intel_dp.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  57. {
  58. return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
  59. }
  60. static void intel_dp_link_train(struct intel_dp *intel_dp);
  61. static void intel_dp_link_down(struct intel_dp *intel_dp);
  62. void
  63. intel_edp_link_config (struct intel_encoder *intel_encoder,
  64. int *lane_num, int *link_bw)
  65. {
  66. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  67. *lane_num = intel_dp->lane_count;
  68. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  69. *link_bw = 162000;
  70. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  71. *link_bw = 270000;
  72. }
  73. static int
  74. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  75. {
  76. int max_lane_count = 4;
  77. if (intel_dp->dpcd[0] >= 0x11) {
  78. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  90. {
  91. int max_link_bw = intel_dp->dpcd[1];
  92. switch (max_link_bw) {
  93. case DP_LINK_BW_1_62:
  94. case DP_LINK_BW_2_7:
  95. break;
  96. default:
  97. max_link_bw = DP_LINK_BW_1_62;
  98. break;
  99. }
  100. return max_link_bw;
  101. }
  102. static int
  103. intel_dp_link_clock(uint8_t link_bw)
  104. {
  105. if (link_bw == DP_LINK_BW_2_7)
  106. return 270000;
  107. else
  108. return 162000;
  109. }
  110. /* I think this is a fiction */
  111. static int
  112. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  131. struct drm_device *dev = connector->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  134. int max_lanes = intel_dp_max_lane_count(intel_dp);
  135. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  136. dev_priv->panel_fixed_mode) {
  137. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. }
  142. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  143. which are outside spec tolerances but somehow work by magic */
  144. if (!IS_eDP(intel_dp) &&
  145. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  146. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  147. return MODE_CLOCK_HIGH;
  148. if (mode->clock < 10000)
  149. return MODE_CLOCK_LOW;
  150. return MODE_OK;
  151. }
  152. static uint32_t
  153. pack_aux(uint8_t *src, int src_bytes)
  154. {
  155. int i;
  156. uint32_t v = 0;
  157. if (src_bytes > 4)
  158. src_bytes = 4;
  159. for (i = 0; i < src_bytes; i++)
  160. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  161. return v;
  162. }
  163. static void
  164. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  165. {
  166. int i;
  167. if (dst_bytes > 4)
  168. dst_bytes = 4;
  169. for (i = 0; i < dst_bytes; i++)
  170. dst[i] = src >> ((3-i) * 8);
  171. }
  172. /* hrawclock is 1/4 the FSB frequency */
  173. static int
  174. intel_hrawclk(struct drm_device *dev)
  175. {
  176. struct drm_i915_private *dev_priv = dev->dev_private;
  177. uint32_t clkcfg;
  178. clkcfg = I915_READ(CLKCFG);
  179. switch (clkcfg & CLKCFG_FSB_MASK) {
  180. case CLKCFG_FSB_400:
  181. return 100;
  182. case CLKCFG_FSB_533:
  183. return 133;
  184. case CLKCFG_FSB_667:
  185. return 166;
  186. case CLKCFG_FSB_800:
  187. return 200;
  188. case CLKCFG_FSB_1067:
  189. return 266;
  190. case CLKCFG_FSB_1333:
  191. return 333;
  192. /* these two are just a guess; one of them might be right */
  193. case CLKCFG_FSB_1600:
  194. case CLKCFG_FSB_1600_ALT:
  195. return 400;
  196. default:
  197. return 133;
  198. }
  199. }
  200. static int
  201. intel_dp_aux_ch(struct intel_dp *intel_dp,
  202. uint8_t *send, int send_bytes,
  203. uint8_t *recv, int recv_size)
  204. {
  205. uint32_t output_reg = intel_dp->output_reg;
  206. struct drm_device *dev = intel_dp->base.enc.dev;
  207. struct drm_i915_private *dev_priv = dev->dev_private;
  208. uint32_t ch_ctl = output_reg + 0x10;
  209. uint32_t ch_data = ch_ctl + 4;
  210. int i;
  211. int recv_bytes;
  212. uint32_t status;
  213. uint32_t aux_clock_divider;
  214. int try, precharge;
  215. /* The clock divider is based off the hrawclk,
  216. * and would like to run at 2MHz. So, take the
  217. * hrawclk value and divide by 2 and use that
  218. *
  219. * Note that PCH attached eDP panels should use a 125MHz input
  220. * clock divider.
  221. */
  222. if (IS_eDP(intel_dp) && !IS_PCH_eDP(intel_dp)) {
  223. if (IS_GEN6(dev))
  224. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  225. else
  226. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  227. } else if (HAS_PCH_SPLIT(dev))
  228. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  229. else
  230. aux_clock_divider = intel_hrawclk(dev) / 2;
  231. if (IS_GEN6(dev))
  232. precharge = 3;
  233. else
  234. precharge = 5;
  235. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  236. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  237. I915_READ(ch_ctl));
  238. return -EBUSY;
  239. }
  240. /* Must try at least 3 times according to DP spec */
  241. for (try = 0; try < 5; try++) {
  242. /* Load the send data into the aux channel data registers */
  243. for (i = 0; i < send_bytes; i += 4)
  244. I915_WRITE(ch_data + i,
  245. pack_aux(send + i, send_bytes - i));
  246. /* Send the command and wait for it to complete */
  247. I915_WRITE(ch_ctl,
  248. DP_AUX_CH_CTL_SEND_BUSY |
  249. DP_AUX_CH_CTL_TIME_OUT_400us |
  250. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  251. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  252. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  253. DP_AUX_CH_CTL_DONE |
  254. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  255. DP_AUX_CH_CTL_RECEIVE_ERROR);
  256. for (;;) {
  257. status = I915_READ(ch_ctl);
  258. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  259. break;
  260. udelay(100);
  261. }
  262. /* Clear done status and any errors */
  263. I915_WRITE(ch_ctl,
  264. status |
  265. DP_AUX_CH_CTL_DONE |
  266. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  267. DP_AUX_CH_CTL_RECEIVE_ERROR);
  268. if (status & DP_AUX_CH_CTL_DONE)
  269. break;
  270. }
  271. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  272. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  273. return -EBUSY;
  274. }
  275. /* Check for timeout or receive error.
