security.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didsn't specify a specific LSM and we're the first to ask
  74. * for registeration permissoin,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function is to allow a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise 0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace(struct task_struct *parent, struct task_struct *child,
  112. unsigned int mode)
  113. {
  114. return security_ops->ptrace(parent, child, mode);
  115. }
  116. int security_capget(struct task_struct *target,
  117. kernel_cap_t *effective,
  118. kernel_cap_t *inheritable,
  119. kernel_cap_t *permitted)
  120. {
  121. return security_ops->capget(target, effective, inheritable, permitted);
  122. }
  123. int security_capset_check(struct task_struct *target,
  124. kernel_cap_t *effective,
  125. kernel_cap_t *inheritable,
  126. kernel_cap_t *permitted)
  127. {
  128. return security_ops->capset_check(target, effective, inheritable, permitted);
  129. }
  130. void security_capset_set(struct task_struct *target,
  131. kernel_cap_t *effective,
  132. kernel_cap_t *inheritable,
  133. kernel_cap_t *permitted)
  134. {
  135. security_ops->capset_set(target, effective, inheritable, permitted);
  136. }
  137. int security_capable(struct task_struct *tsk, int cap)
  138. {
  139. return security_ops->capable(tsk, cap);
  140. }
  141. int security_acct(struct file *file)
  142. {
  143. return security_ops->acct(file);
  144. }
  145. int security_sysctl(struct ctl_table *table, int op)
  146. {
  147. return security_ops->sysctl(table, op);
  148. }
  149. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  150. {
  151. return security_ops->quotactl(cmds, type, id, sb);
  152. }
  153. int security_quota_on(struct dentry *dentry)
  154. {
  155. return security_ops->quota_on(dentry);
  156. }
  157. int security_syslog(int type)
  158. {
  159. return security_ops->syslog(type);
  160. }
  161. int security_settime(struct timespec *ts, struct timezone *tz)
  162. {
  163. return security_ops->settime(ts, tz);
  164. }
  165. int security_vm_enough_memory(long pages)
  166. {
  167. return security_ops->vm_enough_memory(current->mm, pages);
  168. }
  169. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  170. {
  171. return security_ops->vm_enough_memory(mm, pages);
  172. }
  173. int security_bprm_alloc(struct linux_binprm *bprm)
  174. {
  175. return security_ops->bprm_alloc_security(bprm);
  176. }
  177. void security_bprm_free(struct linux_binprm *bprm)
  178. {
  179. security_ops->bprm_free_security(bprm);
  180. }
  181. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  182. {
  183. security_ops->bprm_apply_creds(bprm, unsafe);
  184. }
  185. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  186. {
  187. security_ops->bprm_post_apply_creds(bprm);
  188. }
  189. int security_bprm_set(struct linux_binprm *bprm)
  190. {
  191. return security_ops->bprm_set_security(bprm);
  192. }
  193. int security_bprm_check(struct linux_binprm *bprm)
  194. {
  195. return security_ops->bprm_check_security(bprm);
  196. }
  197. int security_bprm_secureexec(struct linux_binprm *bprm)
  198. {
  199. return security_ops->bprm_secureexec(bprm);
  200. }
  201. int security_sb_alloc(struct super_block *sb)
  202. {
  203. return security_ops->sb_alloc_security(sb);
  204. }
  205. void security_sb_free(struct super_block *sb)
  206. {
  207. security_ops->sb_free_security(sb);
  208. }
  209. int security_sb_copy_data(char *orig, char *copy)
  210. {
  211. return security_ops->sb_copy_data(orig, copy);
  212. }
  213. EXPORT_SYMBOL(security_sb_copy_data);
  214. int security_sb_kern_mount(struct super_block *sb, void *data)
  215. {
  216. return security_ops->sb_kern_mount(sb, data);
  217. }
  218. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  219. {
  220. return security_ops->sb_show_options(m, sb);
  221. }
  222. int security_sb_statfs(struct dentry *dentry)
  223. {
  224. return security_ops->sb_statfs(dentry);
  225. }
  226. int security_sb_mount(char *dev_name, struct path *path,
  227. char *type, unsigned long flags, void *data)
  228. {
  229. return security_ops->sb_mount(dev_name, path, type, flags, data);
  230. }
  231. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  232. {
  233. return security_ops->sb_check_sb(mnt, path);
  234. }
  235. int security_sb_umount(struct vfsmount *mnt, int flags)
  236. {
  237. return security_ops->sb_umount(mnt, flags);
  238. }
  239. void security_sb_umount_close(struct vfsmount *mnt)
  240. {
  241. security_ops->sb_umount_close(mnt);
  242. }
  243. void security_sb_umount_busy(struct vfsmount *mnt)
  244. {
  245. security_ops->sb_umount_busy(mnt);
  246. }
  247. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  248. {
