extent-tree.c 228 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include "compat.h"
  28. #include "hash.h"
  29. #include "ctree.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "transaction.h"
  33. #include "volumes.h"
  34. #include "raid56.h"
  35. #include "locking.h"
  36. #include "free-space-cache.h"
  37. #include "math.h"
  38. #undef SCRAMBLE_DELAYED_REFS
  39. /*
  40. * control flags for do_chunk_alloc's force field
  41. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  42. * if we really need one.
  43. *
  44. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  45. * if we have very few chunks already allocated. This is
  46. * used as part of the clustering code to help make sure
  47. * we have a good pool of storage to cluster in, without
  48. * filling the FS with empty chunks
  49. *
  50. * CHUNK_ALLOC_FORCE means it must try to allocate one
  51. *
  52. */
  53. enum {
  54. CHUNK_ALLOC_NO_FORCE = 0,
  55. CHUNK_ALLOC_LIMITED = 1,
  56. CHUNK_ALLOC_FORCE = 2,
  57. };
  58. /*
  59. * Control how reservations are dealt with.
  60. *
  61. * RESERVE_FREE - freeing a reservation.
  62. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  63. * ENOSPC accounting
  64. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  65. * bytes_may_use as the ENOSPC accounting is done elsewhere
  66. */
  67. enum {
  68. RESERVE_FREE = 0,
  69. RESERVE_ALLOC = 1,
  70. RESERVE_ALLOC_NO_ACCOUNT = 2,
  71. };
  72. static int update_block_group(struct btrfs_root *root,
  73. u64 bytenr, u64 num_bytes, int alloc);
  74. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  75. struct btrfs_root *root,
  76. u64 bytenr, u64 num_bytes, u64 parent,
  77. u64 root_objectid, u64 owner_objectid,
  78. u64 owner_offset, int refs_to_drop,
  79. struct btrfs_delayed_extent_op *extra_op);
  80. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  81. struct extent_buffer *leaf,
  82. struct btrfs_extent_item *ei);
  83. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  84. struct btrfs_root *root,
  85. u64 parent, u64 root_objectid,
  86. u64 flags, u64 owner, u64 offset,
  87. struct btrfs_key *ins, int ref_mod);
  88. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  89. struct btrfs_root *root,
  90. u64 parent, u64 root_objectid,
  91. u64 flags, struct btrfs_disk_key *key,
  92. int level, struct btrfs_key *ins);
  93. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  94. struct btrfs_root *extent_root, u64 flags,
  95. int force);
  96. static int find_next_key(struct btrfs_path *path, int level,
  97. struct btrfs_key *key);
  98. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  99. int dump_block_groups);
  100. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  101. u64 num_bytes, int reserve);
  102. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  103. u64 num_bytes);
  104. int btrfs_pin_extent(struct btrfs_root *root,
  105. u64 bytenr, u64 num_bytes, int reserved);
  106. static noinline int
  107. block_group_cache_done(struct btrfs_block_group_cache *cache)
  108. {
  109. smp_mb();
  110. return cache->cached == BTRFS_CACHE_FINISHED;
  111. }
  112. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  113. {
  114. return (cache->flags & bits) == bits;
  115. }
  116. static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  117. {
  118. atomic_inc(&cache->count);
  119. }
  120. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  121. {
  122. if (atomic_dec_and_test(&cache->count)) {
  123. WARN_ON(cache->pinned > 0);
  124. WARN_ON(cache->reserved > 0);
  125. kfree(cache->free_space_ctl);
  126. kfree(cache);
  127. }
  128. }
  129. /*
  130. * this adds the block group to the fs_info rb tree for the block group
  131. * cache
  132. */
  133. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  134. struct btrfs_block_group_cache *block_group)
  135. {
  136. struct rb_node **p;
  137. struct rb_node *parent = NULL;
  138. struct btrfs_block_group_cache *cache;
  139. spin_lock(&info->block_group_cache_lock);
  140. p = &info->block_group_cache_tree.rb_node;
  141. while (*p) {
  142. parent = *p;
  143. cache = rb_entry(parent, struct btrfs_block_group_cache,
  144. cache_node);
  145. if (block_group->key.objectid < cache->key.objectid) {
  146. p = &(*p)->rb_left;
  147. } else if (block_group->key.objectid > cache->key.objectid) {
  148. p = &(*p)->rb_right;
  149. } else {
  150. spin_unlock(&info->block_group_cache_lock);
  151. return -EEXIST;
  152. }
  153. }
  154. rb_link_node(&block_group->cache_node, parent, p);
  155. rb_insert_color(&block_group->cache_node,
  156. &info->block_group_cache_tree);
  157. if (info->first_logical_byte > block_group->key.objectid)
  158. info->first_logical_byte = block_group->key.objectid;
  159. spin_unlock(&info->block_group_cache_lock);
  160. return 0;
  161. }
  162. /*
  163. * This will return the block group at or after bytenr if contains is 0, else
  164. * it will return the block group that contains the bytenr
  165. */
  166. static struct btrfs_block_group_cache *
  167. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  168. int contains)
  169. {
  170. struct btrfs_block_group_cache *cache, *ret = NULL;
  171. struct rb_node *n;
  172. u64 end, start;
  173. spin_lock(&info->block_group_cache_lock);
  174. n = info->block_group_cache_tree.rb_node;
  175. while (n) {
  176. cache = rb_entry(n, struct btrfs_block_group_cache,
  177. cache_node);
  178. end = cache->key.objectid + cache->key.offset - 1;
  179. start = cache->key.objectid;
  180. if (bytenr < start) {
  181. if (!contains && (!ret || start < ret->key.objectid))
  182. ret = cache;
  183. n = n->rb_left;
  184. } else if (bytenr > start) {
  185. if (contains && bytenr <= end) {
  186. ret = cache;
  187. break;
  188. }
  189. n = n->rb_right;
  190. } else {
  191. ret = cache;
  192. break;
  193. }
  194. }
  195. if (ret) {
  196. btrfs_get_block_group(ret);
  197. if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
  198. info->first_logical_byte = ret->key.objectid;
  199. }
  200. spin_unlock(&info->block_group_cache_lock);
  201. return ret;
  202. }
  203. static int add_excluded_extent(struct btrfs_root *root,
  204. u64 start, u64 num_bytes)
  205. {
  206. u64 end = start + num_bytes - 1;
  207. set_extent_bits(&root->fs_info->freed_extents[0],
  208. start, end, EXTENT_UPTODATE, GFP_NOFS);
  209. set_extent_bits(&root->fs_info->freed_extents[1],
  210. start, end, EXTENT_UPTODATE, GFP_NOFS);
  211. return 0;
  212. }
  213. static void free_excluded_extents(struct btrfs_root *root,
  214. struct btrfs_block_group_cache *cache)
  215. {
  216. u64 start, end;
  217. start = cache->key.objectid;
  218. end = start + cache->key.offset - 1;
  219. clear_extent_bits(&root->fs_info->freed_extents[0],
  220. start, end, EXTENT_UPTODATE, GFP_NOFS);
  221. clear_extent_bits(&root->fs_info->freed_extents[1],
  222. start, end, EXTENT_UPTODATE, GFP_NOFS);
  223. }
  224. static int exclude_super_stripes(struct btrfs_root *root,
  225. struct btrfs_block_group_cache *cache)
  226. {
  227. u64 bytenr;
  228. u64 *logical;
  229. int stripe_len;
  230. int i, nr, ret;
  231. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  232. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  233. cache->bytes_super += stripe_len;
  234. ret = add_excluded_extent(root, cache->key.objectid,
  235. stripe_len);
  236. if (ret)
  237. return ret;
  238. }
  239. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  240. bytenr = btrfs_sb_offset(i);
  241. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  242. cache->key.objectid, bytenr,
  243. 0, &logical, &nr, &stripe_len);
  244. if (ret)
  245. return ret;
  246. while (nr--) {
  247. u64 start, len;
  248. if (logical[nr] > cache->key.objectid +
  249. cache->key.offset)
  250. continue;
  251. if (logical[nr] + stripe_len <= cache->key.objectid)
  252. continue;
  253. start = logical[nr];
  254. if (start < cache->key.objectid) {
  255. start = cache->key.objectid;
  256. len = (logical[nr] + stripe_len) - start;
  257. } else {
  258. len = min_t(u64, stripe_len,
  259. cache->key.objectid +
  260. cache->key.offset - start);
  261. }
  262. cache->bytes_super += len;
  263. ret = add_excluded_extent(root, start, len);
  264. if (ret) {
  265. kfree(logical);
  266. return ret;
  267. }
  268. }
  269. kfree(logical);
  270. }
  271. return 0;
  272. }
  273. static struct btrfs_caching_control *
  274. get_caching_control(struct btrfs_block_group_cache *cache)
  275. {
  276. struct btrfs_caching_control *ctl;
  277. spin_lock(&cache->lock);
  278. if (cache->cached != BTRFS_CACHE_STARTED) {
  279. spin_unlock(&cache->lock);
  280. return NULL;
  281. }
  282. /* We're loading it the fast way, so we don't have a caching_ctl. */
  283. if (!cache->caching_ctl) {
  284. spin_unlock(&cache->lock);
  285. return NULL;
  286. }
  287. ctl = cache->caching_ctl;
  288. atomic_inc(&ctl->count);
  289. spin_unlock(&cache->lock);
  290. return ctl;
  291. }
  292. static void put_caching_control(struct btrfs_caching_control *ctl)
  293. {
  294. if (atomic_dec_and_test(&ctl->count))
  295. kfree(ctl);
  296. }
  297. /*
  298. * this is only called by cache_block_group, since we could have freed extents
  299. * we need to check the pinned_extents for any extents that can't be used yet
  300. * since their free space will be released as soon as the transaction commits.
