super.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. /*
  2. * super.c - NILFS module and super block management.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. */
  22. /*
  23. * linux/fs/ext2/super.c
  24. *
  25. * Copyright (C) 1992, 1993, 1994, 1995
  26. * Remy Card (card@masi.ibp.fr)
  27. * Laboratoire MASI - Institut Blaise Pascal
  28. * Universite Pierre et Marie Curie (Paris VI)
  29. *
  30. * from
  31. *
  32. * linux/fs/minix/inode.c
  33. *
  34. * Copyright (C) 1991, 1992 Linus Torvalds
  35. *
  36. * Big-endian to little-endian byte-swapping/bitmaps by
  37. * David S. Miller (davem@caip.rutgers.edu), 1995
  38. */
  39. #include <linux/module.h>
  40. #include <linux/string.h>
  41. #include <linux/slab.h>
  42. #include <linux/init.h>
  43. #include <linux/blkdev.h>
  44. #include <linux/parser.h>
  45. #include <linux/random.h>
  46. #include <linux/crc32.h>
  47. #include <linux/smp_lock.h>
  48. #include <linux/vfs.h>
  49. #include <linux/writeback.h>
  50. #include <linux/kobject.h>
  51. #include <linux/exportfs.h>
  52. #include <linux/seq_file.h>
  53. #include <linux/mount.h>
  54. #include "nilfs.h"
  55. #include "mdt.h"
  56. #include "alloc.h"
  57. #include "page.h"
  58. #include "cpfile.h"
  59. #include "ifile.h"
  60. #include "dat.h"
  61. #include "segment.h"
  62. #include "segbuf.h"
  63. MODULE_AUTHOR("NTT Corp.");
  64. MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  65. "(NILFS)");
  66. MODULE_LICENSE("GPL");
  67. struct kmem_cache *nilfs_inode_cachep;
  68. struct kmem_cache *nilfs_transaction_cachep;
  69. struct kmem_cache *nilfs_segbuf_cachep;
  70. struct kmem_cache *nilfs_btree_path_cache;
  71. static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  72. static void nilfs_set_error(struct nilfs_sb_info *sbi)
  73. {
  74. struct the_nilfs *nilfs = sbi->s_nilfs;
  75. struct nilfs_super_block **sbp;
  76. down_write(&nilfs->ns_sem);
  77. if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  78. nilfs->ns_mount_state |= NILFS_ERROR_FS;
  79. sbp = nilfs_prepare_super(sbi, 0);
  80. if (likely(sbp)) {
  81. sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  82. if (sbp[1])
  83. sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  84. nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
  85. }
  86. }
  87. up_write(&nilfs->ns_sem);
  88. }
  89. /**
  90. * nilfs_error() - report failure condition on a filesystem
  91. *
  92. * nilfs_error() sets an ERROR_FS flag on the superblock as well as
  93. * reporting an error message. It should be called when NILFS detects
  94. * incoherences or defects of meta data on disk. As for sustainable
  95. * errors such as a single-shot I/O error, nilfs_warning() or the printk()
  96. * function should be used instead.
  97. *
  98. * The segment constructor must not call this function because it can
  99. * kill itself.
  100. */
  101. void nilfs_error(struct super_block *sb, const char *function,
  102. const char *fmt, ...)
  103. {
  104. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  105. va_list args;
  106. va_start(args, fmt);
  107. printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
  108. vprintk(fmt, args);
  109. printk("\n");
  110. va_end(args);
  111. if (!(sb->s_flags & MS_RDONLY)) {
  112. nilfs_set_error(sbi);
  113. if (nilfs_test_opt(sbi, ERRORS_RO)) {
  114. printk(KERN_CRIT "Remounting filesystem read-only\n");
  115. sb->s_flags |= MS_RDONLY;
  116. }
  117. }
  118. if (nilfs_test_opt(sbi, ERRORS_PANIC))
  119. panic("NILFS (device %s): panic forced after error\n",
  120. sb->s_id);
  121. }
  122. void nilfs_warning(struct super_block *sb, const char *function,
  123. const char *fmt, ...)
  124. {
  125. va_list args;
  126. va_start(args, fmt);
  127. printk(KERN_WARNING "NILFS warning (device %s): %s: ",
  128. sb->s_id, function);
  129. vprintk(fmt, args);
  130. printk("\n");
  131. va_end(args);
  132. }
  133. struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
  134. {
  135. struct nilfs_inode_info *ii;
  136. ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
  137. if (!ii)
  138. return NULL;
  139. ii->i_bh = NULL;
  140. ii->i_state = 0;
  141. ii->vfs_inode.i_version = 1;
  142. nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
  143. return &ii->vfs_inode;
  144. }
  145. struct inode *nilfs_alloc_inode(struct super_block *sb)
  146. {
  147. return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
  148. }
  149. void nilfs_destroy_inode(struct inode *inode)
  150. {
  151. kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
  152. }
  153. static void nilfs_clear_inode(struct inode *inode)
  154. {
  155. struct nilfs_inode_info *ii = NILFS_I(inode);
  156. /*
  157. * Free resources allocated in nilfs_read_inode(), here.
