs_info->super_copy;
  1921. if (!btrfs_super_root(disk_super))
  1922. goto fail_alloc;
  1923. /* check FS state, whether FS is broken. */
  1924. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  1925. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  1926. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1927. if (ret) {
  1928. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1929. err = ret;
  1930. goto fail_alloc;
  1931. }
  1932. /*
  1933. * run through our array of backup supers and setup
  1934. * our ring pointer to the oldest one
  1935. */
  1936. generation = btrfs_super_generation(disk_super);
  1937. find_oldest_super_backup(fs_info, generation);
  1938. /*
  1939. * In the long term, we'll store the compression type in the super
  1940. * block, and it'll be used for per file compression control.
  1941. */
  1942. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1943. ret = btrfs_parse_options(tree_root, options);
  1944. if (ret) {
  1945. err = ret;
  1946. goto fail_alloc;
  1947. }
  1948. features = btrfs_super_incompat_flags(disk_super) &
  1949. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1950. if (features) {
  1951. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1952. "unsupported optional features (%Lx).\n",
  1953. (unsigned long long)features);
  1954. err = -EINVAL;
  1955. goto fail_alloc;
  1956. }
  1957. if (btrfs_super_leafsize(disk_super) !=
  1958. btrfs_super_nodesize(disk_super)) {
  1959. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1960. "blocksizes don't match. node %d leaf %d\n",
  1961. btrfs_super_nodesize(disk_super),
  1962. btrfs_super_leafsize(disk_super));
  1963. err = -EINVAL;
  1964. goto fail_alloc;
  1965. }
  1966. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1967. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1968. "blocksize (%d) was too large\n",
  1969. btrfs_super_leafsize(disk_super));
  1970. err = -EINVAL;
  1971. goto fail_alloc;
  1972. }
  1973. features = btrfs_super_incompat_flags(disk_super);
  1974. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1975. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1976. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1977. /*
  1978. * flag our filesystem as having big metadata blocks if
  1979. * they are bigger than the page size
  1980. */
  1981. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1982. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1983. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1984. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1985. }
  1986. nodesize = btrfs_super_nodesize(disk_super);
  1987. leafsize = btrfs_super_leafsize(disk_super);
  1988. sectorsize = btrfs_super_sectorsize(disk_super);
  1989. stripesize = btrfs_super_stripesize(disk_super);
  1990. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  1991. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  1992. /*
  1993. * mixed block groups end up with duplicate but slightly offset
  1994. * extent buffers for the same range. It leads to corruptions
  1995. */
  1996. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1997. (sectorsize != leafsize)) {
  1998. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1999. "are not allowed for mixed block groups on %s\n",
  2000. sb->s_id);
  2001. goto fail_alloc;
  2002. }
  2003. btrfs_set_super_incompat_flags(disk_super, features);
  2004. features = btrfs_super_compat_ro_flags(disk_super) &
  2005. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2006. if (!(sb->s_flags & MS_RDONLY) && features) {
  2007. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2008. "unsupported option features (%Lx).\n",
  2009. (unsigned long long)features);
  2010. err = -EINVAL;
  2011. goto fail_alloc;
  2012. }
  2013. btrfs_init_workers(&fs_info->generic_worker,
  2014. "genwork", 1, NULL);
  2015. btrfs_init_workers(&fs_info->workers, "worker",
  2016. fs_info->thread_pool_size,
  2017. &fs_info->generic_worker);
  2018. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2019. fs_info->thread_pool_size,
  2020. &fs_info->generic_worker);
  2021. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2022. fs_info->thread_pool_size,
  2023. &fs_info->generic_worker);
  2024. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2025. min_t(u64, fs_devices->num_devices,
  2026. fs_info->thread_pool_size),
  2027. &fs_info->generic_worker);
  2028. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2029. 2, &fs_info->generic_worker);
  2030. /* a higher idle thresh on the submit workers makes it much more
  2031. * likely that bios will be send down in a sane order to the
  2032. * devices
  2033. */
  2034. fs_info->submit_workers.idle_thresh = 64;
  2035. fs_info->workers.idle_thresh = 16;
  2036. fs_info->workers.ordered = 1;
  2037. fs_info->delalloc_workers.idle_thresh = 2;
  2038. fs_info->delalloc_workers.ordered = 1;
  2039. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2040. &fs_info->generic_worker);
  2041. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2042. fs_info->thread_pool_size,
  2043. &fs_info->generic_worker);
  2044. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2045. fs_info->thread_pool_size,
  2046. &fs_info->generic_worker);
  2047. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2048. "endio-meta-write", fs_info->thread_pool_size,
  2049. &fs_info->generic_worker);
  2050. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2051. fs_info->thread_pool_size,
  2052. &fs_info->generic_worker);
  2053. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2054. 1, &fs_info->generic_worker);
  2055. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2056. fs_info->thread_pool_size,
  2057. &fs_info->generic_worker);
  2058. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2059. fs_info->thread_pool_size,
  2060. &fs_info->generic_worker);
  2061. /*
  2062. * endios are largely parallel and should have a very
  2063. * low idle thresh
  2064. */
  2065. fs_info->endio_workers.idle_thresh = 4;
  2066. fs_info->endio_meta_workers.idle_thresh = 4;
  2067. fs_info->endio_write_workers.idle_thresh = 2;
  2068. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2069. fs_info->readahead_workers.idle_thresh = 2;
  2070. /*
  2071. * btrfs_start_workers can really only fail because of ENOMEM so just
  2072. * return -ENOMEM if any of these fail.
