i915_gem.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int handle, ret;
  99. args->size = roundup(args->size, PAGE_SIZE);
  100. /* Allocate the new object */
  101. obj = drm_gem_object_alloc(dev, args->size);
  102. if (obj == NULL)
  103. return -ENOMEM;
  104. ret = drm_gem_handle_create(file_priv, obj, &handle);
  105. mutex_lock(&dev->struct_mutex);
  106. drm_gem_object_handle_unreference(obj);
  107. mutex_unlock(&dev->struct_mutex);
  108. if (ret)
  109. return ret;
  110. args->handle = handle;
  111. return 0;
  112. }
  113. static inline int
  114. fast_shmem_read(struct page **pages,
  115. loff_t page_base, int page_offset,
  116. char __user *data,
  117. int length)
  118. {
  119. char __iomem *vaddr;
  120. int unwritten;
  121. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  122. if (vaddr == NULL)
  123. return -ENOMEM;
  124. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  125. kunmap_atomic(vaddr, KM_USER0);
  126. if (unwritten)
  127. return -EFAULT;
  128. return 0;
  129. }
  130. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  131. {
  132. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  133. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  134. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  135. obj_priv->tiling_mode != I915_TILING_NONE;
  136. }
  137. static inline int
  138. slow_shmem_copy(struct page *dst_page,
  139. int dst_offset,
  140. struct page *src_page,
  141. int src_offset,
  142. int length)
  143. {
  144. char *dst_vaddr, *src_vaddr;
  145. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  146. if (dst_vaddr == NULL)
  147. return -ENOMEM;
  148. src_vaddr = kmap_atomic(src_page, KM_USER1);
  149. if (src_vaddr == NULL) {
  150. kunmap_atomic(dst_vaddr, KM_USER0);
  151. return -ENOMEM;
  152. }
  153. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  154. kunmap_atomic(src_vaddr, KM_USER1);
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return 0;
  157. }
  158. static inline int
  159. slow_shmem_bit17_copy(struct page *gpu_page,
  160. int gpu_offset,
  161. struct page *cpu_page,
  162. int cpu_offset,
  163. int length,
  164. int is_read)
  165. {
  166. char *gpu_vaddr, *cpu_vaddr;
  167. /* Use the unswizzled path if this page isn't affected. */
  168. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  169. if (is_read)
  170. return slow_shmem_copy(cpu_page, cpu_offset,
  171. gpu_page, gpu_offset, length);
  172. else
  173. return slow_shmem_copy(gpu_page, gpu_offset,
  174. cpu_page, cpu_offset, length);
  175. }
  176. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  177. if (gpu_vaddr == NULL)
  178. return -ENOMEM;
  179. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  180. if (cpu_vaddr == NULL) {
  181. kunmap_atomic(gpu_vaddr, KM_USER0);
  182. return -ENOMEM;
  183. }
  184. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  185. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  186. */
  187. while (length > 0) {
  188. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  189. int this_length = min(cacheline_end - gpu_offset, length);
  190. int swizzled_gpu_offset = gpu_offset ^ 64;
  191. if (is_read) {
  192. memcpy(cpu_vaddr + cpu_offset,
  193. gpu_vaddr + swizzled_gpu_offset,
  194. this_length);
  195. } else {
  196. memcpy(gpu_vaddr + swizzled_gpu_offset,
  197. cpu_vaddr + cpu_offset,
  198. this_length);
  199. }
  200. cpu_offset += this_length;
  201. gpu_offset += this_length;
  202. length -= this_length;
  203. }
  204. kunmap_atomic(cpu_vaddr, KM_USER1);
  205. kunmap_atomic(gpu_vaddr, KM_USER0);
  206. return 0;
  207. }
  208. /**
  209. * This is the fast shmem pread path, which attempts to copy_from_user directly
  210. * from the backing pages of the object to the user's address space. On a
  211. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  212. */
  213. static int
  214. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  219. ssize_t remain;
  220. loff_t offset, page_base;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. int ret;
  224. user_data = (char __user *) (uintptr_t) args->data_ptr;
  225. remain = args->size;
  226. mutex_lock(&dev->struct_mutex);
  227. ret = i915_gem_object_get_pages(obj);
  228. if (ret != 0)
  229. goto fail_unlock;
  230. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  231. args->size);
  232. if (ret != 0)
  233. goto fail_put_pages;
  234. obj_priv = obj->driver_private;
  235. offset = args->offset;
  236. while (remain > 0) {
  237. /* Operation in this page
  238. *
  239. * page_base = page offset within aperture
  240. * page_offset = offset within page
  241. * page_length = bytes to copy for this page
  242. */
  243. page_base = (offset & ~(PAGE_SIZE-1));
  244. page_offset = offset & (PAGE_SIZE-1);
  245. page_length = remain;
  246. if ((page_offset + remain) > PAGE_SIZE)
  247. page_length = PAGE_SIZE - page_offset;
  248. ret = fast_shmem_read(obj_priv->pages,
  249. page_base, page_offset,
  250. user_data, page_length);
  251. if (ret)
  252. goto fail_put_pages;
  253. remain -= page_length;
  254. user_data += page_length;
  255. offset += page_length;
  256. }
  257. fail_put_pages:
  258. i915_gem_object_put_pages(obj);
  259. fail_unlock:
  260. mutex_unlock(&dev->struct_mutex);
  261. return ret;
  262. }
  263. /**
  264. * This is the fallback shmem pread path, which allocates temporary storage
  265. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  266. * can copy out of the object's backing pages while holding the struct mutex
  267. * and not take page faults.
  268. */
  269. static int
  270. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  271. struct drm_i915_gem_pread *args,
  272. struct drm_file *file_priv)
  273. {
  274. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  275. struct mm_struct *mm = current->mm;
  276. struct page **user_pages;
  277. ssize_t remain;
  278. loff_t offset, pinned_pages, i;
  279. loff_t first_data_page, last_data_page, num_pages;
  280. int shmem_page_index, shmem_page_offset;
  281. int data_page_index, data_page_offset;
  282. int page_length;
  283. int ret;
  284. uint64_t data_ptr = args->data_ptr;
  285. int do_bit17_swizzling;
  286. remain = args->size;
  287. /* Pin the user pages containing the data. We can't fault while
  288. * holding the struct mutex, yet we want to hold it while
  289. * dereferencing the user data.
  290. */
  291. first_data_page = data_ptr / PAGE_SIZE;
  292. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  293. num_pages = last_data_page - first_data_page + 1;
  294. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  295. if (user_pages == NULL)
  296. return -ENOMEM;
  297. down_read(&mm->mmap_sem);
  298. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  299. num_pages, 1, 0, user_pages, NULL);
  300. up_read(&mm->mmap_sem);
  301. if (pinned_pages < num_pages) {
  302. ret = -EFAULT;
  303. goto fail_put_user_pages;
  304. }
  305. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  306. mutex_lock(&dev->struct_mutex);
  307. ret = i915_gem_object_get_pages(obj);
  308. if (ret != 0)
  309. goto fail_unlock;
  310. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  311. args->size);
  312. if (ret != 0)
  313. goto fail_put_pages;
  314. obj_priv = obj->driver_private;
  315. offset = args->offset;
  316. while (remain > 0) {
  317. /* Operation in this page
  318. *
  319. * shmem_page_index = page number within shmem file
  320. * shmem_page_offset = offset within page in shmem file
  321. * data_page_index = page number in get_user_pages return
  322. * data_page_offset = offset with data_page_index page.
  323. * page_length = bytes to copy for this page
  324. */
  325. shmem_page_index = offset / PAGE_SIZE;
  326. shmem_page_offset = offset & ~PAGE_MASK;
  327. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  328. data_page_offset = data_ptr & ~PAGE_MASK;
  329. page_length = remain;
  330. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  331. page_length = PAGE_SIZE - shmem_page_offset;
  332. if ((data_page_offset + page_length) > PAGE_SIZE)
  333. page_length = PAGE_SIZE - data_page_offset;
  334. if (do_bit17_swizzling) {
  335. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  336. shmem_page_offset,
  337. user_pages[data_page_index],
  338. data_page_offset,
  339. page_length,
  340. 1);
  341. } else {
  342. ret = slow_shmem_copy(user_pages[data_page_index],
  343. data_page_offset,
  344. obj_priv->pages[shmem_page_index],
  345. shmem_page_offset,
  346. page_length);
  347. }
  348. if (ret)
  349. goto fail_put_pages;
  350. remain -= page_length;
  351. data_ptr += page_length;
  352. offset += page_length;
  353. }
  354. fail_put_pages:
  355. i915_gem_object_put_pages(obj);
  356. fail_unlock:
  357. mutex_unlock(&dev->struct_mutex);
  358. fail_put_user_pages:
  359. for (i = 0; i < pinned_pages; i++) {
  360. SetPageDirty(user_pages[i]);
  361. page_cache_release(user_pages[i]);
  362. }
  363. drm_free_large(user_pages);
  364. return ret;
  365. }
  366. /**
  367. * Reads data from the object referenced by handle.
  368. *
  369. * On error, the contents of *data are undefined.
  370. */
  371. int
  372. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  373. struct drm_file *file_priv)
  374. {
  375. struct drm_i915_gem_pread *args = data;
  376. struct drm_gem_object *obj;
  377. struct drm_i915_gem_object *obj_priv;
  378. int ret;
  379. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  380. if (obj == NULL)
  381. return -EBADF;
  382. obj_priv = obj->driver_private;
  383. /* Bounds check source.
  384. *
  385. * XXX: This could use review for overflow issues...
  386. */
  387. if (args->offset > obj->size || args->size > obj->size ||
  388. args->offset + args->size > obj->size) {
  389. drm_gem_object_unreference(obj);
  390. return -EINVAL;
  391. }
  392. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  393. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  394. } else {
  395. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  396. if (ret != 0)
  397. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  398. file_priv);
  399. }
  400. drm_gem_object_unreference(obj);
  401. return ret;
  402. }
  403. /* This is the fast write path which cannot handle
  404. * page faults in the source data
  405. */
  406. static inline int
  407. fast_user_write(struct io_mapping *mapping,
  408. loff_t page_base, int page_offset,
  409. char __user *user_data,
  410. int length)
  411. {
  412. char *vaddr_atomic;
  413. unsigned long unwritten;
  414. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  415. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  416. user_data, length);
  417. io_mapping_unmap_atomic(vaddr_atomic);
  418. if (unwritten)
  419. return -EFAULT;
  420. return 0;
  421. }
  422. /* Here's the write path which can sleep for
  423. * page faults
  424. */
  425. static inline int
  426. slow_kernel_write(struct io_mapping *mapping,
  427. loff_t gtt_base, int gtt_offset,
  428. struct page *user_page, int user_offset,
  429. int length)
  430. {
  431. char *src_vaddr, *dst_vaddr;
  432. unsigned long unwritten;
  433. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  434. src_vaddr = kmap_atomic(user_page, KM_USER1);
  435. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  436. src_vaddr + user_offset,
  437. length);
  438. kunmap_atomic(src_vaddr, KM_USER1);
  439. io_mapping_unmap_atomic(dst_vaddr);
  440. if (unwritten)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. static inline int
  445. fast_shmem_write(struct page **pages,
  446. loff_t page_base, int page_offset,
  447. char __user *data,
  448. int length)
  449. {
  450. char __iomem *vaddr;
  451. unsigned long unwritten;
  452. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  453. if (vaddr == NULL)
  454. return -ENOMEM;
  455. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  456. kunmap_atomic(vaddr, KM_USER0);
  457. if (unwritten)
  458. return -EFAULT;
  459. return 0;
  460. }
  461. /**
  462. * This is the fast pwrite path, where we copy the data directly from the
  463. * user into the GTT, uncached.
  464. */
  465. static int
  466. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  467. struct drm_i915_gem_pwrite *args,
  468. struct drm_file *file_priv)
  469. {
  470. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  471. drm_i915_private_t *dev_priv = dev->dev_private;
  472. ssize_t remain;
  473. loff_t offset, page_base;
  474. char __user *user_data;
  475. int page_offset, page_length;
  476. int ret;
  477. user_data = (char __user *) (uintptr_t) args->data_ptr;
  478. remain = args->size;
  479. if (!access_ok(VERIFY_READ, user_data, remain))
  480. return -EFAULT;
  481. mutex_lock(&dev->struct_mutex);
  482. ret = i915_gem_object_pin(obj, 0);
  483. if (ret) {
  484. mutex_unlock(&dev->struct_mutex);
  485. return ret;
  486. }
  487. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  488. if (ret)
  489. goto fail;
  490. obj_priv = obj->driver_private;
  491. offset = obj_priv->gtt_offset + args->offset;
  492. while (remain > 0) {
  493. /* Operation in this page
  494. *
  495. * page_base = page offset within aperture
  496. * page_offset = offset within page
  497. * page_length = bytes to copy for this page
  498. */
  499. page_base = (offset & ~(PAGE_SIZE-1));
  500. page_offset = offset & (PAGE_SIZE-1);
  501. page_length = remain;
  502. if ((page_offset + remain) > PAGE_SIZE)
  503. page_length = PAGE_SIZE - page_offset;
  504. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  505. page_offset, user_data, page_length);
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (ret)
  511. goto fail;
  512. remain -= page_length;
  513. user_data += page_length;
  514. offset += page_length;
  515. }
  516. fail:
  517. i915_gem_object_unpin(obj);
  518. mutex_unlock(&dev->struct_mutex);
  519. return ret;
  520. }
  521. /**
  522. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  523. * the memory and maps it using kmap_atomic for copying.
  524. *
  525. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  526. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  527. */
  528. static int
  529. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  530. struct drm_i915_gem_pwrite *args,
  531. struct drm_file *file_priv)
  532. {
  533. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  534. drm_i915_private_t *dev_priv = dev->dev_private;
  535. ssize_t remain;
  536. loff_t gtt_page_base, offset;
  537. loff_t first_data_page, last_data_page, num_pages;
  538. loff_t pinned_pages, i;
  539. struct page **user_pages;
  540. struct mm_struct *mm = current->mm;
  541. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  542. int ret;
  543. uint64_t data_ptr = args->data_ptr;
  544. remain = args->size;
  545. /* Pin the user pages containing the data. We can't fault while
  546. * holding the struct mutex, and all of the pwrite implementations
  547. * want to hold it while dereferencing the user data.
  548. */
  549. first_data_page = data_ptr / PAGE_SIZE;
  550. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  551. num_pages = last_data_page - first_data_page + 1;
  552. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  553. if (user_pages == NULL)
  554. return -ENOMEM;
  555. down_read(&mm->mmap_sem);
  556. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  557. num_pages, 0, 0, user_pages, NULL);
  558. up_read(&mm->mmap_sem);
  559. if (pinned_pages < num_pages) {
  560. ret = -EFAULT;
  561. goto out_unpin_pages;
  562. }
  563. mutex_lock(&dev->struct_mutex);
  564. ret = i915_gem_object_pin(obj, 0);
  565. if (ret)
  566. goto out_unlock;
  567. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  568. if (ret)
  569. goto out_unpin_object;
  570. obj_priv = obj->driver_private;
  571. offset = obj_priv->gtt_offset + args->offset;
  572. while (remain > 0) {
  573. /* Operation in this page
  574. *
  575. * gtt_page_base = page offset within aperture
  576. * gtt_page_offset = offset within page in aperture
  577. * data_page_index = page number in get_user_pages return
  578. * data_page_offset = offset with data_page_index page.
  579. * page_length = bytes to copy for this page
  580. */
  581. gtt_page_base = offset & PAGE_MASK;
  582. gtt_page_offset = offset & ~PAGE_MASK;
  583. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  584. data_page_offset = data_ptr & ~PAGE_MASK;
  585. page_length = remain;
  586. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  587. page_length = PAGE_SIZE - gtt_page_offset;
  588. if ((data_page_offset + page_length) > PAGE_SIZE)
  589. page_length = PAGE_SIZE - data_page_offset;
  590. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  591. gtt_page_base, gtt_page_offset,
  592. user_pages[data_page_index],
  593. data_page_offset,
  594. page_length);
  595. /* If we get a fault while copying data, then (presumably) our
  596. * source page isn't available. Return the error and we'll
  597. * retry in the slow path.