  158. */
  159. BUG_ON(!list_empty(&ii->i_dirty));
  160. brelse(ii->i_bh);
  161. ii->i_bh = NULL;
  162. if (test_bit(NILFS_I_BMAP, &ii->i_state))
  163. nilfs_bmap_clear(ii->i_bmap);
  164. nilfs_btnode_cache_clear(&ii->i_btnode_cache);
  165. }
  166. static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
  167. {
  168. struct the_nilfs *nilfs = sbi->s_nilfs;
  169. int err;
  170. int barrier_done = 0;
  171. if (nilfs_test_opt(sbi, BARRIER)) {
  172. set_buffer_ordered(nilfs->ns_sbh[0]);
  173. barrier_done = 1;
  174. }
  175. retry:
  176. set_buffer_dirty(nilfs->ns_sbh[0]);
  177. err = sync_dirty_buffer(nilfs->ns_sbh[0]);
  178. if (err == -EOPNOTSUPP && barrier_done) {
  179. nilfs_warning(sbi->s_super, __func__,
  180. "barrier-based sync failed. "
  181. "disabling barriers\n");
  182. nilfs_clear_opt(sbi, BARRIER);
  183. barrier_done = 0;
  184. clear_buffer_ordered(nilfs->ns_sbh[0]);
  185. goto retry;
  186. }
  187. if (unlikely(err)) {
  188. printk(KERN_ERR
  189. "NILFS: unable to write superblock (err=%d)\n", err);
  190. if (err == -EIO && nilfs->ns_sbh[1]) {
  191. /*
  192. * sbp[0] points to newer log than sbp[1],
  193. * so copy sbp[0] to sbp[1] to take over sbp[0].
  194. */
  195. memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
  196. nilfs->ns_sbsize);
  197. nilfs_fall_back_super_block(nilfs);
  198. goto retry;
  199. }
  200. } else {
  201. struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
  202. nilfs->ns_sbwcount++;
  203. /*
  204. * The latest segment becomes trailable from the position
  205. * written in superblock.
  206. */
  207. clear_nilfs_discontinued(nilfs);
  208. /* update GC protection for recent segments */
  209. if (nilfs->ns_sbh[1]) {
  210. if (flag == NILFS_SB_COMMIT_ALL) {
  211. set_buffer_dirty(nilfs->ns_sbh[1]);
  212. if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
  213. goto out;
  214. }
  215. if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
  216. le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
  217. sbp = nilfs->ns_sbp[1];
  218. }
  219. spin_lock(&nilfs->ns_last_segment_lock);
  220. nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
  221. spin_unlock(&nilfs->ns_last_segment_lock);
  222. }
  223. out:
  224. return err;
  225. }
  226. void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
  227. struct the_nilfs *nilfs)
  228. {
  229. sector_t nfreeblocks;
  230. /* nilfs->ns_sem must be locked by the caller. */
  231. nilfs_count_free_blocks(nilfs, &nfreeblocks);
  232. sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
  233. spin_lock(&nilfs->ns_last_segment_lock);
  234. sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
  235. sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
  236. sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
  237. spin_unlock(&nilfs->ns_last_segment_lock);
  238. }
  239. struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
  240. int flip)
  241. {
  242. struct the_nilfs *nilfs = sbi->s_nilfs;
  243. struct nilfs_super_block **sbp = nilfs->ns_sbp;
  244. /* nilfs->ns_sem must be locked by the caller. */
  245. if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
  246. if (sbp[1] &&
  247. sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
  248. memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
  249. } else {
  250. printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
  251. sbi->s_super->s_id);
  252. return NULL;
  253. }
  254. } else if (sbp[1] &&
  255. sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
  256. memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
  257. }
  258. if (flip && sbp[1])
  259. nilfs_swap_super_block(nilfs);
  260. return sbp;
  261. }
  262. int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
  263. {
  264. struct the_nilfs *nilfs = sbi->s_nilfs;
  265. struct nilfs_super_block **sbp = nilfs->ns_sbp;
  266. time_t t;
  267. /* nilfs->ns_sem must be locked by the caller. */
  268. t = get_seconds();
  269. nilfs->ns_sbwtime = t;
  270. sbp[0]->s_wtime = cpu_to_le64(t);
  271. sbp[0]->s_sum = 0;
  272. sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
  273. (unsigned char *)sbp[0],
  274. nilfs->ns_sbsize));
  275. if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
  276. sbp[1]->s_wtime = sbp[0]->s_wtime;
  277. sbp[1]->s_sum = 0;
  278. sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
  279. (unsigned char *)sbp[1],
  280. nilfs->ns_sbsize));
  281. }
  282. clear_nilfs_sb_dirty(nilfs);
  283. return nilfs_sync_super(sbi, flag);
  284. }
  285. /**
  286. * nilfs_cleanup_super() - write filesystem state for cleanup
  287. * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
  288. *
  289. * This function restores state flags in the on-disk super block.
  290. * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
  291. * filesystem was not clean previously.
  292. */
  293. int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
  294. {
  295. struct nilfs_super_block **sbp;
  296. int flag = NILFS_SB_COMMIT;
  297. int ret = -EIO;
  298. sbp = nilfs_prepare_super(sbi, 0);
  299. if (sbp) {
  300. sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
  301. nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
  302. if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
  303. /*
  304. * make the "clean" flag also to the opposite
  305. * super block if both super blocks point to
  306. * the same checkpoint.