  276. * Timeouts occur when the sink is not connected
  277. */
  278. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  279. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  280. return -EIO;
  281. }
  282. /* Timeouts occur when the device isn't connected, so they're
  283. * "normal" -- don't fill the kernel log with these */
  284. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  285. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  286. return -ETIMEDOUT;
  287. }
  288. /* Unload any bytes sent back from the other side */
  289. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  290. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  291. if (recv_bytes > recv_size)
  292. recv_bytes = recv_size;
  293. for (i = 0; i < recv_bytes; i += 4)
  294. unpack_aux(I915_READ(ch_data + i),
  295. recv + i, recv_bytes - i);
  296. return recv_bytes;
  297. }
  298. /* Write data to the aux channel in native mode */
  299. static int
  300. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  301. uint16_t address, uint8_t *send, int send_bytes)
  302. {
  303. int ret;
  304. uint8_t msg[20];
  305. int msg_bytes;
  306. uint8_t ack;
  307. if (send_bytes > 16)
  308. return -1;
  309. msg[0] = AUX_NATIVE_WRITE << 4;
  310. msg[1] = address >> 8;
  311. msg[2] = address & 0xff;
  312. msg[3] = send_bytes - 1;
  313. memcpy(&msg[4], send, send_bytes);
  314. msg_bytes = send_bytes + 4;
  315. for (;;) {
  316. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  317. if (ret < 0)
  318. return ret;
  319. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  320. break;
  321. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  322. udelay(100);
  323. else
  324. return -EIO;
  325. }
  326. return send_bytes;
  327. }
  328. /* Write a single byte to the aux channel in native mode */
  329. static int
  330. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  331. uint16_t address, uint8_t byte)
  332. {
  333. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  334. }
  335. /* read bytes from a native aux channel */
  336. static int
  337. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  338. uint16_t address, uint8_t *recv, int recv_bytes)
  339. {
  340. uint8_t msg[4];
  341. int msg_bytes;
  342. uint8_t reply[20];
  343. int reply_bytes;
  344. uint8_t ack;
  345. int ret;
  346. msg[0] = AUX_NATIVE_READ << 4;
  347. msg[1] = address >> 8;
  348. msg[2] = address & 0xff;
  349. msg[3] = recv_bytes - 1;
  350. msg_bytes = 4;
  351. reply_bytes = recv_bytes + 1;
  352. for (;;) {
  353. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  354. reply, reply_bytes);
  355. if (ret == 0)
  356. return -EPROTO;
  357. if (ret < 0)
  358. return ret;
  359. ack = reply[0];
  360. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  361. memcpy(recv, reply + 1, ret - 1);
  362. return ret - 1;
  363. }
  364. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  365. udelay(100);
  366. else
  367. return -EIO;
  368. }
  369. }
  370. static int
  371. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  372. uint8_t write_byte, uint8_t *read_byte)
  373. {
  374. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  375. struct intel_dp *intel_dp = container_of(adapter,
  376. struct intel_dp,
  377. adapter);
  378. uint16_t address = algo_data->address;
  379. uint8_t msg[5];
  380. uint8_t reply[2];
  381. int msg_bytes;
  382. int reply_bytes;
  383. int ret;
  384. /* Set up the command byte */
  385. if (mode & MODE_I2C_READ)
  386. msg[0] = AUX_I2C_READ << 4;
  387. else
  388. msg[0] = AUX_I2C_WRITE << 4;
  389. if (!(mode & MODE_I2C_STOP))
  390. msg[0] |= AUX_I2C_MOT << 4;
  391. msg[1] = address >> 8;
  392. msg[2] = address;
  393. switch (mode) {
  394. case MODE_I2C_WRITE:
  395. msg[3] = 0;
  396. msg[4] = write_byte;
  397. msg_bytes = 5;
  398. reply_bytes = 1;
  399. break;
  400. case MODE_I2C_READ:
  401. msg[3] = 0;
  402. msg_bytes = 4;
  403. reply_bytes = 2;
  404. break;
  405. default:
  406. msg_bytes = 3;
  407. reply_bytes = 1;
  408. break;
  409. }
  410. for (;;) {
  411. ret = intel_dp_aux_ch(intel_dp,
  412. msg, msg_bytes,
  413. reply, reply_bytes);
  414. if (ret < 0) {
  415. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  416. return ret;
  417. }
  418. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  419. case AUX_I2C_REPLY_ACK:
  420. if (mode == MODE_I2C_READ) {
  421. *read_byte = reply[1];
  422. }
  423. return reply_bytes - 1;
  424. case AUX_I2C_REPLY_NACK:
  425. DRM_DEBUG_KMS("aux_ch nack\n");
  426. return -EREMOTEIO;
  427. case AUX_I2C_REPLY_DEFER:
  428. DRM_DEBUG_KMS("aux_ch defer\n");
  429. udelay(100);
  430. break;
  431. default:
  432. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  433. return -EREMOTEIO;
  434. }
  435. }
  436. }
  437. static int
  438. intel_dp_i2c_init(struct intel_dp *intel_dp,
  439. struct intel_connector *intel_connector, const char *name)
  440. {
  441. DRM_DEBUG_KMS("i2c_init %s\n", name);
  442. intel_dp->algo.running = false;
  443. intel_dp->algo.address = 0;
  444. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  445. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  446. intel_dp->adapter.owner = THIS_MODULE;
  447. intel_dp->adapter.class = I2C_CLASS_DDC;
  448. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  449. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  450. intel_dp->adapter.algo_data = &intel_dp->algo;
  451. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  452. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  453. }
  454. static bool
  455. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  456. struct drm_display_mode *adjusted_mode)
  457. {
  458. struct drm_device *dev = encoder->dev;
  459. struct drm_i915_private *dev_priv = dev->dev_private;
  460. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  461. int lane_count, clock;
  462. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  463. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  464. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  465. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  466. dev_priv->panel_fixed_mode) {
  467. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  468. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  469. mode, adjusted_mode);
  470. /*
  471. * the mode->clock is used to calculate the Data&Link M/N
  472. * of the pipe. For the eDP the fixed clock should be used.