  598. */
  599. if (ret)
  600. goto out_unpin_object;
  601. remain -= page_length;
  602. offset += page_length;
  603. data_ptr += page_length;
  604. }
  605. out_unpin_object:
  606. i915_gem_object_unpin(obj);
  607. out_unlock:
  608. mutex_unlock(&dev->struct_mutex);
  609. out_unpin_pages:
  610. for (i = 0; i < pinned_pages; i++)
  611. page_cache_release(user_pages[i]);
  612. drm_free_large(user_pages);
  613. return ret;
  614. }
  615. /**
  616. * This is the fast shmem pwrite path, which attempts to directly
  617. * copy_from_user into the kmapped pages backing the object.
  618. */
  619. static int
  620. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  621. struct drm_i915_gem_pwrite *args,
  622. struct drm_file *file_priv)
  623. {
  624. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  625. ssize_t remain;
  626. loff_t offset, page_base;
  627. char __user *user_data;
  628. int page_offset, page_length;
  629. int ret;
  630. user_data = (char __user *) (uintptr_t) args->data_ptr;
  631. remain = args->size;
  632. mutex_lock(&dev->struct_mutex);
  633. ret = i915_gem_object_get_pages(obj);
  634. if (ret != 0)
  635. goto fail_unlock;
  636. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  637. if (ret != 0)
  638. goto fail_put_pages;
  639. obj_priv = obj->driver_private;
  640. offset = args->offset;
  641. obj_priv->dirty = 1;
  642. while (remain > 0) {
  643. /* Operation in this page
  644. *
  645. * page_base = page offset within aperture
  646. * page_offset = offset within page
  647. * page_length = bytes to copy for this page
  648. */
  649. page_base = (offset & ~(PAGE_SIZE-1));
  650. page_offset = offset & (PAGE_SIZE-1);
  651. page_length = remain;
  652. if ((page_offset + remain) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - page_offset;
  654. ret = fast_shmem_write(obj_priv->pages,
  655. page_base, page_offset,
  656. user_data, page_length);
  657. if (ret)
  658. goto fail_put_pages;
  659. remain -= page_length;
  660. user_data += page_length;
  661. offset += page_length;
  662. }
  663. fail_put_pages:
  664. i915_gem_object_put_pages(obj);
  665. fail_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. return ret;
  668. }
  669. /**
  670. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  671. * the memory and maps it using kmap_atomic for copying.
  672. *
  673. * This avoids taking mmap_sem for faulting on the user's address while the
  674. * struct_mutex is held.
  675. */
  676. static int
  677. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  678. struct drm_i915_gem_pwrite *args,
  679. struct drm_file *file_priv)
  680. {
  681. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  682. struct mm_struct *mm = current->mm;
  683. struct page **user_pages;
  684. ssize_t remain;
  685. loff_t offset, pinned_pages, i;
  686. loff_t first_data_page, last_data_page, num_pages;
  687. int shmem_page_index, shmem_page_offset;
  688. int data_page_index, data_page_offset;
  689. int page_length;
  690. int ret;
  691. uint64_t data_ptr = args->data_ptr;
  692. int do_bit17_swizzling;
  693. remain = args->size;
  694. /* Pin the user pages containing the data. We can't fault while
  695. * holding the struct mutex, and all of the pwrite implementations
  696. * want to hold it while dereferencing the user data.
  697. */
  698. first_data_page = data_ptr / PAGE_SIZE;
  699. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  700. num_pages = last_data_page - first_data_page + 1;
  701. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  702. if (user_pages == NULL)
  703. return -ENOMEM;
  704. down_read(&mm->mmap_sem);
  705. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  706. num_pages, 0, 0, user_pages, NULL);
  707. up_read(&mm->mmap_sem);
  708. if (pinned_pages < num_pages) {
  709. ret = -EFAULT;
  710. goto fail_put_user_pages;
  711. }
  712. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  713. mutex_lock(&dev->struct_mutex);
  714. ret = i915_gem_object_get_pages(obj);
  715. if (ret != 0)
  716. goto fail_unlock;
  717. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  718. if (ret != 0)
  719. goto fail_put_pages;
  720. obj_priv = obj->driver_private;
  721. offset = args->offset;
  722. obj_priv->dirty = 1;
  723. while (remain > 0) {
  724. /* Operation in this page
  725. *
  726. * shmem_page_index = page number within shmem file
  727. * shmem_page_offset = offset within page in shmem file
  728. * data_page_index = page number in get_user_pages return
  729. * data_page_offset = offset with data_page_index page.
  730. * page_length = bytes to copy for this page
  731. */
  732. shmem_page_index = offset / PAGE_SIZE;
  733. shmem_page_offset = offset & ~PAGE_MASK;
  734. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  735. data_page_offset = data_ptr & ~PAGE_MASK;
  736. page_length = remain;
  737. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  738. page_length = PAGE_SIZE - shmem_page_offset;
  739. if ((data_page_offset + page_length) > PAGE_SIZE)
  740. page_length = PAGE_SIZE - data_page_offset;
  741. if (do_bit17_swizzling) {
  742. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  743. shmem_page_offset,
  744. user_pages[data_page_index],
  745. data_page_offset,
  746. page_length,
  747. 0);
  748. } else {
  749. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  750. shmem_page_offset,
  751. user_pages[data_page_index],
  752. data_page_offset,
  753. page_length);
  754. }
  755. if (ret)
  756. goto fail_put_pages;
  757. remain -= page_length;
  758. data_ptr += page_length;
  759. offset += page_length;
  760. }
  761. fail_put_pages:
  762. i915_gem_object_put_pages(obj);
  763. fail_unlock:
  764. mutex_unlock(&dev->struct_mutex);
  765. fail_put_user_pages:
  766. for (i = 0; i < pinned_pages; i++)
  767. page_cache_release(user_pages[i]);
  768. drm_free_large(user_pages);
  769. return ret;
  770. }
  771. /**
  772. * Writes data to the object referenced by handle.
  773. *
  774. * On error, the contents of the buffer that were to be modified are undefined.
  775. */
  776. int
  777. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  778. struct drm_file *file_priv)
  779. {
  780. struct drm_i915_gem_pwrite *args = data;
  781. struct drm_gem_object *obj;
  782. struct drm_i915_gem_object *obj_priv;
  783. int ret = 0;
  784. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  785. if (obj == NULL)
  786. return -EBADF;
  787. obj_priv = obj->driver_private;
  788. /* Bounds check destination.
  789. *
  790. * XXX: This could use review for overflow issues...
  791. */
  792. if (args->offset > obj->size || args->size > obj->size ||
  793. args->offset + args->size > obj->size) {
  794. drm_gem_object_unreference(obj);
  795. return -EINVAL;
  796. }
  797. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  798. * it would end up going through the fenced access, and we'll get
  799. * different detiling behavior between reading and writing.
  800. * pread/pwrite currently are reading and writing from the CPU
  801. * perspective, requiring manual detiling by the client.
  802. */
  803. if (obj_priv->phys_obj)
  804. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  805. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  806. dev->gtt_total != 0) {
  807. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  808. if (ret == -EFAULT) {
  809. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  810. file_priv);
  811. }
  812. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  813. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  814. } else {
  815. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. }
  821. #if WATCH_PWRITE
  822. if (ret)
  823. DRM_INFO("pwrite failed %d\n", ret);
  824. #endif
  825. drm_gem_object_unreference(obj);
  826. return ret;
  827. }
  828. /**
  829. * Called when user space prepares to use an object with the CPU, either
  830. * through the mmap ioctl's mapping or a GTT mapping.
  831. */
  832. int
  833. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  834. struct drm_file *file_priv)
  835. {
  836. struct drm_i915_gem_set_domain *args = data;
  837. struct drm_gem_object *obj;
  838. uint32_t read_domains = args->read_domains;
  839. uint32_t write_domain = args->write_domain;
  840. int ret;
  841. if (!(dev->driver->driver_features & DRIVER_GEM))
  842. return -ENODEV;
  843. /* Only handle setting domains to types used by the CPU. */
  844. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  845. return -EINVAL;
  846. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  847. return -EINVAL;
  848. /* Having something in the write domain implies it's in the read
  849. * domain, and only that read domain. Enforce that in the request.
  850. */
  851. if (write_domain != 0 && read_domains != write_domain)
  852. return -EINVAL;
  853. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  854. if (obj == NULL)
  855. return -EBADF;
  856. mutex_lock(&dev->struct_mutex);
  857. #if WATCH_BUF
  858. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  859. obj, obj->size, read_domains, write_domain);
  860. #endif
  861. if (read_domains & I915_GEM_DOMAIN_GTT) {
  862. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  863. /* Silently promote "you're not bound, there was nothing to do"
  864. * to success, since the client was just asking us to
  865. * make sure everything was done.
  866. */
  867. if (ret == -EINVAL)
  868. ret = 0;
  869. } else {
  870. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  871. }
  872. drm_gem_object_unreference(obj);
  873. mutex_unlock(&dev->struct_mutex);
  874. return ret;
  875. }
  876. /**
  877. * Called when user space has done writes to this buffer
  878. */
  879. int
  880. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  881. struct drm_file *file_priv)
  882. {
  883. struct drm_i915_gem_sw_finish *args = data;
  884. struct drm_gem_object *obj;
  885. struct drm_i915_gem_object *obj_priv;
  886. int ret = 0;
  887. if (!(dev->driver->driver_features & DRIVER_GEM))
  888. return -ENODEV;
  889. mutex_lock(&dev->struct_mutex);
  890. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  891. if (obj == NULL) {
  892. mutex_unlock(&dev->struct_mutex);
  893. return -EBADF;
  894. }
  895. #if WATCH_BUF
  896. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  897. __func__, args->handle, obj, obj->size);
  898. #endif
  899. obj_priv = obj->driver_private;
  900. /* Pinned buffers may be scanout, so flush the cache */
  901. if (obj_priv->pin_count)
  902. i915_gem_object_flush_cpu_write_domain(obj);
  903. drm_gem_object_unreference(obj);
  904. mutex_unlock(&dev->struct_mutex);
  905. return ret;
  906. }
  907. /**
  908. * Maps the contents of an object, returning the address it is mapped
  909. * into.
  910. *
  911. * While the mapping holds a reference on the contents of the object, it doesn't
  912. * imply a ref on the object itself.
  913. */
  914. int
  915. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  916. struct drm_file *file_priv)
  917. {
  918. struct drm_i915_gem_mmap *args = data;
  919. struct drm_gem_object *obj;
  920. loff_t offset;
  921. unsigned long addr;
  922. if (!(dev->driver->driver_features & DRIVER_GEM))
  923. return -ENODEV;
  924. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  925. if (obj == NULL)
  926. return -EBADF;
  927. offset = args->offset;
  928. down_write(&current->mm->mmap_sem);
  929. addr = do_mmap(obj->filp, 0, args->size,
  930. PROT_READ | PROT_WRITE, MAP_SHARED,
  931. args->offset);
  932. up_write(&current->mm->mmap_sem);
  933. mutex_lock(&dev->struct_mutex);
  934. drm_gem_object_unreference(obj);
  935. mutex_unlock(&dev->struct_mutex);
  936. if (IS_ERR((void *)addr))
  937. return addr;
  938. args->addr_ptr = (uint64_t) addr;
  939. return 0;
  940. }
  941. /**
  942. * i915_gem_fault - fault a page into the GTT
  943. * vma: VMA in question
  944. * vmf: fault info
  945. *
  946. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  947. * from userspace. The fault handler takes care of binding the object to
  948. * the GTT (if needed), allocating and programming a fence register (again,
  949. * only if needed based on whether the old reg is still valid or the object
  950. * is tiled) and inserting a new PTE into the faulting process.
  951. *
  952. * Note that the faulting process may involve evicting existing objects
  953. * from the GTT and/or fence registers to make room. So performance may
  954. * suffer if the GTT working set is large or there are few fence registers
  955. * left.
  956. */
  957. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  958. {
  959. struct drm_gem_object *obj = vma->vm_private_data;
  960. struct drm_device *dev = obj->dev;
  961. struct drm_i915_private *dev_priv = dev->dev_private;
  962. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  963. pgoff_t page_offset;
  964. unsigned long pfn;
  965. int ret = 0;
  966. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  967. /* We don't use vmf->pgoff since that has the fake offset */
  968. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  969. PAGE_SHIFT;
  970. /* Now bind it into the GTT if needed */
  971. mutex_lock(&dev->struct_mutex);
  972. if (!obj_priv->gtt_space) {
  973. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  974. if (ret) {
  975. mutex_unlock(&dev->struct_mutex);
  976. return VM_FAULT_SIGBUS;
  977. }
  978. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  979. if (ret) {
  980. mutex_unlock(&dev->struct_mutex);
  981. return VM_FAULT_SIGBUS;
  982. }
  983. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  984. }
  985. /* Need a new fence register? */
  986. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  987. obj_priv->tiling_mode != I915_TILING_NONE) {
  988. ret = i915_gem_object_get_fence_reg(obj, write);
  989. if (ret) {
  990. mutex_unlock(&dev->struct_mutex);
  991. return VM_FAULT_SIGBUS;
  992. }
  993. }
  994. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  995. page_offset;
  996. /* Finally, remap it using the new GTT offset */
  997. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  998. mutex_unlock(&dev->struct_mutex);
  999. switch (ret) {
  1000. case -ENOMEM:
  1001. case -EAGAIN:
  1002. return VM_FAULT_OOM;
  1003. case -EFAULT:
  1004. case -EINVAL:
  1005. return VM_FAULT_SIGBUS;
  1006. default:
  1007. return VM_FAULT_NOPAGE;
  1008. }
  1009. }
  1010. /**
  1011. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1012. * @obj: obj in question
  1013. *
  1014. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1015. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1016. * up the object based on the offset and sets up the various memory mapping
  1017. * structures.
  1018. *
  1019. * This routine allocates and attaches a fake offset for @obj.
  1020. */
  1021. static int
  1022. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1023. {
  1024. struct drm_device *dev = obj->dev;
  1025. struct drm_gem_mm *mm = dev->mm_private;
  1026. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1027. struct drm_map_list *list;
  1028. struct drm_local_map *map;
  1029. int ret = 0;
  1030. /* Set the object up for mmap'ing */
  1031. list = &obj->map_list;
  1032. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  1033. DRM_MEM_DRIVER);
  1034. if (!list->map)
  1035. return -ENOMEM;
  1036. map = list->map;
  1037. map->type = _DRM_GEM;
  1038. map->size = obj->size;
  1039. map->handle = obj;
  1040. /* Get a DRM GEM mmap offset allocated... */
  1041. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1042. obj->size / PAGE_SIZE, 0, 0);
  1043. if (!list->file_offset_node) {
  1044. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1045. ret = -ENOMEM;
  1046. goto out_free_list;
  1047. }
  1048. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1049. obj->size / PAGE_SIZE, 0);
  1050. if (!list->file_offset_node) {
  1051. ret = -ENOMEM;
  1052. goto out_free_list;
  1053. }
  1054. list->hash.key = list->file_offset_node->start;
  1055. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1056. DRM_ERROR("failed to add to map hash\n");
  1057. goto out_free_mm;
  1058. }
  1059. /* By now we should be all set, any drm_mmap request on the offset
  1060. * below will get to our mmap & fault handler */
  1061. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1062. return 0;
  1063. out_free_mm:
  1064. drm_mm_put_block(list->file_offset_node);
  1065. out_free_list:
  1066. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  1067. return ret;
  1068. }
  1069. static void
  1070. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1071. {
  1072. struct drm_device *dev = obj->dev;
  1073. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1074. struct drm_gem_mm *mm = dev->mm_private;
  1075. struct drm_map_list *list;
  1076. list = &obj->map_list;
  1077. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1078. if (list->file_offset_node) {
  1079. drm_mm_put_block(list->file_offset_node);
  1080. list->file_offset_node = NULL;
  1081. }
  1082. if (list->map) {
  1083. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  1084. list->map = NULL;
  1085. }
  1086. obj_priv->mmap_offset = 0;
  1087. }
  1088. /**
  1089. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1090. * @obj: object to check
  1091. *
  1092. * Return the required GTT alignment for an object, taking into account
  1093. * potential fence register mapping if needed.
