core.c 199 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. *
  311. * Its all a bit involved since we cannot program an hrt while holding the
  312. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  313. * reschedule event.
  314. *
  315. * When we get rescheduled we reprogram the hrtick_timer outside of the
  316. * rq->lock.
  317. */
  318. static void hrtick_clear(struct rq *rq)
  319. {
  320. if (hrtimer_active(&rq->hrtick_timer))
  321. hrtimer_cancel(&rq->hrtick_timer);
  322. }
  323. /*
  324. * High-resolution timer tick.
  325. * Runs from hardirq context with interrupts disabled.
  326. */
  327. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  328. {
  329. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  330. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  331. raw_spin_lock(&rq->lock);
  332. update_rq_clock(rq);
  333. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  334. raw_spin_unlock(&rq->lock);
  335. return HRTIMER_NORESTART;
  336. }
  337. #ifdef CONFIG_SMP
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. hrtimer_restart(&rq->hrtick_timer);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. hrtimer_restart(timer);
  361. } else if (!rq->hrtick_csd_pending) {
  362. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. #ifdef CONFIG_SMP
  431. #ifndef tsk_is_polling
  432. #define tsk_is_polling(t) 0
  433. #endif
  434. void resched_task(struct task_struct *p)
  435. {
  436. int cpu;
  437. assert_raw_spin_locked(&task_rq(p)->lock);
  438. if (test_tsk_need_resched(p))
  439. return;
  440. set_tsk_need_resched(p);
  441. cpu = task_cpu(p);
  442. if (cpu == smp_processor_id())
  443. return;
  444. /* NEED_RESCHED must be visible before we test polling */
  445. smp_mb();
  446. if (!tsk_is_polling(p))
  447. smp_send_reschedule(cpu);
  448. }
  449. void resched_cpu(int cpu)
  450. {
  451. struct rq *rq = cpu_rq(cpu);
  452. unsigned long flags;
  453. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  454. return;
  455. resched_task(cpu_curr(cpu));
  456. raw_spin_unlock_irqrestore(&rq->lock, flags);
  457. }
  458. #ifdef CONFIG_NO_HZ
  459. /*
  460. * In the semi idle case, use the nearest busy cpu for migrating timers
  461. * from an idle cpu. This is good for power-savings.
  462. *
  463. * We don't do similar optimization for completely idle system, as
  464. * selecting an idle cpu will add more delays to the timers than intended
  465. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  466. */
  467. int get_nohz_timer_target(void)
  468. {
  469. int cpu = smp_processor_id();
  470. int i;
  471. struct sched_domain *sd;
  472. rcu_read_lock();
  473. for_each_domain(cpu, sd) {
  474. for_each_cpu(i, sched_domain_span(sd)) {
  475. if (!idle_cpu(i)) {
  476. cpu = i;
  477. goto unlock;
  478. }
  479. }
  480. }
  481. unlock:
  482. rcu_read_unlock();
  483. return cpu;
  484. }
  485. /*
  486. * When add_timer_on() enqueues a timer into the timer wheel of an
  487. * idle CPU then this timer might expire before the next timer event
  488. * which is scheduled to wake up that CPU. In case of a completely
  489. * idle system the next event might even be infinite time into the
  490. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  491. * leaves the inner idle loop so the newly added timer is taken into
  492. * account when the CPU goes back to idle and evaluates the timer
  493. * wheel for the next timer event.
  494. */
  495. void wake_up_idle_cpu(int cpu)
  496. {
  497. struct rq *rq = cpu_rq(cpu);
  498. if (cpu == smp_processor_id())
  499. return;
  500. /*
  501. * This is safe, as this function is called with the timer
  502. * wheel base lock of (cpu) held. When the CPU is on the way
  503. * to idle and has not yet set rq->curr to idle then it will
  504. * be serialized on the timer wheel base lock and take the new
  505. * timer into account automatically.
  506. */
  507. if (rq->curr != rq->idle)
  508. return;
  509. /*
  510. * We can set TIF_RESCHED on the idle task of the other CPU
  511. * lockless. The worst case is that the other CPU runs the
  512. * idle task through an additional NOOP schedule()
  513. */
  514. set_tsk_need_resched(rq->idle);
  515. /* NEED_RESCHED must be visible before we test polling */
  516. smp_mb();
  517. if (!tsk_is_polling(rq->idle))
  518. smp_send_reschedule(cpu);
  519. }
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. int cpu = smp_processor_id();
  523. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  524. }
  525. #else /* CONFIG_NO_HZ */
  526. static inline bool got_nohz_idle_kick(void)
  527. {
  528. return false;
  529. }
  530. #endif /* CONFIG_NO_HZ */
  531. void sched_avg_update(struct rq *rq)
  532. {
  533. s64 period = sched_avg_period();
  534. while ((s64)(rq->clock - rq->age_stamp) > period) {
  535. /*
  536. * Inline assembly required to prevent the compiler
  537. * optimising this loop into a divmod call.
  538. * See __iter_div_u64_rem() for another example of this.
  539. */
  540. asm("" : "+rm" (rq->age_stamp));
  541. rq->age_stamp += period;
  542. rq->rt_avg /= 2;
  543. }
  544. }
  545. #else /* !CONFIG_SMP */
  546. void resched_task(struct task_struct *p)
  547. {
  548. assert_raw_spin_locked(&task_rq(p)->lock);
  549. set_tsk_need_resched(p);
  550. }
  551. #endif /* CONFIG_SMP */
  552. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  553. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  554. /*
  555. * Iterate task_group tree rooted at *from, calling @down when first entering a
  556. * node and @up when leaving it for the final time.
  557. *
  558. * Caller must hold rcu_lock or sufficient equivalent.
  559. */
  560. int walk_tg_tree_from(struct task_group *from,
  561. tg_visitor down, tg_visitor up, void *data)
  562. {
  563. struct task_group *parent, *child;
  564. int ret;
  565. parent = from;
  566. down:
  567. ret = (*down)(parent, data);
  568. if (ret)
  569. goto out;
  570. list_for_each_entry_rcu(child, &parent->children, siblings) {
  571. parent = child;
  572. goto down;
  573. up:
  574. continue;
  575. }
  576. ret = (*up)(parent, data);
  577. if (ret || parent == from)
  578. goto out;
  579. child = parent;
  580. parent = parent->parent;
  581. if (parent)
  582. goto up;
  583. out:
  584. return ret;
  585. }
  586. int tg_nop(struct task_group *tg, void *data)
  587. {
  588. return 0;
  589. }
  590. #endif
  591. static void set_load_weight(struct task_struct *p)
  592. {
  593. int prio = p->static_prio - MAX_RT_PRIO;
  594. struct load_weight *load = &p->se.load;
  595. /*
  596. * SCHED_IDLE tasks get minimal weight:
  597. */
  598. if (p->policy == SCHED_IDLE) {
  599. load->weight = scale_load(WEIGHT_IDLEPRIO);
  600. load->inv_weight = WMULT_IDLEPRIO;
  601. return;
  602. }
  603. load->weight = scale_load(prio_to_weight[prio]);
  604. load->inv_weight = prio_to_wmult[prio];
  605. }
  606. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_queued(p);
  610. p->sched_class->enqueue_task(rq, p, flags);
  611. }
  612. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. update_rq_clock(rq);
  615. sched_info_dequeued(p);
  616. p->sched_class->dequeue_task(rq, p, flags);
  617. }
  618. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible--;
  622. enqueue_task(rq, p, flags);
  623. }
  624. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  625. {
  626. if (task_contributes_to_load(p))
  627. rq->nr_uninterruptible++;
  628. dequeue_task(rq, p, flags);
  629. }
  630. static void update_rq_clock_task(struct rq *rq, s64 delta)
  631. {
  632. /*
  633. * In theory, the compile should just see 0 here, and optimize out the call
  634. * to sched_rt_avg_update. But I don't trust it...
  635. */
  636. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  637. s64 steal = 0, irq_delta = 0;
  638. #endif
  639. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  640. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  641. /*
  642. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  643. * this case when a previous update_rq_clock() happened inside a
  644. * {soft,}irq region.
  645. *
  646. * When this happens, we stop ->clock_task and only update the
  647. * prev_irq_time stamp to account for the part that fit, so that a next
  648. * update will consume the rest. This ensures ->clock_task is
  649. * monotonic.
  650. *
  651. * It does however cause some slight miss-attribution of {soft,}irq
  652. * time, a more accurate solution would be to update the irq_time using
  653. * the current rq->clock timestamp, except that would require using
  654. * atomic ops.
  655. */
  656. if (irq_delta > delta)
  657. irq_delta = delta;
  658. rq->prev_irq_time += irq_delta;
  659. delta -= irq_delta;
  660. #endif
  661. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  662. if (static_key_false((&paravirt_steal_rq_enabled))) {
  663. u64 st;
  664. steal = paravirt_steal_clock(cpu_of(rq));
  665. steal -= rq->prev_steal_time_rq;
  666. if (unlikely(steal > delta))
  667. steal = delta;
  668. st = steal_ticks(steal);
  669. steal = st * TICK_NSEC;
  670. rq->prev_steal_time_rq += steal;
  671. delta -= steal;
  672. }
  673. #endif
  674. rq->clock_task += delta;
  675. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  676. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  677. sched_rt_avg_update(rq, irq_delta + steal);
  678. #endif
  679. }
  680. void sched_set_stop_task(int cpu, struct task_struct *stop)
  681. {
  682. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  683. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  684. if (stop) {
  685. /*
  686. * Make it appear like a SCHED_FIFO task, its something
  687. * userspace knows about and won't get confused about.
  688. *
  689. * Also, it will make PI more or less work without too
  690. * much confusion -- but then, stop work should not
  691. * rely on PI working anyway.
  692. */
  693. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  694. stop->sched_class = &stop_sched_class;
  695. }
  696. cpu_rq(cpu)->stop = stop;
  697. if (old_stop) {
  698. /*
  699. * Reset it back to a normal scheduling class so that
  700. * it can die in pieces.
  701. */
  702. old_stop->sched_class = &rt_sched_class;
  703. }
  704. }
  705. /*
  706. * __normal_prio - return the priority that is based on the static prio
  707. */
  708. static inline int __normal_prio(struct task_struct *p)
  709. {
  710. return p->static_prio;
  711. }
  712. /*
  713. * Calculate the expected normal priority: i.e. priority
  714. * without taking RT-inheritance into account. Might be
  715. * boosted by interactivity modifiers. Changes upon fork,
  716. * setprio syscalls, and whenever the interactivity
  717. * estimator recalculates.
  718. */
  719. static inline int normal_prio(struct task_struct *p)
  720. {
  721. int prio;
  722. if (task_has_rt_policy(p))
  723. prio = MAX_RT_PRIO-1 - p->rt_priority;
  724. else
  725. prio = __normal_prio(p);
  726. return prio;
  727. }
  728. /*
  729. * Calculate the current priority, i.e. the priority
  730. * taken into account by the scheduler. This value might
  731. * be boosted by RT tasks, or might be boosted by
  732. * interactivity modifiers. Will be RT if the task got
  733. * RT-boosted. If not then it returns p->normal_prio.
  734. */
  735. static int effective_prio(struct task_struct *p)
  736. {
  737. p->normal_prio = normal_prio(p);
  738. /*
  739. * If we are RT tasks or we were boosted to RT priority,
  740. * keep the priority unchanged. Otherwise, update priority
  741. * to the normal priority:
  742. */
  743. if (!rt_prio(p->prio))
  744. return p->normal_prio;
  745. return p->prio;
  746. }
  747. /**
  748. * task_curr - is this task currently executing on a CPU?
  749. * @p: the task in question.
  750. */
  751. inline int task_curr(const struct task_struct *p)
  752. {
  753. return cpu_curr(task_cpu(p)) == p;
  754. }
  755. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  756. const struct sched_class *prev_class,
  757. int oldprio)
  758. {
  759. if (prev_class != p->sched_class) {
  760. if (prev_class->switched_from)
  761. prev_class->switched_from(rq, p);
  762. p->sched_class->switched_to(rq, p);
  763. } else if (oldprio != p->prio)
  764. p->sched_class->prio_changed(rq, p, oldprio);
  765. }
  766. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  767. {
  768. const struct sched_class *class;
  769. if (p->sched_class == rq->curr->sched_class) {
  770. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  771. } else {
  772. for_each_class(class) {
  773. if (class == rq->curr->sched_class)
  774. break;
  775. if (class == p->sched_class) {
  776. resched_task(rq->curr);
  777. break;
  778. }
  779. }
  780. }
  781. /*
  782. * A queue event has occurred, and we're going to schedule. In
  783. * this case, we can save a useless back to back clock update.
  784. */
  785. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  786. rq->skip_clock_update = 1;
  787. }
  788. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  789. void register_task_migration_notifier(struct notifier_block *n)
  790. {
  791. atomic_notifier_chain_register(&task_migration_notifier, n);
  792. }
  793. #ifdef CONFIG_SMP
  794. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  795. {
  796. #ifdef CONFIG_SCHED_DEBUG
  797. /*
  798. * We should never call set_task_cpu() on a blocked task,
  799. * ttwu() will sort out the placement.
  800. */
  801. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  802. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  803. #ifdef CONFIG_LOCKDEP
  804. /*
  805. * The caller should hold either p->pi_lock or rq->lock, when changing
  806. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  807. *
  808. * sched_move_task() holds both and thus holding either pins the cgroup,
  809. * see task_group().
  810. *
  811. * Furthermore, all task_rq users should acquire both locks, see
  812. * task_rq_lock().
  813. */
  814. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  815. lockdep_is_held(&task_rq(p)->lock)));
  816. #endif
  817. #endif
  818. trace_sched_migrate_task(p, new_cpu);
  819. if (task_cpu(p) != new_cpu) {
  820. struct task_migration_notifier tmn;
  821. if (p->sched_class->migrate_task_rq)
  822. p->sched_class->migrate_task_rq(p, new_cpu);
  823. p->se.nr_migrations++;
  824. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  825. tmn.task = p;
  826. tmn.from_cpu = task_cpu(p);
  827. tmn.to_cpu = new_cpu;
  828. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  829. }
  830. __set_task_cpu(p, new_cpu);
  831. }
  832. struct migration_arg {
  833. struct task_struct *task;
  834. int dest_cpu;
  835. };
  836. static int migration_cpu_stop(void *data);
  837. /*
  838. * wait_task_inactive - wait for a thread to unschedule.
  839. *
  840. * If @match_state is nonzero, it's the @p->state value just checked and
  841. * not expected to change. If it changes, i.e. @p might have woken up,
  842. * then return zero. When we succeed in waiting for @p to be off its CPU,
  843. * we return a positive number (its total switch count). If a second call
  844. * a short while later returns the same number, the caller can be sure that
  845. * @p has remained unscheduled the whole time.
  846. *
  847. * The caller must ensure that the task *will* unschedule sometime soon,
  848. * else this function might spin for a *long* time. This function can't
  849. * be called with interrupts off, or it may introduce deadlock with
  850. * smp_call_function() if an IPI is sent by the same process we are
  851. * waiting to become inactive.
  852. */
  853. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  854. {
  855. unsigned long flags;
  856. int running, on_rq;
  857. unsigned long ncsw;
  858. struct rq *rq;
  859. for (;;) {
  860. /*
  861. * We do the initial early heuristics without holding
  862. * any task-queue locks at all. We'll only try to get
  863. * the runqueue lock when things look like they will
  864. * work out!
  865. */
  866. rq = task_rq(p);
  867. /*
  868. * If the task is actively running on another CPU
  869. * still, just relax and busy-wait without holding
  870. * any locks.
  871. *
  872. * NOTE! Since we don't hold any locks, it's not
  873. * even sure that "rq" stays as the right runqueue!
  874. * But we don't care, since "task_running()" will
  875. * return false if the runqueue has changed and p
  876. * is actually now running somewhere else!
  877. */
  878. while (task_running(rq, p)) {
  879. if (match_state && unlikely(p->state != match_state))
  880. return 0;
  881. cpu_relax();
  882. }
  883. /*
  884. * Ok, time to look more closely! We need the rq
  885. * lock now, to be *sure*. If we're wrong, we'll
  886. * just go back and repeat.
  887. */
  888. rq = task_rq_lock(p, &flags);
  889. trace_sched_wait_task(p);
  890. running = task_running(rq, p);
  891. on_rq = p->on_rq;
  892. ncsw = 0;
  893. if (!match_state || p->state == match_state)
  894. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  895. task_rq_unlock(rq, p, &flags);
  896. /*
  897. * If it changed from the expected state, bail out now.
  898. */
  899. if (unlikely(!ncsw))
  900. break;
  901. /*
  902. * Was it really running after all now that we
  903. * checked with the proper locks actually held?
  904. *
  905. * Oops. Go back and try again..
  906. */
  907. if (unlikely(running)) {
  908. cpu_relax();
  909. continue;
  910. }
  911. /*
  912. * It's not enough that it's not actively running,
  913. * it must be off the runqueue _entirely_, and not
  914. * preempted!
  915. *
  916. * So if it was still runnable (but just not actively
  917. * running right now), it's preempted, and we should
  918. * yield - it could be a while.
  919. */
  920. if (unlikely(on_rq)) {
  921. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  922. set_current_state(TASK_UNINTERRUPTIBLE);
  923. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  924. continue;
  925. }
  926. /*
  927. * Ahh, all good. It wasn't running, and it wasn't
  928. * runnable, which means that it will never become
  929. * running in the future either. We're all done!
  930. */
  931. break;
  932. }
  933. return ncsw;
  934. }
  935. /***
  936. * kick_process - kick a running thread to enter/exit the kernel
  937. * @p: the to-be-kicked thread
  938. *
  939. * Cause a process which is running on another CPU to enter
  940. * kernel-mode, without any delay. (to get signals handled.)
  941. *
  942. * NOTE: this function doesn't have to take the runqueue lock,
  943. * because all it wants to ensure is that the remote task enters
  944. * the kernel. If the IPI races and the task has been migrated
  945. * to another CPU then no harm is done and the purpose has been
  946. * achieved as well.
  947. */
  948. void kick_process(struct task_struct *p)
  949. {
  950. int cpu;
  951. preempt_disable();
  952. cpu = task_cpu(p);
  953. if ((cpu != smp_processor_id()) && task_curr(p))
  954. smp_send_reschedule(cpu);
  955. preempt_enable();
  956. }
  957. EXPORT_SYMBOL_GPL(kick_process);
  958. #endif /* CONFIG_SMP */
  959. #ifdef CONFIG_SMP
  960. /*
  961. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  962. */
  963. static int select_fallback_rq(int cpu, struct task_struct *p)
  964. {
  965. int nid = cpu_to_node(cpu);
  966. const struct cpumask *nodemask = NULL;
  967. enum { cpuset, possible, fail } state = cpuset;
  968. int dest_cpu;
  969. /*
  970. * If the node that the cpu is on has been offlined, cpu_to_node()
  971. * will return -1. There is no cpu on the node, and we should
  972. * select the cpu on the other node.
  973. */
  974. if (nid != -1) {
  975. nodemask = cpumask_of_node(nid);
  976. /* Look for allowed, online CPU in same node. */
  977. for_each_cpu(dest_cpu, nodemask) {
  978. if (!cpu_online(dest_cpu))
  979. continue;
  980. if (!cpu_active(dest_cpu))
  981. continue;
  982. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  983. return dest_cpu;
  984. }
  985. }
  986. for (;;) {
  987. /* Any allowed, online CPU? */
  988. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  989. if (!cpu_online(dest_cpu))
  990. continue;
  991. if (!cpu_active(dest_cpu))
  992. continue;
  993. goto out;
  994. }
  995. switch (state) {
  996. case cpuset:
  997. /* No more Mr. Nice Guy. */
  998. cpuset_cpus_allowed_fallback(p);
  999. state = possible;
  1000. break;
  1001. case possible:
  1002. do_set_cpus_allowed(p, cpu_possible_mask);
  1003. state = fail;
  1004. break;
  1005. case fail:
  1006. BUG();
  1007. break;
  1008. }
  1009. }
  1010. out:
  1011. if (state != cpuset) {
  1012. /*
  1013. * Don't tell them about moving exiting tasks or
  1014. * kernel threads (both mm NULL), since they never
  1015. * leave kernel.
  1016. */
  1017. if (p->mm && printk_ratelimit()) {
  1018. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1019. task_pid_nr(p), p->comm, cpu);
  1020. }
  1021. }
  1022. return dest_cpu;
  1023. }
  1024. /*
  1025. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1026. */
  1027. static inline
  1028. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1029. {
  1030. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1031. /*
  1032. * In order not to call set_task_cpu() on a blocking task we need
  1033. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1034. * cpu.
  1035. *
  1036. * Since this is common to all placement strategies, this lives here.
  1037. *
  1038. * [ this allows ->select_task() to simply return task_cpu(p) and
  1039. * not worry about this generic constraint ]
  1040. */
  1041. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1042. !cpu_online(cpu)))
  1043. cpu = select_fallback_rq(task_cpu(p), p);
  1044. return cpu;
  1045. }
  1046. static void update_avg(u64 *avg, u64 sample)
  1047. {
  1048. s64 diff = sample - *avg;
  1049. *avg += diff >> 3;
  1050. }
  1051. #endif
  1052. static void
  1053. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1054. {
  1055. #ifdef CONFIG_SCHEDSTATS
  1056. struct rq *rq = this_rq();
  1057. #ifdef CONFIG_SMP
  1058. int this_cpu = smp_processor_id();
  1059. if (cpu == this_cpu) {
  1060. schedstat_inc(rq, ttwu_local);
  1061. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1062. } else {
  1063. struct sched_domain *sd;
  1064. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1065. rcu_read_lock();
  1066. for_each_domain(this_cpu, sd) {
  1067. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1068. schedstat_inc(sd, ttwu_wake_remote);
  1069. break;
  1070. }
  1071. }
  1072. rcu_read_unlock();
  1073. }
  1074. if (wake_flags & WF_MIGRATED)
  1075. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1076. #endif /* CONFIG_SMP */
  1077. schedstat_inc(rq, ttwu_count);
  1078. schedstat_inc(p, se.statistics.nr_wakeups);
  1079. if (wake_flags & WF_SYNC)
  1080. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1081. #endif /* CONFIG_SCHEDSTATS */
  1082. }
  1083. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1084. {
  1085. activate_task(rq, p, en_flags);
  1086. p->on_rq = 1;
  1087. /* if a worker is waking up, notify workqueue */
  1088. if (p->flags & PF_WQ_WORKER)
  1089. wq_worker_waking_up(p, cpu_of(rq));
  1090. }
  1091. /*
  1092. * Mark the task runnable and perform wakeup-preemption.
  1093. */
  1094. static void
  1095. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1096. {
  1097. trace_sched_wakeup(p, true);
  1098. check_preempt_curr(rq, p, wake_flags);
  1099. p->state = TASK_RUNNING;
  1100. #ifdef CONFIG_SMP
  1101. if (p->sched_class->task_woken)
  1102. p->sched_class->task_woken(rq, p);
  1103. if (rq->idle_stamp) {
  1104. u64 delta = rq->clock - rq->idle_stamp;
  1105. u64 max = 2*sysctl_sched_migration_cost;
  1106. if (delta > max)
  1107. rq->avg_idle = max;
  1108. else
  1109. update_avg(&rq->avg_idle, delta);
  1110. rq->idle_stamp = 0;
  1111. }
  1112. #endif
  1113. }
  1114. static void
  1115. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1116. {
  1117. #ifdef CONFIG_SMP
  1118. if (p->sched_contributes_to_load)
  1119. rq->nr_uninterruptible--;
  1120. #endif
  1121. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1122. ttwu_do_wakeup(rq, p, wake_flags);
  1123. }
  1124. /*
  1125. * Called in case the task @p isn't fully descheduled from its runqueue,
  1126. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1127. * since all we need to do is flip p->state to TASK_RUNNING, since
  1128. * the task is still ->on_rq.
  1129. */
  1130. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1131. {
  1132. struct rq *rq;
  1133. int ret = 0;
  1134. rq = __task_rq_lock(p);
  1135. if (p->on_rq) {
  1136. ttwu_do_wakeup(rq, p, wake_flags);
  1137. ret = 1;
  1138. }
  1139. __task_rq_unlock(rq);
  1140. return ret;
  1141. }
  1142. #ifdef CONFIG_SMP
  1143. static void sched_ttwu_pending(void)
  1144. {
  1145. struct rq *rq = this_rq();
  1146. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1147. struct task_struct *p;
  1148. raw_spin_lock(&rq->lock);
  1149. while (llist) {
  1150. p = llist_entry(llist, struct task_struct, wake_entry);
  1151. llist = llist_next(llist);
  1152. ttwu_do_activate(rq, p, 0);
  1153. }
  1154. raw_spin_unlock(&rq->lock);
  1155. }
  1156. void scheduler_ipi(void)
  1157. {
  1158. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1159. return;
  1160. /*
  1161. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1162. * traditionally all their work was done from the interrupt return
  1163. * path. Now that we actually do some work, we need to make sure
  1164. * we do call them.
  1165. *
  1166. * Some archs already do call them, luckily irq_enter/exit nest
  1167. * properly.
  1168. *
  1169. * Arguably we should visit all archs and update all handlers,
  1170. * however a fair share of IPIs are still resched only so this would
  1171. * somewhat pessimize the simple resched case.
  1172. */
  1173. irq_enter();
  1174. sched_ttwu_pending();
  1175. /*
  1176. * Check if someone kicked us for doing the nohz idle load balance.
  1177. */
  1178. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1179. this_rq()->idle_balance = 1;
  1180. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1181. }
  1182. irq_exit();
  1183. }
  1184. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1185. {
  1186. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1187. smp_send_reschedule(cpu);
  1188. }
  1189. bool cpus_share_cache(int this_cpu, int that_cpu)
  1190. {
  1191. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1192. }
  1193. #endif /* CONFIG_SMP */
  1194. static void ttwu_queue(struct task_struct *p, int cpu)
  1195. {
  1196. struct rq *rq = cpu_rq(cpu);
  1197. #if defined(CONFIG_SMP)
  1198. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1199. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1200. ttwu_queue_remote(p, cpu);
  1201. return;
  1202. }
  1203. #endif
  1204. raw_spin_lock(&rq->lock);
  1205. ttwu_do_activate(rq, p, 0);
  1206. raw_spin_unlock(&rq->lock);
  1207. }
  1208. /**
  1209. * try_to_wake_up - wake up a thread
  1210. * @p: the thread to be awakened
  1211. * @state: the mask of task states that can be woken
  1212. * @wake_flags: wake modifier flags (WF_*)
  1213. *
  1214. * Put it on the run-queue if it's not already there. The "current"
  1215. * thread is always on the run-queue (except when the actual
  1216. * re-schedule is in progress), and as such you're allowed to do
  1217. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1218. * runnable without the overhead of this.
  1219. *
  1220. * Returns %true if @p was woken up, %false if it was already running
  1221. * or @state didn't match @p's state.
  1222. */
  1223. static int
  1224. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1225. {
  1226. unsigned long flags;
  1227. int cpu, success = 0;
  1228. smp_wmb();
  1229. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1230. if (!(p->state & state))
  1231. goto out;
  1232. success = 1; /* we're going to change ->state */
  1233. cpu = task_cpu(p);
  1234. if (p->on_rq && ttwu_remote(p, wake_flags))
  1235. goto stat;
  1236. #ifdef CONFIG_SMP
  1237. /*
  1238. * If the owning (remote) cpu is still in the middle of schedule() with
  1239. * this task as prev, wait until its done referencing the task.
  1240. */
  1241. while (p->on_cpu)
  1242. cpu_relax();
  1243. /*
  1244. * Pairs with the smp_wmb() in finish_lock_switch().