  473. */
  474. mode->clock = dev_priv->panel_fixed_mode->clock;
  475. }
  476. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  477. for (clock = 0; clock <= max_clock; clock++) {
  478. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  479. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  480. <= link_avail) {
  481. intel_dp->link_bw = bws[clock];
  482. intel_dp->lane_count = lane_count;
  483. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  484. DRM_DEBUG_KMS("Display port link bw %02x lane "
  485. "count %d clock %d\n",
  486. intel_dp->link_bw, intel_dp->lane_count,
  487. adjusted_mode->clock);
  488. return true;
  489. }
  490. }
  491. }
  492. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  493. /* okay we failed just pick the highest */
  494. intel_dp->lane_count = max_lane_count;
  495. intel_dp->link_bw = bws[max_clock];
  496. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  497. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  498. "count %d clock %d\n",
  499. intel_dp->link_bw, intel_dp->lane_count,
  500. adjusted_mode->clock);
  501. return true;
  502. }
  503. return false;
  504. }
  505. struct intel_dp_m_n {
  506. uint32_t tu;
  507. uint32_t gmch_m;
  508. uint32_t gmch_n;
  509. uint32_t link_m;
  510. uint32_t link_n;
  511. };
  512. static void
  513. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  514. {
  515. while (*num > 0xffffff || *den > 0xffffff) {
  516. *num >>= 1;
  517. *den >>= 1;
  518. }
  519. }
  520. static void
  521. intel_dp_compute_m_n(int bpp,
  522. int nlanes,
  523. int pixel_clock,
  524. int link_clock,
  525. struct intel_dp_m_n *m_n)
  526. {
  527. m_n->tu = 64;
  528. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  529. m_n->gmch_n = link_clock * nlanes;
  530. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  531. m_n->link_m = pixel_clock;
  532. m_n->link_n = link_clock;
  533. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  534. }
  535. bool intel_pch_has_edp(struct drm_crtc *crtc)
  536. {
  537. struct drm_device *dev = crtc->dev;
  538. struct drm_mode_config *mode_config = &dev->mode_config;
  539. struct drm_encoder *encoder;
  540. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  541. struct intel_dp *intel_dp;
  542. if (encoder->crtc != crtc)
  543. continue;
  544. intel_dp = enc_to_intel_dp(encoder);
  545. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  546. return intel_dp->is_pch_edp;
  547. }
  548. return false;
  549. }
  550. void
  551. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  552. struct drm_display_mode *adjusted_mode)
  553. {
  554. struct drm_device *dev = crtc->dev;
  555. struct drm_mode_config *mode_config = &dev->mode_config;
  556. struct drm_encoder *encoder;
  557. struct drm_i915_private *dev_priv = dev->dev_private;
  558. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  559. int lane_count = 4, bpp = 24;
  560. struct intel_dp_m_n m_n;
  561. /*
  562. * Find the lane count in the intel_encoder private
  563. */
  564. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  565. struct intel_dp *intel_dp;
  566. if (encoder->crtc != crtc)
  567. continue;
  568. intel_dp = enc_to_intel_dp(encoder);
  569. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  570. lane_count = intel_dp->lane_count;
  571. if (IS_PCH_eDP(intel_dp))
  572. bpp = dev_priv->edp_bpp;
  573. break;
  574. }
  575. }
  576. /*
  577. * Compute the GMCH and Link ratios. The '3' here is
  578. * the number of bytes_per_pixel post-LUT, which we always
  579. * set up for 8-bits of R/G/B, or 3 bytes total.
  580. */
  581. intel_dp_compute_m_n(bpp, lane_count,
  582. mode->clock, adjusted_mode->clock, &m_n);
  583. if (HAS_PCH_SPLIT(dev)) {
  584. if (intel_crtc->pipe == 0) {
  585. I915_WRITE(TRANSA_DATA_M1,
  586. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  587. m_n.gmch_m);
  588. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  589. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  590. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  591. } else {
  592. I915_WRITE(TRANSB_DATA_M1,
  593. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  594. m_n.gmch_m);
  595. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  596. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  597. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  598. }
  599. } else {
  600. if (intel_crtc->pipe == 0) {
  601. I915_WRITE(PIPEA_GMCH_DATA_M,
  602. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  603. m_n.gmch_m);
  604. I915_WRITE(PIPEA_GMCH_DATA_N,
  605. m_n.gmch_n);
  606. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  607. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  608. } else {
  609. I915_WRITE(PIPEB_GMCH_DATA_M,
  610. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  611. m_n.gmch_m);
  612. I915_WRITE(PIPEB_GMCH_DATA_N,
  613. m_n.gmch_n);
  614. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  615. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  616. }
  617. }
  618. }
  619. static void
  620. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  621. struct drm_display_mode *adjusted_mode)
  622. {
  623. struct drm_device *dev = encoder->dev;
  624. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  625. struct drm_crtc *crtc = intel_dp->base.enc.crtc;
  626. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  627. intel_dp->DP = (DP_VOLTAGE_0_4 |
  628. DP_PRE_EMPHASIS_0);
  629. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  630. intel_dp->DP |= DP_SYNC_HS_HIGH;
  631. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  632. intel_dp->DP |= DP_SYNC_VS_HIGH;
  633. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  634. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  635. else
  636. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  637. switch (intel_dp->lane_count) {
  638. case 1:
  639. intel_dp->DP |= DP_PORT_WIDTH_1;
  640. break;
  641. case 2:
  642. intel_dp->DP |= DP_PORT_WIDTH_2;
  643. break;
  644. case 4:
  645. intel_dp->DP |= DP_PORT_WIDTH_4;
  646. break;