  2073. */
  2074. ret = btrfs_start_workers(&fs_info->workers);
  2075. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2076. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2077. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2078. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2079. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2080. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2081. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2082. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2083. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2084. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2085. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2086. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2087. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2088. if (ret) {
  2089. err = -ENOMEM;
  2090. goto fail_sb_buffer;
  2091. }
  2092. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2093. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2094. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2095. tree_root->nodesize = nodesize;
  2096. tree_root->leafsize = leafsize;
  2097. tree_root->sectorsize = sectorsize;
  2098. tree_root->stripesize = stripesize;
  2099. sb->s_blocksize = sectorsize;
  2100. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2101. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2102. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2103. goto fail_sb_buffer;
  2104. }
  2105. if (sectorsize != PAGE_SIZE) {
  2106. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2107. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2108. goto fail_sb_buffer;
  2109. }
  2110. mutex_lock(&fs_info->chunk_mutex);
  2111. ret = btrfs_read_sys_array(tree_root);
  2112. mutex_unlock(&fs_info->chunk_mutex);
  2113. if (ret) {
  2114. printk(KERN_WARNING "btrfs: failed to read the system "
  2115. "array on %s\n", sb->s_id);
  2116. goto fail_sb_buffer;
  2117. }
  2118. blocksize = btrfs_level_size(tree_root,
  2119. btrfs_super_chunk_root_level(disk_super));
  2120. generation = btrfs_super_chunk_root_generation(disk_super);
  2121. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2122. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2123. chunk_root->node = read_tree_block(chunk_root,
  2124. btrfs_super_chunk_root(disk_super),
  2125. blocksize, generation);
  2126. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2127. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2128. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2129. sb->s_id);
  2130. goto fail_tree_roots;
  2131. }
  2132. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2133. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2134. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2135. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2136. BTRFS_UUID_SIZE);
  2137. ret = btrfs_read_chunk_tree(chunk_root);
  2138. if (ret) {
  2139. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2140. sb->s_id);
  2141. goto fail_tree_roots;
  2142. }
  2143. /*
  2144. * keep the device that is marked to be the target device for the
  2145. * dev_replace procedure
  2146. */
  2147. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2148. if (!fs_devices->latest_bdev) {
  2149. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2150. sb->s_id);
  2151. goto fail_tree_roots;
  2152. }
  2153. retry_root_backup:
  2154. blocksize = btrfs_level_size(tree_root,
  2155. btrfs_super_root_level(disk_super));
  2156. generation = btrfs_super_generation(disk_super);
  2157. tree_root->node = read_tree_block(tree_root,
  2158. btrfs_super_root(disk_super),
  2159. blocksize, generation);
  2160. if (!tree_root->node ||
  2161. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2162. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2163. sb->s_id);
  2164. goto recovery_tree_root;
  2165. }
  2166. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2167. tree_root->commit_root = btrfs_root_node(tree_root);
  2168. ret = find_and_setup_root(tree_root, fs_info,
  2169. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2170. if (ret)
  2171. goto recovery_tree_root;
  2172. extent_root->track_dirty = 1;
  2173. ret = find_and_setup_root(tree_root, fs_info,
  2174. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2175. if (ret)
  2176. goto recovery_tree_root;
  2177. dev_root->track_dirty = 1;
  2178. ret = find_and_setup_root(tree_root, fs_info,
  2179. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2180. if (ret)
  2181. goto recovery_tree_root;
  2182. csum_root->track_dirty = 1;
  2183. ret = find_and_setup_root(tree_root, fs_info,
  2184. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2185. if (ret) {
  2186. kfree(quota_root);
  2187. quota_root = fs_info->quota_root = NULL;
  2188. } else {
  2189. quota_root->track_dirty = 1;
  2190. fs_info->quota_enabled = 1;
  2191. fs_info->pending_quota_state = 1;
  2192. }
  2193. fs_info->generation = generation;
  2194. fs_info->last_trans_committed = generation;
  2195. ret = btrfs_recover_balance(fs_info);
  2196. if (ret) {
  2197. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2198. goto fail_block_groups;
  2199. }
  2200. ret = btrfs_init_dev_stats(fs_info);
  2201. if (ret) {
  2202. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2203. ret);
  2204. goto fail_block_groups;
  2205. }
  2206. ret = btrfs_init_dev_replace(fs_info);
  2207. if (ret) {
  2208. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2209. goto fail_block_groups;
  2210. }
  2211. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2212. ret = btrfs_init_space_info(fs_info);
  2213. if (ret) {
  2214. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2215. goto fail_block_groups;
  2216. }
  2217. ret = btrfs_read_block_groups(extent_root);
  2218. if (ret) {
  2219. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2220. goto fail_block_groups;
  2221. }
  2222. fs_info->num_tolerated_disk_barrier_failures =
  2223. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2224. if (fs_info->fs_devices->missing_devices >
  2225. fs_info->num_tolerated_disk_barrier_failures &&
  2226. !(sb->s_flags & MS_RDONLY)) {
  2227. printk(KERN_WARNING
  2228. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2229. goto fail_block_groups;
  2230. }
  2231. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2232. "btrfs-cleaner");
  2233. if (IS_ERR(fs_info->cleaner_kthread))
  2234. goto fail_block_groups;
  2235. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2236. tree_root,
  2237. "btrfs-transaction");
  2238. if (IS_ERR(fs_info->transaction_kthread))
  2239. goto fail_cleaner;
  2240. if (!btrfs_test_opt(tree_root, SSD) &&
  2241. !btrfs_test_opt(tree_root, NOSSD) &&
  2242. !fs_info->fs_devices->rotating) {
  2243. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2244. "mode\n");
  2245. btrfs_set_opt(fs_info->mount_opt, SSD);
  2246. }
  2247. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2248. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2249. ret = btrfsic_mount(tree_root, fs_devices,
  2250. btrfs_test_opt(tree_root,
  2251. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2252. 1 : 0,
  2253. fs_info->check_integrity_print_mask);
  2254. if (ret)
  2255. printk(KERN_WARNING "btrfs: failed to initialize"
  2256. " integrity check module %s\n", sb->s_id);
  2257. }
  2258. #endif
  2259. ret = btrfs_read_qgroup_config(fs_info);