  301. */
  302. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  303. struct btrfs_fs_info *info, u64 start, u64 end)
  304. {
  305. u64 extent_start, extent_end, size, total_added = 0;
  306. int ret;
  307. while (start < end) {
  308. ret = find_first_extent_bit(info->pinned_extents, start,
  309. &extent_start, &extent_end,
  310. EXTENT_DIRTY | EXTENT_UPTODATE,
  311. NULL);
  312. if (ret)
  313. break;
  314. if (extent_start <= start) {
  315. start = extent_end + 1;
  316. } else if (extent_start > start && extent_start < end) {
  317. size = extent_start - start;
  318. total_added += size;
  319. ret = btrfs_add_free_space(block_group, start,
  320. size);
  321. BUG_ON(ret); /* -ENOMEM or logic error */
  322. start = extent_end + 1;
  323. } else {
  324. break;
  325. }
  326. }
  327. if (start < end) {
  328. size = end - start;
  329. total_added += size;
  330. ret = btrfs_add_free_space(block_group, start, size);
  331. BUG_ON(ret); /* -ENOMEM or logic error */
  332. }
  333. return total_added;
  334. }
  335. static noinline void caching_thread(struct btrfs_work *work)
  336. {
  337. struct btrfs_block_group_cache *block_group;
  338. struct btrfs_fs_info *fs_info;
  339. struct btrfs_caching_control *caching_ctl;
  340. struct btrfs_root *extent_root;
  341. struct btrfs_path *path;
  342. struct extent_buffer *leaf;
  343. struct btrfs_key key;
  344. u64 total_found = 0;
  345. u64 last = 0;
  346. u32 nritems;
  347. int ret = 0;
  348. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  349. block_group = caching_ctl->block_group;
  350. fs_info = block_group->fs_info;
  351. extent_root = fs_info->extent_root;
  352. path = btrfs_alloc_path();
  353. if (!path)
  354. goto out;
  355. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  356. /*
  357. * We don't want to deadlock with somebody trying to allocate a new
  358. * extent for the extent root while also trying to search the extent
  359. * root to add free space. So we skip locking and search the commit
  360. * root, since its read-only
  361. */
  362. path->skip_locking = 1;
  363. path->search_commit_root = 1;
  364. path->reada = 1;
  365. key.objectid = last;
  366. key.offset = 0;
  367. key.type = BTRFS_EXTENT_ITEM_KEY;
  368. again:
  369. mutex_lock(&caching_ctl->mutex);
  370. /* need to make sure the commit_root doesn't disappear */
  371. down_read(&fs_info->extent_commit_sem);
  372. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  373. if (ret < 0)
  374. goto err;
  375. leaf = path->nodes[0];
  376. nritems = btrfs_header_nritems(leaf);
  377. while (1) {
  378. if (btrfs_fs_closing(fs_info) > 1) {
  379. last = (u64)-1;
  380. break;
  381. }
  382. if (path->slots[0] < nritems) {
  383. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  384. } else {
  385. ret = find_next_key(path, 0, &key);
  386. if (ret)
  387. break;
  388. if (need_resched()) {
  389. caching_ctl->progress = last;
  390. btrfs_release_path(path);
  391. up_read(&fs_info->extent_commit_sem);
  392. mutex_unlock(&caching_ctl->mutex);
  393. cond_resched();
  394. goto again;
  395. }
  396. ret = btrfs_next_leaf(extent_root, path);
  397. if (ret < 0)
  398. goto err;
  399. if (ret)
  400. break;
  401. leaf = path->nodes[0];
  402. nritems = btrfs_header_nritems(leaf);
  403. continue;
  404. }
  405. if (key.objectid < block_group->key.objectid) {
  406. path->slots[0]++;
  407. continue;
  408. }
  409. if (key.objectid >= block_group->key.objectid +
  410. block_group->key.offset)
  411. break;
  412. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  413. key.type == BTRFS_METADATA_ITEM_KEY) {
  414. total_found += add_new_free_space(block_group,
  415. fs_info, last,
  416. key.objectid);
  417. if (key.type == BTRFS_METADATA_ITEM_KEY)
  418. last = key.objectid +
  419. fs_info->tree_root->leafsize;
  420. else
  421. last = key.objectid + key.offset;
  422. if (total_found > (1024 * 1024 * 2)) {
  423. total_found = 0;
  424. wake_up(&caching_ctl->wait);
  425. }
  426. }
  427. path->slots[0]++;
  428. }
  429. ret = 0;
  430. total_found += add_new_free_space(block_group, fs_info, last,
  431. block_group->key.objectid +
  432. block_group->key.offset);
  433. caching_ctl->progress = (u64)-1;
  434. spin_lock(&block_group->lock);
  435. block_group->caching_ctl = NULL;
  436. block_group->cached = BTRFS_CACHE_FINISHED;
  437. spin_unlock(&block_group->lock);
  438. err:
  439. btrfs_free_path(path);
  440. up_read(&fs_info->extent_commit_sem);
  441. free_excluded_extents(extent_root, block_group);
  442. mutex_unlock(&caching_ctl->mutex);
  443. out:
  444. wake_up(&caching_ctl->wait);
  445. put_caching_control(caching_ctl);
  446. btrfs_put_block_group(block_group);
  447. }
  448. static int cache_block_group(struct btrfs_block_group_cache *cache,
  449. int load_cache_only)
  450. {
  451. DEFINE_WAIT(wait);
  452. struct btrfs_fs_info *fs_info = cache->fs_info;
  453. struct btrfs_caching_control *caching_ctl;
  454. int ret = 0;
  455. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  456. if (!caching_ctl)
  457. return -ENOMEM;
  458. INIT_LIST_HEAD(&caching_ctl->list);
  459. mutex_init(&caching_ctl->mutex);
  460. init_waitqueue_head(&caching_ctl->wait);
  461. caching_ctl->block_group = cache;
  462. caching_ctl->progress = cache->key.objectid;
  463. atomic_set(&caching_ctl->count, 1);
  464. caching_ctl->work.func = caching_thread;
  465. spin_lock(&cache->lock);
  466. /*
  467. * This should be a rare occasion, but this could happen I think in the
  468. * case where one thread starts to load the space cache info, and then
  469. * some other thread starts a transaction commit which tries to do an
  470. * allocation while the other thread is still loading the space cache
  471. * info. The previous loop should have kept us from choosing this block
  472. * group, but if we've moved to the state where we will wait on caching
  473. * block groups we need to first check if we're doing a fast load here,
  474. * so we can wait for it to finish, otherwise we could end up allocating
  475. * from a block group who's cache gets evicted for one reason or
  476. * another.
  477. */
  478. while (cache->cached == BTRFS_CACHE_FAST) {
  479. struct btrfs_caching_control *ctl;
  480. ctl = cache->caching_ctl;
  481. atomic_inc(&ctl->count);
  482. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  483. spin_unlock(&cache->lock);
  484. schedule();
  485. finish_wait(&ctl->wait, &wait);
  486. put_caching_control(ctl);
  487. spin_lock(&cache->lock);
  488. }
  489. if (cache->cached != BTRFS_CACHE_NO) {
  490. spin_unlock(&cache->lock);
  491. kfree(caching_ctl);
  492. return 0;
  493. }
  494. WARN_ON(cache->caching_ctl);
  495. cache->caching_ctl = caching_ctl;
  496. cache->cached = BTRFS_CACHE_FAST;
  497. spin_unlock(&cache->lock);
  498. if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  499. ret = load_free_space_cache(fs_info, cache);
  500. spin_lock(&cache->lock);
  501. if (ret == 1) {
  502. cache->caching_ctl = NULL;
  503. cache->cached = BTRFS_CACHE_FINISHED;
  504. cache->last_byte_to_unpin = (u64)-1;
  505. } else {
  506. if (load_cache_only) {
  507. cache->caching_ctl = NULL;
  508. cache->cached = BTRFS_CACHE_NO;
  509. } else {
  510. cache->cached = BTRFS_CACHE_STARTED;
  511. }
  512. }
  513. spin_unlock(&cache->lock);
  514. wake_up(&caching_ctl->wait);
  515. if (ret == 1) {
  516. put_caching_control(caching_ctl);
  517. free_excluded_extents(fs_info->extent_root, cache);
  518. return 0;
  519. }
  520. } else {
  521. /*
  522. * We are not going to do the fast caching, set cached to the
  523. * appropriate value and wakeup any waiters.