  249. security_ops->sb_post_remount(mnt, flags, data);
  250. }
  251. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  252. {
  253. security_ops->sb_post_addmount(mnt, mountpoint);
  254. }
  255. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  256. {
  257. return security_ops->sb_pivotroot(old_path, new_path);
  258. }
  259. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  260. {
  261. security_ops->sb_post_pivotroot(old_path, new_path);
  262. }
  263. int security_sb_set_mnt_opts(struct super_block *sb,
  264. struct security_mnt_opts *opts)
  265. {
  266. return security_ops->sb_set_mnt_opts(sb, opts);
  267. }
  268. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  269. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  270. struct super_block *newsb)
  271. {
  272. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  273. }
  274. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  275. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  276. {
  277. return security_ops->sb_parse_opts_str(options, opts);
  278. }
  279. EXPORT_SYMBOL(security_sb_parse_opts_str);
  280. int security_inode_alloc(struct inode *inode)
  281. {
  282. inode->i_security = NULL;
  283. return security_ops->inode_alloc_security(inode);
  284. }
  285. void security_inode_free(struct inode *inode)
  286. {
  287. security_ops->inode_free_security(inode);
  288. }
  289. int security_inode_init_security(struct inode *inode, struct inode *dir,
  290. char **name, void **value, size_t *len)
  291. {
  292. if (unlikely(IS_PRIVATE(inode)))
  293. return -EOPNOTSUPP;
  294. return security_ops->inode_init_security(inode, dir, name, value, len);
  295. }
  296. EXPORT_SYMBOL(security_inode_init_security);
  297. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  298. {
  299. if (unlikely(IS_PRIVATE(dir)))
  300. return 0;
  301. return security_ops->inode_create(dir, dentry, mode);
  302. }
  303. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  304. struct dentry *new_dentry)
  305. {
  306. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  307. return 0;
  308. return security_ops->inode_link(old_dentry, dir, new_dentry);
  309. }
  310. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  311. {
  312. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  313. return 0;
  314. return security_ops->inode_unlink(dir, dentry);
  315. }
  316. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  317. const char *old_name)
  318. {
  319. if (unlikely(IS_PRIVATE(dir)))
  320. return 0;
  321. return security_ops->inode_symlink(dir, dentry, old_name);
  322. }
  323. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  324. {
  325. if (unlikely(IS_PRIVATE(dir)))
  326. return 0;
  327. return security_ops->inode_mkdir(dir, dentry, mode);
  328. }
  329. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  330. {
  331. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  332. return 0;
  333. return security_ops->inode_rmdir(dir, dentry);
  334. }
  335. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  336. {
  337. if (unlikely(IS_PRIVATE(dir)))
  338. return 0;
  339. return security_ops->inode_mknod(dir, dentry, mode, dev);
  340. }
  341. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  342. struct inode *new_dir, struct dentry *new_dentry)
  343. {
  344. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  345. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  346. return 0;
  347. return security_ops->inode_rename(old_dir, old_dentry,
  348. new_dir, new_dentry);
  349. }
  350. int security_inode_readlink(struct dentry *dentry)
  351. {
  352. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  353. return 0;
  354. return security_ops->inode_readlink(dentry);
  355. }
  356. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  357. {
  358. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  359. return 0;
  360. return security_ops->inode_follow_link(dentry, nd);
  361. }
  362. int security_inode_permission(struct inode *inode, int mask)
  363. {
  364. if (unlikely(IS_PRIVATE(inode)))
  365. return 0;
  366. return security_ops->inode_permission(inode, mask);
  367. }
  368. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  369. {
  370. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  371. return 0;
  372. return security_ops->inode_setattr(dentry, attr);
  373. }
  374. EXPORT_SYMBOL_GPL(security_inode_setattr);
  375. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  376. {
  377. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  378. return 0;
  379. return security_ops->inode_getattr(mnt, dentry);
  380. }
  381. void security_inode_delete(struct inode *inode)
  382. {
  383. if (unlikely(IS_PRIVATE(inode)))
  384. return;
  385. security_ops->inode_delete(inode);
  386. }
  387. int security_inode_setxattr(struct dentry *dentry, const char *name,