  307. */
  308. sbp[1]->s_state = sbp[0]->s_state;
  309. flag = NILFS_SB_COMMIT_ALL;
  310. }
  311. ret = nilfs_commit_super(sbi, flag);
  312. }
  313. return ret;
  314. }
  315. static void nilfs_put_super(struct super_block *sb)
  316. {
  317. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  318. struct the_nilfs *nilfs = sbi->s_nilfs;
  319. lock_kernel();
  320. nilfs_detach_segment_constructor(sbi);
  321. if (!(sb->s_flags & MS_RDONLY)) {
  322. down_write(&nilfs->ns_sem);
  323. nilfs_cleanup_super(sbi);
  324. up_write(&nilfs->ns_sem);
  325. }
  326. down_write(&nilfs->ns_super_sem);
  327. if (nilfs->ns_current == sbi)
  328. nilfs->ns_current = NULL;
  329. up_write(&nilfs->ns_super_sem);
  330. nilfs_detach_checkpoint(sbi);
  331. put_nilfs(sbi->s_nilfs);
  332. sbi->s_super = NULL;
  333. sb->s_fs_info = NULL;
  334. nilfs_put_sbinfo(sbi);
  335. unlock_kernel();
  336. }
  337. static int nilfs_sync_fs(struct super_block *sb, int wait)
  338. {
  339. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  340. struct the_nilfs *nilfs = sbi->s_nilfs;
  341. struct nilfs_super_block **sbp;
  342. int err = 0;
  343. /* This function is called when super block should be written back */
  344. if (wait)
  345. err = nilfs_construct_segment(sb);
  346. down_write(&nilfs->ns_sem);
  347. if (nilfs_sb_dirty(nilfs)) {
  348. sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
  349. if (likely(sbp)) {
  350. nilfs_set_log_cursor(sbp[0], nilfs);
  351. nilfs_commit_super(sbi, NILFS_SB_COMMIT);
  352. }
  353. }
  354. up_write(&nilfs->ns_sem);
  355. return err;
  356. }
  357. int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
  358. {
  359. struct the_nilfs *nilfs = sbi->s_nilfs;
  360. struct nilfs_checkpoint *raw_cp;
  361. struct buffer_head *bh_cp;
  362. int err;
  363. down_write(&nilfs->ns_super_sem);
  364. list_add(&sbi->s_list, &nilfs->ns_supers);
  365. up_write(&nilfs->ns_super_sem);
  366. sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
  367. if (!sbi->s_ifile)
  368. return -ENOMEM;
  369. down_read(&nilfs->ns_segctor_sem);
  370. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
  371. &bh_cp);
  372. up_read(&nilfs->ns_segctor_sem);
  373. if (unlikely(err)) {
  374. if (err == -ENOENT || err == -EINVAL) {
  375. printk(KERN_ERR
  376. "NILFS: Invalid checkpoint "
  377. "(checkpoint number=%llu)\n",
  378. (unsigned long long)cno);
  379. err = -EINVAL;
  380. }
  381. goto failed;
  382. }
  383. err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
  384. if (unlikely(err))
  385. goto failed_bh;
  386. atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
  387. atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
  388. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
  389. return 0;
  390. failed_bh:
  391. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
  392. failed:
  393. nilfs_mdt_destroy(sbi->s_ifile);
  394. sbi->s_ifile = NULL;
  395. down_write(&nilfs->ns_super_sem);
  396. list_del_init(&sbi->s_list);
  397. up_write(&nilfs->ns_super_sem);
  398. return err;
  399. }
  400. void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
  401. {
  402. struct the_nilfs *nilfs = sbi->s_nilfs;
  403. nilfs_mdt_destroy(sbi->s_ifile);
  404. sbi->s_ifile = NULL;
  405. down_write(&nilfs->ns_super_sem);
  406. list_del_init(&sbi->s_list);
  407. up_write(&nilfs->ns_super_sem);
  408. }
  409. static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  410. {
  411. struct super_block *sb = dentry->d_sb;
  412. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  413. struct the_nilfs *nilfs = sbi->s_nilfs;
  414. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  415. unsigned long long blocks;
  416. unsigned long overhead;
  417. unsigned long nrsvblocks;
  418. sector_t nfreeblocks;
  419. int err;
  420. /*
  421. * Compute all of the segment blocks
  422. *
  423. * The blocks before first segment and after last segment
  424. * are excluded.
  425. */
  426. blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
  427. - nilfs->ns_first_data_block;
  428. nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
  429. /*
  430. * Compute the overhead
  431. *
  432. * When distributing meta data blocks outside segment structure,
  433. * We must count them as the overhead.
