e1000_main.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 6.0.44+ 2/15/05
  23. * o applied Anton's patch to resolve tx hang in hardware
  24. * o Applied Andrew Mortons patch - e1000 stops working after resume
  25. */
  26. char e1000_driver_name[] = "e1000";
  27. char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  28. #ifndef CONFIG_E1000_NAPI
  29. #define DRIVERNAPI
  30. #else
  31. #define DRIVERNAPI "-NAPI"
  32. #endif
  33. #define DRV_VERSION "6.0.54-k2"DRIVERNAPI
  34. char e1000_driver_version[] = DRV_VERSION;
  35. char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
  36. /* e1000_pci_tbl - PCI Device ID Table
  37. *
  38. * Last entry must be all 0s
  39. *
  40. * Macro expands to...
  41. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  42. */
  43. static struct pci_device_id e1000_pci_tbl[] = {
  44. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  45. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  46. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  47. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  48. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  49. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  50. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  51. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  52. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  53. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  54. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  55. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  56. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  57. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  58. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  59. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  60. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  61. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  62. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  63. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  64. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  65. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  66. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  67. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  68. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  73. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  74. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  75. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  76. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  77. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  78. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  79. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  80. INTEL_E1000_ETHERNET_DEVICE(0x1099),
  81. /* required last entry */
  82. {0,}
  83. };
  84. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  85. int e1000_up(struct e1000_adapter *adapter);
  86. void e1000_down(struct e1000_adapter *adapter);
  87. void e1000_reset(struct e1000_adapter *adapter);
  88. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  89. int e1000_setup_tx_resources(struct e1000_adapter *adapter);
  90. int e1000_setup_rx_resources(struct e1000_adapter *adapter);
  91. void e1000_free_tx_resources(struct e1000_adapter *adapter);
  92. void e1000_free_rx_resources(struct e1000_adapter *adapter);
  93. void e1000_update_stats(struct e1000_adapter *adapter);
  94. /* Local Function Prototypes */
  95. static int e1000_init_module(void);
  96. static void e1000_exit_module(void);
  97. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  98. static void __devexit e1000_remove(struct pci_dev *pdev);
  99. static int e1000_sw_init(struct e1000_adapter *adapter);
  100. static int e1000_open(struct net_device *netdev);
  101. static int e1000_close(struct net_device *netdev);
  102. static void e1000_configure_tx(struct e1000_adapter *adapter);
  103. static void e1000_configure_rx(struct e1000_adapter *adapter);
  104. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  105. static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
  106. static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
  107. static void e1000_set_multi(struct net_device *netdev);
  108. static void e1000_update_phy_info(unsigned long data);
  109. static void e1000_watchdog(unsigned long data);
  110. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  111. static void e1000_82547_tx_fifo_stall(unsigned long data);
  112. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  113. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  114. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  115. static int e1000_set_mac(struct net_device *netdev, void *p);
  116. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  117. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
  118. #ifdef CONFIG_E1000_NAPI
  119. static int e1000_clean(struct net_device *netdev, int *budget);
  120. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  121. int *work_done, int work_to_do);
  122. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  123. int *work_done, int work_to_do);
  124. #else
  125. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
  126. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
  127. #endif
  128. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
  129. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
  130. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  131. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  132. int cmd);
  133. void e1000_set_ethtool_ops(struct net_device *netdev);
  134. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  135. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  136. static void e1000_tx_timeout(struct net_device *dev);
  137. static void e1000_tx_timeout_task(struct net_device *dev);
  138. static void e1000_smartspeed(struct e1000_adapter *adapter);
  139. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  140. struct sk_buff *skb);
  141. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  142. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  143. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  144. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  145. static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
  146. static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
  147. #ifdef CONFIG_PM
  148. static int e1000_resume(struct pci_dev *pdev);
  149. #endif
  150. #ifdef CONFIG_NET_POLL_CONTROLLER
  151. /* for netdump / net console */
  152. static void e1000_netpoll (struct net_device *netdev);
  153. #endif
  154. struct notifier_block e1000_notifier_reboot = {
  155. .notifier_call = e1000_notify_reboot,
  156. .next = NULL,
  157. .priority = 0
  158. };
  159. /* Exported from other modules */
  160. extern void e1000_check_options(struct e1000_adapter *adapter);
  161. static struct pci_driver e1000_driver = {
  162. .name = e1000_driver_name,
  163. .id_table = e1000_pci_tbl,
  164. .probe = e1000_probe,
  165. .remove = __devexit_p(e1000_remove),
  166. /* Power Managment Hooks */
  167. #ifdef CONFIG_PM
  168. .suspend = e1000_suspend,
  169. .resume = e1000_resume
  170. #endif
  171. };
  172. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  173. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  174. MODULE_LICENSE("GPL");
  175. MODULE_VERSION(DRV_VERSION);
  176. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  177. module_param(debug, int, 0);
  178. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  179. /**
  180. * e1000_init_module - Driver Registration Routine
  181. *
  182. * e1000_init_module is the first routine called when the driver is
  183. * loaded. All it does is register with the PCI subsystem.
  184. **/
  185. static int __init
  186. e1000_init_module(void)
  187. {
  188. int ret;
  189. printk(KERN_INFO "%s - version %s\n",
  190. e1000_driver_string, e1000_driver_version);
  191. printk(KERN_INFO "%s\n", e1000_copyright);
  192. ret = pci_module_init(&e1000_driver);
  193. if(ret >= 0) {
  194. register_reboot_notifier(&e1000_notifier_reboot);
  195. }
  196. return ret;
  197. }
  198. module_init(e1000_init_module);
  199. /**
  200. * e1000_exit_module - Driver Exit Cleanup Routine
  201. *
  202. * e1000_exit_module is called just before the driver is removed
  203. * from memory.
  204. **/
  205. static void __exit
  206. e1000_exit_module(void)
  207. {
  208. unregister_reboot_notifier(&e1000_notifier_reboot);
  209. pci_unregister_driver(&e1000_driver);
  210. }
  211. module_exit(e1000_exit_module);
  212. /**
  213. * e1000_irq_disable - Mask off interrupt generation on the NIC
  214. * @adapter: board private structure
  215. **/
  216. static inline void
  217. e1000_irq_disable(struct e1000_adapter *adapter)
  218. {
  219. atomic_inc(&adapter->irq_sem);
  220. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  221. E1000_WRITE_FLUSH(&adapter->hw);
  222. synchronize_irq(adapter->pdev->irq);
  223. }
  224. /**
  225. * e1000_irq_enable - Enable default interrupt generation settings
  226. * @adapter: board private structure
  227. **/
  228. static inline void
  229. e1000_irq_enable(struct e1000_adapter *adapter)
  230. {
  231. if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
  232. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  233. E1000_WRITE_FLUSH(&adapter->hw);
  234. }
  235. }
  236. void
  237. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  238. {
  239. struct net_device *netdev = adapter->netdev;
  240. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  241. uint16_t old_vid = adapter->mng_vlan_id;
  242. if(adapter->vlgrp) {
  243. if(!adapter->vlgrp->vlan_devices[vid]) {
  244. if(adapter->hw.mng_cookie.status &
  245. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  246. e1000_vlan_rx_add_vid(netdev, vid);
  247. adapter->mng_vlan_id = vid;
  248. } else
  249. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  250. if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  251. (vid != old_vid) &&
  252. !adapter->vlgrp->vlan_devices[old_vid])
  253. e1000_vlan_rx_kill_vid(netdev, old_vid);
  254. }
  255. }
  256. }
  257. int
  258. e1000_up(struct e1000_adapter *adapter)
  259. {
  260. struct net_device *netdev = adapter->netdev;
  261. int err;
  262. /* hardware has been reset, we need to reload some things */
  263. /* Reset the PHY if it was previously powered down */
  264. if(adapter->hw.media_type == e1000_media_type_copper) {
  265. uint16_t mii_reg;
  266. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  267. if(mii_reg & MII_CR_POWER_DOWN)
  268. e1000_phy_reset(&adapter->hw);
  269. }
  270. e1000_set_multi(netdev);
  271. e1000_restore_vlan(adapter);
  272. e1000_configure_tx(adapter);
  273. e1000_setup_rctl(adapter);
  274. e1000_configure_rx(adapter);
  275. adapter->alloc_rx_buf(adapter);
  276. #ifdef CONFIG_PCI_MSI
  277. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  278. adapter->have_msi = TRUE;
  279. if((err = pci_enable_msi(adapter->pdev))) {
  280. DPRINTK(PROBE, ERR,
  281. "Unable to allocate MSI interrupt Error: %d\n", err);
  282. adapter->have_msi = FALSE;
  283. }
  284. }
  285. #endif
  286. if((err = request_irq(adapter->pdev->irq, &e1000_intr,
  287. SA_SHIRQ | SA_SAMPLE_RANDOM,
  288. netdev->name, netdev))) {
  289. DPRINTK(PROBE, ERR,
  290. "Unable to allocate interrupt Error: %d\n", err);
  291. return err;
  292. }
  293. mod_timer(&adapter->watchdog_timer, jiffies);
  294. #ifdef CONFIG_E1000_NAPI
  295. netif_poll_enable(netdev);
  296. #endif
  297. e1000_irq_enable(adapter);
  298. return 0;
  299. }
  300. void
  301. e1000_down(struct e1000_adapter *adapter)
  302. {
  303. struct net_device *netdev = adapter->netdev;
  304. e1000_irq_disable(adapter);
  305. free_irq(adapter->pdev->irq, netdev);
  306. #ifdef CONFIG_PCI_MSI
  307. if(adapter->hw.mac_type > e1000_82547_rev_2 &&
  308. adapter->have_msi == TRUE)
  309. pci_disable_msi(adapter->pdev);
  310. #endif
  311. del_timer_sync(&adapter->tx_fifo_stall_timer);
  312. del_timer_sync(&adapter->watchdog_timer);
  313. del_timer_sync(&adapter->phy_info_timer);
  314. #ifdef CONFIG_E1000_NAPI
  315. netif_poll_disable(netdev);
  316. #endif
  317. adapter->link_speed = 0;
  318. adapter->link_duplex = 0;
  319. netif_carrier_off(netdev);
  320. netif_stop_queue(netdev);
  321. e1000_reset(adapter);
  322. e1000_clean_tx_ring(adapter);
  323. e1000_clean_rx_ring(adapter);
  324. /* If WoL is not enabled
  325. * and management mode is not IAMT
  326. * Power down the PHY so no link is implied when interface is down */
  327. if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  328. adapter->hw.media_type == e1000_media_type_copper &&
  329. !e1000_check_mng_mode(&adapter->hw) &&
  330. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
  331. uint16_t mii_reg;
  332. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  333. mii_reg |= MII_CR_POWER_DOWN;
  334. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  335. mdelay(1);
  336. }
  337. }
  338. void
  339. e1000_reset(struct e1000_adapter *adapter)
  340. {
  341. struct net_device *netdev = adapter->netdev;
  342. uint32_t pba, manc;
  343. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  344. uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
  345. /* Repartition Pba for greater than 9k mtu
  346. * To take effect CTRL.RST is required.
  347. */
  348. switch (adapter->hw.mac_type) {
  349. case e1000_82547:
  350. case e1000_82547_rev_2:
  351. pba = E1000_PBA_30K;
  352. break;
  353. case e1000_82573:
  354. pba = E1000_PBA_12K;
  355. break;
  356. default:
  357. pba = E1000_PBA_48K;
  358. break;
  359. }
  360. if((adapter->hw.mac_type != e1000_82573) &&
  361. (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
  362. pba -= 8; /* allocate more FIFO for Tx */
  363. /* send an XOFF when there is enough space in the
  364. * Rx FIFO to hold one extra full size Rx packet
  365. */
  366. fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
  367. ETHERNET_FCS_SIZE + 1;
  368. fc_low_water_mark = fc_high_water_mark + 8;
  369. }
  370. if(adapter->hw.mac_type == e1000_82547) {
  371. adapter->tx_fifo_head = 0;
  372. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  373. adapter->tx_fifo_size =
  374. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  375. atomic_set(&adapter->tx_fifo_stall, 0);
  376. }
  377. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  378. /* flow control settings */
  379. adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
  380. fc_high_water_mark;
  381. adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
  382. fc_low_water_mark;
  383. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  384. adapter->hw.fc_send_xon = 1;
  385. adapter->hw.fc = adapter->hw.original_fc;
  386. /* Allow time for pending master requests to run */
  387. e1000_reset_hw(&adapter->hw);
  388. if(adapter->hw.mac_type >= e1000_82544)
  389. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  390. if(e1000_init_hw(&adapter->hw))
  391. DPRINTK(PROBE, ERR, "Hardware Error\n");
  392. e1000_update_mng_vlan(adapter);
  393. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  394. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  395. e1000_reset_adaptive(&adapter->hw);
  396. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  397. if (adapter->en_mng_pt) {
  398. manc = E1000_READ_REG(&adapter->hw, MANC);
  399. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  400. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  401. }
  402. }
  403. /**
  404. * e1000_probe - Device Initialization Routine
  405. * @pdev: PCI device information struct
  406. * @ent: entry in e1000_pci_tbl
  407. *
  408. * Returns 0 on success, negative on failure
  409. *
  410. * e1000_probe initializes an adapter identified by a pci_dev structure.
  411. * The OS initialization, configuring of the adapter private structure,
  412. * and a hardware reset occur.
