page_alloc.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/fault-inject.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/div64.h>
  45. #include "internal.h"
  46. /*
  47. * Array of node states.
  48. */
  49. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  50. [N_POSSIBLE] = NODE_MASK_ALL,
  51. [N_ONLINE] = { { [0] = 1UL } },
  52. #ifndef CONFIG_NUMA
  53. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  54. #ifdef CONFIG_HIGHMEM
  55. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  56. #endif
  57. [N_CPU] = { { [0] = 1UL } },
  58. #endif /* NUMA */
  59. };
  60. EXPORT_SYMBOL(node_states);
  61. unsigned long totalram_pages __read_mostly;
  62. unsigned long totalreserve_pages __read_mostly;
  63. long nr_swap_pages;
  64. int percpu_pagelist_fraction;
  65. static void __free_pages_ok(struct page *page, unsigned int order);
  66. /*
  67. * results with 256, 32 in the lowmem_reserve sysctl:
  68. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  69. * 1G machine -> (16M dma, 784M normal, 224M high)
  70. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  71. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  72. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  73. *
  74. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  75. * don't need any ZONE_NORMAL reservation
  76. */
  77. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  78. #ifdef CONFIG_ZONE_DMA
  79. 256,
  80. #endif
  81. #ifdef CONFIG_ZONE_DMA32
  82. 256,
  83. #endif
  84. #ifdef CONFIG_HIGHMEM
  85. 32,
  86. #endif
  87. 32,
  88. };
  89. EXPORT_SYMBOL(totalram_pages);
  90. static char * const zone_names[MAX_NR_ZONES] = {
  91. #ifdef CONFIG_ZONE_DMA
  92. "DMA",
  93. #endif
  94. #ifdef CONFIG_ZONE_DMA32
  95. "DMA32",
  96. #endif
  97. "Normal",
  98. #ifdef CONFIG_HIGHMEM
  99. "HighMem",
  100. #endif
  101. "Movable",
  102. };
  103. int min_free_kbytes = 1024;
  104. unsigned long __meminitdata nr_kernel_pages;
  105. unsigned long __meminitdata nr_all_pages;
  106. static unsigned long __meminitdata dma_reserve;
  107. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  108. /*
  109. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  110. * ranges of memory (RAM) that may be registered with add_active_range().
  111. * Ranges passed to add_active_range() will be merged if possible
  112. * so the number of times add_active_range() can be called is
  113. * related to the number of nodes and the number of holes
  114. */
  115. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  116. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  117. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  118. #else
  119. #if MAX_NUMNODES >= 32
  120. /* If there can be many nodes, allow up to 50 holes per node */
  121. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  122. #else
  123. /* By default, allow up to 256 distinct regions */
  124. #define MAX_ACTIVE_REGIONS 256
  125. #endif
  126. #endif
  127. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  128. static int __meminitdata nr_nodemap_entries;
  129. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  130. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  131. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  132. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  133. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  134. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  135. unsigned long __initdata required_kernelcore;
  136. unsigned long __initdata required_movablecore;
  137. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  138. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  139. int movable_zone;
  140. EXPORT_SYMBOL(movable_zone);
  141. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  142. #if MAX_NUMNODES > 1
  143. int nr_node_ids __read_mostly = MAX_NUMNODES;
  144. EXPORT_SYMBOL(nr_node_ids);
  145. #endif
  146. static inline int get_pageblock_migratetype(struct page *page)
  147. {
  148. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  149. }
  150. static void set_pageblock_migratetype(struct page *page, int migratetype)
  151. {
  152. set_pageblock_flags_group(page, (unsigned long)migratetype,
  153. PB_migrate, PB_migrate_end);
  154. }
  155. static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
  156. {
  157. return ((gfp_flags & __GFP_MOVABLE) != 0);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. printk(KERN_EMERG "Bad page state in process '%s'\n"
  202. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  203. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  204. KERN_EMERG "Backtrace:\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. dump_stack();
  209. page->flags &= ~(1 << PG_lru |
  210. 1 << PG_private |
  211. 1 << PG_locked |
  212. 1 << PG_active |
  213. 1 << PG_dirty |
  214. 1 << PG_reclaim |
  215. 1 << PG_slab |
  216. 1 << PG_swapcache |
  217. 1 << PG_writeback |
  218. 1 << PG_buddy );
  219. set_page_count(page, 0);
  220. reset_page_mapcount(page);
  221. page->mapping = NULL;
  222. add_taint(TAINT_BAD_PAGE);
  223. }
  224. /*
  225. * Higher-order pages are called "compound pages". They are structured thusly:
  226. *
  227. * The first PAGE_SIZE page is called the "head page".
  228. *
  229. * The remaining PAGE_SIZE pages are called "tail pages".
  230. *
  231. * All pages have PG_compound set. All pages have their ->private pointing at
  232. * the head page (even the head page has this).
  233. *
  234. * The first tail page's ->lru.next holds the address of the compound page's
  235. * put_page() function. Its ->lru.prev holds the order of allocation.
  236. * This usage means that zero-order pages may not be compound.
  237. */
  238. static void free_compound_page(struct page *page)
  239. {
  240. __free_pages_ok(page, compound_order(page));
  241. }
  242. static void prep_compound_page(struct page *page, unsigned long order)
  243. {
  244. int i;
  245. int nr_pages = 1 << order;
  246. set_compound_page_dtor(page, free_compound_page);
  247. set_compound_order(page, order);
  248. __SetPageHead(page);
  249. for (i = 1; i < nr_pages; i++) {
  250. struct page *p = page + i;
  251. __SetPageTail(p);
  252. p->first_page = page;
  253. }
  254. }
  255. static void destroy_compound_page(struct page *page, unsigned long order)
  256. {
  257. int i;
  258. int nr_pages = 1 << order;
  259. if (unlikely(compound_order(page) != order))
  260. bad_page(page);
  261. if (unlikely(!PageHead(page)))
  262. bad_page(page);
  263. __ClearPageHead(page);
  264. for (i = 1; i < nr_pages; i++) {
  265. struct page *p = page + i;
  266. if (unlikely(!PageTail(p) |
  267. (p->first_page != page)))
  268. bad_page(page);
  269. __ClearPageTail(p);
  270. }
  271. }
  272. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  273. {
  274. int i;
  275. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  276. /*
  277. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  278. * and __GFP_HIGHMEM from hard or soft interrupt context.
  279. */
  280. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  281. for (i = 0; i < (1 << order); i++)
  282. clear_highpage(page + i);
  283. }
  284. /*
  285. * function for dealing with page's order in buddy system.
  286. * zone->lock is already acquired when we use these.
  287. * So, we don't need atomic page->flags operations here.
  288. */
  289. static inline unsigned long page_order(struct page *page)
  290. {
  291. return page_private(page);
  292. }
  293. static inline void set_page_order(struct page *page, int order)
  294. {
  295. set_page_private(page, order);
  296. __SetPageBuddy(page);
  297. }
  298. static inline void rmv_page_order(struct page *page)
  299. {
  300. __ClearPageBuddy(page);
  301. set_page_private(page, 0);
  302. }
  303. /*
  304. * Locate the struct page for both the matching buddy in our
  305. * pair (buddy1) and the combined O(n+1) page they form (page).
  306. *
  307. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  308. * the following equation:
  309. * B2 = B1 ^ (1 << O)
  310. * For example, if the starting buddy (buddy2) is #8 its order
  311. * 1 buddy is #10:
  312. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  313. *
  314. * 2) Any buddy B will have an order O+1 parent P which
  315. * satisfies the following equation:
  316. * P = B & ~(1 << O)
  317. *
  318. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  319. */
  320. static inline struct page *
  321. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  322. {
  323. unsigned long buddy_idx = page_idx ^ (1 << order);
  324. return page + (buddy_idx - page_idx);
  325. }
  326. static inline unsigned long
  327. __find_combined_index(unsigned long page_idx, unsigned int order)
  328. {
  329. return (page_idx & ~(1 << order));
  330. }
  331. /*
  332. * This function checks whether a page is free && is the buddy
  333. * we can do coalesce a page and its buddy if
  334. * (a) the buddy is not in a hole &&
  335. * (b) the buddy is in the buddy system &&
  336. * (c) a page and its buddy have the same order &&
  337. * (d) a page and its buddy are in the same zone.
  338. *
  339. * For recording whether a page is in the buddy system, we use PG_buddy.
  340. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  341. *
  342. * For recording page's order, we use page_private(page).
  343. */
  344. static inline int page_is_buddy(struct page *page, struct page *buddy,
  345. int order)
  346. {
  347. if (!pfn_valid_within(page_to_pfn(buddy)))
  348. return 0;
  349. if (page_zone_id(page) != page_zone_id(buddy))
  350. return 0;
  351. if (PageBuddy(buddy) && page_order(buddy) == order) {
  352. BUG_ON(page_count(buddy) != 0);
  353. return 1;
  354. }
  355. return 0;
  356. }
  357. /*
  358. * Freeing function for a buddy system allocator.
  359. *
  360. * The concept of a buddy system is to maintain direct-mapped table
  361. * (containing bit values) for memory blocks of various "orders".
  362. * The bottom level table contains the map for the smallest allocatable
  363. * units of memory (here, pages), and each level above it describes
  364. * pairs of units from the levels below, hence, "buddies".
  365. * At a high level, all that happens here is marking the table entry
  366. * at the bottom level available, and propagating the changes upward
  367. * as necessary, plus some accounting needed to play nicely with other
  368. * parts of the VM system.
  369. * At each level, we keep a list of pages, which are heads of continuous
  370. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  371. * order is recorded in page_private(page) field.
  372. * So when we are allocating or freeing one, we can derive the state of the
  373. * other. That is, if we allocate a small block, and both were
  374. * free, the remainder of the region must be split into blocks.
  375. * If a block is freed, and its buddy is also free, then this
  376. * triggers coalescing into a block of larger size.
  377. *
  378. * -- wli
  379. */
  380. static inline void __free_one_page(struct page *page,
  381. struct zone *zone, unsigned int order)
  382. {
  383. unsigned long page_idx;
  384. int order_size = 1 << order;
  385. int migratetype = get_pageblock_migratetype(page);
  386. if (unlikely(PageCompound(page)))
  387. destroy_compound_page(page, order);
  388. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  389. VM_BUG_ON(page_idx & (order_size - 1));
  390. VM_BUG_ON(bad_range(zone, page));
  391. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  392. while (order < MAX_ORDER-1) {
  393. unsigned long combined_idx;
  394. struct page *buddy;
  395. buddy = __page_find_buddy(page, page_idx, order);
  396. if (!page_is_buddy(page, buddy, order))
  397. break; /* Move the buddy up one level. */
  398. list_del(&buddy->lru);
  399. zone->free_area[order].nr_free--;
  400. rmv_page_order(buddy);
  401. combined_idx = __find_combined_index(page_idx, order);
  402. page = page + (combined_idx - page_idx);
  403. page_idx = combined_idx;
  404. order++;
  405. }
  406. set_page_order(page, order);
  407. list_add(&page->lru,
  408. &zone->free_area[order].free_list[migratetype]);
  409. zone->free_area[order].nr_free++;
  410. }
  411. static inline int free_pages_check(struct page *page)
  412. {
  413. if (unlikely(page_mapcount(page) |
  414. (page->mapping != NULL) |
  415. (page_count(page) != 0) |
  416. (page->flags & (
  417. 1 << PG_lru |
  418. 1 << PG_private |
  419. 1 << PG_locked |
  420. 1 << PG_active |
  421. 1 << PG_slab |
  422. 1 << PG_swapcache |
  423. 1 << PG_writeback |
  424. 1 << PG_reserved |
  425. 1 << PG_buddy ))))
  426. bad_page(page);
  427. if (PageDirty(page))
  428. __ClearPageDirty(page);
  429. /*
  430. * For now, we report if PG_reserved was found set, but do not
  431. * clear it, and do not free the page. But we shall soon need
  432. * to do more, for when the ZERO_PAGE count wraps negative.
  433. */
  434. return PageReserved(page);
  435. }
  436. /*
  437. * Frees a list of pages.
  438. * Assumes all pages on list are in same zone, and of same order.
  439. * count is the number of pages to free.
  440. *
  441. * If the zone was previously in an "all pages pinned" state then look to
  442. * see if this freeing clears that state.
  443. *
  444. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  445. * pinned" detection logic.
  446. */
  447. static void free_pages_bulk(struct zone *zone, int count,
  448. struct list_head *list, int order)
  449. {
  450. spin_lock(&zone->lock);
  451. zone->all_unreclaimable = 0;
  452. zone->pages_scanned = 0;
  453. while (count--) {
  454. struct page *page;
  455. VM_BUG_ON(list_empty(list));
  456. page = list_entry(list->prev, struct page, lru);
  457. /* have to delete it as __free_one_page list manipulates */
  458. list_del(&page->lru);
  459. __free_one_page(page, zone, order);
  460. }
  461. spin_unlock(&zone->lock);
  462. }
  463. static void free_one_page(struct zone *zone, struct page *page, int order)
  464. {
  465. spin_lock(&zone->lock);
  466. zone->all_unreclaimable = 0;
  467. zone->pages_scanned = 0;
  468. __free_one_page(page, zone, order);
  469. spin_unlock(&zone->lock);
  470. }
  471. static void __free_pages_ok(struct page *page, unsigned int order)
  472. {
  473. unsigned long flags;
  474. int i;
  475. int reserved = 0;
  476. for (i = 0 ; i < (1 << order) ; ++i)
  477. reserved += free_pages_check(page + i);
  478. if (reserved)
  479. return;
  480. if (!PageHighMem(page))
  481. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  482. arch_free_page(page, order);
  483. kernel_map_pages(page, 1 << order, 0);
  484. local_irq_save(flags);
  485. __count_vm_events(PGFREE, 1 << order);
  486. free_one_page(page_zone(page), page, order);
  487. local_irq_restore(flags);
  488. }
  489. /*
  490. * permit the bootmem allocator to evade page validation on high-order frees
  491. */
  492. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  493. {
  494. if (order == 0) {
  495. __ClearPageReserved(page);
  496. set_page_count(page, 0);
  497. set_page_refcounted(page);
  498. __free_page(page);
  499. } else {
  500. int loop;
  501. prefetchw(page);
  502. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  503. struct page *p = &page[loop];
  504. if (loop + 1 < BITS_PER_LONG)
  505. prefetchw(p + 1);
  506. __ClearPageReserved(p);
  507. set_page_count(p, 0);
  508. }
  509. set_page_refcounted(page);
  510. __free_pages(page, order);
  511. }
  512. }
  513. /*
  514. * The order of subdivision here is critical for the IO subsystem.
  515. * Please do not alter this order without good reasons and regression
  516. * testing. Specifically, as large blocks of memory are subdivided,
  517. * the order in which smaller blocks are delivered depends on the order
  518. * they're subdivided in this function. This is the primary factor
  519. * influencing the order in which pages are delivered to the IO
  520. * subsystem according to empirical testing, and this is also justified
  521. * by considering the behavior of a buddy system containing a single
  522. * large block of memory acted on by a series of small allocations.
  523. * This behavior is a critical factor in sglist merging's success.