  524. */
  525. spin_lock(&cache->lock);
  526. if (load_cache_only) {
  527. cache->caching_ctl = NULL;
  528. cache->cached = BTRFS_CACHE_NO;
  529. } else {
  530. cache->cached = BTRFS_CACHE_STARTED;
  531. }
  532. spin_unlock(&cache->lock);
  533. wake_up(&caching_ctl->wait);
  534. }
  535. if (load_cache_only) {
  536. put_caching_control(caching_ctl);
  537. return 0;
  538. }
  539. down_write(&fs_info->extent_commit_sem);
  540. atomic_inc(&caching_ctl->count);
  541. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  542. up_write(&fs_info->extent_commit_sem);
  543. btrfs_get_block_group(cache);
  544. btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
  545. return ret;
  546. }
  547. /*
  548. * return the block group that starts at or after bytenr
  549. */
  550. static struct btrfs_block_group_cache *
  551. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  552. {
  553. struct btrfs_block_group_cache *cache;
  554. cache = block_group_cache_tree_search(info, bytenr, 0);
  555. return cache;
  556. }
  557. /*
  558. * return the block group that contains the given bytenr
  559. */
  560. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  561. struct btrfs_fs_info *info,
  562. u64 bytenr)
  563. {
  564. struct btrfs_block_group_cache *cache;
  565. cache = block_group_cache_tree_search(info, bytenr, 1);
  566. return cache;
  567. }
  568. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  569. u64 flags)
  570. {
  571. struct list_head *head = &info->space_info;
  572. struct btrfs_space_info *found;
  573. flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  574. rcu_read_lock();
  575. list_for_each_entry_rcu(found, head, list) {
  576. if (found->flags & flags) {
  577. rcu_read_unlock();
  578. return found;
  579. }
  580. }
  581. rcu_read_unlock();
  582. return NULL;
  583. }
  584. /*
  585. * after adding space to the filesystem, we need to clear the full flags
  586. * on all the space infos.
  587. */
  588. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  589. {
  590. struct list_head *head = &info->space_info;
  591. struct btrfs_space_info *found;
  592. rcu_read_lock();
  593. list_for_each_entry_rcu(found, head, list)
  594. found->full = 0;
  595. rcu_read_unlock();
  596. }
  597. /* simple helper to search for an existing extent at a given offset */
  598. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  599. {
  600. int ret;
  601. struct btrfs_key key;
  602. struct btrfs_path *path;
  603. path = btrfs_alloc_path();
  604. if (!path)
  605. return -ENOMEM;
  606. key.objectid = start;
  607. key.offset = len;
  608. key.type = BTRFS_EXTENT_ITEM_KEY;
  609. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  610. 0, 0);
  611. if (ret > 0) {
  612. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  613. if (key.objectid == start &&
  614. key.type == BTRFS_METADATA_ITEM_KEY)
  615. ret = 0;
  616. }
  617. btrfs_free_path(path);
  618. return ret;
  619. }
  620. /*
  621. * helper function to lookup reference count and flags of a tree block.
  622. *
  623. * the head node for delayed ref is used to store the sum of all the
  624. * reference count modifications queued up in the rbtree. the head
  625. * node may also store the extent flags to set. This way you can check
  626. * to see what the reference count and extent flags would be if all of
  627. * the delayed refs are not processed.
  628. */
  629. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  630. struct btrfs_root *root, u64 bytenr,
  631. u64 offset, int metadata, u64 *refs, u64 *flags)
  632. {
  633. struct btrfs_delayed_ref_head *head;
  634. struct btrfs_delayed_ref_root *delayed_refs;
  635. struct btrfs_path *path;
  636. struct btrfs_extent_item *ei;
  637. struct extent_buffer *leaf;
  638. struct btrfs_key key;
  639. u32 item_size;
  640. u64 num_refs;
  641. u64 extent_flags;
  642. int ret;
  643. /*
  644. * If we don't have skinny metadata, don't bother doing anything
  645. * different
  646. */
  647. if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
  648. offset = root->leafsize;
  649. metadata = 0;
  650. }
  651. path = btrfs_alloc_path();
  652. if (!path)
  653. return -ENOMEM;
  654. if (metadata) {
  655. key.objectid = bytenr;
  656. key.type = BTRFS_METADATA_ITEM_KEY;
  657. key.offset = offset;
  658. } else {
  659. key.objectid = bytenr;
  660. key.type = BTRFS_EXTENT_ITEM_KEY;
  661. key.offset = offset;
  662. }
  663. if (!trans) {
  664. path->skip_locking = 1;
  665. path->search_commit_root = 1;
  666. }
  667. again:
  668. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  669. &key, path, 0, 0);
  670. if (ret < 0)
  671. goto out_free;
  672. if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
  673. key.type = BTRFS_EXTENT_ITEM_KEY;
  674. key.offset = root->leafsize;
  675. btrfs_release_path(path);
  676. goto again;
  677. }
  678. if (ret == 0) {
  679. leaf = path->nodes[0];
  680. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  681. if (item_size >= sizeof(*ei)) {
  682. ei = btrfs_item_ptr(leaf, path->slots[0],
  683. struct btrfs_extent_item);
  684. num_refs = btrfs_extent_refs(leaf, ei);
  685. extent_flags = btrfs_extent_flags(leaf, ei);
  686. } else {
  687. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  688. struct btrfs_extent_item_v0 *ei0;
  689. BUG_ON(item_size != sizeof(*ei0));
  690. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  691. struct btrfs_extent_item_v0);
  692. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  693. /* FIXME: this isn't correct for data */
  694. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  695. #else
  696. BUG();
  697. #endif
  698. }
  699. BUG_ON(num_refs == 0);
  700. } else {
  701. num_refs = 0;
  702. extent_flags = 0;
  703. ret = 0;
  704. }
  705. if (!trans)
  706. goto out;
  707. delayed_refs = &trans->transaction->delayed_refs;
  708. spin_lock(&delayed_refs->lock);
  709. head = btrfs_find_delayed_ref_head(trans, bytenr);
  710. if (head) {
  711. if (!mutex_trylock(&head->mutex)) {
  712. atomic_inc(&head->node.refs);
  713. spin_unlock(&delayed_refs->lock);
  714. btrfs_release_path(path);
  715. /*
  716. * Mutex was contended, block until it's released and try
  717. * again
  718. */
  719. mutex_lock(&head->mutex);
  720. mutex_unlock(&head->mutex);
  721. btrfs_put_delayed_ref(&head->node);
  722. goto again;
  723. }
  724. if (head->extent_op && head->extent_op->update_flags)
  725. extent_flags |= head->extent_op->flags_to_set;
  726. else
  727. BUG_ON(num_refs == 0);
  728. num_refs += head->node.ref_mod;
  729. mutex_unlock(&head->mutex);
  730. }
  731. spin_unlock(&delayed_refs->lock);
  732. out:
  733. WARN_ON(num_refs == 0);
  734. if (refs)
  735. *refs = num_refs;
  736. if (flags)
  737. *flags = extent_flags;
  738. out_free:
  739. btrfs_free_path(path);
  740. return ret;
  741. }
  742. /*
  743. * Back reference rules. Back refs have three main goals:
  744. *
  745. * 1) differentiate between all holders of references to an extent so that
  746. * when a reference is dropped we can make sure it was a valid reference
  747. * before freeing the extent.
  748. *
  749. * 2) Provide enough information to quickly find the holders of an extent
  750. * if we notice a given block is corrupted or bad.
  751. *
  752. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  753. * maintenance. This is actually the same as #2, but with a slightly
  754. * different use case.
  755. *
  756. * There are two kinds of back refs. The implicit back refs is optimized
  757. * for pointers in non-shared tree blocks. For a given pointer in a block,
  758. * back refs of this kind provide information about the block's owner tree
  759. * and the pointer's key. These information allow us to find the block by
  760. * b-tree searching. The full back refs is for pointers in tree blocks not
  761. * referenced by their owner trees. The location of tree block is recorded
  762. * in the back refs. Actually the full back refs is generic, and can be
  763. * used in all cases the implicit back refs is used. The major shortcoming
  764. * of the full back refs is its overhead. Every time a tree block gets
  765. * COWed, we have to update back refs entry for all pointers in it.
  766. *
  767. * For a newly allocated tree block, we use implicit back refs for
  768. * pointers in it. This means most tree related operations only involve
  769. * implicit back refs. For a tree block created in old transaction, the
  770. * only way to drop a reference to it is COW it. So we can detect the
  771. * event that tree block loses its owner tree's reference and do the
  772. * back refs conversion.
  773. *
  774. * When a tree block is COW'd through a tree, there are four cases:
  775. *
  776. * The reference count of the block is one and the tree is the block's
  777. * owner tree. Nothing to do in this case.