  413. **/
  414. static int __devinit
  415. e1000_probe(struct pci_dev *pdev,
  416. const struct pci_device_id *ent)
  417. {
  418. struct net_device *netdev;
  419. struct e1000_adapter *adapter;
  420. unsigned long mmio_start, mmio_len;
  421. uint32_t swsm;
  422. static int cards_found = 0;
  423. int i, err, pci_using_dac;
  424. uint16_t eeprom_data;
  425. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  426. if((err = pci_enable_device(pdev)))
  427. return err;
  428. if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  429. pci_using_dac = 1;
  430. } else {
  431. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  432. E1000_ERR("No usable DMA configuration, aborting\n");
  433. return err;
  434. }
  435. pci_using_dac = 0;
  436. }
  437. if((err = pci_request_regions(pdev, e1000_driver_name)))
  438. return err;
  439. pci_set_master(pdev);
  440. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  441. if(!netdev) {
  442. err = -ENOMEM;
  443. goto err_alloc_etherdev;
  444. }
  445. SET_MODULE_OWNER(netdev);
  446. SET_NETDEV_DEV(netdev, &pdev->dev);
  447. pci_set_drvdata(pdev, netdev);
  448. adapter = netdev->priv;
  449. adapter->netdev = netdev;
  450. adapter->pdev = pdev;
  451. adapter->hw.back = adapter;
  452. adapter->msg_enable = (1 << debug) - 1;
  453. mmio_start = pci_resource_start(pdev, BAR_0);
  454. mmio_len = pci_resource_len(pdev, BAR_0);
  455. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  456. if(!adapter->hw.hw_addr) {
  457. err = -EIO;
  458. goto err_ioremap;
  459. }
  460. for(i = BAR_1; i <= BAR_5; i++) {
  461. if(pci_resource_len(pdev, i) == 0)
  462. continue;
  463. if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  464. adapter->hw.io_base = pci_resource_start(pdev, i);
  465. break;
  466. }
  467. }
  468. netdev->open = &e1000_open;
  469. netdev->stop = &e1000_close;
  470. netdev->hard_start_xmit = &e1000_xmit_frame;
  471. netdev->get_stats = &e1000_get_stats;
  472. netdev->set_multicast_list = &e1000_set_multi;
  473. netdev->set_mac_address = &e1000_set_mac;
  474. netdev->change_mtu = &e1000_change_mtu;
  475. netdev->do_ioctl = &e1000_ioctl;
  476. e1000_set_ethtool_ops(netdev);
  477. netdev->tx_timeout = &e1000_tx_timeout;
  478. netdev->watchdog_timeo = 5 * HZ;
  479. #ifdef CONFIG_E1000_NAPI
  480. netdev->poll = &e1000_clean;
  481. netdev->weight = 64;
  482. #endif
  483. netdev->vlan_rx_register = e1000_vlan_rx_register;
  484. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  485. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  486. #ifdef CONFIG_NET_POLL_CONTROLLER
  487. netdev->poll_controller = e1000_netpoll;
  488. #endif
  489. strcpy(netdev->name, pci_name(pdev));
  490. netdev->mem_start = mmio_start;
  491. netdev->mem_end = mmio_start + mmio_len;
  492. netdev->base_addr = adapter->hw.io_base;
  493. adapter->bd_number = cards_found;
  494. /* setup the private structure */
  495. if((err = e1000_sw_init(adapter)))
  496. goto err_sw_init;
  497. if((err = e1000_check_phy_reset_block(&adapter->hw)))
  498. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  499. if(adapter->hw.mac_type >= e1000_82543) {
  500. netdev->features = NETIF_F_SG |
  501. NETIF_F_HW_CSUM |
  502. NETIF_F_HW_VLAN_TX |
  503. NETIF_F_HW_VLAN_RX |
  504. NETIF_F_HW_VLAN_FILTER;
  505. }
  506. #ifdef NETIF_F_TSO
  507. if((adapter->hw.mac_type >= e1000_82544) &&
  508. (adapter->hw.mac_type != e1000_82547))
  509. netdev->features |= NETIF_F_TSO;
  510. #ifdef NETIF_F_TSO_IPV6
  511. if(adapter->hw.mac_type > e1000_82547_rev_2)
  512. netdev->features |= NETIF_F_TSO_IPV6;
  513. #endif
  514. #endif
  515. if(pci_using_dac)
  516. netdev->features |= NETIF_F_HIGHDMA;
  517. /* hard_start_xmit is safe against parallel locking */
  518. netdev->features |= NETIF_F_LLTX;
  519. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  520. /* before reading the EEPROM, reset the controller to
  521. * put the device in a known good starting state */
  522. e1000_reset_hw(&adapter->hw);
  523. /* make sure the EEPROM is good */
  524. if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  525. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  526. err = -EIO;
  527. goto err_eeprom;
  528. }
  529. /* copy the MAC address out of the EEPROM */
  530. if(e1000_read_mac_addr(&adapter->hw))
  531. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  532. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  533. if(!is_valid_ether_addr(netdev->dev_addr)) {
  534. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  535. err = -EIO;
  536. goto err_eeprom;
  537. }
  538. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  539. e1000_get_bus_info(&adapter->hw);
  540. init_timer(&adapter->tx_fifo_stall_timer);
  541. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  542. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  543. init_timer(&adapter->watchdog_timer);
  544. adapter->watchdog_timer.function = &e1000_watchdog;
  545. adapter->watchdog_timer.data = (unsigned long) adapter;
  546. INIT_WORK(&adapter->watchdog_task,
  547. (void (*)(void *))e1000_watchdog_task, adapter);
  548. init_timer(&adapter->phy_info_timer);
  549. adapter->phy_info_timer.function = &e1000_update_phy_info;
  550. adapter->phy_info_timer.data = (unsigned long) adapter;
  551. INIT_WORK(&adapter->tx_timeout_task,
  552. (void (*)(void *))e1000_tx_timeout_task, netdev);
  553. /* we're going to reset, so assume we have no link for now */
  554. netif_carrier_off(netdev);
  555. netif_stop_queue(netdev);
  556. e1000_check_options(adapter);
  557. /* Initial Wake on LAN setting
  558. * If APM wake is enabled in the EEPROM,
  559. * enable the ACPI Magic Packet filter
  560. */
  561. switch(adapter->hw.mac_type) {
  562. case e1000_82542_rev2_0:
  563. case e1000_82542_rev2_1:
  564. case e1000_82543:
  565. break;
  566. case e1000_82544:
  567. e1000_read_eeprom(&adapter->hw,
  568. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  569. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  570. break;
  571. case e1000_82546:
  572. case e1000_82546_rev_3:
  573. if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
  574. && (adapter->hw.media_type == e1000_media_type_copper)) {
  575. e1000_read_eeprom(&adapter->hw,
  576. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  577. break;
  578. }
  579. /* Fall Through */
  580. default:
  581. e1000_read_eeprom(&adapter->hw,
  582. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  583. break;
  584. }
  585. if(eeprom_data & eeprom_apme_mask)
  586. adapter->wol |= E1000_WUFC_MAG;
  587. /* reset the hardware with the new settings */
  588. e1000_reset(adapter);
  589. /* Let firmware know the driver has taken over */
  590. switch(adapter->hw.mac_type) {
  591. case e1000_82573:
  592. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  593. E1000_WRITE_REG(&adapter->hw, SWSM,
  594. swsm | E1000_SWSM_DRV_LOAD);
  595. break;
  596. default:
  597. break;
  598. }
  599. strcpy(netdev->name, "eth%d");
  600. if((err = register_netdev(netdev)))
  601. goto err_register;
  602. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  603. cards_found++;
  604. return 0;
  605. err_register:
  606. err_sw_init:
  607. err_eeprom:
  608. iounmap(adapter->hw.hw_addr);
  609. err_ioremap:
  610. free_netdev(netdev);
  611. err_alloc_etherdev:
  612. pci_release_regions(pdev);
  613. return err;
  614. }
  615. /**
  616. * e1000_remove - Device Removal Routine
  617. * @pdev: PCI device information struct
  618. *
  619. * e1000_remove is called by the PCI subsystem to alert the driver
  620. * that it should release a PCI device. The could be caused by a
  621. * Hot-Plug event, or because the driver is going to be removed from
  622. * memory.
  623. **/
  624. static void __devexit
  625. e1000_remove(struct pci_dev *pdev)
  626. {
  627. struct net_device *netdev = pci_get_drvdata(pdev);
  628. struct e1000_adapter *adapter = netdev->priv;
  629. uint32_t manc, swsm;
  630. flush_scheduled_work();
  631. if(adapter->hw.mac_type >= e1000_82540 &&
  632. adapter->hw.media_type == e1000_media_type_copper) {
  633. manc = E1000_READ_REG(&adapter->hw, MANC);
  634. if(manc & E1000_MANC_SMBUS_EN) {
  635. manc |= E1000_MANC_ARP_EN;
  636. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  637. }
  638. }
  639. switch(adapter->hw.mac_type) {
  640. case e1000_82573:
  641. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  642. E1000_WRITE_REG(&adapter->hw, SWSM,
  643. swsm & ~E1000_SWSM_DRV_LOAD);
  644. break;
  645. default:
  646. break;
  647. }
  648. unregister_netdev(netdev);
  649. if(!e1000_check_phy_reset_block(&adapter->hw))
  650. e1000_phy_hw_reset(&adapter->hw);
  651. iounmap(adapter->hw.hw_addr);
  652. pci_release_regions(pdev);
  653. free_netdev(netdev);
  654. pci_disable_device(pdev);
  655. }
  656. /**
  657. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  658. * @adapter: board private structure to initialize
  659. *
  660. * e1000_sw_init initializes the Adapter private data structure.
  661. * Fields are initialized based on PCI device information and
  662. * OS network device settings (MTU size).
  663. **/
  664. static int __devinit
  665. e1000_sw_init(struct e1000_adapter *adapter)
  666. {
  667. struct e1000_hw *hw = &adapter->hw;
  668. struct net_device *netdev = adapter->netdev;
  669. struct pci_dev *pdev = adapter->pdev;
  670. /* PCI config space info */
  671. hw->vendor_id = pdev->vendor;
  672. hw->device_id = pdev->device;
  673. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  674. hw->subsystem_id = pdev->subsystem_device;
  675. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  676. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  677. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  678. adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
  679. hw->max_frame_size = netdev->mtu +
  680. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  681. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  682. /* identify the MAC */
  683. if(e1000_set_mac_type(hw)) {
  684. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  685. return -EIO;
  686. }
  687. /* initialize eeprom parameters */
  688. if(e1000_init_eeprom_params(hw)) {
  689. E1000_ERR("EEPROM initialization failed\n");
  690. return -EIO;
  691. }
  692. switch(hw->mac_type) {
  693. default:
  694. break;
  695. case e1000_82541:
  696. case e1000_82547:
  697. case e1000_82541_rev_2:
  698. case e1000_82547_rev_2:
  699. hw->phy_init_script = 1;
  700. break;
  701. }
  702. e1000_set_media_type(hw);
  703. hw->wait_autoneg_complete = FALSE;
  704. hw->tbi_compatibility_en = TRUE;
  705. hw->adaptive_ifs = TRUE;
  706. /* Copper options */
  707. if(hw->media_type == e1000_media_type_copper) {
  708. hw->mdix = AUTO_ALL_MODES;
  709. hw->disable_polarity_correction = FALSE;
  710. hw->master_slave = E1000_MASTER_SLAVE;
  711. }
  712. atomic_set(&adapter->irq_sem, 1);
  713. spin_lock_init(&adapter->stats_lock);
  714. spin_lock_init(&adapter->tx_lock);
  715. return 0;
  716. }
  717. /**
  718. * e1000_open - Called when a network interface is made active
  719. * @netdev: network interface device structure
  720. *
  721. * Returns 0 on success, negative value on failure
  722. *
  723. * The open entry point is called when a network interface is made
  724. * active by the system (IFF_UP). At this point all resources needed
  725. * for transmit and receive operations are allocated, the interrupt
  726. * handler is registered with the OS, the watchdog timer is started,
  727. * and the stack is notified that the interface is ready.
  728. **/
  729. static int
  730. e1000_open(struct net_device *netdev)
  731. {
  732. struct e1000_adapter *adapter = netdev->priv;
  733. int err;
  734. /* allocate transmit descriptors */
  735. if((err = e1000_setup_tx_resources(adapter)))
  736. goto err_setup_tx;
  737. /* allocate receive descriptors */
  738. if((err = e1000_setup_rx_resources(adapter)))
  739. goto err_setup_rx;
  740. if((err = e1000_up(adapter)))
  741. goto err_up;
  742. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  743. if((adapter->hw.mng_cookie.status &
  744. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  745. e1000_update_mng_vlan(adapter);
  746. }
  747. return E1000_SUCCESS;
  748. err_up:
  749. e1000_free_rx_resources(adapter);
  750. err_setup_rx:
  751. e1000_free_tx_resources(adapter);
  752. err_setup_tx:
  753. e1000_reset(adapter);
  754. return err;
  755. }
  756. /**
  757. * e1000_close - Disables a network interface
  758. * @netdev: network interface device structure
  759. *
  760. * Returns 0, this is not allowed to fail
  761. *
  762. * The close entry point is called when an interface is de-activated
  763. * by the OS. The hardware is still under the drivers control, but
  764. * needs to be disabled. A global MAC reset is issued to stop the
  765. * hardware, and all transmit and receive resources are freed.
  766. **/
  767. static int
  768. e1000_close(struct net_device *netdev)
  769. {
  770. struct e1000_adapter *adapter = netdev->priv;
  771. e1000_down(adapter);
  772. e1000_free_tx_resources(adapter);
  773. e1000_free_rx_resources(adapter);
  774. if((adapter->hw.mng_cookie.status &
  775. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  776. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  777. }
  778. return 0;
  779. }
  780. /**
  781. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  782. * @adapter: address of board private structure
  783. * @start: address of beginning of memory
  784. * @len: length of memory
  785. **/
  786. static inline boolean_t
  787. e1000_check_64k_bound(struct e1000_adapter *adapter,
  788. void *start, unsigned long len)
  789. {
  790. unsigned long begin = (unsigned long) start;
  791. unsigned long end = begin + len;
  792. /* First rev 82545 and 82546 need to not allow any memory
  793. * write location to cross 64k boundary due to errata 23 */
  794. if (adapter->hw.mac_type == e1000_82545 ||
  795. adapter->hw.mac_type == e1000_82546) {
  796. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  797. }
  798. return TRUE;
  799. }
  800. /**
  801. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  802. * @adapter: board private structure
  803. *
  804. * Return 0 on success, negative on failure
  805. **/
  806. int
  807. e1000_setup_tx_resources(struct e1000_adapter *adapter)
  808. {
  809. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  810. struct pci_dev *pdev = adapter->pdev;
  811. int size;
  812. size = sizeof(struct e1000_buffer) * txdr->count;
  813. txdr->buffer_info = vmalloc(size);
  814. if(!txdr->buffer_info) {
  815. DPRINTK(PROBE, ERR,
  816. "Unable to allocate memory for the transmit descriptor ring\n");
  817. return -ENOMEM;
  818. }
  819. memset(txdr->buffer_info, 0, size);
  820. /* round up to nearest 4K */
  821. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  822. E1000_ROUNDUP(txdr->size, 4096);
  823. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  824. if(!txdr->desc) {
  825. setup_tx_desc_die:
  826. vfree(txdr->buffer_info);
  827. DPRINTK(PROBE, ERR,
  828. "Unable to allocate memory for the transmit descriptor ring\n");
  829. return -ENOMEM;
  830. }
  831. /* Fix for errata 23, can't cross 64kB boundary */
  832. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  833. void *olddesc = txdr->desc;
  834. dma_addr_t olddma = txdr->dma;
  835. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  836. "at %p\n", txdr->size, txdr->desc);
  837. /* Try again, without freeing the previous */
  838. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  839. if(!txdr->desc) {
  840. /* Failed allocation, critical failure */
  841. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  842. goto setup_tx_desc_die;
  843. }
  844. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  845. /* give up */
  846. pci_free_consistent(pdev, txdr->size, txdr->desc,
  847. txdr->dma);
  848. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  849. DPRINTK(PROBE, ERR,
  850. "Unable to allocate aligned memory "
  851. "for the transmit descriptor ring\n");
  852. vfree(txdr->buffer_info);
  853. return -ENOMEM;
  854. } else {
  855. /* Free old allocation, new allocation was successful */
  856. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  857. }
  858. }
  859. memset(txdr->desc, 0, txdr->size);
  860. txdr->next_to_use = 0;
  861. txdr->next_to_clean = 0;
  862. return 0;
  863. }
  864. /**
  865. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  866. * @adapter: board private structure
  867. *
  868. * Configure the Tx unit of the MAC after a reset.