  2260. if (ret)
  2261. goto fail_trans_kthread;
  2262. /* do not make disk changes in broken FS */
  2263. if (btrfs_super_log_root(disk_super) != 0) {
  2264. u64 bytenr = btrfs_super_log_root(disk_super);
  2265. if (fs_devices->rw_devices == 0) {
  2266. printk(KERN_WARNING "Btrfs log replay required "
  2267. "on RO media\n");
  2268. err = -EIO;
  2269. goto fail_qgroup;
  2270. }
  2271. blocksize =
  2272. btrfs_level_size(tree_root,
  2273. btrfs_super_log_root_level(disk_super));
  2274. log_tree_root = btrfs_alloc_root(fs_info);
  2275. if (!log_tree_root) {
  2276. err = -ENOMEM;
  2277. goto fail_qgroup;
  2278. }
  2279. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2280. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2281. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2282. blocksize,
  2283. generation + 1);
  2284. /* returns with log_tree_root freed on success */
  2285. ret = btrfs_recover_log_trees(log_tree_root);
  2286. if (ret) {
  2287. btrfs_error(tree_root->fs_info, ret,
  2288. "Failed to recover log tree");
  2289. free_extent_buffer(log_tree_root->node);
  2290. kfree(log_tree_root);
  2291. goto fail_trans_kthread;
  2292. }
  2293. if (sb->s_flags & MS_RDONLY) {
  2294. ret = btrfs_commit_super(tree_root);
  2295. if (ret)
  2296. goto fail_trans_kthread;
  2297. }
  2298. }
  2299. ret = btrfs_find_orphan_roots(tree_root);
  2300. if (ret)
  2301. goto fail_trans_kthread;
  2302. if (!(sb->s_flags & MS_RDONLY)) {
  2303. ret = btrfs_cleanup_fs_roots(fs_info);
  2304. if (ret)
  2305. goto fail_trans_kthread;
  2306. ret = btrfs_recover_relocation(tree_root);
  2307. if (ret < 0) {
  2308. printk(KERN_WARNING
  2309. "btrfs: failed to recover relocation\n");
  2310. err = -EINVAL;
  2311. goto fail_qgroup;
  2312. }
  2313. }
  2314. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2315. location.type = BTRFS_ROOT_ITEM_KEY;
  2316. location.offset = (u64)-1;
  2317. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2318. if (!fs_info->fs_root)
  2319. goto fail_qgroup;
  2320. if (IS_ERR(fs_info->fs_root)) {
  2321. err = PTR_ERR(fs_info->fs_root);
  2322. goto fail_qgroup;
  2323. }
  2324. if (sb->s_flags & MS_RDONLY)
  2325. return 0;
  2326. down_read(&fs_info->cleanup_work_sem);
  2327. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2328. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2329. up_read(&fs_info->cleanup_work_sem);
  2330. close_ctree(tree_root);
  2331. return ret;
  2332. }
  2333. up_read(&fs_info->cleanup_work_sem);
  2334. ret = btrfs_resume_balance_async(fs_info);
  2335. if (ret) {
  2336. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2337. close_ctree(tree_root);
  2338. return ret;
  2339. }
  2340. ret = btrfs_resume_dev_replace_async(fs_info);
  2341. if (ret) {
  2342. pr_warn("btrfs: failed to resume dev_replace\n");
  2343. close_ctree(tree_root);
  2344. return ret;
  2345. }
  2346. return 0;
  2347. fail_qgroup:
  2348. btrfs_free_qgroup_config(fs_info);
  2349. fail_trans_kthread:
  2350. kthread_stop(fs_info->transaction_kthread);
  2351. fail_cleaner:
  2352. kthread_stop(fs_info->cleaner_kthread);
  2353. /*
  2354. * make sure we're done with the btree inode before we stop our
  2355. * kthreads
  2356. */
  2357. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2358. fail_block_groups:
  2359. btrfs_free_block_groups(fs_info);
  2360. fail_tree_roots:
  2361. free_root_pointers(fs_info, 1);
  2362. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2363. fail_sb_buffer:
  2364. btrfs_stop_workers(&fs_info->generic_worker);
  2365. btrfs_stop_workers(&fs_info->readahead_workers);
  2366. btrfs_stop_workers(&fs_info->fixup_workers);
  2367. btrfs_stop_workers(&fs_info->delalloc_workers);
  2368. btrfs_stop_workers(&fs_info->workers);
  2369. btrfs_stop_workers(&fs_info->endio_workers);
  2370. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2371. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2372. btrfs_stop_workers(&fs_info->endio_write_workers);
  2373. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2374. btrfs_stop_workers(&fs_info->submit_workers);
  2375. btrfs_stop_workers(&fs_info->delayed_workers);
  2376. btrfs_stop_workers(&fs_info->caching_workers);
  2377. btrfs_stop_workers(&fs_info->flush_workers);
  2378. fail_alloc:
  2379. fail_iput:
  2380. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2381. iput(fs_info->btree_inode);
  2382. fail_delalloc_bytes:
  2383. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2384. fail_dirty_metadata_bytes:
  2385. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2386. fail_bdi:
  2387. bdi_destroy(&fs_info->bdi);
  2388. fail_srcu:
  2389. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2390. fail:
  2391. btrfs_close_devices(fs_info->fs_devices);
  2392. return err;
  2393. recovery_tree_root:
  2394. if (!btrfs_test_opt(tree_root, RECOVERY))
  2395. goto fail_tree_roots;
  2396. free_root_pointers(fs_info, 0);
  2397. /* don't use the log in recovery mode, it won't be valid */
  2398. btrfs_set_super_log_root(disk_super, 0);
  2399. /* we can't trust the free space cache either */
  2400. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2401. ret = next_root_backup(fs_info, fs_info->super_copy,
  2402. &num_backups_tried, &backup_index);
  2403. if (ret == -1)
  2404. goto fail_block_groups;
  2405. goto retry_root_backup;
  2406. }
  2407. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2408. {
  2409. if (uptodate) {
  2410. set_buffer_uptodate(bh);
  2411. } else {
  2412. struct btrfs_device *device = (struct btrfs_device *)
  2413. bh->b_private;
  2414. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2415. "I/O error on %s\n",
  2416. rcu_str_deref(device->name));
  2417. /* note, we dont' set_buffer_write_io_error because we have
  2418. * our own ways of dealing with the IO errors
  2419. */
  2420. clear_buffer_uptodate(bh);
  2421. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2422. }
  2423. unlock_buffer(bh);
  2424. put_bh(bh);
  2425. }
  2426. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2427. {
  2428. struct buffer_head *bh;
  2429. struct buffer_head *latest = NULL;
  2430. struct btrfs_super_block *super;
  2431. int i;
  2432. u64 transid = 0;
  2433. u64 bytenr;
  2434. /* we would like to check all the supers, but that would make
  2435. * a btrfs mount succeed after a mkfs from a different FS.
  2436. * So, we need to add a special mount option to scan for
  2437. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2438. */
  2439. for (i = 0; i < 1; i++) {
  2440. bytenr = btrfs_sb_offset(i);
  2441. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2442. break;
  2443. bh = __bread(bdev, bytenr / 4096, 4096);
  2444. if (!bh)
  2445. continue;
  2446. super = (struct btrfs_super_block *)bh->b_data;
  2447. if (btrfs_super_bytenr(super) != bytenr ||
  2448. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2449. brelse(bh);
  2450. continue;
  2451. }
  2452. if (!latest || btrfs_super_generation(super) > transid) {
  2453. brelse(latest);
  2454. latest = bh;
  2455. transid = btrfs_super_generation(super);
  2456. } else {
  2457. brelse(bh);
  2458. }
  2459. }
  2460. return latest;
  2461. }
  2462. /*
  2463. * this should be called twice, once with wait == 0 and
  2464. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2465. * we write are pinned.
  2466. *
  2467. * They are released when wait == 1 is done.