  388. const void *value, size_t size, int flags)
  389. {
  390. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  391. return 0;
  392. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  393. }
  394. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  395. const void *value, size_t size, int flags)
  396. {
  397. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  398. return;
  399. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  400. }
  401. int security_inode_getxattr(struct dentry *dentry, const char *name)
  402. {
  403. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  404. return 0;
  405. return security_ops->inode_getxattr(dentry, name);
  406. }
  407. int security_inode_listxattr(struct dentry *dentry)
  408. {
  409. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  410. return 0;
  411. return security_ops->inode_listxattr(dentry);
  412. }
  413. int security_inode_removexattr(struct dentry *dentry, const char *name)
  414. {
  415. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  416. return 0;
  417. return security_ops->inode_removexattr(dentry, name);
  418. }
  419. int security_inode_need_killpriv(struct dentry *dentry)
  420. {
  421. return security_ops->inode_need_killpriv(dentry);
  422. }
  423. int security_inode_killpriv(struct dentry *dentry)
  424. {
  425. return security_ops->inode_killpriv(dentry);
  426. }
  427. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  428. {
  429. if (unlikely(IS_PRIVATE(inode)))
  430. return 0;
  431. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  432. }
  433. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  434. {
  435. if (unlikely(IS_PRIVATE(inode)))
  436. return 0;
  437. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  438. }
  439. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  440. {
  441. if (unlikely(IS_PRIVATE(inode)))
  442. return 0;
  443. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  444. }
  445. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  446. {
  447. security_ops->inode_getsecid(inode, secid);
  448. }
  449. int security_file_permission(struct file *file, int mask)
  450. {
  451. return security_ops->file_permission(file, mask);
  452. }
  453. int security_file_alloc(struct file *file)
  454. {
  455. return security_ops->file_alloc_security(file);
  456. }
  457. void security_file_free(struct file *file)
  458. {
  459. security_ops->file_free_security(file);
  460. }
  461. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  462. {
  463. return security_ops->file_ioctl(file, cmd, arg);
  464. }
  465. int security_file_mmap(struct file *file, unsigned long reqprot,
  466. unsigned long prot, unsigned long flags,
  467. unsigned long addr, unsigned long addr_only)
  468. {
  469. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  470. }
  471. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  472. unsigned long prot)
  473. {
  474. return security_ops->file_mprotect(vma, reqprot, prot);
  475. }
  476. int security_file_lock(struct file *file, unsigned int cmd)
  477. {
  478. return security_ops->file_lock(file, cmd);
  479. }
  480. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  481. {
  482. return security_ops->file_fcntl(file, cmd, arg);
  483. }
  484. int security_file_set_fowner(struct file *file)
  485. {
  486. return security_ops->file_set_fowner(file);
  487. }
  488. int security_file_send_sigiotask(struct task_struct *tsk,
  489. struct fown_struct *fown, int sig)
  490. {
  491. return security_ops->file_send_sigiotask(tsk, fown, sig);
  492. }
  493. int security_file_receive(struct file *file)
  494. {
  495. return security_ops->file_receive(file);
  496. }
  497. int security_dentry_open(struct file *file)
  498. {
  499. return security_ops->dentry_open(file);
  500. }
  501. int security_task_create(unsigned long clone_flags)
  502. {
  503. return security_ops->task_create(clone_flags);
  504. }
  505. int security_task_alloc(struct task_struct *p)
  506. {
  507. return security_ops->task_alloc_security(p);
  508. }
  509. void security_task_free(struct task_struct *p)
  510. {
  511. security_ops->task_free_security(p);
  512. }
  513. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  514. {
  515. return security_ops->task_setuid(id0, id1, id2, flags);
  516. }
  517. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  518. uid_t old_suid, int flags)
  519. {
  520. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  521. }
  522. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  523. {
  524. return security_ops->task_setgid(id0, id1, id2, flags);
  525. }
  526. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  527. {
  528. return security_ops->task_setpgid(p, pgid);
  529. }
  530. int security_task_getpgid(struct task_struct *p)