  524. *
  525. * -- wli
  526. */
  527. static inline void expand(struct zone *zone, struct page *page,
  528. int low, int high, struct free_area *area,
  529. int migratetype)
  530. {
  531. unsigned long size = 1 << high;
  532. while (high > low) {
  533. area--;
  534. high--;
  535. size >>= 1;
  536. VM_BUG_ON(bad_range(zone, &page[size]));
  537. list_add(&page[size].lru, &area->free_list[migratetype]);
  538. area->nr_free++;
  539. set_page_order(&page[size], high);
  540. }
  541. }
  542. /*
  543. * This page is about to be returned from the page allocator
  544. */
  545. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  546. {
  547. if (unlikely(page_mapcount(page) |
  548. (page->mapping != NULL) |
  549. (page_count(page) != 0) |
  550. (page->flags & (
  551. 1 << PG_lru |
  552. 1 << PG_private |
  553. 1 << PG_locked |
  554. 1 << PG_active |
  555. 1 << PG_dirty |
  556. 1 << PG_slab |
  557. 1 << PG_swapcache |
  558. 1 << PG_writeback |
  559. 1 << PG_reserved |
  560. 1 << PG_buddy ))))
  561. bad_page(page);
  562. /*
  563. * For now, we report if PG_reserved was found set, but do not
  564. * clear it, and do not allocate the page: as a safety net.
  565. */
  566. if (PageReserved(page))
  567. return 1;
  568. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  569. 1 << PG_referenced | 1 << PG_arch_1 |
  570. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  571. set_page_private(page, 0);
  572. set_page_refcounted(page);
  573. arch_alloc_page(page, order);
  574. kernel_map_pages(page, 1 << order, 1);
  575. if (gfp_flags & __GFP_ZERO)
  576. prep_zero_page(page, order, gfp_flags);
  577. if (order && (gfp_flags & __GFP_COMP))
  578. prep_compound_page(page, order);
  579. return 0;
  580. }
  581. /*
  582. * This array describes the order lists are fallen back to when
  583. * the free lists for the desirable migrate type are depleted
  584. */
  585. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  586. [MIGRATE_UNMOVABLE] = { MIGRATE_MOVABLE },
  587. [MIGRATE_MOVABLE] = { MIGRATE_UNMOVABLE },
  588. };
  589. /* Remove an element from the buddy allocator from the fallback list */
  590. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  591. int start_migratetype)
  592. {
  593. struct free_area * area;
  594. int current_order;
  595. struct page *page;
  596. int migratetype, i;
  597. /* Find the largest possible block of pages in the other list */
  598. for (current_order = MAX_ORDER-1; current_order >= order;
  599. --current_order) {
  600. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  601. migratetype = fallbacks[start_migratetype][i];
  602. area = &(zone->free_area[current_order]);
  603. if (list_empty(&area->free_list[migratetype]))
  604. continue;
  605. page = list_entry(area->free_list[migratetype].next,
  606. struct page, lru);
  607. area->nr_free--;
  608. /*
  609. * If breaking a large block of pages, place the buddies
  610. * on the preferred allocation list
  611. */
  612. if (unlikely(current_order >= MAX_ORDER / 2))
  613. migratetype = start_migratetype;
  614. /* Remove the page from the freelists */
  615. list_del(&page->lru);
  616. rmv_page_order(page);
  617. __mod_zone_page_state(zone, NR_FREE_PAGES,
  618. -(1UL << order));
  619. if (current_order == MAX_ORDER - 1)
  620. set_pageblock_migratetype(page,
  621. start_migratetype);
  622. expand(zone, page, order, current_order, area, migratetype);
  623. return page;
  624. }
  625. }
  626. return NULL;
  627. }
  628. /*
  629. * Do the hard work of removing an element from the buddy allocator.
  630. * Call me with the zone->lock already held.
  631. */
  632. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  633. int migratetype)
  634. {
  635. struct free_area * area;
  636. unsigned int current_order;
  637. struct page *page;
  638. /* Find a page of the appropriate size in the preferred list */
  639. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  640. area = &(zone->free_area[current_order]);
  641. if (list_empty(&area->free_list[migratetype]))
  642. continue;
  643. page = list_entry(area->free_list[migratetype].next,
  644. struct page, lru);
  645. list_del(&page->lru);
  646. rmv_page_order(page);
  647. area->nr_free--;
  648. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  649. expand(zone, page, order, current_order, area, migratetype);
  650. goto got_page;
  651. }
  652. page = __rmqueue_fallback(zone, order, migratetype);
  653. got_page:
  654. return page;
  655. }
  656. /*
  657. * Obtain a specified number of elements from the buddy allocator, all under
  658. * a single hold of the lock, for efficiency. Add them to the supplied list.
  659. * Returns the number of new pages which were placed at *list.
  660. */
  661. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  662. unsigned long count, struct list_head *list,
  663. int migratetype)
  664. {
  665. int i;
  666. spin_lock(&zone->lock);
  667. for (i = 0; i < count; ++i) {
  668. struct page *page = __rmqueue(zone, order, migratetype);
  669. if (unlikely(page == NULL))
  670. break;
  671. list_add_tail(&page->lru, list);
  672. }
  673. spin_unlock(&zone->lock);
  674. return i;
  675. }
  676. #ifdef CONFIG_NUMA
  677. /*
  678. * Called from the vmstat counter updater to drain pagesets of this
  679. * currently executing processor on remote nodes after they have
  680. * expired.
  681. *
  682. * Note that this function must be called with the thread pinned to
  683. * a single processor.
  684. */
  685. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  686. {
  687. unsigned long flags;
  688. int to_drain;
  689. local_irq_save(flags);
  690. if (pcp->count >= pcp->batch)
  691. to_drain = pcp->batch;
  692. else
  693. to_drain = pcp->count;
  694. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  695. pcp->count -= to_drain;
  696. local_irq_restore(flags);
  697. }
  698. #endif
  699. static void __drain_pages(unsigned int cpu)
  700. {
  701. unsigned long flags;
  702. struct zone *zone;
  703. int i;
  704. for_each_zone(zone) {
  705. struct per_cpu_pageset *pset;
  706. if (!populated_zone(zone))
  707. continue;
  708. pset = zone_pcp(zone, cpu);
  709. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  710. struct per_cpu_pages *pcp;
  711. pcp = &pset->pcp[i];
  712. local_irq_save(flags);
  713. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  714. pcp->count = 0;
  715. local_irq_restore(flags);
  716. }
  717. }
  718. }
  719. #ifdef CONFIG_HIBERNATION
  720. void mark_free_pages(struct zone *zone)
  721. {
  722. unsigned long pfn, max_zone_pfn;
  723. unsigned long flags;
  724. int order, t;
  725. struct list_head *curr;
  726. if (!zone->spanned_pages)
  727. return;
  728. spin_lock_irqsave(&zone->lock, flags);
  729. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  730. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  731. if (pfn_valid(pfn)) {
  732. struct page *page = pfn_to_page(pfn);
  733. if (!swsusp_page_is_forbidden(page))
  734. swsusp_unset_page_free(page);
  735. }
  736. for_each_migratetype_order(order, t) {
  737. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  738. unsigned long i;
  739. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  740. for (i = 0; i < (1UL << order); i++)
  741. swsusp_set_page_free(pfn_to_page(pfn + i));
  742. }
  743. }
  744. spin_unlock_irqrestore(&zone->lock, flags);
  745. }
  746. /*
  747. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  748. */
  749. void drain_local_pages(void)
  750. {
  751. unsigned long flags;
  752. local_irq_save(flags);
  753. __drain_pages(smp_processor_id());
  754. local_irq_restore(flags);
  755. }
  756. #endif /* CONFIG_HIBERNATION */
  757. /*
  758. * Free a 0-order page
  759. */
  760. static void fastcall free_hot_cold_page(struct page *page, int cold)
  761. {
  762. struct zone *zone = page_zone(page);
  763. struct per_cpu_pages *pcp;
  764. unsigned long flags;
  765. if (PageAnon(page))
  766. page->mapping = NULL;
  767. if (free_pages_check(page))
  768. return;
  769. if (!PageHighMem(page))
  770. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  771. arch_free_page(page, 0);
  772. kernel_map_pages(page, 1, 0);
  773. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  774. local_irq_save(flags);
  775. __count_vm_event(PGFREE);
  776. list_add(&page->lru, &pcp->list);
  777. pcp->count++;
  778. if (pcp->count >= pcp->high) {
  779. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  780. pcp->count -= pcp->batch;
  781. }
  782. local_irq_restore(flags);
  783. put_cpu();
  784. }
  785. void fastcall free_hot_page(struct page *page)
  786. {
  787. free_hot_cold_page(page, 0);
  788. }
  789. void fastcall free_cold_page(struct page *page)
  790. {
  791. free_hot_cold_page(page, 1);
  792. }
  793. /*
  794. * split_page takes a non-compound higher-order page, and splits it into
  795. * n (1<<order) sub-pages: page[0..n]
  796. * Each sub-page must be freed individually.
  797. *
  798. * Note: this is probably too low level an operation for use in drivers.
  799. * Please consult with lkml before using this in your driver.
  800. */
  801. void split_page(struct page *page, unsigned int order)
  802. {
  803. int i;
  804. VM_BUG_ON(PageCompound(page));
  805. VM_BUG_ON(!page_count(page));
  806. for (i = 1; i < (1 << order); i++)
  807. set_page_refcounted(page + i);
  808. }
  809. /*
  810. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  811. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  812. * or two.
  813. */
  814. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  815. struct zone *zone, int order, gfp_t gfp_flags)
  816. {
  817. unsigned long flags;
  818. struct page *page;
  819. int cold = !!(gfp_flags & __GFP_COLD);
  820. int cpu;
  821. int migratetype = gfpflags_to_migratetype(gfp_flags);
  822. again:
  823. cpu = get_cpu();
  824. if (likely(order == 0)) {
  825. struct per_cpu_pages *pcp;
  826. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  827. local_irq_save(flags);
  828. if (!pcp->count) {
  829. pcp->count = rmqueue_bulk(zone, 0,
  830. pcp->batch, &pcp->list, migratetype);
  831. if (unlikely(!pcp->count))
  832. goto failed;
  833. }
  834. page = list_entry(pcp->list.next, struct page, lru);
  835. list_del(&page->lru);
  836. pcp->count--;
  837. } else {
  838. spin_lock_irqsave(&zone->lock, flags);
  839. page = __rmqueue(zone, order, migratetype);
  840. spin_unlock(&zone->lock);
  841. if (!page)
  842. goto failed;
  843. }
  844. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  845. zone_statistics(zonelist, zone);
  846. local_irq_restore(flags);
  847. put_cpu();
  848. VM_BUG_ON(bad_range(zone, page));
  849. if (prep_new_page(page, order, gfp_flags))
  850. goto again;
  851. return page;
  852. failed:
  853. local_irq_restore(flags);
  854. put_cpu();
  855. return NULL;
  856. }
  857. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  858. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  859. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  860. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  861. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  862. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  863. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  864. #ifdef CONFIG_FAIL_PAGE_ALLOC
  865. static struct fail_page_alloc_attr {
  866. struct fault_attr attr;
  867. u32 ignore_gfp_highmem;
  868. u32 ignore_gfp_wait;
  869. u32 min_order;
  870. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  871. struct dentry *ignore_gfp_highmem_file;
  872. struct dentry *ignore_gfp_wait_file;
  873. struct dentry *min_order_file;
  874. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  875. } fail_page_alloc = {
  876. .attr = FAULT_ATTR_INITIALIZER,
  877. .ignore_gfp_wait = 1,
  878. .ignore_gfp_highmem = 1,
  879. .min_order = 1,
  880. };
  881. static int __init setup_fail_page_alloc(char *str)
  882. {
  883. return setup_fault_attr(&fail_page_alloc.attr, str);
  884. }
  885. __setup("fail_page_alloc=", setup_fail_page_alloc);
  886. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  887. {
  888. if (order < fail_page_alloc.min_order)
  889. return 0;
  890. if (gfp_mask & __GFP_NOFAIL)
  891. return 0;
  892. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  893. return 0;
  894. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  895. return 0;
  896. return should_fail(&fail_page_alloc.attr, 1 << order);
  897. }
  898. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  899. static int __init fail_page_alloc_debugfs(void)
  900. {
  901. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  902. struct dentry *dir;
  903. int err;
  904. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  905. "fail_page_alloc");
  906. if (err)
  907. return err;
  908. dir = fail_page_alloc.attr.dentries.dir;
  909. fail_page_alloc.ignore_gfp_wait_file =
  910. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  911. &fail_page_alloc.ignore_gfp_wait);
  912. fail_page_alloc.ignore_gfp_highmem_file =
  913. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  914. &fail_page_alloc.ignore_gfp_highmem);
  915. fail_page_alloc.min_order_file =
  916. debugfs_create_u32("min-order", mode, dir,
  917. &fail_page_alloc.min_order);
  918. if (!fail_page_alloc.ignore_gfp_wait_file ||
  919. !fail_page_alloc.ignore_gfp_highmem_file ||
  920. !fail_page_alloc.min_order_file) {
  921. err = -ENOMEM;
  922. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  923. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  924. debugfs_remove(fail_page_alloc.min_order_file);
  925. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  926. }
  927. return err;
  928. }
  929. late_initcall(fail_page_alloc_debugfs);
  930. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  931. #else /* CONFIG_FAIL_PAGE_ALLOC */
  932. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  933. {
  934. return 0;
  935. }
  936. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  937. /*
  938. * Return 1 if free pages are above 'mark'. This takes into account the order
  939. * of the allocation.
  940. */
  941. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  942. int classzone_idx, int alloc_flags)
  943. {
  944. /* free_pages my go negative - that's OK */
  945. long min = mark;
  946. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  947. int o;
  948. if (alloc_flags & ALLOC_HIGH)
  949. min -= min / 2;
  950. if (alloc_flags & ALLOC_HARDER)
  951. min -= min / 4;
  952. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  953. return 0;
  954. for (o = 0; o < order; o++) {
  955. /* At the next order, this order's pages become unavailable */
  956. free_pages -= z->free_area[o].nr_free << o;
  957. /* Require fewer higher order pages to be free */
  958. min >>= 1;
  959. if (free_pages <= min)
  960. return 0;
  961. }
  962. return 1;
  963. }
  964. #ifdef CONFIG_NUMA
  965. /*
  966. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  967. * skip over zones that are not allowed by the cpuset, or that have
  968. * been recently (in last second) found to be nearly full. See further
  969. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  970. * that have to skip over alot of full or unallowed zones.
  971. *
  972. * If the zonelist cache is present in the passed in zonelist, then
  973. * returns a pointer to the allowed node mask (either the current
  974. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  975. *
  976. * If the zonelist cache is not available for this zonelist, does
  977. * nothing and returns NULL.
  978. *
  979. * If the fullzones BITMAP in the zonelist cache is stale (more than
  980. * a second since last zap'd) then we zap it out (clear its bits.)
  981. *
  982. * We hold off even calling zlc_setup, until after we've checked the
  983. * first zone in the zonelist, on the theory that most allocations will
  984. * be satisfied from that first zone, so best to examine that zone as
  985. * quickly as we can.
  986. */
  987. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  988. {
  989. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  990. nodemask_t *allowednodes; /* zonelist_cache approximation */
  991. zlc = zonelist->zlcache_ptr;
  992. if (!zlc)
  993. return NULL;
  994. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  995. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  996. zlc->last_full_zap = jiffies;
  997. }
  998. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  999. &cpuset_current_mems_allowed :
  1000. &node_states[N_HIGH_MEMORY];
  1001. return allowednodes;
  1002. }
  1003. /*
  1004. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1005. * if it is worth looking at further for free memory:
  1006. * 1) Check that the zone isn't thought to be full (doesn't have its
  1007. * bit set in the zonelist_cache fullzones BITMAP).
  1008. * 2) Check that the zones node (obtained from the zonelist_cache
  1009. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1010. * Return true (non-zero) if zone is worth looking at further, or
  1011. * else return false (zero) if it is not.
  1012. *
  1013. * This check -ignores- the distinction between various watermarks,
  1014. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1015. * found to be full for any variation of these watermarks, it will
  1016. * be considered full for up to one second by all requests, unless
  1017. * we are so low on memory on all allowed nodes that we are forced
  1018. * into the second scan of the zonelist.