  2468. * max_mirrors must be the same for both runs, and it indicates how
  2469. * many supers on this one device should be written.
  2470. *
  2471. * max_mirrors == 0 means to write them all.
  2472. */
  2473. static int write_dev_supers(struct btrfs_device *device,
  2474. struct btrfs_super_block *sb,
  2475. int do_barriers, int wait, int max_mirrors)
  2476. {
  2477. struct buffer_head *bh;
  2478. int i;
  2479. int ret;
  2480. int errors = 0;
  2481. u32 crc;
  2482. u64 bytenr;
  2483. if (max_mirrors == 0)
  2484. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2485. for (i = 0; i < max_mirrors; i++) {
  2486. bytenr = btrfs_sb_offset(i);
  2487. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2488. break;
  2489. if (wait) {
  2490. bh = __find_get_block(device->bdev, bytenr / 4096,
  2491. BTRFS_SUPER_INFO_SIZE);
  2492. BUG_ON(!bh);
  2493. wait_on_buffer(bh);
  2494. if (!buffer_uptodate(bh))
  2495. errors++;
  2496. /* drop our reference */
  2497. brelse(bh);
  2498. /* drop the reference from the wait == 0 run */
  2499. brelse(bh);
  2500. continue;
  2501. } else {
  2502. btrfs_set_super_bytenr(sb, bytenr);
  2503. crc = ~(u32)0;
  2504. crc = btrfs_csum_data(NULL, (char *)sb +
  2505. BTRFS_CSUM_SIZE, crc,
  2506. BTRFS_SUPER_INFO_SIZE -
  2507. BTRFS_CSUM_SIZE);
  2508. btrfs_csum_final(crc, sb->csum);
  2509. /*
  2510. * one reference for us, and we leave it for the
  2511. * caller
  2512. */
  2513. bh = __getblk(device->bdev, bytenr / 4096,
  2514. BTRFS_SUPER_INFO_SIZE);
  2515. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2516. /* one reference for submit_bh */
  2517. get_bh(bh);
  2518. set_buffer_uptodate(bh);
  2519. lock_buffer(bh);
  2520. bh->b_end_io = btrfs_end_buffer_write_sync;
  2521. bh->b_private = device;
  2522. }
  2523. /*
  2524. * we fua the first super. The others we allow
  2525. * to go down lazy.
  2526. */
  2527. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2528. if (ret)
  2529. errors++;
  2530. }
  2531. return errors < i ? 0 : -1;
  2532. }
  2533. /*
  2534. * endio for the write_dev_flush, this will wake anyone waiting
  2535. * for the barrier when it is done
  2536. */
  2537. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2538. {
  2539. if (err) {
  2540. if (err == -EOPNOTSUPP)
  2541. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2542. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2543. }
  2544. if (bio->bi_private)
  2545. complete(bio->bi_private);
  2546. bio_put(bio);
  2547. }
  2548. /*
  2549. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2550. * sent down. With wait == 1, it waits for the previous flush.
  2551. *
  2552. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2553. * capable
  2554. */
  2555. static int write_dev_flush(struct btrfs_device *device, int wait)
  2556. {
  2557. struct bio *bio;
  2558. int ret = 0;
  2559. if (device->nobarriers)
  2560. return 0;
  2561. if (wait) {
  2562. bio = device->flush_bio;
  2563. if (!bio)
  2564. return 0;
  2565. wait_for_completion(&device->flush_wait);
  2566. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2567. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2568. rcu_str_deref(device->name));
  2569. device->nobarriers = 1;
  2570. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2571. ret = -EIO;
  2572. btrfs_dev_stat_inc_and_print(device,
  2573. BTRFS_DEV_STAT_FLUSH_ERRS);
  2574. }
  2575. /* drop the reference from the wait == 0 run */
  2576. bio_put(bio);
  2577. device->flush_bio = NULL;
  2578. return ret;
  2579. }
  2580. /*
  2581. * one reference for us, and we leave it for the
  2582. * caller
  2583. */
  2584. device->flush_bio = NULL;
  2585. bio = bio_alloc(GFP_NOFS, 0);
  2586. if (!bio)
  2587. return -ENOMEM;
  2588. bio->bi_end_io = btrfs_end_empty_barrier;
  2589. bio->bi_bdev = device->bdev;
  2590. init_completion(&device->flush_wait);
  2591. bio->bi_private = &device->flush_wait;
  2592. device->flush_bio = bio;
  2593. bio_get(bio);
  2594. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2595. return 0;
  2596. }
  2597. /*
  2598. * send an empty flush down to each device in parallel,
  2599. * then wait for them
  2600. */
  2601. static int barrier_all_devices(struct btrfs_fs_info *info)
  2602. {
  2603. struct list_head *head;
  2604. struct btrfs_device *dev;
  2605. int errors_send = 0;
  2606. int errors_wait = 0;
  2607. int ret;
  2608. /* send down all the barriers */
  2609. head = &info->fs_devices->devices;
  2610. list_for_each_entry_rcu(dev, head, dev_list) {
  2611. if (!dev->bdev) {
  2612. errors_send++;
  2613. continue;
  2614. }
  2615. if (!dev->in_fs_metadata || !dev->writeable)
  2616. continue;
  2617. ret = write_dev_flush(dev, 0);
  2618. if (ret)
  2619. errors_send++;
  2620. }
  2621. /* wait for all the barriers */
  2622. list_for_each_entry_rcu(dev, head, dev_list) {
  2623. if (!dev->bdev) {
  2624. errors_wait++;
  2625. continue;
  2626. }
  2627. if (!dev->in_fs_metadata || !dev->writeable)
  2628. continue;
  2629. ret = write_dev_flush(dev, 1);
  2630. if (ret)
  2631. errors_wait++;
  2632. }
  2633. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2634. errors_wait > info->num_tolerated_disk_barrier_failures)
  2635. return -EIO;
  2636. return 0;
  2637. }
  2638. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2639. struct btrfs_fs_info *fs_info)
  2640. {
  2641. struct btrfs_ioctl_space_info space;
  2642. struct btrfs_space_info *sinfo;
  2643. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2644. BTRFS_BLOCK_GROUP_SYSTEM,
  2645. BTRFS_BLOCK_GROUP_METADATA,
  2646. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2647. int num_types = 4;
  2648. int i;
  2649. int c;
  2650. int num_tolerated_disk_barrier_failures =
  2651. (int)fs_info->fs_devices->num_devices;
  2652. for (i = 0; i < num_types; i++) {
  2653. struct btrfs_space_info *tmp;
  2654. sinfo = NULL;
  2655. rcu_read_lock();
  2656. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2657. if (tmp->flags == types[i]) {
  2658. sinfo = tmp;
  2659. break;
  2660. }
  2661. }
  2662. rcu_read_unlock();
  2663. if (!sinfo)
  2664. continue;
  2665. down_read(&sinfo->groups_sem);
  2666. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2667. if (!list_empty(&sinfo->block_groups[c])) {
  2668. u64 flags;
  2669. btrfs_get_block_group_info(
  2670. &sinfo->block_groups[c], &space);
  2671. if (space.total_bytes == 0 ||
  2672. space.used_bytes == 0)
  2673. continue;
  2674. flags = space.flags;
  2675. /*
  2676. * return
  2677. * 0: if dup, single or RAID0 is configured for
  2678. * any of metadata, system or data, else
  2679. * 1: if RAID5 is configured, or if RAID1 or
  2680. * RAID10 is configured and only two mirrors
  2681. * are used, else
  2682. * 2: if RAID6 is configured, else
  2683. * num_mirrors - 1: if RAID1 or RAID10 is
  2684. * configured and more than
  2685. * 2 mirrors are used.
