numa_64.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/ctype.h>
  12. #include <linux/module.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/e820.h>
  15. #include <asm/proto.h>
  16. #include <asm/dma.h>
  17. #include <asm/numa.h>
  18. #include <asm/acpi.h>
  19. #include <asm/k8.h>
  20. #ifndef Dprintk
  21. #define Dprintk(x...)
  22. #endif
  23. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  24. EXPORT_SYMBOL(node_data);
  25. bootmem_data_t plat_node_bdata[MAX_NUMNODES];
  26. struct memnode memnode;
  27. int cpu_to_node_map[NR_CPUS] __read_mostly = {
  28. [0 ... NR_CPUS-1] = NUMA_NO_NODE
  29. };
  30. EXPORT_SYMBOL(cpu_to_node_map);
  31. unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  32. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  33. };
  34. cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
  35. EXPORT_SYMBOL(node_to_cpumask_map);
  36. int numa_off __initdata;
  37. unsigned long __initdata nodemap_addr;
  38. unsigned long __initdata nodemap_size;
  39. /*
  40. * Given a shift value, try to populate memnodemap[]
  41. * Returns :
  42. * 1 if OK
  43. * 0 if memnodmap[] too small (of shift too small)
  44. * -1 if node overlap or lost ram (shift too big)
  45. */
  46. static int __init populate_memnodemap(const struct bootnode *nodes,
  47. int numnodes, int shift)
  48. {
  49. unsigned long addr, end;
  50. int i, res = -1;
  51. memset(memnodemap, 0xff, memnodemapsize);
  52. for (i = 0; i < numnodes; i++) {
  53. addr = nodes[i].start;
  54. end = nodes[i].end;
  55. if (addr >= end)
  56. continue;
  57. if ((end >> shift) >= memnodemapsize)
  58. return 0;
  59. do {
  60. if (memnodemap[addr >> shift] != 0xff)
  61. return -1;
  62. memnodemap[addr >> shift] = i;
  63. addr += (1UL << shift);
  64. } while (addr < end);
  65. res = 1;
  66. }
  67. return res;
  68. }
  69. static int __init allocate_cachealigned_memnodemap(void)
  70. {
  71. unsigned long pad, pad_addr;
  72. memnodemap = memnode.embedded_map;
  73. if (memnodemapsize <= 48)
  74. return 0;
  75. pad = L1_CACHE_BYTES - 1;
  76. pad_addr = 0x8000;
  77. nodemap_size = pad + memnodemapsize;
  78. nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
  79. nodemap_size);
  80. if (nodemap_addr == -1UL) {
  81. printk(KERN_ERR
  82. "NUMA: Unable to allocate Memory to Node hash map\n");
  83. nodemap_addr = nodemap_size = 0;
  84. return -1;
  85. }
  86. pad_addr = (nodemap_addr + pad) & ~pad;
  87. memnodemap = phys_to_virt(pad_addr);
  88. printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
  89. nodemap_addr, nodemap_addr + nodemap_size);
  90. return 0;
  91. }
  92. /*
  93. * The LSB of all start and end addresses in the node map is the value of the
  94. * maximum possible shift.