  1019. *
  1020. * In the second scan we ignore this zonelist cache and exactly
  1021. * apply the watermarks to all zones, even it is slower to do so.
  1022. * We are low on memory in the second scan, and should leave no stone
  1023. * unturned looking for a free page.
  1024. */
  1025. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1026. nodemask_t *allowednodes)
  1027. {
  1028. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1029. int i; /* index of *z in zonelist zones */
  1030. int n; /* node that zone *z is on */
  1031. zlc = zonelist->zlcache_ptr;
  1032. if (!zlc)
  1033. return 1;
  1034. i = z - zonelist->zones;
  1035. n = zlc->z_to_n[i];
  1036. /* This zone is worth trying if it is allowed but not full */
  1037. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1038. }
  1039. /*
  1040. * Given 'z' scanning a zonelist, set the corresponding bit in
  1041. * zlc->fullzones, so that subsequent attempts to allocate a page
  1042. * from that zone don't waste time re-examining it.
  1043. */
  1044. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1045. {
  1046. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1047. int i; /* index of *z in zonelist zones */
  1048. zlc = zonelist->zlcache_ptr;
  1049. if (!zlc)
  1050. return;
  1051. i = z - zonelist->zones;
  1052. set_bit(i, zlc->fullzones);
  1053. }
  1054. #else /* CONFIG_NUMA */
  1055. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1056. {
  1057. return NULL;
  1058. }
  1059. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1060. nodemask_t *allowednodes)
  1061. {
  1062. return 1;
  1063. }
  1064. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1065. {
  1066. }
  1067. #endif /* CONFIG_NUMA */
  1068. /*
  1069. * get_page_from_freelist goes through the zonelist trying to allocate
  1070. * a page.
  1071. */
  1072. static struct page *
  1073. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1074. struct zonelist *zonelist, int alloc_flags)
  1075. {
  1076. struct zone **z;
  1077. struct page *page = NULL;
  1078. int classzone_idx = zone_idx(zonelist->zones[0]);
  1079. struct zone *zone;
  1080. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1081. int zlc_active = 0; /* set if using zonelist_cache */
  1082. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1083. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1084. zonelist_scan:
  1085. /*
  1086. * Scan zonelist, looking for a zone with enough free.
  1087. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1088. */
  1089. z = zonelist->zones;
  1090. do {
  1091. /*
  1092. * In NUMA, this could be a policy zonelist which contains
  1093. * zones that may not be allowed by the current gfp_mask.
  1094. * Check the zone is allowed by the current flags
  1095. */
  1096. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1097. if (highest_zoneidx == -1)
  1098. highest_zoneidx = gfp_zone(gfp_mask);
  1099. if (zone_idx(*z) > highest_zoneidx)
  1100. continue;
  1101. }
  1102. if (NUMA_BUILD && zlc_active &&
  1103. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1104. continue;
  1105. zone = *z;
  1106. if ((alloc_flags & ALLOC_CPUSET) &&
  1107. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1108. goto try_next_zone;
  1109. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1110. unsigned long mark;
  1111. if (alloc_flags & ALLOC_WMARK_MIN)
  1112. mark = zone->pages_min;
  1113. else if (alloc_flags & ALLOC_WMARK_LOW)
  1114. mark = zone->pages_low;
  1115. else
  1116. mark = zone->pages_high;
  1117. if (!zone_watermark_ok(zone, order, mark,
  1118. classzone_idx, alloc_flags)) {
  1119. if (!zone_reclaim_mode ||
  1120. !zone_reclaim(zone, gfp_mask, order))
  1121. goto this_zone_full;
  1122. }
  1123. }
  1124. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1125. if (page)
  1126. break;
  1127. this_zone_full:
  1128. if (NUMA_BUILD)
  1129. zlc_mark_zone_full(zonelist, z);
  1130. try_next_zone:
  1131. if (NUMA_BUILD && !did_zlc_setup) {
  1132. /* we do zlc_setup after the first zone is tried */
  1133. allowednodes = zlc_setup(zonelist, alloc_flags);
  1134. zlc_active = 1;
  1135. did_zlc_setup = 1;
  1136. }
  1137. } while (*(++z) != NULL);
  1138. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1139. /* Disable zlc cache for second zonelist scan */
  1140. zlc_active = 0;
  1141. goto zonelist_scan;
  1142. }
  1143. return page;
  1144. }
  1145. /*
  1146. * This is the 'heart' of the zoned buddy allocator.
  1147. */
  1148. struct page * fastcall
  1149. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1150. struct zonelist *zonelist)
  1151. {
  1152. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1153. struct zone **z;
  1154. struct page *page;
  1155. struct reclaim_state reclaim_state;
  1156. struct task_struct *p = current;
  1157. int do_retry;
  1158. int alloc_flags;
  1159. int did_some_progress;
  1160. might_sleep_if(wait);
  1161. if (should_fail_alloc_page(gfp_mask, order))
  1162. return NULL;
  1163. restart:
  1164. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1165. if (unlikely(*z == NULL)) {
  1166. /*
  1167. * Happens if we have an empty zonelist as a result of
  1168. * GFP_THISNODE being used on a memoryless node
  1169. */
  1170. return NULL;
  1171. }
  1172. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1173. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1174. if (page)
  1175. goto got_pg;
  1176. /*
  1177. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1178. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1179. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1180. * using a larger set of nodes after it has established that the
  1181. * allowed per node queues are empty and that nodes are
  1182. * over allocated.
  1183. */
  1184. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1185. goto nopage;
  1186. for (z = zonelist->zones; *z; z++)
  1187. wakeup_kswapd(*z, order);
  1188. /*
  1189. * OK, we're below the kswapd watermark and have kicked background
  1190. * reclaim. Now things get more complex, so set up alloc_flags according
  1191. * to how we want to proceed.
  1192. *
  1193. * The caller may dip into page reserves a bit more if the caller
  1194. * cannot run direct reclaim, or if the caller has realtime scheduling
  1195. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1196. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1197. */
  1198. alloc_flags = ALLOC_WMARK_MIN;
  1199. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1200. alloc_flags |= ALLOC_HARDER;
  1201. if (gfp_mask & __GFP_HIGH)
  1202. alloc_flags |= ALLOC_HIGH;
  1203. if (wait)
  1204. alloc_flags |= ALLOC_CPUSET;
  1205. /*
  1206. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1207. * coming from realtime tasks go deeper into reserves.
  1208. *
  1209. * This is the last chance, in general, before the goto nopage.
  1210. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1211. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1212. */
  1213. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1214. if (page)
  1215. goto got_pg;
  1216. /* This allocation should allow future memory freeing. */
  1217. rebalance:
  1218. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1219. && !in_interrupt()) {
  1220. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1221. nofail_alloc:
  1222. /* go through the zonelist yet again, ignoring mins */
  1223. page = get_page_from_freelist(gfp_mask, order,
  1224. zonelist, ALLOC_NO_WATERMARKS);
  1225. if (page)
  1226. goto got_pg;
  1227. if (gfp_mask & __GFP_NOFAIL) {
  1228. congestion_wait(WRITE, HZ/50);
  1229. goto nofail_alloc;
  1230. }
  1231. }
  1232. goto nopage;
  1233. }
  1234. /* Atomic allocations - we can't balance anything */
  1235. if (!wait)
  1236. goto nopage;
  1237. cond_resched();
  1238. /* We now go into synchronous reclaim */
  1239. cpuset_memory_pressure_bump();
  1240. p->flags |= PF_MEMALLOC;
  1241. reclaim_state.reclaimed_slab = 0;
  1242. p->reclaim_state = &reclaim_state;
  1243. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1244. p->reclaim_state = NULL;
  1245. p->flags &= ~PF_MEMALLOC;
  1246. cond_resched();
  1247. if (likely(did_some_progress)) {
  1248. page = get_page_from_freelist(gfp_mask, order,
  1249. zonelist, alloc_flags);
  1250. if (page)
  1251. goto got_pg;
  1252. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1253. /*
  1254. * Go through the zonelist yet one more time, keep
  1255. * very high watermark here, this is only to catch
  1256. * a parallel oom killing, we must fail if we're still
  1257. * under heavy pressure.
  1258. */
  1259. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1260. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1261. if (page)
  1262. goto got_pg;
  1263. /* The OOM killer will not help higher order allocs so fail */
  1264. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1265. goto nopage;
  1266. out_of_memory(zonelist, gfp_mask, order);
  1267. goto restart;
  1268. }
  1269. /*
  1270. * Don't let big-order allocations loop unless the caller explicitly
  1271. * requests that. Wait for some write requests to complete then retry.
  1272. *
  1273. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1274. * <= 3, but that may not be true in other implementations.
  1275. */
  1276. do_retry = 0;
  1277. if (!(gfp_mask & __GFP_NORETRY)) {
  1278. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1279. (gfp_mask & __GFP_REPEAT))
  1280. do_retry = 1;
  1281. if (gfp_mask & __GFP_NOFAIL)
  1282. do_retry = 1;
  1283. }
  1284. if (do_retry) {
  1285. congestion_wait(WRITE, HZ/50);
  1286. goto rebalance;
  1287. }
  1288. nopage:
  1289. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1290. printk(KERN_WARNING "%s: page allocation failure."
  1291. " order:%d, mode:0x%x\n",
  1292. p->comm, order, gfp_mask);
  1293. dump_stack();
  1294. show_mem();
  1295. }
  1296. got_pg:
  1297. return page;
  1298. }
  1299. EXPORT_SYMBOL(__alloc_pages);
  1300. /*
  1301. * Common helper functions.
  1302. */
  1303. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1304. {
  1305. struct page * page;
  1306. page = alloc_pages(gfp_mask, order);
  1307. if (!page)
  1308. return 0;
  1309. return (unsigned long) page_address(page);
  1310. }
  1311. EXPORT_SYMBOL(__get_free_pages);
  1312. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1313. {
  1314. struct page * page;
  1315. /*
  1316. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1317. * a highmem page
  1318. */
  1319. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1320. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1321. if (page)
  1322. return (unsigned long) page_address(page);
  1323. return 0;
  1324. }
  1325. EXPORT_SYMBOL(get_zeroed_page);
  1326. void __pagevec_free(struct pagevec *pvec)
  1327. {
  1328. int i = pagevec_count(pvec);
  1329. while (--i >= 0)
  1330. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1331. }
  1332. fastcall void __free_pages(struct page *page, unsigned int order)
  1333. {
  1334. if (put_page_testzero(page)) {
  1335. if (order == 0)
  1336. free_hot_page(page);
  1337. else
  1338. __free_pages_ok(page, order);
  1339. }
  1340. }
  1341. EXPORT_SYMBOL(__free_pages);
  1342. fastcall void free_pages(unsigned long addr, unsigned int order)
  1343. {
  1344. if (addr != 0) {
  1345. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1346. __free_pages(virt_to_page((void *)addr), order);
  1347. }
  1348. }
  1349. EXPORT_SYMBOL(free_pages);
  1350. static unsigned int nr_free_zone_pages(int offset)
  1351. {
  1352. /* Just pick one node, since fallback list is circular */
  1353. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1354. unsigned int sum = 0;
  1355. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1356. struct zone **zonep = zonelist->zones;
  1357. struct zone *zone;
  1358. for (zone = *zonep++; zone; zone = *zonep++) {
  1359. unsigned long size = zone->present_pages;
  1360. unsigned long high = zone->pages_high;
  1361. if (size > high)
  1362. sum += size - high;
  1363. }
  1364. return sum;
  1365. }
  1366. /*
  1367. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1368. */
  1369. unsigned int nr_free_buffer_pages(void)
  1370. {
  1371. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1372. }
  1373. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1374. /*
  1375. * Amount of free RAM allocatable within all zones
  1376. */
  1377. unsigned int nr_free_pagecache_pages(void)
  1378. {
  1379. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1380. }
  1381. static inline void show_node(struct zone *zone)
  1382. {
  1383. if (NUMA_BUILD)
  1384. printk("Node %d ", zone_to_nid(zone));
  1385. }
  1386. void si_meminfo(struct sysinfo *val)
  1387. {
  1388. val->totalram = totalram_pages;
  1389. val->sharedram = 0;
  1390. val->freeram = global_page_state(NR_FREE_PAGES);
  1391. val->bufferram = nr_blockdev_pages();
  1392. val->totalhigh = totalhigh_pages;
  1393. val->freehigh = nr_free_highpages();
  1394. val->mem_unit = PAGE_SIZE;
  1395. }
  1396. EXPORT_SYMBOL(si_meminfo);
  1397. #ifdef CONFIG_NUMA
  1398. void si_meminfo_node(struct sysinfo *val, int nid)
  1399. {
  1400. pg_data_t *pgdat = NODE_DATA(nid);
  1401. val->totalram = pgdat->node_present_pages;
  1402. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1403. #ifdef CONFIG_HIGHMEM
  1404. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1405. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1406. NR_FREE_PAGES);
  1407. #else
  1408. val->totalhigh = 0;
  1409. val->freehigh = 0;
  1410. #endif
  1411. val->mem_unit = PAGE_SIZE;
  1412. }
  1413. #endif
  1414. #define K(x) ((x) << (PAGE_SHIFT-10))
  1415. /*
  1416. * Show free area list (used inside shift_scroll-lock stuff)
  1417. * We also calculate the percentage fragmentation. We do this by counting the
  1418. * memory on each free list with the exception of the first item on the list.
  1419. */
  1420. void show_free_areas(void)
  1421. {
  1422. int cpu;
  1423. struct zone *zone;
  1424. for_each_zone(zone) {
  1425. if (!populated_zone(zone))
  1426. continue;
  1427. show_node(zone);
  1428. printk("%s per-cpu:\n", zone->name);
  1429. for_each_online_cpu(cpu) {
  1430. struct per_cpu_pageset *pageset;
  1431. pageset = zone_pcp(zone, cpu);
  1432. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1433. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1434. cpu, pageset->pcp[0].high,
  1435. pageset->pcp[0].batch, pageset->pcp[0].count,
  1436. pageset->pcp[1].high, pageset->pcp[1].batch,
  1437. pageset->pcp[1].count);
  1438. }
  1439. }
  1440. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1441. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1442. global_page_state(NR_ACTIVE),
  1443. global_page_state(NR_INACTIVE),
  1444. global_page_state(NR_FILE_DIRTY),
  1445. global_page_state(NR_WRITEBACK),
  1446. global_page_state(NR_UNSTABLE_NFS),
  1447. global_page_state(NR_FREE_PAGES),
  1448. global_page_state(NR_SLAB_RECLAIMABLE) +
  1449. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1450. global_page_state(NR_FILE_MAPPED),
  1451. global_page_state(NR_PAGETABLE),
  1452. global_page_state(NR_BOUNCE));
  1453. for_each_zone(zone) {
  1454. int i;
  1455. if (!populated_zone(zone))
  1456. continue;
  1457. show_node(zone);
  1458. printk("%s"
  1459. " free:%lukB"
  1460. " min:%lukB"
  1461. " low:%lukB"
  1462. " high:%lukB"
  1463. " active:%lukB"
  1464. " inactive:%lukB"
  1465. " present:%lukB"
  1466. " pages_scanned:%lu"
  1467. " all_unreclaimable? %s"
  1468. "\n",
  1469. zone->name,
  1470. K(zone_page_state(zone, NR_FREE_PAGES)),
  1471. K(zone->pages_min),
  1472. K(zone->pages_low),
  1473. K(zone->pages_high),
  1474. K(zone_page_state(zone, NR_ACTIVE)),
  1475. K(zone_page_state(zone, NR_INACTIVE)),
  1476. K(zone->present_pages),
  1477. zone->pages_scanned,
  1478. (zone->all_unreclaimable ? "yes" : "no")
  1479. );
  1480. printk("lowmem_reserve[]:");
  1481. for (i = 0; i < MAX_NR_ZONES; i++)
  1482. printk(" %lu", zone->lowmem_reserve[i]);
  1483. printk("\n");
  1484. }
  1485. for_each_zone(zone) {
  1486. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1487. if (!populated_zone(zone))
  1488. continue;
  1489. show_node(zone);
  1490. printk("%s: ", zone->name);
  1491. spin_lock_irqsave(&zone->lock, flags);
  1492. for (order = 0; order < MAX_ORDER; order++) {
  1493. nr[order] = zone->free_area[order].nr_free;
  1494. total += nr[order] << order;
  1495. }
  1496. spin_unlock_irqrestore(&zone->lock, flags);
  1497. for (order = 0; order < MAX_ORDER; order++)
  1498. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1499. printk("= %lukB\n", K(total));
  1500. }
  1501. show_swap_cache_info();
  1502. }
  1503. /*
  1504. * Builds allocation fallback zone lists.