  1094. */
  1095. static uint32_t
  1096. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1097. {
  1098. struct drm_device *dev = obj->dev;
  1099. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1100. int start, i;
  1101. /*
  1102. * Minimum alignment is 4k (GTT page size), but might be greater
  1103. * if a fence register is needed for the object.
  1104. */
  1105. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1106. return 4096;
  1107. /*
  1108. * Previous chips need to be aligned to the size of the smallest
  1109. * fence register that can contain the object.
  1110. */
  1111. if (IS_I9XX(dev))
  1112. start = 1024*1024;
  1113. else
  1114. start = 512*1024;
  1115. for (i = start; i < obj->size; i <<= 1)
  1116. ;
  1117. return i;
  1118. }
  1119. /**
  1120. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1121. * @dev: DRM device
  1122. * @data: GTT mapping ioctl data
  1123. * @file_priv: GEM object info
  1124. *
  1125. * Simply returns the fake offset to userspace so it can mmap it.
  1126. * The mmap call will end up in drm_gem_mmap(), which will set things
  1127. * up so we can get faults in the handler above.
  1128. *
  1129. * The fault handler will take care of binding the object into the GTT
  1130. * (since it may have been evicted to make room for something), allocating
  1131. * a fence register, and mapping the appropriate aperture address into
  1132. * userspace.
  1133. */
  1134. int
  1135. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1136. struct drm_file *file_priv)
  1137. {
  1138. struct drm_i915_gem_mmap_gtt *args = data;
  1139. struct drm_i915_private *dev_priv = dev->dev_private;
  1140. struct drm_gem_object *obj;
  1141. struct drm_i915_gem_object *obj_priv;
  1142. int ret;
  1143. if (!(dev->driver->driver_features & DRIVER_GEM))
  1144. return -ENODEV;
  1145. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1146. if (obj == NULL)
  1147. return -EBADF;
  1148. mutex_lock(&dev->struct_mutex);
  1149. obj_priv = obj->driver_private;
  1150. if (!obj_priv->mmap_offset) {
  1151. ret = i915_gem_create_mmap_offset(obj);
  1152. if (ret) {
  1153. drm_gem_object_unreference(obj);
  1154. mutex_unlock(&dev->struct_mutex);
  1155. return ret;
  1156. }
  1157. }
  1158. args->offset = obj_priv->mmap_offset;
  1159. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1160. /* Make sure the alignment is correct for fence regs etc */
  1161. if (obj_priv->agp_mem &&
  1162. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1163. drm_gem_object_unreference(obj);
  1164. mutex_unlock(&dev->struct_mutex);
  1165. return -EINVAL;
  1166. }
  1167. /*
  1168. * Pull it into the GTT so that we have a page list (makes the
  1169. * initial fault faster and any subsequent flushing possible).
  1170. */
  1171. if (!obj_priv->agp_mem) {
  1172. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1173. if (ret) {
  1174. drm_gem_object_unreference(obj);
  1175. mutex_unlock(&dev->struct_mutex);
  1176. return ret;
  1177. }
  1178. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1179. }
  1180. drm_gem_object_unreference(obj);
  1181. mutex_unlock(&dev->struct_mutex);
  1182. return 0;
  1183. }
  1184. void
  1185. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1186. {
  1187. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1188. int page_count = obj->size / PAGE_SIZE;
  1189. int i;
  1190. BUG_ON(obj_priv->pages_refcount == 0);
  1191. if (--obj_priv->pages_refcount != 0)
  1192. return;
  1193. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1194. i915_gem_object_save_bit_17_swizzle(obj);
  1195. for (i = 0; i < page_count; i++)
  1196. if (obj_priv->pages[i] != NULL) {
  1197. if (obj_priv->dirty)
  1198. set_page_dirty(obj_priv->pages[i]);
  1199. mark_page_accessed(obj_priv->pages[i]);
  1200. page_cache_release(obj_priv->pages[i]);
  1201. }
  1202. obj_priv->dirty = 0;
  1203. drm_free_large(obj_priv->pages);
  1204. obj_priv->pages = NULL;
  1205. }
  1206. static void
  1207. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1208. {
  1209. struct drm_device *dev = obj->dev;
  1210. drm_i915_private_t *dev_priv = dev->dev_private;
  1211. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1212. /* Add a reference if we're newly entering the active list. */
  1213. if (!obj_priv->active) {
  1214. drm_gem_object_reference(obj);
  1215. obj_priv->active = 1;
  1216. }
  1217. /* Move from whatever list we were on to the tail of execution. */
  1218. spin_lock(&dev_priv->mm.active_list_lock);
  1219. list_move_tail(&obj_priv->list,
  1220. &dev_priv->mm.active_list);
  1221. spin_unlock(&dev_priv->mm.active_list_lock);
  1222. obj_priv->last_rendering_seqno = seqno;
  1223. }
  1224. static void
  1225. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1226. {
  1227. struct drm_device *dev = obj->dev;
  1228. drm_i915_private_t *dev_priv = dev->dev_private;
  1229. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1230. BUG_ON(!obj_priv->active);
  1231. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1232. obj_priv->last_rendering_seqno = 0;
  1233. }
  1234. static void
  1235. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1236. {
  1237. struct drm_device *dev = obj->dev;
  1238. drm_i915_private_t *dev_priv = dev->dev_private;
  1239. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1240. i915_verify_inactive(dev, __FILE__, __LINE__);
  1241. if (obj_priv->pin_count != 0)
  1242. list_del_init(&obj_priv->list);
  1243. else
  1244. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1245. obj_priv->last_rendering_seqno = 0;
  1246. if (obj_priv->active) {
  1247. obj_priv->active = 0;
  1248. drm_gem_object_unreference(obj);
  1249. }
  1250. i915_verify_inactive(dev, __FILE__, __LINE__);
  1251. }
  1252. /**
  1253. * Creates a new sequence number, emitting a write of it to the status page
  1254. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1255. *
  1256. * Must be called with struct_lock held.
  1257. *
  1258. * Returned sequence numbers are nonzero on success.
  1259. */
  1260. static uint32_t
  1261. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1262. uint32_t flush_domains)
  1263. {
  1264. drm_i915_private_t *dev_priv = dev->dev_private;
  1265. struct drm_i915_file_private *i915_file_priv = NULL;
  1266. struct drm_i915_gem_request *request;
  1267. uint32_t seqno;
  1268. int was_empty;
  1269. RING_LOCALS;
  1270. if (file_priv != NULL)
  1271. i915_file_priv = file_priv->driver_priv;
  1272. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1273. if (request == NULL)
  1274. return 0;
  1275. /* Grab the seqno we're going to make this request be, and bump the
  1276. * next (skipping 0 so it can be the reserved no-seqno value).
  1277. */
  1278. seqno = dev_priv->mm.next_gem_seqno;
  1279. dev_priv->mm.next_gem_seqno++;
  1280. if (dev_priv->mm.next_gem_seqno == 0)
  1281. dev_priv->mm.next_gem_seqno++;
  1282. BEGIN_LP_RING(4);
  1283. OUT_RING(MI_STORE_DWORD_INDEX);
  1284. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1285. OUT_RING(seqno);
  1286. OUT_RING(MI_USER_INTERRUPT);
  1287. ADVANCE_LP_RING();
  1288. DRM_DEBUG("%d\n", seqno);
  1289. request->seqno = seqno;
  1290. request->emitted_jiffies = jiffies;
  1291. was_empty = list_empty(&dev_priv->mm.request_list);
  1292. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1293. if (i915_file_priv) {
  1294. list_add_tail(&request->client_list,
  1295. &i915_file_priv->mm.request_list);
  1296. } else {
  1297. INIT_LIST_HEAD(&request->client_list);
  1298. }
  1299. /* Associate any objects on the flushing list matching the write
  1300. * domain we're flushing with our flush.
  1301. */
  1302. if (flush_domains != 0) {
  1303. struct drm_i915_gem_object *obj_priv, *next;
  1304. list_for_each_entry_safe(obj_priv, next,
  1305. &dev_priv->mm.flushing_list, list) {
  1306. struct drm_gem_object *obj = obj_priv->obj;
  1307. if ((obj->write_domain & flush_domains) ==
  1308. obj->write_domain) {
  1309. obj->write_domain = 0;
  1310. i915_gem_object_move_to_active(obj, seqno);
  1311. }
  1312. }
  1313. }
  1314. if (was_empty && !dev_priv->mm.suspended)
  1315. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1316. return seqno;
  1317. }
  1318. /**
  1319. * Command execution barrier
  1320. *
  1321. * Ensures that all commands in the ring are finished
  1322. * before signalling the CPU
  1323. */
  1324. static uint32_t
  1325. i915_retire_commands(struct drm_device *dev)
  1326. {
  1327. drm_i915_private_t *dev_priv = dev->dev_private;
  1328. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1329. uint32_t flush_domains = 0;
  1330. RING_LOCALS;
  1331. /* The sampler always gets flushed on i965 (sigh) */
  1332. if (IS_I965G(dev))
  1333. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1334. BEGIN_LP_RING(2);
  1335. OUT_RING(cmd);
  1336. OUT_RING(0); /* noop */
  1337. ADVANCE_LP_RING();
  1338. return flush_domains;
  1339. }
  1340. /**
  1341. * Moves buffers associated only with the given active seqno from the active
  1342. * to inactive list, potentially freeing them.
  1343. */
  1344. static void
  1345. i915_gem_retire_request(struct drm_device *dev,
  1346. struct drm_i915_gem_request *request)
  1347. {
  1348. drm_i915_private_t *dev_priv = dev->dev_private;
  1349. /* Move any buffers on the active list that are no longer referenced
  1350. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1351. */
  1352. spin_lock(&dev_priv->mm.active_list_lock);
  1353. while (!list_empty(&dev_priv->mm.active_list)) {
  1354. struct drm_gem_object *obj;
  1355. struct drm_i915_gem_object *obj_priv;
  1356. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1357. struct drm_i915_gem_object,
  1358. list);
  1359. obj = obj_priv->obj;
  1360. /* If the seqno being retired doesn't match the oldest in the
  1361. * list, then the oldest in the list must still be newer than
  1362. * this seqno.
  1363. */
  1364. if (obj_priv->last_rendering_seqno != request->seqno)
  1365. goto out;
  1366. #if WATCH_LRU
  1367. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1368. __func__, request->seqno, obj);
  1369. #endif
  1370. if (obj->write_domain != 0)
  1371. i915_gem_object_move_to_flushing(obj);
  1372. else {
  1373. /* Take a reference on the object so it won't be
  1374. * freed while the spinlock is held. The list
  1375. * protection for this spinlock is safe when breaking
  1376. * the lock like this since the next thing we do
  1377. * is just get the head of the list again.
  1378. */
  1379. drm_gem_object_reference(obj);
  1380. i915_gem_object_move_to_inactive(obj);
  1381. spin_unlock(&dev_priv->mm.active_list_lock);
  1382. drm_gem_object_unreference(obj);
  1383. spin_lock(&dev_priv->mm.active_list_lock);
  1384. }
  1385. }
  1386. out:
  1387. spin_unlock(&dev_priv->mm.active_list_lock);
  1388. }
  1389. /**
  1390. * Returns true if seq1 is later than seq2.
  1391. */
  1392. static int
  1393. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1394. {
  1395. return (int32_t)(seq1 - seq2) >= 0;
  1396. }
  1397. uint32_t
  1398. i915_get_gem_seqno(struct drm_device *dev)
  1399. {
  1400. drm_i915_private_t *dev_priv = dev->dev_private;
  1401. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1402. }
  1403. /**
  1404. * This function clears the request list as sequence numbers are passed.
  1405. */
  1406. void
  1407. i915_gem_retire_requests(struct drm_device *dev)
  1408. {
  1409. drm_i915_private_t *dev_priv = dev->dev_private;
  1410. uint32_t seqno;
  1411. if (!dev_priv->hw_status_page)
  1412. return;
  1413. seqno = i915_get_gem_seqno(dev);
  1414. while (!list_empty(&dev_priv->mm.request_list)) {
  1415. struct drm_i915_gem_request *request;
  1416. uint32_t retiring_seqno;
  1417. request = list_first_entry(&dev_priv->mm.request_list,
  1418. struct drm_i915_gem_request,
  1419. list);
  1420. retiring_seqno = request->seqno;
  1421. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1422. dev_priv->mm.wedged) {
  1423. i915_gem_retire_request(dev, request);
  1424. list_del(&request->list);
  1425. list_del(&request->client_list);
  1426. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1427. } else
  1428. break;
  1429. }
  1430. }
  1431. void
  1432. i915_gem_retire_work_handler(struct work_struct *work)
  1433. {
  1434. drm_i915_private_t *dev_priv;
  1435. struct drm_device *dev;
  1436. dev_priv = container_of(work, drm_i915_private_t,
  1437. mm.retire_work.work);
  1438. dev = dev_priv->dev;
  1439. mutex_lock(&dev->struct_mutex);
  1440. i915_gem_retire_requests(dev);
  1441. if (!dev_priv->mm.suspended &&
  1442. !list_empty(&dev_priv->mm.request_list))
  1443. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1444. mutex_unlock(&dev->struct_mutex);
  1445. }
  1446. /**
  1447. * Waits for a sequence number to be signaled, and cleans up the
  1448. * request and object lists appropriately for that event.
  1449. */
  1450. static int
  1451. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1452. {
  1453. drm_i915_private_t *dev_priv = dev->dev_private;
  1454. u32 ier;
  1455. int ret = 0;
  1456. BUG_ON(seqno == 0);
  1457. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1458. if (IS_IGDNG(dev))
  1459. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1460. else
  1461. ier = I915_READ(IER);
  1462. if (!ier) {
  1463. DRM_ERROR("something (likely vbetool) disabled "
  1464. "interrupts, re-enabling\n");
  1465. i915_driver_irq_preinstall(dev);
  1466. i915_driver_irq_postinstall(dev);
  1467. }
  1468. dev_priv->mm.waiting_gem_seqno = seqno;
  1469. i915_user_irq_get(dev);
  1470. ret = wait_event_interruptible(dev_priv->irq_queue,
  1471. i915_seqno_passed(i915_get_gem_seqno(dev),
  1472. seqno) ||
  1473. dev_priv->mm.wedged);
  1474. i915_user_irq_put(dev);
  1475. dev_priv->mm.waiting_gem_seqno = 0;
  1476. }
  1477. if (dev_priv->mm.wedged)
  1478. ret = -EIO;
  1479. if (ret && ret != -ERESTARTSYS)
  1480. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1481. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1482. /* Directly dispatch request retiring. While we have the work queue
  1483. * to handle this, the waiter on a request often wants an associated
  1484. * buffer to have made it to the inactive list, and we would need
  1485. * a separate wait queue to handle that.
  1486. */
  1487. if (ret == 0)
  1488. i915_gem_retire_requests(dev);
  1489. return ret;
  1490. }
  1491. static void
  1492. i915_gem_flush(struct drm_device *dev,
  1493. uint32_t invalidate_domains,
  1494. uint32_t flush_domains)
  1495. {
  1496. drm_i915_private_t *dev_priv = dev->dev_private;
  1497. uint32_t cmd;
  1498. RING_LOCALS;
  1499. #if WATCH_EXEC
  1500. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1501. invalidate_domains, flush_domains);
  1502. #endif
  1503. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1504. drm_agp_chipset_flush(dev);
  1505. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1506. I915_GEM_DOMAIN_GTT)) {
  1507. /*
  1508. * read/write caches:
  1509. *
  1510. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1511. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1512. * also flushed at 2d versus 3d pipeline switches.
  1513. *
  1514. * read-only caches:
  1515. *
  1516. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1517. * MI_READ_FLUSH is set, and is always flushed on 965.
  1518. *
  1519. * I915_GEM_DOMAIN_COMMAND may not exist?
  1520. *
  1521. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1522. * invalidated when MI_EXE_FLUSH is set.
  1523. *
  1524. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1525. * invalidated with every MI_FLUSH.
  1526. *
  1527. * TLBs:
  1528. *
  1529. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1530. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1531. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1532. * are flushed at any MI_FLUSH.