  1245. */
  1246. smp_rmb();
  1247. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1248. p->state = TASK_WAKING;
  1249. if (p->sched_class->task_waking)
  1250. p->sched_class->task_waking(p);
  1251. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1252. if (task_cpu(p) != cpu) {
  1253. wake_flags |= WF_MIGRATED;
  1254. set_task_cpu(p, cpu);
  1255. }
  1256. #endif /* CONFIG_SMP */
  1257. ttwu_queue(p, cpu);
  1258. stat:
  1259. ttwu_stat(p, cpu, wake_flags);
  1260. out:
  1261. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1262. return success;
  1263. }
  1264. /**
  1265. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1266. * @p: the thread to be awakened
  1267. *
  1268. * Put @p on the run-queue if it's not already there. The caller must
  1269. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1270. * the current task.
  1271. */
  1272. static void try_to_wake_up_local(struct task_struct *p)
  1273. {
  1274. struct rq *rq = task_rq(p);
  1275. BUG_ON(rq != this_rq());
  1276. BUG_ON(p == current);
  1277. lockdep_assert_held(&rq->lock);
  1278. if (!raw_spin_trylock(&p->pi_lock)) {
  1279. raw_spin_unlock(&rq->lock);
  1280. raw_spin_lock(&p->pi_lock);
  1281. raw_spin_lock(&rq->lock);
  1282. }
  1283. if (!(p->state & TASK_NORMAL))
  1284. goto out;
  1285. if (!p->on_rq)
  1286. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1287. ttwu_do_wakeup(rq, p, 0);
  1288. ttwu_stat(p, smp_processor_id(), 0);
  1289. out:
  1290. raw_spin_unlock(&p->pi_lock);
  1291. }
  1292. /**
  1293. * wake_up_process - Wake up a specific process
  1294. * @p: The process to be woken up.
  1295. *
  1296. * Attempt to wake up the nominated process and move it to the set of runnable
  1297. * processes. Returns 1 if the process was woken up, 0 if it was already
  1298. * running.
  1299. *
  1300. * It may be assumed that this function implies a write memory barrier before
  1301. * changing the task state if and only if any tasks are woken up.
  1302. */
  1303. int wake_up_process(struct task_struct *p)
  1304. {
  1305. WARN_ON(task_is_stopped_or_traced(p));
  1306. return try_to_wake_up(p, TASK_NORMAL, 0);
  1307. }
  1308. EXPORT_SYMBOL(wake_up_process);
  1309. int wake_up_state(struct task_struct *p, unsigned int state)
  1310. {
  1311. return try_to_wake_up(p, state, 0);
  1312. }
  1313. /*
  1314. * Perform scheduler related setup for a newly forked process p.
  1315. * p is forked by current.
  1316. *
  1317. * __sched_fork() is basic setup used by init_idle() too:
  1318. */
  1319. static void __sched_fork(struct task_struct *p)
  1320. {
  1321. p->on_rq = 0;
  1322. p->se.on_rq = 0;
  1323. p->se.exec_start = 0;
  1324. p->se.sum_exec_runtime = 0;
  1325. p->se.prev_sum_exec_runtime = 0;
  1326. p->se.nr_migrations = 0;
  1327. p->se.vruntime = 0;
  1328. INIT_LIST_HEAD(&p->se.group_node);
  1329. /*
  1330. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1331. * removed when useful for applications beyond shares distribution (e.g.
  1332. * load-balance).
  1333. */
  1334. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1335. p->se.avg.runnable_avg_period = 0;
  1336. p->se.avg.runnable_avg_sum = 0;
  1337. #endif
  1338. #ifdef CONFIG_SCHEDSTATS
  1339. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1340. #endif
  1341. INIT_LIST_HEAD(&p->rt.run_list);
  1342. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1343. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1344. #endif
  1345. #ifdef CONFIG_NUMA_BALANCING
  1346. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1347. p->mm->numa_next_scan = jiffies;
  1348. p->mm->numa_next_reset = jiffies;
  1349. p->mm->numa_scan_seq = 0;
  1350. }
  1351. p->node_stamp = 0ULL;
  1352. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1353. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1354. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1355. p->numa_work.next = &p->numa_work;
  1356. #endif /* CONFIG_NUMA_BALANCING */
  1357. }
  1358. #ifdef CONFIG_NUMA_BALANCING
  1359. #ifdef CONFIG_SCHED_DEBUG
  1360. void set_numabalancing_state(bool enabled)
  1361. {
  1362. if (enabled)
  1363. sched_feat_set("NUMA");
  1364. else
  1365. sched_feat_set("NO_NUMA");
  1366. }
  1367. #else
  1368. __read_mostly bool numabalancing_enabled;
  1369. void set_numabalancing_state(bool enabled)
  1370. {
  1371. numabalancing_enabled = enabled;
  1372. }
  1373. #endif /* CONFIG_SCHED_DEBUG */
  1374. #endif /* CONFIG_NUMA_BALANCING */
  1375. /*
  1376. * fork()/clone()-time setup:
  1377. */
  1378. void sched_fork(struct task_struct *p)
  1379. {
  1380. unsigned long flags;
  1381. int cpu = get_cpu();
  1382. __sched_fork(p);
  1383. /*
  1384. * We mark the process as running here. This guarantees that
  1385. * nobody will actually run it, and a signal or other external
  1386. * event cannot wake it up and insert it on the runqueue either.
  1387. */
  1388. p->state = TASK_RUNNING;
  1389. /*
  1390. * Make sure we do not leak PI boosting priority to the child.
  1391. */
  1392. p->prio = current->normal_prio;
  1393. /*
  1394. * Revert to default priority/policy on fork if requested.
  1395. */
  1396. if (unlikely(p->sched_reset_on_fork)) {
  1397. if (task_has_rt_policy(p)) {
  1398. p->policy = SCHED_NORMAL;
  1399. p->static_prio = NICE_TO_PRIO(0);
  1400. p->rt_priority = 0;
  1401. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1402. p->static_prio = NICE_TO_PRIO(0);
  1403. p->prio = p->normal_prio = __normal_prio(p);
  1404. set_load_weight(p);
  1405. /*
  1406. * We don't need the reset flag anymore after the fork. It has
  1407. * fulfilled its duty:
  1408. */
  1409. p->sched_reset_on_fork = 0;
  1410. }
  1411. if (!rt_prio(p->prio))
  1412. p->sched_class = &fair_sched_class;
  1413. if (p->sched_class->task_fork)
  1414. p->sched_class->task_fork(p);
  1415. /*
  1416. * The child is not yet in the pid-hash so no cgroup attach races,
  1417. * and the cgroup is pinned to this child due to cgroup_fork()
  1418. * is ran before sched_fork().
  1419. *
  1420. * Silence PROVE_RCU.
  1421. */
  1422. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1423. set_task_cpu(p, cpu);
  1424. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1425. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1426. if (likely(sched_info_on()))
  1427. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1428. #endif
  1429. #if defined(CONFIG_SMP)
  1430. p->on_cpu = 0;
  1431. #endif
  1432. #ifdef CONFIG_PREEMPT_COUNT
  1433. /* Want to start with kernel preemption disabled. */
  1434. task_thread_info(p)->preempt_count = 1;
  1435. #endif
  1436. #ifdef CONFIG_SMP
  1437. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1438. #endif
  1439. put_cpu();
  1440. }
  1441. /*
  1442. * wake_up_new_task - wake up a newly created task for the first time.
  1443. *
  1444. * This function will do some initial scheduler statistics housekeeping
  1445. * that must be done for every newly created context, then puts the task
  1446. * on the runqueue and wakes it.
  1447. */
  1448. void wake_up_new_task(struct task_struct *p)
  1449. {
  1450. unsigned long flags;
  1451. struct rq *rq;
  1452. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1453. #ifdef CONFIG_SMP
  1454. /*
  1455. * Fork balancing, do it here and not earlier because:
  1456. * - cpus_allowed can change in the fork path
  1457. * - any previously selected cpu might disappear through hotplug
  1458. */
  1459. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1460. #endif
  1461. rq = __task_rq_lock(p);
  1462. activate_task(rq, p, 0);
  1463. p->on_rq = 1;
  1464. trace_sched_wakeup_new(p, true);
  1465. check_preempt_curr(rq, p, WF_FORK);
  1466. #ifdef CONFIG_SMP
  1467. if (p->sched_class->task_woken)
  1468. p->sched_class->task_woken(rq, p);
  1469. #endif
  1470. task_rq_unlock(rq, p, &flags);
  1471. }
  1472. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1473. /**
  1474. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1475. * @notifier: notifier struct to register
  1476. */
  1477. void preempt_notifier_register(struct preempt_notifier *notifier)
  1478. {
  1479. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1480. }
  1481. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1482. /**
  1483. * preempt_notifier_unregister - no longer interested in preemption notifications
  1484. * @notifier: notifier struct to unregister
  1485. *
  1486. * This is safe to call from within a preemption notifier.
  1487. */
  1488. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1489. {
  1490. hlist_del(&notifier->link);
  1491. }
  1492. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1493. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1494. {
  1495. struct preempt_notifier *notifier;
  1496. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1497. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1498. }
  1499. static void
  1500. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1501. struct task_struct *next)
  1502. {
  1503. struct preempt_notifier *notifier;
  1504. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1505. notifier->ops->sched_out(notifier, next);
  1506. }
  1507. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1508. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1509. {
  1510. }
  1511. static void
  1512. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1513. struct task_struct *next)
  1514. {
  1515. }
  1516. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1517. /**
  1518. * prepare_task_switch - prepare to switch tasks
  1519. * @rq: the runqueue preparing to switch
  1520. * @prev: the current task that is being switched out
  1521. * @next: the task we are going to switch to.
  1522. *
  1523. * This is called with the rq lock held and interrupts off. It must
  1524. * be paired with a subsequent finish_task_switch after the context
  1525. * switch.
  1526. *
  1527. * prepare_task_switch sets up locking and calls architecture specific
  1528. * hooks.
  1529. */
  1530. static inline void
  1531. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1532. struct task_struct *next)
  1533. {
  1534. trace_sched_switch(prev, next);
  1535. sched_info_switch(prev, next);
  1536. perf_event_task_sched_out(prev, next);
  1537. fire_sched_out_preempt_notifiers(prev, next);
  1538. prepare_lock_switch(rq, next);
  1539. prepare_arch_switch(next);
  1540. }
  1541. /**
  1542. * finish_task_switch - clean up after a task-switch
  1543. * @rq: runqueue associated with task-switch
  1544. * @prev: the thread we just switched away from.
  1545. *
  1546. * finish_task_switch must be called after the context switch, paired
  1547. * with a prepare_task_switch call before the context switch.
  1548. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1549. * and do any other architecture-specific cleanup actions.
  1550. *
  1551. * Note that we may have delayed dropping an mm in context_switch(). If
  1552. * so, we finish that here outside of the runqueue lock. (Doing it
  1553. * with the lock held can cause deadlocks; see schedule() for
  1554. * details.)
  1555. */
  1556. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1557. __releases(rq->lock)
  1558. {
  1559. struct mm_struct *mm = rq->prev_mm;
  1560. long prev_state;
  1561. rq->prev_mm = NULL;
  1562. /*
  1563. * A task struct has one reference for the use as "current".
  1564. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1565. * schedule one last time. The schedule call will never return, and
  1566. * the scheduled task must drop that reference.
  1567. * The test for TASK_DEAD must occur while the runqueue locks are
  1568. * still held, otherwise prev could be scheduled on another cpu, die
  1569. * there before we look at prev->state, and then the reference would
  1570. * be dropped twice.
  1571. * Manfred Spraul <manfred@colorfullife.com>
  1572. */
  1573. prev_state = prev->state;
  1574. vtime_task_switch(prev);
  1575. finish_arch_switch(prev);
  1576. perf_event_task_sched_in(prev, current);
  1577. finish_lock_switch(rq, prev);
  1578. finish_arch_post_lock_switch();
  1579. fire_sched_in_preempt_notifiers(current);
  1580. if (mm)
  1581. mmdrop(mm);
  1582. if (unlikely(prev_state == TASK_DEAD)) {
  1583. /*
  1584. * Remove function-return probe instances associated with this
  1585. * task and put them back on the free list.
  1586. */
  1587. kprobe_flush_task(prev);
  1588. put_task_struct(prev);
  1589. }
  1590. }
  1591. #ifdef CONFIG_SMP
  1592. /* assumes rq->lock is held */
  1593. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1594. {
  1595. if (prev->sched_class->pre_schedule)
  1596. prev->sched_class->pre_schedule(rq, prev);
  1597. }
  1598. /* rq->lock is NOT held, but preemption is disabled */
  1599. static inline void post_schedule(struct rq *rq)
  1600. {
  1601. if (rq->post_schedule) {
  1602. unsigned long flags;
  1603. raw_spin_lock_irqsave(&rq->lock, flags);
  1604. if (rq->curr->sched_class->post_schedule)
  1605. rq->curr->sched_class->post_schedule(rq);
  1606. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1607. rq->post_schedule = 0;
  1608. }
  1609. }
  1610. #else
  1611. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1612. {
  1613. }
  1614. static inline void post_schedule(struct rq *rq)
  1615. {
  1616. }
  1617. #endif
  1618. /**
  1619. * schedule_tail - first thing a freshly forked thread must call.
  1620. * @prev: the thread we just switched away from.
  1621. */
  1622. asmlinkage void schedule_tail(struct task_struct *prev)
  1623. __releases(rq->lock)
  1624. {
  1625. struct rq *rq = this_rq();
  1626. finish_task_switch(rq, prev);
  1627. /*
  1628. * FIXME: do we need to worry about rq being invalidated by the
  1629. * task_switch?
  1630. */
  1631. post_schedule(rq);
  1632. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1633. /* In this case, finish_task_switch does not reenable preemption */
  1634. preempt_enable();
  1635. #endif
  1636. if (current->set_child_tid)
  1637. put_user(task_pid_vnr(current), current->set_child_tid);
  1638. }
  1639. /*
  1640. * context_switch - switch to the new MM and the new
  1641. * thread's register state.
  1642. */
  1643. static inline void
  1644. context_switch(struct rq *rq, struct task_struct *prev,
  1645. struct task_struct *next)
  1646. {
  1647. struct mm_struct *mm, *oldmm;
  1648. prepare_task_switch(rq, prev, next);
  1649. mm = next->mm;
  1650. oldmm = prev->active_mm;
  1651. /*
  1652. * For paravirt, this is coupled with an exit in switch_to to
  1653. * combine the page table reload and the switch backend into
  1654. * one hypercall.
  1655. */
  1656. arch_start_context_switch(prev);
  1657. if (!mm) {
  1658. next->active_mm = oldmm;
  1659. atomic_inc(&oldmm->mm_count);
  1660. enter_lazy_tlb(oldmm, next);
  1661. } else
  1662. switch_mm(oldmm, mm, next);
  1663. if (!prev->mm) {
  1664. prev->active_mm = NULL;
  1665. rq->prev_mm = oldmm;
  1666. }
  1667. /*
  1668. * Since the runqueue lock will be released by the next
  1669. * task (which is an invalid locking op but in the case
  1670. * of the scheduler it's an obvious special-case), so we
  1671. * do an early lockdep release here:
  1672. */
  1673. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1674. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1675. #endif
  1676. context_tracking_task_switch(prev, next);
  1677. /* Here we just switch the register state and the stack. */
  1678. switch_to(prev, next, prev);
  1679. barrier();
  1680. /*
  1681. * this_rq must be evaluated again because prev may have moved
  1682. * CPUs since it called schedule(), thus the 'rq' on its stack
  1683. * frame will be invalid.
  1684. */
  1685. finish_task_switch(this_rq(), prev);
  1686. }
  1687. /*
  1688. * nr_running and nr_context_switches:
  1689. *
  1690. * externally visible scheduler statistics: current number of runnable
  1691. * threads, total number of context switches performed since bootup.
  1692. */
  1693. unsigned long nr_running(void)
  1694. {
  1695. unsigned long i, sum = 0;
  1696. for_each_online_cpu(i)
  1697. sum += cpu_rq(i)->nr_running;
  1698. return sum;
  1699. }
  1700. unsigned long long nr_context_switches(void)
  1701. {
  1702. int i;
  1703. unsigned long long sum = 0;
  1704. for_each_possible_cpu(i)
  1705. sum += cpu_rq(i)->nr_switches;
  1706. return sum;
  1707. }
  1708. unsigned long nr_iowait(void)
  1709. {
  1710. unsigned long i, sum = 0;
  1711. for_each_possible_cpu(i)
  1712. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1713. return sum;
  1714. }
  1715. unsigned long nr_iowait_cpu(int cpu)
  1716. {
  1717. struct rq *this = cpu_rq(cpu);
  1718. return atomic_read(&this->nr_iowait);
  1719. }
  1720. unsigned long this_cpu_load(void)
  1721. {
  1722. struct rq *this = this_rq();
  1723. return this->cpu_load[0];
  1724. }
  1725. /*
  1726. * Global load-average calculations
  1727. *
  1728. * We take a distributed and async approach to calculating the global load-avg
  1729. * in order to minimize overhead.
  1730. *
  1731. * The global load average is an exponentially decaying average of nr_running +
  1732. * nr_uninterruptible.
  1733. *
  1734. * Once every LOAD_FREQ:
  1735. *
  1736. * nr_active = 0;
  1737. * for_each_possible_cpu(cpu)
  1738. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1739. *
  1740. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1741. *
  1742. * Due to a number of reasons the above turns in the mess below:
  1743. *
  1744. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1745. * serious number of cpus, therefore we need to take a distributed approach
  1746. * to calculating nr_active.
  1747. *
  1748. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1749. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1750. *
  1751. * So assuming nr_active := 0 when we start out -- true per definition, we
  1752. * can simply take per-cpu deltas and fold those into a global accumulate
  1753. * to obtain the same result. See calc_load_fold_active().
  1754. *
  1755. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1756. * across the machine, we assume 10 ticks is sufficient time for every
  1757. * cpu to have completed this task.
  1758. *
  1759. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1760. * again, being late doesn't loose the delta, just wrecks the sample.
  1761. *
  1762. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1763. * this would add another cross-cpu cacheline miss and atomic operation
  1764. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1765. * when it went into uninterruptible state and decrement on whatever cpu
  1766. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1767. * all cpus yields the correct result.
  1768. *
  1769. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1770. */
  1771. /* Variables and functions for calc_load */
  1772. static atomic_long_t calc_load_tasks;
  1773. static unsigned long calc_load_update;
  1774. unsigned long avenrun[3];
  1775. EXPORT_SYMBOL(avenrun); /* should be removed */
  1776. /**
  1777. * get_avenrun - get the load average array
  1778. * @loads: pointer to dest load array
  1779. * @offset: offset to add
  1780. * @shift: shift count to shift the result left
  1781. *
  1782. * These values are estimates at best, so no need for locking.
  1783. */
  1784. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1785. {
  1786. loads[0] = (avenrun[0] + offset) << shift;
  1787. loads[1] = (avenrun[1] + offset) << shift;
  1788. loads[2] = (avenrun[2] + offset) << shift;
  1789. }
  1790. static long calc_load_fold_active(struct rq *this_rq)
  1791. {
  1792. long nr_active, delta = 0;
  1793. nr_active = this_rq->nr_running;
  1794. nr_active += (long) this_rq->nr_uninterruptible;
  1795. if (nr_active != this_rq->calc_load_active) {
  1796. delta = nr_active - this_rq->calc_load_active;
  1797. this_rq->calc_load_active = nr_active;
  1798. }
  1799. return delta;
  1800. }
  1801. /*
  1802. * a1 = a0 * e + a * (1 - e)
  1803. */
  1804. static unsigned long
  1805. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1806. {
  1807. load *= exp;
  1808. load += active * (FIXED_1 - exp);
  1809. load += 1UL << (FSHIFT - 1);
  1810. return load >> FSHIFT;
  1811. }
  1812. #ifdef CONFIG_NO_HZ
  1813. /*
  1814. * Handle NO_HZ for the global load-average.
  1815. *
  1816. * Since the above described distributed algorithm to compute the global
  1817. * load-average relies on per-cpu sampling from the tick, it is affected by
  1818. * NO_HZ.
  1819. *
  1820. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1821. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1822. * when we read the global state.
  1823. *
  1824. * Obviously reality has to ruin such a delightfully simple scheme:
  1825. *
  1826. * - When we go NO_HZ idle during the window, we can negate our sample
  1827. * contribution, causing under-accounting.
  1828. *
  1829. * We avoid this by keeping two idle-delta counters and flipping them
  1830. * when the window starts, thus separating old and new NO_HZ load.
  1831. *
  1832. * The only trick is the slight shift in index flip for read vs write.
  1833. *
  1834. * 0s 5s 10s 15s
  1835. * +10 +10 +10 +10
  1836. * |-|-----------|-|-----------|-|-----------|-|
  1837. * r:0 0 1 1 0 0 1 1 0
  1838. * w:0 1 1 0 0 1 1 0 0
  1839. *
  1840. * This ensures we'll fold the old idle contribution in this window while
  1841. * accumlating the new one.
  1842. *
  1843. * - When we wake up from NO_HZ idle during the window, we push up our
  1844. * contribution, since we effectively move our sample point to a known
  1845. * busy state.
  1846. *
  1847. * This is solved by pushing the window forward, and thus skipping the
  1848. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1849. * was in effect at the time the window opened). This also solves the issue
  1850. * of having to deal with a cpu having been in NOHZ idle for multiple
  1851. * LOAD_FREQ intervals.
  1852. *
  1853. * When making the ILB scale, we should try to pull this in as well.
  1854. */
  1855. static atomic_long_t calc_load_idle[2];
  1856. static int calc_load_idx;
  1857. static inline int calc_load_write_idx(void)
  1858. {
  1859. int idx = calc_load_idx;
  1860. /*
  1861. * See calc_global_nohz(), if we observe the new index, we also
  1862. * need to observe the new update time.
  1863. */
  1864. smp_rmb();
  1865. /*
  1866. * If the folding window started, make sure we start writing in the
  1867. * next idle-delta.
  1868. */
  1869. if (!time_before(jiffies, calc_load_update))
  1870. idx++;
  1871. return idx & 1;
  1872. }
  1873. static inline int calc_load_read_idx(void)
  1874. {
  1875. return calc_load_idx & 1;
  1876. }
  1877. void calc_load_enter_idle(void)
  1878. {
  1879. struct rq *this_rq = this_rq();
  1880. long delta;
  1881. /*
  1882. * We're going into NOHZ mode, if there's any pending delta, fold it
  1883. * into the pending idle delta.
  1884. */
  1885. delta = calc_load_fold_active(this_rq);
  1886. if (delta) {
  1887. int idx = calc_load_write_idx();
  1888. atomic_long_add(delta, &calc_load_idle[idx]);
  1889. }
  1890. }
  1891. void calc_load_exit_idle(void)
  1892. {
  1893. struct rq *this_rq = this_rq();
  1894. /*
  1895. * If we're still before the sample window, we're done.
  1896. */
  1897. if (time_before(jiffies, this_rq->calc_load_update))
  1898. return;
  1899. /*
  1900. * We woke inside or after the sample window, this means we're already
  1901. * accounted through the nohz accounting, so skip the entire deal and
  1902. * sync up for the next window.
  1903. */
  1904. this_rq->calc_load_update = calc_load_update;
  1905. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1906. this_rq->calc_load_update += LOAD_FREQ;
  1907. }
  1908. static long calc_load_fold_idle(void)
  1909. {
  1910. int idx = calc_load_read_idx();
  1911. long delta = 0;
  1912. if (atomic_long_read(&calc_load_idle[idx]))
  1913. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1914. return delta;
  1915. }
  1916. /**
  1917. * fixed_power_int - compute: x^n, in O(log n) time
  1918. *
  1919. * @x: base of the power
  1920. * @frac_bits: fractional bits of @x
  1921. * @n: power to raise @x to.
  1922. *
  1923. * By exploiting the relation between the definition of the natural power
  1924. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1925. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1926. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1927. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1928. * of course trivially computable in O(log_2 n), the length of our binary
  1929. * vector.
  1930. */
  1931. static unsigned long
  1932. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1933. {
  1934. unsigned long result = 1UL << frac_bits;
  1935. if (n) for (;;) {
  1936. if (n & 1) {
  1937. result *= x;
  1938. result += 1UL << (frac_bits - 1);
  1939. result >>= frac_bits;
  1940. }
  1941. n >>= 1;
  1942. if (!n)
  1943. break;
  1944. x *= x;
  1945. x += 1UL << (frac_bits - 1);
  1946. x >>= frac_bits;
  1947. }
  1948. return result;
  1949. }
  1950. /*
  1951. * a1 = a0 * e + a * (1 - e)
  1952. *
  1953. * a2 = a1 * e + a * (1 - e)
  1954. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1955. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1956. *
  1957. * a3 = a2 * e + a * (1 - e)
  1958. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1959. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1960. *
  1961. * ...
  1962. *
  1963. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1964. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1965. * = a0 * e^n + a * (1 - e^n)
  1966. *
  1967. * [1] application of the geometric series:
  1968. *
  1969. * n 1 - x^(n+1)
  1970. * S_n := \Sum x^i = -------------
  1971. * i=0 1 - x
  1972. */
  1973. static unsigned long
  1974. calc_load_n(unsigned long load, unsigned long exp,
  1975. unsigned long active, unsigned int n)
  1976. {
  1977. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1978. }
  1979. /*
  1980. * NO_HZ can leave us missing all per-cpu ticks calling
  1981. * calc_load_account_active(), but since an idle CPU folds its delta into
  1982. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1983. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1984. *
  1985. * Once we've updated the global active value, we need to apply the exponential
  1986. * weights adjusted to the number of cycles missed.
  1987. */
  1988. static void calc_global_nohz(void)
  1989. {
  1990. long delta, active, n;
  1991. if (!time_before(jiffies, calc_load_update + 10)) {
  1992. /*
  1993. * Catch-up, fold however many we are behind still
  1994. */
  1995. delta = jiffies - calc_load_update - 10;
  1996. n = 1 + (delta / LOAD_FREQ);
  1997. active = atomic_long_read(&calc_load_tasks);
  1998. active = active > 0 ? active * FIXED_1 : 0;
  1999. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2000. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2001. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2002. calc_load_update += n * LOAD_FREQ;
  2003. }
  2004. /*
  2005. * Flip the idle index...
  2006. *
  2007. * Make sure we first write the new time then flip the index, so that
  2008. * calc_load_write_idx() will see the new time when it reads the new
  2009. * index, this avoids a double flip messing things up.
  2010. */
  2011. smp_wmb();
  2012. calc_load_idx++;
  2013. }
  2014. #else /* !CONFIG_NO_HZ */
  2015. static inline long calc_load_fold_idle(void) { return 0; }
  2016. static inline void calc_global_nohz(void) { }
  2017. #endif /* CONFIG_NO_HZ */
  2018. /*
  2019. * calc_load - update the avenrun load estimates 10 ticks after the
  2020. * CPUs have updated calc_load_tasks.
  2021. */
  2022. void calc_global_load(unsigned long ticks)
  2023. {
  2024. long active, delta;
  2025. if (time_before(jiffies, calc_load_update + 10))
  2026. return;
  2027. /*
  2028. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2029. */
  2030. delta = calc_load_fold_idle();
  2031. if (delta)
  2032. atomic_long_add(delta, &calc_load_tasks);
  2033. active = atomic_long_read(&calc_load_tasks);
  2034. active = active > 0 ? active * FIXED_1 : 0;
  2035. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2036. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2037. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2038. calc_load_update += LOAD_FREQ;
  2039. /*
  2040. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2041. */
  2042. calc_global_nohz();
  2043. }
  2044. /*
  2045. * Called from update_cpu_load() to periodically update this CPU's
  2046. * active count.