  2686. */
  2687. if (num_tolerated_disk_barrier_failures > 0 &&
  2688. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2689. BTRFS_BLOCK_GROUP_RAID0)) ||
  2690. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2691. == 0)))
  2692. num_tolerated_disk_barrier_failures = 0;
  2693. else if (num_tolerated_disk_barrier_failures > 1
  2694. &&
  2695. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2696. BTRFS_BLOCK_GROUP_RAID10)))
  2697. num_tolerated_disk_barrier_failures = 1;
  2698. }
  2699. }
  2700. up_read(&sinfo->groups_sem);
  2701. }
  2702. return num_tolerated_disk_barrier_failures;
  2703. }
  2704. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2705. {
  2706. struct list_head *head;
  2707. struct btrfs_device *dev;
  2708. struct btrfs_super_block *sb;
  2709. struct btrfs_dev_item *dev_item;
  2710. int ret;
  2711. int do_barriers;
  2712. int max_errors;
  2713. int total_errors = 0;
  2714. u64 flags;
  2715. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2716. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2717. backup_super_roots(root->fs_info);
  2718. sb = root->fs_info->super_for_commit;
  2719. dev_item = &sb->dev_item;
  2720. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2721. head = &root->fs_info->fs_devices->devices;
  2722. if (do_barriers) {
  2723. ret = barrier_all_devices(root->fs_info);
  2724. if (ret) {
  2725. mutex_unlock(
  2726. &root->fs_info->fs_devices->device_list_mutex);
  2727. btrfs_error(root->fs_info, ret,
  2728. "errors while submitting device barriers.");
  2729. return ret;
  2730. }
  2731. }
  2732. list_for_each_entry_rcu(dev, head, dev_list) {
  2733. if (!dev->bdev) {
  2734. total_errors++;
  2735. continue;
  2736. }
  2737. if (!dev->in_fs_metadata || !dev->writeable)
  2738. continue;
  2739. btrfs_set_stack_device_generation(dev_item, 0);
  2740. btrfs_set_stack_device_type(dev_item, dev->type);
  2741. btrfs_set_stack_device_id(dev_item, dev->devid);
  2742. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2743. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2744. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2745. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2746. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2747. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2748. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2749. flags = btrfs_super_flags(sb);
  2750. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2751. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2752. if (ret)
  2753. total_errors++;
  2754. }
  2755. if (total_errors > max_errors) {
  2756. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2757. total_errors);
  2758. /* This shouldn't happen. FUA is masked off if unsupported */
  2759. BUG();
  2760. }
  2761. total_errors = 0;
  2762. list_for_each_entry_rcu(dev, head, dev_list) {
  2763. if (!dev->bdev)
  2764. continue;
  2765. if (!dev->in_fs_metadata || !dev->writeable)
  2766. continue;
  2767. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2768. if (ret)
  2769. total_errors++;
  2770. }
  2771. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2772. if (total_errors > max_errors) {
  2773. btrfs_error(root->fs_info, -EIO,
  2774. "%d errors while writing supers", total_errors);
  2775. return -EIO;
  2776. }
  2777. return 0;
  2778. }
  2779. int write_ctree_super(struct btrfs_trans_handle *trans,
  2780. struct btrfs_root *root, int max_mirrors)
  2781. {
  2782. int ret;
  2783. ret = write_all_supers(root, max_mirrors);
  2784. return ret;
  2785. }
  2786. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2787. {
  2788. spin_lock(&fs_info->fs_roots_radix_lock);
  2789. radix_tree_delete(&fs_info->fs_roots_radix,
  2790. (unsigned long)root->root_key.objectid);
  2791. spin_unlock(&fs_info->fs_roots_radix_lock);
  2792. if (btrfs_root_refs(&root->root_item) == 0)
  2793. synchronize_srcu(&fs_info->subvol_srcu);
  2794. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2795. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2796. free_fs_root(root);
  2797. }
  2798. static void free_fs_root(struct btrfs_root *root)
  2799. {
  2800. iput(root->cache_inode);
  2801. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2802. if (root->anon_dev)
  2803. free_anon_bdev(root->anon_dev);
  2804. free_extent_buffer(root->node);
  2805. free_extent_buffer(root->commit_root);
  2806. kfree(root->free_ino_ctl);
  2807. kfree(root->free_ino_pinned);
  2808. kfree(root->name);
  2809. kfree(root);
  2810. }
  2811. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2812. {
  2813. int ret;
  2814. struct btrfs_root *gang[8];
  2815. int i;
  2816. while (!list_empty(&fs_info->dead_roots)) {
  2817. gang[0] = list_entry(fs_info->dead_roots.next,
  2818. struct btrfs_root, root_list);
  2819. list_del(&gang[0]->root_list);
  2820. if (gang[0]->in_radix) {
  2821. btrfs_free_fs_root(fs_info, gang[0]);
  2822. } else {
  2823. free_extent_buffer(gang[0]->node);
  2824. free_extent_buffer(gang[0]->commit_root);
  2825. kfree(gang[0]);
  2826. }
  2827. }
  2828. while (1) {
  2829. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2830. (void **)gang, 0,
  2831. ARRAY_SIZE(gang));
  2832. if (!ret)
  2833. break;
  2834. for (i = 0; i < ret; i++)
  2835. btrfs_free_fs_root(fs_info, gang[i]);
  2836. }
  2837. }
  2838. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2839. {
  2840. u64 root_objectid = 0;
  2841. struct btrfs_root *gang[8];
  2842. int i;
  2843. int ret;
  2844. while (1) {
  2845. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2846. (void **)gang, root_objectid,
  2847. ARRAY_SIZE(gang));
  2848. if (!ret)
  2849. break;
  2850. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2851. for (i = 0; i < ret; i++) {
  2852. int err;
  2853. root_objectid = gang[i]->root_key.objectid;
  2854. err = btrfs_orphan_cleanup(gang[i]);
  2855. if (err)
  2856. return err;
  2857. }
  2858. root_objectid++;
  2859. }
  2860. return 0;
  2861. }