  1505. *
  1506. * Add all populated zones of a node to the zonelist.
  1507. */
  1508. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1509. int nr_zones, enum zone_type zone_type)
  1510. {
  1511. struct zone *zone;
  1512. BUG_ON(zone_type >= MAX_NR_ZONES);
  1513. zone_type++;
  1514. do {
  1515. zone_type--;
  1516. zone = pgdat->node_zones + zone_type;
  1517. if (populated_zone(zone)) {
  1518. zonelist->zones[nr_zones++] = zone;
  1519. check_highest_zone(zone_type);
  1520. }
  1521. } while (zone_type);
  1522. return nr_zones;
  1523. }
  1524. /*
  1525. * zonelist_order:
  1526. * 0 = automatic detection of better ordering.
  1527. * 1 = order by ([node] distance, -zonetype)
  1528. * 2 = order by (-zonetype, [node] distance)
  1529. *
  1530. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1531. * the same zonelist. So only NUMA can configure this param.
  1532. */
  1533. #define ZONELIST_ORDER_DEFAULT 0
  1534. #define ZONELIST_ORDER_NODE 1
  1535. #define ZONELIST_ORDER_ZONE 2
  1536. /* zonelist order in the kernel.
  1537. * set_zonelist_order() will set this to NODE or ZONE.
  1538. */
  1539. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1540. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1541. #ifdef CONFIG_NUMA
  1542. /* The value user specified ....changed by config */
  1543. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1544. /* string for sysctl */
  1545. #define NUMA_ZONELIST_ORDER_LEN 16
  1546. char numa_zonelist_order[16] = "default";
  1547. /*
  1548. * interface for configure zonelist ordering.
  1549. * command line option "numa_zonelist_order"
  1550. * = "[dD]efault - default, automatic configuration.
  1551. * = "[nN]ode - order by node locality, then by zone within node
  1552. * = "[zZ]one - order by zone, then by locality within zone
  1553. */
  1554. static int __parse_numa_zonelist_order(char *s)
  1555. {
  1556. if (*s == 'd' || *s == 'D') {
  1557. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1558. } else if (*s == 'n' || *s == 'N') {
  1559. user_zonelist_order = ZONELIST_ORDER_NODE;
  1560. } else if (*s == 'z' || *s == 'Z') {
  1561. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1562. } else {
  1563. printk(KERN_WARNING
  1564. "Ignoring invalid numa_zonelist_order value: "
  1565. "%s\n", s);
  1566. return -EINVAL;
  1567. }
  1568. return 0;
  1569. }
  1570. static __init int setup_numa_zonelist_order(char *s)
  1571. {
  1572. if (s)
  1573. return __parse_numa_zonelist_order(s);
  1574. return 0;
  1575. }
  1576. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1577. /*
  1578. * sysctl handler for numa_zonelist_order
  1579. */
  1580. int numa_zonelist_order_handler(ctl_table *table, int write,
  1581. struct file *file, void __user *buffer, size_t *length,
  1582. loff_t *ppos)
  1583. {
  1584. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1585. int ret;
  1586. if (write)
  1587. strncpy(saved_string, (char*)table->data,
  1588. NUMA_ZONELIST_ORDER_LEN);
  1589. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1590. if (ret)
  1591. return ret;
  1592. if (write) {
  1593. int oldval = user_zonelist_order;
  1594. if (__parse_numa_zonelist_order((char*)table->data)) {
  1595. /*
  1596. * bogus value. restore saved string
  1597. */
  1598. strncpy((char*)table->data, saved_string,
  1599. NUMA_ZONELIST_ORDER_LEN);
  1600. user_zonelist_order = oldval;
  1601. } else if (oldval != user_zonelist_order)
  1602. build_all_zonelists();
  1603. }
  1604. return 0;
  1605. }
  1606. #define MAX_NODE_LOAD (num_online_nodes())
  1607. static int node_load[MAX_NUMNODES];
  1608. /**
  1609. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1610. * @node: node whose fallback list we're appending
  1611. * @used_node_mask: nodemask_t of already used nodes
  1612. *
  1613. * We use a number of factors to determine which is the next node that should
  1614. * appear on a given node's fallback list. The node should not have appeared
  1615. * already in @node's fallback list, and it should be the next closest node
  1616. * according to the distance array (which contains arbitrary distance values
  1617. * from each node to each node in the system), and should also prefer nodes
  1618. * with no CPUs, since presumably they'll have very little allocation pressure
  1619. * on them otherwise.
  1620. * It returns -1 if no node is found.
  1621. */
  1622. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1623. {
  1624. int n, val;
  1625. int min_val = INT_MAX;
  1626. int best_node = -1;
  1627. /* Use the local node if we haven't already */
  1628. if (!node_isset(node, *used_node_mask)) {
  1629. node_set(node, *used_node_mask);
  1630. return node;
  1631. }
  1632. for_each_node_state(n, N_HIGH_MEMORY) {
  1633. cpumask_t tmp;
  1634. /* Don't want a node to appear more than once */
  1635. if (node_isset(n, *used_node_mask))
  1636. continue;
  1637. /* Use the distance array to find the distance */
  1638. val = node_distance(node, n);
  1639. /* Penalize nodes under us ("prefer the next node") */
  1640. val += (n < node);
  1641. /* Give preference to headless and unused nodes */
  1642. tmp = node_to_cpumask(n);
  1643. if (!cpus_empty(tmp))
  1644. val += PENALTY_FOR_NODE_WITH_CPUS;
  1645. /* Slight preference for less loaded node */
  1646. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1647. val += node_load[n];
  1648. if (val < min_val) {
  1649. min_val = val;
  1650. best_node = n;
  1651. }
  1652. }
  1653. if (best_node >= 0)
  1654. node_set(best_node, *used_node_mask);
  1655. return best_node;
  1656. }
  1657. /*
  1658. * Build zonelists ordered by node and zones within node.
  1659. * This results in maximum locality--normal zone overflows into local
  1660. * DMA zone, if any--but risks exhausting DMA zone.
  1661. */
  1662. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1663. {
  1664. enum zone_type i;
  1665. int j;
  1666. struct zonelist *zonelist;
  1667. for (i = 0; i < MAX_NR_ZONES; i++) {
  1668. zonelist = pgdat->node_zonelists + i;
  1669. for (j = 0; zonelist->zones[j] != NULL; j++)
  1670. ;
  1671. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1672. zonelist->zones[j] = NULL;
  1673. }
  1674. }
  1675. /*
  1676. * Build gfp_thisnode zonelists
  1677. */
  1678. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1679. {
  1680. enum zone_type i;
  1681. int j;
  1682. struct zonelist *zonelist;
  1683. for (i = 0; i < MAX_NR_ZONES; i++) {
  1684. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1685. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1686. zonelist->zones[j] = NULL;
  1687. }
  1688. }
  1689. /*
  1690. * Build zonelists ordered by zone and nodes within zones.
  1691. * This results in conserving DMA zone[s] until all Normal memory is
  1692. * exhausted, but results in overflowing to remote node while memory
  1693. * may still exist in local DMA zone.
  1694. */
  1695. static int node_order[MAX_NUMNODES];
  1696. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1697. {
  1698. enum zone_type i;
  1699. int pos, j, node;
  1700. int zone_type; /* needs to be signed */
  1701. struct zone *z;
  1702. struct zonelist *zonelist;
  1703. for (i = 0; i < MAX_NR_ZONES; i++) {
  1704. zonelist = pgdat->node_zonelists + i;
  1705. pos = 0;
  1706. for (zone_type = i; zone_type >= 0; zone_type--) {
  1707. for (j = 0; j < nr_nodes; j++) {
  1708. node = node_order[j];
  1709. z = &NODE_DATA(node)->node_zones[zone_type];
  1710. if (populated_zone(z)) {
  1711. zonelist->zones[pos++] = z;
  1712. check_highest_zone(zone_type);
  1713. }
  1714. }
  1715. }
  1716. zonelist->zones[pos] = NULL;
  1717. }
  1718. }
  1719. static int default_zonelist_order(void)
  1720. {
  1721. int nid, zone_type;
  1722. unsigned long low_kmem_size,total_size;
  1723. struct zone *z;
  1724. int average_size;
  1725. /*
  1726. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1727. * If they are really small and used heavily, the system can fall
  1728. * into OOM very easily.
  1729. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1730. */
  1731. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1732. low_kmem_size = 0;
  1733. total_size = 0;
  1734. for_each_online_node(nid) {
  1735. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1736. z = &NODE_DATA(nid)->node_zones[zone_type];
  1737. if (populated_zone(z)) {
  1738. if (zone_type < ZONE_NORMAL)
  1739. low_kmem_size += z->present_pages;
  1740. total_size += z->present_pages;
  1741. }
  1742. }
  1743. }
  1744. if (!low_kmem_size || /* there are no DMA area. */
  1745. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1746. return ZONELIST_ORDER_NODE;
  1747. /*
  1748. * look into each node's config.
  1749. * If there is a node whose DMA/DMA32 memory is very big area on
  1750. * local memory, NODE_ORDER may be suitable.
  1751. */
  1752. average_size = total_size /
  1753. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1754. for_each_online_node(nid) {
  1755. low_kmem_size = 0;
  1756. total_size = 0;
  1757. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1758. z = &NODE_DATA(nid)->node_zones[zone_type];
  1759. if (populated_zone(z)) {
  1760. if (zone_type < ZONE_NORMAL)
  1761. low_kmem_size += z->present_pages;
  1762. total_size += z->present_pages;
  1763. }
  1764. }
  1765. if (low_kmem_size &&
  1766. total_size > average_size && /* ignore small node */
  1767. low_kmem_size > total_size * 70/100)
  1768. return ZONELIST_ORDER_NODE;
  1769. }
  1770. return ZONELIST_ORDER_ZONE;
  1771. }
  1772. static void set_zonelist_order(void)
  1773. {
  1774. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1775. current_zonelist_order = default_zonelist_order();
  1776. else
  1777. current_zonelist_order = user_zonelist_order;
  1778. }
  1779. static void build_zonelists(pg_data_t *pgdat)
  1780. {
  1781. int j, node, load;
  1782. enum zone_type i;
  1783. nodemask_t used_mask;
  1784. int local_node, prev_node;
  1785. struct zonelist *zonelist;
  1786. int order = current_zonelist_order;
  1787. /* initialize zonelists */
  1788. for (i = 0; i < MAX_ZONELISTS; i++) {
  1789. zonelist = pgdat->node_zonelists + i;
  1790. zonelist->zones[0] = NULL;
  1791. }
  1792. /* NUMA-aware ordering of nodes */
  1793. local_node = pgdat->node_id;
  1794. load = num_online_nodes();
  1795. prev_node = local_node;
  1796. nodes_clear(used_mask);
  1797. memset(node_load, 0, sizeof(node_load));
  1798. memset(node_order, 0, sizeof(node_order));
  1799. j = 0;
  1800. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1801. int distance = node_distance(local_node, node);
  1802. /*
  1803. * If another node is sufficiently far away then it is better
  1804. * to reclaim pages in a zone before going off node.
  1805. */
  1806. if (distance > RECLAIM_DISTANCE)
  1807. zone_reclaim_mode = 1;
  1808. /*
  1809. * We don't want to pressure a particular node.
  1810. * So adding penalty to the first node in same
  1811. * distance group to make it round-robin.
  1812. */
  1813. if (distance != node_distance(local_node, prev_node))
  1814. node_load[node] = load;
  1815. prev_node = node;
  1816. load--;
  1817. if (order == ZONELIST_ORDER_NODE)
  1818. build_zonelists_in_node_order(pgdat, node);
  1819. else
  1820. node_order[j++] = node; /* remember order */
  1821. }
  1822. if (order == ZONELIST_ORDER_ZONE) {
  1823. /* calculate node order -- i.e., DMA last! */
  1824. build_zonelists_in_zone_order(pgdat, j);
  1825. }
  1826. build_thisnode_zonelists(pgdat);
  1827. }
  1828. /* Construct the zonelist performance cache - see further mmzone.h */
  1829. static void build_zonelist_cache(pg_data_t *pgdat)
  1830. {
  1831. int i;
  1832. for (i = 0; i < MAX_NR_ZONES; i++) {
  1833. struct zonelist *zonelist;
  1834. struct zonelist_cache *zlc;
  1835. struct zone **z;
  1836. zonelist = pgdat->node_zonelists + i;
  1837. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1838. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1839. for (z = zonelist->zones; *z; z++)
  1840. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1841. }
  1842. }
  1843. #else /* CONFIG_NUMA */
  1844. static void set_zonelist_order(void)
  1845. {
  1846. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1847. }
  1848. static void build_zonelists(pg_data_t *pgdat)
  1849. {
  1850. int node, local_node;
  1851. enum zone_type i,j;
  1852. local_node = pgdat->node_id;
  1853. for (i = 0; i < MAX_NR_ZONES; i++) {
  1854. struct zonelist *zonelist;
  1855. zonelist = pgdat->node_zonelists + i;
  1856. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1857. /*
  1858. * Now we build the zonelist so that it contains the zones
  1859. * of all the other nodes.
  1860. * We don't want to pressure a particular node, so when
  1861. * building the zones for node N, we make sure that the
  1862. * zones coming right after the local ones are those from
  1863. * node N+1 (modulo N)
  1864. */
  1865. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1866. if (!node_online(node))
  1867. continue;
  1868. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1869. }
  1870. for (node = 0; node < local_node; node++) {
  1871. if (!node_online(node))
  1872. continue;
  1873. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1874. }
  1875. zonelist->zones[j] = NULL;
  1876. }
  1877. }
  1878. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1879. static void build_zonelist_cache(pg_data_t *pgdat)
  1880. {
  1881. int i;
  1882. for (i = 0; i < MAX_NR_ZONES; i++)
  1883. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1884. }
  1885. #endif /* CONFIG_NUMA */
  1886. /* return values int ....just for stop_machine_run() */
  1887. static int __build_all_zonelists(void *dummy)
  1888. {
  1889. int nid;
  1890. for_each_online_node(nid) {
  1891. pg_data_t *pgdat = NODE_DATA(nid);
  1892. build_zonelists(pgdat);
  1893. build_zonelist_cache(pgdat);
  1894. }
  1895. return 0;
  1896. }
  1897. void build_all_zonelists(void)
  1898. {
  1899. set_zonelist_order();
  1900. if (system_state == SYSTEM_BOOTING) {
  1901. __build_all_zonelists(NULL);
  1902. cpuset_init_current_mems_allowed();
  1903. } else {
  1904. /* we have to stop all cpus to guaranntee there is no user
  1905. of zonelist */
  1906. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1907. /* cpuset refresh routine should be here */
  1908. }
  1909. vm_total_pages = nr_free_pagecache_pages();
  1910. printk("Built %i zonelists in %s order. Total pages: %ld\n",
  1911. num_online_nodes(),
  1912. zonelist_order_name[current_zonelist_order],
  1913. vm_total_pages);
  1914. #ifdef CONFIG_NUMA
  1915. printk("Policy zone: %s\n", zone_names[policy_zone]);
  1916. #endif
  1917. }
  1918. /*
  1919. * Helper functions to size the waitqueue hash table.