  869. **/
  870. static void
  871. e1000_configure_tx(struct e1000_adapter *adapter)
  872. {
  873. uint64_t tdba = adapter->tx_ring.dma;
  874. uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
  875. uint32_t tctl, tipg;
  876. E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  877. E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
  878. E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
  879. /* Setup the HW Tx Head and Tail descriptor pointers */
  880. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  881. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  882. /* Set the default values for the Tx Inter Packet Gap timer */
  883. switch (adapter->hw.mac_type) {
  884. case e1000_82542_rev2_0:
  885. case e1000_82542_rev2_1:
  886. tipg = DEFAULT_82542_TIPG_IPGT;
  887. tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  888. tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  889. break;
  890. default:
  891. if(adapter->hw.media_type == e1000_media_type_fiber ||
  892. adapter->hw.media_type == e1000_media_type_internal_serdes)
  893. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  894. else
  895. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  896. tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  897. tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  898. }
  899. E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
  900. /* Set the Tx Interrupt Delay register */
  901. E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
  902. if(adapter->hw.mac_type >= e1000_82540)
  903. E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
  904. /* Program the Transmit Control Register */
  905. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  906. tctl &= ~E1000_TCTL_CT;
  907. tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
  908. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  909. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  910. e1000_config_collision_dist(&adapter->hw);
  911. /* Setup Transmit Descriptor Settings for eop descriptor */
  912. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  913. E1000_TXD_CMD_IFCS;
  914. if(adapter->hw.mac_type < e1000_82543)
  915. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  916. else
  917. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  918. /* Cache if we're 82544 running in PCI-X because we'll
  919. * need this to apply a workaround later in the send path. */
  920. if(adapter->hw.mac_type == e1000_82544 &&
  921. adapter->hw.bus_type == e1000_bus_type_pcix)
  922. adapter->pcix_82544 = 1;
  923. }
  924. /**
  925. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  926. * @adapter: board private structure
  927. *
  928. * Returns 0 on success, negative on failure
  929. **/
  930. int
  931. e1000_setup_rx_resources(struct e1000_adapter *adapter)
  932. {
  933. struct e1000_desc_ring *rxdr = &adapter->rx_ring;
  934. struct pci_dev *pdev = adapter->pdev;
  935. int size, desc_len;
  936. size = sizeof(struct e1000_buffer) * rxdr->count;
  937. rxdr->buffer_info = vmalloc(size);
  938. if(!rxdr->buffer_info) {
  939. DPRINTK(PROBE, ERR,
  940. "Unable to allocate memory for the receive descriptor ring\n");
  941. return -ENOMEM;
  942. }
  943. memset(rxdr->buffer_info, 0, size);
  944. size = sizeof(struct e1000_ps_page) * rxdr->count;
  945. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  946. if(!rxdr->ps_page) {
  947. vfree(rxdr->buffer_info);
  948. DPRINTK(PROBE, ERR,
  949. "Unable to allocate memory for the receive descriptor ring\n");
  950. return -ENOMEM;
  951. }
  952. memset(rxdr->ps_page, 0, size);
  953. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  954. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  955. if(!rxdr->ps_page_dma) {
  956. vfree(rxdr->buffer_info);
  957. kfree(rxdr->ps_page);
  958. DPRINTK(PROBE, ERR,
  959. "Unable to allocate memory for the receive descriptor ring\n");
  960. return -ENOMEM;
  961. }
  962. memset(rxdr->ps_page_dma, 0, size);
  963. if(adapter->hw.mac_type <= e1000_82547_rev_2)
  964. desc_len = sizeof(struct e1000_rx_desc);
  965. else
  966. desc_len = sizeof(union e1000_rx_desc_packet_split);
  967. /* Round up to nearest 4K */
  968. rxdr->size = rxdr->count * desc_len;
  969. E1000_ROUNDUP(rxdr->size, 4096);
  970. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  971. if(!rxdr->desc) {
  972. setup_rx_desc_die:
  973. vfree(rxdr->buffer_info);
  974. kfree(rxdr->ps_page);
  975. kfree(rxdr->ps_page_dma);
  976. DPRINTK(PROBE, ERR,
  977. "Unable to allocate memory for the receive descriptor ring\n");
  978. return -ENOMEM;
  979. }
  980. /* Fix for errata 23, can't cross 64kB boundary */
  981. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  982. void *olddesc = rxdr->desc;
  983. dma_addr_t olddma = rxdr->dma;
  984. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  985. "at %p\n", rxdr->size, rxdr->desc);
  986. /* Try again, without freeing the previous */
  987. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  988. if(!rxdr->desc) {
  989. /* Failed allocation, critical failure */
  990. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  991. goto setup_rx_desc_die;
  992. }
  993. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  994. /* give up */
  995. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  996. rxdr->dma);
  997. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  998. DPRINTK(PROBE, ERR,
  999. "Unable to allocate aligned memory "
  1000. "for the receive descriptor ring\n");
  1001. vfree(rxdr->buffer_info);
  1002. kfree(rxdr->ps_page);
  1003. kfree(rxdr->ps_page_dma);
  1004. return -ENOMEM;
  1005. } else {
  1006. /* Free old allocation, new allocation was successful */
  1007. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1008. }
  1009. }
  1010. memset(rxdr->desc, 0, rxdr->size);
  1011. rxdr->next_to_clean = 0;
  1012. rxdr->next_to_use = 0;
  1013. return 0;
  1014. }
  1015. /**
  1016. * e1000_setup_rctl - configure the receive control registers
  1017. * @adapter: Board private structure
  1018. **/
  1019. static void
  1020. e1000_setup_rctl(struct e1000_adapter *adapter)
  1021. {
  1022. uint32_t rctl, rfctl;
  1023. uint32_t psrctl = 0;
  1024. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1025. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1026. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1027. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1028. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1029. if(adapter->hw.tbi_compatibility_on == 1)
  1030. rctl |= E1000_RCTL_SBP;
  1031. else
  1032. rctl &= ~E1000_RCTL_SBP;
  1033. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1034. rctl &= ~E1000_RCTL_LPE;
  1035. else
  1036. rctl |= E1000_RCTL_LPE;
  1037. /* Setup buffer sizes */
  1038. if(adapter->hw.mac_type == e1000_82573) {
  1039. /* We can now specify buffers in 1K increments.
  1040. * BSIZE and BSEX are ignored in this case. */
  1041. rctl |= adapter->rx_buffer_len << 0x11;
  1042. } else {
  1043. rctl &= ~E1000_RCTL_SZ_4096;
  1044. rctl |= E1000_RCTL_BSEX;
  1045. switch (adapter->rx_buffer_len) {
  1046. case E1000_RXBUFFER_2048:
  1047. default:
  1048. rctl |= E1000_RCTL_SZ_2048;
  1049. rctl &= ~E1000_RCTL_BSEX;
  1050. break;
  1051. case E1000_RXBUFFER_4096:
  1052. rctl |= E1000_RCTL_SZ_4096;
  1053. break;
  1054. case E1000_RXBUFFER_8192:
  1055. rctl |= E1000_RCTL_SZ_8192;
  1056. break;
  1057. case E1000_RXBUFFER_16384:
  1058. rctl |= E1000_RCTL_SZ_16384;
  1059. break;
  1060. }
  1061. }
  1062. #ifdef CONFIG_E1000_PACKET_SPLIT
  1063. /* 82571 and greater support packet-split where the protocol
  1064. * header is placed in skb->data and the packet data is
  1065. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1066. * In the case of a non-split, skb->data is linearly filled,
  1067. * followed by the page buffers. Therefore, skb->data is
  1068. * sized to hold the largest protocol header.
  1069. */
  1070. adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
  1071. && (adapter->netdev->mtu
  1072. < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
  1073. #endif
  1074. if(adapter->rx_ps) {
  1075. /* Configure extra packet-split registers */
  1076. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1077. rfctl |= E1000_RFCTL_EXTEN;
  1078. /* disable IPv6 packet split support */
  1079. rfctl |= E1000_RFCTL_IPV6_DIS;
  1080. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1081. rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
  1082. psrctl |= adapter->rx_ps_bsize0 >>
  1083. E1000_PSRCTL_BSIZE0_SHIFT;
  1084. psrctl |= PAGE_SIZE >>
  1085. E1000_PSRCTL_BSIZE1_SHIFT;
  1086. psrctl |= PAGE_SIZE <<
  1087. E1000_PSRCTL_BSIZE2_SHIFT;
  1088. psrctl |= PAGE_SIZE <<
  1089. E1000_PSRCTL_BSIZE3_SHIFT;
  1090. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1091. }
  1092. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1093. }
  1094. /**
  1095. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1096. * @adapter: board private structure
  1097. *
  1098. * Configure the Rx unit of the MAC after a reset.
  1099. **/
  1100. static void
  1101. e1000_configure_rx(struct e1000_adapter *adapter)
  1102. {
  1103. uint64_t rdba = adapter->rx_ring.dma;
  1104. uint32_t rdlen, rctl, rxcsum;
  1105. if(adapter->rx_ps) {
  1106. rdlen = adapter->rx_ring.count *
  1107. sizeof(union e1000_rx_desc_packet_split);
  1108. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1109. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1110. } else {
  1111. rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
  1112. adapter->clean_rx = e1000_clean_rx_irq;
  1113. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1114. }
  1115. /* disable receives while setting up the descriptors */
  1116. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1117. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  1118. /* set the Receive Delay Timer Register */
  1119. E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
  1120. if(adapter->hw.mac_type >= e1000_82540) {
  1121. E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
  1122. if(adapter->itr > 1)
  1123. E1000_WRITE_REG(&adapter->hw, ITR,
  1124. 1000000000 / (adapter->itr * 256));
  1125. }
  1126. /* Setup the Base and Length of the Rx Descriptor Ring */
  1127. E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1128. E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
  1129. E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
  1130. /* Setup the HW Rx Head and Tail Descriptor Pointers */
  1131. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  1132. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  1133. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1134. if(adapter->hw.mac_type >= e1000_82543) {
  1135. rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
  1136. if(adapter->rx_csum == TRUE) {
  1137. rxcsum |= E1000_RXCSUM_TUOFL;
  1138. /* Enable 82573 IPv4 payload checksum for UDP fragments
  1139. * Must be used in conjunction with packet-split. */
  1140. if((adapter->hw.mac_type > e1000_82547_rev_2) &&
  1141. (adapter->rx_ps)) {
  1142. rxcsum |= E1000_RXCSUM_IPPCSE;
  1143. }
  1144. } else {
  1145. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1146. /* don't need to clear IPPCSE as it defaults to 0 */
  1147. }
  1148. E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
  1149. }
  1150. if (adapter->hw.mac_type == e1000_82573)
  1151. E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
  1152. /* Enable Receives */
  1153. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1154. }
  1155. /**
  1156. * e1000_free_tx_resources - Free Tx Resources
  1157. * @adapter: board private structure
  1158. *
  1159. * Free all transmit software resources
  1160. **/
  1161. void
  1162. e1000_free_tx_resources(struct e1000_adapter *adapter)
  1163. {
  1164. struct pci_dev *pdev = adapter->pdev;
  1165. e1000_clean_tx_ring(adapter);
  1166. vfree(adapter->tx_ring.buffer_info);
  1167. adapter->tx_ring.buffer_info = NULL;
  1168. pci_free_consistent(pdev, adapter->tx_ring.size,
  1169. adapter->tx_ring.desc, adapter->tx_ring.dma);
  1170. adapter->tx_ring.desc = NULL;
  1171. }
  1172. static inline void
  1173. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1174. struct e1000_buffer *buffer_info)
  1175. {
  1176. if(buffer_info->dma) {
  1177. pci_unmap_page(adapter->pdev,
  1178. buffer_info->dma,
  1179. buffer_info->length,
  1180. PCI_DMA_TODEVICE);
  1181. buffer_info->dma = 0;
  1182. }
  1183. if(buffer_info->skb) {
  1184. dev_kfree_skb_any(buffer_info->skb);
  1185. buffer_info->skb = NULL;
  1186. }
  1187. }
  1188. /**
  1189. * e1000_clean_tx_ring - Free Tx Buffers
  1190. * @adapter: board private structure
  1191. **/
  1192. static void