  1533. */
  1534. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1535. if ((invalidate_domains|flush_domains) &
  1536. I915_GEM_DOMAIN_RENDER)
  1537. cmd &= ~MI_NO_WRITE_FLUSH;
  1538. if (!IS_I965G(dev)) {
  1539. /*
  1540. * On the 965, the sampler cache always gets flushed
  1541. * and this bit is reserved.
  1542. */
  1543. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1544. cmd |= MI_READ_FLUSH;
  1545. }
  1546. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1547. cmd |= MI_EXE_FLUSH;
  1548. #if WATCH_EXEC
  1549. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1550. #endif
  1551. BEGIN_LP_RING(2);
  1552. OUT_RING(cmd);
  1553. OUT_RING(0); /* noop */
  1554. ADVANCE_LP_RING();
  1555. }
  1556. }
  1557. /**
  1558. * Ensures that all rendering to the object has completed and the object is
  1559. * safe to unbind from the GTT or access from the CPU.
  1560. */
  1561. static int
  1562. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1563. {
  1564. struct drm_device *dev = obj->dev;
  1565. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1566. int ret;
  1567. /* This function only exists to support waiting for existing rendering,
  1568. * not for emitting required flushes.
  1569. */
  1570. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1571. /* If there is rendering queued on the buffer being evicted, wait for
  1572. * it.
  1573. */
  1574. if (obj_priv->active) {
  1575. #if WATCH_BUF
  1576. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1577. __func__, obj, obj_priv->last_rendering_seqno);
  1578. #endif
  1579. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1580. if (ret != 0)
  1581. return ret;
  1582. }
  1583. return 0;
  1584. }
  1585. /**
  1586. * Unbinds an object from the GTT aperture.
  1587. */
  1588. int
  1589. i915_gem_object_unbind(struct drm_gem_object *obj)
  1590. {
  1591. struct drm_device *dev = obj->dev;
  1592. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1593. loff_t offset;
  1594. int ret = 0;
  1595. #if WATCH_BUF
  1596. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1597. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1598. #endif
  1599. if (obj_priv->gtt_space == NULL)
  1600. return 0;
  1601. if (obj_priv->pin_count != 0) {
  1602. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1603. return -EINVAL;
  1604. }
  1605. /* Move the object to the CPU domain to ensure that
  1606. * any possible CPU writes while it's not in the GTT
  1607. * are flushed when we go to remap it. This will
  1608. * also ensure that all pending GPU writes are finished
  1609. * before we unbind.
  1610. */
  1611. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1612. if (ret) {
  1613. if (ret != -ERESTARTSYS)
  1614. DRM_ERROR("set_domain failed: %d\n", ret);
  1615. return ret;
  1616. }
  1617. if (obj_priv->agp_mem != NULL) {
  1618. drm_unbind_agp(obj_priv->agp_mem);
  1619. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1620. obj_priv->agp_mem = NULL;
  1621. }
  1622. BUG_ON(obj_priv->active);
  1623. /* blow away mappings if mapped through GTT */
  1624. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1625. if (dev->dev_mapping)
  1626. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1627. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1628. i915_gem_clear_fence_reg(obj);
  1629. i915_gem_object_put_pages(obj);
  1630. if (obj_priv->gtt_space) {
  1631. atomic_dec(&dev->gtt_count);
  1632. atomic_sub(obj->size, &dev->gtt_memory);
  1633. drm_mm_put_block(obj_priv->gtt_space);
  1634. obj_priv->gtt_space = NULL;
  1635. }
  1636. /* Remove ourselves from the LRU list if present. */
  1637. if (!list_empty(&obj_priv->list))
  1638. list_del_init(&obj_priv->list);
  1639. return 0;
  1640. }
  1641. static int
  1642. i915_gem_evict_something(struct drm_device *dev)
  1643. {
  1644. drm_i915_private_t *dev_priv = dev->dev_private;
  1645. struct drm_gem_object *obj;
  1646. struct drm_i915_gem_object *obj_priv;
  1647. int ret = 0;
  1648. for (;;) {
  1649. /* If there's an inactive buffer available now, grab it
  1650. * and be done.
  1651. */
  1652. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1653. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1654. struct drm_i915_gem_object,
  1655. list);
  1656. obj = obj_priv->obj;
  1657. BUG_ON(obj_priv->pin_count != 0);
  1658. #if WATCH_LRU
  1659. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1660. #endif
  1661. BUG_ON(obj_priv->active);
  1662. /* Wait on the rendering and unbind the buffer. */
  1663. ret = i915_gem_object_unbind(obj);
  1664. break;
  1665. }
  1666. /* If we didn't get anything, but the ring is still processing
  1667. * things, wait for one of those things to finish and hopefully
  1668. * leave us a buffer to evict.
  1669. */
  1670. if (!list_empty(&dev_priv->mm.request_list)) {
  1671. struct drm_i915_gem_request *request;
  1672. request = list_first_entry(&dev_priv->mm.request_list,
  1673. struct drm_i915_gem_request,
  1674. list);
  1675. ret = i915_wait_request(dev, request->seqno);
  1676. if (ret)
  1677. break;
  1678. /* if waiting caused an object to become inactive,
  1679. * then loop around and wait for it. Otherwise, we
  1680. * assume that waiting freed and unbound something,
  1681. * so there should now be some space in the GTT
  1682. */
  1683. if (!list_empty(&dev_priv->mm.inactive_list))
  1684. continue;
  1685. break;
  1686. }
  1687. /* If we didn't have anything on the request list but there
  1688. * are buffers awaiting a flush, emit one and try again.
  1689. * When we wait on it, those buffers waiting for that flush
  1690. * will get moved to inactive.
  1691. */
  1692. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1693. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1694. struct drm_i915_gem_object,
  1695. list);
  1696. obj = obj_priv->obj;
  1697. i915_gem_flush(dev,
  1698. obj->write_domain,
  1699. obj->write_domain);
  1700. i915_add_request(dev, NULL, obj->write_domain);
  1701. obj = NULL;
  1702. continue;
  1703. }
  1704. DRM_ERROR("inactive empty %d request empty %d "
  1705. "flushing empty %d\n",
  1706. list_empty(&dev_priv->mm.inactive_list),
  1707. list_empty(&dev_priv->mm.request_list),
  1708. list_empty(&dev_priv->mm.flushing_list));
  1709. /* If we didn't do any of the above, there's nothing to be done
  1710. * and we just can't fit it in.
  1711. */
  1712. return -ENOMEM;
  1713. }
  1714. return ret;
  1715. }
  1716. static int
  1717. i915_gem_evict_everything(struct drm_device *dev)
  1718. {
  1719. int ret;
  1720. for (;;) {
  1721. ret = i915_gem_evict_something(dev);
  1722. if (ret != 0)
  1723. break;
  1724. }
  1725. if (ret == -ENOMEM)
  1726. return 0;
  1727. return ret;
  1728. }
  1729. int
  1730. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1731. {
  1732. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1733. int page_count, i;
  1734. struct address_space *mapping;
  1735. struct inode *inode;
  1736. struct page *page;
  1737. int ret;
  1738. if (obj_priv->pages_refcount++ != 0)
  1739. return 0;
  1740. /* Get the list of pages out of our struct file. They'll be pinned
  1741. * at this point until we release them.
  1742. */
  1743. page_count = obj->size / PAGE_SIZE;
  1744. BUG_ON(obj_priv->pages != NULL);
  1745. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1746. if (obj_priv->pages == NULL) {
  1747. DRM_ERROR("Faled to allocate page list\n");
  1748. obj_priv->pages_refcount--;
  1749. return -ENOMEM;
  1750. }
  1751. inode = obj->filp->f_path.dentry->d_inode;
  1752. mapping = inode->i_mapping;
  1753. for (i = 0; i < page_count; i++) {
  1754. page = read_mapping_page(mapping, i, NULL);
  1755. if (IS_ERR(page)) {
  1756. ret = PTR_ERR(page);
  1757. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1758. i915_gem_object_put_pages(obj);
  1759. return ret;
  1760. }
  1761. obj_priv->pages[i] = page;
  1762. }
  1763. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1764. i915_gem_object_do_bit_17_swizzle(obj);
  1765. return 0;
  1766. }
  1767. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1768. {
  1769. struct drm_gem_object *obj = reg->obj;
  1770. struct drm_device *dev = obj->dev;
  1771. drm_i915_private_t *dev_priv = dev->dev_private;
  1772. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1773. int regnum = obj_priv->fence_reg;
  1774. uint64_t val;
  1775. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1776. 0xfffff000) << 32;
  1777. val |= obj_priv->gtt_offset & 0xfffff000;
  1778. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1779. if (obj_priv->tiling_mode == I915_TILING_Y)
  1780. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1781. val |= I965_FENCE_REG_VALID;
  1782. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1783. }
  1784. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1785. {
  1786. struct drm_gem_object *obj = reg->obj;
  1787. struct drm_device *dev = obj->dev;
  1788. drm_i915_private_t *dev_priv = dev->dev_private;
  1789. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1790. int regnum = obj_priv->fence_reg;
  1791. int tile_width;
  1792. uint32_t fence_reg, val;
  1793. uint32_t pitch_val;
  1794. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1795. (obj_priv->gtt_offset & (obj->size - 1))) {
  1796. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1797. __func__, obj_priv->gtt_offset, obj->size);
  1798. return;
  1799. }
  1800. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1801. HAS_128_BYTE_Y_TILING(dev))
  1802. tile_width = 128;
  1803. else
  1804. tile_width = 512;
  1805. /* Note: pitch better be a power of two tile widths */
  1806. pitch_val = obj_priv->stride / tile_width;
  1807. pitch_val = ffs(pitch_val) - 1;
  1808. val = obj_priv->gtt_offset;
  1809. if (obj_priv->tiling_mode == I915_TILING_Y)
  1810. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1811. val |= I915_FENCE_SIZE_BITS(obj->size);
  1812. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1813. val |= I830_FENCE_REG_VALID;
  1814. if (regnum < 8)
  1815. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1816. else
  1817. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1818. I915_WRITE(fence_reg, val);
  1819. }
  1820. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1821. {
  1822. struct drm_gem_object *obj = reg->obj;
  1823. struct drm_device *dev = obj->dev;
  1824. drm_i915_private_t *dev_priv = dev->dev_private;
  1825. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1826. int regnum = obj_priv->fence_reg;
  1827. uint32_t val;
  1828. uint32_t pitch_val;
  1829. uint32_t fence_size_bits;
  1830. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1831. (obj_priv->gtt_offset & (obj->size - 1))) {
  1832. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1833. __func__, obj_priv->gtt_offset);
  1834. return;
  1835. }
  1836. pitch_val = obj_priv->stride / 128;
  1837. pitch_val = ffs(pitch_val) - 1;
  1838. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1839. val = obj_priv->gtt_offset;
  1840. if (obj_priv->tiling_mode == I915_TILING_Y)
  1841. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1842. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1843. WARN_ON(fence_size_bits & ~0x00000f00);
  1844. val |= fence_size_bits;
  1845. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1846. val |= I830_FENCE_REG_VALID;
  1847. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1848. }
  1849. /**
  1850. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1851. * @obj: object to map through a fence reg
  1852. * @write: object is about to be written
  1853. *
  1854. * When mapping objects through the GTT, userspace wants to be able to write
  1855. * to them without having to worry about swizzling if the object is tiled.
  1856. *
  1857. * This function walks the fence regs looking for a free one for @obj,
  1858. * stealing one if it can't find any.
  1859. *
  1860. * It then sets up the reg based on the object's properties: address, pitch
  1861. * and tiling format.
  1862. */
  1863. static int
  1864. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1865. {
  1866. struct drm_device *dev = obj->dev;
  1867. struct drm_i915_private *dev_priv = dev->dev_private;
  1868. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1869. struct drm_i915_fence_reg *reg = NULL;
  1870. struct drm_i915_gem_object *old_obj_priv = NULL;
  1871. int i, ret, avail;
  1872. switch (obj_priv->tiling_mode) {
  1873. case I915_TILING_NONE:
  1874. WARN(1, "allocating a fence for non-tiled object?\n");
  1875. break;
  1876. case I915_TILING_X:
  1877. if (!obj_priv->stride)
  1878. return -EINVAL;
  1879. WARN((obj_priv->stride & (512 - 1)),
  1880. "object 0x%08x is X tiled but has non-512B pitch\n",
  1881. obj_priv->gtt_offset);
  1882. break;
  1883. case I915_TILING_Y:
  1884. if (!obj_priv->stride)
  1885. return -EINVAL;
  1886. WARN((obj_priv->stride & (128 - 1)),
  1887. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1888. obj_priv->gtt_offset);
  1889. break;
  1890. }
  1891. /* First try to find a free reg */
  1892. try_again:
  1893. avail = 0;
  1894. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1895. reg = &dev_priv->fence_regs[i];
  1896. if (!reg->obj)
  1897. break;
  1898. old_obj_priv = reg->obj->driver_private;
  1899. if (!old_obj_priv->pin_count)
  1900. avail++;
  1901. }
  1902. /* None available, try to steal one or wait for a user to finish */
  1903. if (i == dev_priv->num_fence_regs) {
  1904. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1905. loff_t offset;
  1906. if (avail == 0)
  1907. return -ENOMEM;
  1908. for (i = dev_priv->fence_reg_start;
  1909. i < dev_priv->num_fence_regs; i++) {
  1910. uint32_t this_seqno;
  1911. reg = &dev_priv->fence_regs[i];
  1912. old_obj_priv = reg->obj->driver_private;
  1913. if (old_obj_priv->pin_count)
  1914. continue;
  1915. /* i915 uses fences for GPU access to tiled buffers */
  1916. if (IS_I965G(dev) || !old_obj_priv->active)
  1917. break;
  1918. /* find the seqno of the first available fence */
  1919. this_seqno = old_obj_priv->last_rendering_seqno;
  1920. if (this_seqno != 0 &&
  1921. reg->obj->write_domain == 0 &&
  1922. i915_seqno_passed(seqno, this_seqno))
  1923. seqno = this_seqno;
  1924. }
  1925. /*
  1926. * Now things get ugly... we have to wait for one of the
  1927. * objects to finish before trying again.
  1928. */
  1929. if (i == dev_priv->num_fence_regs) {
  1930. if (seqno == dev_priv->mm.next_gem_seqno) {
  1931. i915_gem_flush(dev,
  1932. I915_GEM_GPU_DOMAINS,
  1933. I915_GEM_GPU_DOMAINS);
  1934. seqno = i915_add_request(dev, NULL,
  1935. I915_GEM_GPU_DOMAINS);
  1936. if (seqno == 0)
  1937. return -ENOMEM;
  1938. }
  1939. ret = i915_wait_request(dev, seqno);
  1940. if (ret)
  1941. return ret;
  1942. goto try_again;
  1943. }
  1944. /*
  1945. * Zap this virtual mapping so we can set up a fence again
  1946. * for this object next time we need it.
  1947. */
  1948. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1949. if (dev->dev_mapping)
  1950. unmap_mapping_range(dev->dev_mapping, offset,
  1951. reg->obj->size, 1);
  1952. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1953. }
  1954. obj_priv->fence_reg = i;
  1955. reg->obj = obj;
  1956. if (IS_I965G(dev))
  1957. i965_write_fence_reg(reg);
  1958. else if (IS_I9XX(dev))
  1959. i915_write_fence_reg(reg);
  1960. else
  1961. i830_write_fence_reg(reg);
  1962. return 0;
  1963. }
  1964. /**
  1965. * i915_gem_clear_fence_reg - clear out fence register info
  1966. * @obj: object to clear
  1967. *
  1968. * Zeroes out the fence register itself and clears out the associated
  1969. * data structures in dev_priv and obj_priv.
  1970. */
  1971. static void
  1972. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1973. {
  1974. struct drm_device *dev = obj->dev;
  1975. drm_i915_private_t *dev_priv = dev->dev_private;
  1976. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1977. if (IS_I965G(dev))
  1978. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1979. else {
  1980. uint32_t fence_reg;
  1981. if (obj_priv->fence_reg < 8)
  1982. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1983. else
  1984. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1985. 8) * 4;
  1986. I915_WRITE(fence_reg, 0);
  1987. }
  1988. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1989. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1990. }
  1991. /**
  1992. * Finds free space in the GTT aperture and binds the object there.