  1920. * Essentially these want to choose hash table sizes sufficiently
  1921. * large so that collisions trying to wait on pages are rare.
  1922. * But in fact, the number of active page waitqueues on typical
  1923. * systems is ridiculously low, less than 200. So this is even
  1924. * conservative, even though it seems large.
  1925. *
  1926. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1927. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1928. */
  1929. #define PAGES_PER_WAITQUEUE 256
  1930. #ifndef CONFIG_MEMORY_HOTPLUG
  1931. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1932. {
  1933. unsigned long size = 1;
  1934. pages /= PAGES_PER_WAITQUEUE;
  1935. while (size < pages)
  1936. size <<= 1;
  1937. /*
  1938. * Once we have dozens or even hundreds of threads sleeping
  1939. * on IO we've got bigger problems than wait queue collision.
  1940. * Limit the size of the wait table to a reasonable size.
  1941. */
  1942. size = min(size, 4096UL);
  1943. return max(size, 4UL);
  1944. }
  1945. #else
  1946. /*
  1947. * A zone's size might be changed by hot-add, so it is not possible to determine
  1948. * a suitable size for its wait_table. So we use the maximum size now.
  1949. *
  1950. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1951. *
  1952. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1953. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1954. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1955. *
  1956. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1957. * or more by the traditional way. (See above). It equals:
  1958. *
  1959. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1960. * ia64(16K page size) : = ( 8G + 4M)byte.
  1961. * powerpc (64K page size) : = (32G +16M)byte.
  1962. */
  1963. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1964. {
  1965. return 4096UL;
  1966. }
  1967. #endif
  1968. /*
  1969. * This is an integer logarithm so that shifts can be used later
  1970. * to extract the more random high bits from the multiplicative
  1971. * hash function before the remainder is taken.
  1972. */
  1973. static inline unsigned long wait_table_bits(unsigned long size)
  1974. {
  1975. return ffz(~size);
  1976. }
  1977. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1978. /*
  1979. * Initially all pages are reserved - free ones are freed
  1980. * up by free_all_bootmem() once the early boot process is
  1981. * done. Non-atomic initialization, single-pass.
  1982. */
  1983. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1984. unsigned long start_pfn, enum memmap_context context)
  1985. {
  1986. struct page *page;
  1987. unsigned long end_pfn = start_pfn + size;
  1988. unsigned long pfn;
  1989. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1990. /*
  1991. * There can be holes in boot-time mem_map[]s
  1992. * handed to this function. They do not
  1993. * exist on hotplugged memory.
  1994. */
  1995. if (context == MEMMAP_EARLY) {
  1996. if (!early_pfn_valid(pfn))
  1997. continue;
  1998. if (!early_pfn_in_nid(pfn, nid))
  1999. continue;
  2000. }
  2001. page = pfn_to_page(pfn);
  2002. set_page_links(page, zone, nid, pfn);
  2003. init_page_count(page);
  2004. reset_page_mapcount(page);
  2005. SetPageReserved(page);
  2006. /*
  2007. * Mark the block movable so that blocks are reserved for
  2008. * movable at startup. This will force kernel allocations
  2009. * to reserve their blocks rather than leaking throughout
  2010. * the address space during boot when many long-lived
  2011. * kernel allocations are made
  2012. */
  2013. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2014. INIT_LIST_HEAD(&page->lru);
  2015. #ifdef WANT_PAGE_VIRTUAL
  2016. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2017. if (!is_highmem_idx(zone))
  2018. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2019. #endif
  2020. }
  2021. }
  2022. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  2023. struct zone *zone, unsigned long size)
  2024. {
  2025. int order, t;
  2026. for_each_migratetype_order(order, t) {
  2027. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2028. zone->free_area[order].nr_free = 0;
  2029. }
  2030. }
  2031. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2032. #define memmap_init(size, nid, zone, start_pfn) \
  2033. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2034. #endif
  2035. static int __devinit zone_batchsize(struct zone *zone)
  2036. {
  2037. int batch;
  2038. /*
  2039. * The per-cpu-pages pools are set to around 1000th of the
  2040. * size of the zone. But no more than 1/2 of a meg.
  2041. *
  2042. * OK, so we don't know how big the cache is. So guess.
  2043. */
  2044. batch = zone->present_pages / 1024;
  2045. if (batch * PAGE_SIZE > 512 * 1024)
  2046. batch = (512 * 1024) / PAGE_SIZE;
  2047. batch /= 4; /* We effectively *= 4 below */
  2048. if (batch < 1)
  2049. batch = 1;
  2050. /*
  2051. * Clamp the batch to a 2^n - 1 value. Having a power
  2052. * of 2 value was found to be more likely to have
  2053. * suboptimal cache aliasing properties in some cases.
  2054. *
  2055. * For example if 2 tasks are alternately allocating
  2056. * batches of pages, one task can end up with a lot
  2057. * of pages of one half of the possible page colors
  2058. * and the other with pages of the other colors.
  2059. */
  2060. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2061. return batch;
  2062. }
  2063. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2064. {
  2065. struct per_cpu_pages *pcp;
  2066. memset(p, 0, sizeof(*p));
  2067. pcp = &p->pcp[0]; /* hot */
  2068. pcp->count = 0;
  2069. pcp->high = 6 * batch;
  2070. pcp->batch = max(1UL, 1 * batch);
  2071. INIT_LIST_HEAD(&pcp->list);
  2072. pcp = &p->pcp[1]; /* cold*/
  2073. pcp->count = 0;
  2074. pcp->high = 2 * batch;
  2075. pcp->batch = max(1UL, batch/2);
  2076. INIT_LIST_HEAD(&pcp->list);
  2077. }
  2078. /*
  2079. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2080. * to the value high for the pageset p.
  2081. */
  2082. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2083. unsigned long high)
  2084. {
  2085. struct per_cpu_pages *pcp;
  2086. pcp = &p->pcp[0]; /* hot list */
  2087. pcp->high = high;
  2088. pcp->batch = max(1UL, high/4);
  2089. if ((high/4) > (PAGE_SHIFT * 8))
  2090. pcp->batch = PAGE_SHIFT * 8;
  2091. }
  2092. #ifdef CONFIG_NUMA
  2093. /*
  2094. * Boot pageset table. One per cpu which is going to be used for all
  2095. * zones and all nodes. The parameters will be set in such a way
  2096. * that an item put on a list will immediately be handed over to
  2097. * the buddy list. This is safe since pageset manipulation is done
  2098. * with interrupts disabled.
  2099. *
  2100. * Some NUMA counter updates may also be caught by the boot pagesets.
  2101. *
  2102. * The boot_pagesets must be kept even after bootup is complete for
  2103. * unused processors and/or zones. They do play a role for bootstrapping
  2104. * hotplugged processors.
  2105. *
  2106. * zoneinfo_show() and maybe other functions do
  2107. * not check if the processor is online before following the pageset pointer.
  2108. * Other parts of the kernel may not check if the zone is available.
  2109. */
  2110. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2111. /*
  2112. * Dynamically allocate memory for the
  2113. * per cpu pageset array in struct zone.
  2114. */
  2115. static int __cpuinit process_zones(int cpu)
  2116. {
  2117. struct zone *zone, *dzone;
  2118. int node = cpu_to_node(cpu);
  2119. node_set_state(node, N_CPU); /* this node has a cpu */
  2120. for_each_zone(zone) {
  2121. if (!populated_zone(zone))
  2122. continue;
  2123. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2124. GFP_KERNEL, node);
  2125. if (!zone_pcp(zone, cpu))
  2126. goto bad;
  2127. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2128. if (percpu_pagelist_fraction)
  2129. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2130. (zone->present_pages / percpu_pagelist_fraction));
  2131. }
  2132. return 0;
  2133. bad:
  2134. for_each_zone(dzone) {
  2135. if (!populated_zone(dzone))
  2136. continue;
  2137. if (dzone == zone)
  2138. break;
  2139. kfree(zone_pcp(dzone, cpu));
  2140. zone_pcp(dzone, cpu) = NULL;
  2141. }
  2142. return -ENOMEM;
  2143. }
  2144. static inline void free_zone_pagesets(int cpu)
  2145. {
  2146. struct zone *zone;
  2147. for_each_zone(zone) {
  2148. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2149. /* Free per_cpu_pageset if it is slab allocated */
  2150. if (pset != &boot_pageset[cpu])
  2151. kfree(pset);
  2152. zone_pcp(zone, cpu) = NULL;
  2153. }
  2154. }
  2155. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2156. unsigned long action,
  2157. void *hcpu)
  2158. {
  2159. int cpu = (long)hcpu;
  2160. int ret = NOTIFY_OK;
  2161. switch (action) {
  2162. case CPU_UP_PREPARE:
  2163. case CPU_UP_PREPARE_FROZEN:
  2164. if (process_zones(cpu))
  2165. ret = NOTIFY_BAD;
  2166. break;
  2167. case CPU_UP_CANCELED:
  2168. case CPU_UP_CANCELED_FROZEN:
  2169. case CPU_DEAD:
  2170. case CPU_DEAD_FROZEN:
  2171. free_zone_pagesets(cpu);
  2172. break;
  2173. default:
  2174. break;
  2175. }
  2176. return ret;
  2177. }
  2178. static struct notifier_block __cpuinitdata pageset_notifier =
  2179. { &pageset_cpuup_callback, NULL, 0 };
  2180. void __init setup_per_cpu_pageset(void)
  2181. {
  2182. int err;
  2183. /* Initialize per_cpu_pageset for cpu 0.
  2184. * A cpuup callback will do this for every cpu
  2185. * as it comes online
  2186. */
  2187. err = process_zones(smp_processor_id());
  2188. BUG_ON(err);
  2189. register_cpu_notifier(&pageset_notifier);
  2190. }
  2191. #endif
  2192. static noinline __init_refok
  2193. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2194. {
  2195. int i;
  2196. struct pglist_data *pgdat = zone->zone_pgdat;
  2197. size_t alloc_size;
  2198. /*
  2199. * The per-page waitqueue mechanism uses hashed waitqueues
  2200. * per zone.
  2201. */
  2202. zone->wait_table_hash_nr_entries =
  2203. wait_table_hash_nr_entries(zone_size_pages);
  2204. zone->wait_table_bits =
  2205. wait_table_bits(zone->wait_table_hash_nr_entries);
  2206. alloc_size = zone->wait_table_hash_nr_entries
  2207. * sizeof(wait_queue_head_t);
  2208. if (system_state == SYSTEM_BOOTING) {
  2209. zone->wait_table = (wait_queue_head_t *)
  2210. alloc_bootmem_node(pgdat, alloc_size);
  2211. } else {
  2212. /*
  2213. * This case means that a zone whose size was 0 gets new memory
  2214. * via memory hot-add.
  2215. * But it may be the case that a new node was hot-added. In
  2216. * this case vmalloc() will not be able to use this new node's
  2217. * memory - this wait_table must be initialized to use this new
  2218. * node itself as well.
  2219. * To use this new node's memory, further consideration will be
  2220. * necessary.
  2221. */
  2222. zone->wait_table = vmalloc(alloc_size);
  2223. }
  2224. if (!zone->wait_table)
  2225. return -ENOMEM;
  2226. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2227. init_waitqueue_head(zone->wait_table + i);
  2228. return 0;
  2229. }
  2230. static __meminit void zone_pcp_init(struct zone *zone)
  2231. {
  2232. int cpu;
  2233. unsigned long batch = zone_batchsize(zone);
  2234. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2235. #ifdef CONFIG_NUMA
  2236. /* Early boot. Slab allocator not functional yet */
  2237. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2238. setup_pageset(&boot_pageset[cpu],0);
  2239. #else
  2240. setup_pageset(zone_pcp(zone,cpu), batch);
  2241. #endif
  2242. }
  2243. if (zone->present_pages)
  2244. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2245. zone->name, zone->present_pages, batch);
  2246. }
  2247. __meminit int init_currently_empty_zone(struct zone *zone,
  2248. unsigned long zone_start_pfn,
  2249. unsigned long size,
  2250. enum memmap_context context)
  2251. {
  2252. struct pglist_data *pgdat = zone->zone_pgdat;
  2253. int ret;
  2254. ret = zone_wait_table_init(zone, size);
  2255. if (ret)
  2256. return ret;
  2257. pgdat->nr_zones = zone_idx(zone) + 1;
  2258. zone->zone_start_pfn = zone_start_pfn;
  2259. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2260. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2261. return 0;
  2262. }
  2263. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2264. /*
  2265. * Basic iterator support. Return the first range of PFNs for a node
  2266. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2267. */
  2268. static int __meminit first_active_region_index_in_nid(int nid)
  2269. {
  2270. int i;
  2271. for (i = 0; i < nr_nodemap_entries; i++)
  2272. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2273. return i;
  2274. return -1;
  2275. }
  2276. /*
  2277. * Basic iterator support. Return the next active range of PFNs for a node
  2278. * Note: nid == MAX_NUMNODES returns next region regardles of node
  2279. */
  2280. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2281. {
  2282. for (index = index + 1; index < nr_nodemap_entries; index++)
  2283. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2284. return index;
  2285. return -1;
  2286. }
  2287. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2288. /*
  2289. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2290. * Architectures may implement their own version but if add_active_range()
  2291. * was used and there are no special requirements, this is a convenient
  2292. * alternative
  2293. */
  2294. int __meminit early_pfn_to_nid(unsigned long pfn)
  2295. {
  2296. int i;
  2297. for (i = 0; i < nr_nodemap_entries; i++) {
  2298. unsigned long start_pfn = early_node_map[i].start_pfn;
  2299. unsigned long end_pfn = early_node_map[i].end_pfn;
  2300. if (start_pfn <= pfn && pfn < end_pfn)
  2301. return early_node_map[i].nid;
  2302. }
  2303. return 0;
  2304. }
  2305. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2306. /* Basic iterator support to walk early_node_map[] */
  2307. #define for_each_active_range_index_in_nid(i, nid) \
  2308. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2309. i = next_active_region_index_in_nid(i, nid))
  2310. /**
  2311. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2312. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2313. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2314. *
  2315. * If an architecture guarantees that all ranges registered with
  2316. * add_active_ranges() contain no holes and may be freed, this
  2317. * this function may be used instead of calling free_bootmem() manually.
  2318. */
  2319. void __init free_bootmem_with_active_regions(int nid,
  2320. unsigned long max_low_pfn)
  2321. {
  2322. int i;
  2323. for_each_active_range_index_in_nid(i, nid) {
  2324. unsigned long size_pages = 0;
  2325. unsigned long end_pfn = early_node_map[i].end_pfn;
  2326. if (early_node_map[i].start_pfn >= max_low_pfn)
  2327. continue;
  2328. if (end_pfn > max_low_pfn)
  2329. end_pfn = max_low_pfn;
  2330. size_pages = end_pfn - early_node_map[i].start_pfn;
  2331. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2332. PFN_PHYS(early_node_map[i].start_pfn),
  2333. size_pages << PAGE_SHIFT);
  2334. }
  2335. }
  2336. /**
  2337. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2338. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2339. *
  2340. * If an architecture guarantees that all ranges registered with
  2341. * add_active_ranges() contain no holes and may be freed, this
  2342. * function may be used instead of calling memory_present() manually.
