slab.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/poison.h>
  92. #include <linux/swap.h>
  93. #include <linux/cache.h>
  94. #include <linux/interrupt.h>
  95. #include <linux/init.h>
  96. #include <linux/compiler.h>
  97. #include <linux/cpuset.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/rtmutex.h>
  110. #include <asm/uaccess.h>
  111. #include <asm/cacheflush.h>
  112. #include <asm/tlbflush.h>
  113. #include <asm/page.h>
  114. /*
  115. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  116. * SLAB_RED_ZONE & SLAB_POISON.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * STATS - 1 to collect stats for /proc/slabinfo.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  123. */
  124. #ifdef CONFIG_DEBUG_SLAB
  125. #define DEBUG 1
  126. #define STATS 1
  127. #define FORCED_DEBUG 1
  128. #else
  129. #define DEBUG 0
  130. #define STATS 0
  131. #define FORCED_DEBUG 0
  132. #endif
  133. /* Shouldn't this be in a header file somewhere? */
  134. #define BYTES_PER_WORD sizeof(void *)
  135. #ifndef cache_line_size
  136. #define cache_line_size() L1_CACHE_BYTES
  137. #endif
  138. #ifndef ARCH_KMALLOC_MINALIGN
  139. /*
  140. * Enforce a minimum alignment for the kmalloc caches.
  141. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  142. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  143. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  144. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  145. * Note that this flag disables some debug features.
  146. */
  147. #define ARCH_KMALLOC_MINALIGN 0
  148. #endif
  149. #ifndef ARCH_SLAB_MINALIGN
  150. /*
  151. * Enforce a minimum alignment for all caches.
  152. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  153. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  154. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  155. * some debug features.
  156. */
  157. #define ARCH_SLAB_MINALIGN 0
  158. #endif
  159. #ifndef ARCH_KMALLOC_FLAGS
  160. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  161. #endif
  162. /* Legal flag mask for kmem_cache_create(). */
  163. #if DEBUG
  164. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  166. SLAB_CACHE_DMA | \
  167. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  168. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  169. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  170. #else
  171. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  172. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  173. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  174. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  175. #endif
  176. /*
  177. * kmem_bufctl_t:
  178. *
  179. * Bufctl's are used for linking objs within a slab
  180. * linked offsets.
  181. *
  182. * This implementation relies on "struct page" for locating the cache &
  183. * slab an object belongs to.
  184. * This allows the bufctl structure to be small (one int), but limits
  185. * the number of objects a slab (not a cache) can contain when off-slab
  186. * bufctls are used. The limit is the size of the largest general cache
  187. * that does not use off-slab slabs.
  188. * For 32bit archs with 4 kB pages, is this 56.
  189. * This is not serious, as it is only for large objects, when it is unwise
  190. * to have too many per slab.
  191. * Note: This limit can be raised by introducing a general cache whose size
  192. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  193. */
  194. typedef unsigned int kmem_bufctl_t;
  195. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  196. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  197. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  198. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned int free_limit;
  278. unsigned int colour_next; /* Per-node cache coloring */
  279. spinlock_t list_lock;
  280. struct array_cache *shared; /* shared per node */
  281. struct array_cache **alien; /* on other nodes */
  282. unsigned long next_reap; /* updated without locking */
  283. int free_touched; /* updated without locking */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. static int drain_freelist(struct kmem_cache *cache,
  294. struct kmem_list3 *l3, int tofree);
  295. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  296. int node);
  297. static void enable_cpucache(struct kmem_cache *cachep);
  298. static void cache_reap(void *unused);
  299. /*
  300. * This function must be completely optimized away if a constant is passed to
  301. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  302. */
  303. static __always_inline int index_of(const size_t size)
  304. {
  305. extern void __bad_size(void);
  306. if (__builtin_constant_p(size)) {
  307. int i = 0;
  308. #define CACHE(x) \
  309. if (size <=x) \
  310. return i; \
  311. else \
  312. i++;
  313. #include "linux/kmalloc_sizes.h"
  314. #undef CACHE
  315. __bad_size();
  316. } else
  317. __bad_size();
  318. return 0;
  319. }
  320. static int slab_early_init = 1;
  321. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  322. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  323. static void kmem_list3_init(struct kmem_list3 *parent)
  324. {
  325. INIT_LIST_HEAD(&parent->slabs_full);
  326. INIT_LIST_HEAD(&parent->slabs_partial);
  327. INIT_LIST_HEAD(&parent->slabs_free);
  328. parent->shared = NULL;
  329. parent->alien = NULL;
  330. parent->colour_next = 0;
  331. spin_lock_init(&parent->list_lock);
  332. parent->free_objects = 0;
  333. parent->free_touched = 0;
  334. }
  335. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  336. do { \
  337. INIT_LIST_HEAD(listp); \
  338. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  339. } while (0)
  340. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  341. do { \
  342. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  345. } while (0)
  346. /*
  347. * struct kmem_cache
  348. *
  349. * manages a cache.
  350. */
  351. struct kmem_cache {
  352. /* 1) per-cpu data, touched during every alloc/free */
  353. struct array_cache *array[NR_CPUS];
  354. /* 2) Cache tunables. Protected by cache_chain_mutex */
  355. unsigned int batchcount;
  356. unsigned int limit;
  357. unsigned int shared;
  358. unsigned int buffer_size;
  359. /* 3) touched by every alloc & free from the backend */
  360. struct kmem_list3 *nodelists[MAX_NUMNODES];
  361. unsigned int flags; /* constant flags */
  362. unsigned int num; /* # of objs per slab */
  363. /* 4) cache_grow/shrink */
  364. /* order of pgs per slab (2^n) */
  365. unsigned int gfporder;
  366. /* force GFP flags, e.g. GFP_DMA */
  367. gfp_t gfpflags;
  368. size_t colour; /* cache colouring range */
  369. unsigned int colour_off; /* colour offset */
  370. struct kmem_cache *slabp_cache;
  371. unsigned int slab_size;
  372. unsigned int dflags; /* dynamic flags */
  373. /* constructor func */
  374. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  375. /* de-constructor func */
  376. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  377. /* 5) cache creation/removal */
  378. const char *name;
  379. struct list_head next;
  380. /* 6) statistics */
  381. #if STATS
  382. unsigned long num_active;
  383. unsigned long num_allocations;
  384. unsigned long high_mark;
  385. unsigned long grown;
  386. unsigned long reaped;
  387. unsigned long errors;
  388. unsigned long max_freeable;
  389. unsigned long node_allocs;
  390. unsigned long node_frees;
  391. unsigned long node_overflow;
  392. atomic_t allochit;
  393. atomic_t allocmiss;
  394. atomic_t freehit;
  395. atomic_t freemiss;
  396. #endif
  397. #if DEBUG
  398. /*
  399. * If debugging is enabled, then the allocator can add additional
  400. * fields and/or padding to every object. buffer_size contains the total
  401. * object size including these internal fields, the following two
  402. * variables contain the offset to the user object and its size.
  403. */
  404. int obj_offset;
  405. int obj_size;
  406. #endif
  407. };
  408. #define CFLGS_OFF_SLAB (0x80000000UL)
  409. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  410. #define BATCHREFILL_LIMIT 16
  411. /*
  412. * Optimization question: fewer reaps means less probability for unnessary
  413. * cpucache drain/refill cycles.
  414. *
  415. * OTOH the cpuarrays can contain lots of objects,
  416. * which could lock up otherwise freeable slabs.
  417. */
  418. #define REAPTIMEOUT_CPUC (2*HZ)
  419. #define REAPTIMEOUT_LIST3 (4*HZ)
  420. #if STATS
  421. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  422. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  423. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  424. #define STATS_INC_GROWN(x) ((x)->grown++)
  425. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  426. #define STATS_SET_HIGH(x) \
  427. do { \
  428. if ((x)->num_active > (x)->high_mark) \
  429. (x)->high_mark = (x)->num_active; \
  430. } while (0)
  431. #define STATS_INC_ERR(x) ((x)->errors++)
  432. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  433. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  434. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  435. #define STATS_SET_FREEABLE(x, i) \
  436. do { \
  437. if ((x)->max_freeable < i) \
  438. (x)->max_freeable = i; \
  439. } while (0)
  440. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  441. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  442. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  443. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  444. #else
  445. #define STATS_INC_ACTIVE(x) do { } while (0)
  446. #define STATS_DEC_ACTIVE(x) do { } while (0)
  447. #define STATS_INC_ALLOCED(x) do { } while (0)
  448. #define STATS_INC_GROWN(x) do { } while (0)
  449. #define STATS_ADD_REAPED(x,y) do { } while (0)
  450. #define STATS_SET_HIGH(x) do { } while (0)
  451. #define STATS_INC_ERR(x) do { } while (0)
  452. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  453. #define STATS_INC_NODEFREES(x) do { } while (0)
  454. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  455. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  456. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  457. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  458. #define STATS_INC_FREEHIT(x) do { } while (0)
  459. #define STATS_INC_FREEMISS(x) do { } while (0)
  460. #endif
  461. #if DEBUG
  462. /*
  463. * memory layout of objects:
  464. * 0 : objp
  465. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  466. * the end of an object is aligned with the end of the real
  467. * allocation. Catches writes behind the end of the allocation.
  468. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  469. * redzone word.
  470. * cachep->obj_offset: The real object.
  471. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  472. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  473. * [BYTES_PER_WORD long]
  474. */
  475. static int obj_offset(struct kmem_cache *cachep)
  476. {
  477. return cachep->obj_offset;
  478. }
  479. static int obj_size(struct kmem_cache *cachep)
  480. {
  481. return cachep->obj_size;
  482. }
  483. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  487. }
  488. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. if (cachep->flags & SLAB_STORE_USER)
  492. return (unsigned long *)(objp + cachep->buffer_size -
  493. 2 * BYTES_PER_WORD);
  494. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  497. {
  498. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  499. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. #else
  502. #define obj_offset(x) 0
  503. #define obj_size(cachep) (cachep->buffer_size)
  504. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  505. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  507. #endif
  508. /*
  509. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  510. * order.
  511. */
  512. #if defined(CONFIG_LARGE_ALLOCS)
  513. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  514. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  515. #elif defined(CONFIG_MMU)
  516. #define MAX_OBJ_ORDER 5 /* 32 pages */
  517. #define MAX_GFP_ORDER 5 /* 32 pages */
  518. #else
  519. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  520. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. if (unlikely(PageCompound(page)))
  540. page = (struct page *)page_private(page);
  541. BUG_ON(!PageSlab(page));
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. BUG_ON(!PageSlab(page));
  553. return (struct slab *)page->lru.prev;
  554. }
  555. static inline struct kmem_cache *virt_to_cache(const void *obj)
  556. {
  557. struct page *page = virt_to_page(obj);
  558. return page_get_cache(page);
  559. }
  560. static inline struct slab *virt_to_slab(const void *obj)
  561. {
  562. struct page *page = virt_to_page(obj);
  563. return page_get_slab(page);
  564. }
  565. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  566. unsigned int idx)
  567. {
  568. return slab->s_mem + cache->buffer_size * idx;
  569. }
  570. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  571. struct slab *slab, void *obj)
  572. {
  573. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  574. }
  575. /*
  576. * These are the default caches for kmalloc. Custom caches can have other sizes.
  577. */
  578. struct cache_sizes malloc_sizes[] = {
  579. #define CACHE(x) { .cs_size = (x) },
  580. #include <linux/kmalloc_sizes.h>
  581. CACHE(ULONG_MAX)
  582. #undef CACHE
  583. };
  584. EXPORT_SYMBOL(malloc_sizes);
  585. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  586. struct cache_names {
  587. char *name;
  588. char *name_dma;
  589. };
  590. static struct cache_names __initdata cache_names[] = {
  591. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  592. #include <linux/kmalloc_sizes.h>
  593. {NULL,}
  594. #undef CACHE
  595. };
  596. static struct arraycache_init initarray_cache __initdata =
  597. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  598. static struct arraycache_init initarray_generic =
  599. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  600. /* internal cache of cache description objs */
  601. static struct kmem_cache cache_cache = {
  602. .batchcount = 1,
  603. .limit = BOOT_CPUCACHE_ENTRIES,
  604. .shared = 1,
  605. .buffer_size = sizeof(struct kmem_cache),
  606. .name = "kmem_cache",
  607. #if DEBUG
  608. .obj_size = sizeof(struct kmem_cache),
  609. #endif
  610. };
  611. #ifdef CONFIG_LOCKDEP
  612. /*
  613. * Slab sometimes uses the kmalloc slabs to store the slab headers
  614. * for other slabs "off slab".
  615. * The locking for this is tricky in that it nests within the locks
  616. * of all other slabs in a few places; to deal with this special
  617. * locking we put on-slab caches into a separate lock-class.
  618. */
  619. static struct lock_class_key on_slab_key;
  620. static inline void init_lock_keys(struct cache_sizes *s)
  621. {
  622. int q;
  623. for (q = 0; q < MAX_NUMNODES; q++) {
  624. if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
  625. continue;
  626. lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
  627. &on_slab_key);
  628. }
  629. }
  630. #else
  631. static inline void init_lock_keys(struct cache_sizes *s)
  632. {
  633. }
  634. #endif
  635. /* Guard access to the cache-chain. */
  636. static DEFINE_MUTEX(cache_chain_mutex);
  637. static struct list_head cache_chain;
  638. /*
  639. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  640. * are possibly freeable under pressure
  641. *
  642. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  643. */
  644. atomic_t slab_reclaim_pages;
  645. /*
  646. * chicken and egg problem: delay the per-cpu array allocation
  647. * until the general caches are up.
  648. */
  649. static enum {
  650. NONE,
  651. PARTIAL_AC,
  652. PARTIAL_L3,
  653. FULL
  654. } g_cpucache_up;
  655. /*
  656. * used by boot code to determine if it can use slab based allocator
  657. */
  658. int slab_is_available(void)
  659. {
  660. return g_cpucache_up == FULL;
  661. }
  662. static DEFINE_PER_CPU(struct work_struct, reap_work);
  663. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  664. {
  665. return cachep->array[smp_processor_id()];
  666. }
  667. static inline struct kmem_cache *__find_general_cachep(size_t size,
  668. gfp_t gfpflags)
  669. {
  670. struct cache_sizes *csizep = malloc_sizes;
  671. #if DEBUG
  672. /* This happens if someone tries to call
  673. * kmem_cache_create(), or __kmalloc(), before
  674. * the generic caches are initialized.
  675. */
  676. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  677. #endif
  678. while (size > csizep->cs_size)
  679. csizep++;
  680. /*
  681. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  682. * has cs_{dma,}cachep==NULL. Thus no special case
  683. * for large kmalloc calls required.
  684. */
  685. if (unlikely(gfpflags & GFP_DMA))
  686. return csizep->cs_dmacachep;
  687. return csizep->cs_cachep;
  688. }
  689. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  690. {
  691. return __find_general_cachep(size, gfpflags);
  692. }
  693. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  694. {
  695. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  696. }
  697. /*
  698. * Calculate the number of objects and left-over bytes for a given buffer size.