  647. }
  648. if (intel_dp->has_audio)
  649. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  650. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  651. intel_dp->link_configuration[0] = intel_dp->link_bw;
  652. intel_dp->link_configuration[1] = intel_dp->lane_count;
  653. /*
  654. * Check for DPCD version > 1.1 and enhanced framing support
  655. */
  656. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  657. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  658. intel_dp->DP |= DP_ENHANCED_FRAMING;
  659. }
  660. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  661. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  662. intel_dp->DP |= DP_PIPEB_SELECT;
  663. if (IS_eDP(intel_dp)) {
  664. /* don't miss out required setting for eDP */
  665. intel_dp->DP |= DP_PLL_ENABLE;
  666. if (adjusted_mode->clock < 200000)
  667. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  668. else
  669. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  670. }
  671. }
  672. /* Returns true if the panel was already on when called */
  673. static bool ironlake_edp_panel_on (struct drm_device *dev)
  674. {
  675. struct drm_i915_private *dev_priv = dev->dev_private;
  676. u32 pp;
  677. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  678. return true;
  679. pp = I915_READ(PCH_PP_CONTROL);
  680. /* ILK workaround: disable reset around power sequence */
  681. pp &= ~PANEL_POWER_RESET;
  682. I915_WRITE(PCH_PP_CONTROL, pp);
  683. POSTING_READ(PCH_PP_CONTROL);
  684. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  685. I915_WRITE(PCH_PP_CONTROL, pp);
  686. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000))
  687. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  688. I915_READ(PCH_PP_STATUS));
  689. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  690. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  691. I915_WRITE(PCH_PP_CONTROL, pp);
  692. POSTING_READ(PCH_PP_CONTROL);
  693. return false;
  694. }
  695. static void ironlake_edp_panel_off (struct drm_device *dev)
  696. {
  697. struct drm_i915_private *dev_priv = dev->dev_private;
  698. u32 pp;
  699. pp = I915_READ(PCH_PP_CONTROL);
  700. /* ILK workaround: disable reset around power sequence */
  701. pp &= ~PANEL_POWER_RESET;
  702. I915_WRITE(PCH_PP_CONTROL, pp);
  703. POSTING_READ(PCH_PP_CONTROL);
  704. pp &= ~POWER_TARGET_ON;
  705. I915_WRITE(PCH_PP_CONTROL, pp);
  706. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000))
  707. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  708. I915_READ(PCH_PP_STATUS));
  709. /* Make sure VDD is enabled so DP AUX will work */
  710. pp |= EDP_FORCE_VDD | PANEL_POWER_RESET; /* restore panel reset bit */
  711. I915_WRITE(PCH_PP_CONTROL, pp);
  712. POSTING_READ(PCH_PP_CONTROL);
  713. }
  714. static void ironlake_edp_panel_vdd_on(struct drm_device *dev)
  715. {
  716. struct drm_i915_private *dev_priv = dev->dev_private;
  717. u32 pp;
  718. pp = I915_READ(PCH_PP_CONTROL);
  719. pp |= EDP_FORCE_VDD;
  720. I915_WRITE(PCH_PP_CONTROL, pp);
  721. POSTING_READ(PCH_PP_CONTROL);
  722. }
  723. static void ironlake_edp_panel_vdd_off(struct drm_device *dev)
  724. {
  725. struct drm_i915_private *dev_priv = dev->dev_private;
  726. u32 pp;
  727. pp = I915_READ(PCH_PP_CONTROL);
  728. pp &= ~EDP_FORCE_VDD;
  729. I915_WRITE(PCH_PP_CONTROL, pp);
  730. POSTING_READ(PCH_PP_CONTROL);
  731. }
  732. static void ironlake_edp_backlight_on (struct drm_device *dev)
  733. {
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. u32 pp;
  736. DRM_DEBUG_KMS("\n");
  737. pp = I915_READ(PCH_PP_CONTROL);
  738. pp |= EDP_BLC_ENABLE;
  739. I915_WRITE(PCH_PP_CONTROL, pp);
  740. }
  741. static void ironlake_edp_backlight_off (struct drm_device *dev)
  742. {
  743. struct drm_i915_private *dev_priv = dev->dev_private;
  744. u32 pp;
  745. DRM_DEBUG_KMS("\n");
  746. pp = I915_READ(PCH_PP_CONTROL);
  747. pp &= ~EDP_BLC_ENABLE;
  748. I915_WRITE(PCH_PP_CONTROL, pp);
  749. }
  750. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  751. {
  752. struct drm_device *dev = encoder->dev;
  753. struct drm_i915_private *dev_priv = dev->dev_private;
  754. u32 dpa_ctl;
  755. DRM_DEBUG_KMS("\n");
  756. dpa_ctl = I915_READ(DP_A);
  757. dpa_ctl &= ~DP_PLL_ENABLE;
  758. I915_WRITE(DP_A, dpa_ctl);
  759. }
  760. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  761. {
  762. struct drm_device *dev = encoder->dev;
  763. struct drm_i915_private *dev_priv = dev->dev_private;
  764. u32 dpa_ctl;
  765. dpa_ctl = I915_READ(DP_A);
  766. dpa_ctl |= DP_PLL_ENABLE;
  767. I915_WRITE(DP_A, dpa_ctl);
  768. udelay(200);
  769. }
  770. static void intel_dp_prepare(struct drm_encoder *encoder)
  771. {
  772. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  773. struct drm_device *dev = encoder->dev;
  774. struct drm_i915_private *dev_priv = dev->dev_private;
  775. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  776. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  777. ironlake_edp_backlight_off(dev);
  778. ironlake_edp_panel_vdd_on(dev);
  779. ironlake_edp_pll_on(encoder);
  780. }
  781. if (dp_reg & DP_PORT_EN)
  782. intel_dp_link_down(intel_dp);
  783. }
  784. static void intel_dp_commit(struct drm_encoder *encoder)
  785. {
  786. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  787. struct drm_device *dev = encoder->dev;
  788. struct drm_i915_private *dev_priv = dev->dev_private;
  789. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  790. if (!(dp_reg & DP_PORT_EN)) {
  791. intel_dp_link_train(intel_dp);
  792. }
  793. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  794. ironlake_edp_panel_on(dev);
  795. ironlake_edp_backlight_on(dev);
  796. }
  797. }
  798. static void
  799. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  800. {
  801. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  802. struct drm_device *dev = encoder->dev;
  803. struct drm_i915_private *dev_priv = dev->dev_private;
  804. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  805. if (mode != DRM_MODE_DPMS_ON) {