  2343. */
  2344. void __init sparse_memory_present_with_active_regions(int nid)
  2345. {
  2346. int i;
  2347. for_each_active_range_index_in_nid(i, nid)
  2348. memory_present(early_node_map[i].nid,
  2349. early_node_map[i].start_pfn,
  2350. early_node_map[i].end_pfn);
  2351. }
  2352. /**
  2353. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2354. * @nid: The nid of the node to push the boundary for
  2355. * @start_pfn: The start pfn of the node
  2356. * @end_pfn: The end pfn of the node
  2357. *
  2358. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2359. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2360. * be hotplugged even though no physical memory exists. This function allows
  2361. * an arch to push out the node boundaries so mem_map is allocated that can
  2362. * be used later.
  2363. */
  2364. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2365. void __init push_node_boundaries(unsigned int nid,
  2366. unsigned long start_pfn, unsigned long end_pfn)
  2367. {
  2368. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2369. nid, start_pfn, end_pfn);
  2370. /* Initialise the boundary for this node if necessary */
  2371. if (node_boundary_end_pfn[nid] == 0)
  2372. node_boundary_start_pfn[nid] = -1UL;
  2373. /* Update the boundaries */
  2374. if (node_boundary_start_pfn[nid] > start_pfn)
  2375. node_boundary_start_pfn[nid] = start_pfn;
  2376. if (node_boundary_end_pfn[nid] < end_pfn)
  2377. node_boundary_end_pfn[nid] = end_pfn;
  2378. }
  2379. /* If necessary, push the node boundary out for reserve hotadd */
  2380. static void __meminit account_node_boundary(unsigned int nid,
  2381. unsigned long *start_pfn, unsigned long *end_pfn)
  2382. {
  2383. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2384. nid, *start_pfn, *end_pfn);
  2385. /* Return if boundary information has not been provided */
  2386. if (node_boundary_end_pfn[nid] == 0)
  2387. return;
  2388. /* Check the boundaries and update if necessary */
  2389. if (node_boundary_start_pfn[nid] < *start_pfn)
  2390. *start_pfn = node_boundary_start_pfn[nid];
  2391. if (node_boundary_end_pfn[nid] > *end_pfn)
  2392. *end_pfn = node_boundary_end_pfn[nid];
  2393. }
  2394. #else
  2395. void __init push_node_boundaries(unsigned int nid,
  2396. unsigned long start_pfn, unsigned long end_pfn) {}
  2397. static void __meminit account_node_boundary(unsigned int nid,
  2398. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2399. #endif
  2400. /**
  2401. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2402. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2403. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2404. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2405. *
  2406. * It returns the start and end page frame of a node based on information
  2407. * provided by an arch calling add_active_range(). If called for a node
  2408. * with no available memory, a warning is printed and the start and end
  2409. * PFNs will be 0.
  2410. */
  2411. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2412. unsigned long *start_pfn, unsigned long *end_pfn)
  2413. {
  2414. int i;
  2415. *start_pfn = -1UL;
  2416. *end_pfn = 0;
  2417. for_each_active_range_index_in_nid(i, nid) {
  2418. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2419. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2420. }
  2421. if (*start_pfn == -1UL)
  2422. *start_pfn = 0;
  2423. /* Push the node boundaries out if requested */
  2424. account_node_boundary(nid, start_pfn, end_pfn);
  2425. }
  2426. /*
  2427. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2428. * assumption is made that zones within a node are ordered in monotonic
  2429. * increasing memory addresses so that the "highest" populated zone is used
  2430. */
  2431. void __init find_usable_zone_for_movable(void)
  2432. {
  2433. int zone_index;
  2434. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2435. if (zone_index == ZONE_MOVABLE)
  2436. continue;
  2437. if (arch_zone_highest_possible_pfn[zone_index] >
  2438. arch_zone_lowest_possible_pfn[zone_index])
  2439. break;
  2440. }
  2441. VM_BUG_ON(zone_index == -1);
  2442. movable_zone = zone_index;
  2443. }
  2444. /*
  2445. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2446. * because it is sized independant of architecture. Unlike the other zones,
  2447. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2448. * in each node depending on the size of each node and how evenly kernelcore
  2449. * is distributed. This helper function adjusts the zone ranges
  2450. * provided by the architecture for a given node by using the end of the
  2451. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2452. * zones within a node are in order of monotonic increases memory addresses
  2453. */
  2454. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2455. unsigned long zone_type,
  2456. unsigned long node_start_pfn,
  2457. unsigned long node_end_pfn,
  2458. unsigned long *zone_start_pfn,
  2459. unsigned long *zone_end_pfn)
  2460. {
  2461. /* Only adjust if ZONE_MOVABLE is on this node */
  2462. if (zone_movable_pfn[nid]) {
  2463. /* Size ZONE_MOVABLE */
  2464. if (zone_type == ZONE_MOVABLE) {
  2465. *zone_start_pfn = zone_movable_pfn[nid];
  2466. *zone_end_pfn = min(node_end_pfn,
  2467. arch_zone_highest_possible_pfn[movable_zone]);
  2468. /* Adjust for ZONE_MOVABLE starting within this range */
  2469. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2470. *zone_end_pfn > zone_movable_pfn[nid]) {
  2471. *zone_end_pfn = zone_movable_pfn[nid];
  2472. /* Check if this whole range is within ZONE_MOVABLE */
  2473. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2474. *zone_start_pfn = *zone_end_pfn;
  2475. }
  2476. }
  2477. /*
  2478. * Return the number of pages a zone spans in a node, including holes
  2479. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2480. */
  2481. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2482. unsigned long zone_type,
  2483. unsigned long *ignored)
  2484. {
  2485. unsigned long node_start_pfn, node_end_pfn;
  2486. unsigned long zone_start_pfn, zone_end_pfn;
  2487. /* Get the start and end of the node and zone */
  2488. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2489. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2490. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2491. adjust_zone_range_for_zone_movable(nid, zone_type,
  2492. node_start_pfn, node_end_pfn,
  2493. &zone_start_pfn, &zone_end_pfn);
  2494. /* Check that this node has pages within the zone's required range */
  2495. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2496. return 0;
  2497. /* Move the zone boundaries inside the node if necessary */
  2498. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2499. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2500. /* Return the spanned pages */
  2501. return zone_end_pfn - zone_start_pfn;
  2502. }
  2503. /*
  2504. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2505. * then all holes in the requested range will be accounted for.
  2506. */
  2507. unsigned long __meminit __absent_pages_in_range(int nid,
  2508. unsigned long range_start_pfn,
  2509. unsigned long range_end_pfn)
  2510. {
  2511. int i = 0;
  2512. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2513. unsigned long start_pfn;
  2514. /* Find the end_pfn of the first active range of pfns in the node */
  2515. i = first_active_region_index_in_nid(nid);
  2516. if (i == -1)
  2517. return 0;
  2518. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2519. /* Account for ranges before physical memory on this node */
  2520. if (early_node_map[i].start_pfn > range_start_pfn)
  2521. hole_pages = prev_end_pfn - range_start_pfn;
  2522. /* Find all holes for the zone within the node */
  2523. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2524. /* No need to continue if prev_end_pfn is outside the zone */
  2525. if (prev_end_pfn >= range_end_pfn)
  2526. break;
  2527. /* Make sure the end of the zone is not within the hole */
  2528. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2529. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2530. /* Update the hole size cound and move on */
  2531. if (start_pfn > range_start_pfn) {
  2532. BUG_ON(prev_end_pfn > start_pfn);
  2533. hole_pages += start_pfn - prev_end_pfn;
  2534. }
  2535. prev_end_pfn = early_node_map[i].end_pfn;
  2536. }
  2537. /* Account for ranges past physical memory on this node */
  2538. if (range_end_pfn > prev_end_pfn)
  2539. hole_pages += range_end_pfn -
  2540. max(range_start_pfn, prev_end_pfn);
  2541. return hole_pages;
  2542. }
  2543. /**
  2544. * absent_pages_in_range - Return number of page frames in holes within a range
  2545. * @start_pfn: The start PFN to start searching for holes
  2546. * @end_pfn: The end PFN to stop searching for holes
  2547. *
  2548. * It returns the number of pages frames in memory holes within a range.
  2549. */
  2550. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2551. unsigned long end_pfn)
  2552. {
  2553. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2554. }
  2555. /* Return the number of page frames in holes in a zone on a node */
  2556. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2557. unsigned long zone_type,
  2558. unsigned long *ignored)
  2559. {
  2560. unsigned long node_start_pfn, node_end_pfn;
  2561. unsigned long zone_start_pfn, zone_end_pfn;
  2562. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2563. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2564. node_start_pfn);
  2565. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2566. node_end_pfn);
  2567. adjust_zone_range_for_zone_movable(nid, zone_type,
  2568. node_start_pfn, node_end_pfn,
  2569. &zone_start_pfn, &zone_end_pfn);
  2570. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2571. }
  2572. #else
  2573. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2574. unsigned long zone_type,
  2575. unsigned long *zones_size)
  2576. {
  2577. return zones_size[zone_type];
  2578. }
  2579. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2580. unsigned long zone_type,
  2581. unsigned long *zholes_size)
  2582. {
  2583. if (!zholes_size)
  2584. return 0;
  2585. return zholes_size[zone_type];
  2586. }
  2587. #endif
  2588. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2589. unsigned long *zones_size, unsigned long *zholes_size)
  2590. {
  2591. unsigned long realtotalpages, totalpages = 0;
  2592. enum zone_type i;
  2593. for (i = 0; i < MAX_NR_ZONES; i++)
  2594. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2595. zones_size);
  2596. pgdat->node_spanned_pages = totalpages;
  2597. realtotalpages = totalpages;
  2598. for (i = 0; i < MAX_NR_ZONES; i++)
  2599. realtotalpages -=
  2600. zone_absent_pages_in_node(pgdat->node_id, i,
  2601. zholes_size);
  2602. pgdat->node_present_pages = realtotalpages;
  2603. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2604. realtotalpages);
  2605. }
  2606. #ifndef CONFIG_SPARSEMEM
  2607. /*
  2608. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2609. * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
  2610. * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
  2611. * round what is now in bits to nearest long in bits, then return it in
  2612. * bytes.
  2613. */
  2614. static unsigned long __init usemap_size(unsigned long zonesize)
  2615. {
  2616. unsigned long usemapsize;
  2617. usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
  2618. usemapsize = usemapsize >> (MAX_ORDER-1);
  2619. usemapsize *= NR_PAGEBLOCK_BITS;
  2620. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2621. return usemapsize / 8;
  2622. }
  2623. static void __init setup_usemap(struct pglist_data *pgdat,
  2624. struct zone *zone, unsigned long zonesize)
  2625. {
  2626. unsigned long usemapsize = usemap_size(zonesize);
  2627. zone->pageblock_flags = NULL;
  2628. if (usemapsize) {
  2629. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2630. memset(zone->pageblock_flags, 0, usemapsize);
  2631. }
  2632. }
  2633. #else
  2634. static void inline setup_usemap(struct pglist_data *pgdat,
  2635. struct zone *zone, unsigned long zonesize) {}
  2636. #endif /* CONFIG_SPARSEMEM */
  2637. /*
  2638. * Set up the zone data structures:
  2639. * - mark all pages reserved
  2640. * - mark all memory queues empty
  2641. * - clear the memory bitmaps
  2642. */
  2643. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2644. unsigned long *zones_size, unsigned long *zholes_size)
  2645. {
  2646. enum zone_type j;
  2647. int nid = pgdat->node_id;
  2648. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2649. int ret;
  2650. pgdat_resize_init(pgdat);
  2651. pgdat->nr_zones = 0;
  2652. init_waitqueue_head(&pgdat->kswapd_wait);
  2653. pgdat->kswapd_max_order = 0;
  2654. for (j = 0; j < MAX_NR_ZONES; j++) {
  2655. struct zone *zone = pgdat->node_zones + j;
  2656. unsigned long size, realsize, memmap_pages;
  2657. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2658. realsize = size - zone_absent_pages_in_node(nid, j,
  2659. zholes_size);
  2660. /*
  2661. * Adjust realsize so that it accounts for how much memory
  2662. * is used by this zone for memmap. This affects the watermark
  2663. * and per-cpu initialisations
  2664. */
  2665. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2666. if (realsize >= memmap_pages) {
  2667. realsize -= memmap_pages;
  2668. printk(KERN_DEBUG
  2669. " %s zone: %lu pages used for memmap\n",
  2670. zone_names[j], memmap_pages);
  2671. } else
  2672. printk(KERN_WARNING
  2673. " %s zone: %lu pages exceeds realsize %lu\n",
  2674. zone_names[j], memmap_pages, realsize);
  2675. /* Account for reserved pages */
  2676. if (j == 0 && realsize > dma_reserve) {
  2677. realsize -= dma_reserve;
  2678. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2679. zone_names[0], dma_reserve);
  2680. }
  2681. if (!is_highmem_idx(j))
  2682. nr_kernel_pages += realsize;
  2683. nr_all_pages += realsize;
  2684. zone->spanned_pages = size;
  2685. zone->present_pages = realsize;
  2686. #ifdef CONFIG_NUMA
  2687. zone->node = nid;
  2688. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2689. / 100;
  2690. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2691. #endif
  2692. zone->name = zone_names[j];
  2693. spin_lock_init(&zone->lock);
  2694. spin_lock_init(&zone->lru_lock);
  2695. zone_seqlock_init(zone);
  2696. zone->zone_pgdat = pgdat;
  2697. zone->prev_priority = DEF_PRIORITY;
  2698. zone_pcp_init(zone);
  2699. INIT_LIST_HEAD(&zone->active_list);
  2700. INIT_LIST_HEAD(&zone->inactive_list);
  2701. zone->nr_scan_active = 0;
  2702. zone->nr_scan_inactive = 0;
  2703. zap_zone_vm_stats(zone);
  2704. atomic_set(&zone->reclaim_in_progress, 0);
  2705. if (!size)
  2706. continue;
  2707. setup_usemap(pgdat, zone, size);
  2708. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2709. size, MEMMAP_EARLY);
  2710. BUG_ON(ret);
  2711. zone_start_pfn += size;
  2712. }
  2713. }
  2714. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2715. {
  2716. /* Skip empty nodes */
  2717. if (!pgdat->node_spanned_pages)
  2718. return;
  2719. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2720. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2721. if (!pgdat->node_mem_map) {
  2722. unsigned long size, start, end;
  2723. struct page *map;
  2724. /*
  2725. * The zone's endpoints aren't required to be MAX_ORDER
  2726. * aligned but the node_mem_map endpoints must be in order
  2727. * for the buddy allocator to function correctly.
  2728. */
  2729. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2730. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2731. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2732. size = (end - start) * sizeof(struct page);
  2733. map = alloc_remap(pgdat->node_id, size);
  2734. if (!map)
  2735. map = alloc_bootmem_node(pgdat, size);
  2736. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2737. }
  2738. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2739. /*
  2740. * With no DISCONTIG, the global mem_map is just set as node 0's
  2741. */
  2742. if (pgdat == NODE_DATA(0)) {
  2743. mem_map = NODE_DATA(0)->node_mem_map;
  2744. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2745. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2746. mem_map -= pgdat->node_start_pfn;
  2747. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2748. }
  2749. #endif
  2750. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2751. }
  2752. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2753. unsigned long *zones_size, unsigned long node_start_pfn,
  2754. unsigned long *zholes_size)
  2755. {
  2756. pgdat->node_id = nid;
  2757. pgdat->node_start_pfn = node_start_pfn;
  2758. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2759. alloc_node_mem_map(pgdat);
  2760. free_area_init_core(pgdat, zones_size, zholes_size);
  2761. }
  2762. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2763. #if MAX_NUMNODES > 1
  2764. /*
  2765. * Figure out the number of possible node ids.