  699. */
  700. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  701. size_t align, int flags, size_t *left_over,
  702. unsigned int *num)
  703. {
  704. int nr_objs;
  705. size_t mgmt_size;
  706. size_t slab_size = PAGE_SIZE << gfporder;
  707. /*
  708. * The slab management structure can be either off the slab or
  709. * on it. For the latter case, the memory allocated for a
  710. * slab is used for:
  711. *
  712. * - The struct slab
  713. * - One kmem_bufctl_t for each object
  714. * - Padding to respect alignment of @align
  715. * - @buffer_size bytes for each object
  716. *
  717. * If the slab management structure is off the slab, then the
  718. * alignment will already be calculated into the size. Because
  719. * the slabs are all pages aligned, the objects will be at the
  720. * correct alignment when allocated.
  721. */
  722. if (flags & CFLGS_OFF_SLAB) {
  723. mgmt_size = 0;
  724. nr_objs = slab_size / buffer_size;
  725. if (nr_objs > SLAB_LIMIT)
  726. nr_objs = SLAB_LIMIT;
  727. } else {
  728. /*
  729. * Ignore padding for the initial guess. The padding
  730. * is at most @align-1 bytes, and @buffer_size is at
  731. * least @align. In the worst case, this result will
  732. * be one greater than the number of objects that fit
  733. * into the memory allocation when taking the padding
  734. * into account.
  735. */
  736. nr_objs = (slab_size - sizeof(struct slab)) /
  737. (buffer_size + sizeof(kmem_bufctl_t));
  738. /*
  739. * This calculated number will be either the right
  740. * amount, or one greater than what we want.
  741. */
  742. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  743. > slab_size)
  744. nr_objs--;
  745. if (nr_objs > SLAB_LIMIT)
  746. nr_objs = SLAB_LIMIT;
  747. mgmt_size = slab_mgmt_size(nr_objs, align);
  748. }
  749. *num = nr_objs;
  750. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  751. }
  752. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  753. static void __slab_error(const char *function, struct kmem_cache *cachep,
  754. char *msg)
  755. {
  756. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  757. function, cachep->name, msg);
  758. dump_stack();
  759. }
  760. #ifdef CONFIG_NUMA
  761. /*
  762. * Special reaping functions for NUMA systems called from cache_reap().
  763. * These take care of doing round robin flushing of alien caches (containing
  764. * objects freed on different nodes from which they were allocated) and the
  765. * flushing of remote pcps by calling drain_node_pages.
  766. */
  767. static DEFINE_PER_CPU(unsigned long, reap_node);
  768. static void init_reap_node(int cpu)
  769. {
  770. int node;
  771. node = next_node(cpu_to_node(cpu), node_online_map);
  772. if (node == MAX_NUMNODES)
  773. node = first_node(node_online_map);
  774. __get_cpu_var(reap_node) = node;
  775. }
  776. static void next_reap_node(void)
  777. {
  778. int node = __get_cpu_var(reap_node);
  779. /*
  780. * Also drain per cpu pages on remote zones
  781. */
  782. if (node != numa_node_id())
  783. drain_node_pages(node);
  784. node = next_node(node, node_online_map);
  785. if (unlikely(node >= MAX_NUMNODES))
  786. node = first_node(node_online_map);
  787. __get_cpu_var(reap_node) = node;
  788. }
  789. #else
  790. #define init_reap_node(cpu) do { } while (0)
  791. #define next_reap_node(void) do { } while (0)
  792. #endif
  793. /*
  794. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  795. * via the workqueue/eventd.
  796. * Add the CPU number into the expiration time to minimize the possibility of
  797. * the CPUs getting into lockstep and contending for the global cache chain
  798. * lock.
  799. */
  800. static void __devinit start_cpu_timer(int cpu)
  801. {
  802. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  803. /*
  804. * When this gets called from do_initcalls via cpucache_init(),
  805. * init_workqueues() has already run, so keventd will be setup
  806. * at that time.
  807. */
  808. if (keventd_up() && reap_work->func == NULL) {
  809. init_reap_node(cpu);
  810. INIT_WORK(reap_work, cache_reap, NULL);
  811. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  812. }
  813. }
  814. static struct array_cache *alloc_arraycache(int node, int entries,
  815. int batchcount)
  816. {
  817. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  818. struct array_cache *nc = NULL;
  819. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  820. if (nc) {
  821. nc->avail = 0;
  822. nc->limit = entries;
  823. nc->batchcount = batchcount;
  824. nc->touched = 0;
  825. spin_lock_init(&nc->lock);
  826. }
  827. return nc;
  828. }
  829. /*
  830. * Transfer objects in one arraycache to another.
  831. * Locking must be handled by the caller.
  832. *
  833. * Return the number of entries transferred.
  834. */
  835. static int transfer_objects(struct array_cache *to,
  836. struct array_cache *from, unsigned int max)
  837. {
  838. /* Figure out how many entries to transfer */
  839. int nr = min(min(from->avail, max), to->limit - to->avail);
  840. if (!nr)
  841. return 0;
  842. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  843. sizeof(void *) *nr);
  844. from->avail -= nr;
  845. to->avail += nr;
  846. to->touched = 1;
  847. return nr;
  848. }
  849. #ifdef CONFIG_NUMA
  850. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  851. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  852. static struct array_cache **alloc_alien_cache(int node, int limit)
  853. {
  854. struct array_cache **ac_ptr;
  855. int memsize = sizeof(void *) * MAX_NUMNODES;
  856. int i;
  857. if (limit > 1)
  858. limit = 12;
  859. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  860. if (ac_ptr) {
  861. for_each_node(i) {
  862. if (i == node || !node_online(i)) {
  863. ac_ptr[i] = NULL;
  864. continue;
  865. }
  866. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  867. if (!ac_ptr[i]) {
  868. for (i--; i <= 0; i--)
  869. kfree(ac_ptr[i]);
  870. kfree(ac_ptr);
  871. return NULL;
  872. }
  873. }
  874. }
  875. return ac_ptr;
  876. }
  877. static void free_alien_cache(struct array_cache **ac_ptr)
  878. {
  879. int i;
  880. if (!ac_ptr)
  881. return;
  882. for_each_node(i)
  883. kfree(ac_ptr[i]);
  884. kfree(ac_ptr);
  885. }
  886. static void __drain_alien_cache(struct kmem_cache *cachep,
  887. struct array_cache *ac, int node)
  888. {
  889. struct kmem_list3 *rl3 = cachep->nodelists[node];
  890. if (ac->avail) {
  891. spin_lock(&rl3->list_lock);
  892. /*
  893. * Stuff objects into the remote nodes shared array first.
  894. * That way we could avoid the overhead of putting the objects
  895. * into the free lists and getting them back later.
  896. */
  897. if (rl3->shared)
  898. transfer_objects(rl3->shared, ac, ac->limit);
  899. free_block(cachep, ac->entry, ac->avail, node);
  900. ac->avail = 0;
  901. spin_unlock(&rl3->list_lock);
  902. }
  903. }
  904. /*
  905. * Called from cache_reap() to regularly drain alien caches round robin.
  906. */
  907. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  908. {
  909. int node = __get_cpu_var(reap_node);
  910. if (l3->alien) {
  911. struct array_cache *ac = l3->alien[node];
  912. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  913. __drain_alien_cache(cachep, ac, node);
  914. spin_unlock_irq(&ac->lock);
  915. }
  916. }
  917. }
  918. static void drain_alien_cache(struct kmem_cache *cachep,
  919. struct array_cache **alien)
  920. {
  921. int i = 0;
  922. struct array_cache *ac;
  923. unsigned long flags;
  924. for_each_online_node(i) {
  925. ac = alien[i];
  926. if (ac) {
  927. spin_lock_irqsave(&ac->lock, flags);
  928. __drain_alien_cache(cachep, ac, i);
  929. spin_unlock_irqrestore(&ac->lock, flags);
  930. }
  931. }
  932. }
  933. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  934. {
  935. struct slab *slabp = virt_to_slab(objp);
  936. int nodeid = slabp->nodeid;
  937. struct kmem_list3 *l3;
  938. struct array_cache *alien = NULL;
  939. /*
  940. * Make sure we are not freeing a object from another node to the array
  941. * cache on this cpu.
  942. */
  943. if (likely(slabp->nodeid == numa_node_id()))
  944. return 0;
  945. l3 = cachep->nodelists[numa_node_id()];
  946. STATS_INC_NODEFREES(cachep);
  947. if (l3->alien && l3->alien[nodeid]) {
  948. alien = l3->alien[nodeid];
  949. spin_lock(&alien->lock);
  950. if (unlikely(alien->avail == alien->limit)) {
  951. STATS_INC_ACOVERFLOW(cachep);
  952. __drain_alien_cache(cachep, alien, nodeid);
  953. }
  954. alien->entry[alien->avail++] = objp;
  955. spin_unlock(&alien->lock);
  956. } else {
  957. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  958. free_block(cachep, &objp, 1, nodeid);
  959. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  960. }
  961. return 1;
  962. }
  963. #else
  964. #define drain_alien_cache(cachep, alien) do { } while (0)
  965. #define reap_alien(cachep, l3) do { } while (0)
  966. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  967. {
  968. return (struct array_cache **) 0x01020304ul;
  969. }
  970. static inline void free_alien_cache(struct array_cache **ac_ptr)
  971. {
  972. }
  973. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  974. {
  975. return 0;
  976. }
  977. #endif
  978. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  979. unsigned long action, void *hcpu)
  980. {
  981. long cpu = (long)hcpu;
  982. struct kmem_cache *cachep;
  983. struct kmem_list3 *l3 = NULL;
  984. int node = cpu_to_node(cpu);
  985. int memsize = sizeof(struct kmem_list3);
  986. switch (action) {
  987. case CPU_UP_PREPARE:
  988. mutex_lock(&cache_chain_mutex);
  989. /*
  990. * We need to do this right in the beginning since
  991. * alloc_arraycache's are going to use this list.
  992. * kmalloc_node allows us to add the slab to the right
  993. * kmem_list3 and not this cpu's kmem_list3
  994. */
  995. list_for_each_entry(cachep, &cache_chain, next) {
  996. /*
  997. * Set up the size64 kmemlist for cpu before we can
  998. * begin anything. Make sure some other cpu on this
  999. * node has not already allocated this
  1000. */
  1001. if (!cachep->nodelists[node]) {
  1002. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1003. if (!l3)
  1004. goto bad;
  1005. kmem_list3_init(l3);
  1006. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1007. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1008. /*
  1009. * The l3s don't come and go as CPUs come and
  1010. * go. cache_chain_mutex is sufficient
  1011. * protection here.
  1012. */
  1013. cachep->nodelists[node] = l3;
  1014. }
  1015. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1016. cachep->nodelists[node]->free_limit =
  1017. (1 + nr_cpus_node(node)) *
  1018. cachep->batchcount + cachep->num;
  1019. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1020. }
  1021. /*
  1022. * Now we can go ahead with allocating the shared arrays and
  1023. * array caches
  1024. */
  1025. list_for_each_entry(cachep, &cache_chain, next) {
  1026. struct array_cache *nc;
  1027. struct array_cache *shared;
  1028. struct array_cache **alien;
  1029. nc = alloc_arraycache(node, cachep->limit,
  1030. cachep->batchcount);
  1031. if (!nc)
  1032. goto bad;
  1033. shared = alloc_arraycache(node,
  1034. cachep->shared * cachep->batchcount,
  1035. 0xbaadf00d);
  1036. if (!shared)
  1037. goto bad;
  1038. alien = alloc_alien_cache(node, cachep->limit);
  1039. if (!alien)
  1040. goto bad;
  1041. cachep->array[cpu] = nc;
  1042. l3 = cachep->nodelists[node];
  1043. BUG_ON(!l3);
  1044. spin_lock_irq(&l3->list_lock);
  1045. if (!l3->shared) {
  1046. /*
  1047. * We are serialised from CPU_DEAD or
  1048. * CPU_UP_CANCELLED by the cpucontrol lock
  1049. */
  1050. l3->shared = shared;
  1051. shared = NULL;
  1052. }
  1053. #ifdef CONFIG_NUMA
  1054. if (!l3->alien) {
  1055. l3->alien = alien;
  1056. alien = NULL;
  1057. }
  1058. #endif
  1059. spin_unlock_irq(&l3->list_lock);
  1060. kfree(shared);
  1061. free_alien_cache(alien);
  1062. }
  1063. mutex_unlock(&cache_chain_mutex);
  1064. break;
  1065. case CPU_ONLINE:
  1066. start_cpu_timer(cpu);
  1067. break;
  1068. #ifdef CONFIG_HOTPLUG_CPU
  1069. case CPU_DEAD:
  1070. /*
  1071. * Even if all the cpus of a node are down, we don't free the
  1072. * kmem_list3 of any cache. This to avoid a race between
  1073. * cpu_down, and a kmalloc allocation from another cpu for
  1074. * memory from the node of the cpu going down. The list3
  1075. * structure is usually allocated from kmem_cache_create() and
  1076. * gets destroyed at kmem_cache_destroy().
  1077. */
  1078. /* fall thru */
  1079. case CPU_UP_CANCELED:
  1080. mutex_lock(&cache_chain_mutex);
  1081. list_for_each_entry(cachep, &cache_chain, next) {
  1082. struct array_cache *nc;
  1083. struct array_cache *shared;
  1084. struct array_cache **alien;
  1085. cpumask_t mask;
  1086. mask = node_to_cpumask(node);
  1087. /* cpu is dead; no one can alloc from it. */
  1088. nc = cachep->array[cpu];
  1089. cachep->array[cpu] = NULL;
  1090. l3 = cachep->nodelists[node];
  1091. if (!l3)
  1092. goto free_array_cache;
  1093. spin_lock_irq(&l3->list_lock);
  1094. /* Free limit for this kmem_list3 */
  1095. l3->free_limit -= cachep->batchcount;
  1096. if (nc)
  1097. free_block(cachep, nc->entry, nc->avail, node);
  1098. if (!cpus_empty(mask)) {
  1099. spin_unlock_irq(&l3->list_lock);
  1100. goto free_array_cache;
  1101. }
  1102. shared = l3->shared;
  1103. if (shared) {
  1104. free_block(cachep, l3->shared->entry,
  1105. l3->shared->avail, node);
  1106. l3->shared = NULL;
  1107. }
  1108. alien = l3->alien;
  1109. l3->alien = NULL;
  1110. spin_unlock_irq(&l3->list_lock);
  1111. kfree(shared);
  1112. if (alien) {
  1113. drain_alien_cache(cachep, alien);
  1114. free_alien_cache(alien);
  1115. }
  1116. free_array_cache:
  1117. kfree(nc);
  1118. }
  1119. /*
  1120. * In the previous loop, all the objects were freed to
  1121. * the respective cache's slabs, now we can go ahead and
  1122. * shrink each nodelist to its limit.