  2047. */
  2048. static void calc_load_account_active(struct rq *this_rq)
  2049. {
  2050. long delta;
  2051. if (time_before(jiffies, this_rq->calc_load_update))
  2052. return;
  2053. delta = calc_load_fold_active(this_rq);
  2054. if (delta)
  2055. atomic_long_add(delta, &calc_load_tasks);
  2056. this_rq->calc_load_update += LOAD_FREQ;
  2057. }
  2058. /*
  2059. * End of global load-average stuff
  2060. */
  2061. /*
  2062. * The exact cpuload at various idx values, calculated at every tick would be
  2063. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2064. *
  2065. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2066. * on nth tick when cpu may be busy, then we have:
  2067. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2068. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2069. *
  2070. * decay_load_missed() below does efficient calculation of
  2071. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2072. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2073. *
  2074. * The calculation is approximated on a 128 point scale.
  2075. * degrade_zero_ticks is the number of ticks after which load at any
  2076. * particular idx is approximated to be zero.
  2077. * degrade_factor is a precomputed table, a row for each load idx.
  2078. * Each column corresponds to degradation factor for a power of two ticks,
  2079. * based on 128 point scale.
  2080. * Example:
  2081. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2082. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2083. *
  2084. * With this power of 2 load factors, we can degrade the load n times
  2085. * by looking at 1 bits in n and doing as many mult/shift instead of
  2086. * n mult/shifts needed by the exact degradation.
  2087. */
  2088. #define DEGRADE_SHIFT 7
  2089. static const unsigned char
  2090. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2091. static const unsigned char
  2092. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2093. {0, 0, 0, 0, 0, 0, 0, 0},
  2094. {64, 32, 8, 0, 0, 0, 0, 0},
  2095. {96, 72, 40, 12, 1, 0, 0},
  2096. {112, 98, 75, 43, 15, 1, 0},
  2097. {120, 112, 98, 76, 45, 16, 2} };
  2098. /*
  2099. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2100. * would be when CPU is idle and so we just decay the old load without
  2101. * adding any new load.
  2102. */
  2103. static unsigned long
  2104. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2105. {
  2106. int j = 0;
  2107. if (!missed_updates)
  2108. return load;
  2109. if (missed_updates >= degrade_zero_ticks[idx])
  2110. return 0;
  2111. if (idx == 1)
  2112. return load >> missed_updates;
  2113. while (missed_updates) {
  2114. if (missed_updates % 2)
  2115. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2116. missed_updates >>= 1;
  2117. j++;
  2118. }
  2119. return load;
  2120. }
  2121. /*
  2122. * Update rq->cpu_load[] statistics. This function is usually called every
  2123. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2124. * every tick. We fix it up based on jiffies.
  2125. */
  2126. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2127. unsigned long pending_updates)
  2128. {
  2129. int i, scale;
  2130. this_rq->nr_load_updates++;
  2131. /* Update our load: */
  2132. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2133. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2134. unsigned long old_load, new_load;
  2135. /* scale is effectively 1 << i now, and >> i divides by scale */
  2136. old_load = this_rq->cpu_load[i];
  2137. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2138. new_load = this_load;
  2139. /*
  2140. * Round up the averaging division if load is increasing. This
  2141. * prevents us from getting stuck on 9 if the load is 10, for
  2142. * example.
  2143. */
  2144. if (new_load > old_load)
  2145. new_load += scale - 1;
  2146. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2147. }
  2148. sched_avg_update(this_rq);
  2149. }
  2150. #ifdef CONFIG_NO_HZ
  2151. /*
  2152. * There is no sane way to deal with nohz on smp when using jiffies because the
  2153. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2154. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2155. *
  2156. * Therefore we cannot use the delta approach from the regular tick since that
  2157. * would seriously skew the load calculation. However we'll make do for those
  2158. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2159. * (tick_nohz_idle_exit).
  2160. *
  2161. * This means we might still be one tick off for nohz periods.
  2162. */
  2163. /*
  2164. * Called from nohz_idle_balance() to update the load ratings before doing the
  2165. * idle balance.
  2166. */
  2167. void update_idle_cpu_load(struct rq *this_rq)
  2168. {
  2169. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2170. unsigned long load = this_rq->load.weight;
  2171. unsigned long pending_updates;
  2172. /*
  2173. * bail if there's load or we're actually up-to-date.
  2174. */
  2175. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2176. return;
  2177. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2178. this_rq->last_load_update_tick = curr_jiffies;
  2179. __update_cpu_load(this_rq, load, pending_updates);
  2180. }
  2181. /*
  2182. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2183. */
  2184. void update_cpu_load_nohz(void)
  2185. {
  2186. struct rq *this_rq = this_rq();
  2187. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2188. unsigned long pending_updates;
  2189. if (curr_jiffies == this_rq->last_load_update_tick)
  2190. return;
  2191. raw_spin_lock(&this_rq->lock);
  2192. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2193. if (pending_updates) {
  2194. this_rq->last_load_update_tick = curr_jiffies;
  2195. /*
  2196. * We were idle, this means load 0, the current load might be
  2197. * !0 due to remote wakeups and the sort.
  2198. */
  2199. __update_cpu_load(this_rq, 0, pending_updates);
  2200. }
  2201. raw_spin_unlock(&this_rq->lock);
  2202. }
  2203. #endif /* CONFIG_NO_HZ */
  2204. /*
  2205. * Called from scheduler_tick()
  2206. */
  2207. static void update_cpu_load_active(struct rq *this_rq)
  2208. {
  2209. /*
  2210. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2211. */
  2212. this_rq->last_load_update_tick = jiffies;
  2213. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2214. calc_load_account_active(this_rq);
  2215. }
  2216. #ifdef CONFIG_SMP
  2217. /*
  2218. * sched_exec - execve() is a valuable balancing opportunity, because at
  2219. * this point the task has the smallest effective memory and cache footprint.
  2220. */
  2221. void sched_exec(void)
  2222. {
  2223. struct task_struct *p = current;
  2224. unsigned long flags;
  2225. int dest_cpu;
  2226. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2227. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2228. if (dest_cpu == smp_processor_id())
  2229. goto unlock;
  2230. if (likely(cpu_active(dest_cpu))) {
  2231. struct migration_arg arg = { p, dest_cpu };
  2232. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2233. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2234. return;
  2235. }
  2236. unlock:
  2237. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2238. }
  2239. #endif
  2240. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2241. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2242. EXPORT_PER_CPU_SYMBOL(kstat);
  2243. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2244. /*
  2245. * Return any ns on the sched_clock that have not yet been accounted in
  2246. * @p in case that task is currently running.
  2247. *
  2248. * Called with task_rq_lock() held on @rq.
  2249. */
  2250. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2251. {
  2252. u64 ns = 0;
  2253. if (task_current(rq, p)) {
  2254. update_rq_clock(rq);
  2255. ns = rq->clock_task - p->se.exec_start;
  2256. if ((s64)ns < 0)
  2257. ns = 0;
  2258. }
  2259. return ns;
  2260. }
  2261. unsigned long long task_delta_exec(struct task_struct *p)
  2262. {
  2263. unsigned long flags;
  2264. struct rq *rq;
  2265. u64 ns = 0;
  2266. rq = task_rq_lock(p, &flags);
  2267. ns = do_task_delta_exec(p, rq);
  2268. task_rq_unlock(rq, p, &flags);
  2269. return ns;
  2270. }
  2271. /*
  2272. * Return accounted runtime for the task.
  2273. * In case the task is currently running, return the runtime plus current's
  2274. * pending runtime that have not been accounted yet.
  2275. */
  2276. unsigned long long task_sched_runtime(struct task_struct *p)
  2277. {
  2278. unsigned long flags;
  2279. struct rq *rq;
  2280. u64 ns = 0;
  2281. rq = task_rq_lock(p, &flags);
  2282. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2283. task_rq_unlock(rq, p, &flags);
  2284. return ns;
  2285. }
  2286. /*
  2287. * This function gets called by the timer code, with HZ frequency.
  2288. * We call it with interrupts disabled.
  2289. */
  2290. void scheduler_tick(void)
  2291. {
  2292. int cpu = smp_processor_id();
  2293. struct rq *rq = cpu_rq(cpu);
  2294. struct task_struct *curr = rq->curr;
  2295. sched_clock_tick();
  2296. raw_spin_lock(&rq->lock);
  2297. update_rq_clock(rq);
  2298. update_cpu_load_active(rq);
  2299. curr->sched_class->task_tick(rq, curr, 0);
  2300. raw_spin_unlock(&rq->lock);
  2301. perf_event_task_tick();
  2302. #ifdef CONFIG_SMP
  2303. rq->idle_balance = idle_cpu(cpu);
  2304. trigger_load_balance(rq, cpu);
  2305. #endif
  2306. }
  2307. notrace unsigned long get_parent_ip(unsigned long addr)
  2308. {
  2309. if (in_lock_functions(addr)) {
  2310. addr = CALLER_ADDR2;
  2311. if (in_lock_functions(addr))
  2312. addr = CALLER_ADDR3;
  2313. }
  2314. return addr;
  2315. }
  2316. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2317. defined(CONFIG_PREEMPT_TRACER))
  2318. void __kprobes add_preempt_count(int val)
  2319. {
  2320. #ifdef CONFIG_DEBUG_PREEMPT
  2321. /*
  2322. * Underflow?
  2323. */
  2324. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2325. return;
  2326. #endif
  2327. preempt_count() += val;
  2328. #ifdef CONFIG_DEBUG_PREEMPT
  2329. /*
  2330. * Spinlock count overflowing soon?
  2331. */
  2332. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2333. PREEMPT_MASK - 10);
  2334. #endif
  2335. if (preempt_count() == val)
  2336. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2337. }
  2338. EXPORT_SYMBOL(add_preempt_count);
  2339. void __kprobes sub_preempt_count(int val)
  2340. {
  2341. #ifdef CONFIG_DEBUG_PREEMPT
  2342. /*
  2343. * Underflow?
  2344. */
  2345. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2346. return;
  2347. /*
  2348. * Is the spinlock portion underflowing?
  2349. */
  2350. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2351. !(preempt_count() & PREEMPT_MASK)))
  2352. return;
  2353. #endif
  2354. if (preempt_count() == val)
  2355. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2356. preempt_count() -= val;
  2357. }
  2358. EXPORT_SYMBOL(sub_preempt_count);
  2359. #endif
  2360. /*
  2361. * Print scheduling while atomic bug:
  2362. */
  2363. static noinline void __schedule_bug(struct task_struct *prev)
  2364. {
  2365. if (oops_in_progress)
  2366. return;
  2367. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2368. prev->comm, prev->pid, preempt_count());
  2369. debug_show_held_locks(prev);
  2370. print_modules();
  2371. if (irqs_disabled())
  2372. print_irqtrace_events(prev);
  2373. dump_stack();
  2374. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2375. }
  2376. /*
  2377. * Various schedule()-time debugging checks and statistics:
  2378. */
  2379. static inline void schedule_debug(struct task_struct *prev)
  2380. {
  2381. /*
  2382. * Test if we are atomic. Since do_exit() needs to call into
  2383. * schedule() atomically, we ignore that path for now.
  2384. * Otherwise, whine if we are scheduling when we should not be.
  2385. */
  2386. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2387. __schedule_bug(prev);
  2388. rcu_sleep_check();
  2389. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2390. schedstat_inc(this_rq(), sched_count);
  2391. }
  2392. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2393. {
  2394. if (prev->on_rq || rq->skip_clock_update < 0)
  2395. update_rq_clock(rq);
  2396. prev->sched_class->put_prev_task(rq, prev);
  2397. }
  2398. /*
  2399. * Pick up the highest-prio task:
  2400. */
  2401. static inline struct task_struct *
  2402. pick_next_task(struct rq *rq)
  2403. {
  2404. const struct sched_class *class;
  2405. struct task_struct *p;
  2406. /*
  2407. * Optimization: we know that if all tasks are in
  2408. * the fair class we can call that function directly:
  2409. */
  2410. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2411. p = fair_sched_class.pick_next_task(rq);
  2412. if (likely(p))
  2413. return p;
  2414. }
  2415. for_each_class(class) {
  2416. p = class->pick_next_task(rq);
  2417. if (p)
  2418. return p;
  2419. }
  2420. BUG(); /* the idle class will always have a runnable task */
  2421. }
  2422. /*
  2423. * __schedule() is the main scheduler function.
  2424. *
  2425. * The main means of driving the scheduler and thus entering this function are:
  2426. *
  2427. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2428. *
  2429. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2430. * paths. For example, see arch/x86/entry_64.S.
  2431. *
  2432. * To drive preemption between tasks, the scheduler sets the flag in timer
  2433. * interrupt handler scheduler_tick().
  2434. *
  2435. * 3. Wakeups don't really cause entry into schedule(). They add a
  2436. * task to the run-queue and that's it.
  2437. *
  2438. * Now, if the new task added to the run-queue preempts the current
  2439. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2440. * called on the nearest possible occasion:
  2441. *
  2442. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2443. *
  2444. * - in syscall or exception context, at the next outmost
  2445. * preempt_enable(). (this might be as soon as the wake_up()'s
  2446. * spin_unlock()!)
  2447. *
  2448. * - in IRQ context, return from interrupt-handler to
  2449. * preemptible context
  2450. *
  2451. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2452. * then at the next:
  2453. *
  2454. * - cond_resched() call
  2455. * - explicit schedule() call
  2456. * - return from syscall or exception to user-space
  2457. * - return from interrupt-handler to user-space
  2458. */
  2459. static void __sched __schedule(void)
  2460. {
  2461. struct task_struct *prev, *next;
  2462. unsigned long *switch_count;
  2463. struct rq *rq;
  2464. int cpu;
  2465. need_resched:
  2466. preempt_disable();
  2467. cpu = smp_processor_id();
  2468. rq = cpu_rq(cpu);
  2469. rcu_note_context_switch(cpu);
  2470. prev = rq->curr;
  2471. schedule_debug(prev);
  2472. if (sched_feat(HRTICK))
  2473. hrtick_clear(rq);
  2474. raw_spin_lock_irq(&rq->lock);
  2475. switch_count = &prev->nivcsw;
  2476. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2477. if (unlikely(signal_pending_state(prev->state, prev))) {
  2478. prev->state = TASK_RUNNING;
  2479. } else {
  2480. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2481. prev->on_rq = 0;
  2482. /*
  2483. * If a worker went to sleep, notify and ask workqueue
  2484. * whether it wants to wake up a task to maintain
  2485. * concurrency.
  2486. */
  2487. if (prev->flags & PF_WQ_WORKER) {
  2488. struct task_struct *to_wakeup;
  2489. to_wakeup = wq_worker_sleeping(prev, cpu);
  2490. if (to_wakeup)
  2491. try_to_wake_up_local(to_wakeup);
  2492. }
  2493. }
  2494. switch_count = &prev->nvcsw;
  2495. }
  2496. pre_schedule(rq, prev);
  2497. if (unlikely(!rq->nr_running))
  2498. idle_balance(cpu, rq);
  2499. put_prev_task(rq, prev);
  2500. next = pick_next_task(rq);
  2501. clear_tsk_need_resched(prev);
  2502. rq->skip_clock_update = 0;
  2503. if (likely(prev != next)) {
  2504. rq->nr_switches++;
  2505. rq->curr = next;
  2506. ++*switch_count;
  2507. context_switch(rq, prev, next); /* unlocks the rq */
  2508. /*
  2509. * The context switch have flipped the stack from under us
  2510. * and restored the local variables which were saved when
  2511. * this task called schedule() in the past. prev == current
  2512. * is still correct, but it can be moved to another cpu/rq.
  2513. */
  2514. cpu = smp_processor_id();
  2515. rq = cpu_rq(cpu);
  2516. } else
  2517. raw_spin_unlock_irq(&rq->lock);
  2518. post_schedule(rq);
  2519. sched_preempt_enable_no_resched();
  2520. if (need_resched())
  2521. goto need_resched;
  2522. }
  2523. static inline void sched_submit_work(struct task_struct *tsk)
  2524. {
  2525. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2526. return;
  2527. /*
  2528. * If we are going to sleep and we have plugged IO queued,
  2529. * make sure to submit it to avoid deadlocks.
  2530. */
  2531. if (blk_needs_flush_plug(tsk))
  2532. blk_schedule_flush_plug(tsk);
  2533. }
  2534. asmlinkage void __sched schedule(void)
  2535. {
  2536. struct task_struct *tsk = current;
  2537. sched_submit_work(tsk);
  2538. __schedule();
  2539. }
  2540. EXPORT_SYMBOL(schedule);
  2541. #ifdef CONFIG_CONTEXT_TRACKING
  2542. asmlinkage void __sched schedule_user(void)
  2543. {
  2544. /*
  2545. * If we come here after a random call to set_need_resched(),
  2546. * or we have been woken up remotely but the IPI has not yet arrived,
  2547. * we haven't yet exited the RCU idle mode. Do it here manually until
  2548. * we find a better solution.
  2549. */
  2550. user_exit();
  2551. schedule();
  2552. user_enter();
  2553. }
  2554. #endif
  2555. /**
  2556. * schedule_preempt_disabled - called with preemption disabled
  2557. *
  2558. * Returns with preemption disabled. Note: preempt_count must be 1
  2559. */
  2560. void __sched schedule_preempt_disabled(void)
  2561. {
  2562. sched_preempt_enable_no_resched();
  2563. schedule();
  2564. preempt_disable();
  2565. }
  2566. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2567. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2568. {
  2569. if (lock->owner != owner)
  2570. return false;
  2571. /*
  2572. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2573. * lock->owner still matches owner, if that fails, owner might
  2574. * point to free()d memory, if it still matches, the rcu_read_lock()
  2575. * ensures the memory stays valid.
  2576. */
  2577. barrier();
  2578. return owner->on_cpu;
  2579. }
  2580. /*
  2581. * Look out! "owner" is an entirely speculative pointer
  2582. * access and not reliable.
  2583. */
  2584. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2585. {
  2586. if (!sched_feat(OWNER_SPIN))
  2587. return 0;
  2588. rcu_read_lock();
  2589. while (owner_running(lock, owner)) {
  2590. if (need_resched())
  2591. break;
  2592. arch_mutex_cpu_relax();
  2593. }
  2594. rcu_read_unlock();
  2595. /*
  2596. * We break out the loop above on need_resched() and when the
  2597. * owner changed, which is a sign for heavy contention. Return
  2598. * success only when lock->owner is NULL.
  2599. */
  2600. return lock->owner == NULL;
  2601. }
  2602. #endif
  2603. #ifdef CONFIG_PREEMPT
  2604. /*
  2605. * this is the entry point to schedule() from in-kernel preemption
  2606. * off of preempt_enable. Kernel preemptions off return from interrupt
  2607. * occur there and call schedule directly.
  2608. */
  2609. asmlinkage void __sched notrace preempt_schedule(void)
  2610. {
  2611. struct thread_info *ti = current_thread_info();
  2612. /*
  2613. * If there is a non-zero preempt_count or interrupts are disabled,
  2614. * we do not want to preempt the current task. Just return..
  2615. */
  2616. if (likely(ti->preempt_count || irqs_disabled()))
  2617. return;
  2618. do {
  2619. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2620. __schedule();
  2621. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2622. /*
  2623. * Check again in case we missed a preemption opportunity
  2624. * between schedule and now.
  2625. */
  2626. barrier();
  2627. } while (need_resched());
  2628. }
  2629. EXPORT_SYMBOL(preempt_schedule);
  2630. /*
  2631. * this is the entry point to schedule() from kernel preemption
  2632. * off of irq context.
  2633. * Note, that this is called and return with irqs disabled. This will
  2634. * protect us against recursive calling from irq.
  2635. */
  2636. asmlinkage void __sched preempt_schedule_irq(void)
  2637. {
  2638. struct thread_info *ti = current_thread_info();
  2639. enum ctx_state prev_state;
  2640. /* Catch callers which need to be fixed */
  2641. BUG_ON(ti->preempt_count || !irqs_disabled());
  2642. prev_state = exception_enter();
  2643. do {
  2644. add_preempt_count(PREEMPT_ACTIVE);
  2645. local_irq_enable();
  2646. __schedule();
  2647. local_irq_disable();
  2648. sub_preempt_count(PREEMPT_ACTIVE);
  2649. /*
  2650. * Check again in case we missed a preemption opportunity
  2651. * between schedule and now.
  2652. */
  2653. barrier();
  2654. } while (need_resched());
  2655. exception_exit(prev_state);
  2656. }
  2657. #endif /* CONFIG_PREEMPT */
  2658. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2659. void *key)
  2660. {
  2661. return try_to_wake_up(curr->private, mode, wake_flags);
  2662. }
  2663. EXPORT_SYMBOL(default_wake_function);
  2664. /*
  2665. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2666. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2667. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2668. *
  2669. * There are circumstances in which we can try to wake a task which has already
  2670. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2671. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2672. */
  2673. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2674. int nr_exclusive, int wake_flags, void *key)
  2675. {
  2676. wait_queue_t *curr, *next;
  2677. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2678. unsigned flags = curr->flags;
  2679. if (curr->func(curr, mode, wake_flags, key) &&
  2680. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2681. break;
  2682. }
  2683. }
  2684. /**
  2685. * __wake_up - wake up threads blocked on a waitqueue.
  2686. * @q: the waitqueue
  2687. * @mode: which threads
  2688. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2689. * @key: is directly passed to the wakeup function
  2690. *
  2691. * It may be assumed that this function implies a write memory barrier before
  2692. * changing the task state if and only if any tasks are woken up.
  2693. */
  2694. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2695. int nr_exclusive, void *key)
  2696. {
  2697. unsigned long flags;
  2698. spin_lock_irqsave(&q->lock, flags);
  2699. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2700. spin_unlock_irqrestore(&q->lock, flags);
  2701. }
  2702. EXPORT_SYMBOL(__wake_up);
  2703. /*
  2704. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2705. */
  2706. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2707. {
  2708. __wake_up_common(q, mode, nr, 0, NULL);
  2709. }
  2710. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2711. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2712. {
  2713. __wake_up_common(q, mode, 1, 0, key);
  2714. }
  2715. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2716. /**
  2717. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2718. * @q: the waitqueue
  2719. * @mode: which threads
  2720. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2721. * @key: opaque value to be passed to wakeup targets
  2722. *
  2723. * The sync wakeup differs that the waker knows that it will schedule
  2724. * away soon, so while the target thread will be woken up, it will not
  2725. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2726. * with each other. This can prevent needless bouncing between CPUs.
  2727. *
  2728. * On UP it can prevent extra preemption.
  2729. *
  2730. * It may be assumed that this function implies a write memory barrier before
  2731. * changing the task state if and only if any tasks are woken up.
  2732. */
  2733. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2734. int nr_exclusive, void *key)
  2735. {
  2736. unsigned long flags;
  2737. int wake_flags = WF_SYNC;
  2738. if (unlikely(!q))
  2739. return;
  2740. if (unlikely(!nr_exclusive))
  2741. wake_flags = 0;
  2742. spin_lock_irqsave(&q->lock, flags);
  2743. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2744. spin_unlock_irqrestore(&q->lock, flags);
  2745. }
  2746. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2747. /*
  2748. * __wake_up_sync - see __wake_up_sync_key()
  2749. */
  2750. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2751. {
  2752. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2753. }
  2754. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2755. /**
  2756. * complete: - signals a single thread waiting on this completion
  2757. * @x: holds the state of this particular completion
  2758. *
  2759. * This will wake up a single thread waiting on this completion. Threads will be
  2760. * awakened in the same order in which they were queued.
  2761. *
  2762. * See also complete_all(), wait_for_completion() and related routines.
  2763. *
  2764. * It may be assumed that this function implies a write memory barrier before
  2765. * changing the task state if and only if any tasks are woken up.
  2766. */
  2767. void complete(struct completion *x)
  2768. {
  2769. unsigned long flags;
  2770. spin_lock_irqsave(&x->wait.lock, flags);
  2771. x->done++;
  2772. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2773. spin_unlock_irqrestore(&x->wait.lock, flags);
  2774. }
  2775. EXPORT_SYMBOL(complete);
  2776. /**
  2777. * complete_all: - signals all threads waiting on this completion
  2778. * @x: holds the state of this particular completion
  2779. *
  2780. * This will wake up all threads waiting on this particular completion event.
  2781. *
  2782. * It may be assumed that this function implies a write memory barrier before
  2783. * changing the task state if and only if any tasks are woken up.
  2784. */
  2785. void complete_all(struct completion *x)
  2786. {
  2787. unsigned long flags;
  2788. spin_lock_irqsave(&x->wait.lock, flags);
  2789. x->done += UINT_MAX/2;
  2790. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2791. spin_unlock_irqrestore(&x->wait.lock, flags);
  2792. }
  2793. EXPORT_SYMBOL(complete_all);
  2794. static inline long __sched
  2795. do_wait_for_common(struct completion *x,
  2796. long (*action)(long), long timeout, int state)
  2797. {
  2798. if (!x->done) {
  2799. DECLARE_WAITQUEUE(wait, current);
  2800. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2801. do {
  2802. if (signal_pending_state(state, current)) {
  2803. timeout = -ERESTARTSYS;
  2804. break;
  2805. }
  2806. __set_current_state(state);
  2807. spin_unlock_irq(&x->wait.lock);
  2808. timeout = action(timeout);
  2809. spin_lock_irq(&x->wait.lock);
  2810. } while (!x->done && timeout);
  2811. __remove_wait_queue(&x->wait, &wait);
  2812. if (!x->done)
  2813. return timeout;
  2814. }
  2815. x->done--;
  2816. return timeout ?: 1;
  2817. }
  2818. static inline long __sched
  2819. __wait_for_common(struct completion *x,
  2820. long (*action)(long), long timeout, int state)
  2821. {
  2822. might_sleep();
  2823. spin_lock_irq(&x->wait.lock);
  2824. timeout = do_wait_for_common(x, action, timeout, state);
  2825. spin_unlock_irq(&x->wait.lock);
  2826. return timeout;
  2827. }
  2828. static long __sched
  2829. wait_for_common(struct completion *x, long timeout, int state)
  2830. {
  2831. return __wait_for_common(x, schedule_timeout, timeout, state);
  2832. }
  2833. static long __sched
  2834. wait_for_common_io(struct completion *x, long timeout, int state)
  2835. {
  2836. return __wait_for_common(x, io_schedule_timeout, timeout, state);
  2837. }
  2838. /**
  2839. * wait_for_completion: - waits for completion of a task
  2840. * @x: holds the state of this particular completion
  2841. *
  2842. * This waits to be signaled for completion of a specific task. It is NOT
  2843. * interruptible and there is no timeout.
  2844. *
  2845. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2846. * and interrupt capability. Also see complete().
  2847. */
  2848. void __sched wait_for_completion(struct completion *x)
  2849. {
  2850. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2851. }
  2852. EXPORT_SYMBOL(wait_for_completion);
  2853. /**
  2854. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2855. * @x: holds the state of this particular completion
  2856. * @timeout: timeout value in jiffies
  2857. *
  2858. * This waits for either a completion of a specific task to be signaled or for a
  2859. * specified timeout to expire. The timeout is in jiffies. It is not
  2860. * interruptible.
  2861. *
  2862. * The return value is 0 if timed out, and positive (at least 1, or number of
  2863. * jiffies left till timeout) if completed.
  2864. */
  2865. unsigned long __sched
  2866. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2867. {
  2868. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2869. }
  2870. EXPORT_SYMBOL(wait_for_completion_timeout);
  2871. /**
  2872. * wait_for_completion_io: - waits for completion of a task
  2873. * @x: holds the state of this particular completion
  2874. *
  2875. * This waits to be signaled for completion of a specific task. It is NOT
  2876. * interruptible and there is no timeout. The caller is accounted as waiting
  2877. * for IO.
  2878. */
  2879. void __sched wait_for_completion_io(struct completion *x)
  2880. {
  2881. wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2882. }
  2883. EXPORT_SYMBOL(wait_for_completion_io);
  2884. /**
  2885. * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
  2886. * @x: holds the state of this particular completion
  2887. * @timeout: timeout value in jiffies
  2888. *
  2889. * This waits for either a completion of a specific task to be signaled or for a
  2890. * specified timeout to expire. The timeout is in jiffies. It is not
  2891. * interruptible. The caller is accounted as waiting for IO.