  95. */
  96. static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
  97. int numnodes)
  98. {
  99. int i, nodes_used = 0;
  100. unsigned long start, end;
  101. unsigned long bitfield = 0, memtop = 0;
  102. for (i = 0; i < numnodes; i++) {
  103. start = nodes[i].start;
  104. end = nodes[i].end;
  105. if (start >= end)
  106. continue;
  107. bitfield |= start;
  108. nodes_used++;
  109. if (end > memtop)
  110. memtop = end;
  111. }
  112. if (nodes_used <= 1)
  113. i = 63;
  114. else
  115. i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
  116. memnodemapsize = (memtop >> i)+1;
  117. return i;
  118. }
  119. int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
  120. {
  121. int shift;
  122. shift = extract_lsb_from_nodes(nodes, numnodes);
  123. if (allocate_cachealigned_memnodemap())
  124. return -1;
  125. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  126. shift);
  127. if (populate_memnodemap(nodes, numnodes, shift) != 1) {
  128. printk(KERN_INFO "Your memory is not aligned you need to "
  129. "rebuild your kernel with a bigger NODEMAPSIZE "
  130. "shift=%d\n", shift);
  131. return -1;
  132. }
  133. return shift;
  134. }
  135. int early_pfn_to_nid(unsigned long pfn)
  136. {
  137. return phys_to_nid(pfn << PAGE_SHIFT);
  138. }
  139. static void * __init early_node_mem(int nodeid, unsigned long start,
  140. unsigned long end, unsigned long size)
  141. {
  142. unsigned long mem = find_e820_area(start, end, size);
  143. void *ptr;
  144. if (mem != -1L)
  145. return __va(mem);
  146. ptr = __alloc_bootmem_nopanic(size,
  147. SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
  148. if (ptr == NULL) {
  149. printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
  150. size, nodeid);
  151. return NULL;
  152. }
  153. return ptr;
  154. }
  155. /* Initialize bootmem allocator for a node */
  156. void __init setup_node_bootmem(int nodeid, unsigned long start,
  157. unsigned long end)
  158. {
  159. unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
  160. unsigned long bootmap_start, nodedata_phys;
  161. void *bootmap;
  162. const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
  163. start = round_up(start, ZONE_ALIGN);
  164. printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
  165. start, end);
  166. start_pfn = start >> PAGE_SHIFT;
  167. end_pfn = end >> PAGE_SHIFT;
  168. node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
  169. if (node_data[nodeid] == NULL)
  170. return;
  171. nodedata_phys = __pa(node_data[nodeid]);
  172. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  173. NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
  174. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  175. NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
  176. /* Find a place for the bootmem map */
  177. bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
  178. bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
  179. bootmap = early_node_mem(nodeid, bootmap_start, end,
  180. bootmap_pages<<PAGE_SHIFT);
  181. if (bootmap == NULL) {
  182. if (nodedata_phys < start || nodedata_phys >= end)
  183. free_bootmem((unsigned long)node_data[nodeid],
  184. pgdat_size);
  185. node_data[nodeid] = NULL;
  186. return;
  187. }
  188. bootmap_start = __pa(bootmap);
  189. Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
  190. bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
  191. bootmap_start >> PAGE_SHIFT,
  192. start_pfn, end_pfn);
  193. free_bootmem_with_active_regions(nodeid, end);
  194. reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
  195. reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
  196. bootmap_pages<<PAGE_SHIFT);
  197. #ifdef CONFIG_ACPI_NUMA
  198. srat_reserve_add_area(nodeid);
  199. #endif
  200. node_set_online(nodeid);
  201. }
  202. /* Initialize final allocator for a zone */
  203. void __init setup_node_zones(int nodeid)
  204. {
  205. unsigned long start_pfn, end_pfn, memmapsize, limit;
  206. start_pfn = node_start_pfn(nodeid);
  207. end_pfn = node_end_pfn(nodeid);
  208. Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
  209. nodeid, start_pfn, end_pfn);
  210. /*
  211. * Try to allocate mem_map at end to not fill up precious <4GB
  212. * memory.
  213. */
  214. memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
  215. limit = end_pfn << PAGE_SHIFT;
  216. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  217. NODE_DATA(nodeid)->node_mem_map =
  218. __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
  219. memmapsize, SMP_CACHE_BYTES,
  220. round_down(limit - memmapsize, PAGE_SIZE),
  221. limit);
  222. #endif
  223. }
  224. /*
  225. * There are unfortunately some poorly designed mainboards around that
  226. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  227. * mapping. To avoid this fill in the mapping for all possible CPUs,
  228. * as the number of CPUs is not known yet. We round robin the existing
  229. * nodes.