  2862. int btrfs_commit_super(struct btrfs_root *root)
  2863. {
  2864. struct btrfs_trans_handle *trans;
  2865. int ret;
  2866. mutex_lock(&root->fs_info->cleaner_mutex);
  2867. btrfs_run_delayed_iputs(root);
  2868. btrfs_clean_old_snapshots(root);
  2869. mutex_unlock(&root->fs_info->cleaner_mutex);
  2870. /* wait until ongoing cleanup work done */
  2871. down_write(&root->fs_info->cleanup_work_sem);
  2872. up_write(&root->fs_info->cleanup_work_sem);
  2873. trans = btrfs_join_transaction(root);
  2874. if (IS_ERR(trans))
  2875. return PTR_ERR(trans);
  2876. ret = btrfs_commit_transaction(trans, root);
  2877. if (ret)
  2878. return ret;
  2879. /* run commit again to drop the original snapshot */
  2880. trans = btrfs_join_transaction(root);
  2881. if (IS_ERR(trans))
  2882. return PTR_ERR(trans);
  2883. ret = btrfs_commit_transaction(trans, root);
  2884. if (ret)
  2885. return ret;
  2886. ret = btrfs_write_and_wait_transaction(NULL, root);
  2887. if (ret) {
  2888. btrfs_error(root->fs_info, ret,
  2889. "Failed to sync btree inode to disk.");
  2890. return ret;
  2891. }
  2892. ret = write_ctree_super(NULL, root, 0);
  2893. return ret;
  2894. }
  2895. int close_ctree(struct btrfs_root *root)
  2896. {
  2897. struct btrfs_fs_info *fs_info = root->fs_info;
  2898. int ret;
  2899. fs_info->closing = 1;
  2900. smp_mb();
  2901. /* pause restriper - we want to resume on mount */
  2902. btrfs_pause_balance(fs_info);
  2903. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2904. btrfs_scrub_cancel(fs_info);
  2905. /* wait for any defraggers to finish */
  2906. wait_event(fs_info->transaction_wait,
  2907. (atomic_read(&fs_info->defrag_running) == 0));
  2908. /* clear out the rbtree of defraggable inodes */
  2909. btrfs_cleanup_defrag_inodes(fs_info);
  2910. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2911. ret = btrfs_commit_super(root);
  2912. if (ret)
  2913. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2914. }
  2915. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  2916. btrfs_error_commit_super(root);
  2917. btrfs_put_block_group_cache(fs_info);
  2918. kthread_stop(fs_info->transaction_kthread);
  2919. kthread_stop(fs_info->cleaner_kthread);
  2920. fs_info->closing = 2;
  2921. smp_mb();
  2922. btrfs_free_qgroup_config(root->fs_info);
  2923. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  2924. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  2925. percpu_counter_sum(&fs_info->delalloc_bytes));
  2926. }
  2927. free_extent_buffer(fs_info->extent_root->node);
  2928. free_extent_buffer(fs_info->extent_root->commit_root);
  2929. free_extent_buffer(fs_info->tree_root->node);
  2930. free_extent_buffer(fs_info->tree_root->commit_root);
  2931. free_extent_buffer(fs_info->chunk_root->node);
  2932. free_extent_buffer(fs_info->chunk_root->commit_root);
  2933. free_extent_buffer(fs_info->dev_root->node);
  2934. free_extent_buffer(fs_info->dev_root->commit_root);
  2935. free_extent_buffer(fs_info->csum_root->node);
  2936. free_extent_buffer(fs_info->csum_root->commit_root);
  2937. if (fs_info->quota_root) {
  2938. free_extent_buffer(fs_info->quota_root->node);
  2939. free_extent_buffer(fs_info->quota_root->commit_root);
  2940. }
  2941. btrfs_free_block_groups(fs_info);
  2942. del_fs_roots(fs_info);
  2943. iput(fs_info->btree_inode);
  2944. btrfs_stop_workers(&fs_info->generic_worker);
  2945. btrfs_stop_workers(&fs_info->fixup_workers);
  2946. btrfs_stop_workers(&fs_info->delalloc_workers);
  2947. btrfs_stop_workers(&fs_info->workers);
  2948. btrfs_stop_workers(&fs_info->endio_workers);
  2949. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2950. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2951. btrfs_stop_workers(&fs_info->endio_write_workers);
  2952. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2953. btrfs_stop_workers(&fs_info->submit_workers);
  2954. btrfs_stop_workers(&fs_info->delayed_workers);
  2955. btrfs_stop_workers(&fs_info->caching_workers);
  2956. btrfs_stop_workers(&fs_info->readahead_workers);
  2957. btrfs_stop_workers(&fs_info->flush_workers);
  2958. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2959. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2960. btrfsic_unmount(root, fs_info->fs_devices);
  2961. #endif
  2962. btrfs_close_devices(fs_info->fs_devices);
  2963. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2964. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2965. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2966. bdi_destroy(&fs_info->bdi);
  2967. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2968. return 0;
  2969. }
  2970. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2971. int atomic)
  2972. {
  2973. int ret;
  2974. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2975. ret = extent_buffer_uptodate(buf);
  2976. if (!ret)
  2977. return ret;
  2978. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2979. parent_transid, atomic);
  2980. if (ret == -EAGAIN)
  2981. return ret;
  2982. return !ret;
  2983. }
  2984. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2985. {
  2986. return set_extent_buffer_uptodate(buf);
  2987. }
  2988. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2989. {
  2990. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2991. u64 transid = btrfs_header_generation(buf);
  2992. int was_dirty;
  2993. btrfs_assert_tree_locked(buf);
  2994. if (transid != root->fs_info->generation)
  2995. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2996. "found %llu running %llu\n",
  2997. (unsigned long long)buf->start,
  2998. (unsigned long long)transid,
  2999. (unsigned long long)root->fs_info->generation);
  3000. was_dirty = set_extent_buffer_dirty(buf);
  3001. if (!was_dirty)
  3002. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3003. buf->len,
  3004. root->fs_info->dirty_metadata_batch);
  3005. }
  3006. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3007. int flush_delayed)
  3008. {