  2766. */
  2767. static void __init setup_nr_node_ids(void)
  2768. {
  2769. unsigned int node;
  2770. unsigned int highest = 0;
  2771. for_each_node_mask(node, node_possible_map)
  2772. highest = node;
  2773. nr_node_ids = highest + 1;
  2774. }
  2775. #else
  2776. static inline void setup_nr_node_ids(void)
  2777. {
  2778. }
  2779. #endif
  2780. /**
  2781. * add_active_range - Register a range of PFNs backed by physical memory
  2782. * @nid: The node ID the range resides on
  2783. * @start_pfn: The start PFN of the available physical memory
  2784. * @end_pfn: The end PFN of the available physical memory
  2785. *
  2786. * These ranges are stored in an early_node_map[] and later used by
  2787. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2788. * range spans a memory hole, it is up to the architecture to ensure
  2789. * the memory is not freed by the bootmem allocator. If possible
  2790. * the range being registered will be merged with existing ranges.
  2791. */
  2792. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2793. unsigned long end_pfn)
  2794. {
  2795. int i;
  2796. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2797. "%d entries of %d used\n",
  2798. nid, start_pfn, end_pfn,
  2799. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2800. /* Merge with existing active regions if possible */
  2801. for (i = 0; i < nr_nodemap_entries; i++) {
  2802. if (early_node_map[i].nid != nid)
  2803. continue;
  2804. /* Skip if an existing region covers this new one */
  2805. if (start_pfn >= early_node_map[i].start_pfn &&
  2806. end_pfn <= early_node_map[i].end_pfn)
  2807. return;
  2808. /* Merge forward if suitable */
  2809. if (start_pfn <= early_node_map[i].end_pfn &&
  2810. end_pfn > early_node_map[i].end_pfn) {
  2811. early_node_map[i].end_pfn = end_pfn;
  2812. return;
  2813. }
  2814. /* Merge backward if suitable */
  2815. if (start_pfn < early_node_map[i].end_pfn &&
  2816. end_pfn >= early_node_map[i].start_pfn) {
  2817. early_node_map[i].start_pfn = start_pfn;
  2818. return;
  2819. }
  2820. }
  2821. /* Check that early_node_map is large enough */
  2822. if (i >= MAX_ACTIVE_REGIONS) {
  2823. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2824. MAX_ACTIVE_REGIONS);
  2825. return;
  2826. }
  2827. early_node_map[i].nid = nid;
  2828. early_node_map[i].start_pfn = start_pfn;
  2829. early_node_map[i].end_pfn = end_pfn;
  2830. nr_nodemap_entries = i + 1;
  2831. }
  2832. /**
  2833. * shrink_active_range - Shrink an existing registered range of PFNs
  2834. * @nid: The node id the range is on that should be shrunk
  2835. * @old_end_pfn: The old end PFN of the range
  2836. * @new_end_pfn: The new PFN of the range
  2837. *
  2838. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2839. * The map is kept at the end physical page range that has already been
  2840. * registered with add_active_range(). This function allows an arch to shrink
  2841. * an existing registered range.
  2842. */
  2843. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2844. unsigned long new_end_pfn)
  2845. {
  2846. int i;
  2847. /* Find the old active region end and shrink */
  2848. for_each_active_range_index_in_nid(i, nid)
  2849. if (early_node_map[i].end_pfn == old_end_pfn) {
  2850. early_node_map[i].end_pfn = new_end_pfn;
  2851. break;
  2852. }
  2853. }
  2854. /**
  2855. * remove_all_active_ranges - Remove all currently registered regions
  2856. *
  2857. * During discovery, it may be found that a table like SRAT is invalid
  2858. * and an alternative discovery method must be used. This function removes
  2859. * all currently registered regions.
  2860. */
  2861. void __init remove_all_active_ranges(void)
  2862. {
  2863. memset(early_node_map, 0, sizeof(early_node_map));
  2864. nr_nodemap_entries = 0;
  2865. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2866. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2867. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2868. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2869. }
  2870. /* Compare two active node_active_regions */
  2871. static int __init cmp_node_active_region(const void *a, const void *b)
  2872. {
  2873. struct node_active_region *arange = (struct node_active_region *)a;
  2874. struct node_active_region *brange = (struct node_active_region *)b;
  2875. /* Done this way to avoid overflows */
  2876. if (arange->start_pfn > brange->start_pfn)
  2877. return 1;
  2878. if (arange->start_pfn < brange->start_pfn)
  2879. return -1;
  2880. return 0;
  2881. }
  2882. /* sort the node_map by start_pfn */
  2883. static void __init sort_node_map(void)
  2884. {
  2885. sort(early_node_map, (size_t)nr_nodemap_entries,
  2886. sizeof(struct node_active_region),
  2887. cmp_node_active_region, NULL);
  2888. }
  2889. /* Find the lowest pfn for a node */
  2890. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2891. {
  2892. int i;
  2893. unsigned long min_pfn = ULONG_MAX;
  2894. /* Assuming a sorted map, the first range found has the starting pfn */
  2895. for_each_active_range_index_in_nid(i, nid)
  2896. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  2897. if (min_pfn == ULONG_MAX) {
  2898. printk(KERN_WARNING
  2899. "Could not find start_pfn for node %lu\n", nid);
  2900. return 0;
  2901. }
  2902. return min_pfn;
  2903. }
  2904. /**
  2905. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2906. *
  2907. * It returns the minimum PFN based on information provided via
  2908. * add_active_range().
  2909. */
  2910. unsigned long __init find_min_pfn_with_active_regions(void)
  2911. {
  2912. return find_min_pfn_for_node(MAX_NUMNODES);
  2913. }
  2914. /**
  2915. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2916. *
  2917. * It returns the maximum PFN based on information provided via
  2918. * add_active_range().
  2919. */
  2920. unsigned long __init find_max_pfn_with_active_regions(void)
  2921. {
  2922. int i;
  2923. unsigned long max_pfn = 0;
  2924. for (i = 0; i < nr_nodemap_entries; i++)
  2925. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2926. return max_pfn;
  2927. }
  2928. /*
  2929. * early_calculate_totalpages()
  2930. * Sum pages in active regions for movable zone.
  2931. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  2932. */
  2933. unsigned long __init early_calculate_totalpages(void)
  2934. {
  2935. int i;
  2936. unsigned long totalpages = 0;
  2937. for (i = 0; i < nr_nodemap_entries; i++) {
  2938. unsigned long pages = early_node_map[i].end_pfn -
  2939. early_node_map[i].start_pfn;
  2940. totalpages += pages;
  2941. if (pages)
  2942. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  2943. }
  2944. return totalpages;
  2945. }
  2946. /*
  2947. * Find the PFN the Movable zone begins in each node. Kernel memory
  2948. * is spread evenly between nodes as long as the nodes have enough
  2949. * memory. When they don't, some nodes will have more kernelcore than
  2950. * others
  2951. */
  2952. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  2953. {
  2954. int i, nid;
  2955. unsigned long usable_startpfn;
  2956. unsigned long kernelcore_node, kernelcore_remaining;
  2957. unsigned long totalpages = early_calculate_totalpages();
  2958. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  2959. /*
  2960. * If movablecore was specified, calculate what size of
  2961. * kernelcore that corresponds so that memory usable for
  2962. * any allocation type is evenly spread. If both kernelcore
  2963. * and movablecore are specified, then the value of kernelcore
  2964. * will be used for required_kernelcore if it's greater than
  2965. * what movablecore would have allowed.
  2966. */
  2967. if (required_movablecore) {
  2968. unsigned long corepages;
  2969. /*
  2970. * Round-up so that ZONE_MOVABLE is at least as large as what
  2971. * was requested by the user
  2972. */
  2973. required_movablecore =
  2974. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  2975. corepages = totalpages - required_movablecore;
  2976. required_kernelcore = max(required_kernelcore, corepages);
  2977. }
  2978. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  2979. if (!required_kernelcore)
  2980. return;
  2981. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  2982. find_usable_zone_for_movable();
  2983. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  2984. restart:
  2985. /* Spread kernelcore memory as evenly as possible throughout nodes */
  2986. kernelcore_node = required_kernelcore / usable_nodes;
  2987. for_each_node_state(nid, N_HIGH_MEMORY) {
  2988. /*
  2989. * Recalculate kernelcore_node if the division per node
  2990. * now exceeds what is necessary to satisfy the requested
  2991. * amount of memory for the kernel
  2992. */
  2993. if (required_kernelcore < kernelcore_node)
  2994. kernelcore_node = required_kernelcore / usable_nodes;
  2995. /*
  2996. * As the map is walked, we track how much memory is usable
  2997. * by the kernel using kernelcore_remaining. When it is
  2998. * 0, the rest of the node is usable by ZONE_MOVABLE
  2999. */
  3000. kernelcore_remaining = kernelcore_node;
  3001. /* Go through each range of PFNs within this node */
  3002. for_each_active_range_index_in_nid(i, nid) {
  3003. unsigned long start_pfn, end_pfn;
  3004. unsigned long size_pages;
  3005. start_pfn = max(early_node_map[i].start_pfn,
  3006. zone_movable_pfn[nid]);
  3007. end_pfn = early_node_map[i].end_pfn;
  3008. if (start_pfn >= end_pfn)
  3009. continue;
  3010. /* Account for what is only usable for kernelcore */
  3011. if (start_pfn < usable_startpfn) {
  3012. unsigned long kernel_pages;
  3013. kernel_pages = min(end_pfn, usable_startpfn)
  3014. - start_pfn;
  3015. kernelcore_remaining -= min(kernel_pages,
  3016. kernelcore_remaining);
  3017. required_kernelcore -= min(kernel_pages,
  3018. required_kernelcore);
  3019. /* Continue if range is now fully accounted */
  3020. if (end_pfn <= usable_startpfn) {
  3021. /*
  3022. * Push zone_movable_pfn to the end so
  3023. * that if we have to rebalance
  3024. * kernelcore across nodes, we will
  3025. * not double account here
  3026. */
  3027. zone_movable_pfn[nid] = end_pfn;
  3028. continue;
  3029. }
  3030. start_pfn = usable_startpfn;
  3031. }
  3032. /*
  3033. * The usable PFN range for ZONE_MOVABLE is from
  3034. * start_pfn->end_pfn. Calculate size_pages as the
  3035. * number of pages used as kernelcore
  3036. */
  3037. size_pages = end_pfn - start_pfn;
  3038. if (size_pages > kernelcore_remaining)
  3039. size_pages = kernelcore_remaining;
  3040. zone_movable_pfn[nid] = start_pfn + size_pages;
  3041. /*
  3042. * Some kernelcore has been met, update counts and
  3043. * break if the kernelcore for this node has been
  3044. * satisified
  3045. */
  3046. required_kernelcore -= min(required_kernelcore,
  3047. size_pages);
  3048. kernelcore_remaining -= size_pages;
  3049. if (!kernelcore_remaining)
  3050. break;
  3051. }
  3052. }
  3053. /*
  3054. * If there is still required_kernelcore, we do another pass with one
  3055. * less node in the count. This will push zone_movable_pfn[nid] further
  3056. * along on the nodes that still have memory until kernelcore is
  3057. * satisified
  3058. */
  3059. usable_nodes--;
  3060. if (usable_nodes && required_kernelcore > usable_nodes)
  3061. goto restart;
  3062. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3063. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3064. zone_movable_pfn[nid] =
  3065. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3066. }
  3067. /* Any regular memory on that node ? */
  3068. static void check_for_regular_memory(pg_data_t *pgdat)
  3069. {
  3070. #ifdef CONFIG_HIGHMEM
  3071. enum zone_type zone_type;
  3072. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3073. struct zone *zone = &pgdat->node_zones[zone_type];
  3074. if (zone->present_pages)
  3075. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3076. }
  3077. #endif
  3078. }
  3079. /**
  3080. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3081. * @max_zone_pfn: an array of max PFNs for each zone
  3082. *
  3083. * This will call free_area_init_node() for each active node in the system.
  3084. * Using the page ranges provided by add_active_range(), the size of each
  3085. * zone in each node and their holes is calculated. If the maximum PFN
  3086. * between two adjacent zones match, it is assumed that the zone is empty.
  3087. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3088. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3089. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3090. * at arch_max_dma_pfn.
  3091. */
  3092. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3093. {
  3094. unsigned long nid;
  3095. enum zone_type i;
  3096. /* Sort early_node_map as initialisation assumes it is sorted */
  3097. sort_node_map();
  3098. /* Record where the zone boundaries are */
  3099. memset(arch_zone_lowest_possible_pfn, 0,
  3100. sizeof(arch_zone_lowest_possible_pfn));
  3101. memset(arch_zone_highest_possible_pfn, 0,
  3102. sizeof(arch_zone_highest_possible_pfn));
  3103. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3104. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3105. for (i = 1; i < MAX_NR_ZONES; i++) {
  3106. if (i == ZONE_MOVABLE)
  3107. continue;
  3108. arch_zone_lowest_possible_pfn[i] =
  3109. arch_zone_highest_possible_pfn[i-1];
  3110. arch_zone_highest_possible_pfn[i] =
  3111. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3112. }
  3113. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3114. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3115. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3116. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3117. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3118. /* Print out the zone ranges */
  3119. printk("Zone PFN ranges:\n");
  3120. for (i = 0; i < MAX_NR_ZONES; i++) {
  3121. if (i == ZONE_MOVABLE)
  3122. continue;
  3123. printk(" %-8s %8lu -> %8lu\n",
  3124. zone_names[i],
  3125. arch_zone_lowest_possible_pfn[i],
  3126. arch_zone_highest_possible_pfn[i]);
  3127. }
  3128. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3129. printk("Movable zone start PFN for each node\n");
  3130. for (i = 0; i < MAX_NUMNODES; i++) {
  3131. if (zone_movable_pfn[i])
  3132. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3133. }
  3134. /* Print out the early_node_map[] */
  3135. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3136. for (i = 0; i < nr_nodemap_entries; i++)
  3137. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3138. early_node_map[i].start_pfn,
  3139. early_node_map[i].end_pfn);
  3140. /* Initialise every node */
  3141. setup_nr_node_ids();
  3142. for_each_online_node(nid) {
  3143. pg_data_t *pgdat = NODE_DATA(nid);
  3144. free_area_init_node(nid, pgdat, NULL,
  3145. find_min_pfn_for_node(nid), NULL);
  3146. /* Any memory on that node */
  3147. if (pgdat->node_present_pages)
  3148. node_set_state(nid, N_HIGH_MEMORY);
  3149. check_for_regular_memory(pgdat);
  3150. }
  3151. }
  3152. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3153. {
  3154. unsigned long long coremem;
  3155. if (!p)
  3156. return -EINVAL;
  3157. coremem = memparse(p, &p);
  3158. *core = coremem >> PAGE_SHIFT;
  3159. /* Paranoid check that UL is enough for the coremem value */
  3160. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3161. return 0;
  3162. }
  3163. /*
  3164. * kernelcore=size sets the amount of memory for use for allocations that
  3165. * cannot be reclaimed or migrated.
  3166. */
  3167. static int __init cmdline_parse_kernelcore(char *p)
  3168. {
  3169. return cmdline_parse_core(p, &required_kernelcore);
  3170. }
  3171. /*
  3172. * movablecore=size sets the amount of memory for use for allocations that
  3173. * can be reclaimed or migrated.