  434. */
  435. overhead = 0;
  436. err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
  437. if (unlikely(err))
  438. return err;
  439. buf->f_type = NILFS_SUPER_MAGIC;
  440. buf->f_bsize = sb->s_blocksize;
  441. buf->f_blocks = blocks - overhead;
  442. buf->f_bfree = nfreeblocks;
  443. buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
  444. (buf->f_bfree - nrsvblocks) : 0;
  445. buf->f_files = atomic_read(&sbi->s_inodes_count);
  446. buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
  447. buf->f_namelen = NILFS_NAME_LEN;
  448. buf->f_fsid.val[0] = (u32)id;
  449. buf->f_fsid.val[1] = (u32)(id >> 32);
  450. return 0;
  451. }
  452. static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
  453. {
  454. struct super_block *sb = vfs->mnt_sb;
  455. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  456. if (!nilfs_test_opt(sbi, BARRIER))
  457. seq_printf(seq, ",nobarrier");
  458. if (nilfs_test_opt(sbi, SNAPSHOT))
  459. seq_printf(seq, ",cp=%llu",
  460. (unsigned long long int)sbi->s_snapshot_cno);
  461. if (nilfs_test_opt(sbi, ERRORS_PANIC))
  462. seq_printf(seq, ",errors=panic");
  463. if (nilfs_test_opt(sbi, ERRORS_CONT))
  464. seq_printf(seq, ",errors=continue");
  465. if (nilfs_test_opt(sbi, STRICT_ORDER))
  466. seq_printf(seq, ",order=strict");
  467. if (nilfs_test_opt(sbi, NORECOVERY))
  468. seq_printf(seq, ",norecovery");
  469. if (nilfs_test_opt(sbi, DISCARD))
  470. seq_printf(seq, ",discard");
  471. return 0;
  472. }
  473. static const struct super_operations nilfs_sops = {
  474. .alloc_inode = nilfs_alloc_inode,
  475. .destroy_inode = nilfs_destroy_inode,
  476. .dirty_inode = nilfs_dirty_inode,
  477. /* .write_inode = nilfs_write_inode, */
  478. /* .put_inode = nilfs_put_inode, */
  479. /* .drop_inode = nilfs_drop_inode, */
  480. .delete_inode = nilfs_delete_inode,
  481. .put_super = nilfs_put_super,
  482. /* .write_super = nilfs_write_super, */
  483. .sync_fs = nilfs_sync_fs,
  484. /* .write_super_lockfs */
  485. /* .unlockfs */
  486. .statfs = nilfs_statfs,
  487. .remount_fs = nilfs_remount,
  488. .clear_inode = nilfs_clear_inode,
  489. /* .umount_begin */
  490. .show_options = nilfs_show_options
  491. };
  492. static struct inode *
  493. nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
  494. {
  495. struct inode *inode;
  496. if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
  497. ino != NILFS_SKETCH_INO)
  498. return ERR_PTR(-ESTALE);
  499. inode = nilfs_iget(sb, ino);
  500. if (IS_ERR(inode))
  501. return ERR_CAST(inode);
  502. if (generation && inode->i_generation != generation) {
  503. iput(inode);
  504. return ERR_PTR(-ESTALE);
  505. }
  506. return inode;
  507. }
  508. static struct dentry *
  509. nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
  510. int fh_type)
  511. {
  512. return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
  513. nilfs_nfs_get_inode);
  514. }
  515. static struct dentry *
  516. nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
  517. int fh_type)
  518. {
  519. return generic_fh_to_parent(sb, fid, fh_len, fh_type,
  520. nilfs_nfs_get_inode);
  521. }
  522. static const struct export_operations nilfs_export_ops = {
  523. .fh_to_dentry = nilfs_fh_to_dentry,
  524. .fh_to_parent = nilfs_fh_to_parent,
  525. .get_parent = nilfs_get_parent,
  526. };
  527. enum {
  528. Opt_err_cont, Opt_err_panic, Opt_err_ro,
  529. Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
  530. Opt_discard, Opt_err,
  531. };
  532. static match_table_t tokens = {
  533. {Opt_err_cont, "errors=continue"},
  534. {Opt_err_panic, "errors=panic"},
  535. {Opt_err_ro, "errors=remount-ro"},
  536. {Opt_nobarrier, "nobarrier"},
  537. {Opt_snapshot, "cp=%u"},
  538. {Opt_order, "order=%s"},
  539. {Opt_norecovery, "norecovery"},
  540. {Opt_discard, "discard"},
  541. {Opt_err, NULL}
  542. };
  543. static int parse_options(char *options, struct super_block *sb)
  544. {
  545. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  546. char *p;
  547. substring_t args[MAX_OPT_ARGS];
  548. int option;
  549. if (!options)
  550. return 1;
  551. while ((p = strsep(&options, ",")) != NULL) {
  552. int token;
  553. if (!*p)
  554. continue;
  555. token = match_token(p, tokens, args);
  556. switch (token) {
  557. case Opt_nobarrier:
  558. nilfs_clear_opt(sbi, BARRIER);
  559. break;
  560. case Opt_order:
  561. if (strcmp(args[0].from, "relaxed") == 0)
  562. /* Ordered data semantics */
  563. nilfs_clear_opt(sbi, STRICT_ORDER);
  564. else if (strcmp(args[0].from, "strict") == 0)
  565. /* Strict in-order semantics */
  566. nilfs_set_opt(sbi, STRICT_ORDER);
  567. else
  568. return 0;
  569. break;