  778. *
  779. * The reference count of the block is one and the tree is not the
  780. * block's owner tree. In this case, full back refs is used for pointers
  781. * in the block. Remove these full back refs, add implicit back refs for
  782. * every pointers in the new block.
  783. *
  784. * The reference count of the block is greater than one and the tree is
  785. * the block's owner tree. In this case, implicit back refs is used for
  786. * pointers in the block. Add full back refs for every pointers in the
  787. * block, increase lower level extents' reference counts. The original
  788. * implicit back refs are entailed to the new block.
  789. *
  790. * The reference count of the block is greater than one and the tree is
  791. * not the block's owner tree. Add implicit back refs for every pointer in
  792. * the new block, increase lower level extents' reference count.
  793. *
  794. * Back Reference Key composing:
  795. *
  796. * The key objectid corresponds to the first byte in the extent,
  797. * The key type is used to differentiate between types of back refs.
  798. * There are different meanings of the key offset for different types
  799. * of back refs.
  800. *
  801. * File extents can be referenced by:
  802. *
  803. * - multiple snapshots, subvolumes, or different generations in one subvol
  804. * - different files inside a single subvolume
  805. * - different offsets inside a file (bookend extents in file.c)
  806. *
  807. * The extent ref structure for the implicit back refs has fields for:
  808. *
  809. * - Objectid of the subvolume root
  810. * - objectid of the file holding the reference
  811. * - original offset in the file
  812. * - how many bookend extents
  813. *
  814. * The key offset for the implicit back refs is hash of the first
  815. * three fields.
  816. *
  817. * The extent ref structure for the full back refs has field for:
  818. *
  819. * - number of pointers in the tree leaf
  820. *
  821. * The key offset for the implicit back refs is the first byte of
  822. * the tree leaf
  823. *
  824. * When a file extent is allocated, The implicit back refs is used.
  825. * the fields are filled in:
  826. *
  827. * (root_key.objectid, inode objectid, offset in file, 1)
  828. *
  829. * When a file extent is removed file truncation, we find the
  830. * corresponding implicit back refs and check the following fields:
  831. *
  832. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  833. *
  834. * Btree extents can be referenced by:
  835. *
  836. * - Different subvolumes
  837. *
  838. * Both the implicit back refs and the full back refs for tree blocks
  839. * only consist of key. The key offset for the implicit back refs is
  840. * objectid of block's owner tree. The key offset for the full back refs
  841. * is the first byte of parent block.
  842. *
  843. * When implicit back refs is used, information about the lowest key and
  844. * level of the tree block are required. These information are stored in
  845. * tree block info structure.
  846. */
  847. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  848. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  849. struct btrfs_root *root,
  850. struct btrfs_path *path,
  851. u64 owner, u32 extra_size)
  852. {
  853. struct btrfs_extent_item *item;
  854. struct btrfs_extent_item_v0 *ei0;
  855. struct btrfs_extent_ref_v0 *ref0;
  856. struct btrfs_tree_block_info *bi;
  857. struct extent_buffer *leaf;
  858. struct btrfs_key key;
  859. struct btrfs_key found_key;
  860. u32 new_size = sizeof(*item);
  861. u64 refs;
  862. int ret;
  863. leaf = path->nodes[0];
  864. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  865. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  866. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  867. struct btrfs_extent_item_v0);
  868. refs = btrfs_extent_refs_v0(leaf, ei0);
  869. if (owner == (u64)-1) {
  870. while (1) {
  871. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  872. ret = btrfs_next_leaf(root, path);
  873. if (ret < 0)
  874. return ret;
  875. BUG_ON(ret > 0); /* Corruption */
  876. leaf = path->nodes[0];
  877. }
  878. btrfs_item_key_to_cpu(leaf, &found_key,
  879. path->slots[0]);
  880. BUG_ON(key.objectid != found_key.objectid);
  881. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  882. path->slots[0]++;
  883. continue;
  884. }
  885. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  886. struct btrfs_extent_ref_v0);
  887. owner = btrfs_ref_objectid_v0(leaf, ref0);
  888. break;
  889. }
  890. }
  891. btrfs_release_path(path);
  892. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  893. new_size += sizeof(*bi);
  894. new_size -= sizeof(*ei0);
  895. ret = btrfs_search_slot(trans, root, &key, path,
  896. new_size + extra_size, 1);
  897. if (ret < 0)
  898. return ret;
  899. BUG_ON(ret); /* Corruption */
  900. btrfs_extend_item(root, path, new_size);
  901. leaf = path->nodes[0];
  902. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  903. btrfs_set_extent_refs(leaf, item, refs);
  904. /* FIXME: get real generation */
  905. btrfs_set_extent_generation(leaf, item, 0);
  906. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  907. btrfs_set_extent_flags(leaf, item,
  908. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  909. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  910. bi = (struct btrfs_tree_block_info *)(item + 1);
  911. /* FIXME: get first key of the block */
  912. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  913. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  914. } else {
  915. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  916. }
  917. btrfs_mark_buffer_dirty(leaf);
  918. return 0;
  919. }
  920. #endif
  921. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  922. {
  923. u32 high_crc = ~(u32)0;
  924. u32 low_crc = ~(u32)0;
  925. __le64 lenum;
  926. lenum = cpu_to_le64(root_objectid);
  927. high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
  928. lenum = cpu_to_le64(owner);
  929. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  930. lenum = cpu_to_le64(offset);
  931. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  932. return ((u64)high_crc << 31) ^ (u64)low_crc;
  933. }
  934. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  935. struct btrfs_extent_data_ref *ref)
  936. {
  937. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  938. btrfs_extent_data_ref_objectid(leaf, ref),
  939. btrfs_extent_data_ref_offset(leaf, ref));
  940. }
  941. static int match_extent_data_ref(struct extent_buffer *leaf,
  942. struct btrfs_extent_data_ref *ref,
  943. u64 root_objectid, u64 owner, u64 offset)
  944. {
  945. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  946. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  947. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  948. return 0;
  949. return 1;
  950. }
  951. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  952. struct btrfs_root *root,
  953. struct btrfs_path *path,
  954. u64 bytenr, u64 parent,
  955. u64 root_objectid,
  956. u64 owner, u64 offset)
  957. {
  958. struct btrfs_key key;
  959. struct btrfs_extent_data_ref *ref;
  960. struct extent_buffer *leaf;
  961. u32 nritems;
  962. int ret;
  963. int recow;
  964. int err = -ENOENT;
  965. key.objectid = bytenr;
  966. if (parent) {
  967. key.type = BTRFS_SHARED_DATA_REF_KEY;
  968. key.offset = parent;
  969. } else {
  970. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  971. key.offset = hash_extent_data_ref(root_objectid,
  972. owner, offset);
  973. }
  974. again:
  975. recow = 0;
  976. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  977. if (ret < 0) {
  978. err = ret;
  979. goto fail;
  980. }
  981. if (parent) {
  982. if (!ret)
  983. return 0;
  984. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  985. key.type = BTRFS_EXTENT_REF_V0_KEY;
  986. btrfs_release_path(path);
  987. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  988. if (ret < 0) {
  989. err = ret;
  990. goto fail;
  991. }
  992. if (!ret)
  993. return 0;
  994. #endif
  995. goto fail;
  996. }
  997. leaf = path->nodes[0];
  998. nritems = btrfs_header_nritems(leaf);
  999. while (1) {
  1000. if (path->slots[0] >= nritems) {
  1001. ret = btrfs_next_leaf(root, path);
  1002. if (ret < 0)
  1003. err = ret;
  1004. if (ret)
  1005. goto fail;
  1006. leaf = path->nodes[0];
  1007. nritems = btrfs_header_nritems(leaf);
  1008. recow = 1;
  1009. }
  1010. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1011. if (key.objectid != bytenr ||
  1012. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1013. goto fail;
  1014. ref = btrfs_item_ptr(leaf, path->slots[0],
  1015. struct btrfs_extent_data_ref);
  1016. if (match_extent_data_ref(leaf, ref, root_objectid,
  1017. owner, offset)) {
  1018. if (recow) {
  1019. btrfs_release_path(path);
  1020. goto again;
  1021. }
  1022. err = 0;
  1023. break;
  1024. }
  1025. path->slots[0]++;
  1026. }
  1027. fail:
  1028. return err;
  1029. }
  1030. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1031. struct btrfs_root *root,
  1032. struct btrfs_path *path,
  1033. u64 bytenr, u64 parent,
  1034. u64 root_objectid, u64 owner,
  1035. u64 offset, int refs_to_add)
  1036. {
  1037. struct btrfs_key key;
  1038. struct extent_buffer *leaf;
  1039. u32 size;
  1040. u32 num_refs;
  1041. int ret;
  1042. key.objectid = bytenr;
  1043. if (parent) {
  1044. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1045. key.offset = parent;
  1046. size = sizeof(struct btrfs_shared_data_ref);
  1047. } else {
  1048. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1049. key.offset = hash_extent_data_ref(root_objectid,
  1050. owner, offset);