  806. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  807. ironlake_edp_backlight_off(dev);
  808. ironlake_edp_panel_off(dev);
  809. }
  810. if (dp_reg & DP_PORT_EN)
  811. intel_dp_link_down(intel_dp);
  812. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  813. ironlake_edp_pll_off(encoder);
  814. } else {
  815. if (!(dp_reg & DP_PORT_EN)) {
  816. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  817. ironlake_edp_panel_on(dev);
  818. intel_dp_link_train(intel_dp);
  819. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  820. ironlake_edp_backlight_on(dev);
  821. }
  822. }
  823. intel_dp->dpms_mode = mode;
  824. }
  825. /*
  826. * Fetch AUX CH registers 0x202 - 0x207 which contain
  827. * link status information
  828. */
  829. static bool
  830. intel_dp_get_link_status(struct intel_dp *intel_dp,
  831. uint8_t link_status[DP_LINK_STATUS_SIZE])
  832. {
  833. int ret;
  834. ret = intel_dp_aux_native_read(intel_dp,
  835. DP_LANE0_1_STATUS,
  836. link_status, DP_LINK_STATUS_SIZE);
  837. if (ret != DP_LINK_STATUS_SIZE)
  838. return false;
  839. return true;
  840. }
  841. static uint8_t
  842. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  843. int r)
  844. {
  845. return link_status[r - DP_LANE0_1_STATUS];
  846. }
  847. static uint8_t
  848. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  849. int lane)
  850. {
  851. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  852. int s = ((lane & 1) ?
  853. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  854. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  855. uint8_t l = intel_dp_link_status(link_status, i);
  856. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  857. }
  858. static uint8_t
  859. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  860. int lane)
  861. {
  862. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  863. int s = ((lane & 1) ?
  864. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  865. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  866. uint8_t l = intel_dp_link_status(link_status, i);
  867. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  868. }
  869. #if 0
  870. static char *voltage_names[] = {
  871. "0.4V", "0.6V", "0.8V", "1.2V"
  872. };
  873. static char *pre_emph_names[] = {
  874. "0dB", "3.5dB", "6dB", "9.5dB"
  875. };
  876. static char *link_train_names[] = {
  877. "pattern 1", "pattern 2", "idle", "off"
  878. };
  879. #endif
  880. /*
  881. * These are source-specific values; current Intel hardware supports
  882. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  883. */
  884. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  885. static uint8_t
  886. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  887. {
  888. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  889. case DP_TRAIN_VOLTAGE_SWING_400:
  890. return DP_TRAIN_PRE_EMPHASIS_6;
  891. case DP_TRAIN_VOLTAGE_SWING_600:
  892. return DP_TRAIN_PRE_EMPHASIS_6;
  893. case DP_TRAIN_VOLTAGE_SWING_800:
  894. return DP_TRAIN_PRE_EMPHASIS_3_5;
  895. case DP_TRAIN_VOLTAGE_SWING_1200:
  896. default:
  897. return DP_TRAIN_PRE_EMPHASIS_0;
  898. }
  899. }
  900. static void
  901. intel_get_adjust_train(struct intel_dp *intel_dp,
  902. uint8_t link_status[DP_LINK_STATUS_SIZE],
  903. int lane_count,
  904. uint8_t train_set[4])
  905. {
  906. uint8_t v = 0;
  907. uint8_t p = 0;
  908. int lane;
  909. for (lane = 0; lane < lane_count; lane++) {
  910. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  911. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  912. if (this_v > v)
  913. v = this_v;
  914. if (this_p > p)
  915. p = this_p;
  916. }
  917. if (v >= I830_DP_VOLTAGE_MAX)
  918. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  919. if (p >= intel_dp_pre_emphasis_max(v))
  920. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  921. for (lane = 0; lane < 4; lane++)
  922. train_set[lane] = v | p;
  923. }
  924. static uint32_t
  925. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  926. {
  927. uint32_t signal_levels = 0;
  928. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  929. case DP_TRAIN_VOLTAGE_SWING_400:
  930. default:
  931. signal_levels |= DP_VOLTAGE_0_4;
  932. break;
  933. case DP_TRAIN_VOLTAGE_SWING_600:
  934. signal_levels |= DP_VOLTAGE_0_6;
  935. break;
  936. case DP_TRAIN_VOLTAGE_SWING_800:
  937. signal_levels |= DP_VOLTAGE_0_8;
  938. break;
  939. case DP_TRAIN_VOLTAGE_SWING_1200:
  940. signal_levels |= DP_VOLTAGE_1_2;
  941. break;
  942. }
  943. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  944. case DP_TRAIN_PRE_EMPHASIS_0:
  945. default:
  946. signal_levels |= DP_PRE_EMPHASIS_0;
  947. break;
  948. case DP_TRAIN_PRE_EMPHASIS_3_5:
  949. signal_levels |= DP_PRE_EMPHASIS_3_5;
  950. break;
  951. case DP_TRAIN_PRE_EMPHASIS_6:
  952. signal_levels |= DP_PRE_EMPHASIS_6;
  953. break;
  954. case DP_TRAIN_PRE_EMPHASIS_9_5:
  955. signal_levels |= DP_PRE_EMPHASIS_9_5;
  956. break;
  957. }
  958. return signal_levels;
  959. }
  960. /* Gen6's DP voltage swing and pre-emphasis control */
  961. static uint32_t
  962. intel_gen6_edp_signal_levels(uint8_t train_set)
  963. {
  964. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  965. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  966. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  967. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  968. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  969. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  970. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  971. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  972. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  973. default:
  974. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  975. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  976. }
  977. }
  978. static uint8_t
  979. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  980. int lane)
  981. {
  982. int i = DP_LANE0_1_STATUS + (lane >> 1);
  983. int s = (lane & 1) * 4;
  984. uint8_t l = intel_dp_link_status(link_status, i);
  985. return (l >> s) & 0xf;