  531. {
  532. return security_ops->task_getpgid(p);
  533. }
  534. int security_task_getsid(struct task_struct *p)
  535. {
  536. return security_ops->task_getsid(p);
  537. }
  538. void security_task_getsecid(struct task_struct *p, u32 *secid)
  539. {
  540. security_ops->task_getsecid(p, secid);
  541. }
  542. EXPORT_SYMBOL(security_task_getsecid);
  543. int security_task_setgroups(struct group_info *group_info)
  544. {
  545. return security_ops->task_setgroups(group_info);
  546. }
  547. int security_task_setnice(struct task_struct *p, int nice)
  548. {
  549. return security_ops->task_setnice(p, nice);
  550. }
  551. int security_task_setioprio(struct task_struct *p, int ioprio)
  552. {
  553. return security_ops->task_setioprio(p, ioprio);
  554. }
  555. int security_task_getioprio(struct task_struct *p)
  556. {
  557. return security_ops->task_getioprio(p);
  558. }
  559. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  560. {
  561. return security_ops->task_setrlimit(resource, new_rlim);
  562. }
  563. int security_task_setscheduler(struct task_struct *p,
  564. int policy, struct sched_param *lp)
  565. {
  566. return security_ops->task_setscheduler(p, policy, lp);
  567. }
  568. int security_task_getscheduler(struct task_struct *p)
  569. {
  570. return security_ops->task_getscheduler(p);
  571. }
  572. int security_task_movememory(struct task_struct *p)
  573. {
  574. return security_ops->task_movememory(p);
  575. }
  576. int security_task_kill(struct task_struct *p, struct siginfo *info,
  577. int sig, u32 secid)
  578. {
  579. return security_ops->task_kill(p, info, sig, secid);
  580. }
  581. int security_task_wait(struct task_struct *p)
  582. {
  583. return security_ops->task_wait(p);
  584. }
  585. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  586. unsigned long arg4, unsigned long arg5, long *rc_p)
  587. {
  588. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
  589. }
  590. void security_task_reparent_to_init(struct task_struct *p)
  591. {
  592. security_ops->task_reparent_to_init(p);
  593. }
  594. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  595. {
  596. security_ops->task_to_inode(p, inode);
  597. }
  598. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  599. {
  600. return security_ops->ipc_permission(ipcp, flag);
  601. }
  602. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  603. {
  604. security_ops->ipc_getsecid(ipcp, secid);
  605. }
  606. int security_msg_msg_alloc(struct msg_msg *msg)
  607. {
  608. return security_ops->msg_msg_alloc_security(msg);
  609. }
  610. void security_msg_msg_free(struct msg_msg *msg)
  611. {
  612. security_ops->msg_msg_free_security(msg);
  613. }
  614. int security_msg_queue_alloc(struct msg_queue *msq)
  615. {
  616. return security_ops->msg_queue_alloc_security(msq);
  617. }
  618. void security_msg_queue_free(struct msg_queue *msq)
  619. {
  620. security_ops->msg_queue_free_security(msq);
  621. }
  622. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  623. {
  624. return security_ops->msg_queue_associate(msq, msqflg);
  625. }
  626. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  627. {
  628. return security_ops->msg_queue_msgctl(msq, cmd);
  629. }
  630. int security_msg_queue_msgsnd(struct msg_queue *msq,
  631. struct msg_msg *msg, int msqflg)
  632. {
  633. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  634. }
  635. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  636. struct task_struct *target, long type, int mode)
  637. {
  638. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  639. }
  640. int security_shm_alloc(struct shmid_kernel *shp)
  641. {
  642. return security_ops->shm_alloc_security(shp);
  643. }
  644. void security_shm_free(struct shmid_kernel *shp)
  645. {
  646. security_ops->shm_free_security(shp);
  647. }
  648. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  649. {
  650. return security_ops->shm_associate(shp, shmflg);
  651. }
  652. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  653. {
  654. return security_ops->shm_shmctl(shp, cmd);
  655. }
  656. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  657. {
  658. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  659. }
  660. int security_sem_alloc(struct sem_array *sma)
  661. {
  662. return security_ops->sem_alloc_security(sma);
  663. }
  664. void security_sem_free(struct sem_array *sma)
  665. {
  666. security_ops->sem_free_security(sma);
  667. }
  668. int security_sem_associate(struct sem_array *sma, int semflg)
  669. {
  670. return security_ops->sem_associate(sma, semflg);
  671. }
  672. int security_sem_semctl(struct sem_array *sma, int cmd)
  673. {
  674. return security_ops->sem_semctl(sma, cmd);
  675. }
  676. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  677. unsigned nsops, int alter)