  1123. */
  1124. list_for_each_entry(cachep, &cache_chain, next) {
  1125. l3 = cachep->nodelists[node];
  1126. if (!l3)
  1127. continue;
  1128. drain_freelist(cachep, l3, l3->free_objects);
  1129. }
  1130. mutex_unlock(&cache_chain_mutex);
  1131. break;
  1132. #endif
  1133. }
  1134. return NOTIFY_OK;
  1135. bad:
  1136. mutex_unlock(&cache_chain_mutex);
  1137. return NOTIFY_BAD;
  1138. }
  1139. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1140. &cpuup_callback, NULL, 0
  1141. };
  1142. /*
  1143. * swap the static kmem_list3 with kmalloced memory
  1144. */
  1145. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1146. int nodeid)
  1147. {
  1148. struct kmem_list3 *ptr;
  1149. BUG_ON(cachep->nodelists[nodeid] != list);
  1150. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1151. BUG_ON(!ptr);
  1152. local_irq_disable();
  1153. memcpy(ptr, list, sizeof(struct kmem_list3));
  1154. /*
  1155. * Do not assume that spinlocks can be initialized via memcpy:
  1156. */
  1157. spin_lock_init(&ptr->list_lock);
  1158. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1159. cachep->nodelists[nodeid] = ptr;
  1160. local_irq_enable();
  1161. }
  1162. /*
  1163. * Initialisation. Called after the page allocator have been initialised and
  1164. * before smp_init().
  1165. */
  1166. void __init kmem_cache_init(void)
  1167. {
  1168. size_t left_over;
  1169. struct cache_sizes *sizes;
  1170. struct cache_names *names;
  1171. int i;
  1172. int order;
  1173. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1174. kmem_list3_init(&initkmem_list3[i]);
  1175. if (i < MAX_NUMNODES)
  1176. cache_cache.nodelists[i] = NULL;
  1177. }
  1178. /*
  1179. * Fragmentation resistance on low memory - only use bigger
  1180. * page orders on machines with more than 32MB of memory.
  1181. */
  1182. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1183. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1184. /* Bootstrap is tricky, because several objects are allocated
  1185. * from caches that do not exist yet:
  1186. * 1) initialize the cache_cache cache: it contains the struct
  1187. * kmem_cache structures of all caches, except cache_cache itself:
  1188. * cache_cache is statically allocated.
  1189. * Initially an __init data area is used for the head array and the
  1190. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1191. * array at the end of the bootstrap.
  1192. * 2) Create the first kmalloc cache.
  1193. * The struct kmem_cache for the new cache is allocated normally.
  1194. * An __init data area is used for the head array.
  1195. * 3) Create the remaining kmalloc caches, with minimally sized
  1196. * head arrays.
  1197. * 4) Replace the __init data head arrays for cache_cache and the first
  1198. * kmalloc cache with kmalloc allocated arrays.
  1199. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1200. * the other cache's with kmalloc allocated memory.
  1201. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1202. */
  1203. /* 1) create the cache_cache */
  1204. INIT_LIST_HEAD(&cache_chain);
  1205. list_add(&cache_cache.next, &cache_chain);
  1206. cache_cache.colour_off = cache_line_size();
  1207. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1208. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1209. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1210. cache_line_size());
  1211. for (order = 0; order < MAX_ORDER; order++) {
  1212. cache_estimate(order, cache_cache.buffer_size,
  1213. cache_line_size(), 0, &left_over, &cache_cache.num);
  1214. if (cache_cache.num)
  1215. break;
  1216. }
  1217. BUG_ON(!cache_cache.num);
  1218. cache_cache.gfporder = order;
  1219. cache_cache.colour = left_over / cache_cache.colour_off;
  1220. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1221. sizeof(struct slab), cache_line_size());
  1222. /* 2+3) create the kmalloc caches */
  1223. sizes = malloc_sizes;
  1224. names = cache_names;
  1225. /*
  1226. * Initialize the caches that provide memory for the array cache and the
  1227. * kmem_list3 structures first. Without this, further allocations will
  1228. * bug.
  1229. */
  1230. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1231. sizes[INDEX_AC].cs_size,
  1232. ARCH_KMALLOC_MINALIGN,
  1233. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1234. NULL, NULL);
  1235. if (INDEX_AC != INDEX_L3) {
  1236. sizes[INDEX_L3].cs_cachep =
  1237. kmem_cache_create(names[INDEX_L3].name,
  1238. sizes[INDEX_L3].cs_size,
  1239. ARCH_KMALLOC_MINALIGN,
  1240. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1241. NULL, NULL);
  1242. }
  1243. slab_early_init = 0;
  1244. while (sizes->cs_size != ULONG_MAX) {
  1245. /*
  1246. * For performance, all the general caches are L1 aligned.
  1247. * This should be particularly beneficial on SMP boxes, as it
  1248. * eliminates "false sharing".
  1249. * Note for systems short on memory removing the alignment will
  1250. * allow tighter packing of the smaller caches.
  1251. */
  1252. if (!sizes->cs_cachep) {
  1253. sizes->cs_cachep = kmem_cache_create(names->name,
  1254. sizes->cs_size,
  1255. ARCH_KMALLOC_MINALIGN,
  1256. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1257. NULL, NULL);
  1258. }
  1259. init_lock_keys(sizes);
  1260. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1261. sizes->cs_size,
  1262. ARCH_KMALLOC_MINALIGN,
  1263. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1264. SLAB_PANIC,
  1265. NULL, NULL);
  1266. sizes++;
  1267. names++;
  1268. }
  1269. /* 4) Replace the bootstrap head arrays */
  1270. {
  1271. struct array_cache *ptr;
  1272. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1273. local_irq_disable();
  1274. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1275. memcpy(ptr, cpu_cache_get(&cache_cache),
  1276. sizeof(struct arraycache_init));
  1277. /*
  1278. * Do not assume that spinlocks can be initialized via memcpy:
  1279. */
  1280. spin_lock_init(&ptr->lock);
  1281. cache_cache.array[smp_processor_id()] = ptr;
  1282. local_irq_enable();
  1283. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1284. local_irq_disable();
  1285. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1286. != &initarray_generic.cache);
  1287. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1288. sizeof(struct arraycache_init));
  1289. /*
  1290. * Do not assume that spinlocks can be initialized via memcpy:
  1291. */
  1292. spin_lock_init(&ptr->lock);
  1293. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1294. ptr;
  1295. local_irq_enable();
  1296. }
  1297. /* 5) Replace the bootstrap kmem_list3's */
  1298. {
  1299. int node;
  1300. /* Replace the static kmem_list3 structures for the boot cpu */
  1301. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1302. numa_node_id());
  1303. for_each_online_node(node) {
  1304. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1305. &initkmem_list3[SIZE_AC + node], node);
  1306. if (INDEX_AC != INDEX_L3) {
  1307. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1308. &initkmem_list3[SIZE_L3 + node],
  1309. node);
  1310. }
  1311. }
  1312. }
  1313. /* 6) resize the head arrays to their final sizes */
  1314. {
  1315. struct kmem_cache *cachep;
  1316. mutex_lock(&cache_chain_mutex);
  1317. list_for_each_entry(cachep, &cache_chain, next)
  1318. enable_cpucache(cachep);
  1319. mutex_unlock(&cache_chain_mutex);
  1320. }
  1321. /* Done! */
  1322. g_cpucache_up = FULL;
  1323. /*
  1324. * Register a cpu startup notifier callback that initializes
  1325. * cpu_cache_get for all new cpus
  1326. */
  1327. register_cpu_notifier(&cpucache_notifier);
  1328. /*
  1329. * The reap timers are started later, with a module init call: That part
  1330. * of the kernel is not yet operational.
  1331. */
  1332. }
  1333. static int __init cpucache_init(void)
  1334. {
  1335. int cpu;
  1336. /*
  1337. * Register the timers that return unneeded pages to the page allocator
  1338. */
  1339. for_each_online_cpu(cpu)
  1340. start_cpu_timer(cpu);
  1341. return 0;
  1342. }
  1343. __initcall(cpucache_init);
  1344. /*
  1345. * Interface to system's page allocator. No need to hold the cache-lock.
  1346. *
  1347. * If we requested dmaable memory, we will get it. Even if we
  1348. * did not request dmaable memory, we might get it, but that
  1349. * would be relatively rare and ignorable.
  1350. */
  1351. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1352. {
  1353. struct page *page;
  1354. int nr_pages;
  1355. int i;
  1356. #ifndef CONFIG_MMU
  1357. /*
  1358. * Nommu uses slab's for process anonymous memory allocations, and thus
  1359. * requires __GFP_COMP to properly refcount higher order allocations
  1360. */
  1361. flags |= __GFP_COMP;
  1362. #endif
  1363. flags |= cachep->gfpflags;
  1364. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1365. if (!page)
  1366. return NULL;
  1367. nr_pages = (1 << cachep->gfporder);
  1368. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1369. atomic_add(nr_pages, &slab_reclaim_pages);
  1370. add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
  1371. for (i = 0; i < nr_pages; i++)
  1372. __SetPageSlab(page + i);
  1373. return page_address(page);
  1374. }
  1375. /*
  1376. * Interface to system's page release.
  1377. */
  1378. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1379. {
  1380. unsigned long i = (1 << cachep->gfporder);
  1381. struct page *page = virt_to_page(addr);
  1382. const unsigned long nr_freed = i;
  1383. sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
  1384. while (i--) {
  1385. BUG_ON(!PageSlab(page));
  1386. __ClearPageSlab(page);
  1387. page++;
  1388. }
  1389. if (current->reclaim_state)
  1390. current->reclaim_state->reclaimed_slab += nr_freed;
  1391. free_pages((unsigned long)addr, cachep->gfporder);
  1392. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1393. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1394. }
  1395. static void kmem_rcu_free(struct rcu_head *head)
  1396. {
  1397. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1398. struct kmem_cache *cachep = slab_rcu->cachep;
  1399. kmem_freepages(cachep, slab_rcu->addr);
  1400. if (OFF_SLAB(cachep))
  1401. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1402. }
  1403. #if DEBUG
  1404. #ifdef CONFIG_DEBUG_PAGEALLOC
  1405. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1406. unsigned long caller)
  1407. {
  1408. int size = obj_size(cachep);
  1409. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1410. if (size < 5 * sizeof(unsigned long))
  1411. return;
  1412. *addr++ = 0x12345678;
  1413. *addr++ = caller;
  1414. *addr++ = smp_processor_id();
  1415. size -= 3 * sizeof(unsigned long);
  1416. {
  1417. unsigned long *sptr = &caller;
  1418. unsigned long svalue;
  1419. while (!kstack_end(sptr)) {
  1420. svalue = *sptr++;
  1421. if (kernel_text_address(svalue)) {
  1422. *addr++ = svalue;
  1423. size -= sizeof(unsigned long);
  1424. if (size <= sizeof(unsigned long))
  1425. break;
  1426. }
  1427. }
  1428. }
  1429. *addr++ = 0x87654321;
  1430. }
  1431. #endif
  1432. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1433. {
  1434. int size = obj_size(cachep);
  1435. addr = &((char *)addr)[obj_offset(cachep)];
  1436. memset(addr, val, size);
  1437. *(unsigned char *)(addr + size - 1) = POISON_END;
  1438. }
  1439. static void dump_line(char *data, int offset, int limit)
  1440. {
  1441. int i;
  1442. printk(KERN_ERR "%03x:", offset);
  1443. for (i = 0; i < limit; i++)
  1444. printk(" %02x", (unsigned char)data[offset + i]);
  1445. printk("\n");
  1446. }
  1447. #endif
  1448. #if DEBUG
  1449. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1450. {
  1451. int i, size;
  1452. char *realobj;
  1453. if (cachep->flags & SLAB_RED_ZONE) {
  1454. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1455. *dbg_redzone1(cachep, objp),
  1456. *dbg_redzone2(cachep, objp));
  1457. }
  1458. if (cachep->flags & SLAB_STORE_USER) {
  1459. printk(KERN_ERR "Last user: [<%p>]",
  1460. *dbg_userword(cachep, objp));
  1461. print_symbol("(%s)",
  1462. (unsigned long)*dbg_userword(cachep, objp));
  1463. printk("\n");
  1464. }
  1465. realobj = (char *)objp + obj_offset(cachep);
  1466. size = obj_size(cachep);
  1467. for (i = 0; i < size && lines; i += 16, lines--) {
  1468. int limit;
  1469. limit = 16;
  1470. if (i + limit > size)
  1471. limit = size - i;
  1472. dump_line(realobj, i, limit);
  1473. }
  1474. }
  1475. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1476. {
  1477. char *realobj;
  1478. int size, i;
  1479. int lines = 0;
  1480. realobj = (char *)objp + obj_offset(cachep);
  1481. size = obj_size(cachep);
  1482. for (i = 0; i < size; i++) {
  1483. char exp = POISON_FREE;
  1484. if (i == size - 1)
  1485. exp = POISON_END;
  1486. if (realobj[i] != exp) {
  1487. int limit;
  1488. /* Mismatch ! */
  1489. /* Print header */
  1490. if (lines == 0) {
  1491. printk(KERN_ERR
  1492. "Slab corruption: start=%p, len=%d\n",
  1493. realobj, size);
  1494. print_objinfo(cachep, objp, 0);
  1495. }
  1496. /* Hexdump the affected line */
  1497. i = (i / 16) * 16;
  1498. limit = 16;
  1499. if (i + limit > size)
  1500. limit = size - i;
  1501. dump_line(realobj, i, limit);
  1502. i += 16;
  1503. lines++;
  1504. /* Limit to 5 lines */
  1505. if (lines > 5)
  1506. break;
  1507. }
  1508. }
  1509. if (lines != 0) {
  1510. /* Print some data about the neighboring objects, if they
  1511. * exist:
  1512. */
  1513. struct slab *slabp = virt_to_slab(objp);
  1514. unsigned int objnr;
  1515. objnr = obj_to_index(cachep, slabp, objp);
  1516. if (objnr) {
  1517. objp = index_to_obj(cachep, slabp, objnr - 1);
  1518. realobj = (char *)objp + obj_offset(cachep);
  1519. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1520. realobj, size);
  1521. print_objinfo(cachep, objp, 2);
  1522. }
  1523. if (objnr + 1 < cachep->num) {
  1524. objp = index_to_obj(cachep, slabp, objnr + 1);
  1525. realobj = (char *)objp + obj_offset(cachep);
  1526. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1527. realobj, size);
  1528. print_objinfo(cachep, objp, 2);
  1529. }
  1530. }
  1531. }
  1532. #endif
  1533. #if DEBUG
  1534. /**
  1535. * slab_destroy_objs - destroy a slab and its objects
  1536. * @cachep: cache pointer being destroyed
  1537. * @slabp: slab pointer being destroyed
  1538. *
  1539. * Call the registered destructor for each object in a slab that is being
  1540. * destroyed.