  1993. */
  1994. static int
  1995. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1996. {
  1997. struct drm_device *dev = obj->dev;
  1998. drm_i915_private_t *dev_priv = dev->dev_private;
  1999. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2000. struct drm_mm_node *free_space;
  2001. int page_count, ret;
  2002. if (dev_priv->mm.suspended)
  2003. return -EBUSY;
  2004. if (alignment == 0)
  2005. alignment = i915_gem_get_gtt_alignment(obj);
  2006. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2007. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2008. return -EINVAL;
  2009. }
  2010. search_free:
  2011. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2012. obj->size, alignment, 0);
  2013. if (free_space != NULL) {
  2014. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2015. alignment);
  2016. if (obj_priv->gtt_space != NULL) {
  2017. obj_priv->gtt_space->private = obj;
  2018. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2019. }
  2020. }
  2021. if (obj_priv->gtt_space == NULL) {
  2022. bool lists_empty;
  2023. /* If the gtt is empty and we're still having trouble
  2024. * fitting our object in, we're out of memory.
  2025. */
  2026. #if WATCH_LRU
  2027. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2028. #endif
  2029. spin_lock(&dev_priv->mm.active_list_lock);
  2030. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2031. list_empty(&dev_priv->mm.flushing_list) &&
  2032. list_empty(&dev_priv->mm.active_list));
  2033. spin_unlock(&dev_priv->mm.active_list_lock);
  2034. if (lists_empty) {
  2035. DRM_ERROR("GTT full, but LRU list empty\n");
  2036. return -ENOMEM;
  2037. }
  2038. ret = i915_gem_evict_something(dev);
  2039. if (ret != 0) {
  2040. if (ret != -ERESTARTSYS)
  2041. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2042. return ret;
  2043. }
  2044. goto search_free;
  2045. }
  2046. #if WATCH_BUF
  2047. DRM_INFO("Binding object of size %d at 0x%08x\n",
  2048. obj->size, obj_priv->gtt_offset);
  2049. #endif
  2050. ret = i915_gem_object_get_pages(obj);
  2051. if (ret) {
  2052. drm_mm_put_block(obj_priv->gtt_space);
  2053. obj_priv->gtt_space = NULL;
  2054. return ret;
  2055. }
  2056. page_count = obj->size / PAGE_SIZE;
  2057. /* Create an AGP memory structure pointing at our pages, and bind it
  2058. * into the GTT.
  2059. */
  2060. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2061. obj_priv->pages,
  2062. page_count,
  2063. obj_priv->gtt_offset,
  2064. obj_priv->agp_type);
  2065. if (obj_priv->agp_mem == NULL) {
  2066. i915_gem_object_put_pages(obj);
  2067. drm_mm_put_block(obj_priv->gtt_space);
  2068. obj_priv->gtt_space = NULL;
  2069. return -ENOMEM;
  2070. }
  2071. atomic_inc(&dev->gtt_count);
  2072. atomic_add(obj->size, &dev->gtt_memory);
  2073. /* Assert that the object is not currently in any GPU domain. As it
  2074. * wasn't in the GTT, there shouldn't be any way it could have been in
  2075. * a GPU cache
  2076. */
  2077. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  2078. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  2079. return 0;
  2080. }
  2081. void
  2082. i915_gem_clflush_object(struct drm_gem_object *obj)
  2083. {
  2084. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2085. /* If we don't have a page list set up, then we're not pinned
  2086. * to GPU, and we can ignore the cache flush because it'll happen
  2087. * again at bind time.
  2088. */
  2089. if (obj_priv->pages == NULL)
  2090. return;
  2091. /* XXX: The 865 in particular appears to be weird in how it handles
  2092. * cache flushing. We haven't figured it out, but the
  2093. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2094. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2095. */
  2096. if (IS_I865G(obj->dev)) {
  2097. wbinvd();
  2098. return;
  2099. }
  2100. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2101. }
  2102. /** Flushes any GPU write domain for the object if it's dirty. */
  2103. static void
  2104. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2105. {
  2106. struct drm_device *dev = obj->dev;
  2107. uint32_t seqno;
  2108. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2109. return;
  2110. /* Queue the GPU write cache flushing we need. */
  2111. i915_gem_flush(dev, 0, obj->write_domain);
  2112. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2113. obj->write_domain = 0;
  2114. i915_gem_object_move_to_active(obj, seqno);
  2115. }
  2116. /** Flushes the GTT write domain for the object if it's dirty. */
  2117. static void
  2118. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2119. {
  2120. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2121. return;
  2122. /* No actual flushing is required for the GTT write domain. Writes
  2123. * to it immediately go to main memory as far as we know, so there's
  2124. * no chipset flush. It also doesn't land in render cache.
  2125. */
  2126. obj->write_domain = 0;
  2127. }
  2128. /** Flushes the CPU write domain for the object if it's dirty. */
  2129. static void
  2130. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2131. {
  2132. struct drm_device *dev = obj->dev;
  2133. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2134. return;
  2135. i915_gem_clflush_object(obj);
  2136. drm_agp_chipset_flush(dev);
  2137. obj->write_domain = 0;
  2138. }
  2139. /**
  2140. * Moves a single object to the GTT read, and possibly write domain.
  2141. *
  2142. * This function returns when the move is complete, including waiting on
  2143. * flushes to occur.
  2144. */
  2145. int
  2146. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2147. {
  2148. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2149. int ret;
  2150. /* Not valid to be called on unbound objects. */
  2151. if (obj_priv->gtt_space == NULL)
  2152. return -EINVAL;
  2153. i915_gem_object_flush_gpu_write_domain(obj);
  2154. /* Wait on any GPU rendering and flushing to occur. */
  2155. ret = i915_gem_object_wait_rendering(obj);
  2156. if (ret != 0)
  2157. return ret;
  2158. /* If we're writing through the GTT domain, then CPU and GPU caches
  2159. * will need to be invalidated at next use.
  2160. */
  2161. if (write)
  2162. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2163. i915_gem_object_flush_cpu_write_domain(obj);
  2164. /* It should now be out of any other write domains, and we can update
  2165. * the domain values for our changes.
  2166. */
  2167. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2168. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2169. if (write) {
  2170. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2171. obj_priv->dirty = 1;
  2172. }
  2173. return 0;
  2174. }
  2175. /**
  2176. * Moves a single object to the CPU read, and possibly write domain.
  2177. *
  2178. * This function returns when the move is complete, including waiting on
  2179. * flushes to occur.
  2180. */
  2181. static int
  2182. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2183. {
  2184. int ret;
  2185. i915_gem_object_flush_gpu_write_domain(obj);
  2186. /* Wait on any GPU rendering and flushing to occur. */
  2187. ret = i915_gem_object_wait_rendering(obj);
  2188. if (ret != 0)
  2189. return ret;
  2190. i915_gem_object_flush_gtt_write_domain(obj);
  2191. /* If we have a partially-valid cache of the object in the CPU,
  2192. * finish invalidating it and free the per-page flags.
  2193. */
  2194. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2195. /* Flush the CPU cache if it's still invalid. */
  2196. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2197. i915_gem_clflush_object(obj);
  2198. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2199. }
  2200. /* It should now be out of any other write domains, and we can update
  2201. * the domain values for our changes.
  2202. */
  2203. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2204. /* If we're writing through the CPU, then the GPU read domains will
  2205. * need to be invalidated at next use.
  2206. */
  2207. if (write) {
  2208. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2209. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2210. }
  2211. return 0;
  2212. }
  2213. /*
  2214. * Set the next domain for the specified object. This
  2215. * may not actually perform the necessary flushing/invaliding though,
  2216. * as that may want to be batched with other set_domain operations
  2217. *
  2218. * This is (we hope) the only really tricky part of gem. The goal
  2219. * is fairly simple -- track which caches hold bits of the object
  2220. * and make sure they remain coherent. A few concrete examples may
  2221. * help to explain how it works. For shorthand, we use the notation
  2222. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2223. * a pair of read and write domain masks.
  2224. *
  2225. * Case 1: the batch buffer
  2226. *
  2227. * 1. Allocated
  2228. * 2. Written by CPU
  2229. * 3. Mapped to GTT
  2230. * 4. Read by GPU
  2231. * 5. Unmapped from GTT
  2232. * 6. Freed
  2233. *
  2234. * Let's take these a step at a time
  2235. *
  2236. * 1. Allocated
  2237. * Pages allocated from the kernel may still have
  2238. * cache contents, so we set them to (CPU, CPU) always.
  2239. * 2. Written by CPU (using pwrite)
  2240. * The pwrite function calls set_domain (CPU, CPU) and
  2241. * this function does nothing (as nothing changes)
  2242. * 3. Mapped by GTT
  2243. * This function asserts that the object is not
  2244. * currently in any GPU-based read or write domains
  2245. * 4. Read by GPU
  2246. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2247. * As write_domain is zero, this function adds in the
  2248. * current read domains (CPU+COMMAND, 0).
  2249. * flush_domains is set to CPU.
  2250. * invalidate_domains is set to COMMAND
  2251. * clflush is run to get data out of the CPU caches
  2252. * then i915_dev_set_domain calls i915_gem_flush to
  2253. * emit an MI_FLUSH and drm_agp_chipset_flush
  2254. * 5. Unmapped from GTT
  2255. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2256. * flush_domains and invalidate_domains end up both zero
  2257. * so no flushing/invalidating happens
  2258. * 6. Freed
  2259. * yay, done
  2260. *
  2261. * Case 2: The shared render buffer
  2262. *
  2263. * 1. Allocated
  2264. * 2. Mapped to GTT
  2265. * 3. Read/written by GPU
  2266. * 4. set_domain to (CPU,CPU)
  2267. * 5. Read/written by CPU
  2268. * 6. Read/written by GPU
  2269. *
  2270. * 1. Allocated
  2271. * Same as last example, (CPU, CPU)
  2272. * 2. Mapped to GTT
  2273. * Nothing changes (assertions find that it is not in the GPU)
  2274. * 3. Read/written by GPU
  2275. * execbuffer calls set_domain (RENDER, RENDER)
  2276. * flush_domains gets CPU
  2277. * invalidate_domains gets GPU
  2278. * clflush (obj)
  2279. * MI_FLUSH and drm_agp_chipset_flush
  2280. * 4. set_domain (CPU, CPU)
  2281. * flush_domains gets GPU
  2282. * invalidate_domains gets CPU
  2283. * wait_rendering (obj) to make sure all drawing is complete.
  2284. * This will include an MI_FLUSH to get the data from GPU
  2285. * to memory
  2286. * clflush (obj) to invalidate the CPU cache
  2287. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2288. * 5. Read/written by CPU
  2289. * cache lines are loaded and dirtied
  2290. * 6. Read written by GPU
  2291. * Same as last GPU access
  2292. *
  2293. * Case 3: The constant buffer
  2294. *
  2295. * 1. Allocated
  2296. * 2. Written by CPU
  2297. * 3. Read by GPU
  2298. * 4. Updated (written) by CPU again
  2299. * 5. Read by GPU
  2300. *
  2301. * 1. Allocated
  2302. * (CPU, CPU)
  2303. * 2. Written by CPU
  2304. * (CPU, CPU)
  2305. * 3. Read by GPU
  2306. * (CPU+RENDER, 0)
  2307. * flush_domains = CPU
  2308. * invalidate_domains = RENDER
  2309. * clflush (obj)
  2310. * MI_FLUSH
  2311. * drm_agp_chipset_flush
  2312. * 4. Updated (written) by CPU again
  2313. * (CPU, CPU)
  2314. * flush_domains = 0 (no previous write domain)
  2315. * invalidate_domains = 0 (no new read domains)
  2316. * 5. Read by GPU
  2317. * (CPU+RENDER, 0)
  2318. * flush_domains = CPU
  2319. * invalidate_domains = RENDER
  2320. * clflush (obj)
  2321. * MI_FLUSH
  2322. * drm_agp_chipset_flush
  2323. */
  2324. static void
  2325. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2326. {
  2327. struct drm_device *dev = obj->dev;
  2328. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2329. uint32_t invalidate_domains = 0;
  2330. uint32_t flush_domains = 0;
  2331. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2332. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2333. #if WATCH_BUF
  2334. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2335. __func__, obj,
  2336. obj->read_domains, obj->pending_read_domains,
  2337. obj->write_domain, obj->pending_write_domain);
  2338. #endif
  2339. /*
  2340. * If the object isn't moving to a new write domain,
  2341. * let the object stay in multiple read domains
  2342. */
  2343. if (obj->pending_write_domain == 0)
  2344. obj->pending_read_domains |= obj->read_domains;
  2345. else
  2346. obj_priv->dirty = 1;
  2347. /*
  2348. * Flush the current write domain if
  2349. * the new read domains don't match. Invalidate
  2350. * any read domains which differ from the old
  2351. * write domain
  2352. */
  2353. if (obj->write_domain &&
  2354. obj->write_domain != obj->pending_read_domains) {
  2355. flush_domains |= obj->write_domain;
  2356. invalidate_domains |=
  2357. obj->pending_read_domains & ~obj->write_domain;
  2358. }
  2359. /*
  2360. * Invalidate any read caches which may have
  2361. * stale data. That is, any new read domains.
  2362. */
  2363. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2364. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2365. #if WATCH_BUF
  2366. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2367. __func__, flush_domains, invalidate_domains);
  2368. #endif
  2369. i915_gem_clflush_object(obj);
  2370. }
  2371. /* The actual obj->write_domain will be updated with
  2372. * pending_write_domain after we emit the accumulated flush for all
  2373. * of our domain changes in execbuffers (which clears objects'
  2374. * write_domains). So if we have a current write domain that we
  2375. * aren't changing, set pending_write_domain to that.
  2376. */
  2377. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2378. obj->pending_write_domain = obj->write_domain;
  2379. obj->read_domains = obj->pending_read_domains;
  2380. dev->invalidate_domains |= invalidate_domains;
  2381. dev->flush_domains |= flush_domains;
  2382. #if WATCH_BUF
  2383. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2384. __func__,
  2385. obj->read_domains, obj->write_domain,
  2386. dev->invalidate_domains, dev->flush_domains);
  2387. #endif
  2388. }
  2389. /**
  2390. * Moves the object from a partially CPU read to a full one.
  2391. *
  2392. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2393. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2394. */
  2395. static void
  2396. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2397. {
  2398. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2399. if (!obj_priv->page_cpu_valid)
  2400. return;
  2401. /* If we're partially in the CPU read domain, finish moving it in.
  2402. */
  2403. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2404. int i;
  2405. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2406. if (obj_priv->page_cpu_valid[i])
  2407. continue;
  2408. drm_clflush_pages(obj_priv->pages + i, 1);
  2409. }
  2410. }
  2411. /* Free the page_cpu_valid mappings which are now stale, whether
  2412. * or not we've got I915_GEM_DOMAIN_CPU.
  2413. */
  2414. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2415. DRM_MEM_DRIVER);
  2416. obj_priv->page_cpu_valid = NULL;
  2417. }
  2418. /**
  2419. * Set the CPU read domain on a range of the object.
  2420. *
  2421. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2422. * not entirely valid. The page_cpu_valid member of the object flags which
  2423. * pages have been flushed, and will be respected by
  2424. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2425. * of the whole object.
  2426. *
  2427. * This function returns when the move is complete, including waiting on
  2428. * flushes to occur.
  2429. */
  2430. static int
  2431. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2432. uint64_t offset, uint64_t size)
  2433. {
  2434. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2435. int i, ret;
  2436. if (offset == 0 && size == obj->size)
  2437. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2438. i915_gem_object_flush_gpu_write_domain(obj);
  2439. /* Wait on any GPU rendering and flushing to occur. */
  2440. ret = i915_gem_object_wait_rendering(obj);
  2441. if (ret != 0)
  2442. return ret;
  2443. i915_gem_object_flush_gtt_write_domain(obj);
  2444. /* If we're already fully in the CPU read domain, we're done. */
  2445. if (obj_priv->page_cpu_valid == NULL &&
  2446. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2447. return 0;
  2448. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2449. * newly adding I915_GEM_DOMAIN_CPU
  2450. */
  2451. if (obj_priv->page_cpu_valid == NULL) {
  2452. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2453. DRM_MEM_DRIVER);
  2454. if (obj_priv->page_cpu_valid == NULL)
  2455. return -ENOMEM;
  2456. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2457. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2458. /* Flush the cache on any pages that are still invalid from the CPU's
  2459. * perspective.