  678. {
  679. return security_ops->sem_semop(sma, sops, nsops, alter);
  680. }
  681. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  682. {
  683. if (unlikely(inode && IS_PRIVATE(inode)))
  684. return;
  685. security_ops->d_instantiate(dentry, inode);
  686. }
  687. EXPORT_SYMBOL(security_d_instantiate);
  688. int security_getprocattr(struct task_struct *p, char *name, char **value)
  689. {
  690. return security_ops->getprocattr(p, name, value);
  691. }
  692. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  693. {
  694. return security_ops->setprocattr(p, name, value, size);
  695. }
  696. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  697. {
  698. return security_ops->netlink_send(sk, skb);
  699. }
  700. int security_netlink_recv(struct sk_buff *skb, int cap)
  701. {
  702. return security_ops->netlink_recv(skb, cap);
  703. }
  704. EXPORT_SYMBOL(security_netlink_recv);
  705. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  706. {
  707. return security_ops->secid_to_secctx(secid, secdata, seclen);
  708. }
  709. EXPORT_SYMBOL(security_secid_to_secctx);
  710. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  711. {
  712. return security_ops->secctx_to_secid(secdata, seclen, secid);
  713. }
  714. EXPORT_SYMBOL(security_secctx_to_secid);
  715. void security_release_secctx(char *secdata, u32 seclen)
  716. {
  717. security_ops->release_secctx(secdata, seclen);
  718. }
  719. EXPORT_SYMBOL(security_release_secctx);
  720. #ifdef CONFIG_SECURITY_NETWORK
  721. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  722. struct sock *newsk)
  723. {
  724. return security_ops->unix_stream_connect(sock, other, newsk);
  725. }
  726. EXPORT_SYMBOL(security_unix_stream_connect);
  727. int security_unix_may_send(struct socket *sock, struct socket *other)
  728. {
  729. return security_ops->unix_may_send(sock, other);
  730. }
  731. EXPORT_SYMBOL(security_unix_may_send);
  732. int security_socket_create(int family, int type, int protocol, int kern)
  733. {
  734. return security_ops->socket_create(family, type, protocol, kern);
  735. }
  736. int security_socket_post_create(struct socket *sock, int family,
  737. int type, int protocol, int kern)
  738. {
  739. return security_ops->socket_post_create(sock, family, type,
  740. protocol, kern);
  741. }
  742. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  743. {
  744. return security_ops->socket_bind(sock, address, addrlen);
  745. }
  746. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  747. {
  748. return security_ops->socket_connect(sock, address, addrlen);
  749. }
  750. int security_socket_listen(struct socket *sock, int backlog)
  751. {
  752. return security_ops->socket_listen(sock, backlog);
  753. }
  754. int security_socket_accept(struct socket *sock, struct socket *newsock)
  755. {
  756. return security_ops->socket_accept(sock, newsock);
  757. }
  758. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  759. {
  760. security_ops->socket_post_accept(sock, newsock);
  761. }
  762. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  763. {
  764. return security_ops->socket_sendmsg(sock, msg, size);
  765. }
  766. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  767. int size, int flags)
  768. {
  769. return security_ops->socket_recvmsg(sock, msg, size, flags);
  770. }
  771. int security_socket_getsockname(struct socket *sock)
  772. {
  773. return security_ops->socket_getsockname(sock);
  774. }
  775. int security_socket_getpeername(struct socket *sock)
  776. {
  777. return security_ops->socket_getpeername(sock);
  778. }
  779. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  780. {
  781. return security_ops->socket_getsockopt(sock, level, optname);
  782. }
  783. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  784. {
  785. return security_ops->socket_setsockopt(sock, level, optname);
  786. }
  787. int security_socket_shutdown(struct socket *sock, int how)
  788. {
  789. return security_ops->socket_shutdown(sock, how);
  790. }
  791. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  792. {
  793. return security_ops->socket_sock_rcv_skb(sk, skb);
  794. }
  795. EXPORT_SYMBOL(security_sock_rcv_skb);
  796. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  797. int __user *optlen, unsigned len)
  798. {
  799. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  800. }
  801. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  802. {
  803. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  804. }
  805. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  806. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  807. {
  808. return security_ops->sk_alloc_security(sk, family, priority);
  809. }
  810. void security_sk_free(struct sock *sk)
  811. {