  570. case Opt_err_panic:
  571. nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
  572. break;
  573. case Opt_err_ro:
  574. nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
  575. break;
  576. case Opt_err_cont:
  577. nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
  578. break;
  579. case Opt_snapshot:
  580. if (match_int(&args[0], &option) || option <= 0)
  581. return 0;
  582. if (!(sb->s_flags & MS_RDONLY))
  583. return 0;
  584. sbi->s_snapshot_cno = option;
  585. nilfs_set_opt(sbi, SNAPSHOT);
  586. break;
  587. case Opt_norecovery:
  588. nilfs_set_opt(sbi, NORECOVERY);
  589. break;
  590. case Opt_discard:
  591. nilfs_set_opt(sbi, DISCARD);
  592. break;
  593. default:
  594. printk(KERN_ERR
  595. "NILFS: Unrecognized mount option \"%s\"\n", p);
  596. return 0;
  597. }
  598. }
  599. return 1;
  600. }
  601. static inline void
  602. nilfs_set_default_options(struct nilfs_sb_info *sbi,
  603. struct nilfs_super_block *sbp)
  604. {
  605. sbi->s_mount_opt =
  606. NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
  607. }
  608. static int nilfs_setup_super(struct nilfs_sb_info *sbi)
  609. {
  610. struct the_nilfs *nilfs = sbi->s_nilfs;
  611. struct nilfs_super_block **sbp;
  612. int max_mnt_count;
  613. int mnt_count;
  614. /* nilfs->ns_sem must be locked by the caller. */
  615. sbp = nilfs_prepare_super(sbi, 0);
  616. if (!sbp)
  617. return -EIO;
  618. max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
  619. mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
  620. if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
  621. printk(KERN_WARNING
  622. "NILFS warning: mounting fs with errors\n");
  623. #if 0
  624. } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
  625. printk(KERN_WARNING
  626. "NILFS warning: maximal mount count reached\n");
  627. #endif
  628. }
  629. if (!max_mnt_count)
  630. sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
  631. sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
  632. sbp[0]->s_state =
  633. cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
  634. sbp[0]->s_mtime = cpu_to_le64(get_seconds());
  635. /* synchronize sbp[1] with sbp[0] */
  636. memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
  637. return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
  638. }
  639. struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
  640. u64 pos, int blocksize,
  641. struct buffer_head **pbh)
  642. {
  643. unsigned long long sb_index = pos;
  644. unsigned long offset;
  645. offset = do_div(sb_index, blocksize);
  646. *pbh = sb_bread(sb, sb_index);
  647. if (!*pbh)
  648. return NULL;
  649. return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
  650. }
  651. int nilfs_store_magic_and_option(struct super_block *sb,
  652. struct nilfs_super_block *sbp,
  653. char *data)
  654. {
  655. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  656. sb->s_magic = le16_to_cpu(sbp->s_magic);
  657. /* FS independent flags */
  658. #ifdef NILFS_ATIME_DISABLE
  659. sb->s_flags |= MS_NOATIME;
  660. #endif
  661. nilfs_set_default_options(sbi, sbp);
  662. sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
  663. sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
  664. sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
  665. sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
  666. return !parse_options(data, sb) ? -EINVAL : 0 ;
  667. }
  668. /**
  669. * nilfs_fill_super() - initialize a super block instance
  670. * @sb: super_block
  671. * @data: mount options
  672. * @silent: silent mode flag
  673. * @nilfs: the_nilfs struct
  674. *
  675. * This function is called exclusively by nilfs->ns_mount_mutex.
  676. * So, the recovery process is protected from other simultaneous mounts.
  677. */
  678. static int
  679. nilfs_fill_super(struct super_block *sb, void *data, int silent,
  680. struct the_nilfs *nilfs)
  681. {
  682. struct nilfs_sb_info *sbi;
  683. struct inode *root;
  684. __u64 cno;
  685. int err;
  686. sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
  687. if (!sbi)
  688. return -ENOMEM;
  689. sb->s_fs_info = sbi;
  690. get_nilfs(nilfs);
  691. sbi->s_nilfs = nilfs;
  692. sbi->s_super = sb;
  693. atomic_set(&sbi->s_count, 1);
  694. err = init_nilfs(nilfs, sbi, (char *)data);
  695. if (err)
  696. goto failed_sbi;
  697. spin_lock_init(&sbi->s_inode_lock);
  698. INIT_LIST_HEAD(&sbi->s_dirty_files);
  699. INIT_LIST_HEAD(&sbi->s_list);
  700. /*
  701. * Following initialization is overlapped because
  702. * nilfs_sb_info structure has been cleared at the beginning.
  703. * But we reserve them to keep our interest and make ready
  704. * for the future change.