  2892. *
  2893. * The return value is 0 if timed out, and positive (at least 1, or number of
  2894. * jiffies left till timeout) if completed.
  2895. */
  2896. unsigned long __sched
  2897. wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
  2898. {
  2899. return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
  2900. }
  2901. EXPORT_SYMBOL(wait_for_completion_io_timeout);
  2902. /**
  2903. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2904. * @x: holds the state of this particular completion
  2905. *
  2906. * This waits for completion of a specific task to be signaled. It is
  2907. * interruptible.
  2908. *
  2909. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2910. */
  2911. int __sched wait_for_completion_interruptible(struct completion *x)
  2912. {
  2913. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2914. if (t == -ERESTARTSYS)
  2915. return t;
  2916. return 0;
  2917. }
  2918. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2919. /**
  2920. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2921. * @x: holds the state of this particular completion
  2922. * @timeout: timeout value in jiffies
  2923. *
  2924. * This waits for either a completion of a specific task to be signaled or for a
  2925. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2926. *
  2927. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2928. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2929. */
  2930. long __sched
  2931. wait_for_completion_interruptible_timeout(struct completion *x,
  2932. unsigned long timeout)
  2933. {
  2934. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2935. }
  2936. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2937. /**
  2938. * wait_for_completion_killable: - waits for completion of a task (killable)
  2939. * @x: holds the state of this particular completion
  2940. *
  2941. * This waits to be signaled for completion of a specific task. It can be
  2942. * interrupted by a kill signal.
  2943. *
  2944. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2945. */
  2946. int __sched wait_for_completion_killable(struct completion *x)
  2947. {
  2948. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2949. if (t == -ERESTARTSYS)
  2950. return t;
  2951. return 0;
  2952. }
  2953. EXPORT_SYMBOL(wait_for_completion_killable);
  2954. /**
  2955. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2956. * @x: holds the state of this particular completion
  2957. * @timeout: timeout value in jiffies
  2958. *
  2959. * This waits for either a completion of a specific task to be
  2960. * signaled or for a specified timeout to expire. It can be
  2961. * interrupted by a kill signal. The timeout is in jiffies.
  2962. *
  2963. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2964. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2965. */
  2966. long __sched
  2967. wait_for_completion_killable_timeout(struct completion *x,
  2968. unsigned long timeout)
  2969. {
  2970. return wait_for_common(x, timeout, TASK_KILLABLE);
  2971. }
  2972. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2973. /**
  2974. * try_wait_for_completion - try to decrement a completion without blocking
  2975. * @x: completion structure
  2976. *
  2977. * Returns: 0 if a decrement cannot be done without blocking
  2978. * 1 if a decrement succeeded.
  2979. *
  2980. * If a completion is being used as a counting completion,
  2981. * attempt to decrement the counter without blocking. This
  2982. * enables us to avoid waiting if the resource the completion
  2983. * is protecting is not available.
  2984. */
  2985. bool try_wait_for_completion(struct completion *x)
  2986. {
  2987. unsigned long flags;
  2988. int ret = 1;
  2989. spin_lock_irqsave(&x->wait.lock, flags);
  2990. if (!x->done)
  2991. ret = 0;
  2992. else
  2993. x->done--;
  2994. spin_unlock_irqrestore(&x->wait.lock, flags);
  2995. return ret;
  2996. }
  2997. EXPORT_SYMBOL(try_wait_for_completion);
  2998. /**
  2999. * completion_done - Test to see if a completion has any waiters
  3000. * @x: completion structure
  3001. *
  3002. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3003. * 1 if there are no waiters.
  3004. *
  3005. */
  3006. bool completion_done(struct completion *x)
  3007. {
  3008. unsigned long flags;
  3009. int ret = 1;
  3010. spin_lock_irqsave(&x->wait.lock, flags);
  3011. if (!x->done)
  3012. ret = 0;
  3013. spin_unlock_irqrestore(&x->wait.lock, flags);
  3014. return ret;
  3015. }
  3016. EXPORT_SYMBOL(completion_done);
  3017. static long __sched
  3018. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3019. {
  3020. unsigned long flags;
  3021. wait_queue_t wait;
  3022. init_waitqueue_entry(&wait, current);
  3023. __set_current_state(state);
  3024. spin_lock_irqsave(&q->lock, flags);
  3025. __add_wait_queue(q, &wait);
  3026. spin_unlock(&q->lock);
  3027. timeout = schedule_timeout(timeout);
  3028. spin_lock_irq(&q->lock);
  3029. __remove_wait_queue(q, &wait);
  3030. spin_unlock_irqrestore(&q->lock, flags);
  3031. return timeout;
  3032. }
  3033. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3034. {
  3035. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3036. }
  3037. EXPORT_SYMBOL(interruptible_sleep_on);
  3038. long __sched
  3039. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3040. {
  3041. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3042. }
  3043. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3044. void __sched sleep_on(wait_queue_head_t *q)
  3045. {
  3046. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3047. }
  3048. EXPORT_SYMBOL(sleep_on);
  3049. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3050. {
  3051. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3052. }
  3053. EXPORT_SYMBOL(sleep_on_timeout);
  3054. #ifdef CONFIG_RT_MUTEXES
  3055. /*
  3056. * rt_mutex_setprio - set the current priority of a task
  3057. * @p: task
  3058. * @prio: prio value (kernel-internal form)
  3059. *
  3060. * This function changes the 'effective' priority of a task. It does
  3061. * not touch ->normal_prio like __setscheduler().
  3062. *
  3063. * Used by the rt_mutex code to implement priority inheritance logic.
  3064. */
  3065. void rt_mutex_setprio(struct task_struct *p, int prio)
  3066. {
  3067. int oldprio, on_rq, running;
  3068. struct rq *rq;
  3069. const struct sched_class *prev_class;
  3070. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3071. rq = __task_rq_lock(p);
  3072. /*
  3073. * Idle task boosting is a nono in general. There is one
  3074. * exception, when PREEMPT_RT and NOHZ is active:
  3075. *
  3076. * The idle task calls get_next_timer_interrupt() and holds
  3077. * the timer wheel base->lock on the CPU and another CPU wants
  3078. * to access the timer (probably to cancel it). We can safely
  3079. * ignore the boosting request, as the idle CPU runs this code
  3080. * with interrupts disabled and will complete the lock
  3081. * protected section without being interrupted. So there is no
  3082. * real need to boost.
  3083. */
  3084. if (unlikely(p == rq->idle)) {
  3085. WARN_ON(p != rq->curr);
  3086. WARN_ON(p->pi_blocked_on);
  3087. goto out_unlock;
  3088. }
  3089. trace_sched_pi_setprio(p, prio);
  3090. oldprio = p->prio;
  3091. prev_class = p->sched_class;
  3092. on_rq = p->on_rq;
  3093. running = task_current(rq, p);
  3094. if (on_rq)
  3095. dequeue_task(rq, p, 0);
  3096. if (running)
  3097. p->sched_class->put_prev_task(rq, p);
  3098. if (rt_prio(prio))
  3099. p->sched_class = &rt_sched_class;
  3100. else
  3101. p->sched_class = &fair_sched_class;
  3102. p->prio = prio;
  3103. if (running)
  3104. p->sched_class->set_curr_task(rq);
  3105. if (on_rq)
  3106. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3107. check_class_changed(rq, p, prev_class, oldprio);
  3108. out_unlock:
  3109. __task_rq_unlock(rq);
  3110. }
  3111. #endif
  3112. void set_user_nice(struct task_struct *p, long nice)
  3113. {
  3114. int old_prio, delta, on_rq;
  3115. unsigned long flags;
  3116. struct rq *rq;
  3117. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3118. return;
  3119. /*
  3120. * We have to be careful, if called from sys_setpriority(),
  3121. * the task might be in the middle of scheduling on another CPU.
  3122. */
  3123. rq = task_rq_lock(p, &flags);
  3124. /*
  3125. * The RT priorities are set via sched_setscheduler(), but we still
  3126. * allow the 'normal' nice value to be set - but as expected
  3127. * it wont have any effect on scheduling until the task is
  3128. * SCHED_FIFO/SCHED_RR:
  3129. */
  3130. if (task_has_rt_policy(p)) {
  3131. p->static_prio = NICE_TO_PRIO(nice);
  3132. goto out_unlock;
  3133. }
  3134. on_rq = p->on_rq;
  3135. if (on_rq)
  3136. dequeue_task(rq, p, 0);
  3137. p->static_prio = NICE_TO_PRIO(nice);
  3138. set_load_weight(p);
  3139. old_prio = p->prio;
  3140. p->prio = effective_prio(p);
  3141. delta = p->prio - old_prio;
  3142. if (on_rq) {
  3143. enqueue_task(rq, p, 0);
  3144. /*
  3145. * If the task increased its priority or is running and
  3146. * lowered its priority, then reschedule its CPU:
  3147. */
  3148. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3149. resched_task(rq->curr);
  3150. }
  3151. out_unlock:
  3152. task_rq_unlock(rq, p, &flags);
  3153. }
  3154. EXPORT_SYMBOL(set_user_nice);
  3155. /*
  3156. * can_nice - check if a task can reduce its nice value
  3157. * @p: task
  3158. * @nice: nice value
  3159. */
  3160. int can_nice(const struct task_struct *p, const int nice)
  3161. {
  3162. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3163. int nice_rlim = 20 - nice;
  3164. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3165. capable(CAP_SYS_NICE));
  3166. }
  3167. #ifdef __ARCH_WANT_SYS_NICE
  3168. /*
  3169. * sys_nice - change the priority of the current process.
  3170. * @increment: priority increment
  3171. *
  3172. * sys_setpriority is a more generic, but much slower function that
  3173. * does similar things.
  3174. */
  3175. SYSCALL_DEFINE1(nice, int, increment)
  3176. {
  3177. long nice, retval;
  3178. /*
  3179. * Setpriority might change our priority at the same moment.
  3180. * We don't have to worry. Conceptually one call occurs first
  3181. * and we have a single winner.
  3182. */
  3183. if (increment < -40)
  3184. increment = -40;
  3185. if (increment > 40)
  3186. increment = 40;
  3187. nice = TASK_NICE(current) + increment;
  3188. if (nice < -20)
  3189. nice = -20;
  3190. if (nice > 19)
  3191. nice = 19;
  3192. if (increment < 0 && !can_nice(current, nice))
  3193. return -EPERM;
  3194. retval = security_task_setnice(current, nice);
  3195. if (retval)
  3196. return retval;
  3197. set_user_nice(current, nice);
  3198. return 0;
  3199. }
  3200. #endif
  3201. /**
  3202. * task_prio - return the priority value of a given task.
  3203. * @p: the task in question.
  3204. *
  3205. * This is the priority value as seen by users in /proc.
  3206. * RT tasks are offset by -200. Normal tasks are centered
  3207. * around 0, value goes from -16 to +15.
  3208. */
  3209. int task_prio(const struct task_struct *p)
  3210. {
  3211. return p->prio - MAX_RT_PRIO;
  3212. }
  3213. /**
  3214. * task_nice - return the nice value of a given task.
  3215. * @p: the task in question.
  3216. */
  3217. int task_nice(const struct task_struct *p)
  3218. {
  3219. return TASK_NICE(p);
  3220. }
  3221. EXPORT_SYMBOL(task_nice);
  3222. /**
  3223. * idle_cpu - is a given cpu idle currently?
  3224. * @cpu: the processor in question.
  3225. */
  3226. int idle_cpu(int cpu)
  3227. {
  3228. struct rq *rq = cpu_rq(cpu);
  3229. if (rq->curr != rq->idle)
  3230. return 0;
  3231. if (rq->nr_running)
  3232. return 0;
  3233. #ifdef CONFIG_SMP
  3234. if (!llist_empty(&rq->wake_list))
  3235. return 0;
  3236. #endif
  3237. return 1;
  3238. }
  3239. /**
  3240. * idle_task - return the idle task for a given cpu.
  3241. * @cpu: the processor in question.
  3242. */
  3243. struct task_struct *idle_task(int cpu)
  3244. {
  3245. return cpu_rq(cpu)->idle;
  3246. }
  3247. /**
  3248. * find_process_by_pid - find a process with a matching PID value.
  3249. * @pid: the pid in question.
  3250. */
  3251. static struct task_struct *find_process_by_pid(pid_t pid)
  3252. {
  3253. return pid ? find_task_by_vpid(pid) : current;
  3254. }
  3255. /* Actually do priority change: must hold rq lock. */
  3256. static void
  3257. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3258. {
  3259. p->policy = policy;
  3260. p->rt_priority = prio;
  3261. p->normal_prio = normal_prio(p);
  3262. /* we are holding p->pi_lock already */
  3263. p->prio = rt_mutex_getprio(p);
  3264. if (rt_prio(p->prio))
  3265. p->sched_class = &rt_sched_class;
  3266. else
  3267. p->sched_class = &fair_sched_class;
  3268. set_load_weight(p);
  3269. }
  3270. /*
  3271. * check the target process has a UID that matches the current process's
  3272. */
  3273. static bool check_same_owner(struct task_struct *p)
  3274. {
  3275. const struct cred *cred = current_cred(), *pcred;
  3276. bool match;
  3277. rcu_read_lock();
  3278. pcred = __task_cred(p);
  3279. match = (uid_eq(cred->euid, pcred->euid) ||
  3280. uid_eq(cred->euid, pcred->uid));
  3281. rcu_read_unlock();
  3282. return match;
  3283. }
  3284. static int __sched_setscheduler(struct task_struct *p, int policy,
  3285. const struct sched_param *param, bool user)
  3286. {
  3287. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3288. unsigned long flags;
  3289. const struct sched_class *prev_class;
  3290. struct rq *rq;
  3291. int reset_on_fork;
  3292. /* may grab non-irq protected spin_locks */
  3293. BUG_ON(in_interrupt());
  3294. recheck:
  3295. /* double check policy once rq lock held */
  3296. if (policy < 0) {
  3297. reset_on_fork = p->sched_reset_on_fork;
  3298. policy = oldpolicy = p->policy;
  3299. } else {
  3300. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3301. policy &= ~SCHED_RESET_ON_FORK;
  3302. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3303. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3304. policy != SCHED_IDLE)
  3305. return -EINVAL;
  3306. }
  3307. /*
  3308. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3309. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3310. * SCHED_BATCH and SCHED_IDLE is 0.
  3311. */
  3312. if (param->sched_priority < 0 ||
  3313. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3314. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3315. return -EINVAL;
  3316. if (rt_policy(policy) != (param->sched_priority != 0))
  3317. return -EINVAL;
  3318. /*
  3319. * Allow unprivileged RT tasks to decrease priority:
  3320. */
  3321. if (user && !capable(CAP_SYS_NICE)) {
  3322. if (rt_policy(policy)) {
  3323. unsigned long rlim_rtprio =
  3324. task_rlimit(p, RLIMIT_RTPRIO);
  3325. /* can't set/change the rt policy */
  3326. if (policy != p->policy && !rlim_rtprio)
  3327. return -EPERM;
  3328. /* can't increase priority */
  3329. if (param->sched_priority > p->rt_priority &&
  3330. param->sched_priority > rlim_rtprio)
  3331. return -EPERM;
  3332. }
  3333. /*
  3334. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3335. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3336. */
  3337. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3338. if (!can_nice(p, TASK_NICE(p)))
  3339. return -EPERM;
  3340. }
  3341. /* can't change other user's priorities */
  3342. if (!check_same_owner(p))
  3343. return -EPERM;
  3344. /* Normal users shall not reset the sched_reset_on_fork flag */
  3345. if (p->sched_reset_on_fork && !reset_on_fork)
  3346. return -EPERM;
  3347. }
  3348. if (user) {
  3349. retval = security_task_setscheduler(p);
  3350. if (retval)
  3351. return retval;
  3352. }
  3353. /*
  3354. * make sure no PI-waiters arrive (or leave) while we are
  3355. * changing the priority of the task:
  3356. *
  3357. * To be able to change p->policy safely, the appropriate
  3358. * runqueue lock must be held.
  3359. */
  3360. rq = task_rq_lock(p, &flags);
  3361. /*
  3362. * Changing the policy of the stop threads its a very bad idea
  3363. */
  3364. if (p == rq->stop) {
  3365. task_rq_unlock(rq, p, &flags);
  3366. return -EINVAL;
  3367. }
  3368. /*
  3369. * If not changing anything there's no need to proceed further:
  3370. */
  3371. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3372. param->sched_priority == p->rt_priority))) {
  3373. task_rq_unlock(rq, p, &flags);
  3374. return 0;
  3375. }
  3376. #ifdef CONFIG_RT_GROUP_SCHED
  3377. if (user) {
  3378. /*
  3379. * Do not allow realtime tasks into groups that have no runtime
  3380. * assigned.
  3381. */
  3382. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3383. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3384. !task_group_is_autogroup(task_group(p))) {
  3385. task_rq_unlock(rq, p, &flags);
  3386. return -EPERM;
  3387. }
  3388. }
  3389. #endif
  3390. /* recheck policy now with rq lock held */
  3391. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3392. policy = oldpolicy = -1;
  3393. task_rq_unlock(rq, p, &flags);
  3394. goto recheck;
  3395. }
  3396. on_rq = p->on_rq;
  3397. running = task_current(rq, p);
  3398. if (on_rq)
  3399. dequeue_task(rq, p, 0);
  3400. if (running)
  3401. p->sched_class->put_prev_task(rq, p);
  3402. p->sched_reset_on_fork = reset_on_fork;
  3403. oldprio = p->prio;
  3404. prev_class = p->sched_class;
  3405. __setscheduler(rq, p, policy, param->sched_priority);
  3406. if (running)
  3407. p->sched_class->set_curr_task(rq);
  3408. if (on_rq)
  3409. enqueue_task(rq, p, 0);
  3410. check_class_changed(rq, p, prev_class, oldprio);
  3411. task_rq_unlock(rq, p, &flags);
  3412. rt_mutex_adjust_pi(p);
  3413. return 0;
  3414. }
  3415. /**
  3416. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3417. * @p: the task in question.
  3418. * @policy: new policy.
  3419. * @param: structure containing the new RT priority.
  3420. *
  3421. * NOTE that the task may be already dead.
  3422. */
  3423. int sched_setscheduler(struct task_struct *p, int policy,
  3424. const struct sched_param *param)
  3425. {
  3426. return __sched_setscheduler(p, policy, param, true);
  3427. }
  3428. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3429. /**
  3430. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3431. * @p: the task in question.
  3432. * @policy: new policy.
  3433. * @param: structure containing the new RT priority.
  3434. *
  3435. * Just like sched_setscheduler, only don't bother checking if the
  3436. * current context has permission. For example, this is needed in
  3437. * stop_machine(): we create temporary high priority worker threads,
  3438. * but our caller might not have that capability.
  3439. */
  3440. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3441. const struct sched_param *param)
  3442. {
  3443. return __sched_setscheduler(p, policy, param, false);
  3444. }
  3445. static int
  3446. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3447. {
  3448. struct sched_param lparam;
  3449. struct task_struct *p;
  3450. int retval;
  3451. if (!param || pid < 0)
  3452. return -EINVAL;
  3453. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3454. return -EFAULT;
  3455. rcu_read_lock();
  3456. retval = -ESRCH;
  3457. p = find_process_by_pid(pid);
  3458. if (p != NULL)
  3459. retval = sched_setscheduler(p, policy, &lparam);
  3460. rcu_read_unlock();
  3461. return retval;
  3462. }
  3463. /**
  3464. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3465. * @pid: the pid in question.
  3466. * @policy: new policy.
  3467. * @param: structure containing the new RT priority.
  3468. */
  3469. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3470. struct sched_param __user *, param)
  3471. {
  3472. /* negative values for policy are not valid */
  3473. if (policy < 0)
  3474. return -EINVAL;
  3475. return do_sched_setscheduler(pid, policy, param);
  3476. }
  3477. /**
  3478. * sys_sched_setparam - set/change the RT priority of a thread
  3479. * @pid: the pid in question.
  3480. * @param: structure containing the new RT priority.
  3481. */
  3482. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3483. {
  3484. return do_sched_setscheduler(pid, -1, param);
  3485. }
  3486. /**
  3487. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3488. * @pid: the pid in question.
  3489. */
  3490. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3491. {
  3492. struct task_struct *p;
  3493. int retval;
  3494. if (pid < 0)
  3495. return -EINVAL;
  3496. retval = -ESRCH;
  3497. rcu_read_lock();
  3498. p = find_process_by_pid(pid);
  3499. if (p) {
  3500. retval = security_task_getscheduler(p);
  3501. if (!retval)
  3502. retval = p->policy
  3503. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3504. }
  3505. rcu_read_unlock();
  3506. return retval;
  3507. }
  3508. /**
  3509. * sys_sched_getparam - get the RT priority of a thread
  3510. * @pid: the pid in question.
  3511. * @param: structure containing the RT priority.
  3512. */
  3513. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3514. {
  3515. struct sched_param lp;
  3516. struct task_struct *p;
  3517. int retval;
  3518. if (!param || pid < 0)
  3519. return -EINVAL;
  3520. rcu_read_lock();
  3521. p = find_process_by_pid(pid);
  3522. retval = -ESRCH;
  3523. if (!p)
  3524. goto out_unlock;
  3525. retval = security_task_getscheduler(p);
  3526. if (retval)
  3527. goto out_unlock;
  3528. lp.sched_priority = p->rt_priority;
  3529. rcu_read_unlock();
  3530. /*
  3531. * This one might sleep, we cannot do it with a spinlock held ...
  3532. */
  3533. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3534. return retval;
  3535. out_unlock:
  3536. rcu_read_unlock();
  3537. return retval;
  3538. }
  3539. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3540. {
  3541. cpumask_var_t cpus_allowed, new_mask;
  3542. struct task_struct *p;
  3543. int retval;
  3544. get_online_cpus();
  3545. rcu_read_lock();
  3546. p = find_process_by_pid(pid);
  3547. if (!p) {
  3548. rcu_read_unlock();
  3549. put_online_cpus();
  3550. return -ESRCH;
  3551. }
  3552. /* Prevent p going away */
  3553. get_task_struct(p);
  3554. rcu_read_unlock();
  3555. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3556. retval = -ENOMEM;
  3557. goto out_put_task;
  3558. }
  3559. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3560. retval = -ENOMEM;
  3561. goto out_free_cpus_allowed;
  3562. }
  3563. retval = -EPERM;
  3564. if (!check_same_owner(p)) {
  3565. rcu_read_lock();
  3566. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3567. rcu_read_unlock();
  3568. goto out_unlock;
  3569. }
  3570. rcu_read_unlock();
  3571. }
  3572. retval = security_task_setscheduler(p);
  3573. if (retval)
  3574. goto out_unlock;
  3575. cpuset_cpus_allowed(p, cpus_allowed);
  3576. cpumask_and(new_mask, in_mask, cpus_allowed);
  3577. again:
  3578. retval = set_cpus_allowed_ptr(p, new_mask);
  3579. if (!retval) {
  3580. cpuset_cpus_allowed(p, cpus_allowed);
  3581. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3582. /*
  3583. * We must have raced with a concurrent cpuset
  3584. * update. Just reset the cpus_allowed to the
  3585. * cpuset's cpus_allowed
  3586. */
  3587. cpumask_copy(new_mask, cpus_allowed);
  3588. goto again;
  3589. }
  3590. }
  3591. out_unlock:
  3592. free_cpumask_var(new_mask);
  3593. out_free_cpus_allowed:
  3594. free_cpumask_var(cpus_allowed);
  3595. out_put_task:
  3596. put_task_struct(p);
  3597. put_online_cpus();
  3598. return retval;
  3599. }
  3600. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3601. struct cpumask *new_mask)
  3602. {
  3603. if (len < cpumask_size())
  3604. cpumask_clear(new_mask);
  3605. else if (len > cpumask_size())
  3606. len = cpumask_size();
  3607. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3608. }
  3609. /**
  3610. * sys_sched_setaffinity - set the cpu affinity of a process
  3611. * @pid: pid of the process
  3612. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3613. * @user_mask_ptr: user-space pointer to the new cpu mask
  3614. */
  3615. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3616. unsigned long __user *, user_mask_ptr)
  3617. {
  3618. cpumask_var_t new_mask;
  3619. int retval;
  3620. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3621. return -ENOMEM;
  3622. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3623. if (retval == 0)
  3624. retval = sched_setaffinity(pid, new_mask);
  3625. free_cpumask_var(new_mask);
  3626. return retval;
  3627. }
  3628. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3629. {
  3630. struct task_struct *p;
  3631. unsigned long flags;
  3632. int retval;
  3633. get_online_cpus();
  3634. rcu_read_lock();
  3635. retval = -ESRCH;
  3636. p = find_process_by_pid(pid);
  3637. if (!p)
  3638. goto out_unlock;
  3639. retval = security_task_getscheduler(p);
  3640. if (retval)
  3641. goto out_unlock;
  3642. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3643. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3644. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3645. out_unlock:
  3646. rcu_read_unlock();
  3647. put_online_cpus();
  3648. return retval;
  3649. }
  3650. /**
  3651. * sys_sched_getaffinity - get the cpu affinity of a process
  3652. * @pid: pid of the process
  3653. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3654. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3655. */
  3656. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3657. unsigned long __user *, user_mask_ptr)
  3658. {
  3659. int ret;
  3660. cpumask_var_t mask;
  3661. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3662. return -EINVAL;
  3663. if (len & (sizeof(unsigned long)-1))
  3664. return -EINVAL;
  3665. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3666. return -ENOMEM;
  3667. ret = sched_getaffinity(pid, mask);
  3668. if (ret == 0) {
  3669. size_t retlen = min_t(size_t, len, cpumask_size());
  3670. if (copy_to_user(user_mask_ptr, mask, retlen))
  3671. ret = -EFAULT;
  3672. else
  3673. ret = retlen;
  3674. }
  3675. free_cpumask_var(mask);
  3676. return ret;
  3677. }
  3678. /**
  3679. * sys_sched_yield - yield the current processor to other threads.
  3680. *
  3681. * This function yields the current CPU to other tasks. If there are no
  3682. * other threads running on this CPU then this function will return.
  3683. */
  3684. SYSCALL_DEFINE0(sched_yield)
  3685. {
  3686. struct rq *rq = this_rq_lock();
  3687. schedstat_inc(rq, yld_count);
  3688. current->sched_class->yield_task(rq);
  3689. /*
  3690. * Since we are going to call schedule() anyway, there's
  3691. * no need to preempt or enable interrupts:
  3692. */
  3693. __release(rq->lock);
  3694. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3695. do_raw_spin_unlock(&rq->lock);
  3696. sched_preempt_enable_no_resched();
  3697. schedule();
  3698. return 0;
  3699. }
  3700. static inline int should_resched(void)
  3701. {
  3702. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3703. }
  3704. static void __cond_resched(void)
  3705. {
  3706. add_preempt_count(PREEMPT_ACTIVE);
  3707. __schedule();
  3708. sub_preempt_count(PREEMPT_ACTIVE);
  3709. }
  3710. int __sched _cond_resched(void)
  3711. {
  3712. if (should_resched()) {
  3713. __cond_resched();
  3714. return 1;
  3715. }
  3716. return 0;
  3717. }
  3718. EXPORT_SYMBOL(_cond_resched);
  3719. /*
  3720. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3721. * call schedule, and on return reacquire the lock.
  3722. *
  3723. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3724. * operations here to prevent schedule() from being called twice (once via
  3725. * spin_unlock(), once by hand).
  3726. */
  3727. int __cond_resched_lock(spinlock_t *lock)
  3728. {
  3729. int resched = should_resched();
  3730. int ret = 0;
  3731. lockdep_assert_held(lock);
  3732. if (spin_needbreak(lock) || resched) {
  3733. spin_unlock(lock);
  3734. if (resched)
  3735. __cond_resched();
  3736. else
  3737. cpu_relax();
  3738. ret = 1;
  3739. spin_lock(lock);
  3740. }
  3741. return ret;
  3742. }
  3743. EXPORT_SYMBOL(__cond_resched_lock);
  3744. int __sched __cond_resched_softirq(void)
  3745. {
  3746. BUG_ON(!in_softirq());
  3747. if (should_resched()) {
  3748. local_bh_enable();
  3749. __cond_resched();
  3750. local_bh_disable();
  3751. return 1;
  3752. }
  3753. return 0;
  3754. }
  3755. EXPORT_SYMBOL(__cond_resched_softirq);
  3756. /**
  3757. * yield - yield the current processor to other threads.