  1193. e1000_clean_tx_ring(struct e1000_adapter *adapter)
  1194. {
  1195. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1196. struct e1000_buffer *buffer_info;
  1197. unsigned long size;
  1198. unsigned int i;
  1199. /* Free all the Tx ring sk_buffs */
  1200. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1201. e1000_unmap_and_free_tx_resource(adapter,
  1202. &adapter->previous_buffer_info);
  1203. }
  1204. for(i = 0; i < tx_ring->count; i++) {
  1205. buffer_info = &tx_ring->buffer_info[i];
  1206. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1207. }
  1208. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1209. memset(tx_ring->buffer_info, 0, size);
  1210. /* Zero out the descriptor ring */
  1211. memset(tx_ring->desc, 0, tx_ring->size);
  1212. tx_ring->next_to_use = 0;
  1213. tx_ring->next_to_clean = 0;
  1214. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  1215. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  1216. }
  1217. /**
  1218. * e1000_free_rx_resources - Free Rx Resources
  1219. * @adapter: board private structure
  1220. *
  1221. * Free all receive software resources
  1222. **/
  1223. void
  1224. e1000_free_rx_resources(struct e1000_adapter *adapter)
  1225. {
  1226. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1227. struct pci_dev *pdev = adapter->pdev;
  1228. e1000_clean_rx_ring(adapter);
  1229. vfree(rx_ring->buffer_info);
  1230. rx_ring->buffer_info = NULL;
  1231. kfree(rx_ring->ps_page);
  1232. rx_ring->ps_page = NULL;
  1233. kfree(rx_ring->ps_page_dma);
  1234. rx_ring->ps_page_dma = NULL;
  1235. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1236. rx_ring->desc = NULL;
  1237. }
  1238. /**
  1239. * e1000_clean_rx_ring - Free Rx Buffers
  1240. * @adapter: board private structure
  1241. **/
  1242. static void
  1243. e1000_clean_rx_ring(struct e1000_adapter *adapter)
  1244. {
  1245. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1246. struct e1000_buffer *buffer_info;
  1247. struct e1000_ps_page *ps_page;
  1248. struct e1000_ps_page_dma *ps_page_dma;
  1249. struct pci_dev *pdev = adapter->pdev;
  1250. unsigned long size;
  1251. unsigned int i, j;
  1252. /* Free all the Rx ring sk_buffs */
  1253. for(i = 0; i < rx_ring->count; i++) {
  1254. buffer_info = &rx_ring->buffer_info[i];
  1255. if(buffer_info->skb) {
  1256. ps_page = &rx_ring->ps_page[i];
  1257. ps_page_dma = &rx_ring->ps_page_dma[i];
  1258. pci_unmap_single(pdev,
  1259. buffer_info->dma,
  1260. buffer_info->length,
  1261. PCI_DMA_FROMDEVICE);
  1262. dev_kfree_skb(buffer_info->skb);
  1263. buffer_info->skb = NULL;
  1264. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  1265. if(!ps_page->ps_page[j]) break;
  1266. pci_unmap_single(pdev,
  1267. ps_page_dma->ps_page_dma[j],
  1268. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1269. ps_page_dma->ps_page_dma[j] = 0;
  1270. put_page(ps_page->ps_page[j]);
  1271. ps_page->ps_page[j] = NULL;
  1272. }
  1273. }
  1274. }
  1275. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1276. memset(rx_ring->buffer_info, 0, size);
  1277. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1278. memset(rx_ring->ps_page, 0, size);
  1279. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1280. memset(rx_ring->ps_page_dma, 0, size);
  1281. /* Zero out the descriptor ring */
  1282. memset(rx_ring->desc, 0, rx_ring->size);
  1283. rx_ring->next_to_clean = 0;
  1284. rx_ring->next_to_use = 0;
  1285. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  1286. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  1287. }
  1288. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1289. * and memory write and invalidate disabled for certain operations
  1290. */
  1291. static void
  1292. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1293. {
  1294. struct net_device *netdev = adapter->netdev;
  1295. uint32_t rctl;
  1296. e1000_pci_clear_mwi(&adapter->hw);
  1297. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1298. rctl |= E1000_RCTL_RST;
  1299. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1300. E1000_WRITE_FLUSH(&adapter->hw);
  1301. mdelay(5);
  1302. if(netif_running(netdev))
  1303. e1000_clean_rx_ring(adapter);
  1304. }
  1305. static void
  1306. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1307. {
  1308. struct net_device *netdev = adapter->netdev;
  1309. uint32_t rctl;
  1310. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1311. rctl &= ~E1000_RCTL_RST;
  1312. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1313. E1000_WRITE_FLUSH(&adapter->hw);
  1314. mdelay(5);
  1315. if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1316. e1000_pci_set_mwi(&adapter->hw);
  1317. if(netif_running(netdev)) {
  1318. e1000_configure_rx(adapter);
  1319. e1000_alloc_rx_buffers(adapter);
  1320. }
  1321. }
  1322. /**
  1323. * e1000_set_mac - Change the Ethernet Address of the NIC
  1324. * @netdev: network interface device structure
  1325. * @p: pointer to an address structure
  1326. *
  1327. * Returns 0 on success, negative on failure
  1328. **/
  1329. static int
  1330. e1000_set_mac(struct net_device *netdev, void *p)
  1331. {
  1332. struct e1000_adapter *adapter = netdev->priv;
  1333. struct sockaddr *addr = p;
  1334. if(!is_valid_ether_addr(addr->sa_data))
  1335. return -EADDRNOTAVAIL;
  1336. /* 82542 2.0 needs to be in reset to write receive address registers */
  1337. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1338. e1000_enter_82542_rst(adapter);
  1339. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1340. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1341. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1342. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1343. e1000_leave_82542_rst(adapter);
  1344. return 0;
  1345. }
  1346. /**
  1347. * e1000_set_multi - Multicast and Promiscuous mode set
  1348. * @netdev: network interface device structure
  1349. *
  1350. * The set_multi entry point is called whenever the multicast address
  1351. * list or the network interface flags are updated. This routine is
  1352. * responsible for configuring the hardware for proper multicast,
  1353. * promiscuous mode, and all-multi behavior.
  1354. **/
  1355. static void
  1356. e1000_set_multi(struct net_device *netdev)
  1357. {
  1358. struct e1000_adapter *adapter = netdev->priv;
  1359. struct e1000_hw *hw = &adapter->hw;
  1360. struct dev_mc_list *mc_ptr;
  1361. unsigned long flags;
  1362. uint32_t rctl;
  1363. uint32_t hash_value;
  1364. int i;
  1365. spin_lock_irqsave(&adapter->tx_lock, flags);
  1366. /* Check for Promiscuous and All Multicast modes */
  1367. rctl = E1000_READ_REG(hw, RCTL);
  1368. if(netdev->flags & IFF_PROMISC) {
  1369. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1370. } else if(netdev->flags & IFF_ALLMULTI) {
  1371. rctl |= E1000_RCTL_MPE;
  1372. rctl &= ~E1000_RCTL_UPE;
  1373. } else {
  1374. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1375. }
  1376. E1000_WRITE_REG(hw, RCTL, rctl);
  1377. /* 82542 2.0 needs to be in reset to write receive address registers */
  1378. if(hw->mac_type == e1000_82542_rev2_0)
  1379. e1000_enter_82542_rst(adapter);
  1380. /* load the first 14 multicast address into the exact filters 1-14
  1381. * RAR 0 is used for the station MAC adddress
  1382. * if there are not 14 addresses, go ahead and clear the filters
  1383. */
  1384. mc_ptr = netdev->mc_list;
  1385. for(i = 1; i < E1000_RAR_ENTRIES; i++) {
  1386. if(mc_ptr) {
  1387. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1388. mc_ptr = mc_ptr->next;
  1389. } else {
  1390. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1391. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1392. }
  1393. }
  1394. /* clear the old settings from the multicast hash table */
  1395. for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1396. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1397. /* load any remaining addresses into the hash table */
  1398. for(; mc_ptr; mc_ptr = mc_ptr->next) {
  1399. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1400. e1000_mta_set(hw, hash_value);
  1401. }
  1402. if(hw->mac_type == e1000_82542_rev2_0)
  1403. e1000_leave_82542_rst(adapter);
  1404. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1405. }
  1406. /* Need to wait a few seconds after link up to get diagnostic information from
  1407. * the phy */
  1408. static void
  1409. e1000_update_phy_info(unsigned long data)
  1410. {
  1411. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1412. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1413. }
  1414. /**
  1415. * e1000_82547_tx_fifo_stall - Timer Call-back
  1416. * @data: pointer to adapter cast into an unsigned long
  1417. **/
  1418. static void
  1419. e1000_82547_tx_fifo_stall(unsigned long data)
  1420. {
  1421. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1422. struct net_device *netdev = adapter->netdev;
  1423. uint32_t tctl;
  1424. if(atomic_read(&adapter->tx_fifo_stall)) {
  1425. if((E1000_READ_REG(&adapter->hw, TDT) ==
  1426. E1000_READ_REG(&adapter->hw, TDH)) &&
  1427. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1428. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1429. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1430. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1431. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1432. E1000_WRITE_REG(&adapter->hw, TCTL,
  1433. tctl & ~E1000_TCTL_EN);
  1434. E1000_WRITE_REG(&adapter->hw, TDFT,
  1435. adapter->tx_head_addr);
  1436. E1000_WRITE_REG(&adapter->hw, TDFH,
  1437. adapter->tx_head_addr);
  1438. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1439. adapter->tx_head_addr);
  1440. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1441. adapter->tx_head_addr);
  1442. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1443. E1000_WRITE_FLUSH(&adapter->hw);
  1444. adapter->tx_fifo_head = 0;
  1445. atomic_set(&adapter->tx_fifo_stall, 0);
  1446. netif_wake_queue(netdev);
  1447. } else {
  1448. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1449. }
  1450. }
  1451. }
  1452. /**
  1453. * e1000_watchdog - Timer Call-back
  1454. * @data: pointer to adapter cast into an unsigned long
  1455. **/
  1456. static void
  1457. e1000_watchdog(unsigned long data)
  1458. {
  1459. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1460. /* Do the rest outside of interrupt context */
  1461. schedule_work(&adapter->watchdog_task);
  1462. }
  1463. static void
  1464. e1000_watchdog_task(struct e1000_adapter *adapter)
  1465. {
  1466. struct net_device *netdev = adapter->netdev;
  1467. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  1468. uint32_t link;
  1469. e1000_check_for_link(&adapter->hw);
  1470. if (adapter->hw.mac_type == e1000_82573) {
  1471. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1472. if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1473. e1000_update_mng_vlan(adapter);
  1474. }
  1475. if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1476. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1477. link = !adapter->hw.serdes_link_down;
  1478. else
  1479. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1480. if(link) {
  1481. if(!netif_carrier_ok(netdev)) {
  1482. e1000_get_speed_and_duplex(&adapter->hw,
  1483. &adapter->link_speed,
  1484. &adapter->link_duplex);
  1485. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1486. adapter->link_speed,
  1487. adapter->link_duplex == FULL_DUPLEX ?
  1488. "Full Duplex" : "Half Duplex");
  1489. netif_carrier_on(netdev);
  1490. netif_wake_queue(netdev);
  1491. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1492. adapter->smartspeed = 0;
  1493. }
  1494. } else {
  1495. if(netif_carrier_ok(netdev)) {
  1496. adapter->link_speed = 0;
  1497. adapter->link_duplex = 0;
  1498. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1499. netif_carrier_off(netdev);
  1500. netif_stop_queue(netdev);
  1501. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1502. }
  1503. e1000_smartspeed(adapter);
  1504. }
  1505. e1000_update_stats(adapter);
  1506. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1507. adapter->tpt_old = adapter->stats.tpt;
  1508. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1509. adapter->colc_old = adapter->stats.colc;
  1510. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1511. adapter->gorcl_old = adapter->stats.gorcl;
  1512. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1513. adapter->gotcl_old = adapter->stats.gotcl;
  1514. e1000_update_adaptive(&adapter->hw);
  1515. if(!netif_carrier_ok(netdev)) {
  1516. if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1517. /* We've lost link, so the controller stops DMA,
  1518. * but we've got queued Tx work that's never going
  1519. * to get done, so reset controller to flush Tx.