  705. */
  706. get_random_bytes(&sbi->s_next_generation,
  707. sizeof(sbi->s_next_generation));
  708. spin_lock_init(&sbi->s_next_gen_lock);
  709. sb->s_op = &nilfs_sops;
  710. sb->s_export_op = &nilfs_export_ops;
  711. sb->s_root = NULL;
  712. sb->s_time_gran = 1;
  713. sb->s_bdi = nilfs->ns_bdi;
  714. err = load_nilfs(nilfs, sbi);
  715. if (err)
  716. goto failed_sbi;
  717. cno = nilfs_last_cno(nilfs);
  718. if (sb->s_flags & MS_RDONLY) {
  719. if (nilfs_test_opt(sbi, SNAPSHOT)) {
  720. down_read(&nilfs->ns_segctor_sem);
  721. err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
  722. sbi->s_snapshot_cno);
  723. up_read(&nilfs->ns_segctor_sem);
  724. if (err < 0) {
  725. if (err == -ENOENT)
  726. err = -EINVAL;
  727. goto failed_sbi;
  728. }
  729. if (!err) {
  730. printk(KERN_ERR
  731. "NILFS: The specified checkpoint is "
  732. "not a snapshot "
  733. "(checkpoint number=%llu).\n",
  734. (unsigned long long)sbi->s_snapshot_cno);
  735. err = -EINVAL;
  736. goto failed_sbi;
  737. }
  738. cno = sbi->s_snapshot_cno;
  739. }
  740. }
  741. err = nilfs_attach_checkpoint(sbi, cno);
  742. if (err) {
  743. printk(KERN_ERR "NILFS: error loading a checkpoint"
  744. " (checkpoint number=%llu).\n", (unsigned long long)cno);
  745. goto failed_sbi;
  746. }
  747. if (!(sb->s_flags & MS_RDONLY)) {
  748. err = nilfs_attach_segment_constructor(sbi);
  749. if (err)
  750. goto failed_checkpoint;
  751. }
  752. root = nilfs_iget(sb, NILFS_ROOT_INO);
  753. if (IS_ERR(root)) {
  754. printk(KERN_ERR "NILFS: get root inode failed\n");
  755. err = PTR_ERR(root);
  756. goto failed_segctor;
  757. }
  758. if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
  759. iput(root);
  760. printk(KERN_ERR "NILFS: corrupt root inode.\n");
  761. err = -EINVAL;
  762. goto failed_segctor;
  763. }
  764. sb->s_root = d_alloc_root(root);
  765. if (!sb->s_root) {
  766. iput(root);
  767. printk(KERN_ERR "NILFS: get root dentry failed\n");
  768. err = -ENOMEM;
  769. goto failed_segctor;
  770. }
  771. if (!(sb->s_flags & MS_RDONLY)) {
  772. down_write(&nilfs->ns_sem);
  773. nilfs_setup_super(sbi);
  774. up_write(&nilfs->ns_sem);
  775. }
  776. down_write(&nilfs->ns_super_sem);
  777. if (!nilfs_test_opt(sbi, SNAPSHOT))
  778. nilfs->ns_current = sbi;
  779. up_write(&nilfs->ns_super_sem);
  780. return 0;
  781. failed_segctor:
  782. nilfs_detach_segment_constructor(sbi);
  783. failed_checkpoint:
  784. nilfs_detach_checkpoint(sbi);
  785. failed_sbi:
  786. put_nilfs(nilfs);
  787. sb->s_fs_info = NULL;
  788. nilfs_put_sbinfo(sbi);
  789. return err;
  790. }
  791. static int nilfs_remount(struct super_block *sb, int *flags, char *data)
  792. {
  793. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  794. struct the_nilfs *nilfs = sbi->s_nilfs;
  795. unsigned long old_sb_flags;
  796. struct nilfs_mount_options old_opts;
  797. int was_snapshot, err;
  798. lock_kernel();
  799. down_write(&nilfs->ns_super_sem);
  800. old_sb_flags = sb->s_flags;
  801. old_opts.mount_opt = sbi->s_mount_opt;
  802. old_opts.snapshot_cno = sbi->s_snapshot_cno;
  803. was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
  804. if (!parse_options(data, sb)) {
  805. err = -EINVAL;
  806. goto restore_opts;
  807. }
  808. sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
  809. err = -EINVAL;
  810. if (was_snapshot) {
  811. if (!(*flags & MS_RDONLY)) {
  812. printk(KERN_ERR "NILFS (device %s): cannot remount "
  813. "snapshot read/write.\n",
  814. sb->s_id);
  815. goto restore_opts;
  816. } else if (sbi->s_snapshot_cno != old_opts.snapshot_cno) {
  817. printk(KERN_ERR "NILFS (device %s): cannot "
  818. "remount to a different snapshot.\n",
  819. sb->s_id);
  820. goto restore_opts;
  821. }
  822. } else {
  823. if (nilfs_test_opt(sbi, SNAPSHOT)) {
  824. printk(KERN_ERR "NILFS (device %s): cannot change "
  825. "a regular mount to a snapshot.\n",
  826. sb->s_id);
  827. goto restore_opts;
  828. }
  829. }
  830. if (!nilfs_valid_fs(nilfs)) {
  831. printk(KERN_WARNING "NILFS (device %s): couldn't "
  832. "remount because the filesystem is in an "
  833. "incomplete recovery state.\n", sb->s_id);
  834. goto restore_opts;
  835. }
  836. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  837. goto out;
  838. if (*flags & MS_RDONLY) {
  839. /* Shutting down the segment constructor */
  840. nilfs_detach_segment_constructor(sbi);
  841. sb->s_flags |= MS_RDONLY;
  842. /*
  843. * Remounting a valid RW partition RDONLY, so set
  844. * the RDONLY flag and then mark the partition as valid again.