  3758. *
  3759. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3760. *
  3761. * The scheduler is at all times free to pick the calling task as the most
  3762. * eligible task to run, if removing the yield() call from your code breaks
  3763. * it, its already broken.
  3764. *
  3765. * Typical broken usage is:
  3766. *
  3767. * while (!event)
  3768. * yield();
  3769. *
  3770. * where one assumes that yield() will let 'the other' process run that will
  3771. * make event true. If the current task is a SCHED_FIFO task that will never
  3772. * happen. Never use yield() as a progress guarantee!!
  3773. *
  3774. * If you want to use yield() to wait for something, use wait_event().
  3775. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3776. * If you still want to use yield(), do not!
  3777. */
  3778. void __sched yield(void)
  3779. {
  3780. set_current_state(TASK_RUNNING);
  3781. sys_sched_yield();
  3782. }
  3783. EXPORT_SYMBOL(yield);
  3784. /**
  3785. * yield_to - yield the current processor to another thread in
  3786. * your thread group, or accelerate that thread toward the
  3787. * processor it's on.
  3788. * @p: target task
  3789. * @preempt: whether task preemption is allowed or not
  3790. *
  3791. * It's the caller's job to ensure that the target task struct
  3792. * can't go away on us before we can do any checks.
  3793. *
  3794. * Returns:
  3795. * true (>0) if we indeed boosted the target task.
  3796. * false (0) if we failed to boost the target.
  3797. * -ESRCH if there's no task to yield to.
  3798. */
  3799. bool __sched yield_to(struct task_struct *p, bool preempt)
  3800. {
  3801. struct task_struct *curr = current;
  3802. struct rq *rq, *p_rq;
  3803. unsigned long flags;
  3804. int yielded = 0;
  3805. local_irq_save(flags);
  3806. rq = this_rq();
  3807. again:
  3808. p_rq = task_rq(p);
  3809. /*
  3810. * If we're the only runnable task on the rq and target rq also
  3811. * has only one task, there's absolutely no point in yielding.
  3812. */
  3813. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3814. yielded = -ESRCH;
  3815. goto out_irq;
  3816. }
  3817. double_rq_lock(rq, p_rq);
  3818. while (task_rq(p) != p_rq) {
  3819. double_rq_unlock(rq, p_rq);
  3820. goto again;
  3821. }
  3822. if (!curr->sched_class->yield_to_task)
  3823. goto out_unlock;
  3824. if (curr->sched_class != p->sched_class)
  3825. goto out_unlock;
  3826. if (task_running(p_rq, p) || p->state)
  3827. goto out_unlock;
  3828. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3829. if (yielded) {
  3830. schedstat_inc(rq, yld_count);
  3831. /*
  3832. * Make p's CPU reschedule; pick_next_entity takes care of
  3833. * fairness.
  3834. */
  3835. if (preempt && rq != p_rq)
  3836. resched_task(p_rq->curr);
  3837. }
  3838. out_unlock:
  3839. double_rq_unlock(rq, p_rq);
  3840. out_irq:
  3841. local_irq_restore(flags);
  3842. if (yielded > 0)
  3843. schedule();
  3844. return yielded;
  3845. }
  3846. EXPORT_SYMBOL_GPL(yield_to);
  3847. /*
  3848. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3849. * that process accounting knows that this is a task in IO wait state.
  3850. */
  3851. void __sched io_schedule(void)
  3852. {
  3853. struct rq *rq = raw_rq();
  3854. delayacct_blkio_start();
  3855. atomic_inc(&rq->nr_iowait);
  3856. blk_flush_plug(current);
  3857. current->in_iowait = 1;
  3858. schedule();
  3859. current->in_iowait = 0;
  3860. atomic_dec(&rq->nr_iowait);
  3861. delayacct_blkio_end();
  3862. }
  3863. EXPORT_SYMBOL(io_schedule);
  3864. long __sched io_schedule_timeout(long timeout)
  3865. {
  3866. struct rq *rq = raw_rq();
  3867. long ret;
  3868. delayacct_blkio_start();
  3869. atomic_inc(&rq->nr_iowait);
  3870. blk_flush_plug(current);
  3871. current->in_iowait = 1;
  3872. ret = schedule_timeout(timeout);
  3873. current->in_iowait = 0;
  3874. atomic_dec(&rq->nr_iowait);
  3875. delayacct_blkio_end();
  3876. return ret;
  3877. }
  3878. /**
  3879. * sys_sched_get_priority_max - return maximum RT priority.
  3880. * @policy: scheduling class.
  3881. *
  3882. * this syscall returns the maximum rt_priority that can be used
  3883. * by a given scheduling class.
  3884. */
  3885. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3886. {
  3887. int ret = -EINVAL;
  3888. switch (policy) {
  3889. case SCHED_FIFO:
  3890. case SCHED_RR:
  3891. ret = MAX_USER_RT_PRIO-1;
  3892. break;
  3893. case SCHED_NORMAL:
  3894. case SCHED_BATCH:
  3895. case SCHED_IDLE:
  3896. ret = 0;
  3897. break;
  3898. }
  3899. return ret;
  3900. }
  3901. /**
  3902. * sys_sched_get_priority_min - return minimum RT priority.
  3903. * @policy: scheduling class.
  3904. *
  3905. * this syscall returns the minimum rt_priority that can be used
  3906. * by a given scheduling class.
  3907. */
  3908. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3909. {
  3910. int ret = -EINVAL;
  3911. switch (policy) {
  3912. case SCHED_FIFO:
  3913. case SCHED_RR:
  3914. ret = 1;
  3915. break;
  3916. case SCHED_NORMAL:
  3917. case SCHED_BATCH:
  3918. case SCHED_IDLE:
  3919. ret = 0;
  3920. }
  3921. return ret;
  3922. }
  3923. /**
  3924. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3925. * @pid: pid of the process.
  3926. * @interval: userspace pointer to the timeslice value.
  3927. *
  3928. * this syscall writes the default timeslice value of a given process
  3929. * into the user-space timespec buffer. A value of '0' means infinity.
  3930. */
  3931. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3932. struct timespec __user *, interval)
  3933. {
  3934. struct task_struct *p;
  3935. unsigned int time_slice;
  3936. unsigned long flags;
  3937. struct rq *rq;
  3938. int retval;
  3939. struct timespec t;
  3940. if (pid < 0)
  3941. return -EINVAL;
  3942. retval = -ESRCH;
  3943. rcu_read_lock();
  3944. p = find_process_by_pid(pid);
  3945. if (!p)
  3946. goto out_unlock;
  3947. retval = security_task_getscheduler(p);
  3948. if (retval)
  3949. goto out_unlock;
  3950. rq = task_rq_lock(p, &flags);
  3951. time_slice = p->sched_class->get_rr_interval(rq, p);
  3952. task_rq_unlock(rq, p, &flags);
  3953. rcu_read_unlock();
  3954. jiffies_to_timespec(time_slice, &t);
  3955. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3956. return retval;
  3957. out_unlock:
  3958. rcu_read_unlock();
  3959. return retval;
  3960. }
  3961. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3962. void sched_show_task(struct task_struct *p)
  3963. {
  3964. unsigned long free = 0;
  3965. int ppid;
  3966. unsigned state;
  3967. state = p->state ? __ffs(p->state) + 1 : 0;
  3968. printk(KERN_INFO "%-15.15s %c", p->comm,
  3969. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3970. #if BITS_PER_LONG == 32
  3971. if (state == TASK_RUNNING)
  3972. printk(KERN_CONT " running ");
  3973. else
  3974. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3975. #else
  3976. if (state == TASK_RUNNING)
  3977. printk(KERN_CONT " running task ");
  3978. else
  3979. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3980. #endif
  3981. #ifdef CONFIG_DEBUG_STACK_USAGE
  3982. free = stack_not_used(p);
  3983. #endif
  3984. rcu_read_lock();
  3985. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3986. rcu_read_unlock();
  3987. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3988. task_pid_nr(p), ppid,
  3989. (unsigned long)task_thread_info(p)->flags);
  3990. show_stack(p, NULL);
  3991. }
  3992. void show_state_filter(unsigned long state_filter)
  3993. {
  3994. struct task_struct *g, *p;
  3995. #if BITS_PER_LONG == 32
  3996. printk(KERN_INFO
  3997. " task PC stack pid father\n");
  3998. #else
  3999. printk(KERN_INFO
  4000. " task PC stack pid father\n");
  4001. #endif
  4002. rcu_read_lock();
  4003. do_each_thread(g, p) {
  4004. /*
  4005. * reset the NMI-timeout, listing all files on a slow
  4006. * console might take a lot of time:
  4007. */
  4008. touch_nmi_watchdog();
  4009. if (!state_filter || (p->state & state_filter))
  4010. sched_show_task(p);
  4011. } while_each_thread(g, p);
  4012. touch_all_softlockup_watchdogs();
  4013. #ifdef CONFIG_SCHED_DEBUG
  4014. sysrq_sched_debug_show();
  4015. #endif
  4016. rcu_read_unlock();
  4017. /*
  4018. * Only show locks if all tasks are dumped:
  4019. */
  4020. if (!state_filter)
  4021. debug_show_all_locks();
  4022. }
  4023. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4024. {
  4025. idle->sched_class = &idle_sched_class;
  4026. }
  4027. /**
  4028. * init_idle - set up an idle thread for a given CPU
  4029. * @idle: task in question
  4030. * @cpu: cpu the idle task belongs to
  4031. *
  4032. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4033. * flag, to make booting more robust.
  4034. */
  4035. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4036. {
  4037. struct rq *rq = cpu_rq(cpu);
  4038. unsigned long flags;
  4039. raw_spin_lock_irqsave(&rq->lock, flags);
  4040. __sched_fork(idle);
  4041. idle->state = TASK_RUNNING;
  4042. idle->se.exec_start = sched_clock();
  4043. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4044. /*
  4045. * We're having a chicken and egg problem, even though we are
  4046. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4047. * lockdep check in task_group() will fail.
  4048. *
  4049. * Similar case to sched_fork(). / Alternatively we could
  4050. * use task_rq_lock() here and obtain the other rq->lock.
  4051. *
  4052. * Silence PROVE_RCU
  4053. */
  4054. rcu_read_lock();
  4055. __set_task_cpu(idle, cpu);
  4056. rcu_read_unlock();
  4057. rq->curr = rq->idle = idle;
  4058. #if defined(CONFIG_SMP)
  4059. idle->on_cpu = 1;
  4060. #endif
  4061. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4062. /* Set the preempt count _outside_ the spinlocks! */
  4063. task_thread_info(idle)->preempt_count = 0;
  4064. /*
  4065. * The idle tasks have their own, simple scheduling class:
  4066. */
  4067. idle->sched_class = &idle_sched_class;
  4068. ftrace_graph_init_idle_task(idle, cpu);
  4069. vtime_init_idle(idle);
  4070. #if defined(CONFIG_SMP)
  4071. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4072. #endif
  4073. }
  4074. #ifdef CONFIG_SMP
  4075. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4076. {
  4077. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4078. p->sched_class->set_cpus_allowed(p, new_mask);
  4079. cpumask_copy(&p->cpus_allowed, new_mask);
  4080. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4081. }
  4082. /*
  4083. * This is how migration works:
  4084. *
  4085. * 1) we invoke migration_cpu_stop() on the target CPU using
  4086. * stop_one_cpu().
  4087. * 2) stopper starts to run (implicitly forcing the migrated thread
  4088. * off the CPU)
  4089. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4090. * 4) if it's in the wrong runqueue then the migration thread removes
  4091. * it and puts it into the right queue.
  4092. * 5) stopper completes and stop_one_cpu() returns and the migration
  4093. * is done.
  4094. */
  4095. /*
  4096. * Change a given task's CPU affinity. Migrate the thread to a
  4097. * proper CPU and schedule it away if the CPU it's executing on
  4098. * is removed from the allowed bitmask.
  4099. *
  4100. * NOTE: the caller must have a valid reference to the task, the
  4101. * task must not exit() & deallocate itself prematurely. The
  4102. * call is not atomic; no spinlocks may be held.
  4103. */
  4104. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4105. {
  4106. unsigned long flags;
  4107. struct rq *rq;
  4108. unsigned int dest_cpu;
  4109. int ret = 0;
  4110. rq = task_rq_lock(p, &flags);
  4111. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4112. goto out;
  4113. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4114. ret = -EINVAL;
  4115. goto out;
  4116. }
  4117. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4118. ret = -EINVAL;
  4119. goto out;
  4120. }
  4121. do_set_cpus_allowed(p, new_mask);
  4122. /* Can the task run on the task's current CPU? If so, we're done */
  4123. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4124. goto out;
  4125. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4126. if (p->on_rq) {
  4127. struct migration_arg arg = { p, dest_cpu };
  4128. /* Need help from migration thread: drop lock and wait. */
  4129. task_rq_unlock(rq, p, &flags);
  4130. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4131. tlb_migrate_finish(p->mm);
  4132. return 0;
  4133. }
  4134. out:
  4135. task_rq_unlock(rq, p, &flags);
  4136. return ret;
  4137. }
  4138. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4139. /*
  4140. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4141. * this because either it can't run here any more (set_cpus_allowed()
  4142. * away from this CPU, or CPU going down), or because we're
  4143. * attempting to rebalance this task on exec (sched_exec).
  4144. *
  4145. * So we race with normal scheduler movements, but that's OK, as long
  4146. * as the task is no longer on this CPU.
  4147. *
  4148. * Returns non-zero if task was successfully migrated.
  4149. */
  4150. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4151. {
  4152. struct rq *rq_dest, *rq_src;
  4153. int ret = 0;
  4154. if (unlikely(!cpu_active(dest_cpu)))
  4155. return ret;
  4156. rq_src = cpu_rq(src_cpu);
  4157. rq_dest = cpu_rq(dest_cpu);
  4158. raw_spin_lock(&p->pi_lock);
  4159. double_rq_lock(rq_src, rq_dest);
  4160. /* Already moved. */
  4161. if (task_cpu(p) != src_cpu)
  4162. goto done;
  4163. /* Affinity changed (again). */
  4164. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4165. goto fail;
  4166. /*
  4167. * If we're not on a rq, the next wake-up will ensure we're
  4168. * placed properly.
  4169. */
  4170. if (p->on_rq) {
  4171. dequeue_task(rq_src, p, 0);
  4172. set_task_cpu(p, dest_cpu);
  4173. enqueue_task(rq_dest, p, 0);
  4174. check_preempt_curr(rq_dest, p, 0);
  4175. }
  4176. done:
  4177. ret = 1;
  4178. fail:
  4179. double_rq_unlock(rq_src, rq_dest);
  4180. raw_spin_unlock(&p->pi_lock);
  4181. return ret;
  4182. }
  4183. /*
  4184. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4185. * and performs thread migration by bumping thread off CPU then
  4186. * 'pushing' onto another runqueue.
  4187. */
  4188. static int migration_cpu_stop(void *data)
  4189. {
  4190. struct migration_arg *arg = data;
  4191. /*
  4192. * The original target cpu might have gone down and we might
  4193. * be on another cpu but it doesn't matter.
  4194. */
  4195. local_irq_disable();
  4196. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4197. local_irq_enable();
  4198. return 0;
  4199. }
  4200. #ifdef CONFIG_HOTPLUG_CPU
  4201. /*
  4202. * Ensures that the idle task is using init_mm right before its cpu goes
  4203. * offline.
  4204. */
  4205. void idle_task_exit(void)
  4206. {
  4207. struct mm_struct *mm = current->active_mm;
  4208. BUG_ON(cpu_online(smp_processor_id()));
  4209. if (mm != &init_mm)
  4210. switch_mm(mm, &init_mm, current);
  4211. mmdrop(mm);
  4212. }
  4213. /*
  4214. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4215. * we might have. Assumes we're called after migrate_tasks() so that the
  4216. * nr_active count is stable.
  4217. *
  4218. * Also see the comment "Global load-average calculations".
  4219. */
  4220. static void calc_load_migrate(struct rq *rq)
  4221. {
  4222. long delta = calc_load_fold_active(rq);
  4223. if (delta)
  4224. atomic_long_add(delta, &calc_load_tasks);
  4225. }
  4226. /*
  4227. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4228. * try_to_wake_up()->select_task_rq().
  4229. *
  4230. * Called with rq->lock held even though we'er in stop_machine() and
  4231. * there's no concurrency possible, we hold the required locks anyway
  4232. * because of lock validation efforts.
  4233. */
  4234. static void migrate_tasks(unsigned int dead_cpu)
  4235. {
  4236. struct rq *rq = cpu_rq(dead_cpu);
  4237. struct task_struct *next, *stop = rq->stop;
  4238. int dest_cpu;
  4239. /*
  4240. * Fudge the rq selection such that the below task selection loop
  4241. * doesn't get stuck on the currently eligible stop task.
  4242. *
  4243. * We're currently inside stop_machine() and the rq is either stuck
  4244. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4245. * either way we should never end up calling schedule() until we're
  4246. * done here.
  4247. */
  4248. rq->stop = NULL;
  4249. for ( ; ; ) {
  4250. /*
  4251. * There's this thread running, bail when that's the only
  4252. * remaining thread.
  4253. */
  4254. if (rq->nr_running == 1)
  4255. break;
  4256. next = pick_next_task(rq);
  4257. BUG_ON(!next);
  4258. next->sched_class->put_prev_task(rq, next);
  4259. /* Find suitable destination for @next, with force if needed. */
  4260. dest_cpu = select_fallback_rq(dead_cpu, next);
  4261. raw_spin_unlock(&rq->lock);
  4262. __migrate_task(next, dead_cpu, dest_cpu);
  4263. raw_spin_lock(&rq->lock);
  4264. }
  4265. rq->stop = stop;
  4266. }
  4267. #endif /* CONFIG_HOTPLUG_CPU */
  4268. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4269. static struct ctl_table sd_ctl_dir[] = {
  4270. {
  4271. .procname = "sched_domain",
  4272. .mode = 0555,
  4273. },
  4274. {}
  4275. };
  4276. static struct ctl_table sd_ctl_root[] = {
  4277. {
  4278. .procname = "kernel",
  4279. .mode = 0555,
  4280. .child = sd_ctl_dir,
  4281. },
  4282. {}
  4283. };
  4284. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4285. {
  4286. struct ctl_table *entry =
  4287. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4288. return entry;
  4289. }
  4290. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4291. {
  4292. struct ctl_table *entry;
  4293. /*
  4294. * In the intermediate directories, both the child directory and
  4295. * procname are dynamically allocated and could fail but the mode
  4296. * will always be set. In the lowest directory the names are
  4297. * static strings and all have proc handlers.
  4298. */
  4299. for (entry = *tablep; entry->mode; entry++) {
  4300. if (entry->child)
  4301. sd_free_ctl_entry(&entry->child);
  4302. if (entry->proc_handler == NULL)
  4303. kfree(entry->procname);
  4304. }
  4305. kfree(*tablep);
  4306. *tablep = NULL;
  4307. }
  4308. static int min_load_idx = 0;
  4309. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4310. static void
  4311. set_table_entry(struct ctl_table *entry,
  4312. const char *procname, void *data, int maxlen,
  4313. umode_t mode, proc_handler *proc_handler,
  4314. bool load_idx)
  4315. {
  4316. entry->procname = procname;
  4317. entry->data = data;
  4318. entry->maxlen = maxlen;
  4319. entry->mode = mode;
  4320. entry->proc_handler = proc_handler;
  4321. if (load_idx) {
  4322. entry->extra1 = &min_load_idx;
  4323. entry->extra2 = &max_load_idx;
  4324. }
  4325. }
  4326. static struct ctl_table *
  4327. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4328. {
  4329. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4330. if (table == NULL)
  4331. return NULL;
  4332. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4333. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4334. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4335. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4336. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4337. sizeof(int), 0644, proc_dointvec_minmax, true);
  4338. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4339. sizeof(int), 0644, proc_dointvec_minmax, true);
  4340. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4341. sizeof(int), 0644, proc_dointvec_minmax, true);
  4342. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4343. sizeof(int), 0644, proc_dointvec_minmax, true);
  4344. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4345. sizeof(int), 0644, proc_dointvec_minmax, true);
  4346. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4347. sizeof(int), 0644, proc_dointvec_minmax, false);
  4348. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4349. sizeof(int), 0644, proc_dointvec_minmax, false);
  4350. set_table_entry(&table[9], "cache_nice_tries",
  4351. &sd->cache_nice_tries,
  4352. sizeof(int), 0644, proc_dointvec_minmax, false);
  4353. set_table_entry(&table[10], "flags", &sd->flags,
  4354. sizeof(int), 0644, proc_dointvec_minmax, false);
  4355. set_table_entry(&table[11], "name", sd->name,
  4356. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4357. /* &table[12] is terminator */
  4358. return table;
  4359. }
  4360. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4361. {
  4362. struct ctl_table *entry, *table;
  4363. struct sched_domain *sd;
  4364. int domain_num = 0, i;
  4365. char buf[32];
  4366. for_each_domain(cpu, sd)
  4367. domain_num++;
  4368. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4369. if (table == NULL)
  4370. return NULL;
  4371. i = 0;
  4372. for_each_domain(cpu, sd) {
  4373. snprintf(buf, 32, "domain%d", i);
  4374. entry->procname = kstrdup(buf, GFP_KERNEL);
  4375. entry->mode = 0555;
  4376. entry->child = sd_alloc_ctl_domain_table(sd);
  4377. entry++;
  4378. i++;
  4379. }
  4380. return table;
  4381. }
  4382. static struct ctl_table_header *sd_sysctl_header;
  4383. static void register_sched_domain_sysctl(void)
  4384. {
  4385. int i, cpu_num = num_possible_cpus();
  4386. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4387. char buf[32];
  4388. WARN_ON(sd_ctl_dir[0].child);
  4389. sd_ctl_dir[0].child = entry;
  4390. if (entry == NULL)
  4391. return;
  4392. for_each_possible_cpu(i) {
  4393. snprintf(buf, 32, "cpu%d", i);
  4394. entry->procname = kstrdup(buf, GFP_KERNEL);
  4395. entry->mode = 0555;
  4396. entry->child = sd_alloc_ctl_cpu_table(i);
  4397. entry++;
  4398. }
  4399. WARN_ON(sd_sysctl_header);
  4400. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4401. }
  4402. /* may be called multiple times per register */
  4403. static void unregister_sched_domain_sysctl(void)
  4404. {
  4405. if (sd_sysctl_header)
  4406. unregister_sysctl_table(sd_sysctl_header);
  4407. sd_sysctl_header = NULL;
  4408. if (sd_ctl_dir[0].child)
  4409. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4410. }
  4411. #else
  4412. static void register_sched_domain_sysctl(void)
  4413. {
  4414. }
  4415. static void unregister_sched_domain_sysctl(void)
  4416. {
  4417. }
  4418. #endif
  4419. static void set_rq_online(struct rq *rq)
  4420. {
  4421. if (!rq->online) {
  4422. const struct sched_class *class;
  4423. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4424. rq->online = 1;
  4425. for_each_class(class) {
  4426. if (class->rq_online)
  4427. class->rq_online(rq);
  4428. }
  4429. }
  4430. }
  4431. static void set_rq_offline(struct rq *rq)
  4432. {
  4433. if (rq->online) {
  4434. const struct sched_class *class;
  4435. for_each_class(class) {
  4436. if (class->rq_offline)
  4437. class->rq_offline(rq);
  4438. }
  4439. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4440. rq->online = 0;
  4441. }
  4442. }
  4443. /*
  4444. * migration_call - callback that gets triggered when a CPU is added.
  4445. * Here we can start up the necessary migration thread for the new CPU.
  4446. */
  4447. static int __cpuinit
  4448. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4449. {
  4450. int cpu = (long)hcpu;
  4451. unsigned long flags;
  4452. struct rq *rq = cpu_rq(cpu);
  4453. switch (action & ~CPU_TASKS_FROZEN) {
  4454. case CPU_UP_PREPARE:
  4455. rq->calc_load_update = calc_load_update;
  4456. break;
  4457. case CPU_ONLINE:
  4458. /* Update our root-domain */
  4459. raw_spin_lock_irqsave(&rq->lock, flags);
  4460. if (rq->rd) {
  4461. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4462. set_rq_online(rq);
  4463. }
  4464. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4465. break;
  4466. #ifdef CONFIG_HOTPLUG_CPU
  4467. case CPU_DYING:
  4468. sched_ttwu_pending();
  4469. /* Update our root-domain */
  4470. raw_spin_lock_irqsave(&rq->lock, flags);
  4471. if (rq->rd) {
  4472. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4473. set_rq_offline(rq);
  4474. }
  4475. migrate_tasks(cpu);
  4476. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4477. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4478. break;
  4479. case CPU_DEAD:
  4480. calc_load_migrate(rq);
  4481. break;
  4482. #endif
  4483. }
  4484. update_max_interval();
  4485. return NOTIFY_OK;
  4486. }
  4487. /*
  4488. * Register at high priority so that task migration (migrate_all_tasks)
  4489. * happens before everything else. This has to be lower priority than
  4490. * the notifier in the perf_event subsystem, though.
  4491. */
  4492. static struct notifier_block __cpuinitdata migration_notifier = {
  4493. .notifier_call = migration_call,
  4494. .priority = CPU_PRI_MIGRATION,
  4495. };
  4496. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4497. unsigned long action, void *hcpu)
  4498. {
  4499. switch (action & ~CPU_TASKS_FROZEN) {
  4500. case CPU_STARTING:
  4501. case CPU_DOWN_FAILED:
  4502. set_cpu_active((long)hcpu, true);
  4503. return NOTIFY_OK;
  4504. default:
  4505. return NOTIFY_DONE;
  4506. }
  4507. }
  4508. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4509. unsigned long action, void *hcpu)
  4510. {
  4511. switch (action & ~CPU_TASKS_FROZEN) {
  4512. case CPU_DOWN_PREPARE:
  4513. set_cpu_active((long)hcpu, false);
  4514. return NOTIFY_OK;
  4515. default:
  4516. return NOTIFY_DONE;
  4517. }
  4518. }
  4519. static int __init migration_init(void)
  4520. {
  4521. void *cpu = (void *)(long)smp_processor_id();
  4522. int err;
  4523. /* Initialize migration for the boot CPU */
  4524. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4525. BUG_ON(err == NOTIFY_BAD);
  4526. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4527. register_cpu_notifier(&migration_notifier);
  4528. /* Register cpu active notifiers */
  4529. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4530. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4531. return 0;
  4532. }
  4533. early_initcall(migration_init);
  4534. #endif
  4535. #ifdef CONFIG_SMP
  4536. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4537. #ifdef CONFIG_SCHED_DEBUG
  4538. static __read_mostly int sched_debug_enabled;
  4539. static int __init sched_debug_setup(char *str)
  4540. {
  4541. sched_debug_enabled = 1;
  4542. return 0;
  4543. }
  4544. early_param("sched_debug", sched_debug_setup);
  4545. static inline bool sched_debug(void)
  4546. {
  4547. return sched_debug_enabled;
  4548. }
  4549. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4550. struct cpumask *groupmask)
  4551. {
  4552. struct sched_group *group = sd->groups;
  4553. char str[256];
  4554. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4555. cpumask_clear(groupmask);
  4556. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4557. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4558. printk("does not load-balance\n");
  4559. if (sd->parent)
  4560. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4561. " has parent");
  4562. return -1;
  4563. }
  4564. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4565. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4566. printk(KERN_ERR "ERROR: domain->span does not contain "
  4567. "CPU%d\n", cpu);
  4568. }
  4569. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4570. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4571. " CPU%d\n", cpu);
  4572. }
  4573. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4574. do {
  4575. if (!group) {
  4576. printk("\n");
  4577. printk(KERN_ERR "ERROR: group is NULL\n");
  4578. break;
  4579. }
  4580. /*
  4581. * Even though we initialize ->power to something semi-sane,
  4582. * we leave power_orig unset. This allows us to detect if
  4583. * domain iteration is still funny without causing /0 traps.