  1051. size = sizeof(struct btrfs_extent_data_ref);
  1052. }
  1053. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1054. if (ret && ret != -EEXIST)
  1055. goto fail;
  1056. leaf = path->nodes[0];
  1057. if (parent) {
  1058. struct btrfs_shared_data_ref *ref;
  1059. ref = btrfs_item_ptr(leaf, path->slots[0],
  1060. struct btrfs_shared_data_ref);
  1061. if (ret == 0) {
  1062. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1063. } else {
  1064. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1065. num_refs += refs_to_add;
  1066. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1067. }
  1068. } else {
  1069. struct btrfs_extent_data_ref *ref;
  1070. while (ret == -EEXIST) {
  1071. ref = btrfs_item_ptr(leaf, path->slots[0],
  1072. struct btrfs_extent_data_ref);
  1073. if (match_extent_data_ref(leaf, ref, root_objectid,
  1074. owner, offset))
  1075. break;
  1076. btrfs_release_path(path);
  1077. key.offset++;
  1078. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1079. size);
  1080. if (ret && ret != -EEXIST)
  1081. goto fail;
  1082. leaf = path->nodes[0];
  1083. }
  1084. ref = btrfs_item_ptr(leaf, path->slots[0],
  1085. struct btrfs_extent_data_ref);
  1086. if (ret == 0) {
  1087. btrfs_set_extent_data_ref_root(leaf, ref,
  1088. root_objectid);
  1089. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1090. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1091. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1092. } else {
  1093. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1094. num_refs += refs_to_add;
  1095. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1096. }
  1097. }
  1098. btrfs_mark_buffer_dirty(leaf);
  1099. ret = 0;
  1100. fail:
  1101. btrfs_release_path(path);
  1102. return ret;
  1103. }
  1104. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1105. struct btrfs_root *root,
  1106. struct btrfs_path *path,
  1107. int refs_to_drop)
  1108. {
  1109. struct btrfs_key key;
  1110. struct btrfs_extent_data_ref *ref1 = NULL;
  1111. struct btrfs_shared_data_ref *ref2 = NULL;
  1112. struct extent_buffer *leaf;
  1113. u32 num_refs = 0;
  1114. int ret = 0;
  1115. leaf = path->nodes[0];
  1116. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1117. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1118. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1119. struct btrfs_extent_data_ref);
  1120. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1121. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1122. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1123. struct btrfs_shared_data_ref);
  1124. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1125. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1126. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1127. struct btrfs_extent_ref_v0 *ref0;
  1128. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1129. struct btrfs_extent_ref_v0);
  1130. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1131. #endif
  1132. } else {
  1133. BUG();
  1134. }
  1135. BUG_ON(num_refs < refs_to_drop);
  1136. num_refs -= refs_to_drop;
  1137. if (num_refs == 0) {
  1138. ret = btrfs_del_item(trans, root, path);
  1139. } else {
  1140. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1141. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1142. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1143. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1144. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1145. else {
  1146. struct btrfs_extent_ref_v0 *ref0;
  1147. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1148. struct btrfs_extent_ref_v0);
  1149. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1150. }
  1151. #endif
  1152. btrfs_mark_buffer_dirty(leaf);
  1153. }
  1154. return ret;
  1155. }
  1156. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1157. struct btrfs_path *path,
  1158. struct btrfs_extent_inline_ref *iref)
  1159. {
  1160. struct btrfs_key key;
  1161. struct extent_buffer *leaf;
  1162. struct btrfs_extent_data_ref *ref1;
  1163. struct btrfs_shared_data_ref *ref2;
  1164. u32 num_refs = 0;
  1165. leaf = path->nodes[0];
  1166. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1167. if (iref) {
  1168. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1169. BTRFS_EXTENT_DATA_REF_KEY) {
  1170. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1171. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1172. } else {
  1173. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1174. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1175. }
  1176. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1177. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1178. struct btrfs_extent_data_ref);
  1179. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1180. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1181. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1182. struct btrfs_shared_data_ref);
  1183. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1184. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1185. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1186. struct btrfs_extent_ref_v0 *ref0;
  1187. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1188. struct btrfs_extent_ref_v0);
  1189. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1190. #endif
  1191. } else {
  1192. WARN_ON(1);
  1193. }
  1194. return num_refs;
  1195. }
  1196. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1197. struct btrfs_root *root,
  1198. struct btrfs_path *path,
  1199. u64 bytenr, u64 parent,
  1200. u64 root_objectid)
  1201. {
  1202. struct btrfs_key key;
  1203. int ret;
  1204. key.objectid = bytenr;
  1205. if (parent) {
  1206. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1207. key.offset = parent;
  1208. } else {
  1209. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1210. key.offset = root_objectid;
  1211. }
  1212. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1213. if (ret > 0)
  1214. ret = -ENOENT;
  1215. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1216. if (ret == -ENOENT && parent) {
  1217. btrfs_release_path(path);
  1218. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1219. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1220. if (ret > 0)
  1221. ret = -ENOENT;
  1222. }
  1223. #endif
  1224. return ret;
  1225. }
  1226. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1227. struct btrfs_root *root,
  1228. struct btrfs_path *path,
  1229. u64 bytenr, u64 parent,
  1230. u64 root_objectid)
  1231. {
  1232. struct btrfs_key key;
  1233. int ret;
  1234. key.objectid = bytenr;
  1235. if (parent) {
  1236. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1237. key.offset = parent;
  1238. } else {
  1239. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1240. key.offset = root_objectid;
  1241. }
  1242. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1243. btrfs_release_path(path);
  1244. return ret;
  1245. }
  1246. static inline int extent_ref_type(u64 parent, u64 owner)
  1247. {
  1248. int type;
  1249. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1250. if (parent > 0)
  1251. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1252. else
  1253. type = BTRFS_TREE_BLOCK_REF_KEY;
  1254. } else {
  1255. if (parent > 0)
  1256. type = BTRFS_SHARED_DATA_REF_KEY;
  1257. else
  1258. type = BTRFS_EXTENT_DATA_REF_KEY;
  1259. }
  1260. return type;
  1261. }
  1262. static int find_next_key(struct btrfs_path *path, int level,
  1263. struct btrfs_key *key)
  1264. {
  1265. for (; level < BTRFS_MAX_LEVEL; level++) {
  1266. if (!path->nodes[level])
  1267. break;
  1268. if (path->slots[level] + 1 >=
  1269. btrfs_header_nritems(path->nodes[level]))
  1270. continue;
  1271. if (level == 0)
  1272. btrfs_item_key_to_cpu(path->nodes[level], key,
  1273. path->slots[level] + 1);
  1274. else
  1275. btrfs_node_key_to_cpu(path->nodes[level], key,
  1276. path->slots[level] + 1);
  1277. return 0;
  1278. }
  1279. return 1;
  1280. }
  1281. /*
  1282. * look for inline back ref. if back ref is found, *ref_ret is set
  1283. * to the address of inline back ref, and 0 is returned.
  1284. *
  1285. * if back ref isn't found, *ref_ret is set to the address where it
  1286. * should be inserted, and -ENOENT is returned.
  1287. *
  1288. * if insert is true and there are too many inline back refs, the path
  1289. * points to the extent item, and -EAGAIN is returned.
  1290. *
  1291. * NOTE: inline back refs are ordered in the same way that back ref
  1292. * items in the tree are ordered.
  1293. */
  1294. static noinline_for_stack
  1295. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1296. struct btrfs_root *root,
  1297. struct btrfs_path *path,
  1298. struct btrfs_extent_inline_ref **ref_ret,
  1299. u64 bytenr, u64 num_bytes,
  1300. u64 parent, u64 root_objectid,
  1301. u64 owner, u64 offset, int insert)
  1302. {
  1303. struct btrfs_key key;
  1304. struct extent_buffer *leaf;
  1305. struct btrfs_extent_item *ei;
  1306. struct btrfs_extent_inline_ref *iref;
  1307. u64 flags;
  1308. u64 item_size;
  1309. unsigned long ptr;
  1310. unsigned long end;
  1311. int extra_size;
  1312. int type;
  1313. int want;
  1314. int ret;
  1315. int err = 0;
  1316. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  1317. SKINNY_METADATA);
  1318. key.objectid = bytenr;
  1319. key.type = BTRFS_EXTENT_ITEM_KEY;
  1320. key.offset = num_bytes;
  1321. want = extent_ref_type(parent, owner);
  1322. if (insert) {
  1323. extra_size = btrfs_extent_inline_ref_size(want);
  1324. path->keep_locks = 1;
  1325. } else
  1326. extra_size = -1;
  1327. /*
  1328. * Owner is our parent level, so we can just add one to get the level
  1329. * for the block we are interested in.