  812. security_ops->sk_free_security(sk);
  813. }
  814. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  815. {
  816. security_ops->sk_clone_security(sk, newsk);
  817. }
  818. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  819. {
  820. security_ops->sk_getsecid(sk, &fl->secid);
  821. }
  822. EXPORT_SYMBOL(security_sk_classify_flow);
  823. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  824. {
  825. security_ops->req_classify_flow(req, fl);
  826. }
  827. EXPORT_SYMBOL(security_req_classify_flow);
  828. void security_sock_graft(struct sock *sk, struct socket *parent)
  829. {
  830. security_ops->sock_graft(sk, parent);
  831. }
  832. EXPORT_SYMBOL(security_sock_graft);
  833. int security_inet_conn_request(struct sock *sk,
  834. struct sk_buff *skb, struct request_sock *req)
  835. {
  836. return security_ops->inet_conn_request(sk, skb, req);
  837. }
  838. EXPORT_SYMBOL(security_inet_conn_request);
  839. void security_inet_csk_clone(struct sock *newsk,
  840. const struct request_sock *req)
  841. {
  842. security_ops->inet_csk_clone(newsk, req);
  843. }
  844. void security_inet_conn_established(struct sock *sk,
  845. struct sk_buff *skb)
  846. {
  847. security_ops->inet_conn_established(sk, skb);
  848. }
  849. #endif /* CONFIG_SECURITY_NETWORK */
  850. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  851. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  852. {
  853. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  854. }
  855. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  856. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  857. struct xfrm_sec_ctx **new_ctxp)
  858. {
  859. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  860. }
  861. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  862. {
  863. security_ops->xfrm_policy_free_security(ctx);
  864. }
  865. EXPORT_SYMBOL(security_xfrm_policy_free);
  866. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  867. {
  868. return security_ops->xfrm_policy_delete_security(ctx);
  869. }
  870. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  871. {
  872. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  873. }
  874. EXPORT_SYMBOL(security_xfrm_state_alloc);
  875. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  876. struct xfrm_sec_ctx *polsec, u32 secid)
  877. {
  878. if (!polsec)
  879. return 0;
  880. /*
  881. * We want the context to be taken from secid which is usually
  882. * from the sock.
  883. */
  884. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  885. }
  886. int security_xfrm_state_delete(struct xfrm_state *x)
  887. {
  888. return security_ops->xfrm_state_delete_security(x);
  889. }
  890. EXPORT_SYMBOL(security_xfrm_state_delete);
  891. void security_xfrm_state_free(struct xfrm_state *x)
  892. {
  893. security_ops->xfrm_state_free_security(x);
  894. }
  895. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  896. {
  897. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  898. }
  899. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  900. struct xfrm_policy *xp, struct flowi *fl)
  901. {
  902. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  903. }
  904. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  905. {
  906. return security_ops->xfrm_decode_session(skb, secid, 1);
  907. }
  908. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  909. {
  910. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  911. BUG_ON(rc);
  912. }
  913. EXPORT_SYMBOL(security_skb_classify_flow);
  914. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  915. #ifdef CONFIG_KEYS
  916. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  917. {
  918. return security_ops->key_alloc(key, tsk, flags);
  919. }
  920. void security_key_free(struct key *key)
  921. {
  922. security_ops->key_free(key);
  923. }
  924. int security_key_permission(key_ref_t key_ref,
  925. struct task_struct *context, key_perm_t perm)
  926. {
  927. return security_ops->key_permission(key_ref, context, perm);
  928. }
  929. int security_key_getsecurity(struct key *key, char **_buffer)
  930. {
  931. return security_ops->key_getsecurity(key, _buffer);
  932. }
  933. #endif /* CONFIG_KEYS */
  934. #ifdef CONFIG_AUDIT
  935. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  936. {
  937. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  938. }
  939. int security_audit_rule_known(struct audit_krule *krule)
  940. {
  941. return security_ops->audit_rule_known(krule);
  942. }
  943. void security_audit_rule_free(void *lsmrule)
  944. {
  945. security_ops->audit_rule_free(lsmrule);
  946. }
  947. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  948. struct audit_context *actx)
  949. {
  950. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  951. }
  952. #endif /* CONFIG_AUDIT */