  1520. * (Do the reset outside of interrupt context). */
  1521. schedule_work(&adapter->tx_timeout_task);
  1522. }
  1523. }
  1524. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1525. if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1526. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1527. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1528. * else is between 2000-8000. */
  1529. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1530. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1531. adapter->gotcl - adapter->gorcl :
  1532. adapter->gorcl - adapter->gotcl) / 10000;
  1533. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1534. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1535. }
  1536. /* Cause software interrupt to ensure rx ring is cleaned */
  1537. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1538. /* Force detection of hung controller every watchdog period */
  1539. adapter->detect_tx_hung = TRUE;
  1540. /* Reset the timer */
  1541. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  1542. }
  1543. #define E1000_TX_FLAGS_CSUM 0x00000001
  1544. #define E1000_TX_FLAGS_VLAN 0x00000002
  1545. #define E1000_TX_FLAGS_TSO 0x00000004
  1546. #define E1000_TX_FLAGS_IPV4 0x00000008
  1547. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  1548. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  1549. static inline int
  1550. e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
  1551. {
  1552. #ifdef NETIF_F_TSO
  1553. struct e1000_context_desc *context_desc;
  1554. unsigned int i;
  1555. uint32_t cmd_length = 0;
  1556. uint16_t ipcse = 0, tucse, mss;
  1557. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  1558. int err;
  1559. if(skb_shinfo(skb)->tso_size) {
  1560. if (skb_header_cloned(skb)) {
  1561. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1562. if (err)
  1563. return err;
  1564. }
  1565. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  1566. mss = skb_shinfo(skb)->tso_size;
  1567. if(skb->protocol == ntohs(ETH_P_IP)) {
  1568. skb->nh.iph->tot_len = 0;
  1569. skb->nh.iph->check = 0;
  1570. skb->h.th->check =
  1571. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  1572. skb->nh.iph->daddr,
  1573. 0,
  1574. IPPROTO_TCP,
  1575. 0);
  1576. cmd_length = E1000_TXD_CMD_IP;
  1577. ipcse = skb->h.raw - skb->data - 1;
  1578. #ifdef NETIF_F_TSO_IPV6
  1579. } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
  1580. skb->nh.ipv6h->payload_len = 0;
  1581. skb->h.th->check =
  1582. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  1583. &skb->nh.ipv6h->daddr,
  1584. 0,
  1585. IPPROTO_TCP,
  1586. 0);
  1587. ipcse = 0;
  1588. #endif
  1589. }
  1590. ipcss = skb->nh.raw - skb->data;
  1591. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  1592. tucss = skb->h.raw - skb->data;
  1593. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  1594. tucse = 0;
  1595. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  1596. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  1597. i = adapter->tx_ring.next_to_use;
  1598. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1599. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  1600. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  1601. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  1602. context_desc->upper_setup.tcp_fields.tucss = tucss;
  1603. context_desc->upper_setup.tcp_fields.tucso = tucso;
  1604. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  1605. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  1606. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  1607. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  1608. if(++i == adapter->tx_ring.count) i = 0;
  1609. adapter->tx_ring.next_to_use = i;
  1610. return 1;
  1611. }
  1612. #endif
  1613. return 0;
  1614. }
  1615. static inline boolean_t
  1616. e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
  1617. {
  1618. struct e1000_context_desc *context_desc;
  1619. unsigned int i;
  1620. uint8_t css;
  1621. if(likely(skb->ip_summed == CHECKSUM_HW)) {
  1622. css = skb->h.raw - skb->data;
  1623. i = adapter->tx_ring.next_to_use;
  1624. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1625. context_desc->upper_setup.tcp_fields.tucss = css;
  1626. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  1627. context_desc->upper_setup.tcp_fields.tucse = 0;
  1628. context_desc->tcp_seg_setup.data = 0;
  1629. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  1630. if(unlikely(++i == adapter->tx_ring.count)) i = 0;
  1631. adapter->tx_ring.next_to_use = i;
  1632. return TRUE;
  1633. }
  1634. return FALSE;
  1635. }
  1636. #define E1000_MAX_TXD_PWR 12
  1637. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  1638. static inline int
  1639. e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
  1640. unsigned int first, unsigned int max_per_txd,
  1641. unsigned int nr_frags, unsigned int mss)
  1642. {
  1643. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1644. struct e1000_buffer *buffer_info;
  1645. unsigned int len = skb->len;
  1646. unsigned int offset = 0, size, count = 0, i;
  1647. unsigned int f;
  1648. len -= skb->data_len;
  1649. i = tx_ring->next_to_use;
  1650. while(len) {
  1651. buffer_info = &tx_ring->buffer_info[i];
  1652. size = min(len, max_per_txd);
  1653. #ifdef NETIF_F_TSO
  1654. /* Workaround for premature desc write-backs
  1655. * in TSO mode. Append 4-byte sentinel desc */
  1656. if(unlikely(mss && !nr_frags && size == len && size > 8))
  1657. size -= 4;
  1658. #endif
  1659. /* work-around for errata 10 and it applies
  1660. * to all controllers in PCI-X mode
  1661. * The fix is to make sure that the first descriptor of a
  1662. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  1663. */
  1664. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  1665. (size > 2015) && count == 0))
  1666. size = 2015;
  1667. /* Workaround for potential 82544 hang in PCI-X. Avoid
  1668. * terminating buffers within evenly-aligned dwords. */
  1669. if(unlikely(adapter->pcix_82544 &&
  1670. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  1671. size > 4))
  1672. size -= 4;
  1673. buffer_info->length = size;
  1674. buffer_info->dma =
  1675. pci_map_single(adapter->pdev,
  1676. skb->data + offset,
  1677. size,
  1678. PCI_DMA_TODEVICE);
  1679. buffer_info->time_stamp = jiffies;
  1680. len -= size;
  1681. offset += size;
  1682. count++;
  1683. if(unlikely(++i == tx_ring->count)) i = 0;
  1684. }
  1685. for(f = 0; f < nr_frags; f++) {
  1686. struct skb_frag_struct *frag;
  1687. frag = &skb_shinfo(skb)->frags[f];
  1688. len = frag->size;
  1689. offset = frag->page_offset;
  1690. while(len) {
  1691. buffer_info = &tx_ring->buffer_info[i];
  1692. size = min(len, max_per_txd);
  1693. #ifdef NETIF_F_TSO
  1694. /* Workaround for premature desc write-backs
  1695. * in TSO mode. Append 4-byte sentinel desc */
  1696. if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  1697. size -= 4;
  1698. #endif
  1699. /* Workaround for potential 82544 hang in PCI-X.
  1700. * Avoid terminating buffers within evenly-aligned
  1701. * dwords. */
  1702. if(unlikely(adapter->pcix_82544 &&
  1703. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  1704. size > 4))
  1705. size -= 4;
  1706. buffer_info->length = size;
  1707. buffer_info->dma =
  1708. pci_map_page(adapter->pdev,
  1709. frag->page,
  1710. offset,
  1711. size,
  1712. PCI_DMA_TODEVICE);
  1713. buffer_info->time_stamp = jiffies;
  1714. len -= size;
  1715. offset += size;
  1716. count++;
  1717. if(unlikely(++i == tx_ring->count)) i = 0;
  1718. }
  1719. }
  1720. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  1721. tx_ring->buffer_info[i].skb = skb;
  1722. tx_ring->buffer_info[first].next_to_watch = i;
  1723. return count;
  1724. }
  1725. static inline void
  1726. e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
  1727. {
  1728. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1729. struct e1000_tx_desc *tx_desc = NULL;
  1730. struct e1000_buffer *buffer_info;
  1731. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  1732. unsigned int i;
  1733. if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  1734. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  1735. E1000_TXD_CMD_TSE;
  1736. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  1737. if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
  1738. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  1739. }
  1740. if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  1741. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  1742. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  1743. }
  1744. if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  1745. txd_lower |= E1000_TXD_CMD_VLE;
  1746. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  1747. }
  1748. i = tx_ring->next_to_use;
  1749. while(count--) {
  1750. buffer_info = &tx_ring->buffer_info[i];
  1751. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1752. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1753. tx_desc->lower.data =
  1754. cpu_to_le32(txd_lower | buffer_info->length);
  1755. tx_desc->upper.data = cpu_to_le32(txd_upper);
  1756. if(unlikely(++i == tx_ring->count)) i = 0;
  1757. }
  1758. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  1759. /* Force memory writes to complete before letting h/w
  1760. * know there are new descriptors to fetch. (Only
  1761. * applicable for weak-ordered memory model archs,
  1762. * such as IA-64). */
  1763. wmb();
  1764. tx_ring->next_to_use = i;
  1765. E1000_WRITE_REG(&adapter->hw, TDT, i);
  1766. }
  1767. /**
  1768. * 82547 workaround to avoid controller hang in half-duplex environment.
  1769. * The workaround is to avoid queuing a large packet that would span
  1770. * the internal Tx FIFO ring boundary by notifying the stack to resend
  1771. * the packet at a later time. This gives the Tx FIFO an opportunity to
  1772. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  1773. * to the beginning of the Tx FIFO.
  1774. **/
  1775. #define E1000_FIFO_HDR 0x10
  1776. #define E1000_82547_PAD_LEN 0x3E0
  1777. static inline int
  1778. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  1779. {
  1780. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  1781. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  1782. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  1783. if(adapter->link_duplex != HALF_DUPLEX)
  1784. goto no_fifo_stall_required;
  1785. if(atomic_read(&adapter->tx_fifo_stall))
  1786. return 1;
  1787. if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  1788. atomic_set(&adapter->tx_fifo_stall, 1);
  1789. return 1;
  1790. }
  1791. no_fifo_stall_required:
  1792. adapter->tx_fifo_head += skb_fifo_len;
  1793. if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
  1794. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  1795. return 0;
  1796. }
  1797. #define MINIMUM_DHCP_PACKET_SIZE 282
  1798. static inline int
  1799. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  1800. {
  1801. struct e1000_hw *hw = &adapter->hw;
  1802. uint16_t length, offset;
  1803. if(vlan_tx_tag_present(skb)) {
  1804. if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  1805. ( adapter->hw.mng_cookie.status &
  1806. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  1807. return 0;
  1808. }
  1809. if(htons(ETH_P_IP) == skb->protocol) {
  1810. const struct iphdr *ip = skb->nh.iph;
  1811. if(IPPROTO_UDP == ip->protocol) {
  1812. struct udphdr *udp = (struct udphdr *)(skb->h.uh);
  1813. if(ntohs(udp->dest) == 67) {
  1814. offset = (uint8_t *)udp + 8 - skb->data;
  1815. length = skb->len - offset;
  1816. return e1000_mng_write_dhcp_info(hw,
  1817. (uint8_t *)udp + 8, length);
  1818. }
  1819. }
  1820. } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
  1821. struct ethhdr *eth = (struct ethhdr *) skb->data;
  1822. if((htons(ETH_P_IP) == eth->h_proto)) {
  1823. const struct iphdr *ip =
  1824. (struct iphdr *)((uint8_t *)skb->data+14);
  1825. if(IPPROTO_UDP == ip->protocol) {
  1826. struct udphdr *udp =
  1827. (struct udphdr *)((uint8_t *)ip +
  1828. (ip->ihl << 2));
  1829. if(ntohs(udp->dest) == 67) {
  1830. offset = (uint8_t *)udp + 8 - skb->data;
  1831. length = skb->len - offset;
  1832. return e1000_mng_write_dhcp_info(hw,
  1833. (uint8_t *)udp + 8,
  1834. length);
  1835. }
  1836. }
  1837. }
  1838. }
  1839. return 0;
  1840. }
  1841. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  1842. static int
  1843. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1844. {
  1845. struct e1000_adapter *adapter = netdev->priv;
  1846. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  1847. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  1848. unsigned int tx_flags = 0;
  1849. unsigned int len = skb->len;
  1850. unsigned long flags;
  1851. unsigned int nr_frags = 0;
  1852. unsigned int mss = 0;
  1853. int count = 0;
  1854. int tso;
  1855. unsigned int f;
  1856. len -= skb->data_len;
  1857. if(unlikely(skb->len <= 0)) {
  1858. dev_kfree_skb_any(skb);
  1859. return NETDEV_TX_OK;
  1860. }
  1861. #ifdef NETIF_F_TSO
  1862. mss = skb_shinfo(skb)->tso_size;
  1863. /* The controller does a simple calculation to
  1864. * make sure there is enough room in the FIFO before
  1865. * initiating the DMA for each buffer. The calc is:
  1866. * 4 = ceil(buffer len/mss). To make sure we don't
  1867. * overrun the FIFO, adjust the max buffer len if mss
  1868. * drops. */
  1869. if(mss) {
  1870. max_per_txd = min(mss << 2, max_per_txd);
  1871. max_txd_pwr = fls(max_per_txd) - 1;
  1872. }
  1873. if((mss) || (skb->ip_summed == CHECKSUM_HW))
  1874. count++;
  1875. count++;
  1876. #else
  1877. if(skb->ip_summed == CHECKSUM_HW)
  1878. count++;
  1879. #endif
  1880. count += TXD_USE_COUNT(len, max_txd_pwr);
  1881. if(adapter->pcix_82544)
  1882. count++;
  1883. /* work-around for errata 10 and it applies to all controllers
  1884. * in PCI-X mode, so add one more descriptor to the count
  1885. */
  1886. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  1887. (len > 2015)))
  1888. count++;
  1889. nr_frags = skb_shinfo(skb)->nr_frags;
  1890. for(f = 0; f < nr_frags; f++)
  1891. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  1892. max_txd_pwr);
  1893. if(adapter->pcix_82544)
  1894. count += nr_frags;
  1895. local_irq_save(flags);
  1896. if (!spin_trylock(&adapter->tx_lock)) {
  1897. /* Collision - tell upper layer to requeue */
  1898. local_irq_restore(flags);
  1899. return NETDEV_TX_LOCKED;
  1900. }
  1901. if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
  1902. e1000_transfer_dhcp_info(adapter, skb);
  1903. /* need: count + 2 desc gap to keep tail from touching
  1904. * head, otherwise try next time */
  1905. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
  1906. netif_stop_queue(netdev);
  1907. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1908. return NETDEV_TX_BUSY;
  1909. }
  1910. if(unlikely(adapter->hw.mac_type == e1000_82547)) {
  1911. if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  1912. netif_stop_queue(netdev);
  1913. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  1914. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1915. return NETDEV_TX_BUSY;
  1916. }
  1917. }
  1918. if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  1919. tx_flags |= E1000_TX_FLAGS_VLAN;
  1920. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  1921. }
  1922. first = adapter->tx_ring.next_to_use;
  1923. tso = e1000_tso(adapter, skb);
  1924. if (tso < 0) {
  1925. dev_kfree_skb_any(skb);
  1926. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1927. return NETDEV_TX_OK;
  1928. }
  1929. if (likely(tso))
  1930. tx_flags |= E1000_TX_FLAGS_TSO;
  1931. else if(likely(e1000_tx_csum(adapter, skb)))
  1932. tx_flags |= E1000_TX_FLAGS_CSUM;
  1933. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  1934. * 82573 hardware supports TSO capabilities for IPv6 as well...
  1935. * no longer assume, we must. */
  1936. if(likely(skb->protocol == ntohs(ETH_P_IP)))
  1937. tx_flags |= E1000_TX_FLAGS_IPV4;
  1938. e1000_tx_queue(adapter,
  1939. e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
  1940. tx_flags);
  1941. netdev->trans_start = jiffies;
  1942. /* Make sure there is space in the ring for the next send. */
  1943. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
  1944. netif_stop_queue(netdev);
  1945. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1946. return NETDEV_TX_OK;
  1947. }
  1948. /**
  1949. * e1000_tx_timeout - Respond to a Tx Hang
  1950. * @netdev: network interface device structure
  1951. **/
  1952. static void
  1953. e1000_tx_timeout(struct net_device *netdev)
  1954. {
  1955. struct e1000_adapter *adapter = netdev->priv;
  1956. /* Do the reset outside of interrupt context */
  1957. schedule_work(&adapter->tx_timeout_task);
  1958. }
  1959. static void
  1960. e1000_tx_timeout_task(struct net_device *netdev)
  1961. {
  1962. struct e1000_adapter *adapter = netdev->priv;
  1963. e1000_down(adapter);
  1964. e1000_up(adapter);
  1965. }
  1966. /**
  1967. * e1000_get_stats - Get System Network Statistics
  1968. * @netdev: network interface device structure
  1969. *
  1970. * Returns the address of the device statistics structure.
  1971. * The statistics are actually updated from the timer callback.