  1330. */
  1331. if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
  1332. key.type = BTRFS_METADATA_ITEM_KEY;
  1333. key.offset = owner;
  1334. }
  1335. again:
  1336. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1337. if (ret < 0) {
  1338. err = ret;
  1339. goto out;
  1340. }
  1341. /*
  1342. * We may be a newly converted file system which still has the old fat
  1343. * extent entries for metadata, so try and see if we have one of those.
  1344. */
  1345. if (ret > 0 && skinny_metadata) {
  1346. skinny_metadata = false;
  1347. if (path->slots[0]) {
  1348. path->slots[0]--;
  1349. btrfs_item_key_to_cpu(path->nodes[0], &key,
  1350. path->slots[0]);
  1351. if (key.objectid == bytenr &&
  1352. key.type == BTRFS_EXTENT_ITEM_KEY &&
  1353. key.offset == num_bytes)
  1354. ret = 0;
  1355. }
  1356. if (ret) {
  1357. key.type = BTRFS_EXTENT_ITEM_KEY;
  1358. key.offset = num_bytes;
  1359. btrfs_release_path(path);
  1360. goto again;
  1361. }
  1362. }
  1363. if (ret && !insert) {
  1364. err = -ENOENT;
  1365. goto out;
  1366. } else if (ret) {
  1367. err = -EIO;
  1368. WARN_ON(1);
  1369. goto out;
  1370. }
  1371. leaf = path->nodes[0];
  1372. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1373. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1374. if (item_size < sizeof(*ei)) {
  1375. if (!insert) {
  1376. err = -ENOENT;
  1377. goto out;
  1378. }
  1379. ret = convert_extent_item_v0(trans, root, path, owner,
  1380. extra_size);
  1381. if (ret < 0) {
  1382. err = ret;
  1383. goto out;
  1384. }
  1385. leaf = path->nodes[0];
  1386. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1387. }
  1388. #endif
  1389. BUG_ON(item_size < sizeof(*ei));
  1390. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1391. flags = btrfs_extent_flags(leaf, ei);
  1392. ptr = (unsigned long)(ei + 1);
  1393. end = (unsigned long)ei + item_size;
  1394. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
  1395. ptr += sizeof(struct btrfs_tree_block_info);
  1396. BUG_ON(ptr > end);
  1397. }
  1398. err = -ENOENT;
  1399. while (1) {
  1400. if (ptr >= end) {
  1401. WARN_ON(ptr > end);
  1402. break;
  1403. }
  1404. iref = (struct btrfs_extent_inline_ref *)ptr;
  1405. type = btrfs_extent_inline_ref_type(leaf, iref);
  1406. if (want < type)
  1407. break;
  1408. if (want > type) {
  1409. ptr += btrfs_extent_inline_ref_size(type);
  1410. continue;
  1411. }
  1412. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1413. struct btrfs_extent_data_ref *dref;
  1414. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1415. if (match_extent_data_ref(leaf, dref, root_objectid,
  1416. owner, offset)) {
  1417. err = 0;
  1418. break;
  1419. }
  1420. if (hash_extent_data_ref_item(leaf, dref) <
  1421. hash_extent_data_ref(root_objectid, owner, offset))
  1422. break;
  1423. } else {
  1424. u64 ref_offset;
  1425. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1426. if (parent > 0) {
  1427. if (parent == ref_offset) {
  1428. err = 0;
  1429. break;
  1430. }
  1431. if (ref_offset < parent)
  1432. break;
  1433. } else {
  1434. if (root_objectid == ref_offset) {
  1435. err = 0;
  1436. break;
  1437. }
  1438. if (ref_offset < root_objectid)
  1439. break;
  1440. }
  1441. }
  1442. ptr += btrfs_extent_inline_ref_size(type);
  1443. }
  1444. if (err == -ENOENT && insert) {
  1445. if (item_size + extra_size >=
  1446. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1447. err = -EAGAIN;
  1448. goto out;
  1449. }
  1450. /*
  1451. * To add new inline back ref, we have to make sure
  1452. * there is no corresponding back ref item.
  1453. * For simplicity, we just do not add new inline back
  1454. * ref if there is any kind of item for this block
  1455. */
  1456. if (find_next_key(path, 0, &key) == 0 &&
  1457. key.objectid == bytenr &&
  1458. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1459. err = -EAGAIN;
  1460. goto out;
  1461. }
  1462. }
  1463. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1464. out:
  1465. if (insert) {
  1466. path->keep_locks = 0;
  1467. btrfs_unlock_up_safe(path, 1);
  1468. }
  1469. return err;
  1470. }
  1471. /*
  1472. * helper to add new inline back ref
  1473. */
  1474. static noinline_for_stack
  1475. void setup_inline_extent_backref(struct btrfs_root *root,
  1476. struct btrfs_path *path,
  1477. struct btrfs_extent_inline_ref *iref,
  1478. u64 parent, u64 root_objectid,
  1479. u64 owner, u64 offset, int refs_to_add,
  1480. struct btrfs_delayed_extent_op *extent_op)
  1481. {
  1482. struct extent_buffer *leaf;
  1483. struct btrfs_extent_item *ei;
  1484. unsigned long ptr;
  1485. unsigned long end;
  1486. unsigned long item_offset;
  1487. u64 refs;
  1488. int size;
  1489. int type;
  1490. leaf = path->nodes[0];
  1491. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1492. item_offset = (unsigned long)iref - (unsigned long)ei;
  1493. type = extent_ref_type(parent, owner);
  1494. size = btrfs_extent_inline_ref_size(type);
  1495. btrfs_extend_item(root, path, size);
  1496. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1497. refs = btrfs_extent_refs(leaf, ei);
  1498. refs += refs_to_add;
  1499. btrfs_set_extent_refs(leaf, ei, refs);
  1500. if (extent_op)
  1501. __run_delayed_extent_op(extent_op, leaf, ei);
  1502. ptr = (unsigned long)ei + item_offset;
  1503. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1504. if (ptr < end - size)
  1505. memmove_extent_buffer(leaf, ptr + size, ptr,
  1506. end - size - ptr);
  1507. iref = (struct btrfs_extent_inline_ref *)ptr;
  1508. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1509. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1510. struct btrfs_extent_data_ref *dref;
  1511. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1512. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1513. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1514. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1515. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1516. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1517. struct btrfs_shared_data_ref *sref;
  1518. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1519. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1520. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1521. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1522. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1523. } else {
  1524. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1525. }
  1526. btrfs_mark_buffer_dirty(leaf);
  1527. }
  1528. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1529. struct btrfs_root *root,
  1530. struct btrfs_path *path,
  1531. struct btrfs_extent_inline_ref **ref_ret,
  1532. u64 bytenr, u64 num_bytes, u64 parent,
  1533. u64 root_objectid, u64 owner, u64 offset)
  1534. {
  1535. int ret;
  1536. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1537. bytenr, num_bytes, parent,
  1538. root_objectid, owner, offset, 0);
  1539. if (ret != -ENOENT)
  1540. return ret;
  1541. btrfs_release_path(path);
  1542. *ref_ret = NULL;
  1543. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1544. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1545. root_objectid);
  1546. } else {
  1547. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1548. root_objectid, owner, offset);
  1549. }
  1550. return ret;
  1551. }
  1552. /*
  1553. * helper to update/remove inline back ref
  1554. */
  1555. static noinline_for_stack
  1556. void update_inline_extent_backref(struct btrfs_root *root,
  1557. struct btrfs_path *path,
  1558. struct btrfs_extent_inline_ref *iref,
  1559. int refs_to_mod,
  1560. struct btrfs_delayed_extent_op *extent_op)
  1561. {
  1562. struct extent_buffer *leaf;
  1563. struct btrfs_extent_item *ei;
  1564. struct btrfs_extent_data_ref *dref = NULL;
  1565. struct btrfs_shared_data_ref *sref = NULL;
  1566. unsigned long ptr;
  1567. unsigned long end;
  1568. u32 item_size;
  1569. int size;
  1570. int type;
  1571. u64 refs;
  1572. leaf = path->nodes[0];
  1573. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1574. refs = btrfs_extent_refs(leaf, ei);
  1575. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1576. refs += refs_to_mod;
  1577. btrfs_set_extent_refs(leaf, ei, refs);
  1578. if (extent_op)
  1579. __run_delayed_extent_op(extent_op, leaf, ei);
  1580. type = btrfs_extent_inline_ref_type(leaf, iref);
  1581. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1582. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1583. refs = btrfs_extent_data_ref_count(leaf, dref);
  1584. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1585. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1586. refs = btrfs_shared_data_ref_count(leaf, sref);
  1587. } else {
  1588. refs = 1;
  1589. BUG_ON(refs_to_mod != -1);
  1590. }
  1591. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1592. refs += refs_to_mod;
  1593. if (refs > 0) {
  1594. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1595. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1596. else