  1541. */
  1542. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1543. {
  1544. int i;
  1545. for (i = 0; i < cachep->num; i++) {
  1546. void *objp = index_to_obj(cachep, slabp, i);
  1547. if (cachep->flags & SLAB_POISON) {
  1548. #ifdef CONFIG_DEBUG_PAGEALLOC
  1549. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1550. OFF_SLAB(cachep))
  1551. kernel_map_pages(virt_to_page(objp),
  1552. cachep->buffer_size / PAGE_SIZE, 1);
  1553. else
  1554. check_poison_obj(cachep, objp);
  1555. #else
  1556. check_poison_obj(cachep, objp);
  1557. #endif
  1558. }
  1559. if (cachep->flags & SLAB_RED_ZONE) {
  1560. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1561. slab_error(cachep, "start of a freed object "
  1562. "was overwritten");
  1563. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1564. slab_error(cachep, "end of a freed object "
  1565. "was overwritten");
  1566. }
  1567. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1568. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1569. }
  1570. }
  1571. #else
  1572. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1573. {
  1574. if (cachep->dtor) {
  1575. int i;
  1576. for (i = 0; i < cachep->num; i++) {
  1577. void *objp = index_to_obj(cachep, slabp, i);
  1578. (cachep->dtor) (objp, cachep, 0);
  1579. }
  1580. }
  1581. }
  1582. #endif
  1583. /**
  1584. * slab_destroy - destroy and release all objects in a slab
  1585. * @cachep: cache pointer being destroyed
  1586. * @slabp: slab pointer being destroyed
  1587. *
  1588. * Destroy all the objs in a slab, and release the mem back to the system.
  1589. * Before calling the slab must have been unlinked from the cache. The
  1590. * cache-lock is not held/needed.
  1591. */
  1592. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1593. {
  1594. void *addr = slabp->s_mem - slabp->colouroff;
  1595. slab_destroy_objs(cachep, slabp);
  1596. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1597. struct slab_rcu *slab_rcu;
  1598. slab_rcu = (struct slab_rcu *)slabp;
  1599. slab_rcu->cachep = cachep;
  1600. slab_rcu->addr = addr;
  1601. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1602. } else {
  1603. kmem_freepages(cachep, addr);
  1604. if (OFF_SLAB(cachep))
  1605. kmem_cache_free(cachep->slabp_cache, slabp);
  1606. }
  1607. }
  1608. /*
  1609. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1610. * size of kmem_list3.
  1611. */
  1612. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1613. {
  1614. int node;
  1615. for_each_online_node(node) {
  1616. cachep->nodelists[node] = &initkmem_list3[index + node];
  1617. cachep->nodelists[node]->next_reap = jiffies +
  1618. REAPTIMEOUT_LIST3 +
  1619. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1620. }
  1621. }
  1622. /**
  1623. * calculate_slab_order - calculate size (page order) of slabs
  1624. * @cachep: pointer to the cache that is being created
  1625. * @size: size of objects to be created in this cache.
  1626. * @align: required alignment for the objects.
  1627. * @flags: slab allocation flags
  1628. *
  1629. * Also calculates the number of objects per slab.
  1630. *
  1631. * This could be made much more intelligent. For now, try to avoid using
  1632. * high order pages for slabs. When the gfp() functions are more friendly
  1633. * towards high-order requests, this should be changed.
  1634. */
  1635. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1636. size_t size, size_t align, unsigned long flags)
  1637. {
  1638. unsigned long offslab_limit;
  1639. size_t left_over = 0;
  1640. int gfporder;
  1641. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1642. unsigned int num;
  1643. size_t remainder;
  1644. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1645. if (!num)
  1646. continue;
  1647. if (flags & CFLGS_OFF_SLAB) {
  1648. /*
  1649. * Max number of objs-per-slab for caches which
  1650. * use off-slab slabs. Needed to avoid a possible
  1651. * looping condition in cache_grow().
  1652. */
  1653. offslab_limit = size - sizeof(struct slab);
  1654. offslab_limit /= sizeof(kmem_bufctl_t);
  1655. if (num > offslab_limit)
  1656. break;
  1657. }
  1658. /* Found something acceptable - save it away */
  1659. cachep->num = num;
  1660. cachep->gfporder = gfporder;
  1661. left_over = remainder;
  1662. /*
  1663. * A VFS-reclaimable slab tends to have most allocations
  1664. * as GFP_NOFS and we really don't want to have to be allocating
  1665. * higher-order pages when we are unable to shrink dcache.
  1666. */
  1667. if (flags & SLAB_RECLAIM_ACCOUNT)
  1668. break;
  1669. /*
  1670. * Large number of objects is good, but very large slabs are
  1671. * currently bad for the gfp()s.
  1672. */
  1673. if (gfporder >= slab_break_gfp_order)
  1674. break;
  1675. /*
  1676. * Acceptable internal fragmentation?
  1677. */
  1678. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1679. break;
  1680. }
  1681. return left_over;
  1682. }
  1683. static void setup_cpu_cache(struct kmem_cache *cachep)
  1684. {
  1685. if (g_cpucache_up == FULL) {
  1686. enable_cpucache(cachep);
  1687. return;
  1688. }
  1689. if (g_cpucache_up == NONE) {
  1690. /*
  1691. * Note: the first kmem_cache_create must create the cache
  1692. * that's used by kmalloc(24), otherwise the creation of
  1693. * further caches will BUG().
  1694. */
  1695. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1696. /*
  1697. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1698. * the first cache, then we need to set up all its list3s,
  1699. * otherwise the creation of further caches will BUG().
  1700. */
  1701. set_up_list3s(cachep, SIZE_AC);
  1702. if (INDEX_AC == INDEX_L3)
  1703. g_cpucache_up = PARTIAL_L3;
  1704. else
  1705. g_cpucache_up = PARTIAL_AC;
  1706. } else {
  1707. cachep->array[smp_processor_id()] =
  1708. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1709. if (g_cpucache_up == PARTIAL_AC) {
  1710. set_up_list3s(cachep, SIZE_L3);
  1711. g_cpucache_up = PARTIAL_L3;
  1712. } else {
  1713. int node;
  1714. for_each_online_node(node) {
  1715. cachep->nodelists[node] =
  1716. kmalloc_node(sizeof(struct kmem_list3),
  1717. GFP_KERNEL, node);
  1718. BUG_ON(!cachep->nodelists[node]);
  1719. kmem_list3_init(cachep->nodelists[node]);
  1720. }
  1721. }
  1722. }
  1723. cachep->nodelists[numa_node_id()]->next_reap =
  1724. jiffies + REAPTIMEOUT_LIST3 +
  1725. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1726. cpu_cache_get(cachep)->avail = 0;
  1727. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1728. cpu_cache_get(cachep)->batchcount = 1;
  1729. cpu_cache_get(cachep)->touched = 0;
  1730. cachep->batchcount = 1;
  1731. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1732. }
  1733. /**
  1734. * kmem_cache_create - Create a cache.
  1735. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1736. * @size: The size of objects to be created in this cache.
  1737. * @align: The required alignment for the objects.
  1738. * @flags: SLAB flags
  1739. * @ctor: A constructor for the objects.
  1740. * @dtor: A destructor for the objects.
  1741. *
  1742. * Returns a ptr to the cache on success, NULL on failure.
  1743. * Cannot be called within a int, but can be interrupted.
  1744. * The @ctor is run when new pages are allocated by the cache
  1745. * and the @dtor is run before the pages are handed back.
  1746. *
  1747. * @name must be valid until the cache is destroyed. This implies that
  1748. * the module calling this has to destroy the cache before getting unloaded.
  1749. *
  1750. * The flags are
  1751. *
  1752. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1753. * to catch references to uninitialised memory.
  1754. *
  1755. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1756. * for buffer overruns.
  1757. *
  1758. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1759. * cacheline. This can be beneficial if you're counting cycles as closely
  1760. * as davem.
  1761. */
  1762. struct kmem_cache *
  1763. kmem_cache_create (const char *name, size_t size, size_t align,
  1764. unsigned long flags,
  1765. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1766. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1767. {
  1768. size_t left_over, slab_size, ralign;
  1769. struct kmem_cache *cachep = NULL, *pc;
  1770. /*
  1771. * Sanity checks... these are all serious usage bugs.
  1772. */
  1773. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1774. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1775. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1776. name);
  1777. BUG();
  1778. }
  1779. /*
  1780. * Prevent CPUs from coming and going.
  1781. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1782. */
  1783. lock_cpu_hotplug();
  1784. mutex_lock(&cache_chain_mutex);
  1785. list_for_each_entry(pc, &cache_chain, next) {
  1786. mm_segment_t old_fs = get_fs();
  1787. char tmp;
  1788. int res;
  1789. /*
  1790. * This happens when the module gets unloaded and doesn't
  1791. * destroy its slab cache and no-one else reuses the vmalloc
  1792. * area of the module. Print a warning.
  1793. */
  1794. set_fs(KERNEL_DS);
  1795. res = __get_user(tmp, pc->name);
  1796. set_fs(old_fs);
  1797. if (res) {
  1798. printk("SLAB: cache with size %d has lost its name\n",
  1799. pc->buffer_size);
  1800. continue;
  1801. }
  1802. if (!strcmp(pc->name, name)) {
  1803. printk("kmem_cache_create: duplicate cache %s\n", name);
  1804. dump_stack();
  1805. goto oops;
  1806. }
  1807. }
  1808. #if DEBUG
  1809. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1810. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1811. /* No constructor, but inital state check requested */
  1812. printk(KERN_ERR "%s: No con, but init state check "
  1813. "requested - %s\n", __FUNCTION__, name);
  1814. flags &= ~SLAB_DEBUG_INITIAL;
  1815. }
  1816. #if FORCED_DEBUG
  1817. /*
  1818. * Enable redzoning and last user accounting, except for caches with
  1819. * large objects, if the increased size would increase the object size
  1820. * above the next power of two: caches with object sizes just above a
  1821. * power of two have a significant amount of internal fragmentation.
  1822. */
  1823. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1824. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1825. if (!(flags & SLAB_DESTROY_BY_RCU))
  1826. flags |= SLAB_POISON;
  1827. #endif
  1828. if (flags & SLAB_DESTROY_BY_RCU)
  1829. BUG_ON(flags & SLAB_POISON);
  1830. #endif
  1831. if (flags & SLAB_DESTROY_BY_RCU)
  1832. BUG_ON(dtor);
  1833. /*
  1834. * Always checks flags, a caller might be expecting debug support which
  1835. * isn't available.
  1836. */
  1837. BUG_ON(flags & ~CREATE_MASK);
  1838. /*
  1839. * Check that size is in terms of words. This is needed to avoid
  1840. * unaligned accesses for some archs when redzoning is used, and makes
  1841. * sure any on-slab bufctl's are also correctly aligned.
  1842. */
  1843. if (size & (BYTES_PER_WORD - 1)) {
  1844. size += (BYTES_PER_WORD - 1);
  1845. size &= ~(BYTES_PER_WORD - 1);
  1846. }
  1847. /* calculate the final buffer alignment: */
  1848. /* 1) arch recommendation: can be overridden for debug */
  1849. if (flags & SLAB_HWCACHE_ALIGN) {
  1850. /*
  1851. * Default alignment: as specified by the arch code. Except if
  1852. * an object is really small, then squeeze multiple objects into
  1853. * one cacheline.
  1854. */
  1855. ralign = cache_line_size();
  1856. while (size <= ralign / 2)
  1857. ralign /= 2;
  1858. } else {
  1859. ralign = BYTES_PER_WORD;
  1860. }
  1861. /* 2) arch mandated alignment: disables debug if necessary */
  1862. if (ralign < ARCH_SLAB_MINALIGN) {
  1863. ralign = ARCH_SLAB_MINALIGN;
  1864. if (ralign > BYTES_PER_WORD)
  1865. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1866. }
  1867. /* 3) caller mandated alignment: disables debug if necessary */
  1868. if (ralign < align) {
  1869. ralign = align;
  1870. if (ralign > BYTES_PER_WORD)
  1871. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1872. }
  1873. /*
  1874. * 4) Store it. Note that the debug code below can reduce
  1875. * the alignment to BYTES_PER_WORD.
  1876. */
  1877. align = ralign;
  1878. /* Get cache's description obj. */
  1879. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1880. if (!cachep)
  1881. goto oops;
  1882. #if DEBUG
  1883. cachep->obj_size = size;
  1884. if (flags & SLAB_RED_ZONE) {
  1885. /* redzoning only works with word aligned caches */
  1886. align = BYTES_PER_WORD;
  1887. /* add space for red zone words */
  1888. cachep->obj_offset += BYTES_PER_WORD;
  1889. size += 2 * BYTES_PER_WORD;
  1890. }
  1891. if (flags & SLAB_STORE_USER) {
  1892. /* user store requires word alignment and
  1893. * one word storage behind the end of the real
  1894. * object.
  1895. */
  1896. align = BYTES_PER_WORD;
  1897. size += BYTES_PER_WORD;
  1898. }
  1899. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1900. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1901. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1902. cachep->obj_offset += PAGE_SIZE - size;
  1903. size = PAGE_SIZE;
  1904. }
  1905. #endif
  1906. #endif
  1907. /*
  1908. * Determine if the slab management is 'on' or 'off' slab.
  1909. * (bootstrapping cannot cope with offslab caches so don't do
  1910. * it too early on.)
  1911. */
  1912. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  1913. /*
  1914. * Size is large, assume best to place the slab management obj
  1915. * off-slab (should allow better packing of objs).
  1916. */
  1917. flags |= CFLGS_OFF_SLAB;
  1918. size = ALIGN(size, align);
  1919. left_over = calculate_slab_order(cachep, size, align, flags);
  1920. if (!cachep->num) {
  1921. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1922. kmem_cache_free(&cache_cache, cachep);
  1923. cachep = NULL;
  1924. goto oops;
  1925. }
  1926. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1927. + sizeof(struct slab), align);
  1928. /*
  1929. * If the slab has been placed off-slab, and we have enough space then
  1930. * move it on-slab. This is at the expense of any extra colouring.