  1972. **/
  1973. static struct net_device_stats *
  1974. e1000_get_stats(struct net_device *netdev)
  1975. {
  1976. struct e1000_adapter *adapter = netdev->priv;
  1977. e1000_update_stats(adapter);
  1978. return &adapter->net_stats;
  1979. }
  1980. /**
  1981. * e1000_change_mtu - Change the Maximum Transfer Unit
  1982. * @netdev: network interface device structure
  1983. * @new_mtu: new value for maximum frame size
  1984. *
  1985. * Returns 0 on success, negative on failure
  1986. **/
  1987. static int
  1988. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  1989. {
  1990. struct e1000_adapter *adapter = netdev->priv;
  1991. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  1992. if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  1993. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  1994. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  1995. return -EINVAL;
  1996. }
  1997. #define MAX_STD_JUMBO_FRAME_SIZE 9216
  1998. /* might want this to be bigger enum check... */
  1999. if (adapter->hw.mac_type == e1000_82573 &&
  2000. max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2001. DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
  2002. "on 82573\n");
  2003. return -EINVAL;
  2004. }
  2005. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  2006. adapter->rx_buffer_len = max_frame;
  2007. E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
  2008. } else {
  2009. if(unlikely((adapter->hw.mac_type < e1000_82543) &&
  2010. (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
  2011. DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
  2012. "on 82542\n");
  2013. return -EINVAL;
  2014. } else {
  2015. if(max_frame <= E1000_RXBUFFER_2048) {
  2016. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2017. } else if(max_frame <= E1000_RXBUFFER_4096) {
  2018. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  2019. } else if(max_frame <= E1000_RXBUFFER_8192) {
  2020. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  2021. } else if(max_frame <= E1000_RXBUFFER_16384) {
  2022. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  2023. }
  2024. }
  2025. }
  2026. netdev->mtu = new_mtu;
  2027. if(netif_running(netdev)) {
  2028. e1000_down(adapter);
  2029. e1000_up(adapter);
  2030. }
  2031. adapter->hw.max_frame_size = max_frame;
  2032. return 0;
  2033. }
  2034. /**
  2035. * e1000_update_stats - Update the board statistics counters
  2036. * @adapter: board private structure
  2037. **/
  2038. void
  2039. e1000_update_stats(struct e1000_adapter *adapter)
  2040. {
  2041. struct e1000_hw *hw = &adapter->hw;
  2042. unsigned long flags;
  2043. uint16_t phy_tmp;
  2044. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2045. spin_lock_irqsave(&adapter->stats_lock, flags);
  2046. /* these counters are modified from e1000_adjust_tbi_stats,
  2047. * called from the interrupt context, so they must only
  2048. * be written while holding adapter->stats_lock
  2049. */
  2050. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2051. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2052. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2053. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2054. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2055. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2056. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2057. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2058. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2059. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2060. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2061. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2062. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2063. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2064. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2065. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2066. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2067. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2068. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2069. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2070. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2071. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2072. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2073. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2074. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2075. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2076. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2077. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2078. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2079. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2080. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2081. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2082. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2083. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2084. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2085. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2086. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2087. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2088. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2089. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2090. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2091. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2092. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2093. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2094. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2095. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2096. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2097. /* used for adaptive IFS */
  2098. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2099. adapter->stats.tpt += hw->tx_packet_delta;
  2100. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2101. adapter->stats.colc += hw->collision_delta;
  2102. if(hw->mac_type >= e1000_82543) {
  2103. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2104. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2105. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2106. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2107. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2108. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2109. }
  2110. if(hw->mac_type > e1000_82547_rev_2) {
  2111. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2112. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2113. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2114. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2115. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2116. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2117. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2118. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2119. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2120. }
  2121. /* Fill out the OS statistics structure */
  2122. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2123. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2124. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2125. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2126. adapter->net_stats.multicast = adapter->stats.mprc;
  2127. adapter->net_stats.collisions = adapter->stats.colc;
  2128. /* Rx Errors */
  2129. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2130. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2131. adapter->stats.rlec + adapter->stats.mpc +
  2132. adapter->stats.cexterr;
  2133. adapter->net_stats.rx_dropped = adapter->stats.mpc;
  2134. adapter->net_stats.rx_length_errors = adapter->stats.rlec;
  2135. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2136. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2137. adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
  2138. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2139. /* Tx Errors */
  2140. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2141. adapter->stats.latecol;
  2142. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2143. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2144. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2145. /* Tx Dropped needs to be maintained elsewhere */
  2146. /* Phy Stats */
  2147. if(hw->media_type == e1000_media_type_copper) {
  2148. if((adapter->link_speed == SPEED_1000) &&
  2149. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2150. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2151. adapter->phy_stats.idle_errors += phy_tmp;
  2152. }
  2153. if((hw->mac_type <= e1000_82546) &&
  2154. (hw->phy_type == e1000_phy_m88) &&
  2155. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2156. adapter->phy_stats.receive_errors += phy_tmp;
  2157. }
  2158. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2159. }
  2160. /**
  2161. * e1000_intr - Interrupt Handler
  2162. * @irq: interrupt number
  2163. * @data: pointer to a network interface device structure
  2164. * @pt_regs: CPU registers structure
  2165. **/
  2166. static irqreturn_t
  2167. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2168. {
  2169. struct net_device *netdev = data;
  2170. struct e1000_adapter *adapter = netdev->priv;
  2171. struct e1000_hw *hw = &adapter->hw;
  2172. uint32_t icr = E1000_READ_REG(hw, ICR);
  2173. #ifndef CONFIG_E1000_NAPI
  2174. unsigned int i;
  2175. #endif
  2176. if(unlikely(!icr))
  2177. return IRQ_NONE; /* Not our interrupt */
  2178. if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2179. hw->get_link_status = 1;
  2180. mod_timer(&adapter->watchdog_timer, jiffies);
  2181. }
  2182. #ifdef CONFIG_E1000_NAPI
  2183. if(likely(netif_rx_schedule_prep(netdev))) {
  2184. /* Disable interrupts and register for poll. The flush
  2185. of the posted write is intentionally left out.
  2186. */
  2187. atomic_inc(&adapter->irq_sem);
  2188. E1000_WRITE_REG(hw, IMC, ~0);
  2189. __netif_rx_schedule(netdev);
  2190. }
  2191. #else
  2192. /* Writing IMC and IMS is needed for 82547.
  2193. Due to Hub Link bus being occupied, an interrupt
  2194. de-assertion message is not able to be sent.
  2195. When an interrupt assertion message is generated later,
  2196. two messages are re-ordered and sent out.
  2197. That causes APIC to think 82547 is in de-assertion
  2198. state, while 82547 is in assertion state, resulting
  2199. in dead lock. Writing IMC forces 82547 into
  2200. de-assertion state.
  2201. */
  2202. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
  2203. atomic_inc(&adapter->irq_sem);
  2204. E1000_WRITE_REG(hw, IMC, ~0);
  2205. }
  2206. for(i = 0; i < E1000_MAX_INTR; i++)
  2207. if(unlikely(!adapter->clean_rx(adapter) &
  2208. !e1000_clean_tx_irq(adapter)))
  2209. break;
  2210. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2211. e1000_irq_enable(adapter);
  2212. #endif
  2213. return IRQ_HANDLED;
  2214. }
  2215. #ifdef CONFIG_E1000_NAPI
  2216. /**
  2217. * e1000_clean - NAPI Rx polling callback
  2218. * @adapter: board private structure
  2219. **/
  2220. static int
  2221. e1000_clean(struct net_device *netdev, int *budget)
  2222. {
  2223. struct e1000_adapter *adapter = netdev->priv;
  2224. int work_to_do = min(*budget, netdev->quota);
  2225. int tx_cleaned;
  2226. int work_done = 0;
  2227. tx_cleaned = e1000_clean_tx_irq(adapter);
  2228. adapter->clean_rx(adapter, &work_done, work_to_do);
  2229. *budget -= work_done;
  2230. netdev->quota -= work_done;
  2231. /* If no Tx and no Rx work done, exit the polling mode */
  2232. if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
  2233. netif_rx_complete(netdev);
  2234. e1000_irq_enable(adapter);
  2235. return 0;
  2236. }
  2237. return 1;
  2238. }
  2239. #endif
  2240. /**
  2241. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2242. * @adapter: board private structure
  2243. **/
  2244. static boolean_t
  2245. e1000_clean_tx_irq(struct e1000_adapter *adapter)
  2246. {
  2247. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  2248. struct net_device *netdev = adapter->netdev;
  2249. struct e1000_tx_desc *tx_desc, *eop_desc;
  2250. struct e1000_buffer *buffer_info;
  2251. unsigned int i, eop;
  2252. boolean_t cleaned = FALSE;
  2253. i = tx_ring->next_to_clean;
  2254. eop = tx_ring->buffer_info[i].next_to_watch;
  2255. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2256. while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2257. /* Premature writeback of Tx descriptors clear (free buffers
  2258. * and unmap pci_mapping) previous_buffer_info */
  2259. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  2260. e1000_unmap_and_free_tx_resource(adapter,
  2261. &adapter->previous_buffer_info);
  2262. }
  2263. for(cleaned = FALSE; !cleaned; ) {
  2264. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2265. buffer_info = &tx_ring->buffer_info[i];
  2266. cleaned = (i == eop);
  2267. #ifdef NETIF_F_TSO
  2268. if (!(netdev->features & NETIF_F_TSO)) {
  2269. #endif
  2270. e1000_unmap_and_free_tx_resource(adapter,
  2271. buffer_info);
  2272. #ifdef NETIF_F_TSO
  2273. } else {
  2274. if (cleaned) {
  2275. memcpy(&adapter->previous_buffer_info,
  2276. buffer_info,
  2277. sizeof(struct e1000_buffer));
  2278. memset(buffer_info, 0,
  2279. sizeof(struct e1000_buffer));
  2280. } else {
  2281. e1000_unmap_and_free_tx_resource(
  2282. adapter, buffer_info);
  2283. }
  2284. }
  2285. #endif
  2286. tx_desc->buffer_addr = 0;
  2287. tx_desc->lower.data = 0;
  2288. tx_desc->upper.data = 0;
  2289. if(unlikely(++i == tx_ring->count)) i = 0;
  2290. }
  2291. eop = tx_ring->buffer_info[i].next_to_watch;
  2292. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2293. }
  2294. tx_ring->next_to_clean = i;
  2295. spin_lock(&adapter->tx_lock);
  2296. if(unlikely(cleaned && netif_queue_stopped(netdev) &&
  2297. netif_carrier_ok(netdev)))
  2298. netif_wake_queue(netdev);
  2299. spin_unlock(&adapter->tx_lock);
  2300. if(adapter->detect_tx_hung) {
  2301. /* Detect a transmit hang in hardware, this serializes the
  2302. * check with the clearing of time_stamp and movement of i */
  2303. adapter->detect_tx_hung = FALSE;
  2304. if (tx_ring->buffer_info[i].dma &&
  2305. time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
  2306. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2307. E1000_STATUS_TXOFF)) {
  2308. /* detected Tx unit hang */
  2309. i = tx_ring->next_to_clean;
  2310. eop = tx_ring->buffer_info[i].next_to_watch;
  2311. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2312. DPRINTK(TX_ERR, ERR, "Detected Tx Unit Hang\n"
  2313. " TDH <%x>\n"
  2314. " TDT <%x>\n"
  2315. " next_to_use <%x>\n"
  2316. " next_to_clean <%x>\n"
  2317. "buffer_info[next_to_clean]\n"
  2318. " dma <%llx>\n"
  2319. " time_stamp <%lx>\n"
  2320. " next_to_watch <%x>\n"
  2321. " jiffies <%lx>\n"
  2322. " next_to_watch.status <%x>\n",
  2323. E1000_READ_REG(&adapter->hw, TDH),
  2324. E1000_READ_REG(&adapter->hw, TDT),
  2325. tx_ring->next_to_use,
  2326. i,
  2327. tx_ring->buffer_info[i].dma,
  2328. tx_ring->buffer_info[i].time_stamp,
  2329. eop,
  2330. jiffies,
  2331. eop_desc->upper.fields.status);
  2332. netif_stop_queue(netdev);
  2333. }
  2334. }
  2335. #ifdef NETIF_F_TSO
  2336. if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
  2337. time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
  2338. e1000_unmap_and_free_tx_resource(
  2339. adapter, &adapter->previous_buffer_info);
  2340. #endif
  2341. return cleaned;
  2342. }
  2343. /**
  2344. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2345. * @adapter: board private structure
  2346. * @status_err: receive descriptor status and error fields
  2347. * @csum: receive descriptor csum field
  2348. * @sk_buff: socket buffer with received data
  2349. **/
  2350. static inline void
  2351. e1000_rx_checksum(struct e1000_adapter *adapter,
  2352. uint32_t status_err, uint32_t csum,
  2353. struct sk_buff *skb)
  2354. {
  2355. uint16_t status = (uint16_t)status_err;
  2356. uint8_t errors = (uint8_t)(status_err >> 24);
  2357. skb->ip_summed = CHECKSUM_NONE;
  2358. /* 82543 or newer only */
  2359. if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2360. /* Ignore Checksum bit is set */
  2361. if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2362. /* TCP/UDP checksum error bit is set */
  2363. if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2364. /* let the stack verify checksum errors */
  2365. adapter->hw_csum_err++;
  2366. return;
  2367. }
  2368. /* TCP/UDP Checksum has not been calculated */
  2369. if(adapter->hw.mac_type <= e1000_82547_rev_2) {
  2370. if(!(status & E1000_RXD_STAT_TCPCS))
  2371. return;
  2372. } else {
  2373. if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2374. return;
  2375. }
  2376. /* It must be a TCP or UDP packet with a valid checksum */
  2377. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  2378. /* TCP checksum is good */
  2379. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2380. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2381. /* IP fragment with UDP payload */
  2382. /* Hardware complements the payload checksum, so we undo it
  2383. * and then put the value in host order for further stack use.