  986. }
  987. /* Check for clock recovery is done on all channels */
  988. static bool
  989. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  990. {
  991. int lane;
  992. uint8_t lane_status;
  993. for (lane = 0; lane < lane_count; lane++) {
  994. lane_status = intel_get_lane_status(link_status, lane);
  995. if ((lane_status & DP_LANE_CR_DONE) == 0)
  996. return false;
  997. }
  998. return true;
  999. }
  1000. /* Check to see if channel eq is done on all channels */
  1001. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1002. DP_LANE_CHANNEL_EQ_DONE|\
  1003. DP_LANE_SYMBOL_LOCKED)
  1004. static bool
  1005. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1006. {
  1007. uint8_t lane_align;
  1008. uint8_t lane_status;
  1009. int lane;
  1010. lane_align = intel_dp_link_status(link_status,
  1011. DP_LANE_ALIGN_STATUS_UPDATED);
  1012. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1013. return false;
  1014. for (lane = 0; lane < lane_count; lane++) {
  1015. lane_status = intel_get_lane_status(link_status, lane);
  1016. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1017. return false;
  1018. }
  1019. return true;
  1020. }
  1021. static bool
  1022. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1023. uint32_t dp_reg_value,
  1024. uint8_t dp_train_pat,
  1025. uint8_t train_set[4],
  1026. bool first)
  1027. {
  1028. struct drm_device *dev = intel_dp->base.enc.dev;
  1029. struct drm_i915_private *dev_priv = dev->dev_private;
  1030. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.enc.crtc);
  1031. int ret;
  1032. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1033. POSTING_READ(intel_dp->output_reg);
  1034. if (first)
  1035. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1036. intel_dp_aux_native_write_1(intel_dp,
  1037. DP_TRAINING_PATTERN_SET,
  1038. dp_train_pat);
  1039. ret = intel_dp_aux_native_write(intel_dp,
  1040. DP_TRAINING_LANE0_SET, train_set, 4);
  1041. if (ret != 4)
  1042. return false;
  1043. return true;
  1044. }
  1045. static void
  1046. intel_dp_link_train(struct intel_dp *intel_dp)
  1047. {
  1048. struct drm_device *dev = intel_dp->base.enc.dev;
  1049. struct drm_i915_private *dev_priv = dev->dev_private;
  1050. uint8_t train_set[4];
  1051. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1052. int i;
  1053. uint8_t voltage;
  1054. bool clock_recovery = false;
  1055. bool channel_eq = false;
  1056. bool first = true;
  1057. int tries;
  1058. u32 reg;
  1059. uint32_t DP = intel_dp->DP;
  1060. /* Write the link configuration data */
  1061. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1062. intel_dp->link_configuration,
  1063. DP_LINK_CONFIGURATION_SIZE);
  1064. DP |= DP_PORT_EN;
  1065. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1066. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1067. else
  1068. DP &= ~DP_LINK_TRAIN_MASK;
  1069. memset(train_set, 0, 4);
  1070. voltage = 0xff;
  1071. tries = 0;
  1072. clock_recovery = false;
  1073. for (;;) {
  1074. /* Use train_set[0] to set the voltage and pre emphasis values */
  1075. uint32_t signal_levels;
  1076. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1077. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1078. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1079. } else {
  1080. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1081. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1082. }
  1083. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1084. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1085. else
  1086. reg = DP | DP_LINK_TRAIN_PAT_1;
  1087. if (!intel_dp_set_link_train(intel_dp, reg,
  1088. DP_TRAINING_PATTERN_1, train_set, first))
  1089. break;
  1090. first = false;
  1091. /* Set training pattern 1 */
  1092. udelay(100);
  1093. if (!intel_dp_get_link_status(intel_dp, link_status))
  1094. break;
  1095. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1096. clock_recovery = true;
  1097. break;
  1098. }
  1099. /* Check to see if we've tried the max voltage */
  1100. for (i = 0; i < intel_dp->lane_count; i++)
  1101. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1102. break;
  1103. if (i == intel_dp->lane_count)
  1104. break;
  1105. /* Check to see if we've tried the same voltage 5 times */
  1106. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1107. ++tries;
  1108. if (tries == 5)
  1109. break;
  1110. } else
  1111. tries = 0;
  1112. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1113. /* Compute new train_set as requested by target */
  1114. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1115. }
  1116. /* channel equalization */
  1117. tries = 0;
  1118. channel_eq = false;
  1119. for (;;) {
  1120. /* Use train_set[0] to set the voltage and pre emphasis values */
  1121. uint32_t signal_levels;
  1122. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1123. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1124. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1125. } else {
  1126. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1127. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1128. }
  1129. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1130. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1131. else
  1132. reg = DP | DP_LINK_TRAIN_PAT_2;
  1133. /* channel eq pattern */
  1134. if (!intel_dp_set_link_train(intel_dp, reg,
  1135. DP_TRAINING_PATTERN_2, train_set,
  1136. false))
  1137. break;
  1138. udelay(400);
  1139. if (!intel_dp_get_link_status(intel_dp, link_status))
  1140. break;
  1141. if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1142. channel_eq = true;
  1143. break;
  1144. }
  1145. /* Try 5 times */
  1146. if (tries > 5)
  1147. break;
  1148. /* Compute new train_set as requested by target */
  1149. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1150. ++tries;
  1151. }
  1152. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1153. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1154. else
  1155. reg = DP | DP_LINK_TRAIN_OFF;
  1156. I915_WRITE(intel_dp->output_reg, reg);