  2460. */
  2461. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2462. i++) {
  2463. if (obj_priv->page_cpu_valid[i])
  2464. continue;
  2465. drm_clflush_pages(obj_priv->pages + i, 1);
  2466. obj_priv->page_cpu_valid[i] = 1;
  2467. }
  2468. /* It should now be out of any other write domains, and we can update
  2469. * the domain values for our changes.
  2470. */
  2471. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2472. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2473. return 0;
  2474. }
  2475. /**
  2476. * Pin an object to the GTT and evaluate the relocations landing in it.
  2477. */
  2478. static int
  2479. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2480. struct drm_file *file_priv,
  2481. struct drm_i915_gem_exec_object *entry,
  2482. struct drm_i915_gem_relocation_entry *relocs)
  2483. {
  2484. struct drm_device *dev = obj->dev;
  2485. drm_i915_private_t *dev_priv = dev->dev_private;
  2486. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2487. int i, ret;
  2488. void __iomem *reloc_page;
  2489. /* Choose the GTT offset for our buffer and put it there. */
  2490. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2491. if (ret)
  2492. return ret;
  2493. entry->offset = obj_priv->gtt_offset;
  2494. /* Apply the relocations, using the GTT aperture to avoid cache
  2495. * flushing requirements.
  2496. */
  2497. for (i = 0; i < entry->relocation_count; i++) {
  2498. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2499. struct drm_gem_object *target_obj;
  2500. struct drm_i915_gem_object *target_obj_priv;
  2501. uint32_t reloc_val, reloc_offset;
  2502. uint32_t __iomem *reloc_entry;
  2503. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2504. reloc->target_handle);
  2505. if (target_obj == NULL) {
  2506. i915_gem_object_unpin(obj);
  2507. return -EBADF;
  2508. }
  2509. target_obj_priv = target_obj->driver_private;
  2510. /* The target buffer should have appeared before us in the
  2511. * exec_object list, so it should have a GTT space bound by now.
  2512. */
  2513. if (target_obj_priv->gtt_space == NULL) {
  2514. DRM_ERROR("No GTT space found for object %d\n",
  2515. reloc->target_handle);
  2516. drm_gem_object_unreference(target_obj);
  2517. i915_gem_object_unpin(obj);
  2518. return -EINVAL;
  2519. }
  2520. if (reloc->offset > obj->size - 4) {
  2521. DRM_ERROR("Relocation beyond object bounds: "
  2522. "obj %p target %d offset %d size %d.\n",
  2523. obj, reloc->target_handle,
  2524. (int) reloc->offset, (int) obj->size);
  2525. drm_gem_object_unreference(target_obj);
  2526. i915_gem_object_unpin(obj);
  2527. return -EINVAL;
  2528. }
  2529. if (reloc->offset & 3) {
  2530. DRM_ERROR("Relocation not 4-byte aligned: "
  2531. "obj %p target %d offset %d.\n",
  2532. obj, reloc->target_handle,
  2533. (int) reloc->offset);
  2534. drm_gem_object_unreference(target_obj);
  2535. i915_gem_object_unpin(obj);
  2536. return -EINVAL;
  2537. }
  2538. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2539. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2540. DRM_ERROR("reloc with read/write CPU domains: "
  2541. "obj %p target %d offset %d "
  2542. "read %08x write %08x",
  2543. obj, reloc->target_handle,
  2544. (int) reloc->offset,
  2545. reloc->read_domains,
  2546. reloc->write_domain);
  2547. drm_gem_object_unreference(target_obj);
  2548. i915_gem_object_unpin(obj);
  2549. return -EINVAL;
  2550. }
  2551. if (reloc->write_domain && target_obj->pending_write_domain &&
  2552. reloc->write_domain != target_obj->pending_write_domain) {
  2553. DRM_ERROR("Write domain conflict: "
  2554. "obj %p target %d offset %d "
  2555. "new %08x old %08x\n",
  2556. obj, reloc->target_handle,
  2557. (int) reloc->offset,
  2558. reloc->write_domain,
  2559. target_obj->pending_write_domain);
  2560. drm_gem_object_unreference(target_obj);
  2561. i915_gem_object_unpin(obj);
  2562. return -EINVAL;
  2563. }
  2564. #if WATCH_RELOC
  2565. DRM_INFO("%s: obj %p offset %08x target %d "
  2566. "read %08x write %08x gtt %08x "
  2567. "presumed %08x delta %08x\n",
  2568. __func__,
  2569. obj,
  2570. (int) reloc->offset,
  2571. (int) reloc->target_handle,
  2572. (int) reloc->read_domains,
  2573. (int) reloc->write_domain,
  2574. (int) target_obj_priv->gtt_offset,
  2575. (int) reloc->presumed_offset,
  2576. reloc->delta);
  2577. #endif
  2578. target_obj->pending_read_domains |= reloc->read_domains;
  2579. target_obj->pending_write_domain |= reloc->write_domain;
  2580. /* If the relocation already has the right value in it, no
  2581. * more work needs to be done.
  2582. */
  2583. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2584. drm_gem_object_unreference(target_obj);
  2585. continue;
  2586. }
  2587. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2588. if (ret != 0) {
  2589. drm_gem_object_unreference(target_obj);
  2590. i915_gem_object_unpin(obj);
  2591. return -EINVAL;
  2592. }
  2593. /* Map the page containing the relocation we're going to
  2594. * perform.
  2595. */
  2596. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2597. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2598. (reloc_offset &
  2599. ~(PAGE_SIZE - 1)));
  2600. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2601. (reloc_offset & (PAGE_SIZE - 1)));
  2602. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2603. #if WATCH_BUF
  2604. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2605. obj, (unsigned int) reloc->offset,
  2606. readl(reloc_entry), reloc_val);
  2607. #endif
  2608. writel(reloc_val, reloc_entry);
  2609. io_mapping_unmap_atomic(reloc_page);
  2610. /* The updated presumed offset for this entry will be
  2611. * copied back out to the user.
  2612. */
  2613. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2614. drm_gem_object_unreference(target_obj);
  2615. }
  2616. #if WATCH_BUF
  2617. if (0)
  2618. i915_gem_dump_object(obj, 128, __func__, ~0);
  2619. #endif
  2620. return 0;
  2621. }
  2622. /** Dispatch a batchbuffer to the ring
  2623. */
  2624. static int
  2625. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2626. struct drm_i915_gem_execbuffer *exec,
  2627. struct drm_clip_rect *cliprects,
  2628. uint64_t exec_offset)
  2629. {
  2630. drm_i915_private_t *dev_priv = dev->dev_private;
  2631. int nbox = exec->num_cliprects;
  2632. int i = 0, count;
  2633. uint32_t exec_start, exec_len;
  2634. RING_LOCALS;
  2635. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2636. exec_len = (uint32_t) exec->batch_len;
  2637. count = nbox ? nbox : 1;
  2638. for (i = 0; i < count; i++) {
  2639. if (i < nbox) {
  2640. int ret = i915_emit_box(dev, cliprects, i,
  2641. exec->DR1, exec->DR4);
  2642. if (ret)
  2643. return ret;
  2644. }
  2645. if (IS_I830(dev) || IS_845G(dev)) {
  2646. BEGIN_LP_RING(4);
  2647. OUT_RING(MI_BATCH_BUFFER);
  2648. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2649. OUT_RING(exec_start + exec_len - 4);
  2650. OUT_RING(0);
  2651. ADVANCE_LP_RING();
  2652. } else {
  2653. BEGIN_LP_RING(2);
  2654. if (IS_I965G(dev)) {
  2655. OUT_RING(MI_BATCH_BUFFER_START |
  2656. (2 << 6) |
  2657. MI_BATCH_NON_SECURE_I965);
  2658. OUT_RING(exec_start);
  2659. } else {
  2660. OUT_RING(MI_BATCH_BUFFER_START |
  2661. (2 << 6));
  2662. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2663. }
  2664. ADVANCE_LP_RING();
  2665. }
  2666. }
  2667. /* XXX breadcrumb */
  2668. return 0;
  2669. }
  2670. /* Throttle our rendering by waiting until the ring has completed our requests
  2671. * emitted over 20 msec ago.
  2672. *
  2673. * Note that if we were to use the current jiffies each time around the loop,
  2674. * we wouldn't escape the function with any frames outstanding if the time to
  2675. * render a frame was over 20ms.
  2676. *
  2677. * This should get us reasonable parallelism between CPU and GPU but also
  2678. * relatively low latency when blocking on a particular request to finish.
  2679. */
  2680. static int
  2681. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2682. {
  2683. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2684. int ret = 0;
  2685. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2686. mutex_lock(&dev->struct_mutex);
  2687. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2688. struct drm_i915_gem_request *request;
  2689. request = list_first_entry(&i915_file_priv->mm.request_list,
  2690. struct drm_i915_gem_request,
  2691. client_list);
  2692. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2693. break;
  2694. ret = i915_wait_request(dev, request->seqno);
  2695. if (ret != 0)
  2696. break;
  2697. }
  2698. mutex_unlock(&dev->struct_mutex);
  2699. return ret;
  2700. }
  2701. static int
  2702. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2703. uint32_t buffer_count,
  2704. struct drm_i915_gem_relocation_entry **relocs)
  2705. {
  2706. uint32_t reloc_count = 0, reloc_index = 0, i;
  2707. int ret;
  2708. *relocs = NULL;
  2709. for (i = 0; i < buffer_count; i++) {
  2710. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2711. return -EINVAL;
  2712. reloc_count += exec_list[i].relocation_count;
  2713. }
  2714. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2715. if (*relocs == NULL)
  2716. return -ENOMEM;
  2717. for (i = 0; i < buffer_count; i++) {
  2718. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2719. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2720. ret = copy_from_user(&(*relocs)[reloc_index],
  2721. user_relocs,
  2722. exec_list[i].relocation_count *
  2723. sizeof(**relocs));
  2724. if (ret != 0) {
  2725. drm_free_large(*relocs);
  2726. *relocs = NULL;
  2727. return -EFAULT;
  2728. }
  2729. reloc_index += exec_list[i].relocation_count;
  2730. }
  2731. return 0;
  2732. }
  2733. static int
  2734. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2735. uint32_t buffer_count,
  2736. struct drm_i915_gem_relocation_entry *relocs)
  2737. {
  2738. uint32_t reloc_count = 0, i;
  2739. int ret = 0;
  2740. for (i = 0; i < buffer_count; i++) {
  2741. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2742. int unwritten;
  2743. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2744. unwritten = copy_to_user(user_relocs,
  2745. &relocs[reloc_count],
  2746. exec_list[i].relocation_count *
  2747. sizeof(*relocs));
  2748. if (unwritten) {
  2749. ret = -EFAULT;
  2750. goto err;
  2751. }
  2752. reloc_count += exec_list[i].relocation_count;
  2753. }
  2754. err:
  2755. drm_free_large(relocs);
  2756. return ret;
  2757. }
  2758. static int
  2759. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2760. uint64_t exec_offset)
  2761. {
  2762. uint32_t exec_start, exec_len;
  2763. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2764. exec_len = (uint32_t) exec->batch_len;
  2765. if ((exec_start | exec_len) & 0x7)
  2766. return -EINVAL;
  2767. if (!exec_start)
  2768. return -EINVAL;
  2769. return 0;
  2770. }
  2771. int
  2772. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2773. struct drm_file *file_priv)
  2774. {
  2775. drm_i915_private_t *dev_priv = dev->dev_private;
  2776. struct drm_i915_gem_execbuffer *args = data;
  2777. struct drm_i915_gem_exec_object *exec_list = NULL;
  2778. struct drm_gem_object **object_list = NULL;
  2779. struct drm_gem_object *batch_obj;
  2780. struct drm_i915_gem_object *obj_priv;
  2781. struct drm_clip_rect *cliprects = NULL;
  2782. struct drm_i915_gem_relocation_entry *relocs;
  2783. int ret, ret2, i, pinned = 0;
  2784. uint64_t exec_offset;
  2785. uint32_t seqno, flush_domains, reloc_index;
  2786. int pin_tries;
  2787. #if WATCH_EXEC
  2788. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2789. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2790. #endif
  2791. if (args->buffer_count < 1) {
  2792. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2793. return -EINVAL;
  2794. }
  2795. /* Copy in the exec list from userland */
  2796. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2797. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2798. if (exec_list == NULL || object_list == NULL) {
  2799. DRM_ERROR("Failed to allocate exec or object list "
  2800. "for %d buffers\n",
  2801. args->buffer_count);
  2802. ret = -ENOMEM;
  2803. goto pre_mutex_err;
  2804. }
  2805. ret = copy_from_user(exec_list,
  2806. (struct drm_i915_relocation_entry __user *)
  2807. (uintptr_t) args->buffers_ptr,
  2808. sizeof(*exec_list) * args->buffer_count);
  2809. if (ret != 0) {
  2810. DRM_ERROR("copy %d exec entries failed %d\n",
  2811. args->buffer_count, ret);
  2812. goto pre_mutex_err;
  2813. }
  2814. if (args->num_cliprects != 0) {
  2815. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2816. DRM_MEM_DRIVER);
  2817. if (cliprects == NULL)
  2818. goto pre_mutex_err;
  2819. ret = copy_from_user(cliprects,
  2820. (struct drm_clip_rect __user *)
  2821. (uintptr_t) args->cliprects_ptr,
  2822. sizeof(*cliprects) * args->num_cliprects);
  2823. if (ret != 0) {
  2824. DRM_ERROR("copy %d cliprects failed: %d\n",
  2825. args->num_cliprects, ret);
  2826. goto pre_mutex_err;
  2827. }
  2828. }
  2829. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2830. &relocs);
  2831. if (ret != 0)
  2832. goto pre_mutex_err;
  2833. mutex_lock(&dev->struct_mutex);
  2834. i915_verify_inactive(dev, __FILE__, __LINE__);
  2835. if (dev_priv->mm.wedged) {
  2836. DRM_ERROR("Execbuf while wedged\n");
  2837. mutex_unlock(&dev->struct_mutex);
  2838. ret = -EIO;
  2839. goto pre_mutex_err;
  2840. }
  2841. if (dev_priv->mm.suspended) {
  2842. DRM_ERROR("Execbuf while VT-switched.\n");
  2843. mutex_unlock(&dev->struct_mutex);
  2844. ret = -EBUSY;
  2845. goto pre_mutex_err;
  2846. }
  2847. /* Look up object handles */
  2848. for (i = 0; i < args->buffer_count; i++) {
  2849. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2850. exec_list[i].handle);
  2851. if (object_list[i] == NULL) {
  2852. DRM_ERROR("Invalid object handle %d at index %d\n",
  2853. exec_list[i].handle, i);
  2854. ret = -EBADF;
  2855. goto err;
  2856. }
  2857. obj_priv = object_list[i]->driver_private;
  2858. if (obj_priv->in_execbuffer) {
  2859. DRM_ERROR("Object %p appears more than once in object list\n",
  2860. object_list[i]);
  2861. ret = -EBADF;
  2862. goto err;
  2863. }
  2864. obj_priv->in_execbuffer = true;
  2865. }
  2866. /* Pin and relocate */
  2867. for (pin_tries = 0; ; pin_tries++) {
  2868. ret = 0;
  2869. reloc_index = 0;
  2870. for (i = 0; i < args->buffer_count; i++) {
  2871. object_list[i]->pending_read_domains = 0;
  2872. object_list[i]->pending_write_domain = 0;
  2873. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2874. file_priv,
  2875. &exec_list[i],
  2876. &relocs[reloc_index]);
  2877. if (ret)
  2878. break;
  2879. pinned = i + 1;
  2880. reloc_index += exec_list[i].relocation_count;
  2881. }
  2882. /* success */
  2883. if (ret == 0)
  2884. break;
  2885. /* error other than GTT full, or we've already tried again */
  2886. if (ret != -ENOMEM || pin_tries >= 1) {
  2887. if (ret != -ERESTARTSYS)
  2888. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2889. goto err;
  2890. }
  2891. /* unpin all of our buffers */
  2892. for (i = 0; i < pinned; i++)
  2893. i915_gem_object_unpin(object_list[i]);
  2894. pinned = 0;
  2895. /* evict everyone we can from the aperture */
  2896. ret = i915_gem_evict_everything(dev);
  2897. if (ret)
  2898. goto err;
  2899. }
  2900. /* Set the pending read domains for the batch buffer to COMMAND */
  2901. batch_obj = object_list[args->buffer_count-1];
  2902. if (batch_obj->pending_write_domain) {
  2903. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2904. ret = -EINVAL;
  2905. goto err;
  2906. }
  2907. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2908. /* Sanity check the batch buffer, prior to moving objects */
  2909. exec_offset = exec_list[args->buffer_count - 1].offset;
  2910. ret = i915_gem_check_execbuffer (args, exec_offset);
  2911. if (ret != 0) {
  2912. DRM_ERROR("execbuf with invalid offset/length\n");
  2913. goto err;
  2914. }
  2915. i915_verify_inactive(dev, __FILE__, __LINE__);
  2916. /* Zero the global flush/invalidate flags. These
  2917. * will be modified as new domains are computed
  2918. * for each object
  2919. */
  2920. dev->invalidate_domains = 0;
  2921. dev->flush_domains = 0;
  2922. for (i = 0; i < args->buffer_count; i++) {
  2923. struct drm_gem_object *obj = object_list[i];
  2924. /* Compute new gpu domains and update invalidate/flush */
  2925. i915_gem_object_set_to_gpu_domain(obj);
  2926. }
  2927. i915_verify_inactive(dev, __FILE__, __LINE__);
  2928. if (dev->invalidate_domains | dev->flush_domains) {
  2929. #if WATCH_EXEC
  2930. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2931. __func__,
  2932. dev->invalidate_domains,
  2933. dev->flush_domains);
  2934. #endif
  2935. i915_gem_flush(dev,
  2936. dev->invalidate_domains,
  2937. dev->flush_domains);
  2938. if (dev->flush_domains)
  2939. (void)i915_add_request(dev, file_priv,
  2940. dev->flush_domains);
  2941. }
  2942. for (i = 0; i < args->buffer_count; i++) {
  2943. struct drm_gem_object *obj = object_list[i];
  2944. obj->write_domain = obj->pending_write_domain;
  2945. }
  2946. i915_verify_inactive(dev, __FILE__, __LINE__);
  2947. #if WATCH_COHERENCY
  2948. for (i = 0; i < args->buffer_count; i++) {
  2949. i915_gem_object_check_coherency(object_list[i],
  2950. exec_list[i].handle);
  2951. }
  2952. #endif
  2953. #if WATCH_EXEC
  2954. i915_gem_dump_object(batch_obj,
  2955. args->batch_len,
  2956. __func__,
  2957. ~0);
  2958. #endif
  2959. /* Exec the batchbuffer */
  2960. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2961. if (ret) {
  2962. DRM_ERROR("dispatch failed %d\n", ret);
  2963. goto err;
  2964. }
  2965. /*
  2966. * Ensure that the commands in the batch buffer are
  2967. * finished before the interrupt fires
  2968. */
  2969. flush_domains = i915_retire_commands(dev);
  2970. i915_verify_inactive(dev, __FILE__, __LINE__);
  2971. /*
  2972. * Get a seqno representing the execution of the current buffer,
  2973. * which we can wait on. We would like to mitigate these interrupts,
  2974. * likely by only creating seqnos occasionally (so that we have
  2975. * *some* interrupts representing completion of buffers that we can
  2976. * wait on when trying to clear up gtt space).