  3009. /*
  3010. * looks as though older kernels can get into trouble with
  3011. * this code, they end up stuck in balance_dirty_pages forever
  3012. */
  3013. int ret;
  3014. if (current->flags & PF_MEMALLOC)
  3015. return;
  3016. if (flush_delayed)
  3017. btrfs_balance_delayed_items(root);
  3018. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3019. BTRFS_DIRTY_METADATA_THRESH);
  3020. if (ret > 0) {
  3021. balance_dirty_pages_ratelimited(
  3022. root->fs_info->btree_inode->i_mapping);
  3023. }
  3024. return;
  3025. }
  3026. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3027. {
  3028. __btrfs_btree_balance_dirty(root, 1);
  3029. }
  3030. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3031. {
  3032. __btrfs_btree_balance_dirty(root, 0);
  3033. }
  3034. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3035. {
  3036. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3037. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3038. }
  3039. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3040. int read_only)
  3041. {
  3042. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3043. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3044. return -EINVAL;
  3045. }
  3046. if (read_only)
  3047. return 0;
  3048. return 0;
  3049. }
  3050. void btrfs_error_commit_super(struct btrfs_root *root)
  3051. {
  3052. mutex_lock(&root->fs_info->cleaner_mutex);
  3053. btrfs_run_delayed_iputs(root);
  3054. mutex_unlock(&root->fs_info->cleaner_mutex);
  3055. down_write(&root->fs_info->cleanup_work_sem);
  3056. up_write(&root->fs_info->cleanup_work_sem);
  3057. /* cleanup FS via transaction */
  3058. btrfs_cleanup_transaction(root);
  3059. }
  3060. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3061. struct btrfs_root *root)
  3062. {
  3063. struct btrfs_inode *btrfs_inode;
  3064. struct list_head splice;
  3065. INIT_LIST_HEAD(&splice);
  3066. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3067. spin_lock(&root->fs_info->ordered_extent_lock);
  3068. list_splice_init(&t->ordered_operations, &splice);
  3069. while (!list_empty(&splice)) {
  3070. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3071. ordered_operations);
  3072. list_del_init(&btrfs_inode->ordered_operations);
  3073. btrfs_invalidate_inodes(btrfs_inode->root);
  3074. }
  3075. spin_unlock(&root->fs_info->ordered_extent_lock);
  3076. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3077. }
  3078. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3079. {
  3080. struct btrfs_ordered_extent *ordered;
  3081. spin_lock(&root->fs_info->ordered_extent_lock);
  3082. /*
  3083. * This will just short circuit the ordered completion stuff which will
  3084. * make sure the ordered extent gets properly cleaned up.
  3085. */
  3086. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3087. root_extent_list)
  3088. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3089. spin_unlock(&root->fs_info->ordered_extent_lock);
  3090. }
  3091. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3092. struct btrfs_root *root)
  3093. {
  3094. struct rb_node *node;
  3095. struct btrfs_delayed_ref_root *delayed_refs;
  3096. struct btrfs_delayed_ref_node *ref;
  3097. int ret = 0;
  3098. delayed_refs = &trans->delayed_refs;
  3099. spin_lock(&delayed_refs->lock);
  3100. if (delayed_refs->num_entries == 0) {
  3101. spin_unlock(&delayed_refs->lock);
  3102. printk(KERN_INFO "delayed_refs has NO entry\n");
  3103. return ret;
  3104. }
  3105. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3106. struct btrfs_delayed_ref_head *head = NULL;
  3107. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3108. atomic_set(&ref->refs, 1);
  3109. if (btrfs_delayed_ref_is_head(ref)) {
  3110. head = btrfs_delayed_node_to_head(ref);
  3111. if (!mutex_trylock(&head->mutex)) {
  3112. atomic_inc(&ref->refs);
  3113. spin_unlock(&delayed_refs->lock);
  3114. /* Need to wait for the delayed ref to run */
  3115. mutex_lock(&head->mutex);
  3116. mutex_unlock(&head->mutex);
  3117. btrfs_put_delayed_ref(ref);
  3118. spin_lock(&delayed_refs->lock);
  3119. continue;
  3120. }
  3121. btrfs_free_delayed_extent_op(head->extent_op);
  3122. delayed_refs->num_heads--;
  3123. if (list_empty(&head->cluster))
  3124. delayed_refs->num_heads_ready--;
  3125. list_del_init(&head->cluster);
  3126. }
  3127. ref->in_tree = 0;
  3128. rb_erase(&ref->rb_node, &delayed_refs->root);
  3129. delayed_refs->num_entries--;
  3130. if (head)
  3131. mutex_unlock(&head->mutex);
  3132. spin_unlock(&delayed_refs->lock);
  3133. btrfs_put_delayed_ref(ref);
  3134. cond_resched();
  3135. spin_lock(&delayed_refs->lock);
  3136. }
  3137. spin_unlock(&delayed_refs->lock);
  3138. return ret;
  3139. }
  3140. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3141. {
  3142. struct btrfs_pending_snapshot *snapshot;
  3143. struct list_head splice;
  3144. INIT_LIST_HEAD(&splice);
  3145. list_splice_init(&t->pending_snapshots, &splice);
  3146. while (!list_empty(&splice)) {
  3147. snapshot = list_entry(splice.next,
  3148. struct btrfs_pending_snapshot,
  3149. list);
  3150. list_del_init(&snapshot->list);
  3151. kfree(snapshot);
  3152. }
  3153. }
  3154. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3155. {
  3156. struct btrfs_inode *btrfs_inode;
  3157. struct list_head splice;
  3158. INIT_LIST_HEAD(&splice);
  3159. spin_lock(&root->fs_info->delalloc_lock);
  3160. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3161. while (!list_empty(&splice)) {
  3162. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3163. delalloc_inodes);
  3164. list_del_init(&btrfs_inode->delalloc_inodes);
  3165. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3166. &btrfs_inode->runtime_flags);
  3167. btrfs_invalidate_inodes(btrfs_inode->root);
  3168. }
  3169. spin_unlock(&root->fs_info->delalloc_lock);
  3170. }
  3171. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3172. struct extent_io_tree *dirty_pages,
  3173. int mark)