  3174. */
  3175. static int __init cmdline_parse_movablecore(char *p)
  3176. {
  3177. return cmdline_parse_core(p, &required_movablecore);
  3178. }
  3179. early_param("kernelcore", cmdline_parse_kernelcore);
  3180. early_param("movablecore", cmdline_parse_movablecore);
  3181. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3182. /**
  3183. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3184. * @new_dma_reserve: The number of pages to mark reserved
  3185. *
  3186. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3187. * In the DMA zone, a significant percentage may be consumed by kernel image
  3188. * and other unfreeable allocations which can skew the watermarks badly. This
  3189. * function may optionally be used to account for unfreeable pages in the
  3190. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3191. * smaller per-cpu batchsize.
  3192. */
  3193. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3194. {
  3195. dma_reserve = new_dma_reserve;
  3196. }
  3197. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3198. static bootmem_data_t contig_bootmem_data;
  3199. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3200. EXPORT_SYMBOL(contig_page_data);
  3201. #endif
  3202. void __init free_area_init(unsigned long *zones_size)
  3203. {
  3204. free_area_init_node(0, NODE_DATA(0), zones_size,
  3205. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3206. }
  3207. static int page_alloc_cpu_notify(struct notifier_block *self,
  3208. unsigned long action, void *hcpu)
  3209. {
  3210. int cpu = (unsigned long)hcpu;
  3211. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3212. local_irq_disable();
  3213. __drain_pages(cpu);
  3214. vm_events_fold_cpu(cpu);
  3215. local_irq_enable();
  3216. refresh_cpu_vm_stats(cpu);
  3217. }
  3218. return NOTIFY_OK;
  3219. }
  3220. void __init page_alloc_init(void)
  3221. {
  3222. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3223. }
  3224. /*
  3225. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3226. * or min_free_kbytes changes.
  3227. */
  3228. static void calculate_totalreserve_pages(void)
  3229. {
  3230. struct pglist_data *pgdat;
  3231. unsigned long reserve_pages = 0;
  3232. enum zone_type i, j;
  3233. for_each_online_pgdat(pgdat) {
  3234. for (i = 0; i < MAX_NR_ZONES; i++) {
  3235. struct zone *zone = pgdat->node_zones + i;
  3236. unsigned long max = 0;
  3237. /* Find valid and maximum lowmem_reserve in the zone */
  3238. for (j = i; j < MAX_NR_ZONES; j++) {
  3239. if (zone->lowmem_reserve[j] > max)
  3240. max = zone->lowmem_reserve[j];
  3241. }
  3242. /* we treat pages_high as reserved pages. */
  3243. max += zone->pages_high;
  3244. if (max > zone->present_pages)
  3245. max = zone->present_pages;
  3246. reserve_pages += max;
  3247. }
  3248. }
  3249. totalreserve_pages = reserve_pages;
  3250. }
  3251. /*
  3252. * setup_per_zone_lowmem_reserve - called whenever
  3253. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3254. * has a correct pages reserved value, so an adequate number of
  3255. * pages are left in the zone after a successful __alloc_pages().
  3256. */
  3257. static void setup_per_zone_lowmem_reserve(void)
  3258. {
  3259. struct pglist_data *pgdat;
  3260. enum zone_type j, idx;
  3261. for_each_online_pgdat(pgdat) {
  3262. for (j = 0; j < MAX_NR_ZONES; j++) {
  3263. struct zone *zone = pgdat->node_zones + j;
  3264. unsigned long present_pages = zone->present_pages;
  3265. zone->lowmem_reserve[j] = 0;
  3266. idx = j;
  3267. while (idx) {
  3268. struct zone *lower_zone;
  3269. idx--;
  3270. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3271. sysctl_lowmem_reserve_ratio[idx] = 1;
  3272. lower_zone = pgdat->node_zones + idx;
  3273. lower_zone->lowmem_reserve[j] = present_pages /
  3274. sysctl_lowmem_reserve_ratio[idx];
  3275. present_pages += lower_zone->present_pages;
  3276. }
  3277. }
  3278. }
  3279. /* update totalreserve_pages */
  3280. calculate_totalreserve_pages();
  3281. }
  3282. /**
  3283. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3284. *
  3285. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3286. * with respect to min_free_kbytes.
  3287. */
  3288. void setup_per_zone_pages_min(void)
  3289. {
  3290. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3291. unsigned long lowmem_pages = 0;
  3292. struct zone *zone;
  3293. unsigned long flags;
  3294. /* Calculate total number of !ZONE_HIGHMEM pages */
  3295. for_each_zone(zone) {
  3296. if (!is_highmem(zone))
  3297. lowmem_pages += zone->present_pages;
  3298. }
  3299. for_each_zone(zone) {
  3300. u64 tmp;
  3301. spin_lock_irqsave(&zone->lru_lock, flags);
  3302. tmp = (u64)pages_min * zone->present_pages;
  3303. do_div(tmp, lowmem_pages);
  3304. if (is_highmem(zone)) {
  3305. /*
  3306. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3307. * need highmem pages, so cap pages_min to a small
  3308. * value here.
  3309. *
  3310. * The (pages_high-pages_low) and (pages_low-pages_min)
  3311. * deltas controls asynch page reclaim, and so should
  3312. * not be capped for highmem.
  3313. */
  3314. int min_pages;
  3315. min_pages = zone->present_pages / 1024;
  3316. if (min_pages < SWAP_CLUSTER_MAX)
  3317. min_pages = SWAP_CLUSTER_MAX;
  3318. if (min_pages > 128)
  3319. min_pages = 128;
  3320. zone->pages_min = min_pages;
  3321. } else {
  3322. /*
  3323. * If it's a lowmem zone, reserve a number of pages
  3324. * proportionate to the zone's size.
  3325. */
  3326. zone->pages_min = tmp;
  3327. }
  3328. zone->pages_low = zone->pages_min + (tmp >> 2);
  3329. zone->pages_high = zone->pages_min + (tmp >> 1);
  3330. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3331. }
  3332. /* update totalreserve_pages */
  3333. calculate_totalreserve_pages();
  3334. }
  3335. /*
  3336. * Initialise min_free_kbytes.
  3337. *
  3338. * For small machines we want it small (128k min). For large machines
  3339. * we want it large (64MB max). But it is not linear, because network
  3340. * bandwidth does not increase linearly with machine size. We use
  3341. *
  3342. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3343. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3344. *
  3345. * which yields
  3346. *
  3347. * 16MB: 512k
  3348. * 32MB: 724k
  3349. * 64MB: 1024k
  3350. * 128MB: 1448k
  3351. * 256MB: 2048k
  3352. * 512MB: 2896k
  3353. * 1024MB: 4096k
  3354. * 2048MB: 5792k
  3355. * 4096MB: 8192k
  3356. * 8192MB: 11584k
  3357. * 16384MB: 16384k
  3358. */
  3359. static int __init init_per_zone_pages_min(void)
  3360. {
  3361. unsigned long lowmem_kbytes;
  3362. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3363. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3364. if (min_free_kbytes < 128)
  3365. min_free_kbytes = 128;
  3366. if (min_free_kbytes > 65536)
  3367. min_free_kbytes = 65536;
  3368. setup_per_zone_pages_min();
  3369. setup_per_zone_lowmem_reserve();
  3370. return 0;
  3371. }
  3372. module_init(init_per_zone_pages_min)
  3373. /*
  3374. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3375. * that we can call two helper functions whenever min_free_kbytes
  3376. * changes.
  3377. */
  3378. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3379. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3380. {
  3381. proc_dointvec(table, write, file, buffer, length, ppos);
  3382. if (write)
  3383. setup_per_zone_pages_min();
  3384. return 0;
  3385. }
  3386. #ifdef CONFIG_NUMA
  3387. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3388. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3389. {
  3390. struct zone *zone;
  3391. int rc;
  3392. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3393. if (rc)
  3394. return rc;
  3395. for_each_zone(zone)
  3396. zone->min_unmapped_pages = (zone->present_pages *
  3397. sysctl_min_unmapped_ratio) / 100;
  3398. return 0;
  3399. }
  3400. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3401. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3402. {
  3403. struct zone *zone;
  3404. int rc;
  3405. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3406. if (rc)
  3407. return rc;
  3408. for_each_zone(zone)
  3409. zone->min_slab_pages = (zone->present_pages *
  3410. sysctl_min_slab_ratio) / 100;
  3411. return 0;
  3412. }
  3413. #endif
  3414. /*
  3415. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3416. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3417. * whenever sysctl_lowmem_reserve_ratio changes.
  3418. *
  3419. * The reserve ratio obviously has absolutely no relation with the
  3420. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3421. * if in function of the boot time zone sizes.
  3422. */
  3423. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3424. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3425. {
  3426. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3427. setup_per_zone_lowmem_reserve();
  3428. return 0;
  3429. }
  3430. /*
  3431. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3432. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3433. * can have before it gets flushed back to buddy allocator.
  3434. */
  3435. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3436. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3437. {
  3438. struct zone *zone;
  3439. unsigned int cpu;
  3440. int ret;
  3441. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3442. if (!write || (ret == -EINVAL))
  3443. return ret;
  3444. for_each_zone(zone) {
  3445. for_each_online_cpu(cpu) {
  3446. unsigned long high;
  3447. high = zone->present_pages / percpu_pagelist_fraction;
  3448. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3449. }
  3450. }
  3451. return 0;
  3452. }
  3453. int hashdist = HASHDIST_DEFAULT;
  3454. #ifdef CONFIG_NUMA
  3455. static int __init set_hashdist(char *str)
  3456. {
  3457. if (!str)
  3458. return 0;
  3459. hashdist = simple_strtoul(str, &str, 0);
  3460. return 1;
  3461. }
  3462. __setup("hashdist=", set_hashdist);
  3463. #endif
  3464. /*
  3465. * allocate a large system hash table from bootmem
  3466. * - it is assumed that the hash table must contain an exact power-of-2
  3467. * quantity of entries
  3468. * - limit is the number of hash buckets, not the total allocation size
  3469. */
  3470. void *__init alloc_large_system_hash(const char *tablename,
  3471. unsigned long bucketsize,
  3472. unsigned long numentries,
  3473. int scale,
  3474. int flags,
  3475. unsigned int *_hash_shift,
  3476. unsigned int *_hash_mask,
  3477. unsigned long limit)
  3478. {
  3479. unsigned long long max = limit;
  3480. unsigned long log2qty, size;
  3481. void *table = NULL;
  3482. /* allow the kernel cmdline to have a say */
  3483. if (!numentries) {
  3484. /* round applicable memory size up to nearest megabyte */
  3485. numentries = nr_kernel_pages;
  3486. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3487. numentries >>= 20 - PAGE_SHIFT;
  3488. numentries <<= 20 - PAGE_SHIFT;
  3489. /* limit to 1 bucket per 2^scale bytes of low memory */
  3490. if (scale > PAGE_SHIFT)
  3491. numentries >>= (scale - PAGE_SHIFT);
  3492. else
  3493. numentries <<= (PAGE_SHIFT - scale);
  3494. /* Make sure we've got at least a 0-order allocation.. */
  3495. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3496. numentries = PAGE_SIZE / bucketsize;
  3497. }
  3498. numentries = roundup_pow_of_two(numentries);
  3499. /* limit allocation size to 1/16 total memory by default */
  3500. if (max == 0) {
  3501. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3502. do_div(max, bucketsize);
  3503. }
  3504. if (numentries > max)
  3505. numentries = max;
  3506. log2qty = ilog2(numentries);
  3507. do {
  3508. size = bucketsize << log2qty;
  3509. if (flags & HASH_EARLY)
  3510. table = alloc_bootmem(size);
  3511. else if (hashdist)
  3512. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3513. else {
  3514. unsigned long order;
  3515. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3516. ;
  3517. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3518. /*
  3519. * If bucketsize is not a power-of-two, we may free
  3520. * some pages at the end of hash table.
  3521. */
  3522. if (table) {
  3523. unsigned long alloc_end = (unsigned long)table +
  3524. (PAGE_SIZE << order);
  3525. unsigned long used = (unsigned long)table +
  3526. PAGE_ALIGN(size);
  3527. split_page(virt_to_page(table), order);
  3528. while (used < alloc_end) {
  3529. free_page(used);
  3530. used += PAGE_SIZE;
  3531. }
  3532. }
  3533. }
  3534. } while (!table && size > PAGE_SIZE && --log2qty);
  3535. if (!table)
  3536. panic("Failed to allocate %s hash table\n", tablename);
  3537. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3538. tablename,
  3539. (1U << log2qty),
  3540. ilog2(size) - PAGE_SHIFT,
  3541. size);
  3542. if (_hash_shift)
  3543. *_hash_shift = log2qty;
  3544. if (_hash_mask)
  3545. *_hash_mask = (1 << log2qty) - 1;
  3546. return table;
  3547. }
  3548. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3549. struct page *pfn_to_page(unsigned long pfn)
  3550. {
  3551. return __pfn_to_page(pfn);
  3552. }
  3553. unsigned long page_to_pfn(struct page *page)
  3554. {
  3555. return __page_to_pfn(page);
  3556. }
  3557. EXPORT_SYMBOL(pfn_to_page);
  3558. EXPORT_SYMBOL(page_to_pfn);
  3559. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3560. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3561. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3562. unsigned long pfn)
  3563. {
  3564. #ifdef CONFIG_SPARSEMEM
  3565. return __pfn_to_section(pfn)->pageblock_flags;
  3566. #else
  3567. return zone->pageblock_flags;
  3568. #endif /* CONFIG_SPARSEMEM */
  3569. }
  3570. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3571. {
  3572. #ifdef CONFIG_SPARSEMEM
  3573. pfn &= (PAGES_PER_SECTION-1);
  3574. return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
  3575. #else
  3576. pfn = pfn - zone->zone_start_pfn;
  3577. return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
  3578. #endif /* CONFIG_SPARSEMEM */
  3579. }
  3580. /**
  3581. * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
  3582. * @page: The page within the block of interest
  3583. * @start_bitidx: The first bit of interest to retrieve
  3584. * @end_bitidx: The last bit of interest
  3585. * returns pageblock_bits flags
  3586. */
  3587. unsigned long get_pageblock_flags_group(struct page *page,
  3588. int start_bitidx, int end_bitidx)
  3589. {
  3590. struct zone *zone;
  3591. unsigned long *bitmap;
  3592. unsigned long pfn, bitidx;
  3593. unsigned long flags = 0;
  3594. unsigned long value = 1;
  3595. zone = page_zone(page);
  3596. pfn = page_to_pfn(page);
  3597. bitmap = get_pageblock_bitmap(zone, pfn);
  3598. bitidx = pfn_to_bitidx(zone, pfn);
  3599. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3600. if (test_bit(bitidx + start_bitidx, bitmap))
  3601. flags |= value;
  3602. return flags;
  3603. }
  3604. /**
  3605. * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
  3606. * @page: The page within the block of interest
  3607. * @start_bitidx: The first bit of interest
  3608. * @end_bitidx: The last bit of interest
  3609. * @flags: The flags to set
  3610. */
  3611. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3612. int start_bitidx, int end_bitidx)
  3613. {
  3614. struct zone *zone;
  3615. unsigned long *bitmap;
  3616. unsigned long pfn, bitidx;
  3617. unsigned long value = 1;
  3618. zone = page_zone(page);
  3619. pfn = page_to_pfn(page);
  3620. bitmap = get_pageblock_bitmap(zone, pfn);
  3621. bitidx = pfn_to_bitidx(zone, pfn);
  3622. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3623. if (flags & value)
  3624. __set_bit(bitidx + start_bitidx, bitmap);
  3625. else
  3626. __clear_bit(bitidx + start_bitidx, bitmap);
  3627. }