  2977. */
  2978. seqno = i915_add_request(dev, file_priv, flush_domains);
  2979. BUG_ON(seqno == 0);
  2980. for (i = 0; i < args->buffer_count; i++) {
  2981. struct drm_gem_object *obj = object_list[i];
  2982. i915_gem_object_move_to_active(obj, seqno);
  2983. #if WATCH_LRU
  2984. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2985. #endif
  2986. }
  2987. #if WATCH_LRU
  2988. i915_dump_lru(dev, __func__);
  2989. #endif
  2990. i915_verify_inactive(dev, __FILE__, __LINE__);
  2991. err:
  2992. for (i = 0; i < pinned; i++)
  2993. i915_gem_object_unpin(object_list[i]);
  2994. for (i = 0; i < args->buffer_count; i++) {
  2995. if (object_list[i]) {
  2996. obj_priv = object_list[i]->driver_private;
  2997. obj_priv->in_execbuffer = false;
  2998. }
  2999. drm_gem_object_unreference(object_list[i]);
  3000. }
  3001. mutex_unlock(&dev->struct_mutex);
  3002. if (!ret) {
  3003. /* Copy the new buffer offsets back to the user's exec list. */
  3004. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3005. (uintptr_t) args->buffers_ptr,
  3006. exec_list,
  3007. sizeof(*exec_list) * args->buffer_count);
  3008. if (ret) {
  3009. ret = -EFAULT;
  3010. DRM_ERROR("failed to copy %d exec entries "
  3011. "back to user (%d)\n",
  3012. args->buffer_count, ret);
  3013. }
  3014. }
  3015. /* Copy the updated relocations out regardless of current error
  3016. * state. Failure to update the relocs would mean that the next
  3017. * time userland calls execbuf, it would do so with presumed offset
  3018. * state that didn't match the actual object state.
  3019. */
  3020. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3021. relocs);
  3022. if (ret2 != 0) {
  3023. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3024. if (ret == 0)
  3025. ret = ret2;
  3026. }
  3027. pre_mutex_err:
  3028. drm_free_large(object_list);
  3029. drm_free_large(exec_list);
  3030. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  3031. DRM_MEM_DRIVER);
  3032. return ret;
  3033. }
  3034. int
  3035. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3036. {
  3037. struct drm_device *dev = obj->dev;
  3038. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3039. int ret;
  3040. i915_verify_inactive(dev, __FILE__, __LINE__);
  3041. if (obj_priv->gtt_space == NULL) {
  3042. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3043. if (ret != 0) {
  3044. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3045. DRM_ERROR("Failure to bind: %d\n", ret);
  3046. return ret;
  3047. }
  3048. }
  3049. /*
  3050. * Pre-965 chips need a fence register set up in order to
  3051. * properly handle tiled surfaces.
  3052. */
  3053. if (!IS_I965G(dev) &&
  3054. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  3055. obj_priv->tiling_mode != I915_TILING_NONE) {
  3056. ret = i915_gem_object_get_fence_reg(obj, true);
  3057. if (ret != 0) {
  3058. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3059. DRM_ERROR("Failure to install fence: %d\n",
  3060. ret);
  3061. return ret;
  3062. }
  3063. }
  3064. obj_priv->pin_count++;
  3065. /* If the object is not active and not pending a flush,
  3066. * remove it from the inactive list
  3067. */
  3068. if (obj_priv->pin_count == 1) {
  3069. atomic_inc(&dev->pin_count);
  3070. atomic_add(obj->size, &dev->pin_memory);
  3071. if (!obj_priv->active &&
  3072. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  3073. I915_GEM_DOMAIN_GTT)) == 0 &&
  3074. !list_empty(&obj_priv->list))
  3075. list_del_init(&obj_priv->list);
  3076. }
  3077. i915_verify_inactive(dev, __FILE__, __LINE__);
  3078. return 0;
  3079. }
  3080. void
  3081. i915_gem_object_unpin(struct drm_gem_object *obj)
  3082. {
  3083. struct drm_device *dev = obj->dev;
  3084. drm_i915_private_t *dev_priv = dev->dev_private;
  3085. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3086. i915_verify_inactive(dev, __FILE__, __LINE__);
  3087. obj_priv->pin_count--;
  3088. BUG_ON(obj_priv->pin_count < 0);
  3089. BUG_ON(obj_priv->gtt_space == NULL);
  3090. /* If the object is no longer pinned, and is
  3091. * neither active nor being flushed, then stick it on
  3092. * the inactive list
  3093. */
  3094. if (obj_priv->pin_count == 0) {
  3095. if (!obj_priv->active &&
  3096. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  3097. I915_GEM_DOMAIN_GTT)) == 0)
  3098. list_move_tail(&obj_priv->list,
  3099. &dev_priv->mm.inactive_list);
  3100. atomic_dec(&dev->pin_count);
  3101. atomic_sub(obj->size, &dev->pin_memory);
  3102. }
  3103. i915_verify_inactive(dev, __FILE__, __LINE__);
  3104. }
  3105. int
  3106. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3107. struct drm_file *file_priv)
  3108. {
  3109. struct drm_i915_gem_pin *args = data;
  3110. struct drm_gem_object *obj;
  3111. struct drm_i915_gem_object *obj_priv;
  3112. int ret;
  3113. mutex_lock(&dev->struct_mutex);
  3114. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3115. if (obj == NULL) {
  3116. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3117. args->handle);
  3118. mutex_unlock(&dev->struct_mutex);
  3119. return -EBADF;
  3120. }
  3121. obj_priv = obj->driver_private;
  3122. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3123. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3124. args->handle);
  3125. drm_gem_object_unreference(obj);
  3126. mutex_unlock(&dev->struct_mutex);
  3127. return -EINVAL;
  3128. }
  3129. obj_priv->user_pin_count++;
  3130. obj_priv->pin_filp = file_priv;
  3131. if (obj_priv->user_pin_count == 1) {
  3132. ret = i915_gem_object_pin(obj, args->alignment);
  3133. if (ret != 0) {
  3134. drm_gem_object_unreference(obj);
  3135. mutex_unlock(&dev->struct_mutex);
  3136. return ret;
  3137. }
  3138. }
  3139. /* XXX - flush the CPU caches for pinned objects
  3140. * as the X server doesn't manage domains yet
  3141. */
  3142. i915_gem_object_flush_cpu_write_domain(obj);
  3143. args->offset = obj_priv->gtt_offset;
  3144. drm_gem_object_unreference(obj);
  3145. mutex_unlock(&dev->struct_mutex);
  3146. return 0;
  3147. }
  3148. int
  3149. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3150. struct drm_file *file_priv)
  3151. {
  3152. struct drm_i915_gem_pin *args = data;
  3153. struct drm_gem_object *obj;
  3154. struct drm_i915_gem_object *obj_priv;
  3155. mutex_lock(&dev->struct_mutex);
  3156. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3157. if (obj == NULL) {
  3158. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3159. args->handle);
  3160. mutex_unlock(&dev->struct_mutex);
  3161. return -EBADF;
  3162. }
  3163. obj_priv = obj->driver_private;
  3164. if (obj_priv->pin_filp != file_priv) {
  3165. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3166. args->handle);
  3167. drm_gem_object_unreference(obj);
  3168. mutex_unlock(&dev->struct_mutex);
  3169. return -EINVAL;
  3170. }
  3171. obj_priv->user_pin_count--;
  3172. if (obj_priv->user_pin_count == 0) {
  3173. obj_priv->pin_filp = NULL;
  3174. i915_gem_object_unpin(obj);
  3175. }
  3176. drm_gem_object_unreference(obj);
  3177. mutex_unlock(&dev->struct_mutex);
  3178. return 0;
  3179. }
  3180. int
  3181. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3182. struct drm_file *file_priv)
  3183. {
  3184. struct drm_i915_gem_busy *args = data;
  3185. struct drm_gem_object *obj;
  3186. struct drm_i915_gem_object *obj_priv;
  3187. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3188. if (obj == NULL) {
  3189. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3190. args->handle);
  3191. return -EBADF;
  3192. }
  3193. mutex_lock(&dev->struct_mutex);
  3194. /* Update the active list for the hardware's current position.
  3195. * Otherwise this only updates on a delayed timer or when irqs are
  3196. * actually unmasked, and our working set ends up being larger than
  3197. * required.
  3198. */
  3199. i915_gem_retire_requests(dev);
  3200. obj_priv = obj->driver_private;
  3201. /* Don't count being on the flushing list against the object being
  3202. * done. Otherwise, a buffer left on the flushing list but not getting
  3203. * flushed (because nobody's flushing that domain) won't ever return
  3204. * unbusy and get reused by libdrm's bo cache. The other expected
  3205. * consumer of this interface, OpenGL's occlusion queries, also specs
  3206. * that the objects get unbusy "eventually" without any interference.
  3207. */
  3208. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3209. drm_gem_object_unreference(obj);
  3210. mutex_unlock(&dev->struct_mutex);
  3211. return 0;
  3212. }
  3213. int
  3214. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3215. struct drm_file *file_priv)
  3216. {
  3217. return i915_gem_ring_throttle(dev, file_priv);
  3218. }
  3219. int i915_gem_init_object(struct drm_gem_object *obj)
  3220. {
  3221. struct drm_i915_gem_object *obj_priv;
  3222. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3223. if (obj_priv == NULL)
  3224. return -ENOMEM;
  3225. /*
  3226. * We've just allocated pages from the kernel,
  3227. * so they've just been written by the CPU with
  3228. * zeros. They'll need to be clflushed before we
  3229. * use them with the GPU.
  3230. */
  3231. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3232. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3233. obj_priv->agp_type = AGP_USER_MEMORY;
  3234. obj->driver_private = obj_priv;
  3235. obj_priv->obj = obj;
  3236. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3237. INIT_LIST_HEAD(&obj_priv->list);
  3238. return 0;
  3239. }
  3240. void i915_gem_free_object(struct drm_gem_object *obj)
  3241. {
  3242. struct drm_device *dev = obj->dev;
  3243. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3244. while (obj_priv->pin_count > 0)
  3245. i915_gem_object_unpin(obj);
  3246. if (obj_priv->phys_obj)
  3247. i915_gem_detach_phys_object(dev, obj);
  3248. i915_gem_object_unbind(obj);
  3249. i915_gem_free_mmap_offset(obj);
  3250. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3251. kfree(obj_priv->bit_17);
  3252. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3253. }
  3254. /** Unbinds all objects that are on the given buffer list. */
  3255. static int
  3256. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3257. {
  3258. struct drm_gem_object *obj;
  3259. struct drm_i915_gem_object *obj_priv;
  3260. int ret;
  3261. while (!list_empty(head)) {
  3262. obj_priv = list_first_entry(head,
  3263. struct drm_i915_gem_object,
  3264. list);
  3265. obj = obj_priv->obj;
  3266. if (obj_priv->pin_count != 0) {
  3267. DRM_ERROR("Pinned object in unbind list\n");
  3268. mutex_unlock(&dev->struct_mutex);
  3269. return -EINVAL;
  3270. }
  3271. ret = i915_gem_object_unbind(obj);
  3272. if (ret != 0) {
  3273. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3274. ret);
  3275. mutex_unlock(&dev->struct_mutex);
  3276. return ret;
  3277. }
  3278. }
  3279. return 0;
  3280. }
  3281. int
  3282. i915_gem_idle(struct drm_device *dev)
  3283. {
  3284. drm_i915_private_t *dev_priv = dev->dev_private;
  3285. uint32_t seqno, cur_seqno, last_seqno;
  3286. int stuck, ret;
  3287. mutex_lock(&dev->struct_mutex);
  3288. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3289. mutex_unlock(&dev->struct_mutex);
  3290. return 0;
  3291. }
  3292. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3293. * We need to replace this with a semaphore, or something.