  1931. */
  1932. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1933. flags &= ~CFLGS_OFF_SLAB;
  1934. left_over -= slab_size;
  1935. }
  1936. if (flags & CFLGS_OFF_SLAB) {
  1937. /* really off slab. No need for manual alignment */
  1938. slab_size =
  1939. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1940. }
  1941. cachep->colour_off = cache_line_size();
  1942. /* Offset must be a multiple of the alignment. */
  1943. if (cachep->colour_off < align)
  1944. cachep->colour_off = align;
  1945. cachep->colour = left_over / cachep->colour_off;
  1946. cachep->slab_size = slab_size;
  1947. cachep->flags = flags;
  1948. cachep->gfpflags = 0;
  1949. if (flags & SLAB_CACHE_DMA)
  1950. cachep->gfpflags |= GFP_DMA;
  1951. cachep->buffer_size = size;
  1952. if (flags & CFLGS_OFF_SLAB)
  1953. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1954. cachep->ctor = ctor;
  1955. cachep->dtor = dtor;
  1956. cachep->name = name;
  1957. setup_cpu_cache(cachep);
  1958. /* cache setup completed, link it into the list */
  1959. list_add(&cachep->next, &cache_chain);
  1960. oops:
  1961. if (!cachep && (flags & SLAB_PANIC))
  1962. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1963. name);
  1964. mutex_unlock(&cache_chain_mutex);
  1965. unlock_cpu_hotplug();
  1966. return cachep;
  1967. }
  1968. EXPORT_SYMBOL(kmem_cache_create);
  1969. #if DEBUG
  1970. static void check_irq_off(void)
  1971. {
  1972. BUG_ON(!irqs_disabled());
  1973. }
  1974. static void check_irq_on(void)
  1975. {
  1976. BUG_ON(irqs_disabled());
  1977. }
  1978. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1979. {
  1980. #ifdef CONFIG_SMP
  1981. check_irq_off();
  1982. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1983. #endif
  1984. }
  1985. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1986. {
  1987. #ifdef CONFIG_SMP
  1988. check_irq_off();
  1989. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1990. #endif
  1991. }
  1992. #else
  1993. #define check_irq_off() do { } while(0)
  1994. #define check_irq_on() do { } while(0)
  1995. #define check_spinlock_acquired(x) do { } while(0)
  1996. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1997. #endif
  1998. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1999. struct array_cache *ac,
  2000. int force, int node);
  2001. static void do_drain(void *arg)
  2002. {
  2003. struct kmem_cache *cachep = arg;
  2004. struct array_cache *ac;
  2005. int node = numa_node_id();
  2006. check_irq_off();
  2007. ac = cpu_cache_get(cachep);
  2008. spin_lock(&cachep->nodelists[node]->list_lock);
  2009. free_block(cachep, ac->entry, ac->avail, node);
  2010. spin_unlock(&cachep->nodelists[node]->list_lock);
  2011. ac->avail = 0;
  2012. }
  2013. static void drain_cpu_caches(struct kmem_cache *cachep)
  2014. {
  2015. struct kmem_list3 *l3;
  2016. int node;
  2017. on_each_cpu(do_drain, cachep, 1, 1);
  2018. check_irq_on();
  2019. for_each_online_node(node) {
  2020. l3 = cachep->nodelists[node];
  2021. if (l3 && l3->alien)
  2022. drain_alien_cache(cachep, l3->alien);
  2023. }
  2024. for_each_online_node(node) {
  2025. l3 = cachep->nodelists[node];
  2026. if (l3)
  2027. drain_array(cachep, l3, l3->shared, 1, node);
  2028. }
  2029. }
  2030. /*
  2031. * Remove slabs from the list of free slabs.
  2032. * Specify the number of slabs to drain in tofree.
  2033. *
  2034. * Returns the actual number of slabs released.
  2035. */
  2036. static int drain_freelist(struct kmem_cache *cache,
  2037. struct kmem_list3 *l3, int tofree)
  2038. {
  2039. struct list_head *p;
  2040. int nr_freed;
  2041. struct slab *slabp;
  2042. nr_freed = 0;
  2043. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2044. spin_lock_irq(&l3->list_lock);
  2045. p = l3->slabs_free.prev;
  2046. if (p == &l3->slabs_free) {
  2047. spin_unlock_irq(&l3->list_lock);
  2048. goto out;
  2049. }
  2050. slabp = list_entry(p, struct slab, list);
  2051. #if DEBUG
  2052. BUG_ON(slabp->inuse);
  2053. #endif
  2054. list_del(&slabp->list);
  2055. /*
  2056. * Safe to drop the lock. The slab is no longer linked
  2057. * to the cache.
  2058. */
  2059. l3->free_objects -= cache->num;
  2060. spin_unlock_irq(&l3->list_lock);
  2061. slab_destroy(cache, slabp);
  2062. nr_freed++;
  2063. }
  2064. out:
  2065. return nr_freed;
  2066. }
  2067. static int __cache_shrink(struct kmem_cache *cachep)
  2068. {
  2069. int ret = 0, i = 0;
  2070. struct kmem_list3 *l3;
  2071. drain_cpu_caches(cachep);
  2072. check_irq_on();
  2073. for_each_online_node(i) {
  2074. l3 = cachep->nodelists[i];
  2075. if (!l3)
  2076. continue;
  2077. drain_freelist(cachep, l3, l3->free_objects);
  2078. ret += !list_empty(&l3->slabs_full) ||
  2079. !list_empty(&l3->slabs_partial);
  2080. }
  2081. return (ret ? 1 : 0);
  2082. }
  2083. /**
  2084. * kmem_cache_shrink - Shrink a cache.
  2085. * @cachep: The cache to shrink.
  2086. *
  2087. * Releases as many slabs as possible for a cache.
  2088. * To help debugging, a zero exit status indicates all slabs were released.
  2089. */
  2090. int kmem_cache_shrink(struct kmem_cache *cachep)
  2091. {
  2092. BUG_ON(!cachep || in_interrupt());
  2093. return __cache_shrink(cachep);
  2094. }
  2095. EXPORT_SYMBOL(kmem_cache_shrink);
  2096. /**
  2097. * kmem_cache_destroy - delete a cache
  2098. * @cachep: the cache to destroy
  2099. *
  2100. * Remove a struct kmem_cache object from the slab cache.
  2101. * Returns 0 on success.
  2102. *
  2103. * It is expected this function will be called by a module when it is
  2104. * unloaded. This will remove the cache completely, and avoid a duplicate
  2105. * cache being allocated each time a module is loaded and unloaded, if the
  2106. * module doesn't have persistent in-kernel storage across loads and unloads.
  2107. *
  2108. * The cache must be empty before calling this function.
  2109. *
  2110. * The caller must guarantee that noone will allocate memory from the cache
  2111. * during the kmem_cache_destroy().
  2112. */
  2113. int kmem_cache_destroy(struct kmem_cache *cachep)
  2114. {
  2115. int i;
  2116. struct kmem_list3 *l3;
  2117. BUG_ON(!cachep || in_interrupt());
  2118. /* Don't let CPUs to come and go */
  2119. lock_cpu_hotplug();
  2120. /* Find the cache in the chain of caches. */
  2121. mutex_lock(&cache_chain_mutex);
  2122. /*
  2123. * the chain is never empty, cache_cache is never destroyed
  2124. */
  2125. list_del(&cachep->next);
  2126. mutex_unlock(&cache_chain_mutex);
  2127. if (__cache_shrink(cachep)) {
  2128. slab_error(cachep, "Can't free all objects");
  2129. mutex_lock(&cache_chain_mutex);
  2130. list_add(&cachep->next, &cache_chain);
  2131. mutex_unlock(&cache_chain_mutex);
  2132. unlock_cpu_hotplug();
  2133. return 1;
  2134. }
  2135. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2136. synchronize_rcu();
  2137. for_each_online_cpu(i)
  2138. kfree(cachep->array[i]);
  2139. /* NUMA: free the list3 structures */
  2140. for_each_online_node(i) {
  2141. l3 = cachep->nodelists[i];
  2142. if (l3) {
  2143. kfree(l3->shared);
  2144. free_alien_cache(l3->alien);
  2145. kfree(l3);
  2146. }
  2147. }
  2148. kmem_cache_free(&cache_cache, cachep);
  2149. unlock_cpu_hotplug();
  2150. return 0;
  2151. }
  2152. EXPORT_SYMBOL(kmem_cache_destroy);
  2153. /* Get the memory for a slab management obj. */
  2154. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2155. int colour_off, gfp_t local_flags,
  2156. int nodeid)
  2157. {
  2158. struct slab *slabp;
  2159. if (OFF_SLAB(cachep)) {
  2160. /* Slab management obj is off-slab. */
  2161. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2162. local_flags, nodeid);
  2163. if (!slabp)
  2164. return NULL;
  2165. } else {
  2166. slabp = objp + colour_off;
  2167. colour_off += cachep->slab_size;
  2168. }
  2169. slabp->inuse = 0;
  2170. slabp->colouroff = colour_off;
  2171. slabp->s_mem = objp + colour_off;
  2172. slabp->nodeid = nodeid;
  2173. return slabp;
  2174. }
  2175. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2176. {
  2177. return (kmem_bufctl_t *) (slabp + 1);
  2178. }
  2179. static void cache_init_objs(struct kmem_cache *cachep,
  2180. struct slab *slabp, unsigned long ctor_flags)
  2181. {
  2182. int i;
  2183. for (i = 0; i < cachep->num; i++) {
  2184. void *objp = index_to_obj(cachep, slabp, i);
  2185. #if DEBUG
  2186. /* need to poison the objs? */
  2187. if (cachep->flags & SLAB_POISON)
  2188. poison_obj(cachep, objp, POISON_FREE);
  2189. if (cachep->flags & SLAB_STORE_USER)
  2190. *dbg_userword(cachep, objp) = NULL;
  2191. if (cachep->flags & SLAB_RED_ZONE) {
  2192. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2193. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2194. }
  2195. /*
  2196. * Constructors are not allowed to allocate memory from the same
  2197. * cache which they are a constructor for. Otherwise, deadlock.
  2198. * They must also be threaded.
  2199. */
  2200. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2201. cachep->ctor(objp + obj_offset(cachep), cachep,
  2202. ctor_flags);
  2203. if (cachep->flags & SLAB_RED_ZONE) {
  2204. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2205. slab_error(cachep, "constructor overwrote the"
  2206. " end of an object");
  2207. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2208. slab_error(cachep, "constructor overwrote the"
  2209. " start of an object");
  2210. }
  2211. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2212. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2213. kernel_map_pages(virt_to_page(objp),
  2214. cachep->buffer_size / PAGE_SIZE, 0);
  2215. #else
  2216. if (cachep->ctor)
  2217. cachep->ctor(objp, cachep, ctor_flags);
  2218. #endif
  2219. slab_bufctl(slabp)[i] = i + 1;
  2220. }
  2221. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2222. slabp->free = 0;
  2223. }
  2224. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2225. {
  2226. if (flags & SLAB_DMA)
  2227. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2228. else
  2229. BUG_ON(cachep->gfpflags & GFP_DMA);
  2230. }
  2231. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2232. int nodeid)
  2233. {
  2234. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2235. kmem_bufctl_t next;
  2236. slabp->inuse++;
  2237. next = slab_bufctl(slabp)[slabp->free];
  2238. #if DEBUG
  2239. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2240. WARN_ON(slabp->nodeid != nodeid);
  2241. #endif
  2242. slabp->free = next;
  2243. return objp;
  2244. }
  2245. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2246. void *objp, int nodeid)
  2247. {
  2248. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2249. #if DEBUG
  2250. /* Verify that the slab belongs to the intended node */
  2251. WARN_ON(slabp->nodeid != nodeid);
  2252. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2253. printk(KERN_ERR "slab: double free detected in cache "
  2254. "'%s', objp %p\n", cachep->name, objp);
  2255. BUG();
  2256. }
  2257. #endif
  2258. slab_bufctl(slabp)[objnr] = slabp->free;
  2259. slabp->free = objnr;
  2260. slabp->inuse--;
  2261. }
  2262. /*
  2263. * Map pages beginning at addr to the given cache and slab. This is required
  2264. * for the slab allocator to be able to lookup the cache and slab of a
  2265. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2266. */
  2267. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2268. void *addr)
  2269. {
  2270. int nr_pages;
  2271. struct page *page;
  2272. page = virt_to_page(addr);
  2273. nr_pages = 1;
  2274. if (likely(!PageCompound(page)))
  2275. nr_pages <<= cache->gfporder;
  2276. do {
  2277. page_set_cache(page, cache);
  2278. page_set_slab(page, slab);
  2279. page++;
  2280. } while (--nr_pages);
  2281. }
  2282. /*
  2283. * Grow (by 1) the number of slabs within a cache. This is called by
  2284. * kmem_cache_alloc() when there are no active objs left in a cache.
  2285. */
  2286. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2287. {
  2288. struct slab *slabp;
  2289. void *objp;
  2290. size_t offset;
  2291. gfp_t local_flags;
  2292. unsigned long ctor_flags;
  2293. struct kmem_list3 *l3;
  2294. /*
  2295. * Be lazy and only check for valid flags here, keeping it out of the
  2296. * critical path in kmem_cache_alloc().
  2297. */
  2298. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2299. if (flags & SLAB_NO_GROW)
  2300. return 0;
  2301. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2302. local_flags = (flags & SLAB_LEVEL_MASK);
  2303. if (!(local_flags & __GFP_WAIT))
  2304. /*
  2305. * Not allowed to sleep. Need to tell a constructor about
  2306. * this - it might need to know...
  2307. */
  2308. ctor_flags |= SLAB_CTOR_ATOMIC;
  2309. /* Take the l3 list lock to change the colour_next on this node */
  2310. check_irq_off();
  2311. l3 = cachep->nodelists[nodeid];
  2312. spin_lock(&l3->list_lock);
  2313. /* Get colour for the slab, and cal the next value. */
  2314. offset = l3->colour_next;
  2315. l3->colour_next++;
  2316. if (l3->colour_next >= cachep->colour)
  2317. l3->colour_next = 0;
  2318. spin_unlock(&l3->list_lock);
  2319. offset *= cachep->colour_off;
  2320. if (local_flags & __GFP_WAIT)
  2321. local_irq_enable();
  2322. /*
  2323. * The test for missing atomic flag is performed here, rather than
  2324. * the more obvious place, simply to reduce the critical path length
  2325. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2326. * will eventually be caught here (where it matters).
  2327. */
  2328. kmem_flagcheck(cachep, flags);
  2329. /*
  2330. * Get mem for the objs. Attempt to allocate a physical page from
  2331. * 'nodeid'.
  2332. */
  2333. objp = kmem_getpages(cachep, flags, nodeid);
  2334. if (!objp)
  2335. goto failed;
  2336. /* Get slab management. */
  2337. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2338. if (!slabp)
  2339. goto opps1;
  2340. slabp->nodeid = nodeid;
  2341. slab_map_pages(cachep, slabp, objp);
  2342. cache_init_objs(cachep, slabp, ctor_flags);
  2343. if (local_flags & __GFP_WAIT)
  2344. local_irq_disable();
  2345. check_irq_off();
  2346. spin_lock(&l3->list_lock);
  2347. /* Make slab active. */
  2348. list_add_tail(&slabp->list, &(l3->slabs_free));
  2349. STATS_INC_GROWN(cachep);
  2350. l3->free_objects += cachep->num;
  2351. spin_unlock(&l3->list_lock);
  2352. return 1;
  2353. opps1:
  2354. kmem_freepages(cachep, objp);
  2355. failed:
  2356. if (local_flags & __GFP_WAIT)
  2357. local_irq_disable();
  2358. return 0;
  2359. }
  2360. #if DEBUG
  2361. /*
  2362. * Perform extra freeing checks:
  2363. * - detect bad pointers.
  2364. * - POISON/RED_ZONE checking
  2365. * - destructor calls, for caches with POISON+dtor
  2366. */
  2367. static void kfree_debugcheck(const void *objp)
  2368. {
  2369. struct page *page;
  2370. if (!virt_addr_valid(objp)) {
  2371. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2372. (unsigned long)objp);
  2373. BUG();
  2374. }
  2375. page = virt_to_page(objp);
  2376. if (!PageSlab(page)) {
  2377. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2378. (unsigned long)objp);
  2379. BUG();
  2380. }
  2381. }
  2382. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2383. {
  2384. unsigned long redzone1, redzone2;
  2385. redzone1 = *dbg_redzone1(cache, obj);
  2386. redzone2 = *dbg_redzone2(cache, obj);
  2387. /*
  2388. * Redzone is ok.