  230. */
  231. void __init numa_init_array(void)
  232. {
  233. int rr, i;
  234. rr = first_node(node_online_map);
  235. for (i = 0; i < NR_CPUS; i++) {
  236. if (cpu_to_node(i) != NUMA_NO_NODE)
  237. continue;
  238. numa_set_node(i, rr);
  239. rr = next_node(rr, node_online_map);
  240. if (rr == MAX_NUMNODES)
  241. rr = first_node(node_online_map);
  242. }
  243. }
  244. #ifdef CONFIG_NUMA_EMU
  245. /* Numa emulation */
  246. char *cmdline __initdata;
  247. /*
  248. * Setups up nid to range from addr to addr + size. If the end
  249. * boundary is greater than max_addr, then max_addr is used instead.
  250. * The return value is 0 if there is additional memory left for
  251. * allocation past addr and -1 otherwise. addr is adjusted to be at
  252. * the end of the node.
  253. */
  254. static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
  255. u64 size, u64 max_addr)
  256. {
  257. int ret = 0;
  258. nodes[nid].start = *addr;
  259. *addr += size;
  260. if (*addr >= max_addr) {
  261. *addr = max_addr;
  262. ret = -1;
  263. }
  264. nodes[nid].end = *addr;
  265. node_set(nid, node_possible_map);
  266. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
  267. nodes[nid].start, nodes[nid].end,
  268. (nodes[nid].end - nodes[nid].start) >> 20);
  269. return ret;
  270. }
  271. /*
  272. * Splits num_nodes nodes up equally starting at node_start. The return value
  273. * is the number of nodes split up and addr is adjusted to be at the end of the
  274. * last node allocated.
  275. */
  276. static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
  277. u64 max_addr, int node_start,
  278. int num_nodes)
  279. {
  280. unsigned int big;
  281. u64 size;
  282. int i;
  283. if (num_nodes <= 0)
  284. return -1;
  285. if (num_nodes > MAX_NUMNODES)
  286. num_nodes = MAX_NUMNODES;
  287. size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
  288. num_nodes;
  289. /*
  290. * Calculate the number of big nodes that can be allocated as a result
  291. * of consolidating the leftovers.
  292. */
  293. big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
  294. FAKE_NODE_MIN_SIZE;
  295. /* Round down to nearest FAKE_NODE_MIN_SIZE. */
  296. size &= FAKE_NODE_MIN_HASH_MASK;
  297. if (!size) {
  298. printk(KERN_ERR "Not enough memory for each node. "
  299. "NUMA emulation disabled.\n");
  300. return -1;
  301. }
  302. for (i = node_start; i < num_nodes + node_start; i++) {
  303. u64 end = *addr + size;
  304. if (i < big)
  305. end += FAKE_NODE_MIN_SIZE;
  306. /*
  307. * The final node can have the remaining system RAM. Other
  308. * nodes receive roughly the same amount of available pages.
  309. */
  310. if (i == num_nodes + node_start - 1)
  311. end = max_addr;
  312. else
  313. while (end - *addr - e820_hole_size(*addr, end) <
  314. size) {
  315. end += FAKE_NODE_MIN_SIZE;
  316. if (end > max_addr) {
  317. end = max_addr;
  318. break;
  319. }
  320. }
  321. if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
  322. break;
  323. }
  324. return i - node_start + 1;
  325. }
  326. /*
  327. * Splits the remaining system RAM into chunks of size. The remaining memory is
  328. * always assigned to a final node and can be asymmetric. Returns the number of
  329. * nodes split.
  330. */
  331. static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
  332. u64 max_addr, int node_start, u64 size)
  333. {
  334. int i = node_start;
  335. size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
  336. while (!setup_node_range(i++, nodes, addr, size, max_addr))
  337. ;
  338. return i - node_start;
  339. }
  340. /*
  341. * Sets up the system RAM area from start_pfn to end_pfn according to the
  342. * numa=fake command-line option.