  3294. */
  3295. dev_priv->mm.suspended = 1;
  3296. /* Cancel the retire work handler, wait for it to finish if running
  3297. */
  3298. mutex_unlock(&dev->struct_mutex);
  3299. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3300. mutex_lock(&dev->struct_mutex);
  3301. i915_kernel_lost_context(dev);
  3302. /* Flush the GPU along with all non-CPU write domains
  3303. */
  3304. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3305. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3306. seqno = i915_add_request(dev, NULL, ~I915_GEM_DOMAIN_CPU);
  3307. if (seqno == 0) {
  3308. mutex_unlock(&dev->struct_mutex);
  3309. return -ENOMEM;
  3310. }
  3311. dev_priv->mm.waiting_gem_seqno = seqno;
  3312. last_seqno = 0;
  3313. stuck = 0;
  3314. for (;;) {
  3315. cur_seqno = i915_get_gem_seqno(dev);
  3316. if (i915_seqno_passed(cur_seqno, seqno))
  3317. break;
  3318. if (last_seqno == cur_seqno) {
  3319. if (stuck++ > 100) {
  3320. DRM_ERROR("hardware wedged\n");
  3321. dev_priv->mm.wedged = 1;
  3322. DRM_WAKEUP(&dev_priv->irq_queue);
  3323. break;
  3324. }
  3325. }
  3326. msleep(10);
  3327. last_seqno = cur_seqno;
  3328. }
  3329. dev_priv->mm.waiting_gem_seqno = 0;
  3330. i915_gem_retire_requests(dev);
  3331. spin_lock(&dev_priv->mm.active_list_lock);
  3332. if (!dev_priv->mm.wedged) {
  3333. /* Active and flushing should now be empty as we've
  3334. * waited for a sequence higher than any pending execbuffer
  3335. */
  3336. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3337. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3338. /* Request should now be empty as we've also waited
  3339. * for the last request in the list
  3340. */
  3341. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3342. }
  3343. /* Empty the active and flushing lists to inactive. If there's
  3344. * anything left at this point, it means that we're wedged and
  3345. * nothing good's going to happen by leaving them there. So strip
  3346. * the GPU domains and just stuff them onto inactive.
  3347. */
  3348. while (!list_empty(&dev_priv->mm.active_list)) {
  3349. struct drm_i915_gem_object *obj_priv;
  3350. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3351. struct drm_i915_gem_object,
  3352. list);
  3353. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3354. i915_gem_object_move_to_inactive(obj_priv->obj);
  3355. }
  3356. spin_unlock(&dev_priv->mm.active_list_lock);
  3357. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3358. struct drm_i915_gem_object *obj_priv;
  3359. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3360. struct drm_i915_gem_object,
  3361. list);
  3362. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3363. i915_gem_object_move_to_inactive(obj_priv->obj);
  3364. }
  3365. /* Move all inactive buffers out of the GTT. */
  3366. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3367. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3368. if (ret) {
  3369. mutex_unlock(&dev->struct_mutex);
  3370. return ret;
  3371. }
  3372. i915_gem_cleanup_ringbuffer(dev);
  3373. mutex_unlock(&dev->struct_mutex);
  3374. return 0;
  3375. }
  3376. static int
  3377. i915_gem_init_hws(struct drm_device *dev)
  3378. {
  3379. drm_i915_private_t *dev_priv = dev->dev_private;
  3380. struct drm_gem_object *obj;
  3381. struct drm_i915_gem_object *obj_priv;
  3382. int ret;
  3383. /* If we need a physical address for the status page, it's already
  3384. * initialized at driver load time.
  3385. */
  3386. if (!I915_NEED_GFX_HWS(dev))
  3387. return 0;
  3388. obj = drm_gem_object_alloc(dev, 4096);
  3389. if (obj == NULL) {
  3390. DRM_ERROR("Failed to allocate status page\n");
  3391. return -ENOMEM;
  3392. }
  3393. obj_priv = obj->driver_private;
  3394. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3395. ret = i915_gem_object_pin(obj, 4096);
  3396. if (ret != 0) {
  3397. drm_gem_object_unreference(obj);
  3398. return ret;
  3399. }
  3400. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3401. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3402. if (dev_priv->hw_status_page == NULL) {
  3403. DRM_ERROR("Failed to map status page.\n");
  3404. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3405. i915_gem_object_unpin(obj);
  3406. drm_gem_object_unreference(obj);
  3407. return -EINVAL;
  3408. }
  3409. dev_priv->hws_obj = obj;
  3410. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3411. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3412. I915_READ(HWS_PGA); /* posting read */
  3413. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3414. return 0;
  3415. }
  3416. static void
  3417. i915_gem_cleanup_hws(struct drm_device *dev)
  3418. {
  3419. drm_i915_private_t *dev_priv = dev->dev_private;
  3420. struct drm_gem_object *obj;
  3421. struct drm_i915_gem_object *obj_priv;
  3422. if (dev_priv->hws_obj == NULL)
  3423. return;
  3424. obj = dev_priv->hws_obj;
  3425. obj_priv = obj->driver_private;
  3426. kunmap(obj_priv->pages[0]);
  3427. i915_gem_object_unpin(obj);
  3428. drm_gem_object_unreference(obj);
  3429. dev_priv->hws_obj = NULL;
  3430. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3431. dev_priv->hw_status_page = NULL;
  3432. /* Write high address into HWS_PGA when disabling. */
  3433. I915_WRITE(HWS_PGA, 0x1ffff000);
  3434. }
  3435. int
  3436. i915_gem_init_ringbuffer(struct drm_device *dev)
  3437. {
  3438. drm_i915_private_t *dev_priv = dev->dev_private;
  3439. struct drm_gem_object *obj;
  3440. struct drm_i915_gem_object *obj_priv;
  3441. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3442. int ret;
  3443. u32 head;
  3444. ret = i915_gem_init_hws(dev);
  3445. if (ret != 0)
  3446. return ret;
  3447. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3448. if (obj == NULL) {
  3449. DRM_ERROR("Failed to allocate ringbuffer\n");
  3450. i915_gem_cleanup_hws(dev);
  3451. return -ENOMEM;
  3452. }
  3453. obj_priv = obj->driver_private;
  3454. ret = i915_gem_object_pin(obj, 4096);
  3455. if (ret != 0) {
  3456. drm_gem_object_unreference(obj);
  3457. i915_gem_cleanup_hws(dev);
  3458. return ret;
  3459. }
  3460. /* Set up the kernel mapping for the ring. */
  3461. ring->Size = obj->size;
  3462. ring->tail_mask = obj->size - 1;
  3463. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3464. ring->map.size = obj->size;
  3465. ring->map.type = 0;
  3466. ring->map.flags = 0;
  3467. ring->map.mtrr = 0;
  3468. drm_core_ioremap_wc(&ring->map, dev);
  3469. if (ring->map.handle == NULL) {
  3470. DRM_ERROR("Failed to map ringbuffer.\n");
  3471. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3472. i915_gem_object_unpin(obj);
  3473. drm_gem_object_unreference(obj);
  3474. i915_gem_cleanup_hws(dev);
  3475. return -EINVAL;
  3476. }
  3477. ring->ring_obj = obj;
  3478. ring->virtual_start = ring->map.handle;
  3479. /* Stop the ring if it's running. */
  3480. I915_WRITE(PRB0_CTL, 0);
  3481. I915_WRITE(PRB0_TAIL, 0);
  3482. I915_WRITE(PRB0_HEAD, 0);
  3483. /* Initialize the ring. */
  3484. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3485. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3486. /* G45 ring initialization fails to reset head to zero */
  3487. if (head != 0) {
  3488. DRM_ERROR("Ring head not reset to zero "
  3489. "ctl %08x head %08x tail %08x start %08x\n",
  3490. I915_READ(PRB0_CTL),
  3491. I915_READ(PRB0_HEAD),
  3492. I915_READ(PRB0_TAIL),
  3493. I915_READ(PRB0_START));
  3494. I915_WRITE(PRB0_HEAD, 0);
  3495. DRM_ERROR("Ring head forced to zero "
  3496. "ctl %08x head %08x tail %08x start %08x\n",
  3497. I915_READ(PRB0_CTL),
  3498. I915_READ(PRB0_HEAD),
  3499. I915_READ(PRB0_TAIL),
  3500. I915_READ(PRB0_START));
  3501. }
  3502. I915_WRITE(PRB0_CTL,
  3503. ((obj->size - 4096) & RING_NR_PAGES) |
  3504. RING_NO_REPORT |
  3505. RING_VALID);
  3506. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3507. /* If the head is still not zero, the ring is dead */
  3508. if (head != 0) {
  3509. DRM_ERROR("Ring initialization failed "
  3510. "ctl %08x head %08x tail %08x start %08x\n",
  3511. I915_READ(PRB0_CTL),
  3512. I915_READ(PRB0_HEAD),
  3513. I915_READ(PRB0_TAIL),
  3514. I915_READ(PRB0_START));
  3515. return -EIO;
  3516. }
  3517. /* Update our cache of the ring state */
  3518. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3519. i915_kernel_lost_context(dev);
  3520. else {
  3521. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3522. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3523. ring->space = ring->head - (ring->tail + 8);
  3524. if (ring->space < 0)
  3525. ring->space += ring->Size;
  3526. }
  3527. return 0;
  3528. }
  3529. void
  3530. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3531. {
  3532. drm_i915_private_t *dev_priv = dev->dev_private;
  3533. if (dev_priv->ring.ring_obj == NULL)
  3534. return;
  3535. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3536. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3537. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3538. dev_priv->ring.ring_obj = NULL;
  3539. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3540. i915_gem_cleanup_hws(dev);
  3541. }
  3542. int
  3543. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3544. struct drm_file *file_priv)
  3545. {
  3546. drm_i915_private_t *dev_priv = dev->dev_private;
  3547. int ret;
  3548. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3549. return 0;
  3550. if (dev_priv->mm.wedged) {
  3551. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3552. dev_priv->mm.wedged = 0;
  3553. }
  3554. mutex_lock(&dev->struct_mutex);
  3555. dev_priv->mm.suspended = 0;
  3556. ret = i915_gem_init_ringbuffer(dev);
  3557. if (ret != 0) {
  3558. mutex_unlock(&dev->struct_mutex);
  3559. return ret;
  3560. }
  3561. spin_lock(&dev_priv->mm.active_list_lock);
  3562. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3563. spin_unlock(&dev_priv->mm.active_list_lock);
  3564. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3565. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3566. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3567. mutex_unlock(&dev->struct_mutex);
  3568. drm_irq_install(dev);
  3569. return 0;
  3570. }
  3571. int
  3572. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3573. struct drm_file *file_priv)
  3574. {
  3575. int ret;
  3576. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3577. return 0;
  3578. ret = i915_gem_idle(dev);
  3579. drm_irq_uninstall(dev);
  3580. return ret;
  3581. }
  3582. void
  3583. i915_gem_lastclose(struct drm_device *dev)
  3584. {
  3585. int ret;
  3586. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3587. return;
  3588. ret = i915_gem_idle(dev);
  3589. if (ret)
  3590. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3591. }
  3592. void
  3593. i915_gem_load(struct drm_device *dev)
  3594. {
  3595. drm_i915_private_t *dev_priv = dev->dev_private;
  3596. spin_lock_init(&dev_priv->mm.active_list_lock);
  3597. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3598. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3599. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3600. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3601. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3602. i915_gem_retire_work_handler);
  3603. dev_priv->mm.next_gem_seqno = 1;
  3604. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3605. dev_priv->fence_reg_start = 3;
  3606. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3607. dev_priv->num_fence_regs = 16;
  3608. else
  3609. dev_priv->num_fence_regs = 8;
  3610. i915_gem_detect_bit_6_swizzle(dev);
  3611. }
  3612. /*
  3613. * Create a physically contiguous memory object for this object
  3614. * e.g. for cursor + overlay regs
  3615. */
  3616. int i915_gem_init_phys_object(struct drm_device *dev,
  3617. int id, int size)
  3618. {
  3619. drm_i915_private_t *dev_priv = dev->dev_private;
  3620. struct drm_i915_gem_phys_object *phys_obj;
  3621. int ret;
  3622. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3623. return 0;
  3624. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3625. if (!phys_obj)
  3626. return -ENOMEM;
  3627. phys_obj->id = id;
  3628. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3629. if (!phys_obj->handle) {
  3630. ret = -ENOMEM;
  3631. goto kfree_obj;
  3632. }
  3633. #ifdef CONFIG_X86
  3634. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3635. #endif
  3636. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3637. return 0;
  3638. kfree_obj:
  3639. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3640. return ret;
  3641. }
  3642. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3643. {
  3644. drm_i915_private_t *dev_priv = dev->dev_private;
  3645. struct drm_i915_gem_phys_object *phys_obj;
  3646. if (!dev_priv->mm.phys_objs[id - 1])
  3647. return;
  3648. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3649. if (phys_obj->cur_obj) {
  3650. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3651. }
  3652. #ifdef CONFIG_X86
  3653. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3654. #endif
  3655. drm_pci_free(dev, phys_obj->handle);
  3656. kfree(phys_obj);
  3657. dev_priv->mm.phys_objs[id - 1] = NULL;
  3658. }
  3659. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3660. {
  3661. int i;
  3662. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3663. i915_gem_free_phys_object(dev, i);
  3664. }
  3665. void i915_gem_detach_phys_object(struct drm_device *dev,
  3666. struct drm_gem_object *obj)
  3667. {
  3668. struct drm_i915_gem_object *obj_priv;
  3669. int i;
  3670. int ret;
  3671. int page_count;
  3672. obj_priv = obj->driver_private;
  3673. if (!obj_priv->phys_obj)
  3674. return;
  3675. ret = i915_gem_object_get_pages(obj);
  3676. if (ret)
  3677. goto out;
  3678. page_count = obj->size / PAGE_SIZE;
  3679. for (i = 0; i < page_count; i++) {
  3680. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3681. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3682. memcpy(dst, src, PAGE_SIZE);
  3683. kunmap_atomic(dst, KM_USER0);
  3684. }
  3685. drm_clflush_pages(obj_priv->pages, page_count);
  3686. drm_agp_chipset_flush(dev);
  3687. out:
  3688. obj_priv->phys_obj->cur_obj = NULL;
  3689. obj_priv->phys_obj = NULL;
  3690. }
  3691. int
  3692. i915_gem_attach_phys_object(struct drm_device *dev,
  3693. struct drm_gem_object *obj, int id)
  3694. {
  3695. drm_i915_private_t *dev_priv = dev->dev_private;
  3696. struct drm_i915_gem_object *obj_priv;
  3697. int ret = 0;
  3698. int page_count;
  3699. int i;
  3700. if (id > I915_MAX_PHYS_OBJECT)
  3701. return -EINVAL;
  3702. obj_priv = obj->driver_private;
  3703. if (obj_priv->phys_obj) {
  3704. if (obj_priv->phys_obj->id == id)
  3705. return 0;
  3706. i915_gem_detach_phys_object(dev, obj);
  3707. }
  3708. /* create a new object */
  3709. if (!dev_priv->mm.phys_objs[id - 1]) {
  3710. ret = i915_gem_init_phys_object(dev, id,
  3711. obj->size);
  3712. if (ret) {
  3713. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3714. goto out;
  3715. }
  3716. }
  3717. /* bind to the object */
  3718. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3719. obj_priv->phys_obj->cur_obj = obj;
  3720. ret = i915_gem_object_get_pages(obj);
  3721. if (ret) {
  3722. DRM_ERROR("failed to get page list\n");
  3723. goto out;
  3724. }
  3725. page_count = obj->size / PAGE_SIZE;
  3726. for (i = 0; i < page_count; i++) {
  3727. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3728. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3729. memcpy(dst, src, PAGE_SIZE);
  3730. kunmap_atomic(src, KM_USER0);
  3731. }
  3732. return 0;
  3733. out:
  3734. return ret;
  3735. }
  3736. static int
  3737. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3738. struct drm_i915_gem_pwrite *args,
  3739. struct drm_file *file_priv)
  3740. {
  3741. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3742. void *obj_addr;
  3743. int ret;
  3744. char __user *user_data;
  3745. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3746. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3747. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3748. ret = copy_from_user(obj_addr, user_data, args->size);
  3749. if (ret)
  3750. return -EFAULT;
  3751. drm_agp_chipset_flush(dev);
  3752. return 0;
  3753. }
  3754. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3755. {
  3756. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3757. /* Clean up our request list when the client is going away, so that
  3758. * later retire_requests won't dereference our soon-to-be-gone
  3759. * file_priv.
  3760. */
  3761. mutex_lock(&dev->struct_mutex);
  3762. while (!list_empty(&i915_file_priv->mm.request_list))
  3763. list_del_init(i915_file_priv->mm.request_list.next);
  3764. mutex_unlock(&dev->struct_mutex);
  3765. }