  1597. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1598. } else {
  1599. size = btrfs_extent_inline_ref_size(type);
  1600. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1601. ptr = (unsigned long)iref;
  1602. end = (unsigned long)ei + item_size;
  1603. if (ptr + size < end)
  1604. memmove_extent_buffer(leaf, ptr, ptr + size,
  1605. end - ptr - size);
  1606. item_size -= size;
  1607. btrfs_truncate_item(root, path, item_size, 1);
  1608. }
  1609. btrfs_mark_buffer_dirty(leaf);
  1610. }
  1611. static noinline_for_stack
  1612. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1613. struct btrfs_root *root,
  1614. struct btrfs_path *path,
  1615. u64 bytenr, u64 num_bytes, u64 parent,
  1616. u64 root_objectid, u64 owner,
  1617. u64 offset, int refs_to_add,
  1618. struct btrfs_delayed_extent_op *extent_op)
  1619. {
  1620. struct btrfs_extent_inline_ref *iref;
  1621. int ret;
  1622. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1623. bytenr, num_bytes, parent,
  1624. root_objectid, owner, offset, 1);
  1625. if (ret == 0) {
  1626. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1627. update_inline_extent_backref(root, path, iref,
  1628. refs_to_add, extent_op);
  1629. } else if (ret == -ENOENT) {
  1630. setup_inline_extent_backref(root, path, iref, parent,
  1631. root_objectid, owner, offset,
  1632. refs_to_add, extent_op);
  1633. ret = 0;
  1634. }
  1635. return ret;
  1636. }
  1637. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1638. struct btrfs_root *root,
  1639. struct btrfs_path *path,
  1640. u64 bytenr, u64 parent, u64 root_objectid,
  1641. u64 owner, u64 offset, int refs_to_add)
  1642. {
  1643. int ret;
  1644. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1645. BUG_ON(refs_to_add != 1);
  1646. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1647. parent, root_objectid);
  1648. } else {
  1649. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1650. parent, root_objectid,
  1651. owner, offset, refs_to_add);
  1652. }
  1653. return ret;
  1654. }
  1655. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1656. struct btrfs_root *root,
  1657. struct btrfs_path *path,
  1658. struct btrfs_extent_inline_ref *iref,
  1659. int refs_to_drop, int is_data)
  1660. {
  1661. int ret = 0;
  1662. BUG_ON(!is_data && refs_to_drop != 1);
  1663. if (iref) {
  1664. update_inline_extent_backref(root, path, iref,
  1665. -refs_to_drop, NULL);
  1666. } else if (is_data) {
  1667. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1668. } else {
  1669. ret = btrfs_del_item(trans, root, path);
  1670. }
  1671. return ret;
  1672. }
  1673. static int btrfs_issue_discard(struct block_device *bdev,
  1674. u64 start, u64 len)
  1675. {
  1676. return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
  1677. }
  1678. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1679. u64 num_bytes, u64 *actual_bytes)
  1680. {
  1681. int ret;
  1682. u64 discarded_bytes = 0;
  1683. struct btrfs_bio *bbio = NULL;
  1684. /* Tell the block device(s) that the sectors can be discarded */
  1685. ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
  1686. bytenr, &num_bytes, &bbio, 0);
  1687. /* Error condition is -ENOMEM */
  1688. if (!ret) {
  1689. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1690. int i;
  1691. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1692. if (!stripe->dev->can_discard)
  1693. continue;
  1694. ret = btrfs_issue_discard(stripe->dev->bdev,
  1695. stripe->physical,
  1696. stripe->length);
  1697. if (!ret)
  1698. discarded_bytes += stripe->length;
  1699. else if (ret != -EOPNOTSUPP)
  1700. break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
  1701. /*
  1702. * Just in case we get back EOPNOTSUPP for some reason,
  1703. * just ignore the return value so we don't screw up
  1704. * people calling discard_extent.
  1705. */
  1706. ret = 0;
  1707. }
  1708. kfree(bbio);
  1709. }
  1710. if (actual_bytes)
  1711. *actual_bytes = discarded_bytes;
  1712. if (ret == -EOPNOTSUPP)
  1713. ret = 0;
  1714. return ret;
  1715. }
  1716. /* Can return -ENOMEM */
  1717. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1718. struct btrfs_root *root,
  1719. u64 bytenr, u64 num_bytes, u64 parent,
  1720. u64 root_objectid, u64 owner, u64 offset, int for_cow)
  1721. {
  1722. int ret;
  1723. struct btrfs_fs_info *fs_info = root->fs_info;
  1724. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1725. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1726. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1727. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  1728. num_bytes,
  1729. parent, root_objectid, (int)owner,
  1730. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1731. } else {
  1732. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  1733. num_bytes,
  1734. parent, root_objectid, owner, offset,
  1735. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1736. }
  1737. return ret;
  1738. }
  1739. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1740. struct btrfs_root *root,
  1741. u64 bytenr, u64 num_bytes,
  1742. u64 parent, u64 root_objectid,
  1743. u64 owner, u64 offset, int refs_to_add,
  1744. struct btrfs_delayed_extent_op *extent_op)
  1745. {
  1746. struct btrfs_path *path;
  1747. struct extent_buffer *leaf;
  1748. struct btrfs_extent_item *item;
  1749. u64 refs;
  1750. int ret;
  1751. int err = 0;
  1752. path = btrfs_alloc_path();
  1753. if (!path)
  1754. return -ENOMEM;
  1755. path->reada = 1;
  1756. path->leave_spinning = 1;
  1757. /* this will setup the path even if it fails to insert the back ref */
  1758. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1759. path, bytenr, num_bytes, parent,
  1760. root_objectid, owner, offset,
  1761. refs_to_add, extent_op);
  1762. if (ret == 0)
  1763. goto out;
  1764. if (ret != -EAGAIN) {
  1765. err = ret;
  1766. goto out;
  1767. }
  1768. leaf = path->nodes[0];
  1769. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1770. refs = btrfs_extent_refs(leaf, item);
  1771. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1772. if (extent_op)
  1773. __run_delayed_extent_op(extent_op, leaf, item);
  1774. btrfs_mark_buffer_dirty(leaf);
  1775. btrfs_release_path(path);
  1776. path->reada = 1;
  1777. path->leave_spinning = 1;
  1778. /* now insert the actual backref */
  1779. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1780. path, bytenr, parent, root_objectid,
  1781. owner, offset, refs_to_add);
  1782. if (ret)
  1783. btrfs_abort_transaction(trans, root, ret);
  1784. out:
  1785. btrfs_free_path(path);
  1786. return err;
  1787. }
  1788. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1789. struct btrfs_root *root,
  1790. struct btrfs_delayed_ref_node *node,
  1791. struct btrfs_delayed_extent_op *extent_op,
  1792. int insert_reserved)
  1793. {
  1794. int ret = 0;
  1795. struct btrfs_delayed_data_ref *ref;
  1796. struct btrfs_key ins;
  1797. u64 parent = 0;
  1798. u64 ref_root = 0;
  1799. u64 flags = 0;
  1800. ins.objectid = node->bytenr;
  1801. ins.offset = node->num_bytes;
  1802. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1803. ref = btrfs_delayed_node_to_data_ref(node);
  1804. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1805. parent = ref->parent;
  1806. else
  1807. ref_root = ref->root;
  1808. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1809. if (extent_op)
  1810. flags |= extent_op->flags_to_set;
  1811. ret = alloc_reserved_file_extent(trans, root,
  1812. parent, ref_root, flags,
  1813. ref->objectid, ref->offset,
  1814. &ins, node->ref_mod);
  1815. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1816. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1817. node->num_bytes, parent,
  1818. ref_root, ref->objectid,
  1819. ref->offset, node->ref_mod,
  1820. extent_op);
  1821. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1822. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1823. node->num_bytes, parent,
  1824. ref_root, ref->objectid,
  1825. ref->offset, node->ref_mod,
  1826. extent_op);
  1827. } else {
  1828. BUG();
  1829. }
  1830. return ret;
  1831. }
  1832. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1833. struct extent_buffer *leaf,
  1834. struct btrfs_extent_item *ei)
  1835. {
  1836. u64 flags = btrfs_extent_flags(leaf, ei);
  1837. if (extent_op->update_flags) {
  1838. flags |= extent_op->flags_to_set;
  1839. btrfs_set_extent_flags(leaf, ei, flags);
  1840. }
  1841. if (extent_op->update_key) {
  1842. struct btrfs_tree_block_info *bi;
  1843. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1844. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1845. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1846. }
  1847. }
  1848. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1849. struct btrfs_root *root,
  1850. struct btrfs_delayed_ref_node *node,
  1851. struct btrfs_delayed_extent_op *extent_op)
  1852. {
  1853. struct btrfs_key key;
  1854. struct btrfs_path *path;