  2389. */
  2390. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2391. return;
  2392. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2393. slab_error(cache, "double free detected");
  2394. else
  2395. slab_error(cache, "memory outside object was overwritten");
  2396. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2397. obj, redzone1, redzone2);
  2398. }
  2399. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2400. void *caller)
  2401. {
  2402. struct page *page;
  2403. unsigned int objnr;
  2404. struct slab *slabp;
  2405. objp -= obj_offset(cachep);
  2406. kfree_debugcheck(objp);
  2407. page = virt_to_page(objp);
  2408. slabp = page_get_slab(page);
  2409. if (cachep->flags & SLAB_RED_ZONE) {
  2410. verify_redzone_free(cachep, objp);
  2411. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2412. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2413. }
  2414. if (cachep->flags & SLAB_STORE_USER)
  2415. *dbg_userword(cachep, objp) = caller;
  2416. objnr = obj_to_index(cachep, slabp, objp);
  2417. BUG_ON(objnr >= cachep->num);
  2418. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2419. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2420. /*
  2421. * Need to call the slab's constructor so the caller can
  2422. * perform a verify of its state (debugging). Called without
  2423. * the cache-lock held.
  2424. */
  2425. cachep->ctor(objp + obj_offset(cachep),
  2426. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2427. }
  2428. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2429. /* we want to cache poison the object,
  2430. * call the destruction callback
  2431. */
  2432. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2433. }
  2434. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2435. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2436. #endif
  2437. if (cachep->flags & SLAB_POISON) {
  2438. #ifdef CONFIG_DEBUG_PAGEALLOC
  2439. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2440. store_stackinfo(cachep, objp, (unsigned long)caller);
  2441. kernel_map_pages(virt_to_page(objp),
  2442. cachep->buffer_size / PAGE_SIZE, 0);
  2443. } else {
  2444. poison_obj(cachep, objp, POISON_FREE);
  2445. }
  2446. #else
  2447. poison_obj(cachep, objp, POISON_FREE);
  2448. #endif
  2449. }
  2450. return objp;
  2451. }
  2452. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2453. {
  2454. kmem_bufctl_t i;
  2455. int entries = 0;
  2456. /* Check slab's freelist to see if this obj is there. */
  2457. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2458. entries++;
  2459. if (entries > cachep->num || i >= cachep->num)
  2460. goto bad;
  2461. }
  2462. if (entries != cachep->num - slabp->inuse) {
  2463. bad:
  2464. printk(KERN_ERR "slab: Internal list corruption detected in "
  2465. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2466. cachep->name, cachep->num, slabp, slabp->inuse);
  2467. for (i = 0;
  2468. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2469. i++) {
  2470. if (i % 16 == 0)
  2471. printk("\n%03x:", i);
  2472. printk(" %02x", ((unsigned char *)slabp)[i]);
  2473. }
  2474. printk("\n");
  2475. BUG();
  2476. }
  2477. }
  2478. #else
  2479. #define kfree_debugcheck(x) do { } while(0)
  2480. #define cache_free_debugcheck(x,objp,z) (objp)
  2481. #define check_slabp(x,y) do { } while(0)
  2482. #endif
  2483. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2484. {
  2485. int batchcount;
  2486. struct kmem_list3 *l3;
  2487. struct array_cache *ac;
  2488. check_irq_off();
  2489. ac = cpu_cache_get(cachep);
  2490. retry:
  2491. batchcount = ac->batchcount;
  2492. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2493. /*
  2494. * If there was little recent activity on this cache, then
  2495. * perform only a partial refill. Otherwise we could generate
  2496. * refill bouncing.
  2497. */
  2498. batchcount = BATCHREFILL_LIMIT;
  2499. }
  2500. l3 = cachep->nodelists[numa_node_id()];
  2501. BUG_ON(ac->avail > 0 || !l3);
  2502. spin_lock(&l3->list_lock);
  2503. /* See if we can refill from the shared array */
  2504. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2505. goto alloc_done;
  2506. while (batchcount > 0) {
  2507. struct list_head *entry;
  2508. struct slab *slabp;
  2509. /* Get slab alloc is to come from. */
  2510. entry = l3->slabs_partial.next;
  2511. if (entry == &l3->slabs_partial) {
  2512. l3->free_touched = 1;
  2513. entry = l3->slabs_free.next;
  2514. if (entry == &l3->slabs_free)
  2515. goto must_grow;
  2516. }
  2517. slabp = list_entry(entry, struct slab, list);
  2518. check_slabp(cachep, slabp);
  2519. check_spinlock_acquired(cachep);
  2520. while (slabp->inuse < cachep->num && batchcount--) {
  2521. STATS_INC_ALLOCED(cachep);
  2522. STATS_INC_ACTIVE(cachep);
  2523. STATS_SET_HIGH(cachep);
  2524. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2525. numa_node_id());
  2526. }
  2527. check_slabp(cachep, slabp);
  2528. /* move slabp to correct slabp list: */
  2529. list_del(&slabp->list);
  2530. if (slabp->free == BUFCTL_END)
  2531. list_add(&slabp->list, &l3->slabs_full);
  2532. else
  2533. list_add(&slabp->list, &l3->slabs_partial);
  2534. }
  2535. must_grow:
  2536. l3->free_objects -= ac->avail;
  2537. alloc_done:
  2538. spin_unlock(&l3->list_lock);
  2539. if (unlikely(!ac->avail)) {
  2540. int x;
  2541. x = cache_grow(cachep, flags, numa_node_id());
  2542. /* cache_grow can reenable interrupts, then ac could change. */
  2543. ac = cpu_cache_get(cachep);
  2544. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2545. return NULL;
  2546. if (!ac->avail) /* objects refilled by interrupt? */
  2547. goto retry;
  2548. }
  2549. ac->touched = 1;
  2550. return ac->entry[--ac->avail];
  2551. }
  2552. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2553. gfp_t flags)
  2554. {
  2555. might_sleep_if(flags & __GFP_WAIT);
  2556. #if DEBUG
  2557. kmem_flagcheck(cachep, flags);
  2558. #endif
  2559. }
  2560. #if DEBUG
  2561. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2562. gfp_t flags, void *objp, void *caller)
  2563. {
  2564. if (!objp)
  2565. return objp;
  2566. if (cachep->flags & SLAB_POISON) {
  2567. #ifdef CONFIG_DEBUG_PAGEALLOC
  2568. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2569. kernel_map_pages(virt_to_page(objp),
  2570. cachep->buffer_size / PAGE_SIZE, 1);
  2571. else
  2572. check_poison_obj(cachep, objp);
  2573. #else
  2574. check_poison_obj(cachep, objp);
  2575. #endif
  2576. poison_obj(cachep, objp, POISON_INUSE);
  2577. }
  2578. if (cachep->flags & SLAB_STORE_USER)
  2579. *dbg_userword(cachep, objp) = caller;
  2580. if (cachep->flags & SLAB_RED_ZONE) {
  2581. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2582. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2583. slab_error(cachep, "double free, or memory outside"
  2584. " object was overwritten");
  2585. printk(KERN_ERR
  2586. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2587. objp, *dbg_redzone1(cachep, objp),
  2588. *dbg_redzone2(cachep, objp));
  2589. }
  2590. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2591. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2592. }
  2593. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2594. {
  2595. struct slab *slabp;
  2596. unsigned objnr;
  2597. slabp = page_get_slab(virt_to_page(objp));
  2598. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2599. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2600. }
  2601. #endif
  2602. objp += obj_offset(cachep);
  2603. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2604. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2605. if (!(flags & __GFP_WAIT))
  2606. ctor_flags |= SLAB_CTOR_ATOMIC;
  2607. cachep->ctor(objp, cachep, ctor_flags);
  2608. }
  2609. return objp;
  2610. }
  2611. #else
  2612. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2613. #endif
  2614. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2615. {
  2616. void *objp;
  2617. struct array_cache *ac;
  2618. #ifdef CONFIG_NUMA
  2619. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2620. objp = alternate_node_alloc(cachep, flags);
  2621. if (objp != NULL)
  2622. return objp;
  2623. }
  2624. #endif
  2625. check_irq_off();
  2626. ac = cpu_cache_get(cachep);
  2627. if (likely(ac->avail)) {
  2628. STATS_INC_ALLOCHIT(cachep);
  2629. ac->touched = 1;
  2630. objp = ac->entry[--ac->avail];
  2631. } else {
  2632. STATS_INC_ALLOCMISS(cachep);
  2633. objp = cache_alloc_refill(cachep, flags);
  2634. }
  2635. return objp;
  2636. }
  2637. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2638. gfp_t flags, void *caller)
  2639. {
  2640. unsigned long save_flags;
  2641. void *objp;
  2642. cache_alloc_debugcheck_before(cachep, flags);
  2643. local_irq_save(save_flags);
  2644. objp = ____cache_alloc(cachep, flags);
  2645. local_irq_restore(save_flags);
  2646. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2647. caller);
  2648. prefetchw(objp);
  2649. return objp;
  2650. }
  2651. #ifdef CONFIG_NUMA
  2652. /*
  2653. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2654. *
  2655. * If we are in_interrupt, then process context, including cpusets and
  2656. * mempolicy, may not apply and should not be used for allocation policy.
  2657. */
  2658. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2659. {
  2660. int nid_alloc, nid_here;
  2661. if (in_interrupt())
  2662. return NULL;
  2663. nid_alloc = nid_here = numa_node_id();
  2664. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2665. nid_alloc = cpuset_mem_spread_node();
  2666. else if (current->mempolicy)
  2667. nid_alloc = slab_node(current->mempolicy);
  2668. if (nid_alloc != nid_here)
  2669. return __cache_alloc_node(cachep, flags, nid_alloc);
  2670. return NULL;
  2671. }
  2672. /*
  2673. * A interface to enable slab creation on nodeid
  2674. */
  2675. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2676. int nodeid)
  2677. {
  2678. struct list_head *entry;
  2679. struct slab *slabp;
  2680. struct kmem_list3 *l3;
  2681. void *obj;
  2682. int x;
  2683. l3 = cachep->nodelists[nodeid];
  2684. BUG_ON(!l3);
  2685. retry:
  2686. check_irq_off();
  2687. spin_lock(&l3->list_lock);
  2688. entry = l3->slabs_partial.next;
  2689. if (entry == &l3->slabs_partial) {
  2690. l3->free_touched = 1;
  2691. entry = l3->slabs_free.next;
  2692. if (entry == &l3->slabs_free)
  2693. goto must_grow;
  2694. }
  2695. slabp = list_entry(entry, struct slab, list);
  2696. check_spinlock_acquired_node(cachep, nodeid);
  2697. check_slabp(cachep, slabp);
  2698. STATS_INC_NODEALLOCS(cachep);
  2699. STATS_INC_ACTIVE(cachep);
  2700. STATS_SET_HIGH(cachep);
  2701. BUG_ON(slabp->inuse == cachep->num);
  2702. obj = slab_get_obj(cachep, slabp, nodeid);
  2703. check_slabp(cachep, slabp);
  2704. l3->free_objects--;
  2705. /* move slabp to correct slabp list: */
  2706. list_del(&slabp->list);
  2707. if (slabp->free == BUFCTL_END)
  2708. list_add(&slabp->list, &l3->slabs_full);
  2709. else
  2710. list_add(&slabp->list, &l3->slabs_partial);
  2711. spin_unlock(&l3->list_lock);
  2712. goto done;
  2713. must_grow:
  2714. spin_unlock(&l3->list_lock);
  2715. x = cache_grow(cachep, flags, nodeid);
  2716. if (!x)
  2717. return NULL;
  2718. goto retry;
  2719. done:
  2720. return obj;
  2721. }
  2722. #endif
  2723. /*
  2724. * Caller needs to acquire correct kmem_list's list_lock
  2725. */
  2726. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2727. int node)
  2728. {
  2729. int i;
  2730. struct kmem_list3 *l3;
  2731. for (i = 0; i < nr_objects; i++) {
  2732. void *objp = objpp[i];
  2733. struct slab *slabp;
  2734. slabp = virt_to_slab(objp);
  2735. l3 = cachep->nodelists[node];
  2736. list_del(&slabp->list);
  2737. check_spinlock_acquired_node(cachep, node);
  2738. check_slabp(cachep, slabp);
  2739. slab_put_obj(cachep, slabp, objp, node);
  2740. STATS_DEC_ACTIVE(cachep);
  2741. l3->free_objects++;
  2742. check_slabp(cachep, slabp);
  2743. /* fixup slab chains */
  2744. if (slabp->inuse == 0) {
  2745. if (l3->free_objects > l3->free_limit) {
  2746. l3->free_objects -= cachep->num;
  2747. slab_destroy(cachep, slabp);
  2748. } else {
  2749. list_add(&slabp->list, &l3->slabs_free);
  2750. }
  2751. } else {
  2752. /* Unconditionally move a slab to the end of the
  2753. * partial list on free - maximum time for the
  2754. * other objects to be freed, too.
  2755. */
  2756. list_add_tail(&slabp->list, &l3->slabs_partial);
  2757. }
  2758. }
  2759. }
  2760. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2761. {
  2762. int batchcount;
  2763. struct kmem_list3 *l3;
  2764. int node = numa_node_id();
  2765. batchcount = ac->batchcount;
  2766. #if DEBUG
  2767. BUG_ON(!batchcount || batchcount > ac->avail);
  2768. #endif
  2769. check_irq_off();
  2770. l3 = cachep->nodelists[node];
  2771. spin_lock(&l3->list_lock);
  2772. if (l3->shared) {
  2773. struct array_cache *shared_array = l3->shared;
  2774. int max = shared_array->limit - shared_array->avail;
  2775. if (max) {
  2776. if (batchcount > max)
  2777. batchcount = max;
  2778. memcpy(&(shared_array->entry[shared_array->avail]),
  2779. ac->entry, sizeof(void *) * batchcount);
  2780. shared_array->avail += batchcount;
  2781. goto free_done;
  2782. }
  2783. }
  2784. free_block(cachep, ac->entry, batchcount, node);
  2785. free_done:
  2786. #if STATS
  2787. {
  2788. int i = 0;
  2789. struct list_head *p;
  2790. p = l3->slabs_free.next;
  2791. while (p != &(l3->slabs_free)) {
  2792. struct slab *slabp;
  2793. slabp = list_entry(p, struct slab, list);
  2794. BUG_ON(slabp->inuse);
  2795. i++;
  2796. p = p->next;
  2797. }
  2798. STATS_SET_FREEABLE(cachep, i);
  2799. }
  2800. #endif
  2801. spin_unlock(&l3->list_lock);
  2802. ac->avail -= batchcount;
  2803. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2804. }
  2805. /*
  2806. * Release an obj back to its cache. If the obj has a constructed state, it must
  2807. * be in this state _before_ it is released. Called with disabled ints.