  845. */
  846. down_write(&nilfs->ns_sem);
  847. nilfs_cleanup_super(sbi);
  848. up_write(&nilfs->ns_sem);
  849. } else {
  850. /*
  851. * Mounting a RDONLY partition read-write, so reread and
  852. * store the current valid flag. (It may have been changed
  853. * by fsck since we originally mounted the partition.)
  854. */
  855. sb->s_flags &= ~MS_RDONLY;
  856. err = nilfs_attach_segment_constructor(sbi);
  857. if (err)
  858. goto restore_opts;
  859. down_write(&nilfs->ns_sem);
  860. nilfs_setup_super(sbi);
  861. up_write(&nilfs->ns_sem);
  862. }
  863. out:
  864. up_write(&nilfs->ns_super_sem);
  865. unlock_kernel();
  866. return 0;
  867. restore_opts:
  868. sb->s_flags = old_sb_flags;
  869. sbi->s_mount_opt = old_opts.mount_opt;
  870. sbi->s_snapshot_cno = old_opts.snapshot_cno;
  871. up_write(&nilfs->ns_super_sem);
  872. unlock_kernel();
  873. return err;
  874. }
  875. struct nilfs_super_data {
  876. struct block_device *bdev;
  877. struct nilfs_sb_info *sbi;
  878. __u64 cno;
  879. int flags;
  880. };
  881. /**
  882. * nilfs_identify - pre-read mount options needed to identify mount instance
  883. * @data: mount options
  884. * @sd: nilfs_super_data
  885. */
  886. static int nilfs_identify(char *data, struct nilfs_super_data *sd)
  887. {
  888. char *p, *options = data;
  889. substring_t args[MAX_OPT_ARGS];
  890. int option, token;
  891. int ret = 0;
  892. do {
  893. p = strsep(&options, ",");
  894. if (p != NULL && *p) {
  895. token = match_token(p, tokens, args);
  896. if (token == Opt_snapshot) {
  897. if (!(sd->flags & MS_RDONLY))
  898. ret++;
  899. else {
  900. ret = match_int(&args[0], &option);
  901. if (!ret) {
  902. if (option > 0)
  903. sd->cno = option;
  904. else
  905. ret++;
  906. }
  907. }
  908. }
  909. if (ret)
  910. printk(KERN_ERR
  911. "NILFS: invalid mount option: %s\n", p);
  912. }
  913. if (!options)
  914. break;
  915. BUG_ON(options == data);
  916. *(options - 1) = ',';
  917. } while (!ret);
  918. return ret;
  919. }
  920. static int nilfs_set_bdev_super(struct super_block *s, void *data)
  921. {
  922. struct nilfs_super_data *sd = data;
  923. s->s_bdev = sd->bdev;
  924. s->s_dev = s->s_bdev->bd_dev;
  925. return 0;
  926. }
  927. static int nilfs_test_bdev_super(struct super_block *s, void *data)
  928. {
  929. struct nilfs_super_data *sd = data;
  930. return sd->sbi && s->s_fs_info == (void *)sd->sbi;
  931. }
  932. static int
  933. nilfs_get_sb(struct file_system_type *fs_type, int flags,
  934. const char *dev_name, void *data, struct vfsmount *mnt)
  935. {
  936. struct nilfs_super_data sd;
  937. struct super_block *s;
  938. fmode_t mode = FMODE_READ;
  939. struct the_nilfs *nilfs;
  940. int err, need_to_close = 1;
  941. if (!(flags & MS_RDONLY))
  942. mode |= FMODE_WRITE;
  943. sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
  944. if (IS_ERR(sd.bdev))
  945. return PTR_ERR(sd.bdev);
  946. /*
  947. * To get mount instance using sget() vfs-routine, NILFS needs
  948. * much more information than normal filesystems to identify mount
  949. * instance. For snapshot mounts, not only a mount type (ro-mount
  950. * or rw-mount) but also a checkpoint number is required.
  951. */
  952. sd.cno = 0;
  953. sd.flags = flags;
  954. if (nilfs_identify((char *)data, &sd)) {
  955. err = -EINVAL;
  956. goto failed;
  957. }
  958. nilfs = find_or_create_nilfs(sd.bdev);
  959. if (!nilfs) {
  960. err = -ENOMEM;
  961. goto failed;
  962. }
  963. mutex_lock(&nilfs->ns_mount_mutex);
  964. if (!sd.cno) {
  965. /*
  966. * Check if an exclusive mount exists or not.
  967. * Snapshot mounts coexist with a current mount
  968. * (i.e. rw-mount or ro-mount), whereas rw-mount and
  969. * ro-mount are mutually exclusive.
  970. */
  971. down_read(&nilfs->ns_super_sem);
  972. if (nilfs->ns_current &&
  973. ((nilfs->ns_current->s_super->s_flags ^ flags)
  974. & MS_RDONLY)) {
  975. up_read(&nilfs->ns_super_sem);
  976. err = -EBUSY;
  977. goto failed_unlock;
  978. }
  979. up_read(&nilfs->ns_super_sem);
  980. }
  981. /*
  982. * Find existing nilfs_sb_info struct
  983. */
  984. sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
  985. /*
  986. * Get super block instance holding the nilfs_sb_info struct.
