recovery.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct list_head *this;
  28. struct fsync_inode_entry *entry;
  29. list_for_each(this, head) {
  30. entry = list_entry(this, struct fsync_inode_entry, list);
  31. if (entry->inode->i_ino == ino)
  32. return entry;
  33. }
  34. return NULL;
  35. }
  36. static int recover_dentry(struct page *ipage, struct inode *inode)
  37. {
  38. void *kaddr = page_address(ipage);
  39. struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
  40. struct f2fs_inode *raw_inode = &(raw_node->i);
  41. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  42. struct qstr name;
  43. struct page *page;
  44. struct inode *dir;
  45. int err = 0;
  46. dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino);
  47. if (!dir) {
  48. dir = f2fs_iget(inode->i_sb, pino);
  49. if (IS_ERR(dir)) {
  50. err = PTR_ERR(dir);
  51. goto out;
  52. }
  53. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  54. }
  55. name.len = le32_to_cpu(raw_inode->i_namelen);
  56. name.name = raw_inode->i_name;
  57. if (f2fs_find_entry(dir, &name, &page)) {
  58. kunmap(page);
  59. f2fs_put_page(page, 0);
  60. } else {
  61. err = __f2fs_add_link(dir, &name, inode);
  62. }
  63. out:
  64. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode and its dentry: "
  65. "ino = %x, name = %s, dir = %lx, err = %d",
  66. ino_of_node(ipage), raw_inode->i_name, dir->i_ino, err);
  67. return err;
  68. }
  69. static int recover_inode(struct inode *inode, struct page *node_page)
  70. {
  71. void *kaddr = page_address(node_page);
  72. struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
  73. struct f2fs_inode *raw_inode = &(raw_node->i);
  74. if (!IS_INODE(node_page))
  75. return 0;
  76. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  77. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  78. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  79. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  80. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  81. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  82. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  83. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  84. if (is_dent_dnode(node_page))
  85. return recover_dentry(node_page, inode);
  86. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  87. ino_of_node(node_page), raw_inode->i_name);
  88. return 0;
  89. }
  90. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  91. {
  92. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  93. struct curseg_info *curseg;
  94. struct page *page;
  95. block_t blkaddr;
  96. int err = 0;
  97. /* get node pages in the current segment */
  98. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  99. blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
  100. /* read node page */
  101. page = alloc_page(GFP_F2FS_ZERO);
  102. if (IS_ERR(page))
  103. return PTR_ERR(page);
  104. lock_page(page);
  105. while (1) {
  106. struct fsync_inode_entry *entry;
  107. err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
  108. if (err)
  109. goto out;
  110. lock_page(page);
  111. if (cp_ver != cpver_of_node(page))
  112. break;
  113. if (!is_fsync_dnode(page))
  114. goto next;
  115. entry = get_fsync_inode(head, ino_of_node(page));
  116. if (entry) {
  117. if (IS_INODE(page) && is_dent_dnode(page))
  118. set_inode_flag(F2FS_I(entry->inode),
  119. FI_INC_LINK);
  120. } else {
  121. if (IS_INODE(page) && is_dent_dnode(page)) {
  122. err = recover_inode_page(sbi, page);
  123. if (err)
  124. break;
  125. }
  126. /* add this fsync inode to the list */
  127. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  128. if (!entry) {
  129. err = -ENOMEM;
  130. break;
  131. }
  132. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  133. if (IS_ERR(entry->inode)) {
  134. err = PTR_ERR(entry->inode);
  135. kmem_cache_free(fsync_entry_slab, entry);
  136. break;
  137. }
  138. list_add_tail(&entry->list, head);
  139. }
  140. entry->blkaddr = blkaddr;
  141. err = recover_inode(entry->inode, page);
  142. if (err && err != -ENOENT)
  143. break;
  144. next:
  145. /* check next segment */
  146. blkaddr = next_blkaddr_of_node(page);
  147. }
  148. unlock_page(page);
  149. out:
  150. __free_pages(page, 0);
  151. return err;
  152. }
  153. static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi,
  154. struct list_head *head)
  155. {
  156. struct fsync_inode_entry *entry, *tmp;
  157. list_for_each_entry_safe(entry, tmp, head, list) {
  158. iput(entry->inode);
  159. list_del(&entry->list);
  160. kmem_cache_free(fsync_entry_slab, entry);
  161. }
  162. }
  163. static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  164. block_t blkaddr, struct dnode_of_data *dn)
  165. {
  166. struct seg_entry *sentry;
  167. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  168. unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
  169. (sbi->blocks_per_seg - 1);
  170. struct f2fs_summary sum;
  171. nid_t ino, nid;
  172. void *kaddr;
  173. struct inode *inode;
  174. struct page *node_page;
  175. block_t bidx;
  176. int i;
  177. sentry = get_seg_entry(sbi, segno);
  178. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  179. return;
  180. /* Get the previous summary */
  181. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  182. struct curseg_info *curseg = CURSEG_I(sbi, i);
  183. if (curseg->segno == segno) {
  184. sum = curseg->sum_blk->entries[blkoff];
  185. break;
  186. }
  187. }
  188. if (i > CURSEG_COLD_DATA) {
  189. struct page *sum_page = get_sum_page(sbi, segno);