  2808. */
  2809. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2810. {
  2811. struct array_cache *ac = cpu_cache_get(cachep);
  2812. check_irq_off();
  2813. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2814. if (cache_free_alien(cachep, objp))
  2815. return;
  2816. if (likely(ac->avail < ac->limit)) {
  2817. STATS_INC_FREEHIT(cachep);
  2818. ac->entry[ac->avail++] = objp;
  2819. return;
  2820. } else {
  2821. STATS_INC_FREEMISS(cachep);
  2822. cache_flusharray(cachep, ac);
  2823. ac->entry[ac->avail++] = objp;
  2824. }
  2825. }
  2826. /**
  2827. * kmem_cache_alloc - Allocate an object
  2828. * @cachep: The cache to allocate from.
  2829. * @flags: See kmalloc().
  2830. *
  2831. * Allocate an object from this cache. The flags are only relevant
  2832. * if the cache has no available objects.
  2833. */
  2834. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2835. {
  2836. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2837. }
  2838. EXPORT_SYMBOL(kmem_cache_alloc);
  2839. /**
  2840. * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
  2841. * @cache: The cache to allocate from.
  2842. * @flags: See kmalloc().
  2843. *
  2844. * Allocate an object from this cache and set the allocated memory to zero.
  2845. * The flags are only relevant if the cache has no available objects.
  2846. */
  2847. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2848. {
  2849. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2850. if (ret)
  2851. memset(ret, 0, obj_size(cache));
  2852. return ret;
  2853. }
  2854. EXPORT_SYMBOL(kmem_cache_zalloc);
  2855. /**
  2856. * kmem_ptr_validate - check if an untrusted pointer might
  2857. * be a slab entry.
  2858. * @cachep: the cache we're checking against
  2859. * @ptr: pointer to validate
  2860. *
  2861. * This verifies that the untrusted pointer looks sane:
  2862. * it is _not_ a guarantee that the pointer is actually
  2863. * part of the slab cache in question, but it at least
  2864. * validates that the pointer can be dereferenced and
  2865. * looks half-way sane.
  2866. *
  2867. * Currently only used for dentry validation.
  2868. */
  2869. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2870. {
  2871. unsigned long addr = (unsigned long)ptr;
  2872. unsigned long min_addr = PAGE_OFFSET;
  2873. unsigned long align_mask = BYTES_PER_WORD - 1;
  2874. unsigned long size = cachep->buffer_size;
  2875. struct page *page;
  2876. if (unlikely(addr < min_addr))
  2877. goto out;
  2878. if (unlikely(addr > (unsigned long)high_memory - size))
  2879. goto out;
  2880. if (unlikely(addr & align_mask))
  2881. goto out;
  2882. if (unlikely(!kern_addr_valid(addr)))
  2883. goto out;
  2884. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2885. goto out;
  2886. page = virt_to_page(ptr);
  2887. if (unlikely(!PageSlab(page)))
  2888. goto out;
  2889. if (unlikely(page_get_cache(page) != cachep))
  2890. goto out;
  2891. return 1;
  2892. out:
  2893. return 0;
  2894. }
  2895. #ifdef CONFIG_NUMA
  2896. /**
  2897. * kmem_cache_alloc_node - Allocate an object on the specified node
  2898. * @cachep: The cache to allocate from.
  2899. * @flags: See kmalloc().
  2900. * @nodeid: node number of the target node.
  2901. *
  2902. * Identical to kmem_cache_alloc, except that this function is slow
  2903. * and can sleep. And it will allocate memory on the given node, which
  2904. * can improve the performance for cpu bound structures.
  2905. * New and improved: it will now make sure that the object gets
  2906. * put on the correct node list so that there is no false sharing.
  2907. */
  2908. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2909. {
  2910. unsigned long save_flags;
  2911. void *ptr;
  2912. cache_alloc_debugcheck_before(cachep, flags);
  2913. local_irq_save(save_flags);
  2914. if (nodeid == -1 || nodeid == numa_node_id() ||
  2915. !cachep->nodelists[nodeid])
  2916. ptr = ____cache_alloc(cachep, flags);
  2917. else
  2918. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2919. local_irq_restore(save_flags);
  2920. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2921. __builtin_return_address(0));
  2922. return ptr;
  2923. }
  2924. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2925. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2926. {
  2927. struct kmem_cache *cachep;
  2928. cachep = kmem_find_general_cachep(size, flags);
  2929. if (unlikely(cachep == NULL))
  2930. return NULL;
  2931. return kmem_cache_alloc_node(cachep, flags, node);
  2932. }
  2933. EXPORT_SYMBOL(kmalloc_node);
  2934. #endif
  2935. /**
  2936. * __do_kmalloc - allocate memory
  2937. * @size: how many bytes of memory are required.
  2938. * @flags: the type of memory to allocate (see kmalloc).
  2939. * @caller: function caller for debug tracking of the caller
  2940. */
  2941. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2942. void *caller)
  2943. {
  2944. struct kmem_cache *cachep;
  2945. /* If you want to save a few bytes .text space: replace
  2946. * __ with kmem_.
  2947. * Then kmalloc uses the uninlined functions instead of the inline
  2948. * functions.
  2949. */
  2950. cachep = __find_general_cachep(size, flags);
  2951. if (unlikely(cachep == NULL))
  2952. return NULL;
  2953. return __cache_alloc(cachep, flags, caller);
  2954. }
  2955. void *__kmalloc(size_t size, gfp_t flags)
  2956. {
  2957. #ifndef CONFIG_DEBUG_SLAB
  2958. return __do_kmalloc(size, flags, NULL);
  2959. #else
  2960. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2961. #endif
  2962. }
  2963. EXPORT_SYMBOL(__kmalloc);
  2964. #ifdef CONFIG_DEBUG_SLAB
  2965. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2966. {
  2967. return __do_kmalloc(size, flags, caller);
  2968. }
  2969. EXPORT_SYMBOL(__kmalloc_track_caller);
  2970. #endif
  2971. #ifdef CONFIG_SMP
  2972. /**
  2973. * __alloc_percpu - allocate one copy of the object for every present
  2974. * cpu in the system, zeroing them.
  2975. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2976. *
  2977. * @size: how many bytes of memory are required.
  2978. */
  2979. void *__alloc_percpu(size_t size)
  2980. {
  2981. int i;
  2982. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2983. if (!pdata)
  2984. return NULL;
  2985. /*
  2986. * Cannot use for_each_online_cpu since a cpu may come online
  2987. * and we have no way of figuring out how to fix the array
  2988. * that we have allocated then....
  2989. */
  2990. for_each_possible_cpu(i) {
  2991. int node = cpu_to_node(i);
  2992. if (node_online(node))
  2993. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2994. else
  2995. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2996. if (!pdata->ptrs[i])
  2997. goto unwind_oom;
  2998. memset(pdata->ptrs[i], 0, size);
  2999. }
  3000. /* Catch derefs w/o wrappers */
  3001. return (void *)(~(unsigned long)pdata);
  3002. unwind_oom:
  3003. while (--i >= 0) {
  3004. if (!cpu_possible(i))
  3005. continue;
  3006. kfree(pdata->ptrs[i]);
  3007. }
  3008. kfree(pdata);
  3009. return NULL;
  3010. }
  3011. EXPORT_SYMBOL(__alloc_percpu);
  3012. #endif
  3013. /**
  3014. * kmem_cache_free - Deallocate an object
  3015. * @cachep: The cache the allocation was from.
  3016. * @objp: The previously allocated object.
  3017. *
  3018. * Free an object which was previously allocated from this
  3019. * cache.
  3020. */
  3021. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3022. {
  3023. unsigned long flags;
  3024. BUG_ON(virt_to_cache(objp) != cachep);
  3025. local_irq_save(flags);
  3026. __cache_free(cachep, objp);
  3027. local_irq_restore(flags);
  3028. }
  3029. EXPORT_SYMBOL(kmem_cache_free);
  3030. /**
  3031. * kfree - free previously allocated memory
  3032. * @objp: pointer returned by kmalloc.
  3033. *
  3034. * If @objp is NULL, no operation is performed.
  3035. *
  3036. * Don't free memory not originally allocated by kmalloc()
  3037. * or you will run into trouble.
  3038. */
  3039. void kfree(const void *objp)
  3040. {
  3041. struct kmem_cache *c;
  3042. unsigned long flags;
  3043. if (unlikely(!objp))
  3044. return;
  3045. local_irq_save(flags);
  3046. kfree_debugcheck(objp);
  3047. c = virt_to_cache(objp);
  3048. debug_check_no_locks_freed(objp, obj_size(c));
  3049. __cache_free(c, (void *)objp);
  3050. local_irq_restore(flags);
  3051. }
  3052. EXPORT_SYMBOL(kfree);
  3053. #ifdef CONFIG_SMP
  3054. /**
  3055. * free_percpu - free previously allocated percpu memory
  3056. * @objp: pointer returned by alloc_percpu.
  3057. *
  3058. * Don't free memory not originally allocated by alloc_percpu()
  3059. * The complemented objp is to check for that.
  3060. */
  3061. void free_percpu(const void *objp)
  3062. {
  3063. int i;
  3064. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  3065. /*
  3066. * We allocate for all cpus so we cannot use for online cpu here.
  3067. */
  3068. for_each_possible_cpu(i)
  3069. kfree(p->ptrs[i]);
  3070. kfree(p);
  3071. }
  3072. EXPORT_SYMBOL(free_percpu);
  3073. #endif
  3074. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3075. {
  3076. return obj_size(cachep);
  3077. }
  3078. EXPORT_SYMBOL(kmem_cache_size);
  3079. const char *kmem_cache_name(struct kmem_cache *cachep)
  3080. {
  3081. return cachep->name;
  3082. }
  3083. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3084. /*
  3085. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3086. */
  3087. static int alloc_kmemlist(struct kmem_cache *cachep)
  3088. {
  3089. int node;
  3090. struct kmem_list3 *l3;
  3091. struct array_cache *new_shared;
  3092. struct array_cache **new_alien;
  3093. for_each_online_node(node) {
  3094. new_alien = alloc_alien_cache(node, cachep->limit);
  3095. if (!new_alien)
  3096. goto fail;
  3097. new_shared = alloc_arraycache(node,
  3098. cachep->shared*cachep->batchcount,
  3099. 0xbaadf00d);
  3100. if (!new_shared) {
  3101. free_alien_cache(new_alien);
  3102. goto fail;
  3103. }
  3104. l3 = cachep->nodelists[node];
  3105. if (l3) {
  3106. struct array_cache *shared = l3->shared;
  3107. spin_lock_irq(&l3->list_lock);
  3108. if (shared)
  3109. free_block(cachep, shared->entry,
  3110. shared->avail, node);
  3111. l3->shared = new_shared;
  3112. if (!l3->alien) {
  3113. l3->alien = new_alien;
  3114. new_alien = NULL;
  3115. }
  3116. l3->free_limit = (1 + nr_cpus_node(node)) *
  3117. cachep->batchcount + cachep->num;
  3118. spin_unlock_irq(&l3->list_lock);
  3119. kfree(shared);
  3120. free_alien_cache(new_alien);
  3121. continue;
  3122. }
  3123. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3124. if (!l3) {
  3125. free_alien_cache(new_alien);
  3126. kfree(new_shared);
  3127. goto fail;
  3128. }
  3129. kmem_list3_init(l3);
  3130. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3131. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3132. l3->shared = new_shared;
  3133. l3->alien = new_alien;
  3134. l3->free_limit = (1 + nr_cpus_node(node)) *
  3135. cachep->batchcount + cachep->num;
  3136. cachep->nodelists[node] = l3;
  3137. }
  3138. return 0;
  3139. fail:
  3140. if (!cachep->next.next) {
  3141. /* Cache is not active yet. Roll back what we did */
  3142. node--;
  3143. while (node >= 0) {
  3144. if (cachep->nodelists[node]) {
  3145. l3 = cachep->nodelists[node];
  3146. kfree(l3->shared);
  3147. free_alien_cache(l3->alien);
  3148. kfree(l3);
  3149. cachep->nodelists[node] = NULL;
  3150. }
  3151. node--;
  3152. }
  3153. }
  3154. return -ENOMEM;
  3155. }
  3156. struct ccupdate_struct {
  3157. struct kmem_cache *cachep;
  3158. struct array_cache *new[NR_CPUS];
  3159. };
  3160. static void do_ccupdate_local(void *info)
  3161. {
  3162. struct ccupdate_struct *new = info;
  3163. struct array_cache *old;
  3164. check_irq_off();
  3165. old = cpu_cache_get(new->cachep);
  3166. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3167. new->new[smp_processor_id()] = old;
  3168. }
  3169. /* Always called with the cache_chain_mutex held */
  3170. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3171. int batchcount, int shared)
  3172. {
  3173. struct ccupdate_struct new;
  3174. int i, err;
  3175. memset(&new.new, 0, sizeof(new.new));
  3176. for_each_online_cpu(i) {
  3177. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3178. batchcount);
  3179. if (!new.new[i]) {
  3180. for (i--; i >= 0; i--)
  3181. kfree(new.new[i]);
  3182. return -ENOMEM;
  3183. }
  3184. }
  3185. new.cachep = cachep;
  3186. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3187. check_irq_on();
  3188. cachep->batchcount = batchcount;
  3189. cachep->limit = limit;
  3190. cachep->shared = shared;
  3191. for_each_online_cpu(i) {
  3192. struct array_cache *ccold = new.new[i];
  3193. if (!ccold)
  3194. continue;
  3195. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3196. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3197. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3198. kfree(ccold);
  3199. }
  3200. err = alloc_kmemlist(cachep);
  3201. if (err) {
  3202. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3203. cachep->name, -err);
  3204. BUG();
  3205. }
  3206. return 0;
  3207. }
  3208. /* Called with cache_chain_mutex held always */
  3209. static void enable_cpucache(struct kmem_cache *cachep)
  3210. {
  3211. int err;
  3212. int limit, shared;
  3213. /*
  3214. * The head array serves three purposes:
  3215. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3216. * - reduce the number of spinlock operations.
  3217. * - reduce the number of linked list operations on the slab and
  3218. * bufctl chains: array operations are cheaper.
  3219. * The numbers are guessed, we should auto-tune as described by
  3220. * Bonwick.
  3221. */
  3222. if (cachep->buffer_size > 131072)
  3223. limit = 1;
  3224. else if (cachep->buffer_size > PAGE_SIZE)
  3225. limit = 8;
  3226. else if (cachep->buffer_size > 1024)
  3227. limit = 24;
  3228. else if (cachep->buffer_size > 256)
  3229. limit = 54;
  3230. else
  3231. limit = 120;
  3232. /*
  3233. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3234. * allocation behaviour: Most allocs on one cpu, most free operations
  3235. * on another cpu. For these cases, an efficient object passing between
  3236. * cpus is necessary. This is provided by a shared array. The array
  3237. * replaces Bonwick's magazine layer.
  3238. * On uniprocessor, it's functionally equivalent (but less efficient)
  3239. * to a larger limit. Thus disabled by default.