  4584. */
  4585. if (!group->sgp->power_orig) {
  4586. printk(KERN_CONT "\n");
  4587. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4588. "set\n");
  4589. break;
  4590. }
  4591. if (!cpumask_weight(sched_group_cpus(group))) {
  4592. printk(KERN_CONT "\n");
  4593. printk(KERN_ERR "ERROR: empty group\n");
  4594. break;
  4595. }
  4596. if (!(sd->flags & SD_OVERLAP) &&
  4597. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4598. printk(KERN_CONT "\n");
  4599. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4600. break;
  4601. }
  4602. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4603. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4604. printk(KERN_CONT " %s", str);
  4605. if (group->sgp->power != SCHED_POWER_SCALE) {
  4606. printk(KERN_CONT " (cpu_power = %d)",
  4607. group->sgp->power);
  4608. }
  4609. group = group->next;
  4610. } while (group != sd->groups);
  4611. printk(KERN_CONT "\n");
  4612. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4613. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4614. if (sd->parent &&
  4615. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4616. printk(KERN_ERR "ERROR: parent span is not a superset "
  4617. "of domain->span\n");
  4618. return 0;
  4619. }
  4620. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4621. {
  4622. int level = 0;
  4623. if (!sched_debug_enabled)
  4624. return;
  4625. if (!sd) {
  4626. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4627. return;
  4628. }
  4629. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4630. for (;;) {
  4631. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4632. break;
  4633. level++;
  4634. sd = sd->parent;
  4635. if (!sd)
  4636. break;
  4637. }
  4638. }
  4639. #else /* !CONFIG_SCHED_DEBUG */
  4640. # define sched_domain_debug(sd, cpu) do { } while (0)
  4641. static inline bool sched_debug(void)
  4642. {
  4643. return false;
  4644. }
  4645. #endif /* CONFIG_SCHED_DEBUG */
  4646. static int sd_degenerate(struct sched_domain *sd)
  4647. {
  4648. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4649. return 1;
  4650. /* Following flags need at least 2 groups */
  4651. if (sd->flags & (SD_LOAD_BALANCE |
  4652. SD_BALANCE_NEWIDLE |
  4653. SD_BALANCE_FORK |
  4654. SD_BALANCE_EXEC |
  4655. SD_SHARE_CPUPOWER |
  4656. SD_SHARE_PKG_RESOURCES)) {
  4657. if (sd->groups != sd->groups->next)
  4658. return 0;
  4659. }
  4660. /* Following flags don't use groups */
  4661. if (sd->flags & (SD_WAKE_AFFINE))
  4662. return 0;
  4663. return 1;
  4664. }
  4665. static int
  4666. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4667. {
  4668. unsigned long cflags = sd->flags, pflags = parent->flags;
  4669. if (sd_degenerate(parent))
  4670. return 1;
  4671. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4672. return 0;
  4673. /* Flags needing groups don't count if only 1 group in parent */
  4674. if (parent->groups == parent->groups->next) {
  4675. pflags &= ~(SD_LOAD_BALANCE |
  4676. SD_BALANCE_NEWIDLE |
  4677. SD_BALANCE_FORK |
  4678. SD_BALANCE_EXEC |
  4679. SD_SHARE_CPUPOWER |
  4680. SD_SHARE_PKG_RESOURCES);
  4681. if (nr_node_ids == 1)
  4682. pflags &= ~SD_SERIALIZE;
  4683. }
  4684. if (~cflags & pflags)
  4685. return 0;
  4686. return 1;
  4687. }
  4688. static void free_rootdomain(struct rcu_head *rcu)
  4689. {
  4690. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4691. cpupri_cleanup(&rd->cpupri);
  4692. free_cpumask_var(rd->rto_mask);
  4693. free_cpumask_var(rd->online);
  4694. free_cpumask_var(rd->span);
  4695. kfree(rd);
  4696. }
  4697. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4698. {
  4699. struct root_domain *old_rd = NULL;
  4700. unsigned long flags;
  4701. raw_spin_lock_irqsave(&rq->lock, flags);
  4702. if (rq->rd) {
  4703. old_rd = rq->rd;
  4704. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4705. set_rq_offline(rq);
  4706. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4707. /*
  4708. * If we dont want to free the old_rt yet then
  4709. * set old_rd to NULL to skip the freeing later
  4710. * in this function:
  4711. */
  4712. if (!atomic_dec_and_test(&old_rd->refcount))
  4713. old_rd = NULL;
  4714. }
  4715. atomic_inc(&rd->refcount);
  4716. rq->rd = rd;
  4717. cpumask_set_cpu(rq->cpu, rd->span);
  4718. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4719. set_rq_online(rq);
  4720. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4721. if (old_rd)
  4722. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4723. }
  4724. static int init_rootdomain(struct root_domain *rd)
  4725. {
  4726. memset(rd, 0, sizeof(*rd));
  4727. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4728. goto out;
  4729. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4730. goto free_span;
  4731. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4732. goto free_online;
  4733. if (cpupri_init(&rd->cpupri) != 0)
  4734. goto free_rto_mask;
  4735. return 0;
  4736. free_rto_mask:
  4737. free_cpumask_var(rd->rto_mask);
  4738. free_online:
  4739. free_cpumask_var(rd->online);
  4740. free_span:
  4741. free_cpumask_var(rd->span);
  4742. out:
  4743. return -ENOMEM;
  4744. }
  4745. /*
  4746. * By default the system creates a single root-domain with all cpus as
  4747. * members (mimicking the global state we have today).
  4748. */
  4749. struct root_domain def_root_domain;
  4750. static void init_defrootdomain(void)
  4751. {
  4752. init_rootdomain(&def_root_domain);
  4753. atomic_set(&def_root_domain.refcount, 1);
  4754. }
  4755. static struct root_domain *alloc_rootdomain(void)
  4756. {
  4757. struct root_domain *rd;
  4758. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4759. if (!rd)
  4760. return NULL;
  4761. if (init_rootdomain(rd) != 0) {
  4762. kfree(rd);
  4763. return NULL;
  4764. }
  4765. return rd;
  4766. }
  4767. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4768. {
  4769. struct sched_group *tmp, *first;
  4770. if (!sg)
  4771. return;
  4772. first = sg;
  4773. do {
  4774. tmp = sg->next;
  4775. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4776. kfree(sg->sgp);
  4777. kfree(sg);
  4778. sg = tmp;
  4779. } while (sg != first);
  4780. }
  4781. static void free_sched_domain(struct rcu_head *rcu)
  4782. {
  4783. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4784. /*
  4785. * If its an overlapping domain it has private groups, iterate and
  4786. * nuke them all.
  4787. */
  4788. if (sd->flags & SD_OVERLAP) {
  4789. free_sched_groups(sd->groups, 1);
  4790. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4791. kfree(sd->groups->sgp);
  4792. kfree(sd->groups);
  4793. }
  4794. kfree(sd);
  4795. }
  4796. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4797. {
  4798. call_rcu(&sd->rcu, free_sched_domain);
  4799. }
  4800. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4801. {
  4802. for (; sd; sd = sd->parent)
  4803. destroy_sched_domain(sd, cpu);
  4804. }
  4805. /*
  4806. * Keep a special pointer to the highest sched_domain that has
  4807. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4808. * allows us to avoid some pointer chasing select_idle_sibling().
  4809. *
  4810. * Also keep a unique ID per domain (we use the first cpu number in
  4811. * the cpumask of the domain), this allows us to quickly tell if
  4812. * two cpus are in the same cache domain, see cpus_share_cache().
  4813. */
  4814. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4815. DEFINE_PER_CPU(int, sd_llc_id);
  4816. static void update_top_cache_domain(int cpu)
  4817. {
  4818. struct sched_domain *sd;
  4819. int id = cpu;
  4820. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4821. if (sd)
  4822. id = cpumask_first(sched_domain_span(sd));
  4823. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4824. per_cpu(sd_llc_id, cpu) = id;
  4825. }
  4826. /*
  4827. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4828. * hold the hotplug lock.
  4829. */
  4830. static void
  4831. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4832. {
  4833. struct rq *rq = cpu_rq(cpu);
  4834. struct sched_domain *tmp;
  4835. /* Remove the sched domains which do not contribute to scheduling. */
  4836. for (tmp = sd; tmp; ) {
  4837. struct sched_domain *parent = tmp->parent;
  4838. if (!parent)
  4839. break;
  4840. if (sd_parent_degenerate(tmp, parent)) {
  4841. tmp->parent = parent->parent;
  4842. if (parent->parent)
  4843. parent->parent->child = tmp;
  4844. destroy_sched_domain(parent, cpu);
  4845. } else
  4846. tmp = tmp->parent;
  4847. }
  4848. if (sd && sd_degenerate(sd)) {
  4849. tmp = sd;
  4850. sd = sd->parent;
  4851. destroy_sched_domain(tmp, cpu);
  4852. if (sd)
  4853. sd->child = NULL;
  4854. }
  4855. sched_domain_debug(sd, cpu);
  4856. rq_attach_root(rq, rd);
  4857. tmp = rq->sd;
  4858. rcu_assign_pointer(rq->sd, sd);
  4859. destroy_sched_domains(tmp, cpu);
  4860. update_top_cache_domain(cpu);
  4861. }
  4862. /* cpus with isolated domains */
  4863. static cpumask_var_t cpu_isolated_map;
  4864. /* Setup the mask of cpus configured for isolated domains */
  4865. static int __init isolated_cpu_setup(char *str)
  4866. {
  4867. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4868. cpulist_parse(str, cpu_isolated_map);
  4869. return 1;
  4870. }
  4871. __setup("isolcpus=", isolated_cpu_setup);
  4872. static const struct cpumask *cpu_cpu_mask(int cpu)
  4873. {
  4874. return cpumask_of_node(cpu_to_node(cpu));
  4875. }
  4876. struct sd_data {
  4877. struct sched_domain **__percpu sd;
  4878. struct sched_group **__percpu sg;
  4879. struct sched_group_power **__percpu sgp;
  4880. };
  4881. struct s_data {
  4882. struct sched_domain ** __percpu sd;
  4883. struct root_domain *rd;
  4884. };
  4885. enum s_alloc {
  4886. sa_rootdomain,
  4887. sa_sd,
  4888. sa_sd_storage,
  4889. sa_none,
  4890. };
  4891. struct sched_domain_topology_level;
  4892. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4893. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4894. #define SDTL_OVERLAP 0x01
  4895. struct sched_domain_topology_level {
  4896. sched_domain_init_f init;
  4897. sched_domain_mask_f mask;
  4898. int flags;
  4899. int numa_level;
  4900. struct sd_data data;
  4901. };
  4902. /*
  4903. * Build an iteration mask that can exclude certain CPUs from the upwards
  4904. * domain traversal.
  4905. *
  4906. * Asymmetric node setups can result in situations where the domain tree is of
  4907. * unequal depth, make sure to skip domains that already cover the entire
  4908. * range.
  4909. *
  4910. * In that case build_sched_domains() will have terminated the iteration early
  4911. * and our sibling sd spans will be empty. Domains should always include the
  4912. * cpu they're built on, so check that.
  4913. *
  4914. */
  4915. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4916. {
  4917. const struct cpumask *span = sched_domain_span(sd);
  4918. struct sd_data *sdd = sd->private;
  4919. struct sched_domain *sibling;
  4920. int i;
  4921. for_each_cpu(i, span) {
  4922. sibling = *per_cpu_ptr(sdd->sd, i);
  4923. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4924. continue;
  4925. cpumask_set_cpu(i, sched_group_mask(sg));
  4926. }
  4927. }
  4928. /*
  4929. * Return the canonical balance cpu for this group, this is the first cpu
  4930. * of this group that's also in the iteration mask.
  4931. */
  4932. int group_balance_cpu(struct sched_group *sg)
  4933. {
  4934. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4935. }
  4936. static int
  4937. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4938. {
  4939. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4940. const struct cpumask *span = sched_domain_span(sd);
  4941. struct cpumask *covered = sched_domains_tmpmask;
  4942. struct sd_data *sdd = sd->private;
  4943. struct sched_domain *child;
  4944. int i;
  4945. cpumask_clear(covered);
  4946. for_each_cpu(i, span) {
  4947. struct cpumask *sg_span;
  4948. if (cpumask_test_cpu(i, covered))
  4949. continue;
  4950. child = *per_cpu_ptr(sdd->sd, i);
  4951. /* See the comment near build_group_mask(). */
  4952. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4953. continue;
  4954. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4955. GFP_KERNEL, cpu_to_node(cpu));
  4956. if (!sg)
  4957. goto fail;
  4958. sg_span = sched_group_cpus(sg);
  4959. if (child->child) {
  4960. child = child->child;
  4961. cpumask_copy(sg_span, sched_domain_span(child));
  4962. } else
  4963. cpumask_set_cpu(i, sg_span);
  4964. cpumask_or(covered, covered, sg_span);
  4965. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4966. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4967. build_group_mask(sd, sg);
  4968. /*
  4969. * Initialize sgp->power such that even if we mess up the
  4970. * domains and no possible iteration will get us here, we won't
  4971. * die on a /0 trap.
  4972. */
  4973. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4974. /*
  4975. * Make sure the first group of this domain contains the
  4976. * canonical balance cpu. Otherwise the sched_domain iteration
  4977. * breaks. See update_sg_lb_stats().
  4978. */
  4979. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4980. group_balance_cpu(sg) == cpu)
  4981. groups = sg;
  4982. if (!first)
  4983. first = sg;
  4984. if (last)
  4985. last->next = sg;
  4986. last = sg;
  4987. last->next = first;
  4988. }
  4989. sd->groups = groups;
  4990. return 0;
  4991. fail:
  4992. free_sched_groups(first, 0);
  4993. return -ENOMEM;
  4994. }
  4995. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4996. {
  4997. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4998. struct sched_domain *child = sd->child;
  4999. if (child)
  5000. cpu = cpumask_first(sched_domain_span(child));
  5001. if (sg) {
  5002. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5003. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5004. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5005. }
  5006. return cpu;
  5007. }
  5008. /*
  5009. * build_sched_groups will build a circular linked list of the groups
  5010. * covered by the given span, and will set each group's ->cpumask correctly,
  5011. * and ->cpu_power to 0.
  5012. *
  5013. * Assumes the sched_domain tree is fully constructed
  5014. */
  5015. static int
  5016. build_sched_groups(struct sched_domain *sd, int cpu)
  5017. {
  5018. struct sched_group *first = NULL, *last = NULL;
  5019. struct sd_data *sdd = sd->private;
  5020. const struct cpumask *span = sched_domain_span(sd);
  5021. struct cpumask *covered;
  5022. int i;
  5023. get_group(cpu, sdd, &sd->groups);
  5024. atomic_inc(&sd->groups->ref);
  5025. if (cpu != cpumask_first(sched_domain_span(sd)))
  5026. return 0;
  5027. lockdep_assert_held(&sched_domains_mutex);
  5028. covered = sched_domains_tmpmask;
  5029. cpumask_clear(covered);
  5030. for_each_cpu(i, span) {
  5031. struct sched_group *sg;
  5032. int group = get_group(i, sdd, &sg);
  5033. int j;
  5034. if (cpumask_test_cpu(i, covered))
  5035. continue;
  5036. cpumask_clear(sched_group_cpus(sg));
  5037. sg->sgp->power = 0;
  5038. cpumask_setall(sched_group_mask(sg));
  5039. for_each_cpu(j, span) {
  5040. if (get_group(j, sdd, NULL) != group)
  5041. continue;
  5042. cpumask_set_cpu(j, covered);
  5043. cpumask_set_cpu(j, sched_group_cpus(sg));
  5044. }
  5045. if (!first)
  5046. first = sg;
  5047. if (last)
  5048. last->next = sg;
  5049. last = sg;
  5050. }
  5051. last->next = first;
  5052. return 0;
  5053. }
  5054. /*
  5055. * Initialize sched groups cpu_power.
  5056. *
  5057. * cpu_power indicates the capacity of sched group, which is used while
  5058. * distributing the load between different sched groups in a sched domain.
  5059. * Typically cpu_power for all the groups in a sched domain will be same unless
  5060. * there are asymmetries in the topology. If there are asymmetries, group
  5061. * having more cpu_power will pickup more load compared to the group having
  5062. * less cpu_power.
  5063. */
  5064. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5065. {
  5066. struct sched_group *sg = sd->groups;
  5067. WARN_ON(!sd || !sg);
  5068. do {
  5069. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5070. sg = sg->next;
  5071. } while (sg != sd->groups);
  5072. if (cpu != group_balance_cpu(sg))
  5073. return;
  5074. update_group_power(sd, cpu);
  5075. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5076. }
  5077. int __weak arch_sd_sibling_asym_packing(void)
  5078. {
  5079. return 0*SD_ASYM_PACKING;
  5080. }
  5081. /*
  5082. * Initializers for schedule domains
  5083. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5084. */
  5085. #ifdef CONFIG_SCHED_DEBUG
  5086. # define SD_INIT_NAME(sd, type) sd->name = #type
  5087. #else
  5088. # define SD_INIT_NAME(sd, type) do { } while (0)
  5089. #endif
  5090. #define SD_INIT_FUNC(type) \
  5091. static noinline struct sched_domain * \
  5092. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5093. { \
  5094. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5095. *sd = SD_##type##_INIT; \
  5096. SD_INIT_NAME(sd, type); \
  5097. sd->private = &tl->data; \
  5098. return sd; \
  5099. }
  5100. SD_INIT_FUNC(CPU)
  5101. #ifdef CONFIG_SCHED_SMT
  5102. SD_INIT_FUNC(SIBLING)
  5103. #endif
  5104. #ifdef CONFIG_SCHED_MC
  5105. SD_INIT_FUNC(MC)
  5106. #endif
  5107. #ifdef CONFIG_SCHED_BOOK
  5108. SD_INIT_FUNC(BOOK)
  5109. #endif
  5110. static int default_relax_domain_level = -1;
  5111. int sched_domain_level_max;
  5112. static int __init setup_relax_domain_level(char *str)
  5113. {
  5114. if (kstrtoint(str, 0, &default_relax_domain_level))
  5115. pr_warn("Unable to set relax_domain_level\n");
  5116. return 1;
  5117. }
  5118. __setup("relax_domain_level=", setup_relax_domain_level);
  5119. static void set_domain_attribute(struct sched_domain *sd,
  5120. struct sched_domain_attr *attr)
  5121. {
  5122. int request;
  5123. if (!attr || attr->relax_domain_level < 0) {
  5124. if (default_relax_domain_level < 0)
  5125. return;
  5126. else
  5127. request = default_relax_domain_level;
  5128. } else
  5129. request = attr->relax_domain_level;
  5130. if (request < sd->level) {
  5131. /* turn off idle balance on this domain */
  5132. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5133. } else {
  5134. /* turn on idle balance on this domain */
  5135. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5136. }
  5137. }
  5138. static void __sdt_free(const struct cpumask *cpu_map);
  5139. static int __sdt_alloc(const struct cpumask *cpu_map);
  5140. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5141. const struct cpumask *cpu_map)
  5142. {
  5143. switch (what) {
  5144. case sa_rootdomain:
  5145. if (!atomic_read(&d->rd->refcount))
  5146. free_rootdomain(&d->rd->rcu); /* fall through */
  5147. case sa_sd:
  5148. free_percpu(d->sd); /* fall through */
  5149. case sa_sd_storage:
  5150. __sdt_free(cpu_map); /* fall through */
  5151. case sa_none:
  5152. break;
  5153. }
  5154. }
  5155. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5156. const struct cpumask *cpu_map)
  5157. {
  5158. memset(d, 0, sizeof(*d));
  5159. if (__sdt_alloc(cpu_map))
  5160. return sa_sd_storage;
  5161. d->sd = alloc_percpu(struct sched_domain *);
  5162. if (!d->sd)
  5163. return sa_sd_storage;
  5164. d->rd = alloc_rootdomain();
  5165. if (!d->rd)
  5166. return sa_sd;
  5167. return sa_rootdomain;
  5168. }
  5169. /*
  5170. * NULL the sd_data elements we've used to build the sched_domain and
  5171. * sched_group structure so that the subsequent __free_domain_allocs()
  5172. * will not free the data we're using.
  5173. */
  5174. static void claim_allocations(int cpu, struct sched_domain *sd)
  5175. {
  5176. struct sd_data *sdd = sd->private;
  5177. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5178. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5179. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5180. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5181. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5182. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5183. }
  5184. #ifdef CONFIG_SCHED_SMT
  5185. static const struct cpumask *cpu_smt_mask(int cpu)
  5186. {
  5187. return topology_thread_cpumask(cpu);
  5188. }
  5189. #endif
  5190. /*
  5191. * Topology list, bottom-up.
  5192. */
  5193. static struct sched_domain_topology_level default_topology[] = {
  5194. #ifdef CONFIG_SCHED_SMT
  5195. { sd_init_SIBLING, cpu_smt_mask, },
  5196. #endif
  5197. #ifdef CONFIG_SCHED_MC
  5198. { sd_init_MC, cpu_coregroup_mask, },
  5199. #endif
  5200. #ifdef CONFIG_SCHED_BOOK
  5201. { sd_init_BOOK, cpu_book_mask, },
  5202. #endif
  5203. { sd_init_CPU, cpu_cpu_mask, },
  5204. { NULL, },
  5205. };
  5206. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5207. #ifdef CONFIG_NUMA
  5208. static int sched_domains_numa_levels;
  5209. static int *sched_domains_numa_distance;
  5210. static struct cpumask ***sched_domains_numa_masks;
  5211. static int sched_domains_curr_level;
  5212. static inline int sd_local_flags(int level)
  5213. {
  5214. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5215. return 0;
  5216. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5217. }
  5218. static struct sched_domain *
  5219. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5220. {
  5221. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5222. int level = tl->numa_level;
  5223. int sd_weight = cpumask_weight(
  5224. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5225. *sd = (struct sched_domain){
  5226. .min_interval = sd_weight,
  5227. .max_interval = 2*sd_weight,
  5228. .busy_factor = 32,
  5229. .imbalance_pct = 125,
  5230. .cache_nice_tries = 2,
  5231. .busy_idx = 3,
  5232. .idle_idx = 2,
  5233. .newidle_idx = 0,
  5234. .wake_idx = 0,
  5235. .forkexec_idx = 0,
  5236. .flags = 1*SD_LOAD_BALANCE
  5237. | 1*SD_BALANCE_NEWIDLE
  5238. | 0*SD_BALANCE_EXEC
  5239. | 0*SD_BALANCE_FORK
  5240. | 0*SD_BALANCE_WAKE
  5241. | 0*SD_WAKE_AFFINE
  5242. | 0*SD_SHARE_CPUPOWER
  5243. | 0*SD_SHARE_PKG_RESOURCES
  5244. | 1*SD_SERIALIZE
  5245. | 0*SD_PREFER_SIBLING
  5246. | sd_local_flags(level)
  5247. ,
  5248. .last_balance = jiffies,
  5249. .balance_interval = sd_weight,
  5250. };
  5251. SD_INIT_NAME(sd, NUMA);
  5252. sd->private = &tl->data;
  5253. /*
  5254. * Ugly hack to pass state to sd_numa_mask()...
  5255. */
  5256. sched_domains_curr_level = tl->numa_level;
  5257. return sd;
  5258. }
  5259. static const struct cpumask *sd_numa_mask(int cpu)
  5260. {
  5261. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5262. }
  5263. static void sched_numa_warn(const char *str)
  5264. {
  5265. static int done = false;
  5266. int i,j;
  5267. if (done)
  5268. return;
  5269. done = true;
  5270. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5271. for (i = 0; i < nr_node_ids; i++) {
  5272. printk(KERN_WARNING " ");
  5273. for (j = 0; j < nr_node_ids; j++)
  5274. printk(KERN_CONT "%02d ", node_distance(i,j));
  5275. printk(KERN_CONT "\n");
  5276. }
  5277. printk(KERN_WARNING "\n");
  5278. }
  5279. static bool find_numa_distance(int distance)
  5280. {
  5281. int i;
  5282. if (distance == node_distance(0, 0))
  5283. return true;
  5284. for (i = 0; i < sched_domains_numa_levels; i++) {
  5285. if (sched_domains_numa_distance[i] == distance)
  5286. return true;
  5287. }
  5288. return false;
  5289. }
  5290. static void sched_init_numa(void)
  5291. {
  5292. int next_distance, curr_distance = node_distance(0, 0);
  5293. struct sched_domain_topology_level *tl;
  5294. int level = 0;
  5295. int i, j, k;
  5296. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5297. if (!sched_domains_numa_distance)
  5298. return;
  5299. /*
  5300. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5301. * unique distances in the node_distance() table.
  5302. *
  5303. * Assumes node_distance(0,j) includes all distances in
  5304. * node_distance(i,j) in order to avoid cubic time.
  5305. */
  5306. next_distance = curr_distance;
  5307. for (i = 0; i < nr_node_ids; i++) {
  5308. for (j = 0; j < nr_node_ids; j++) {
  5309. for (k = 0; k < nr_node_ids; k++) {
  5310. int distance = node_distance(i, k);
  5311. if (distance > curr_distance &&
  5312. (distance < next_distance ||
  5313. next_distance == curr_distance))
  5314. next_distance = distance;
  5315. /*
  5316. * While not a strong assumption it would be nice to know
  5317. * about cases where if node A is connected to B, B is not
  5318. * equally connected to A.
  5319. */
  5320. if (sched_debug() && node_distance(k, i) != distance)
  5321. sched_numa_warn("Node-distance not symmetric");
  5322. if (sched_debug() && i && !find_numa_distance(distance))
  5323. sched_numa_warn("Node-0 not representative");
  5324. }
  5325. if (next_distance != curr_distance) {
  5326. sched_domains_numa_distance[level++] = next_distance;
  5327. sched_domains_numa_levels = level;
  5328. curr_distance = next_distance;
  5329. } else break;
  5330. }
  5331. /*
  5332. * In case of sched_debug() we verify the above assumption.
  5333. */
  5334. if (!sched_debug())
  5335. break;
  5336. }
  5337. /*
  5338. * 'level' contains the number of unique distances, excluding the
  5339. * identity distance node_distance(i,i).
  5340. *
  5341. * The sched_domains_nume_distance[] array includes the actual distance
  5342. * numbers.
  5343. */
  5344. /*
  5345. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5346. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5347. * the array will contain less then 'level' members. This could be
  5348. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5349. * in other functions.
  5350. *
  5351. * We reset it to 'level' at the end of this function.
  5352. */
  5353. sched_domains_numa_levels = 0;
  5354. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5355. if (!sched_domains_numa_masks)
  5356. return;
  5357. /*
  5358. * Now for each level, construct a mask per node which contains all
  5359. * cpus of nodes that are that many hops away from us.
  5360. */
  5361. for (i = 0; i < level; i++) {
  5362. sched_domains_numa_masks[i] =
  5363. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5364. if (!sched_domains_numa_masks[i])
  5365. return;
  5366. for (j = 0; j < nr_node_ids; j++) {
  5367. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5368. if (!mask)
  5369. return;
  5370. sched_domains_numa_masks[i][j] = mask;
  5371. for (k = 0; k < nr_node_ids; k++) {
  5372. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5373. continue;
  5374. cpumask_or(mask, mask, cpumask_of_node(k));
  5375. }
  5376. }
  5377. }
  5378. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5379. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5380. if (!tl)
  5381. return;
  5382. /*
  5383. * Copy the default topology bits..