  343. */
  344. static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
  345. {
  346. struct bootnode nodes[MAX_NUMNODES];
  347. u64 size, addr = start_pfn << PAGE_SHIFT;
  348. u64 max_addr = end_pfn << PAGE_SHIFT;
  349. int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
  350. memset(&nodes, 0, sizeof(nodes));
  351. /*
  352. * If the numa=fake command-line is just a single number N, split the
  353. * system RAM into N fake nodes.
  354. */
  355. if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
  356. long n = simple_strtol(cmdline, NULL, 0);
  357. num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
  358. if (num_nodes < 0)
  359. return num_nodes;
  360. goto out;
  361. }
  362. /* Parse the command line. */
  363. for (coeff_flag = 0; ; cmdline++) {
  364. if (*cmdline && isdigit(*cmdline)) {
  365. num = num * 10 + *cmdline - '0';
  366. continue;
  367. }
  368. if (*cmdline == '*') {
  369. if (num > 0)
  370. coeff = num;
  371. coeff_flag = 1;
  372. }
  373. if (!*cmdline || *cmdline == ',') {
  374. if (!coeff_flag)
  375. coeff = 1;
  376. /*
  377. * Round down to the nearest FAKE_NODE_MIN_SIZE.
  378. * Command-line coefficients are in megabytes.
  379. */
  380. size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
  381. if (size)
  382. for (i = 0; i < coeff; i++, num_nodes++)
  383. if (setup_node_range(num_nodes, nodes,
  384. &addr, size, max_addr) < 0)
  385. goto done;
  386. if (!*cmdline)
  387. break;
  388. coeff_flag = 0;
  389. coeff = -1;
  390. }
  391. num = 0;
  392. }
  393. done:
  394. if (!num_nodes)
  395. return -1;
  396. /* Fill remainder of system RAM, if appropriate. */
  397. if (addr < max_addr) {
  398. if (coeff_flag && coeff < 0) {
  399. /* Split remaining nodes into num-sized chunks */
  400. num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
  401. num_nodes, num);
  402. goto out;
  403. }
  404. switch (*(cmdline - 1)) {
  405. case '*':
  406. /* Split remaining nodes into coeff chunks */
  407. if (coeff <= 0)
  408. break;
  409. num_nodes += split_nodes_equally(nodes, &addr, max_addr,
  410. num_nodes, coeff);
  411. break;
  412. case ',':
  413. /* Do not allocate remaining system RAM */
  414. break;
  415. default:
  416. /* Give one final node */
  417. setup_node_range(num_nodes, nodes, &addr,
  418. max_addr - addr, max_addr);
  419. num_nodes++;
  420. }
  421. }
  422. out:
  423. memnode_shift = compute_hash_shift(nodes, num_nodes);
  424. if (memnode_shift < 0) {
  425. memnode_shift = 0;
  426. printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
  427. "disabled.\n");
  428. return -1;
  429. }
  430. /*
  431. * We need to vacate all active ranges that may have been registered by
  432. * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
  433. * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
  434. */
  435. remove_all_active_ranges();
  436. #ifdef CONFIG_ACPI_NUMA
  437. acpi_numa = -1;
  438. #endif
  439. for_each_node_mask(i, node_possible_map) {
  440. e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
  441. nodes[i].end >> PAGE_SHIFT);
  442. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  443. }
  444. acpi_fake_nodes(nodes, num_nodes);
  445. numa_init_array();
  446. return 0;
  447. }
  448. #endif /* CONFIG_NUMA_EMU */
  449. void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  450. {
  451. int i;
  452. nodes_clear(node_possible_map);
  453. #ifdef CONFIG_NUMA_EMU
  454. if (cmdline && !numa_emulation(start_pfn, end_pfn))
  455. return;