  3240. */
  3241. shared = 0;
  3242. #ifdef CONFIG_SMP
  3243. if (cachep->buffer_size <= PAGE_SIZE)
  3244. shared = 8;
  3245. #endif
  3246. #if DEBUG
  3247. /*
  3248. * With debugging enabled, large batchcount lead to excessively long
  3249. * periods with disabled local interrupts. Limit the batchcount
  3250. */
  3251. if (limit > 32)
  3252. limit = 32;
  3253. #endif
  3254. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3255. if (err)
  3256. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3257. cachep->name, -err);
  3258. }
  3259. /*
  3260. * Drain an array if it contains any elements taking the l3 lock only if
  3261. * necessary. Note that the l3 listlock also protects the array_cache
  3262. * if drain_array() is used on the shared array.
  3263. */
  3264. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3265. struct array_cache *ac, int force, int node)
  3266. {
  3267. int tofree;
  3268. if (!ac || !ac->avail)
  3269. return;
  3270. if (ac->touched && !force) {
  3271. ac->touched = 0;
  3272. } else {
  3273. spin_lock_irq(&l3->list_lock);
  3274. if (ac->avail) {
  3275. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3276. if (tofree > ac->avail)
  3277. tofree = (ac->avail + 1) / 2;
  3278. free_block(cachep, ac->entry, tofree, node);
  3279. ac->avail -= tofree;
  3280. memmove(ac->entry, &(ac->entry[tofree]),
  3281. sizeof(void *) * ac->avail);
  3282. }
  3283. spin_unlock_irq(&l3->list_lock);
  3284. }
  3285. }
  3286. /**
  3287. * cache_reap - Reclaim memory from caches.
  3288. * @unused: unused parameter
  3289. *
  3290. * Called from workqueue/eventd every few seconds.
  3291. * Purpose:
  3292. * - clear the per-cpu caches for this CPU.
  3293. * - return freeable pages to the main free memory pool.
  3294. *
  3295. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3296. * again on the next iteration.
  3297. */
  3298. static void cache_reap(void *unused)
  3299. {
  3300. struct kmem_cache *searchp;
  3301. struct kmem_list3 *l3;
  3302. int node = numa_node_id();
  3303. if (!mutex_trylock(&cache_chain_mutex)) {
  3304. /* Give up. Setup the next iteration. */
  3305. schedule_delayed_work(&__get_cpu_var(reap_work),
  3306. REAPTIMEOUT_CPUC);
  3307. return;
  3308. }
  3309. list_for_each_entry(searchp, &cache_chain, next) {
  3310. check_irq_on();
  3311. /*
  3312. * We only take the l3 lock if absolutely necessary and we
  3313. * have established with reasonable certainty that
  3314. * we can do some work if the lock was obtained.
  3315. */
  3316. l3 = searchp->nodelists[node];
  3317. reap_alien(searchp, l3);
  3318. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3319. /*
  3320. * These are racy checks but it does not matter
  3321. * if we skip one check or scan twice.
  3322. */
  3323. if (time_after(l3->next_reap, jiffies))
  3324. goto next;
  3325. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3326. drain_array(searchp, l3, l3->shared, 0, node);
  3327. if (l3->free_touched)
  3328. l3->free_touched = 0;
  3329. else {
  3330. int freed;
  3331. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3332. 5 * searchp->num - 1) / (5 * searchp->num));
  3333. STATS_ADD_REAPED(searchp, freed);
  3334. }
  3335. next:
  3336. cond_resched();
  3337. }
  3338. check_irq_on();
  3339. mutex_unlock(&cache_chain_mutex);
  3340. next_reap_node();
  3341. refresh_cpu_vm_stats(smp_processor_id());
  3342. /* Set up the next iteration */
  3343. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3344. }
  3345. #ifdef CONFIG_PROC_FS
  3346. static void print_slabinfo_header(struct seq_file *m)
  3347. {
  3348. /*
  3349. * Output format version, so at least we can change it
  3350. * without _too_ many complaints.
  3351. */
  3352. #if STATS
  3353. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3354. #else
  3355. seq_puts(m, "slabinfo - version: 2.1\n");
  3356. #endif
  3357. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3358. "<objperslab> <pagesperslab>");
  3359. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3360. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3361. #if STATS
  3362. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3363. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3364. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3365. #endif
  3366. seq_putc(m, '\n');
  3367. }
  3368. static void *s_start(struct seq_file *m, loff_t *pos)
  3369. {
  3370. loff_t n = *pos;
  3371. struct list_head *p;
  3372. mutex_lock(&cache_chain_mutex);
  3373. if (!n)
  3374. print_slabinfo_header(m);
  3375. p = cache_chain.next;
  3376. while (n--) {
  3377. p = p->next;
  3378. if (p == &cache_chain)
  3379. return NULL;
  3380. }
  3381. return list_entry(p, struct kmem_cache, next);
  3382. }
  3383. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3384. {
  3385. struct kmem_cache *cachep = p;
  3386. ++*pos;
  3387. return cachep->next.next == &cache_chain ?
  3388. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3389. }
  3390. static void s_stop(struct seq_file *m, void *p)
  3391. {
  3392. mutex_unlock(&cache_chain_mutex);
  3393. }
  3394. static int s_show(struct seq_file *m, void *p)
  3395. {
  3396. struct kmem_cache *cachep = p;
  3397. struct slab *slabp;
  3398. unsigned long active_objs;
  3399. unsigned long num_objs;
  3400. unsigned long active_slabs = 0;
  3401. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3402. const char *name;
  3403. char *error = NULL;
  3404. int node;
  3405. struct kmem_list3 *l3;
  3406. active_objs = 0;
  3407. num_slabs = 0;
  3408. for_each_online_node(node) {
  3409. l3 = cachep->nodelists[node];
  3410. if (!l3)
  3411. continue;
  3412. check_irq_on();
  3413. spin_lock_irq(&l3->list_lock);
  3414. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3415. if (slabp->inuse != cachep->num && !error)
  3416. error = "slabs_full accounting error";
  3417. active_objs += cachep->num;
  3418. active_slabs++;
  3419. }
  3420. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3421. if (slabp->inuse == cachep->num && !error)
  3422. error = "slabs_partial inuse accounting error";
  3423. if (!slabp->inuse && !error)
  3424. error = "slabs_partial/inuse accounting error";
  3425. active_objs += slabp->inuse;
  3426. active_slabs++;
  3427. }
  3428. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3429. if (slabp->inuse && !error)
  3430. error = "slabs_free/inuse accounting error";
  3431. num_slabs++;
  3432. }
  3433. free_objects += l3->free_objects;
  3434. if (l3->shared)
  3435. shared_avail += l3->shared->avail;
  3436. spin_unlock_irq(&l3->list_lock);
  3437. }
  3438. num_slabs += active_slabs;
  3439. num_objs = num_slabs * cachep->num;
  3440. if (num_objs - active_objs != free_objects && !error)
  3441. error = "free_objects accounting error";
  3442. name = cachep->name;
  3443. if (error)
  3444. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3445. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3446. name, active_objs, num_objs, cachep->buffer_size,
  3447. cachep->num, (1 << cachep->gfporder));
  3448. seq_printf(m, " : tunables %4u %4u %4u",
  3449. cachep->limit, cachep->batchcount, cachep->shared);
  3450. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3451. active_slabs, num_slabs, shared_avail);
  3452. #if STATS
  3453. { /* list3 stats */
  3454. unsigned long high = cachep->high_mark;
  3455. unsigned long allocs = cachep->num_allocations;
  3456. unsigned long grown = cachep->grown;
  3457. unsigned long reaped = cachep->reaped;
  3458. unsigned long errors = cachep->errors;
  3459. unsigned long max_freeable = cachep->max_freeable;
  3460. unsigned long node_allocs = cachep->node_allocs;
  3461. unsigned long node_frees = cachep->node_frees;
  3462. unsigned long overflows = cachep->node_overflow;
  3463. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3464. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3465. reaped, errors, max_freeable, node_allocs,
  3466. node_frees, overflows);
  3467. }
  3468. /* cpu stats */
  3469. {
  3470. unsigned long allochit = atomic_read(&cachep->allochit);
  3471. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3472. unsigned long freehit = atomic_read(&cachep->freehit);
  3473. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3474. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3475. allochit, allocmiss, freehit, freemiss);
  3476. }
  3477. #endif
  3478. seq_putc(m, '\n');
  3479. return 0;
  3480. }
  3481. /*
  3482. * slabinfo_op - iterator that generates /proc/slabinfo
  3483. *
  3484. * Output layout:
  3485. * cache-name
  3486. * num-active-objs
  3487. * total-objs
  3488. * object size
  3489. * num-active-slabs
  3490. * total-slabs
  3491. * num-pages-per-slab
  3492. * + further values on SMP and with statistics enabled
  3493. */
  3494. struct seq_operations slabinfo_op = {
  3495. .start = s_start,
  3496. .next = s_next,
  3497. .stop = s_stop,
  3498. .show = s_show,
  3499. };
  3500. #define MAX_SLABINFO_WRITE 128
  3501. /**
  3502. * slabinfo_write - Tuning for the slab allocator
  3503. * @file: unused
  3504. * @buffer: user buffer
  3505. * @count: data length
  3506. * @ppos: unused
  3507. */
  3508. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3509. size_t count, loff_t *ppos)
  3510. {
  3511. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3512. int limit, batchcount, shared, res;
  3513. struct kmem_cache *cachep;
  3514. if (count > MAX_SLABINFO_WRITE)
  3515. return -EINVAL;
  3516. if (copy_from_user(&kbuf, buffer, count))
  3517. return -EFAULT;
  3518. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3519. tmp = strchr(kbuf, ' ');
  3520. if (!tmp)
  3521. return -EINVAL;
  3522. *tmp = '\0';
  3523. tmp++;
  3524. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3525. return -EINVAL;
  3526. /* Find the cache in the chain of caches. */
  3527. mutex_lock(&cache_chain_mutex);
  3528. res = -EINVAL;
  3529. list_for_each_entry(cachep, &cache_chain, next) {
  3530. if (!strcmp(cachep->name, kbuf)) {
  3531. if (limit < 1 || batchcount < 1 ||
  3532. batchcount > limit || shared < 0) {
  3533. res = 0;
  3534. } else {
  3535. res = do_tune_cpucache(cachep, limit,
  3536. batchcount, shared);
  3537. }
  3538. break;
  3539. }
  3540. }
  3541. mutex_unlock(&cache_chain_mutex);
  3542. if (res >= 0)
  3543. res = count;
  3544. return res;
  3545. }
  3546. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3547. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3548. {
  3549. loff_t n = *pos;
  3550. struct list_head *p;
  3551. mutex_lock(&cache_chain_mutex);
  3552. p = cache_chain.next;
  3553. while (n--) {
  3554. p = p->next;
  3555. if (p == &cache_chain)
  3556. return NULL;
  3557. }
  3558. return list_entry(p, struct kmem_cache, next);
  3559. }
  3560. static inline int add_caller(unsigned long *n, unsigned long v)
  3561. {
  3562. unsigned long *p;
  3563. int l;
  3564. if (!v)
  3565. return 1;
  3566. l = n[1];
  3567. p = n + 2;
  3568. while (l) {
  3569. int i = l/2;
  3570. unsigned long *q = p + 2 * i;
  3571. if (*q == v) {
  3572. q[1]++;
  3573. return 1;
  3574. }
  3575. if (*q > v) {
  3576. l = i;
  3577. } else {
  3578. p = q + 2;
  3579. l -= i + 1;
  3580. }
  3581. }
  3582. if (++n[1] == n[0])
  3583. return 0;
  3584. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3585. p[0] = v;
  3586. p[1] = 1;
  3587. return 1;
  3588. }
  3589. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3590. {
  3591. void *p;
  3592. int i;
  3593. if (n[0] == n[1])
  3594. return;
  3595. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3596. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3597. continue;
  3598. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3599. return;
  3600. }
  3601. }
  3602. static void show_symbol(struct seq_file *m, unsigned long address)
  3603. {
  3604. #ifdef CONFIG_KALLSYMS
  3605. char *modname;
  3606. const char *name;
  3607. unsigned long offset, size;
  3608. char namebuf[KSYM_NAME_LEN+1];
  3609. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3610. if (name) {
  3611. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3612. if (modname)
  3613. seq_printf(m, " [%s]", modname);
  3614. return;
  3615. }
  3616. #endif
  3617. seq_printf(m, "%p", (void *)address);
  3618. }
  3619. static int leaks_show(struct seq_file *m, void *p)
  3620. {
  3621. struct kmem_cache *cachep = p;
  3622. struct slab *slabp;
  3623. struct kmem_list3 *l3;
  3624. const char *name;
  3625. unsigned long *n = m->private;
  3626. int node;
  3627. int i;
  3628. if (!(cachep->flags & SLAB_STORE_USER))
  3629. return 0;
  3630. if (!(cachep->flags & SLAB_RED_ZONE))
  3631. return 0;
  3632. /* OK, we can do it */
  3633. n[1] = 0;
  3634. for_each_online_node(node) {
  3635. l3 = cachep->nodelists[node];
  3636. if (!l3)
  3637. continue;
  3638. check_irq_on();
  3639. spin_lock_irq(&l3->list_lock);
  3640. list_for_each_entry(slabp, &l3->slabs_full, list)
  3641. handle_slab(n, cachep, slabp);
  3642. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3643. handle_slab(n, cachep, slabp);
  3644. spin_unlock_irq(&l3->list_lock);
  3645. }
  3646. name = cachep->name;
  3647. if (n[0] == n[1]) {
  3648. /* Increase the buffer size */
  3649. mutex_unlock(&cache_chain_mutex);
  3650. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3651. if (!m->private) {
  3652. /* Too bad, we are really out */
  3653. m->private = n;
  3654. mutex_lock(&cache_chain_mutex);
  3655. return -ENOMEM;
  3656. }
  3657. *(unsigned long *)m->private = n[0] * 2;
  3658. kfree(n);
  3659. mutex_lock(&cache_chain_mutex);
  3660. /* Now make sure this entry will be retried */
  3661. m->count = m->size;
  3662. return 0;
  3663. }
  3664. for (i = 0; i < n[1]; i++) {
  3665. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3666. show_symbol(m, n[2*i+2]);
  3667. seq_putc(m, '\n');
  3668. }
  3669. return 0;
  3670. }
  3671. struct seq_operations slabstats_op = {
  3672. .start = leaks_start,
  3673. .next = s_next,
  3674. .stop = s_stop,
  3675. .show = leaks_show,
  3676. };
  3677. #endif
  3678. #endif
  3679. /**
  3680. * ksize - get the actual amount of memory allocated for a given object
  3681. * @objp: Pointer to the object
  3682. *
  3683. * kmalloc may internally round up allocations and return more memory
  3684. * than requested. ksize() can be used to determine the actual amount of
  3685. * memory allocated. The caller may use this additional memory, even though
  3686. * a smaller amount of memory was initially specified with the kmalloc call.
  3687. * The caller must guarantee that objp points to a valid object previously
  3688. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3689. * must not be freed during the duration of the call.
  3690. */
  3691. unsigned int ksize(const void *objp)
  3692. {
  3693. if (unlikely(objp == NULL))
  3694. return 0;
  3695. return obj_size(virt_to_cache(objp));
  3696. }