  3174. {
  3175. int ret;
  3176. struct page *page;
  3177. struct inode *btree_inode = root->fs_info->btree_inode;
  3178. struct extent_buffer *eb;
  3179. u64 start = 0;
  3180. u64 end;
  3181. u64 offset;
  3182. unsigned long index;
  3183. while (1) {
  3184. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3185. mark, NULL);
  3186. if (ret)
  3187. break;
  3188. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3189. while (start <= end) {
  3190. index = start >> PAGE_CACHE_SHIFT;
  3191. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3192. page = find_get_page(btree_inode->i_mapping, index);
  3193. if (!page)
  3194. continue;
  3195. offset = page_offset(page);
  3196. spin_lock(&dirty_pages->buffer_lock);
  3197. eb = radix_tree_lookup(
  3198. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3199. offset >> PAGE_CACHE_SHIFT);
  3200. spin_unlock(&dirty_pages->buffer_lock);
  3201. if (eb)
  3202. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3203. &eb->bflags);
  3204. if (PageWriteback(page))
  3205. end_page_writeback(page);
  3206. lock_page(page);
  3207. if (PageDirty(page)) {
  3208. clear_page_dirty_for_io(page);
  3209. spin_lock_irq(&page->mapping->tree_lock);
  3210. radix_tree_tag_clear(&page->mapping->page_tree,
  3211. page_index(page),
  3212. PAGECACHE_TAG_DIRTY);
  3213. spin_unlock_irq(&page->mapping->tree_lock);
  3214. }
  3215. unlock_page(page);
  3216. page_cache_release(page);
  3217. }
  3218. }
  3219. return ret;
  3220. }
  3221. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3222. struct extent_io_tree *pinned_extents)
  3223. {
  3224. struct extent_io_tree *unpin;
  3225. u64 start;
  3226. u64 end;
  3227. int ret;
  3228. bool loop = true;
  3229. unpin = pinned_extents;
  3230. again:
  3231. while (1) {
  3232. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3233. EXTENT_DIRTY, NULL);
  3234. if (ret)
  3235. break;
  3236. /* opt_discard */
  3237. if (btrfs_test_opt(root, DISCARD))
  3238. ret = btrfs_error_discard_extent(root, start,
  3239. end + 1 - start,
  3240. NULL);
  3241. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3242. btrfs_error_unpin_extent_range(root, start, end);
  3243. cond_resched();
  3244. }
  3245. if (loop) {
  3246. if (unpin == &root->fs_info->freed_extents[0])
  3247. unpin = &root->fs_info->freed_extents[1];
  3248. else
  3249. unpin = &root->fs_info->freed_extents[0];
  3250. loop = false;
  3251. goto again;
  3252. }
  3253. return 0;
  3254. }
  3255. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3256. struct btrfs_root *root)
  3257. {
  3258. btrfs_destroy_delayed_refs(cur_trans, root);
  3259. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3260. cur_trans->dirty_pages.dirty_bytes);
  3261. /* FIXME: cleanup wait for commit */
  3262. cur_trans->in_commit = 1;
  3263. cur_trans->blocked = 1;
  3264. wake_up(&root->fs_info->transaction_blocked_wait);
  3265. cur_trans->blocked = 0;
  3266. wake_up(&root->fs_info->transaction_wait);
  3267. cur_trans->commit_done = 1;
  3268. wake_up(&cur_trans->commit_wait);
  3269. btrfs_destroy_delayed_inodes(root);
  3270. btrfs_assert_delayed_root_empty(root);
  3271. btrfs_destroy_pending_snapshots(cur_trans);
  3272. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3273. EXTENT_DIRTY);
  3274. btrfs_destroy_pinned_extent(root,
  3275. root->fs_info->pinned_extents);
  3276. /*
  3277. memset(cur_trans, 0, sizeof(*cur_trans));
  3278. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3279. */
  3280. }
  3281. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3282. {
  3283. struct btrfs_transaction *t;
  3284. LIST_HEAD(list);
  3285. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3286. spin_lock(&root->fs_info->trans_lock);
  3287. list_splice_init(&root->fs_info->trans_list, &list);
  3288. root->fs_info->trans_no_join = 1;
  3289. spin_unlock(&root->fs_info->trans_lock);
  3290. while (!list_empty(&list)) {
  3291. t = list_entry(list.next, struct btrfs_transaction, list);
  3292. btrfs_destroy_ordered_operations(t, root);
  3293. btrfs_destroy_ordered_extents(root);
  3294. btrfs_destroy_delayed_refs(t, root);
  3295. btrfs_block_rsv_release(root,
  3296. &root->fs_info->trans_block_rsv,
  3297. t->dirty_pages.dirty_bytes);
  3298. /* FIXME: cleanup wait for commit */
  3299. t->in_commit = 1;
  3300. t->blocked = 1;
  3301. smp_mb();
  3302. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3303. wake_up(&root->fs_info->transaction_blocked_wait);
  3304. t->blocked = 0;
  3305. smp_mb();
  3306. if (waitqueue_active(&root->fs_info->transaction_wait))
  3307. wake_up(&root->fs_info->transaction_wait);
  3308. t->commit_done = 1;
  3309. smp_mb();
  3310. if (waitqueue_active(&t->commit_wait))
  3311. wake_up(&t->commit_wait);
  3312. btrfs_destroy_delayed_inodes(root);
  3313. btrfs_assert_delayed_root_empty(root);
  3314. btrfs_destroy_pending_snapshots(t);
  3315. btrfs_destroy_delalloc_inodes(root);
  3316. spin_lock(&root->fs_info->trans_lock);
  3317. root->fs_info->running_transaction = NULL;
  3318. spin_unlock(&root->fs_info->trans_lock);
  3319. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3320. EXTENT_DIRTY);
  3321. btrfs_destroy_pinned_extent(root,
  3322. root->fs_info->pinned_extents);
  3323. atomic_set(&t->use_count, 0);
  3324. list_del_init(&t->list);
  3325. memset(t, 0, sizeof(*t));
  3326. kmem_cache_free(btrfs_transaction_cachep, t);
  3327. }
  3328. spin_lock(&root->fs_info->trans_lock);
  3329. root->fs_info->trans_no_join = 0;
  3330. spin_unlock(&root->fs_info->trans_lock);
  3331. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3332. return 0;
  3333. }
  3334. static struct extent_io_ops btree_extent_io_ops = {
  3335. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3336. .readpage_io_failed_hook = btree_io_failed_hook,
  3337. .submit_bio_hook = btree_submit_bio_hook,
  3338. /* note we're sharing with inode.c for the merge bio hook */
  3339. .merge_bio_hook = btrfs_merge_bio_hook,
  3340. };