  2384. */
  2385. csum = ntohl(csum ^ 0xFFFF);
  2386. skb->csum = csum;
  2387. skb->ip_summed = CHECKSUM_HW;
  2388. }
  2389. adapter->hw_csum_good++;
  2390. }
  2391. /**
  2392. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  2393. * @adapter: board private structure
  2394. **/
  2395. static boolean_t
  2396. #ifdef CONFIG_E1000_NAPI
  2397. e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
  2398. int work_to_do)
  2399. #else
  2400. e1000_clean_rx_irq(struct e1000_adapter *adapter)
  2401. #endif
  2402. {
  2403. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2404. struct net_device *netdev = adapter->netdev;
  2405. struct pci_dev *pdev = adapter->pdev;
  2406. struct e1000_rx_desc *rx_desc;
  2407. struct e1000_buffer *buffer_info;
  2408. struct sk_buff *skb;
  2409. unsigned long flags;
  2410. uint32_t length;
  2411. uint8_t last_byte;
  2412. unsigned int i;
  2413. boolean_t cleaned = FALSE;
  2414. i = rx_ring->next_to_clean;
  2415. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2416. while(rx_desc->status & E1000_RXD_STAT_DD) {
  2417. buffer_info = &rx_ring->buffer_info[i];
  2418. #ifdef CONFIG_E1000_NAPI
  2419. if(*work_done >= work_to_do)
  2420. break;
  2421. (*work_done)++;
  2422. #endif
  2423. cleaned = TRUE;
  2424. pci_unmap_single(pdev,
  2425. buffer_info->dma,
  2426. buffer_info->length,
  2427. PCI_DMA_FROMDEVICE);
  2428. skb = buffer_info->skb;
  2429. length = le16_to_cpu(rx_desc->length);
  2430. if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
  2431. /* All receives must fit into a single buffer */
  2432. E1000_DBG("%s: Receive packet consumed multiple"
  2433. " buffers\n", netdev->name);
  2434. dev_kfree_skb_irq(skb);
  2435. goto next_desc;
  2436. }
  2437. if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  2438. last_byte = *(skb->data + length - 1);
  2439. if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
  2440. rx_desc->errors, length, last_byte)) {
  2441. spin_lock_irqsave(&adapter->stats_lock, flags);
  2442. e1000_tbi_adjust_stats(&adapter->hw,
  2443. &adapter->stats,
  2444. length, skb->data);
  2445. spin_unlock_irqrestore(&adapter->stats_lock,
  2446. flags);
  2447. length--;
  2448. } else {
  2449. dev_kfree_skb_irq(skb);
  2450. goto next_desc;
  2451. }
  2452. }
  2453. /* Good Receive */
  2454. skb_put(skb, length - ETHERNET_FCS_SIZE);
  2455. /* Receive Checksum Offload */
  2456. e1000_rx_checksum(adapter,
  2457. (uint32_t)(rx_desc->status) |
  2458. ((uint32_t)(rx_desc->errors) << 24),
  2459. rx_desc->csum, skb);
  2460. skb->protocol = eth_type_trans(skb, netdev);
  2461. #ifdef CONFIG_E1000_NAPI
  2462. if(unlikely(adapter->vlgrp &&
  2463. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2464. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2465. le16_to_cpu(rx_desc->special) &
  2466. E1000_RXD_SPC_VLAN_MASK);
  2467. } else {
  2468. netif_receive_skb(skb);
  2469. }
  2470. #else /* CONFIG_E1000_NAPI */
  2471. if(unlikely(adapter->vlgrp &&
  2472. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2473. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2474. le16_to_cpu(rx_desc->special) &
  2475. E1000_RXD_SPC_VLAN_MASK);
  2476. } else {
  2477. netif_rx(skb);
  2478. }
  2479. #endif /* CONFIG_E1000_NAPI */
  2480. netdev->last_rx = jiffies;
  2481. next_desc:
  2482. rx_desc->status = 0;
  2483. buffer_info->skb = NULL;
  2484. if(unlikely(++i == rx_ring->count)) i = 0;
  2485. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2486. }
  2487. rx_ring->next_to_clean = i;
  2488. adapter->alloc_rx_buf(adapter);
  2489. return cleaned;
  2490. }
  2491. /**
  2492. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  2493. * @adapter: board private structure
  2494. **/
  2495. static boolean_t
  2496. #ifdef CONFIG_E1000_NAPI
  2497. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
  2498. int work_to_do)
  2499. #else
  2500. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
  2501. #endif
  2502. {
  2503. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2504. union e1000_rx_desc_packet_split *rx_desc;
  2505. struct net_device *netdev = adapter->netdev;
  2506. struct pci_dev *pdev = adapter->pdev;
  2507. struct e1000_buffer *buffer_info;
  2508. struct e1000_ps_page *ps_page;
  2509. struct e1000_ps_page_dma *ps_page_dma;
  2510. struct sk_buff *skb;
  2511. unsigned int i, j;
  2512. uint32_t length, staterr;
  2513. boolean_t cleaned = FALSE;
  2514. i = rx_ring->next_to_clean;
  2515. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  2516. staterr = rx_desc->wb.middle.status_error;
  2517. while(staterr & E1000_RXD_STAT_DD) {
  2518. buffer_info = &rx_ring->buffer_info[i];
  2519. ps_page = &rx_ring->ps_page[i];
  2520. ps_page_dma = &rx_ring->ps_page_dma[i];
  2521. #ifdef CONFIG_E1000_NAPI
  2522. if(unlikely(*work_done >= work_to_do))
  2523. break;
  2524. (*work_done)++;
  2525. #endif
  2526. cleaned = TRUE;
  2527. pci_unmap_single(pdev, buffer_info->dma,
  2528. buffer_info->length,
  2529. PCI_DMA_FROMDEVICE);
  2530. skb = buffer_info->skb;
  2531. if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  2532. E1000_DBG("%s: Packet Split buffers didn't pick up"
  2533. " the full packet\n", netdev->name);
  2534. dev_kfree_skb_irq(skb);
  2535. goto next_desc;
  2536. }
  2537. if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  2538. dev_kfree_skb_irq(skb);
  2539. goto next_desc;
  2540. }
  2541. length = le16_to_cpu(rx_desc->wb.middle.length0);
  2542. if(unlikely(!length)) {
  2543. E1000_DBG("%s: Last part of the packet spanning"
  2544. " multiple descriptors\n", netdev->name);
  2545. dev_kfree_skb_irq(skb);
  2546. goto next_desc;
  2547. }
  2548. /* Good Receive */
  2549. skb_put(skb, length);
  2550. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  2551. if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
  2552. break;
  2553. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  2554. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2555. ps_page_dma->ps_page_dma[j] = 0;
  2556. skb_shinfo(skb)->frags[j].page =
  2557. ps_page->ps_page[j];
  2558. ps_page->ps_page[j] = NULL;
  2559. skb_shinfo(skb)->frags[j].page_offset = 0;
  2560. skb_shinfo(skb)->frags[j].size = length;
  2561. skb_shinfo(skb)->nr_frags++;
  2562. skb->len += length;
  2563. skb->data_len += length;
  2564. }
  2565. e1000_rx_checksum(adapter, staterr,
  2566. rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
  2567. skb->protocol = eth_type_trans(skb, netdev);
  2568. #ifdef HAVE_RX_ZERO_COPY
  2569. if(likely(rx_desc->wb.upper.header_status &
  2570. E1000_RXDPS_HDRSTAT_HDRSP))
  2571. skb_shinfo(skb)->zero_copy = TRUE;
  2572. #endif
  2573. #ifdef CONFIG_E1000_NAPI
  2574. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  2575. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2576. le16_to_cpu(rx_desc->wb.middle.vlan &
  2577. E1000_RXD_SPC_VLAN_MASK));
  2578. } else {
  2579. netif_receive_skb(skb);
  2580. }
  2581. #else /* CONFIG_E1000_NAPI */
  2582. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  2583. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2584. le16_to_cpu(rx_desc->wb.middle.vlan &
  2585. E1000_RXD_SPC_VLAN_MASK));
  2586. } else {
  2587. netif_rx(skb);
  2588. }
  2589. #endif /* CONFIG_E1000_NAPI */
  2590. netdev->last_rx = jiffies;
  2591. next_desc:
  2592. rx_desc->wb.middle.status_error &= ~0xFF;
  2593. buffer_info->skb = NULL;
  2594. if(unlikely(++i == rx_ring->count)) i = 0;
  2595. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  2596. staterr = rx_desc->wb.middle.status_error;
  2597. }
  2598. rx_ring->next_to_clean = i;
  2599. adapter->alloc_rx_buf(adapter);
  2600. return cleaned;
  2601. }
  2602. /**
  2603. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  2604. * @adapter: address of board private structure
  2605. **/
  2606. static void
  2607. e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
  2608. {
  2609. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2610. struct net_device *netdev = adapter->netdev;
  2611. struct pci_dev *pdev = adapter->pdev;
  2612. struct e1000_rx_desc *rx_desc;
  2613. struct e1000_buffer *buffer_info;
  2614. struct sk_buff *skb;
  2615. unsigned int i;
  2616. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  2617. i = rx_ring->next_to_use;
  2618. buffer_info = &rx_ring->buffer_info[i];
  2619. while(!buffer_info->skb) {
  2620. skb = dev_alloc_skb(bufsz);
  2621. if(unlikely(!skb)) {
  2622. /* Better luck next round */
  2623. break;
  2624. }
  2625. /* Fix for errata 23, can't cross 64kB boundary */
  2626. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2627. struct sk_buff *oldskb = skb;
  2628. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  2629. "at %p\n", bufsz, skb->data);
  2630. /* Try again, without freeing the previous */
  2631. skb = dev_alloc_skb(bufsz);
  2632. /* Failed allocation, critical failure */
  2633. if (!skb) {
  2634. dev_kfree_skb(oldskb);
  2635. break;
  2636. }
  2637. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2638. /* give up */
  2639. dev_kfree_skb(skb);
  2640. dev_kfree_skb(oldskb);
  2641. break; /* while !buffer_info->skb */
  2642. } else {
  2643. /* Use new allocation */
  2644. dev_kfree_skb(oldskb);
  2645. }
  2646. }
  2647. /* Make buffer alignment 2 beyond a 16 byte boundary
  2648. * this will result in a 16 byte aligned IP header after
  2649. * the 14 byte MAC header is removed
  2650. */
  2651. skb_reserve(skb, NET_IP_ALIGN);
  2652. skb->dev = netdev;
  2653. buffer_info->skb = skb;
  2654. buffer_info->length = adapter->rx_buffer_len;
  2655. buffer_info->dma = pci_map_single(pdev,
  2656. skb->data,
  2657. adapter->rx_buffer_len,
  2658. PCI_DMA_FROMDEVICE);
  2659. /* Fix for errata 23, can't cross 64kB boundary */
  2660. if (!e1000_check_64k_bound(adapter,
  2661. (void *)(unsigned long)buffer_info->dma,
  2662. adapter->rx_buffer_len)) {
  2663. DPRINTK(RX_ERR, ERR,
  2664. "dma align check failed: %u bytes at %p\n",
  2665. adapter->rx_buffer_len,
  2666. (void *)(unsigned long)buffer_info->dma);
  2667. dev_kfree_skb(skb);
  2668. buffer_info->skb = NULL;
  2669. pci_unmap_single(pdev, buffer_info->dma,
  2670. adapter->rx_buffer_len,
  2671. PCI_DMA_FROMDEVICE);
  2672. break; /* while !buffer_info->skb */
  2673. }
  2674. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2675. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2676. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  2677. /* Force memory writes to complete before letting h/w
  2678. * know there are new descriptors to fetch. (Only
  2679. * applicable for weak-ordered memory model archs,
  2680. * such as IA-64). */
  2681. wmb();
  2682. E1000_WRITE_REG(&adapter->hw, RDT, i);
  2683. }
  2684. if(unlikely(++i == rx_ring->count)) i = 0;
  2685. buffer_info = &rx_ring->buffer_info[i];
  2686. }
  2687. rx_ring->next_to_use = i;
  2688. }
  2689. /**
  2690. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  2691. * @adapter: address of board private structure
  2692. **/
  2693. static void
  2694. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
  2695. {
  2696. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2697. struct net_device *netdev = adapter->netdev;
  2698. struct pci_dev *pdev = adapter->pdev;
  2699. union e1000_rx_desc_packet_split *rx_desc;
  2700. struct e1000_buffer *buffer_info;
  2701. struct e1000_ps_page *ps_page;
  2702. struct e1000_ps_page_dma *ps_page_dma;
  2703. struct sk_buff *skb;
  2704. unsigned int i, j;
  2705. i = rx_ring->next_to_use;
  2706. buffer_info = &rx_ring->buffer_info[i];
  2707. ps_page = &rx_ring->ps_page[i];
  2708. ps_page_dma = &rx_ring->ps_page_dma[i];
  2709. while(!buffer_info->skb) {
  2710. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  2711. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  2712. if(unlikely(!ps_page->ps_page[j])) {
  2713. ps_page->ps_page[j] =
  2714. alloc_page(GFP_ATOMIC);
  2715. if(unlikely(!ps_page->ps_page[j]))
  2716. goto no_buffers;
  2717. ps_page_dma->ps_page_dma[j] =
  2718. pci_map_page(pdev,
  2719. ps_page->ps_page[j],
  2720. 0, PAGE_SIZE,
  2721. PCI_DMA_FROMDEVICE);
  2722. }
  2723. /* Refresh the desc even if buffer_addrs didn't
  2724. * change because each write-back erases this info.
  2725. */
  2726. rx_desc->read.buffer_addr[j+1] =
  2727. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  2728. }
  2729. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  2730. if(unlikely(!skb))
  2731. break;
  2732. /* Make buffer alignment 2 beyond a 16 byte boundary
  2733. * this will result in a 16 byte aligned IP header after
  2734. * the 14 byte MAC header is removed
  2735. */
  2736. skb_reserve(skb, NET_IP_ALIGN);
  2737. skb->dev = netdev;
  2738. buffer_info->skb = skb;
  2739. buffer_info->length = adapter->rx_ps_bsize0;
  2740. buffer_info->dma = pci_map_single(pdev, skb->data,
  2741. adapter->rx_ps_bsize0,
  2742. PCI_DMA_FROMDEVICE);
  2743. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  2744. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  2745. /* Force memory writes to complete before letting h/w
  2746. * know there are new descriptors to fetch. (Only
  2747. * applicable for weak-ordered memory model archs,
  2748. * such as IA-64). */
  2749. wmb();
  2750. /* Hardware increments by 16 bytes, but packet split
  2751. * descriptors are 32 bytes...so we increment tail
  2752. * twice as much.