  190. struct f2fs_summary_block *sum_node;
  191. kaddr = page_address(sum_page);
  192. sum_node = (struct f2fs_summary_block *)kaddr;
  193. sum = sum_node->entries[blkoff];
  194. f2fs_put_page(sum_page, 1);
  195. }
  196. /* Use the locked dnode page and inode */
  197. nid = le32_to_cpu(sum.nid);
  198. if (dn->inode->i_ino == nid) {
  199. struct dnode_of_data tdn = *dn;
  200. tdn.nid = nid;
  201. tdn.node_page = dn->inode_page;
  202. tdn.ofs_in_node = sum.ofs_in_node;
  203. truncate_data_blocks_range(&tdn, 1);
  204. return;
  205. } else if (dn->nid == nid) {
  206. struct dnode_of_data tdn = *dn;
  207. tdn.ofs_in_node = sum.ofs_in_node;
  208. truncate_data_blocks_range(&tdn, 1);
  209. return;
  210. }
  211. /* Get the node page */
  212. node_page = get_node_page(sbi, nid);
  213. bidx = start_bidx_of_node(ofs_of_node(node_page)) +
  214. le16_to_cpu(sum.ofs_in_node);
  215. ino = ino_of_node(node_page);
  216. f2fs_put_page(node_page, 1);
  217. /* Deallocate previous index in the node page */
  218. inode = f2fs_iget(sbi->sb, ino);
  219. if (IS_ERR(inode))
  220. return;
  221. truncate_hole(inode, bidx, bidx + 1);
  222. iput(inode);
  223. }
  224. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  225. struct page *page, block_t blkaddr)
  226. {
  227. unsigned int start, end;
  228. struct dnode_of_data dn;
  229. struct f2fs_summary sum;
  230. struct node_info ni;
  231. int err = 0, recovered = 0;
  232. int ilock;
  233. start = start_bidx_of_node(ofs_of_node(page));
  234. if (IS_INODE(page))
  235. end = start + ADDRS_PER_INODE;
  236. else
  237. end = start + ADDRS_PER_BLOCK;
  238. ilock = mutex_lock_op(sbi);
  239. set_new_dnode(&dn, inode, NULL, NULL, 0);
  240. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  241. if (err) {
  242. mutex_unlock_op(sbi, ilock);
  243. return err;
  244. }
  245. wait_on_page_writeback(dn.node_page);
  246. get_node_info(sbi, dn.nid, &ni);
  247. BUG_ON(ni.ino != ino_of_node(page));
  248. BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
  249. for (; start < end; start++) {
  250. block_t src, dest;
  251. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  252. dest = datablock_addr(page, dn.ofs_in_node);
  253. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  254. if (src == NULL_ADDR) {
  255. int err = reserve_new_block(&dn);
  256. /* We should not get -ENOSPC */
  257. BUG_ON(err);
  258. }
  259. /* Check the previous node page having this index */
  260. check_index_in_prev_nodes(sbi, dest, &dn);
  261. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  262. /* write dummy data page */
  263. recover_data_page(sbi, NULL, &sum, src, dest);
  264. update_extent_cache(dest, &dn);
  265. recovered++;
  266. }
  267. dn.ofs_in_node++;
  268. }
  269. /* write node page in place */
  270. set_summary(&sum, dn.nid, 0, 0);
  271. if (IS_INODE(dn.node_page))
  272. sync_inode_page(&dn);
  273. copy_node_footer(dn.node_page, page);
  274. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  275. ofs_of_node(page), false);
  276. set_page_dirty(dn.node_page);
  277. recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
  278. f2fs_put_dnode(&dn);
  279. mutex_unlock_op(sbi, ilock);
  280. f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, "
  281. "recovered_data = %d blocks",
  282. inode->i_ino, recovered);
  283. return 0;
  284. }
  285. static int recover_data(struct f2fs_sb_info *sbi,
  286. struct list_head *head, int type)
  287. {
  288. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  289. struct curseg_info *curseg;
  290. struct page *page;
  291. int err = 0;
  292. block_t blkaddr;
  293. /* get node pages in the current segment */
  294. curseg = CURSEG_I(sbi, type);
  295. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  296. /* read node page */
  297. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  298. if (IS_ERR(page))
  299. return -ENOMEM;
  300. lock_page(page);
  301. while (1) {
  302. struct fsync_inode_entry *entry;
  303. err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
  304. if (err)
  305. goto out;
  306. lock_page(page);
  307. if (cp_ver != cpver_of_node(page))
  308. break;
  309. entry = get_fsync_inode(head, ino_of_node(page));
  310. if (!entry)
  311. goto next;
  312. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  313. if (err)
  314. break;
  315. if (entry->blkaddr == blkaddr) {
  316. iput(entry->inode);
  317. list_del(&entry->list);
  318. kmem_cache_free(fsync_entry_slab, entry);
  319. }
  320. next:
  321. /* check next segment */
  322. blkaddr = next_blkaddr_of_node(page);
  323. }
  324. unlock_page(page);
  325. out:
  326. __free_pages(page, 0);
  327. if (!err)
  328. allocate_new_segments(sbi);
  329. return err;
  330. }
  331. int recover_fsync_data(struct f2fs_sb_info *sbi)
  332. {
  333. struct list_head inode_list;
  334. int err;
  335. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  336. sizeof(struct fsync_inode_entry), NULL);
  337. if (unlikely(!fsync_entry_slab))
  338. return -ENOMEM;
  339. INIT_LIST_HEAD(&inode_list);
  340. /* step #1: find fsynced inode numbers */
  341. sbi->por_doing = 1;
  342. err = find_fsync_dnodes(sbi, &inode_list);
  343. if (err)
  344. goto out;
  345. if (list_empty(&inode_list))
  346. goto out;
  347. /* step #2: recover data */
  348. err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  349. BUG_ON(!list_empty(&inode_list));
  350. out:
  351. destroy_fsync_dnodes(sbi, &inode_list);
  352. kmem_cache_destroy(fsync_entry_slab);
  353. sbi->por_doing = 0;
  354. if (!err)
  355. write_checkpoint(sbi, false);
  356. return err;
  357. }