  987. * A new instance is allocated if no existing mount is present or
  988. * existing instance has been unmounted.
  989. */
  990. s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
  991. if (sd.sbi)
  992. nilfs_put_sbinfo(sd.sbi);
  993. if (IS_ERR(s)) {
  994. err = PTR_ERR(s);
  995. goto failed_unlock;
  996. }
  997. if (!s->s_root) {
  998. char b[BDEVNAME_SIZE];
  999. /* New superblock instance created */
  1000. s->s_flags = flags;
  1001. s->s_mode = mode;
  1002. strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
  1003. sb_set_blocksize(s, block_size(sd.bdev));
  1004. err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
  1005. nilfs);
  1006. if (err)
  1007. goto cancel_new;
  1008. s->s_flags |= MS_ACTIVE;
  1009. need_to_close = 0;
  1010. }
  1011. mutex_unlock(&nilfs->ns_mount_mutex);
  1012. put_nilfs(nilfs);
  1013. if (need_to_close)
  1014. close_bdev_exclusive(sd.bdev, mode);
  1015. simple_set_mnt(mnt, s);
  1016. return 0;
  1017. failed_unlock:
  1018. mutex_unlock(&nilfs->ns_mount_mutex);
  1019. put_nilfs(nilfs);
  1020. failed:
  1021. close_bdev_exclusive(sd.bdev, mode);
  1022. return err;
  1023. cancel_new:
  1024. /* Abandoning the newly allocated superblock */
  1025. mutex_unlock(&nilfs->ns_mount_mutex);
  1026. put_nilfs(nilfs);
  1027. deactivate_locked_super(s);
  1028. /*
  1029. * deactivate_locked_super() invokes close_bdev_exclusive().
  1030. * We must finish all post-cleaning before this call;
  1031. * put_nilfs() needs the block device.
  1032. */
  1033. return err;
  1034. }
  1035. struct file_system_type nilfs_fs_type = {
  1036. .owner = THIS_MODULE,
  1037. .name = "nilfs2",
  1038. .get_sb = nilfs_get_sb,
  1039. .kill_sb = kill_block_super,
  1040. .fs_flags = FS_REQUIRES_DEV,
  1041. };
  1042. static void nilfs_inode_init_once(void *obj)
  1043. {
  1044. struct nilfs_inode_info *ii = obj;
  1045. INIT_LIST_HEAD(&ii->i_dirty);
  1046. #ifdef CONFIG_NILFS_XATTR
  1047. init_rwsem(&ii->xattr_sem);
  1048. #endif
  1049. nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
  1050. ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
  1051. inode_init_once(&ii->vfs_inode);
  1052. }
  1053. static void nilfs_segbuf_init_once(void *obj)
  1054. {
  1055. memset(obj, 0, sizeof(struct nilfs_segment_buffer));
  1056. }
  1057. static void nilfs_destroy_cachep(void)
  1058. {
  1059. if (nilfs_inode_cachep)
  1060. kmem_cache_destroy(nilfs_inode_cachep);
  1061. if (nilfs_transaction_cachep)
  1062. kmem_cache_destroy(nilfs_transaction_cachep);
  1063. if (nilfs_segbuf_cachep)
  1064. kmem_cache_destroy(nilfs_segbuf_cachep);
  1065. if (nilfs_btree_path_cache)
  1066. kmem_cache_destroy(nilfs_btree_path_cache);
  1067. }
  1068. static int __init nilfs_init_cachep(void)
  1069. {
  1070. nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
  1071. sizeof(struct nilfs_inode_info), 0,
  1072. SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
  1073. if (!nilfs_inode_cachep)
  1074. goto fail;
  1075. nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
  1076. sizeof(struct nilfs_transaction_info), 0,
  1077. SLAB_RECLAIM_ACCOUNT, NULL);
  1078. if (!nilfs_transaction_cachep)
  1079. goto fail;
  1080. nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
  1081. sizeof(struct nilfs_segment_buffer), 0,
  1082. SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
  1083. if (!nilfs_segbuf_cachep)
  1084. goto fail;
  1085. nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
  1086. sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
  1087. 0, 0, NULL);
  1088. if (!nilfs_btree_path_cache)
  1089. goto fail;
  1090. return 0;
  1091. fail:
  1092. nilfs_destroy_cachep();
  1093. return -ENOMEM;
  1094. }
  1095. static int __init init_nilfs_fs(void)
  1096. {
  1097. int err;
  1098. err = nilfs_init_cachep();
  1099. if (err)
  1100. goto fail;
  1101. err = register_filesystem(&nilfs_fs_type);
  1102. if (err)
  1103. goto free_cachep;
  1104. printk(KERN_INFO "NILFS version 2 loaded\n");
  1105. return 0;
  1106. free_cachep:
  1107. nilfs_destroy_cachep();
  1108. fail:
  1109. return err;
  1110. }
  1111. static void __exit exit_nilfs_fs(void)
  1112. {
  1113. nilfs_destroy_cachep();
  1114. unregister_filesystem(&nilfs_fs_type);
  1115. }
  1116. module_init(init_nilfs_fs)
  1117. module_exit(exit_nilfs_fs)