  2753. */
  2754. E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
  2755. }
  2756. if(unlikely(++i == rx_ring->count)) i = 0;
  2757. buffer_info = &rx_ring->buffer_info[i];
  2758. ps_page = &rx_ring->ps_page[i];
  2759. ps_page_dma = &rx_ring->ps_page_dma[i];
  2760. }
  2761. no_buffers:
  2762. rx_ring->next_to_use = i;
  2763. }
  2764. /**
  2765. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  2766. * @adapter:
  2767. **/
  2768. static void
  2769. e1000_smartspeed(struct e1000_adapter *adapter)
  2770. {
  2771. uint16_t phy_status;
  2772. uint16_t phy_ctrl;
  2773. if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  2774. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  2775. return;
  2776. if(adapter->smartspeed == 0) {
  2777. /* If Master/Slave config fault is asserted twice,
  2778. * we assume back-to-back */
  2779. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2780. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2781. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2782. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2783. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2784. if(phy_ctrl & CR_1000T_MS_ENABLE) {
  2785. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  2786. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  2787. phy_ctrl);
  2788. adapter->smartspeed++;
  2789. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2790. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  2791. &phy_ctrl)) {
  2792. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2793. MII_CR_RESTART_AUTO_NEG);
  2794. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  2795. phy_ctrl);
  2796. }
  2797. }
  2798. return;
  2799. } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  2800. /* If still no link, perhaps using 2/3 pair cable */
  2801. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2802. phy_ctrl |= CR_1000T_MS_ENABLE;
  2803. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  2804. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2805. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  2806. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2807. MII_CR_RESTART_AUTO_NEG);
  2808. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  2809. }
  2810. }
  2811. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  2812. if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  2813. adapter->smartspeed = 0;
  2814. }
  2815. /**
  2816. * e1000_ioctl -
  2817. * @netdev:
  2818. * @ifreq:
  2819. * @cmd:
  2820. **/
  2821. static int
  2822. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2823. {
  2824. switch (cmd) {
  2825. case SIOCGMIIPHY:
  2826. case SIOCGMIIREG:
  2827. case SIOCSMIIREG:
  2828. return e1000_mii_ioctl(netdev, ifr, cmd);
  2829. default:
  2830. return -EOPNOTSUPP;
  2831. }
  2832. }
  2833. /**
  2834. * e1000_mii_ioctl -
  2835. * @netdev:
  2836. * @ifreq:
  2837. * @cmd:
  2838. **/
  2839. static int
  2840. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2841. {
  2842. struct e1000_adapter *adapter = netdev->priv;
  2843. struct mii_ioctl_data *data = if_mii(ifr);
  2844. int retval;
  2845. uint16_t mii_reg;
  2846. uint16_t spddplx;
  2847. if(adapter->hw.media_type != e1000_media_type_copper)
  2848. return -EOPNOTSUPP;
  2849. switch (cmd) {
  2850. case SIOCGMIIPHY:
  2851. data->phy_id = adapter->hw.phy_addr;
  2852. break;
  2853. case SIOCGMIIREG:
  2854. if (!capable(CAP_NET_ADMIN))
  2855. return -EPERM;
  2856. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  2857. &data->val_out))
  2858. return -EIO;
  2859. break;
  2860. case SIOCSMIIREG:
  2861. if (!capable(CAP_NET_ADMIN))
  2862. return -EPERM;
  2863. if (data->reg_num & ~(0x1F))
  2864. return -EFAULT;
  2865. mii_reg = data->val_in;
  2866. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  2867. mii_reg))
  2868. return -EIO;
  2869. if (adapter->hw.phy_type == e1000_phy_m88) {
  2870. switch (data->reg_num) {
  2871. case PHY_CTRL:
  2872. if(mii_reg & MII_CR_POWER_DOWN)
  2873. break;
  2874. if(mii_reg & MII_CR_AUTO_NEG_EN) {
  2875. adapter->hw.autoneg = 1;
  2876. adapter->hw.autoneg_advertised = 0x2F;
  2877. } else {
  2878. if (mii_reg & 0x40)
  2879. spddplx = SPEED_1000;
  2880. else if (mii_reg & 0x2000)
  2881. spddplx = SPEED_100;
  2882. else
  2883. spddplx = SPEED_10;
  2884. spddplx += (mii_reg & 0x100)
  2885. ? FULL_DUPLEX :
  2886. HALF_DUPLEX;
  2887. retval = e1000_set_spd_dplx(adapter,
  2888. spddplx);
  2889. if(retval)
  2890. return retval;
  2891. }
  2892. if(netif_running(adapter->netdev)) {
  2893. e1000_down(adapter);
  2894. e1000_up(adapter);
  2895. } else
  2896. e1000_reset(adapter);
  2897. break;
  2898. case M88E1000_PHY_SPEC_CTRL:
  2899. case M88E1000_EXT_PHY_SPEC_CTRL:
  2900. if (e1000_phy_reset(&adapter->hw))
  2901. return -EIO;
  2902. break;
  2903. }
  2904. } else {
  2905. switch (data->reg_num) {
  2906. case PHY_CTRL:
  2907. if(mii_reg & MII_CR_POWER_DOWN)
  2908. break;
  2909. if(netif_running(adapter->netdev)) {
  2910. e1000_down(adapter);
  2911. e1000_up(adapter);
  2912. } else
  2913. e1000_reset(adapter);
  2914. break;
  2915. }
  2916. }
  2917. break;
  2918. default:
  2919. return -EOPNOTSUPP;
  2920. }
  2921. return E1000_SUCCESS;
  2922. }
  2923. void
  2924. e1000_pci_set_mwi(struct e1000_hw *hw)
  2925. {
  2926. struct e1000_adapter *adapter = hw->back;
  2927. int ret_val = pci_set_mwi(adapter->pdev);
  2928. if(ret_val)
  2929. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  2930. }
  2931. void
  2932. e1000_pci_clear_mwi(struct e1000_hw *hw)
  2933. {
  2934. struct e1000_adapter *adapter = hw->back;
  2935. pci_clear_mwi(adapter->pdev);
  2936. }
  2937. void
  2938. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2939. {
  2940. struct e1000_adapter *adapter = hw->back;
  2941. pci_read_config_word(adapter->pdev, reg, value);
  2942. }
  2943. void
  2944. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2945. {
  2946. struct e1000_adapter *adapter = hw->back;
  2947. pci_write_config_word(adapter->pdev, reg, *value);
  2948. }
  2949. uint32_t
  2950. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  2951. {
  2952. return inl(port);
  2953. }
  2954. void
  2955. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  2956. {
  2957. outl(value, port);
  2958. }
  2959. static void
  2960. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  2961. {
  2962. struct e1000_adapter *adapter = netdev->priv;
  2963. uint32_t ctrl, rctl;
  2964. e1000_irq_disable(adapter);
  2965. adapter->vlgrp = grp;
  2966. if(grp) {
  2967. /* enable VLAN tag insert/strip */
  2968. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2969. ctrl |= E1000_CTRL_VME;
  2970. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2971. /* enable VLAN receive filtering */
  2972. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2973. rctl |= E1000_RCTL_VFE;
  2974. rctl &= ~E1000_RCTL_CFIEN;
  2975. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2976. e1000_update_mng_vlan(adapter);
  2977. } else {
  2978. /* disable VLAN tag insert/strip */
  2979. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2980. ctrl &= ~E1000_CTRL_VME;
  2981. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2982. /* disable VLAN filtering */
  2983. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2984. rctl &= ~E1000_RCTL_VFE;
  2985. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2986. if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  2987. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  2988. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  2989. }
  2990. }
  2991. e1000_irq_enable(adapter);
  2992. }
  2993. static void
  2994. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  2995. {
  2996. struct e1000_adapter *adapter = netdev->priv;
  2997. uint32_t vfta, index;
  2998. if((adapter->hw.mng_cookie.status &
  2999. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3000. (vid == adapter->mng_vlan_id))
  3001. return;
  3002. /* add VID to filter table */
  3003. index = (vid >> 5) & 0x7F;
  3004. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3005. vfta |= (1 << (vid & 0x1F));
  3006. e1000_write_vfta(&adapter->hw, index, vfta);
  3007. }
  3008. static void
  3009. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3010. {
  3011. struct e1000_adapter *adapter = netdev->priv;
  3012. uint32_t vfta, index;
  3013. e1000_irq_disable(adapter);
  3014. if(adapter->vlgrp)
  3015. adapter->vlgrp->vlan_devices[vid] = NULL;
  3016. e1000_irq_enable(adapter);
  3017. if((adapter->hw.mng_cookie.status &
  3018. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3019. (vid == adapter->mng_vlan_id))
  3020. return;
  3021. /* remove VID from filter table */
  3022. index = (vid >> 5) & 0x7F;
  3023. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3024. vfta &= ~(1 << (vid & 0x1F));
  3025. e1000_write_vfta(&adapter->hw, index, vfta);
  3026. }
  3027. static void
  3028. e1000_restore_vlan(struct e1000_adapter *adapter)
  3029. {
  3030. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3031. if(adapter->vlgrp) {
  3032. uint16_t vid;
  3033. for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3034. if(!adapter->vlgrp->vlan_devices[vid])
  3035. continue;
  3036. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3037. }
  3038. }
  3039. }
  3040. int
  3041. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3042. {
  3043. adapter->hw.autoneg = 0;
  3044. switch(spddplx) {
  3045. case SPEED_10 + DUPLEX_HALF:
  3046. adapter->hw.forced_speed_duplex = e1000_10_half;
  3047. break;
  3048. case SPEED_10 + DUPLEX_FULL:
  3049. adapter->hw.forced_speed_duplex = e1000_10_full;
  3050. break;
  3051. case SPEED_100 + DUPLEX_HALF:
  3052. adapter->hw.forced_speed_duplex = e1000_100_half;
  3053. break;
  3054. case SPEED_100 + DUPLEX_FULL:
  3055. adapter->hw.forced_speed_duplex = e1000_100_full;
  3056. break;
  3057. case SPEED_1000 + DUPLEX_FULL:
  3058. adapter->hw.autoneg = 1;
  3059. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3060. break;
  3061. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3062. default:
  3063. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3064. return -EINVAL;
  3065. }
  3066. return 0;
  3067. }
  3068. static int
  3069. e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
  3070. {
  3071. struct pci_dev *pdev = NULL;
  3072. switch(event) {
  3073. case SYS_DOWN:
  3074. case SYS_HALT:
  3075. case SYS_POWER_OFF:
  3076. while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
  3077. if(pci_dev_driver(pdev) == &e1000_driver)
  3078. e1000_suspend(pdev, 3);
  3079. }
  3080. }
  3081. return NOTIFY_DONE;
  3082. }
  3083. static int
  3084. e1000_suspend(struct pci_dev *pdev, uint32_t state)
  3085. {
  3086. struct net_device *netdev = pci_get_drvdata(pdev);
  3087. struct e1000_adapter *adapter = netdev->priv;
  3088. uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
  3089. uint32_t wufc = adapter->wol;
  3090. netif_device_detach(netdev);
  3091. if(netif_running(netdev))
  3092. e1000_down(adapter);
  3093. status = E1000_READ_REG(&adapter->hw, STATUS);
  3094. if(status & E1000_STATUS_LU)
  3095. wufc &= ~E1000_WUFC_LNKC;
  3096. if(wufc) {
  3097. e1000_setup_rctl(adapter);
  3098. e1000_set_multi(netdev);
  3099. /* turn on all-multi mode if wake on multicast is enabled */
  3100. if(adapter->wol & E1000_WUFC_MC) {
  3101. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3102. rctl |= E1000_RCTL_MPE;
  3103. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3104. }
  3105. if(adapter->hw.mac_type >= e1000_82540) {
  3106. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3107. /* advertise wake from D3Cold */
  3108. #define E1000_CTRL_ADVD3WUC 0x00100000
  3109. /* phy power management enable */
  3110. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3111. ctrl |= E1000_CTRL_ADVD3WUC |
  3112. E1000_CTRL_EN_PHY_PWR_MGMT;
  3113. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3114. }
  3115. if(adapter->hw.media_type == e1000_media_type_fiber ||
  3116. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3117. /* keep the laser running in D3 */
  3118. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3119. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3120. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3121. }
  3122. /* Allow time for pending master requests to run */
  3123. e1000_disable_pciex_master(&adapter->hw);
  3124. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3125. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3126. pci_enable_wake(pdev, 3, 1);
  3127. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3128. } else {
  3129. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3130. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3131. pci_enable_wake(pdev, 3, 0);
  3132. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  3133. }
  3134. pci_save_state(pdev);
  3135. if(adapter->hw.mac_type >= e1000_82540 &&
  3136. adapter->hw.media_type == e1000_media_type_copper) {
  3137. manc = E1000_READ_REG(&adapter->hw, MANC);
  3138. if(manc & E1000_MANC_SMBUS_EN) {
  3139. manc |= E1000_MANC_ARP_EN;
  3140. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3141. pci_enable_wake(pdev, 3, 1);
  3142. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3143. }
  3144. }
  3145. switch(adapter->hw.mac_type) {
  3146. case e1000_82573:
  3147. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  3148. E1000_WRITE_REG(&adapter->hw, SWSM,
  3149. swsm & ~E1000_SWSM_DRV_LOAD);
  3150. break;
  3151. default:
  3152. break;
  3153. }
  3154. pci_disable_device(pdev);
  3155. state = (state > 0) ? 3 : 0;
  3156. pci_set_power_state(pdev, state);
  3157. return 0;
  3158. }
  3159. #ifdef CONFIG_PM
  3160. static int
  3161. e1000_resume(struct pci_dev *pdev)
  3162. {
  3163. struct net_device *netdev = pci_get_drvdata(pdev);
  3164. struct e1000_adapter *adapter = netdev->priv;
  3165. uint32_t manc, ret, swsm;
  3166. pci_set_power_state(pdev, 0);
  3167. pci_restore_state(pdev);
  3168. ret = pci_enable_device(pdev);
  3169. pci_set_master(pdev);
  3170. pci_enable_wake(pdev, 3, 0);
  3171. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  3172. e1000_reset(adapter);
  3173. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3174. if(netif_running(netdev))
  3175. e1000_up(adapter);
  3176. netif_device_attach(netdev);
  3177. if(adapter->hw.mac_type >= e1000_82540 &&
  3178. adapter->hw.media_type == e1000_media_type_copper) {
  3179. manc = E1000_READ_REG(&adapter->hw, MANC);
  3180. manc &= ~(E1000_MANC_ARP_EN);
  3181. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3182. }
  3183. switch(adapter->hw.mac_type) {
  3184. case e1000_82573:
  3185. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  3186. E1000_WRITE_REG(&adapter->hw, SWSM,
  3187. swsm | E1000_SWSM_DRV_LOAD);
  3188. break;
  3189. default:
  3190. break;
  3191. }
  3192. return 0;
  3193. }
  3194. #endif
  3195. #ifdef CONFIG_NET_POLL_CONTROLLER
  3196. /*
  3197. * Polling 'interrupt' - used by things like netconsole to send skbs
  3198. * without having to re-enable interrupts. It's not called while
  3199. * the interrupt routine is executing.
  3200. */
  3201. static void
  3202. e1000_netpoll(struct net_device *netdev)
  3203. {
  3204. struct e1000_adapter *adapter = netdev->priv;
  3205. disable_irq(adapter->pdev->irq);
  3206. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3207. enable_irq(adapter->pdev->irq);
  3208. }
  3209. #endif
  3210. /* e1000_main.c */