  1157. POSTING_READ(intel_dp->output_reg);
  1158. intel_dp_aux_native_write_1(intel_dp,
  1159. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1160. }
  1161. static void
  1162. intel_dp_link_down(struct intel_dp *intel_dp)
  1163. {
  1164. struct drm_device *dev = intel_dp->base.enc.dev;
  1165. struct drm_i915_private *dev_priv = dev->dev_private;
  1166. uint32_t DP = intel_dp->DP;
  1167. DRM_DEBUG_KMS("\n");
  1168. if (IS_eDP(intel_dp)) {
  1169. DP &= ~DP_PLL_ENABLE;
  1170. I915_WRITE(intel_dp->output_reg, DP);
  1171. POSTING_READ(intel_dp->output_reg);
  1172. udelay(100);
  1173. }
  1174. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1175. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1176. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1177. POSTING_READ(intel_dp->output_reg);
  1178. } else {
  1179. DP &= ~DP_LINK_TRAIN_MASK;
  1180. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1181. POSTING_READ(intel_dp->output_reg);
  1182. }
  1183. udelay(17000);
  1184. if (IS_eDP(intel_dp))
  1185. DP |= DP_LINK_TRAIN_OFF;
  1186. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1187. POSTING_READ(intel_dp->output_reg);
  1188. }
  1189. /*
  1190. * According to DP spec
  1191. * 5.1.2:
  1192. * 1. Read DPCD
  1193. * 2. Configure link according to Receiver Capabilities
  1194. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1195. * 4. Check link status on receipt of hot-plug interrupt
  1196. */
  1197. static void
  1198. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1199. {
  1200. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1201. if (!intel_dp->base.enc.crtc)
  1202. return;
  1203. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1204. intel_dp_link_down(intel_dp);
  1205. return;
  1206. }
  1207. if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
  1208. intel_dp_link_train(intel_dp);
  1209. }
  1210. static enum drm_connector_status
  1211. ironlake_dp_detect(struct drm_connector *connector)
  1212. {
  1213. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1214. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1215. enum drm_connector_status status;
  1216. /* Panel needs power for AUX to work */
  1217. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  1218. ironlake_edp_panel_vdd_on(connector->dev);
  1219. status = connector_status_disconnected;
  1220. if (intel_dp_aux_native_read(intel_dp,
  1221. 0x000, intel_dp->dpcd,
  1222. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1223. {
  1224. if (intel_dp->dpcd[0] != 0)
  1225. status = connector_status_connected;
  1226. }
  1227. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1228. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1229. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  1230. ironlake_edp_panel_vdd_off(connector->dev);
  1231. return status;
  1232. }
  1233. /**
  1234. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1235. *
  1236. * \return true if DP port is connected.
  1237. * \return false if DP port is disconnected.
  1238. */
  1239. static enum drm_connector_status
  1240. intel_dp_detect(struct drm_connector *connector)
  1241. {
  1242. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1243. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1244. struct drm_device *dev = intel_dp->base.enc.dev;
  1245. struct drm_i915_private *dev_priv = dev->dev_private;
  1246. uint32_t temp, bit;
  1247. enum drm_connector_status status;
  1248. intel_dp->has_audio = false;
  1249. if (HAS_PCH_SPLIT(dev))
  1250. return ironlake_dp_detect(connector);
  1251. switch (intel_dp->output_reg) {
  1252. case DP_B:
  1253. bit = DPB_HOTPLUG_INT_STATUS;
  1254. break;
  1255. case DP_C:
  1256. bit = DPC_HOTPLUG_INT_STATUS;
  1257. break;
  1258. case DP_D:
  1259. bit = DPD_HOTPLUG_INT_STATUS;
  1260. break;
  1261. default:
  1262. return connector_status_unknown;
  1263. }
  1264. temp = I915_READ(PORT_HOTPLUG_STAT);
  1265. if ((temp & bit) == 0)
  1266. return connector_status_disconnected;
  1267. status = connector_status_disconnected;
  1268. if (intel_dp_aux_native_read(intel_dp,
  1269. 0x000, intel_dp->dpcd,
  1270. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1271. {
  1272. if (intel_dp->dpcd[0] != 0)
  1273. status = connector_status_connected;
  1274. }
  1275. return status;
  1276. }
  1277. static int intel_dp_get_modes(struct drm_connector *connector)
  1278. {
  1279. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1280. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1281. struct drm_device *dev = intel_dp->base.enc.dev;
  1282. struct drm_i915_private *dev_priv = dev->dev_private;
  1283. int ret;
  1284. /* We should parse the EDID data and find out if it has an audio sink
  1285. */
  1286. ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
  1287. if (ret) {
  1288. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1289. !dev_priv->panel_fixed_mode) {
  1290. struct drm_display_mode *newmode;
  1291. list_for_each_entry(newmode, &connector->probed_modes,
  1292. head) {
  1293. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1294. dev_priv->panel_fixed_mode =
  1295. drm_mode_duplicate(dev, newmode);
  1296. break;
  1297. }
  1298. }
  1299. }
  1300. return ret;
  1301. }
  1302. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1303. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1304. if (dev_priv->panel_fixed_mode != NULL) {
  1305. struct drm_display_mode *mode;
  1306. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1307. drm_mode_probed_add(connector, mode);
  1308. return 1;
  1309. }
  1310. }
  1311. return 0;
  1312. }
  1313. static void
  1314. intel_dp_destroy (struct drm_connector *connector)
  1315. {
  1316. drm_sysfs_connector_remove(connector);
  1317. drm_connector_cleanup(connector);
  1318. kfree(connector);
  1319. }
  1320. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1321. {
  1322. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1323. i2c_del_adapter(&intel_dp->adapter);
  1324. drm_encoder_cleanup(encoder);
  1325. kfree(intel_dp);
  1326. }