  456. nodes_clear(node_possible_map);
  457. #endif
  458. #ifdef CONFIG_ACPI_NUMA
  459. if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  460. end_pfn << PAGE_SHIFT))
  461. return;
  462. nodes_clear(node_possible_map);
  463. #endif
  464. #ifdef CONFIG_K8_NUMA
  465. if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
  466. end_pfn<<PAGE_SHIFT))
  467. return;
  468. nodes_clear(node_possible_map);
  469. #endif
  470. printk(KERN_INFO "%s\n",
  471. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  472. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  473. start_pfn << PAGE_SHIFT,
  474. end_pfn << PAGE_SHIFT);
  475. /* setup dummy node covering all memory */
  476. memnode_shift = 63;
  477. memnodemap = memnode.embedded_map;
  478. memnodemap[0] = 0;
  479. nodes_clear(node_online_map);
  480. node_set_online(0);
  481. node_set(0, node_possible_map);
  482. for (i = 0; i < NR_CPUS; i++)
  483. numa_set_node(i, 0);
  484. node_to_cpumask_map[0] = cpumask_of_cpu(0);
  485. e820_register_active_regions(0, start_pfn, end_pfn);
  486. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  487. }
  488. __cpuinit void numa_add_cpu(int cpu)
  489. {
  490. set_bit(cpu, &node_to_cpumask_map[cpu_to_node(cpu)]);
  491. }
  492. void __cpuinit numa_set_node(int cpu, int node)
  493. {
  494. cpu_pda(cpu)->nodenumber = node;
  495. cpu_to_node_map[cpu] = node;
  496. }
  497. unsigned long __init numa_free_all_bootmem(void)
  498. {
  499. unsigned long pages = 0;
  500. int i;
  501. for_each_online_node(i)
  502. pages += free_all_bootmem_node(NODE_DATA(i));
  503. return pages;
  504. }
  505. void __init paging_init(void)
  506. {
  507. unsigned long max_zone_pfns[MAX_NR_ZONES];
  508. int i;
  509. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  510. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  511. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  512. max_zone_pfns[ZONE_NORMAL] = end_pfn;
  513. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  514. sparse_init();
  515. for_each_online_node(i)
  516. setup_node_zones(i);
  517. free_area_init_nodes(max_zone_pfns);
  518. }
  519. static __init int numa_setup(char *opt)
  520. {
  521. if (!opt)
  522. return -EINVAL;
  523. if (!strncmp(opt, "off", 3))
  524. numa_off = 1;
  525. #ifdef CONFIG_NUMA_EMU
  526. if (!strncmp(opt, "fake=", 5))
  527. cmdline = opt + 5;
  528. #endif
  529. #ifdef CONFIG_ACPI_NUMA
  530. if (!strncmp(opt, "noacpi", 6))
  531. acpi_numa = -1;
  532. if (!strncmp(opt, "hotadd=", 7))
  533. hotadd_percent = simple_strtoul(opt+7, NULL, 10);
  534. #endif
  535. return 0;
  536. }
  537. early_param("numa", numa_setup);
  538. /*
  539. * Setup early cpu_to_node.
  540. *
  541. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  542. * and apicid_to_node[] tables have valid entries for a CPU.
  543. * This means we skip cpu_to_node[] initialisation for NUMA
  544. * emulation and faking node case (when running a kernel compiled
  545. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  546. * is already initialized in a round robin manner at numa_init_array,
  547. * prior to this call, and this initialization is good enough
  548. * for the fake NUMA cases.
  549. */
  550. void __init init_cpu_to_node(void)
  551. {
  552. int i;
  553. for (i = 0; i < NR_CPUS; i++) {
  554. u8 apicid = x86_cpu_to_apicid_init[i];
  555. if (apicid == BAD_APICID)
  556. continue;
  557. if (apicid_to_node[apicid] == NUMA_NO_NODE)
  558. continue;
  559. numa_set_node(i, apicid_to_node[apicid]);
  560. }
  561. }