  5384. */
  5385. for (i = 0; default_topology[i].init; i++)
  5386. tl[i] = default_topology[i];
  5387. /*
  5388. * .. and append 'j' levels of NUMA goodness.
  5389. */
  5390. for (j = 0; j < level; i++, j++) {
  5391. tl[i] = (struct sched_domain_topology_level){
  5392. .init = sd_numa_init,
  5393. .mask = sd_numa_mask,
  5394. .flags = SDTL_OVERLAP,
  5395. .numa_level = j,
  5396. };
  5397. }
  5398. sched_domain_topology = tl;
  5399. sched_domains_numa_levels = level;
  5400. }
  5401. static void sched_domains_numa_masks_set(int cpu)
  5402. {
  5403. int i, j;
  5404. int node = cpu_to_node(cpu);
  5405. for (i = 0; i < sched_domains_numa_levels; i++) {
  5406. for (j = 0; j < nr_node_ids; j++) {
  5407. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5408. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5409. }
  5410. }
  5411. }
  5412. static void sched_domains_numa_masks_clear(int cpu)
  5413. {
  5414. int i, j;
  5415. for (i = 0; i < sched_domains_numa_levels; i++) {
  5416. for (j = 0; j < nr_node_ids; j++)
  5417. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5418. }
  5419. }
  5420. /*
  5421. * Update sched_domains_numa_masks[level][node] array when new cpus
  5422. * are onlined.
  5423. */
  5424. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5425. unsigned long action,
  5426. void *hcpu)
  5427. {
  5428. int cpu = (long)hcpu;
  5429. switch (action & ~CPU_TASKS_FROZEN) {
  5430. case CPU_ONLINE:
  5431. sched_domains_numa_masks_set(cpu);
  5432. break;
  5433. case CPU_DEAD:
  5434. sched_domains_numa_masks_clear(cpu);
  5435. break;
  5436. default:
  5437. return NOTIFY_DONE;
  5438. }
  5439. return NOTIFY_OK;
  5440. }
  5441. #else
  5442. static inline void sched_init_numa(void)
  5443. {
  5444. }
  5445. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5446. unsigned long action,
  5447. void *hcpu)
  5448. {
  5449. return 0;
  5450. }
  5451. #endif /* CONFIG_NUMA */
  5452. static int __sdt_alloc(const struct cpumask *cpu_map)
  5453. {
  5454. struct sched_domain_topology_level *tl;
  5455. int j;
  5456. for (tl = sched_domain_topology; tl->init; tl++) {
  5457. struct sd_data *sdd = &tl->data;
  5458. sdd->sd = alloc_percpu(struct sched_domain *);
  5459. if (!sdd->sd)
  5460. return -ENOMEM;
  5461. sdd->sg = alloc_percpu(struct sched_group *);
  5462. if (!sdd->sg)
  5463. return -ENOMEM;
  5464. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5465. if (!sdd->sgp)
  5466. return -ENOMEM;
  5467. for_each_cpu(j, cpu_map) {
  5468. struct sched_domain *sd;
  5469. struct sched_group *sg;
  5470. struct sched_group_power *sgp;
  5471. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5472. GFP_KERNEL, cpu_to_node(j));
  5473. if (!sd)
  5474. return -ENOMEM;
  5475. *per_cpu_ptr(sdd->sd, j) = sd;
  5476. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5477. GFP_KERNEL, cpu_to_node(j));
  5478. if (!sg)
  5479. return -ENOMEM;
  5480. sg->next = sg;
  5481. *per_cpu_ptr(sdd->sg, j) = sg;
  5482. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5483. GFP_KERNEL, cpu_to_node(j));
  5484. if (!sgp)
  5485. return -ENOMEM;
  5486. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5487. }
  5488. }
  5489. return 0;
  5490. }
  5491. static void __sdt_free(const struct cpumask *cpu_map)
  5492. {
  5493. struct sched_domain_topology_level *tl;
  5494. int j;
  5495. for (tl = sched_domain_topology; tl->init; tl++) {
  5496. struct sd_data *sdd = &tl->data;
  5497. for_each_cpu(j, cpu_map) {
  5498. struct sched_domain *sd;
  5499. if (sdd->sd) {
  5500. sd = *per_cpu_ptr(sdd->sd, j);
  5501. if (sd && (sd->flags & SD_OVERLAP))
  5502. free_sched_groups(sd->groups, 0);
  5503. kfree(*per_cpu_ptr(sdd->sd, j));
  5504. }
  5505. if (sdd->sg)
  5506. kfree(*per_cpu_ptr(sdd->sg, j));
  5507. if (sdd->sgp)
  5508. kfree(*per_cpu_ptr(sdd->sgp, j));
  5509. }
  5510. free_percpu(sdd->sd);
  5511. sdd->sd = NULL;
  5512. free_percpu(sdd->sg);
  5513. sdd->sg = NULL;
  5514. free_percpu(sdd->sgp);
  5515. sdd->sgp = NULL;
  5516. }
  5517. }
  5518. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5519. struct s_data *d, const struct cpumask *cpu_map,
  5520. struct sched_domain_attr *attr, struct sched_domain *child,
  5521. int cpu)
  5522. {
  5523. struct sched_domain *sd = tl->init(tl, cpu);
  5524. if (!sd)
  5525. return child;
  5526. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5527. if (child) {
  5528. sd->level = child->level + 1;
  5529. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5530. child->parent = sd;
  5531. }
  5532. sd->child = child;
  5533. set_domain_attribute(sd, attr);
  5534. return sd;
  5535. }
  5536. /*
  5537. * Build sched domains for a given set of cpus and attach the sched domains
  5538. * to the individual cpus
  5539. */
  5540. static int build_sched_domains(const struct cpumask *cpu_map,
  5541. struct sched_domain_attr *attr)
  5542. {
  5543. enum s_alloc alloc_state = sa_none;
  5544. struct sched_domain *sd;
  5545. struct s_data d;
  5546. int i, ret = -ENOMEM;
  5547. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5548. if (alloc_state != sa_rootdomain)
  5549. goto error;
  5550. /* Set up domains for cpus specified by the cpu_map. */
  5551. for_each_cpu(i, cpu_map) {
  5552. struct sched_domain_topology_level *tl;
  5553. sd = NULL;
  5554. for (tl = sched_domain_topology; tl->init; tl++) {
  5555. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5556. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5557. sd->flags |= SD_OVERLAP;
  5558. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5559. break;
  5560. }
  5561. while (sd->child)
  5562. sd = sd->child;
  5563. *per_cpu_ptr(d.sd, i) = sd;
  5564. }
  5565. /* Build the groups for the domains */
  5566. for_each_cpu(i, cpu_map) {
  5567. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5568. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5569. if (sd->flags & SD_OVERLAP) {
  5570. if (build_overlap_sched_groups(sd, i))
  5571. goto error;
  5572. } else {
  5573. if (build_sched_groups(sd, i))
  5574. goto error;
  5575. }
  5576. }
  5577. }
  5578. /* Calculate CPU power for physical packages and nodes */
  5579. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5580. if (!cpumask_test_cpu(i, cpu_map))
  5581. continue;
  5582. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5583. claim_allocations(i, sd);
  5584. init_sched_groups_power(i, sd);
  5585. }
  5586. }
  5587. /* Attach the domains */
  5588. rcu_read_lock();
  5589. for_each_cpu(i, cpu_map) {
  5590. sd = *per_cpu_ptr(d.sd, i);
  5591. cpu_attach_domain(sd, d.rd, i);
  5592. }
  5593. rcu_read_unlock();
  5594. ret = 0;
  5595. error:
  5596. __free_domain_allocs(&d, alloc_state, cpu_map);
  5597. return ret;
  5598. }
  5599. static cpumask_var_t *doms_cur; /* current sched domains */
  5600. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5601. static struct sched_domain_attr *dattr_cur;
  5602. /* attribues of custom domains in 'doms_cur' */
  5603. /*
  5604. * Special case: If a kmalloc of a doms_cur partition (array of
  5605. * cpumask) fails, then fallback to a single sched domain,
  5606. * as determined by the single cpumask fallback_doms.
  5607. */
  5608. static cpumask_var_t fallback_doms;
  5609. /*
  5610. * arch_update_cpu_topology lets virtualized architectures update the
  5611. * cpu core maps. It is supposed to return 1 if the topology changed
  5612. * or 0 if it stayed the same.
  5613. */
  5614. int __attribute__((weak)) arch_update_cpu_topology(void)
  5615. {
  5616. return 0;
  5617. }
  5618. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5619. {
  5620. int i;
  5621. cpumask_var_t *doms;
  5622. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5623. if (!doms)
  5624. return NULL;
  5625. for (i = 0; i < ndoms; i++) {
  5626. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5627. free_sched_domains(doms, i);
  5628. return NULL;
  5629. }
  5630. }
  5631. return doms;
  5632. }
  5633. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5634. {
  5635. unsigned int i;
  5636. for (i = 0; i < ndoms; i++)
  5637. free_cpumask_var(doms[i]);
  5638. kfree(doms);
  5639. }
  5640. /*
  5641. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5642. * For now this just excludes isolated cpus, but could be used to
  5643. * exclude other special cases in the future.
  5644. */
  5645. static int init_sched_domains(const struct cpumask *cpu_map)
  5646. {
  5647. int err;
  5648. arch_update_cpu_topology();
  5649. ndoms_cur = 1;
  5650. doms_cur = alloc_sched_domains(ndoms_cur);
  5651. if (!doms_cur)
  5652. doms_cur = &fallback_doms;
  5653. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5654. err = build_sched_domains(doms_cur[0], NULL);
  5655. register_sched_domain_sysctl();
  5656. return err;
  5657. }
  5658. /*
  5659. * Detach sched domains from a group of cpus specified in cpu_map
  5660. * These cpus will now be attached to the NULL domain
  5661. */
  5662. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5663. {
  5664. int i;
  5665. rcu_read_lock();
  5666. for_each_cpu(i, cpu_map)
  5667. cpu_attach_domain(NULL, &def_root_domain, i);
  5668. rcu_read_unlock();
  5669. }
  5670. /* handle null as "default" */
  5671. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5672. struct sched_domain_attr *new, int idx_new)
  5673. {
  5674. struct sched_domain_attr tmp;
  5675. /* fast path */
  5676. if (!new && !cur)
  5677. return 1;
  5678. tmp = SD_ATTR_INIT;
  5679. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5680. new ? (new + idx_new) : &tmp,
  5681. sizeof(struct sched_domain_attr));
  5682. }
  5683. /*
  5684. * Partition sched domains as specified by the 'ndoms_new'
  5685. * cpumasks in the array doms_new[] of cpumasks. This compares
  5686. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5687. * It destroys each deleted domain and builds each new domain.
  5688. *
  5689. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5690. * The masks don't intersect (don't overlap.) We should setup one
  5691. * sched domain for each mask. CPUs not in any of the cpumasks will
  5692. * not be load balanced. If the same cpumask appears both in the
  5693. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5694. * it as it is.
  5695. *
  5696. * The passed in 'doms_new' should be allocated using
  5697. * alloc_sched_domains. This routine takes ownership of it and will
  5698. * free_sched_domains it when done with it. If the caller failed the
  5699. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5700. * and partition_sched_domains() will fallback to the single partition
  5701. * 'fallback_doms', it also forces the domains to be rebuilt.
  5702. *
  5703. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5704. * ndoms_new == 0 is a special case for destroying existing domains,
  5705. * and it will not create the default domain.
  5706. *
  5707. * Call with hotplug lock held
  5708. */
  5709. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5710. struct sched_domain_attr *dattr_new)
  5711. {
  5712. int i, j, n;
  5713. int new_topology;
  5714. mutex_lock(&sched_domains_mutex);
  5715. /* always unregister in case we don't destroy any domains */
  5716. unregister_sched_domain_sysctl();
  5717. /* Let architecture update cpu core mappings. */
  5718. new_topology = arch_update_cpu_topology();
  5719. n = doms_new ? ndoms_new : 0;
  5720. /* Destroy deleted domains */
  5721. for (i = 0; i < ndoms_cur; i++) {
  5722. for (j = 0; j < n && !new_topology; j++) {
  5723. if (cpumask_equal(doms_cur[i], doms_new[j])
  5724. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5725. goto match1;
  5726. }
  5727. /* no match - a current sched domain not in new doms_new[] */
  5728. detach_destroy_domains(doms_cur[i]);
  5729. match1:
  5730. ;
  5731. }
  5732. if (doms_new == NULL) {
  5733. ndoms_cur = 0;
  5734. doms_new = &fallback_doms;
  5735. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5736. WARN_ON_ONCE(dattr_new);
  5737. }
  5738. /* Build new domains */
  5739. for (i = 0; i < ndoms_new; i++) {
  5740. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5741. if (cpumask_equal(doms_new[i], doms_cur[j])
  5742. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5743. goto match2;
  5744. }
  5745. /* no match - add a new doms_new */
  5746. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5747. match2:
  5748. ;
  5749. }
  5750. /* Remember the new sched domains */
  5751. if (doms_cur != &fallback_doms)
  5752. free_sched_domains(doms_cur, ndoms_cur);
  5753. kfree(dattr_cur); /* kfree(NULL) is safe */
  5754. doms_cur = doms_new;
  5755. dattr_cur = dattr_new;
  5756. ndoms_cur = ndoms_new;
  5757. register_sched_domain_sysctl();
  5758. mutex_unlock(&sched_domains_mutex);
  5759. }
  5760. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5761. /*
  5762. * Update cpusets according to cpu_active mask. If cpusets are
  5763. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5764. * around partition_sched_domains().
  5765. *
  5766. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5767. * want to restore it back to its original state upon resume anyway.
  5768. */
  5769. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5770. void *hcpu)
  5771. {
  5772. switch (action) {
  5773. case CPU_ONLINE_FROZEN:
  5774. case CPU_DOWN_FAILED_FROZEN:
  5775. /*
  5776. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5777. * resume sequence. As long as this is not the last online
  5778. * operation in the resume sequence, just build a single sched
  5779. * domain, ignoring cpusets.
  5780. */
  5781. num_cpus_frozen--;
  5782. if (likely(num_cpus_frozen)) {
  5783. partition_sched_domains(1, NULL, NULL);
  5784. break;
  5785. }
  5786. /*
  5787. * This is the last CPU online operation. So fall through and
  5788. * restore the original sched domains by considering the
  5789. * cpuset configurations.
  5790. */
  5791. case CPU_ONLINE:
  5792. case CPU_DOWN_FAILED:
  5793. cpuset_update_active_cpus(true);
  5794. break;
  5795. default:
  5796. return NOTIFY_DONE;
  5797. }
  5798. return NOTIFY_OK;
  5799. }
  5800. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5801. void *hcpu)
  5802. {
  5803. switch (action) {
  5804. case CPU_DOWN_PREPARE:
  5805. cpuset_update_active_cpus(false);
  5806. break;
  5807. case CPU_DOWN_PREPARE_FROZEN:
  5808. num_cpus_frozen++;
  5809. partition_sched_domains(1, NULL, NULL);
  5810. break;
  5811. default:
  5812. return NOTIFY_DONE;
  5813. }
  5814. return NOTIFY_OK;
  5815. }
  5816. void __init sched_init_smp(void)
  5817. {
  5818. cpumask_var_t non_isolated_cpus;
  5819. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5820. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5821. sched_init_numa();
  5822. get_online_cpus();
  5823. mutex_lock(&sched_domains_mutex);
  5824. init_sched_domains(cpu_active_mask);
  5825. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5826. if (cpumask_empty(non_isolated_cpus))
  5827. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5828. mutex_unlock(&sched_domains_mutex);
  5829. put_online_cpus();
  5830. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5831. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5832. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5833. /* RT runtime code needs to handle some hotplug events */
  5834. hotcpu_notifier(update_runtime, 0);
  5835. init_hrtick();
  5836. /* Move init over to a non-isolated CPU */
  5837. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5838. BUG();
  5839. sched_init_granularity();
  5840. free_cpumask_var(non_isolated_cpus);
  5841. init_sched_rt_class();
  5842. }
  5843. #else
  5844. void __init sched_init_smp(void)
  5845. {
  5846. sched_init_granularity();
  5847. }
  5848. #endif /* CONFIG_SMP */
  5849. const_debug unsigned int sysctl_timer_migration = 1;
  5850. int in_sched_functions(unsigned long addr)
  5851. {
  5852. return in_lock_functions(addr) ||
  5853. (addr >= (unsigned long)__sched_text_start
  5854. && addr < (unsigned long)__sched_text_end);
  5855. }
  5856. #ifdef CONFIG_CGROUP_SCHED
  5857. struct task_group root_task_group;
  5858. LIST_HEAD(task_groups);
  5859. #endif
  5860. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5861. void __init sched_init(void)
  5862. {
  5863. int i, j;
  5864. unsigned long alloc_size = 0, ptr;
  5865. #ifdef CONFIG_FAIR_GROUP_SCHED
  5866. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5867. #endif
  5868. #ifdef CONFIG_RT_GROUP_SCHED
  5869. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5870. #endif
  5871. #ifdef CONFIG_CPUMASK_OFFSTACK
  5872. alloc_size += num_possible_cpus() * cpumask_size();
  5873. #endif
  5874. if (alloc_size) {
  5875. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5876. #ifdef CONFIG_FAIR_GROUP_SCHED
  5877. root_task_group.se = (struct sched_entity **)ptr;
  5878. ptr += nr_cpu_ids * sizeof(void **);
  5879. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5880. ptr += nr_cpu_ids * sizeof(void **);
  5881. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5882. #ifdef CONFIG_RT_GROUP_SCHED
  5883. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5884. ptr += nr_cpu_ids * sizeof(void **);
  5885. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5886. ptr += nr_cpu_ids * sizeof(void **);
  5887. #endif /* CONFIG_RT_GROUP_SCHED */
  5888. #ifdef CONFIG_CPUMASK_OFFSTACK
  5889. for_each_possible_cpu(i) {
  5890. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5891. ptr += cpumask_size();
  5892. }
  5893. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5894. }
  5895. #ifdef CONFIG_SMP
  5896. init_defrootdomain();
  5897. #endif
  5898. init_rt_bandwidth(&def_rt_bandwidth,
  5899. global_rt_period(), global_rt_runtime());
  5900. #ifdef CONFIG_RT_GROUP_SCHED
  5901. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5902. global_rt_period(), global_rt_runtime());
  5903. #endif /* CONFIG_RT_GROUP_SCHED */
  5904. #ifdef CONFIG_CGROUP_SCHED
  5905. list_add(&root_task_group.list, &task_groups);
  5906. INIT_LIST_HEAD(&root_task_group.children);
  5907. INIT_LIST_HEAD(&root_task_group.siblings);
  5908. autogroup_init(&init_task);
  5909. #endif /* CONFIG_CGROUP_SCHED */
  5910. #ifdef CONFIG_CGROUP_CPUACCT
  5911. root_cpuacct.cpustat = &kernel_cpustat;
  5912. root_cpuacct.cpuusage = alloc_percpu(u64);
  5913. /* Too early, not expected to fail */
  5914. BUG_ON(!root_cpuacct.cpuusage);
  5915. #endif
  5916. for_each_possible_cpu(i) {
  5917. struct rq *rq;
  5918. rq = cpu_rq(i);
  5919. raw_spin_lock_init(&rq->lock);
  5920. rq->nr_running = 0;
  5921. rq->calc_load_active = 0;
  5922. rq->calc_load_update = jiffies + LOAD_FREQ;
  5923. init_cfs_rq(&rq->cfs);
  5924. init_rt_rq(&rq->rt, rq);
  5925. #ifdef CONFIG_FAIR_GROUP_SCHED
  5926. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5927. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5928. /*
  5929. * How much cpu bandwidth does root_task_group get?
  5930. *
  5931. * In case of task-groups formed thr' the cgroup filesystem, it
  5932. * gets 100% of the cpu resources in the system. This overall
  5933. * system cpu resource is divided among the tasks of
  5934. * root_task_group and its child task-groups in a fair manner,
  5935. * based on each entity's (task or task-group's) weight
  5936. * (se->load.weight).
  5937. *
  5938. * In other words, if root_task_group has 10 tasks of weight
  5939. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5940. * then A0's share of the cpu resource is:
  5941. *
  5942. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5943. *
  5944. * We achieve this by letting root_task_group's tasks sit
  5945. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5946. */
  5947. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5948. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5949. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5950. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5951. #ifdef CONFIG_RT_GROUP_SCHED
  5952. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5953. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5954. #endif
  5955. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5956. rq->cpu_load[j] = 0;
  5957. rq->last_load_update_tick = jiffies;
  5958. #ifdef CONFIG_SMP
  5959. rq->sd = NULL;
  5960. rq->rd = NULL;
  5961. rq->cpu_power = SCHED_POWER_SCALE;
  5962. rq->post_schedule = 0;
  5963. rq->active_balance = 0;
  5964. rq->next_balance = jiffies;
  5965. rq->push_cpu = 0;
  5966. rq->cpu = i;
  5967. rq->online = 0;
  5968. rq->idle_stamp = 0;
  5969. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5970. INIT_LIST_HEAD(&rq->cfs_tasks);
  5971. rq_attach_root(rq, &def_root_domain);
  5972. #ifdef CONFIG_NO_HZ
  5973. rq->nohz_flags = 0;
  5974. #endif
  5975. #endif
  5976. init_rq_hrtick(rq);
  5977. atomic_set(&rq->nr_iowait, 0);
  5978. }
  5979. set_load_weight(&init_task);
  5980. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5981. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5982. #endif
  5983. #ifdef CONFIG_RT_MUTEXES
  5984. plist_head_init(&init_task.pi_waiters);
  5985. #endif
  5986. /*
  5987. * The boot idle thread does lazy MMU switching as well:
  5988. */
  5989. atomic_inc(&init_mm.mm_count);
  5990. enter_lazy_tlb(&init_mm, current);
  5991. /*
  5992. * Make us the idle thread. Technically, schedule() should not be
  5993. * called from this thread, however somewhere below it might be,
  5994. * but because we are the idle thread, we just pick up running again
  5995. * when this runqueue becomes "idle".
  5996. */
  5997. init_idle(current, smp_processor_id());
  5998. calc_load_update = jiffies + LOAD_FREQ;
  5999. /*
  6000. * During early bootup we pretend to be a normal task:
  6001. */
  6002. current->sched_class = &fair_sched_class;
  6003. #ifdef CONFIG_SMP
  6004. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6005. /* May be allocated at isolcpus cmdline parse time */
  6006. if (cpu_isolated_map == NULL)
  6007. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6008. idle_thread_set_boot_cpu();
  6009. #endif
  6010. init_sched_fair_class();
  6011. scheduler_running = 1;
  6012. }
  6013. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6014. static inline int preempt_count_equals(int preempt_offset)
  6015. {
  6016. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6017. return (nested == preempt_offset);
  6018. }
  6019. void __might_sleep(const char *file, int line, int preempt_offset)
  6020. {
  6021. static unsigned long prev_jiffy; /* ratelimiting */
  6022. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6023. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6024. system_state != SYSTEM_RUNNING || oops_in_progress)
  6025. return;
  6026. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6027. return;
  6028. prev_jiffy = jiffies;
  6029. printk(KERN_ERR
  6030. "BUG: sleeping function called from invalid context at %s:%d\n",
  6031. file, line);
  6032. printk(KERN_ERR
  6033. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6034. in_atomic(), irqs_disabled(),
  6035. current->pid, current->comm);
  6036. debug_show_held_locks(current);
  6037. if (irqs_disabled())
  6038. print_irqtrace_events(current);
  6039. dump_stack();
  6040. }
  6041. EXPORT_SYMBOL(__might_sleep);
  6042. #endif
  6043. #ifdef CONFIG_MAGIC_SYSRQ
  6044. static void normalize_task(struct rq *rq, struct task_struct *p)
  6045. {
  6046. const struct sched_class *prev_class = p->sched_class;
  6047. int old_prio = p->prio;
  6048. int on_rq;
  6049. on_rq = p->on_rq;
  6050. if (on_rq)
  6051. dequeue_task(rq, p, 0);
  6052. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6053. if (on_rq) {
  6054. enqueue_task(rq, p, 0);
  6055. resched_task(rq->curr);
  6056. }
  6057. check_class_changed(rq, p, prev_class, old_prio);
  6058. }
  6059. void normalize_rt_tasks(void)
  6060. {
  6061. struct task_struct *g, *p;
  6062. unsigned long flags;
  6063. struct rq *rq;
  6064. read_lock_irqsave(&tasklist_lock, flags);
  6065. do_each_thread(g, p) {
  6066. /*
  6067. * Only normalize user tasks:
  6068. */
  6069. if (!p->mm)
  6070. continue;
  6071. p->se.exec_start = 0;
  6072. #ifdef CONFIG_SCHEDSTATS
  6073. p->se.statistics.wait_start = 0;
  6074. p->se.statistics.sleep_start = 0;
  6075. p->se.statistics.block_start = 0;
  6076. #endif
  6077. if (!rt_task(p)) {
  6078. /*
  6079. * Renice negative nice level userspace
  6080. * tasks back to 0:
  6081. */
  6082. if (TASK_NICE(p) < 0 && p->mm)
  6083. set_user_nice(p, 0);
  6084. continue;
  6085. }
  6086. raw_spin_lock(&p->pi_lock);
  6087. rq = __task_rq_lock(p);
  6088. normalize_task(rq, p);
  6089. __task_rq_unlock(rq);
  6090. raw_spin_unlock(&p->pi_lock);
  6091. } while_each_thread(g, p);
  6092. read_unlock_irqrestore(&tasklist_lock, flags);
  6093. }
  6094. #endif /* CONFIG_MAGIC_SYSRQ */
  6095. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6096. /*
  6097. * These functions are only useful for the IA64 MCA handling, or kdb.
  6098. *
  6099. * They can only be called when the whole system has been
  6100. * stopped - every CPU needs to be quiescent, and no scheduling
  6101. * activity can take place. Using them for anything else would
  6102. * be a serious bug, and as a result, they aren't even visible
  6103. * under any other configuration.
  6104. */
  6105. /**
  6106. * curr_task - return the current task for a given cpu.
  6107. * @cpu: the processor in question.
  6108. *
  6109. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6110. */
  6111. struct task_struct *curr_task(int cpu)
  6112. {
  6113. return cpu_curr(cpu);
  6114. }
  6115. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6116. #ifdef CONFIG_IA64
  6117. /**
  6118. * set_curr_task - set the current task for a given cpu.
  6119. * @cpu: the processor in question.
  6120. * @p: the task pointer to set.
  6121. *
  6122. * Description: This function must only be used when non-maskable interrupts
  6123. * are serviced on a separate stack. It allows the architecture to switch the
  6124. * notion of the current task on a cpu in a non-blocking manner. This function
  6125. * must be called with all CPU's synchronized, and interrupts disabled, the
  6126. * and caller must save the original value of the current task (see
  6127. * curr_task() above) and restore that value before reenabling interrupts and
  6128. * re-starting the system.