  1327. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1328. .dpms = intel_dp_dpms,
  1329. .mode_fixup = intel_dp_mode_fixup,
  1330. .prepare = intel_dp_prepare,
  1331. .mode_set = intel_dp_mode_set,
  1332. .commit = intel_dp_commit,
  1333. };
  1334. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1335. .dpms = drm_helper_connector_dpms,
  1336. .detect = intel_dp_detect,
  1337. .fill_modes = drm_helper_probe_single_connector_modes,
  1338. .destroy = intel_dp_destroy,
  1339. };
  1340. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1341. .get_modes = intel_dp_get_modes,
  1342. .mode_valid = intel_dp_mode_valid,
  1343. .best_encoder = intel_attached_encoder,
  1344. };
  1345. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1346. .destroy = intel_dp_encoder_destroy,
  1347. };
  1348. static void
  1349. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1350. {
  1351. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1352. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1353. intel_dp_check_link_status(intel_dp);
  1354. }
  1355. /* Return which DP Port should be selected for Transcoder DP control */
  1356. int
  1357. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1358. {
  1359. struct drm_device *dev = crtc->dev;
  1360. struct drm_mode_config *mode_config = &dev->mode_config;
  1361. struct drm_encoder *encoder;
  1362. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1363. struct intel_dp *intel_dp;
  1364. if (encoder->crtc != crtc)
  1365. continue;
  1366. intel_dp = enc_to_intel_dp(encoder);
  1367. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1368. return intel_dp->output_reg;
  1369. }
  1370. return -1;
  1371. }
  1372. /* check the VBT to see whether the eDP is on DP-D port */
  1373. bool intel_dpd_is_edp(struct drm_device *dev)
  1374. {
  1375. struct drm_i915_private *dev_priv = dev->dev_private;
  1376. struct child_device_config *p_child;
  1377. int i;
  1378. if (!dev_priv->child_dev_num)
  1379. return false;
  1380. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1381. p_child = dev_priv->child_dev + i;
  1382. if (p_child->dvo_port == PORT_IDPD &&
  1383. p_child->device_type == DEVICE_TYPE_eDP)
  1384. return true;
  1385. }
  1386. return false;
  1387. }
  1388. void
  1389. intel_dp_init(struct drm_device *dev, int output_reg)
  1390. {
  1391. struct drm_i915_private *dev_priv = dev->dev_private;
  1392. struct drm_connector *connector;
  1393. struct intel_dp *intel_dp;
  1394. struct intel_encoder *intel_encoder;
  1395. struct intel_connector *intel_connector;
  1396. const char *name = NULL;
  1397. int type;
  1398. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1399. if (!intel_dp)
  1400. return;
  1401. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1402. if (!intel_connector) {
  1403. kfree(intel_dp);
  1404. return;
  1405. }
  1406. intel_encoder = &intel_dp->base;
  1407. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1408. if (intel_dpd_is_edp(dev))
  1409. intel_dp->is_pch_edp = true;
  1410. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1411. type = DRM_MODE_CONNECTOR_eDP;
  1412. intel_encoder->type = INTEL_OUTPUT_EDP;
  1413. } else {
  1414. type = DRM_MODE_CONNECTOR_DisplayPort;
  1415. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1416. }
  1417. connector = &intel_connector->base;
  1418. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1419. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1420. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1421. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1422. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1423. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1424. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1425. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1426. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1427. if (IS_eDP(intel_dp))
  1428. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1429. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1430. connector->interlace_allowed = true;
  1431. connector->doublescan_allowed = 0;
  1432. intel_dp->output_reg = output_reg;
  1433. intel_dp->has_audio = false;
  1434. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1435. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1436. DRM_MODE_ENCODER_TMDS);
  1437. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1438. drm_mode_connector_attach_encoder(&intel_connector->base,
  1439. &intel_encoder->enc);
  1440. drm_sysfs_connector_add(connector);
  1441. /* Set up the DDC bus. */
  1442. switch (output_reg) {
  1443. case DP_A:
  1444. name = "DPDDC-A";
  1445. break;
  1446. case DP_B:
  1447. case PCH_DP_B:
  1448. dev_priv->hotplug_supported_mask |=
  1449. HDMIB_HOTPLUG_INT_STATUS;
  1450. name = "DPDDC-B";
  1451. break;
  1452. case DP_C:
  1453. case PCH_DP_C:
  1454. dev_priv->hotplug_supported_mask |=
  1455. HDMIC_HOTPLUG_INT_STATUS;
  1456. name = "DPDDC-C";
  1457. break;
  1458. case DP_D:
  1459. case PCH_DP_D:
  1460. dev_priv->hotplug_supported_mask |=
  1461. HDMID_HOTPLUG_INT_STATUS;
  1462. name = "DPDDC-D";
  1463. break;
  1464. }
  1465. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1466. intel_encoder->ddc_bus = &intel_dp->adapter;
  1467. intel_encoder->hot_plug = intel_dp_hot_plug;
  1468. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1469. /* initialize panel mode from VBT if available for eDP */
  1470. if (dev_priv->lfp_lvds_vbt_mode) {
  1471. dev_priv->panel_fixed_mode =
  1472. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1473. if (dev_priv->panel_fixed_mode) {
  1474. dev_priv->panel_fixed_mode->type |=
  1475. DRM_MODE_TYPE_PREFERRED;
  1476. }
  1477. }
  1478. }
  1479. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1480. * 0xd. Failure to do so will result in spurious interrupts being
  1481. * generated on the port when a cable is not attached.
  1482. */
  1483. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1484. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1485. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1486. }
  1487. }