  6129. *
  6130. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6131. */
  6132. void set_curr_task(int cpu, struct task_struct *p)
  6133. {
  6134. cpu_curr(cpu) = p;
  6135. }
  6136. #endif
  6137. #ifdef CONFIG_CGROUP_SCHED
  6138. /* task_group_lock serializes the addition/removal of task groups */
  6139. static DEFINE_SPINLOCK(task_group_lock);
  6140. static void free_sched_group(struct task_group *tg)
  6141. {
  6142. free_fair_sched_group(tg);
  6143. free_rt_sched_group(tg);
  6144. autogroup_free(tg);
  6145. kfree(tg);
  6146. }
  6147. /* allocate runqueue etc for a new task group */
  6148. struct task_group *sched_create_group(struct task_group *parent)
  6149. {
  6150. struct task_group *tg;
  6151. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6152. if (!tg)
  6153. return ERR_PTR(-ENOMEM);
  6154. if (!alloc_fair_sched_group(tg, parent))
  6155. goto err;
  6156. if (!alloc_rt_sched_group(tg, parent))
  6157. goto err;
  6158. return tg;
  6159. err:
  6160. free_sched_group(tg);
  6161. return ERR_PTR(-ENOMEM);
  6162. }
  6163. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6164. {
  6165. unsigned long flags;
  6166. spin_lock_irqsave(&task_group_lock, flags);
  6167. list_add_rcu(&tg->list, &task_groups);
  6168. WARN_ON(!parent); /* root should already exist */
  6169. tg->parent = parent;
  6170. INIT_LIST_HEAD(&tg->children);
  6171. list_add_rcu(&tg->siblings, &parent->children);
  6172. spin_unlock_irqrestore(&task_group_lock, flags);
  6173. }
  6174. /* rcu callback to free various structures associated with a task group */
  6175. static void free_sched_group_rcu(struct rcu_head *rhp)
  6176. {
  6177. /* now it should be safe to free those cfs_rqs */
  6178. free_sched_group(container_of(rhp, struct task_group, rcu));
  6179. }
  6180. /* Destroy runqueue etc associated with a task group */
  6181. void sched_destroy_group(struct task_group *tg)
  6182. {
  6183. /* wait for possible concurrent references to cfs_rqs complete */
  6184. call_rcu(&tg->rcu, free_sched_group_rcu);
  6185. }
  6186. void sched_offline_group(struct task_group *tg)
  6187. {
  6188. unsigned long flags;
  6189. int i;
  6190. /* end participation in shares distribution */
  6191. for_each_possible_cpu(i)
  6192. unregister_fair_sched_group(tg, i);
  6193. spin_lock_irqsave(&task_group_lock, flags);
  6194. list_del_rcu(&tg->list);
  6195. list_del_rcu(&tg->siblings);
  6196. spin_unlock_irqrestore(&task_group_lock, flags);
  6197. }
  6198. /* change task's runqueue when it moves between groups.
  6199. * The caller of this function should have put the task in its new group
  6200. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6201. * reflect its new group.
  6202. */
  6203. void sched_move_task(struct task_struct *tsk)
  6204. {
  6205. struct task_group *tg;
  6206. int on_rq, running;
  6207. unsigned long flags;
  6208. struct rq *rq;
  6209. rq = task_rq_lock(tsk, &flags);
  6210. running = task_current(rq, tsk);
  6211. on_rq = tsk->on_rq;
  6212. if (on_rq)
  6213. dequeue_task(rq, tsk, 0);
  6214. if (unlikely(running))
  6215. tsk->sched_class->put_prev_task(rq, tsk);
  6216. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6217. lockdep_is_held(&tsk->sighand->siglock)),
  6218. struct task_group, css);
  6219. tg = autogroup_task_group(tsk, tg);
  6220. tsk->sched_task_group = tg;
  6221. #ifdef CONFIG_FAIR_GROUP_SCHED
  6222. if (tsk->sched_class->task_move_group)
  6223. tsk->sched_class->task_move_group(tsk, on_rq);
  6224. else
  6225. #endif
  6226. set_task_rq(tsk, task_cpu(tsk));
  6227. if (unlikely(running))
  6228. tsk->sched_class->set_curr_task(rq);
  6229. if (on_rq)
  6230. enqueue_task(rq, tsk, 0);
  6231. task_rq_unlock(rq, tsk, &flags);
  6232. }
  6233. #endif /* CONFIG_CGROUP_SCHED */
  6234. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6235. static unsigned long to_ratio(u64 period, u64 runtime)
  6236. {
  6237. if (runtime == RUNTIME_INF)
  6238. return 1ULL << 20;
  6239. return div64_u64(runtime << 20, period);
  6240. }
  6241. #endif
  6242. #ifdef CONFIG_RT_GROUP_SCHED
  6243. /*
  6244. * Ensure that the real time constraints are schedulable.
  6245. */
  6246. static DEFINE_MUTEX(rt_constraints_mutex);
  6247. /* Must be called with tasklist_lock held */
  6248. static inline int tg_has_rt_tasks(struct task_group *tg)
  6249. {
  6250. struct task_struct *g, *p;
  6251. do_each_thread(g, p) {
  6252. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6253. return 1;
  6254. } while_each_thread(g, p);
  6255. return 0;
  6256. }
  6257. struct rt_schedulable_data {
  6258. struct task_group *tg;
  6259. u64 rt_period;
  6260. u64 rt_runtime;
  6261. };
  6262. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6263. {
  6264. struct rt_schedulable_data *d = data;
  6265. struct task_group *child;
  6266. unsigned long total, sum = 0;
  6267. u64 period, runtime;
  6268. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6269. runtime = tg->rt_bandwidth.rt_runtime;
  6270. if (tg == d->tg) {
  6271. period = d->rt_period;
  6272. runtime = d->rt_runtime;
  6273. }
  6274. /*
  6275. * Cannot have more runtime than the period.
  6276. */
  6277. if (runtime > period && runtime != RUNTIME_INF)
  6278. return -EINVAL;
  6279. /*
  6280. * Ensure we don't starve existing RT tasks.
  6281. */
  6282. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6283. return -EBUSY;
  6284. total = to_ratio(period, runtime);
  6285. /*
  6286. * Nobody can have more than the global setting allows.
  6287. */
  6288. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6289. return -EINVAL;
  6290. /*
  6291. * The sum of our children's runtime should not exceed our own.
  6292. */
  6293. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6294. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6295. runtime = child->rt_bandwidth.rt_runtime;
  6296. if (child == d->tg) {
  6297. period = d->rt_period;
  6298. runtime = d->rt_runtime;
  6299. }
  6300. sum += to_ratio(period, runtime);
  6301. }
  6302. if (sum > total)
  6303. return -EINVAL;
  6304. return 0;
  6305. }
  6306. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6307. {
  6308. int ret;
  6309. struct rt_schedulable_data data = {
  6310. .tg = tg,
  6311. .rt_period = period,
  6312. .rt_runtime = runtime,
  6313. };
  6314. rcu_read_lock();
  6315. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6316. rcu_read_unlock();
  6317. return ret;
  6318. }
  6319. static int tg_set_rt_bandwidth(struct task_group *tg,
  6320. u64 rt_period, u64 rt_runtime)
  6321. {
  6322. int i, err = 0;
  6323. mutex_lock(&rt_constraints_mutex);
  6324. read_lock(&tasklist_lock);
  6325. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6326. if (err)
  6327. goto unlock;
  6328. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6329. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6330. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6331. for_each_possible_cpu(i) {
  6332. struct rt_rq *rt_rq = tg->rt_rq[i];
  6333. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6334. rt_rq->rt_runtime = rt_runtime;
  6335. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6336. }
  6337. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6338. unlock:
  6339. read_unlock(&tasklist_lock);
  6340. mutex_unlock(&rt_constraints_mutex);
  6341. return err;
  6342. }
  6343. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6344. {
  6345. u64 rt_runtime, rt_period;
  6346. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6347. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6348. if (rt_runtime_us < 0)
  6349. rt_runtime = RUNTIME_INF;
  6350. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6351. }
  6352. long sched_group_rt_runtime(struct task_group *tg)
  6353. {
  6354. u64 rt_runtime_us;
  6355. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6356. return -1;
  6357. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6358. do_div(rt_runtime_us, NSEC_PER_USEC);
  6359. return rt_runtime_us;
  6360. }
  6361. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6362. {
  6363. u64 rt_runtime, rt_period;
  6364. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6365. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6366. if (rt_period == 0)
  6367. return -EINVAL;
  6368. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6369. }
  6370. long sched_group_rt_period(struct task_group *tg)
  6371. {
  6372. u64 rt_period_us;
  6373. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6374. do_div(rt_period_us, NSEC_PER_USEC);
  6375. return rt_period_us;
  6376. }
  6377. static int sched_rt_global_constraints(void)
  6378. {
  6379. u64 runtime, period;
  6380. int ret = 0;
  6381. if (sysctl_sched_rt_period <= 0)
  6382. return -EINVAL;
  6383. runtime = global_rt_runtime();
  6384. period = global_rt_period();
  6385. /*
  6386. * Sanity check on the sysctl variables.
  6387. */
  6388. if (runtime > period && runtime != RUNTIME_INF)
  6389. return -EINVAL;
  6390. mutex_lock(&rt_constraints_mutex);
  6391. read_lock(&tasklist_lock);
  6392. ret = __rt_schedulable(NULL, 0, 0);
  6393. read_unlock(&tasklist_lock);
  6394. mutex_unlock(&rt_constraints_mutex);
  6395. return ret;
  6396. }
  6397. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6398. {
  6399. /* Don't accept realtime tasks when there is no way for them to run */
  6400. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6401. return 0;
  6402. return 1;
  6403. }
  6404. #else /* !CONFIG_RT_GROUP_SCHED */
  6405. static int sched_rt_global_constraints(void)
  6406. {
  6407. unsigned long flags;
  6408. int i;
  6409. if (sysctl_sched_rt_period <= 0)
  6410. return -EINVAL;
  6411. /*
  6412. * There's always some RT tasks in the root group
  6413. * -- migration, kstopmachine etc..
  6414. */
  6415. if (sysctl_sched_rt_runtime == 0)
  6416. return -EBUSY;
  6417. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6418. for_each_possible_cpu(i) {
  6419. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6420. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6421. rt_rq->rt_runtime = global_rt_runtime();
  6422. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6423. }
  6424. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6425. return 0;
  6426. }
  6427. #endif /* CONFIG_RT_GROUP_SCHED */
  6428. int sched_rr_handler(struct ctl_table *table, int write,
  6429. void __user *buffer, size_t *lenp,
  6430. loff_t *ppos)
  6431. {
  6432. int ret;
  6433. static DEFINE_MUTEX(mutex);
  6434. mutex_lock(&mutex);
  6435. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6436. /* make sure that internally we keep jiffies */
  6437. /* also, writing zero resets timeslice to default */
  6438. if (!ret && write) {
  6439. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6440. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6441. }
  6442. mutex_unlock(&mutex);
  6443. return ret;
  6444. }
  6445. int sched_rt_handler(struct ctl_table *table, int write,
  6446. void __user *buffer, size_t *lenp,
  6447. loff_t *ppos)
  6448. {
  6449. int ret;
  6450. int old_period, old_runtime;
  6451. static DEFINE_MUTEX(mutex);
  6452. mutex_lock(&mutex);
  6453. old_period = sysctl_sched_rt_period;
  6454. old_runtime = sysctl_sched_rt_runtime;
  6455. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6456. if (!ret && write) {
  6457. ret = sched_rt_global_constraints();
  6458. if (ret) {
  6459. sysctl_sched_rt_period = old_period;
  6460. sysctl_sched_rt_runtime = old_runtime;
  6461. } else {
  6462. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6463. def_rt_bandwidth.rt_period =
  6464. ns_to_ktime(global_rt_period());
  6465. }
  6466. }
  6467. mutex_unlock(&mutex);
  6468. return ret;
  6469. }
  6470. #ifdef CONFIG_CGROUP_SCHED
  6471. /* return corresponding task_group object of a cgroup */
  6472. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6473. {
  6474. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6475. struct task_group, css);
  6476. }
  6477. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6478. {
  6479. struct task_group *tg, *parent;
  6480. if (!cgrp->parent) {
  6481. /* This is early initialization for the top cgroup */
  6482. return &root_task_group.css;
  6483. }
  6484. parent = cgroup_tg(cgrp->parent);
  6485. tg = sched_create_group(parent);
  6486. if (IS_ERR(tg))
  6487. return ERR_PTR(-ENOMEM);
  6488. return &tg->css;
  6489. }
  6490. static int cpu_cgroup_css_online(struct cgroup *cgrp)
  6491. {
  6492. struct task_group *tg = cgroup_tg(cgrp);
  6493. struct task_group *parent;
  6494. if (!cgrp->parent)
  6495. return 0;
  6496. parent = cgroup_tg(cgrp->parent);
  6497. sched_online_group(tg, parent);
  6498. return 0;
  6499. }
  6500. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6501. {
  6502. struct task_group *tg = cgroup_tg(cgrp);
  6503. sched_destroy_group(tg);
  6504. }
  6505. static void cpu_cgroup_css_offline(struct cgroup *cgrp)
  6506. {
  6507. struct task_group *tg = cgroup_tg(cgrp);
  6508. sched_offline_group(tg);
  6509. }
  6510. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6511. struct cgroup_taskset *tset)
  6512. {
  6513. struct task_struct *task;
  6514. cgroup_taskset_for_each(task, cgrp, tset) {
  6515. #ifdef CONFIG_RT_GROUP_SCHED
  6516. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6517. return -EINVAL;
  6518. #else
  6519. /* We don't support RT-tasks being in separate groups */
  6520. if (task->sched_class != &fair_sched_class)
  6521. return -EINVAL;
  6522. #endif
  6523. }
  6524. return 0;
  6525. }
  6526. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6527. struct cgroup_taskset *tset)
  6528. {
  6529. struct task_struct *task;
  6530. cgroup_taskset_for_each(task, cgrp, tset)
  6531. sched_move_task(task);
  6532. }
  6533. static void
  6534. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6535. struct task_struct *task)
  6536. {
  6537. /*
  6538. * cgroup_exit() is called in the copy_process() failure path.
  6539. * Ignore this case since the task hasn't ran yet, this avoids
  6540. * trying to poke a half freed task state from generic code.
  6541. */
  6542. if (!(task->flags & PF_EXITING))
  6543. return;
  6544. sched_move_task(task);
  6545. }
  6546. #ifdef CONFIG_FAIR_GROUP_SCHED
  6547. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6548. u64 shareval)
  6549. {
  6550. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6551. }
  6552. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6553. {
  6554. struct task_group *tg = cgroup_tg(cgrp);
  6555. return (u64) scale_load_down(tg->shares);
  6556. }
  6557. #ifdef CONFIG_CFS_BANDWIDTH
  6558. static DEFINE_MUTEX(cfs_constraints_mutex);
  6559. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6560. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6561. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6562. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6563. {
  6564. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6565. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6566. if (tg == &root_task_group)
  6567. return -EINVAL;
  6568. /*
  6569. * Ensure we have at some amount of bandwidth every period. This is
  6570. * to prevent reaching a state of large arrears when throttled via
  6571. * entity_tick() resulting in prolonged exit starvation.
  6572. */
  6573. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6574. return -EINVAL;
  6575. /*
  6576. * Likewise, bound things on the otherside by preventing insane quota
  6577. * periods. This also allows us to normalize in computing quota
  6578. * feasibility.
  6579. */
  6580. if (period > max_cfs_quota_period)
  6581. return -EINVAL;
  6582. mutex_lock(&cfs_constraints_mutex);
  6583. ret = __cfs_schedulable(tg, period, quota);
  6584. if (ret)
  6585. goto out_unlock;
  6586. runtime_enabled = quota != RUNTIME_INF;
  6587. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6588. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6589. raw_spin_lock_irq(&cfs_b->lock);
  6590. cfs_b->period = ns_to_ktime(period);
  6591. cfs_b->quota = quota;
  6592. __refill_cfs_bandwidth_runtime(cfs_b);
  6593. /* restart the period timer (if active) to handle new period expiry */
  6594. if (runtime_enabled && cfs_b->timer_active) {
  6595. /* force a reprogram */
  6596. cfs_b->timer_active = 0;
  6597. __start_cfs_bandwidth(cfs_b);
  6598. }
  6599. raw_spin_unlock_irq(&cfs_b->lock);
  6600. for_each_possible_cpu(i) {
  6601. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6602. struct rq *rq = cfs_rq->rq;
  6603. raw_spin_lock_irq(&rq->lock);
  6604. cfs_rq->runtime_enabled = runtime_enabled;
  6605. cfs_rq->runtime_remaining = 0;
  6606. if (cfs_rq->throttled)
  6607. unthrottle_cfs_rq(cfs_rq);
  6608. raw_spin_unlock_irq(&rq->lock);
  6609. }
  6610. out_unlock:
  6611. mutex_unlock(&cfs_constraints_mutex);
  6612. return ret;
  6613. }
  6614. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6615. {
  6616. u64 quota, period;
  6617. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6618. if (cfs_quota_us < 0)
  6619. quota = RUNTIME_INF;
  6620. else
  6621. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6622. return tg_set_cfs_bandwidth(tg, period, quota);
  6623. }
  6624. long tg_get_cfs_quota(struct task_group *tg)
  6625. {
  6626. u64 quota_us;
  6627. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6628. return -1;
  6629. quota_us = tg->cfs_bandwidth.quota;
  6630. do_div(quota_us, NSEC_PER_USEC);
  6631. return quota_us;
  6632. }
  6633. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6634. {
  6635. u64 quota, period;
  6636. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6637. quota = tg->cfs_bandwidth.quota;
  6638. return tg_set_cfs_bandwidth(tg, period, quota);
  6639. }
  6640. long tg_get_cfs_period(struct task_group *tg)
  6641. {
  6642. u64 cfs_period_us;
  6643. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6644. do_div(cfs_period_us, NSEC_PER_USEC);
  6645. return cfs_period_us;
  6646. }
  6647. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6648. {
  6649. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6650. }
  6651. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6652. s64 cfs_quota_us)
  6653. {
  6654. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6655. }
  6656. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6657. {
  6658. return tg_get_cfs_period(cgroup_tg(cgrp));
  6659. }
  6660. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6661. u64 cfs_period_us)
  6662. {
  6663. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6664. }
  6665. struct cfs_schedulable_data {
  6666. struct task_group *tg;
  6667. u64 period, quota;
  6668. };
  6669. /*
  6670. * normalize group quota/period to be quota/max_period
  6671. * note: units are usecs
  6672. */
  6673. static u64 normalize_cfs_quota(struct task_group *tg,
  6674. struct cfs_schedulable_data *d)
  6675. {
  6676. u64 quota, period;
  6677. if (tg == d->tg) {
  6678. period = d->period;
  6679. quota = d->quota;
  6680. } else {
  6681. period = tg_get_cfs_period(tg);
  6682. quota = tg_get_cfs_quota(tg);
  6683. }
  6684. /* note: these should typically be equivalent */
  6685. if (quota == RUNTIME_INF || quota == -1)
  6686. return RUNTIME_INF;
  6687. return to_ratio(period, quota);
  6688. }
  6689. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6690. {
  6691. struct cfs_schedulable_data *d = data;
  6692. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6693. s64 quota = 0, parent_quota = -1;
  6694. if (!tg->parent) {
  6695. quota = RUNTIME_INF;
  6696. } else {
  6697. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6698. quota = normalize_cfs_quota(tg, d);
  6699. parent_quota = parent_b->hierarchal_quota;
  6700. /*
  6701. * ensure max(child_quota) <= parent_quota, inherit when no
  6702. * limit is set
  6703. */
  6704. if (quota == RUNTIME_INF)
  6705. quota = parent_quota;
  6706. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6707. return -EINVAL;
  6708. }
  6709. cfs_b->hierarchal_quota = quota;
  6710. return 0;
  6711. }
  6712. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6713. {
  6714. int ret;
  6715. struct cfs_schedulable_data data = {
  6716. .tg = tg,
  6717. .period = period,
  6718. .quota = quota,
  6719. };
  6720. if (quota != RUNTIME_INF) {
  6721. do_div(data.period, NSEC_PER_USEC);
  6722. do_div(data.quota, NSEC_PER_USEC);
  6723. }
  6724. rcu_read_lock();
  6725. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6726. rcu_read_unlock();
  6727. return ret;
  6728. }
  6729. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6730. struct cgroup_map_cb *cb)
  6731. {
  6732. struct task_group *tg = cgroup_tg(cgrp);
  6733. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6734. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6735. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6736. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6737. return 0;
  6738. }
  6739. #endif /* CONFIG_CFS_BANDWIDTH */
  6740. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6741. #ifdef CONFIG_RT_GROUP_SCHED
  6742. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6743. s64 val)
  6744. {
  6745. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6746. }
  6747. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6748. {
  6749. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6750. }
  6751. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6752. u64 rt_period_us)
  6753. {
  6754. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6755. }
  6756. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6757. {
  6758. return sched_group_rt_period(cgroup_tg(cgrp));
  6759. }
  6760. #endif /* CONFIG_RT_GROUP_SCHED */
  6761. static struct cftype cpu_files[] = {
  6762. #ifdef CONFIG_FAIR_GROUP_SCHED
  6763. {
  6764. .name = "shares",
  6765. .read_u64 = cpu_shares_read_u64,
  6766. .write_u64 = cpu_shares_write_u64,
  6767. },
  6768. #endif
  6769. #ifdef CONFIG_CFS_BANDWIDTH
  6770. {
  6771. .name = "cfs_quota_us",
  6772. .read_s64 = cpu_cfs_quota_read_s64,
  6773. .write_s64 = cpu_cfs_quota_write_s64,
  6774. },
  6775. {
  6776. .name = "cfs_period_us",
  6777. .read_u64 = cpu_cfs_period_read_u64,
  6778. .write_u64 = cpu_cfs_period_write_u64,
  6779. },
  6780. {
  6781. .name = "stat",
  6782. .read_map = cpu_stats_show,
  6783. },
  6784. #endif
  6785. #ifdef CONFIG_RT_GROUP_SCHED
  6786. {
  6787. .name = "rt_runtime_us",
  6788. .read_s64 = cpu_rt_runtime_read,
  6789. .write_s64 = cpu_rt_runtime_write,
  6790. },
  6791. {
  6792. .name = "rt_period_us",
  6793. .read_u64 = cpu_rt_period_read_uint,
  6794. .write_u64 = cpu_rt_period_write_uint,
  6795. },
  6796. #endif
  6797. { } /* terminate */
  6798. };
  6799. struct cgroup_subsys cpu_cgroup_subsys = {
  6800. .name = "cpu",
  6801. .css_alloc = cpu_cgroup_css_alloc,
  6802. .css_free = cpu_cgroup_css_free,
  6803. .css_online = cpu_cgroup_css_online,
  6804. .css_offline = cpu_cgroup_css_offline,
  6805. .can_attach = cpu_cgroup_can_attach,
  6806. .attach = cpu_cgroup_attach,
  6807. .exit = cpu_cgroup_exit,
  6808. .subsys_id = cpu_cgroup_subsys_id,
  6809. .base_cftypes = cpu_files,
  6810. .early_init = 1,
  6811. };
  6812. #endif /* CONFIG_CGROUP_SCHED */
  6813. #ifdef CONFIG_CGROUP_CPUACCT
  6814. /*
  6815. * CPU accounting code for task groups.
  6816. *
  6817. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6818. * (balbir@in.ibm.com).
  6819. */
  6820. struct cpuacct root_cpuacct;
  6821. /* create a new cpu accounting group */
  6822. static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
  6823. {
  6824. struct cpuacct *ca;
  6825. if (!cgrp->parent)
  6826. return &root_cpuacct.css;
  6827. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6828. if (!ca)
  6829. goto out;
  6830. ca->cpuusage = alloc_percpu(u64);
  6831. if (!ca->cpuusage)
  6832. goto out_free_ca;
  6833. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6834. if (!ca->cpustat)
  6835. goto out_free_cpuusage;
  6836. return &ca->css;
  6837. out_free_cpuusage:
  6838. free_percpu(ca->cpuusage);
  6839. out_free_ca:
  6840. kfree(ca);
  6841. out:
  6842. return ERR_PTR(-ENOMEM);
  6843. }
  6844. /* destroy an existing cpu accounting group */
  6845. static void cpuacct_css_free(struct cgroup *cgrp)
  6846. {
  6847. struct cpuacct *ca = cgroup_ca(cgrp);
  6848. free_percpu(ca->cpustat);
  6849. free_percpu(ca->cpuusage);
  6850. kfree(ca);
  6851. }
  6852. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6853. {
  6854. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6855. u64 data;
  6856. #ifndef CONFIG_64BIT
  6857. /*
  6858. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6859. */
  6860. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6861. data = *cpuusage;
  6862. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6863. #else
  6864. data = *cpuusage;
  6865. #endif
  6866. return data;
  6867. }
  6868. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6869. {
  6870. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6871. #ifndef CONFIG_64BIT
  6872. /*
  6873. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6874. */
  6875. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6876. *cpuusage = val;
  6877. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6878. #else
  6879. *cpuusage = val;
  6880. #endif
  6881. }
  6882. /* return total cpu usage (in nanoseconds) of a group */
  6883. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6884. {
  6885. struct cpuacct *ca = cgroup_ca(cgrp);
  6886. u64 totalcpuusage = 0;
  6887. int i;
  6888. for_each_present_cpu(i)
  6889. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6890. return totalcpuusage;
  6891. }
  6892. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6893. u64 reset)
  6894. {
  6895. struct cpuacct *ca = cgroup_ca(cgrp);
  6896. int err = 0;
  6897. int i;
  6898. if (reset) {
  6899. err = -EINVAL;
  6900. goto out;
  6901. }
  6902. for_each_present_cpu(i)
  6903. cpuacct_cpuusage_write(ca, i, 0);
  6904. out:
  6905. return err;
  6906. }
  6907. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6908. struct seq_file *m)
  6909. {
  6910. struct cpuacct *ca = cgroup_ca(cgroup);
  6911. u64 percpu;
  6912. int i;
  6913. for_each_present_cpu(i) {
  6914. percpu = cpuacct_cpuusage_read(ca, i);
  6915. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6916. }
  6917. seq_printf(m, "\n");
  6918. return 0;
  6919. }
  6920. static const char *cpuacct_stat_desc[] = {
  6921. [CPUACCT_STAT_USER] = "user",
  6922. [CPUACCT_STAT_SYSTEM] = "system",
  6923. };
  6924. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6925. struct cgroup_map_cb *cb)
  6926. {
  6927. struct cpuacct *ca = cgroup_ca(cgrp);
  6928. int cpu;
  6929. s64 val = 0;
  6930. for_each_online_cpu(cpu) {
  6931. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6932. val += kcpustat->cpustat[CPUTIME_USER];
  6933. val += kcpustat->cpustat[CPUTIME_NICE];
  6934. }
  6935. val = cputime64_to_clock_t(val);
  6936. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6937. val = 0;
  6938. for_each_online_cpu(cpu) {
  6939. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6940. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6941. val += kcpustat->cpustat[CPUTIME_IRQ];
  6942. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6943. }
  6944. val = cputime64_to_clock_t(val);
  6945. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6946. return 0;
  6947. }
  6948. static struct cftype files[] = {
  6949. {
  6950. .name = "usage",
  6951. .read_u64 = cpuusage_read,
  6952. .write_u64 = cpuusage_write,
  6953. },
  6954. {
  6955. .name = "usage_percpu",
  6956. .read_seq_string = cpuacct_percpu_seq_read,
  6957. },
  6958. {
  6959. .name = "stat",
  6960. .read_map = cpuacct_stats_show,
  6961. },
  6962. { } /* terminate */
  6963. };
  6964. /*
  6965. * charge this task's execution time to its accounting group.
  6966. *
  6967. * called with rq->lock held.
  6968. */
  6969. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6970. {
  6971. struct cpuacct *ca;
  6972. int cpu;
  6973. if (unlikely(!cpuacct_subsys.active))
  6974. return;
  6975. cpu = task_cpu(tsk);
  6976. rcu_read_lock();
  6977. ca = task_ca(tsk);
  6978. for (; ca; ca = parent_ca(ca)) {
  6979. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6980. *cpuusage += cputime;
  6981. }
  6982. rcu_read_unlock();
  6983. }
  6984. struct cgroup_subsys cpuacct_subsys = {
  6985. .name = "cpuacct",
  6986. .css_alloc = cpuacct_css_alloc,
  6987. .css_free = cpuacct_css_free,
  6988. .subsys_id = cpuacct_subsys_id,
  6989. .base_cftypes = files,
  6990. };
  6991. #endif /* CONFIG_CGROUP_CPUACCT */
  6992. void dump_cpu_task(int cpu)
  6993. {
  6994. pr_info("Task dump for CPU %d:\n", cpu);
  6995. sched_show_task(cpu_curr(cpu));
  6996. }