  1855. struct btrfs_extent_item *ei;
  1856. struct extent_buffer *leaf;
  1857. u32 item_size;
  1858. int ret;
  1859. int err = 0;
  1860. int metadata = !extent_op->is_data;
  1861. if (trans->aborted)
  1862. return 0;
  1863. if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
  1864. metadata = 0;
  1865. path = btrfs_alloc_path();
  1866. if (!path)
  1867. return -ENOMEM;
  1868. key.objectid = node->bytenr;
  1869. if (metadata) {
  1870. key.type = BTRFS_METADATA_ITEM_KEY;
  1871. key.offset = extent_op->level;
  1872. } else {
  1873. key.type = BTRFS_EXTENT_ITEM_KEY;
  1874. key.offset = node->num_bytes;
  1875. }
  1876. again:
  1877. path->reada = 1;
  1878. path->leave_spinning = 1;
  1879. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1880. path, 0, 1);
  1881. if (ret < 0) {
  1882. err = ret;
  1883. goto out;
  1884. }
  1885. if (ret > 0) {
  1886. if (metadata) {
  1887. btrfs_release_path(path);
  1888. metadata = 0;
  1889. key.offset = node->num_bytes;
  1890. key.type = BTRFS_EXTENT_ITEM_KEY;
  1891. goto again;
  1892. }
  1893. err = -EIO;
  1894. goto out;
  1895. }
  1896. leaf = path->nodes[0];
  1897. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1898. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1899. if (item_size < sizeof(*ei)) {
  1900. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1901. path, (u64)-1, 0);
  1902. if (ret < 0) {
  1903. err = ret;
  1904. goto out;
  1905. }
  1906. leaf = path->nodes[0];
  1907. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1908. }
  1909. #endif
  1910. BUG_ON(item_size < sizeof(*ei));
  1911. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1912. __run_delayed_extent_op(extent_op, leaf, ei);
  1913. btrfs_mark_buffer_dirty(leaf);
  1914. out:
  1915. btrfs_free_path(path);
  1916. return err;
  1917. }
  1918. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1919. struct btrfs_root *root,
  1920. struct btrfs_delayed_ref_node *node,
  1921. struct btrfs_delayed_extent_op *extent_op,
  1922. int insert_reserved)
  1923. {
  1924. int ret = 0;
  1925. struct btrfs_delayed_tree_ref *ref;
  1926. struct btrfs_key ins;
  1927. u64 parent = 0;
  1928. u64 ref_root = 0;
  1929. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  1930. SKINNY_METADATA);
  1931. ref = btrfs_delayed_node_to_tree_ref(node);
  1932. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1933. parent = ref->parent;
  1934. else
  1935. ref_root = ref->root;
  1936. ins.objectid = node->bytenr;
  1937. if (skinny_metadata) {
  1938. ins.offset = ref->level;
  1939. ins.type = BTRFS_METADATA_ITEM_KEY;
  1940. } else {
  1941. ins.offset = node->num_bytes;
  1942. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1943. }
  1944. BUG_ON(node->ref_mod != 1);
  1945. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1946. BUG_ON(!extent_op || !extent_op->update_flags);
  1947. ret = alloc_reserved_tree_block(trans, root,
  1948. parent, ref_root,
  1949. extent_op->flags_to_set,
  1950. &extent_op->key,
  1951. ref->level, &ins);
  1952. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1953. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1954. node->num_bytes, parent, ref_root,
  1955. ref->level, 0, 1, extent_op);
  1956. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1957. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1958. node->num_bytes, parent, ref_root,
  1959. ref->level, 0, 1, extent_op);
  1960. } else {
  1961. BUG();
  1962. }
  1963. return ret;
  1964. }
  1965. /* helper function to actually process a single delayed ref entry */
  1966. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  1967. struct btrfs_root *root,
  1968. struct btrfs_delayed_ref_node *node,
  1969. struct btrfs_delayed_extent_op *extent_op,
  1970. int insert_reserved)
  1971. {
  1972. int ret = 0;
  1973. if (trans->aborted)
  1974. return 0;
  1975. if (btrfs_delayed_ref_is_head(node)) {
  1976. struct btrfs_delayed_ref_head *head;
  1977. /*
  1978. * we've hit the end of the chain and we were supposed
  1979. * to insert this extent into the tree. But, it got
  1980. * deleted before we ever needed to insert it, so all
  1981. * we have to do is clean up the accounting
  1982. */
  1983. BUG_ON(extent_op);
  1984. head = btrfs_delayed_node_to_head(node);
  1985. if (insert_reserved) {
  1986. btrfs_pin_extent(root, node->bytenr,
  1987. node->num_bytes, 1);
  1988. if (head->is_data) {
  1989. ret = btrfs_del_csums(trans, root,
  1990. node->bytenr,
  1991. node->num_bytes);
  1992. }
  1993. }
  1994. return ret;
  1995. }
  1996. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  1997. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1998. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  1999. insert_reserved);
  2000. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  2001. node->type == BTRFS_SHARED_DATA_REF_KEY)
  2002. ret = run_delayed_data_ref(trans, root, node, extent_op,
  2003. insert_reserved);
  2004. else
  2005. BUG();
  2006. return ret;
  2007. }
  2008. static noinline struct btrfs_delayed_ref_node *
  2009. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  2010. {
  2011. struct rb_node *node;
  2012. struct btrfs_delayed_ref_node *ref;
  2013. int action = BTRFS_ADD_DELAYED_REF;
  2014. again:
  2015. /*
  2016. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  2017. * this prevents ref count from going down to zero when
  2018. * there still are pending delayed ref.
  2019. */
  2020. node = rb_prev(&head->node.rb_node);
  2021. while (1) {
  2022. if (!node)
  2023. break;
  2024. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2025. rb_node);
  2026. if (ref->bytenr != head->node.bytenr)
  2027. break;
  2028. if (ref->action == action)
  2029. return ref;
  2030. node = rb_prev(node);
  2031. }
  2032. if (action == BTRFS_ADD_DELAYED_REF) {
  2033. action = BTRFS_DROP_DELAYED_REF;
  2034. goto again;
  2035. }
  2036. return NULL;
  2037. }
  2038. /*
  2039. * Returns 0 on success or if called with an already aborted transaction.
  2040. * Returns -ENOMEM or -EIO on failure and will abort the transaction.
  2041. */
  2042. static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
  2043. struct btrfs_root *root,
  2044. struct list_head *cluster)
  2045. {
  2046. struct btrfs_delayed_ref_root *delayed_refs;
  2047. struct btrfs_delayed_ref_node *ref;
  2048. struct btrfs_delayed_ref_head *locked_ref = NULL;
  2049. struct btrfs_delayed_extent_op *extent_op;
  2050. struct btrfs_fs_info *fs_info = root->fs_info;
  2051. int ret;
  2052. int count = 0;
  2053. int must_insert_reserved = 0;
  2054. delayed_refs = &trans->transaction->delayed_refs;
  2055. while (1) {
  2056. if (!locked_ref) {
  2057. /* pick a new head ref from the cluster list */
  2058. if (list_empty(cluster))
  2059. break;
  2060. locked_ref = list_entry(cluster->next,
  2061. struct btrfs_delayed_ref_head, cluster);
  2062. /* grab the lock that says we are going to process
  2063. * all the refs for this head */
  2064. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2065. /*
  2066. * we may have dropped the spin lock to get the head
  2067. * mutex lock, and that might have given someone else
  2068. * time to free the head. If that's true, it has been
  2069. * removed from our list and we can move on.
  2070. */
  2071. if (ret == -EAGAIN) {
  2072. locked_ref = NULL;
  2073. count++;
  2074. continue;
  2075. }
  2076. }
  2077. /*
  2078. * We need to try and merge add/drops of the same ref since we
  2079. * can run into issues with relocate dropping the implicit ref
  2080. * and then it being added back again before the drop can
  2081. * finish. If we merged anything we need to re-loop so we can
  2082. * get a good ref.
  2083. */
  2084. btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
  2085. locked_ref);
  2086. /*
  2087. * locked_ref is the head node, so we have to go one
  2088. * node back for any delayed ref updates
  2089. */
  2090. ref = select_delayed_ref(locked_ref);
  2091. if (ref && ref->seq &&
  2092. btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
  2093. /*
  2094. * there are still refs with lower seq numbers in the
  2095. * process of being added. Don't run this ref yet.
  2096. */
  2097. list_del_init(&locked_ref->cluster);
  2098. btrfs_delayed_ref_unlock(locked_ref);
  2099. locked_ref = NULL;
  2100. delayed_refs->num_heads_ready++;
  2101. spin_unlock(&delayed_refs->lock);
  2102. cond_resched();
  2103. spin_lock(&delayed_refs->lock);
  2104. continue;
  2105. }
  2106. /*
  2107. * record the must insert reserved flag before we
  2108. * drop the spin lock.
  2109. */
  2110. must_insert_reserved = locked_ref->must_insert_reserved;
  2111. locked_ref->must_insert_reserved = 0;
  2112. extent_op = locked_ref->extent_op;
  2113. locked_ref->extent_op = NULL;
  2114. if (!ref) {
  2115. /* All delayed refs have been processed, Go ahead
  2116. * and send the head node to run_one_delayed_ref,
  2117. * so that any accounting fixes can happen
  2118. */
  2119. ref = &locked_ref->node;
  2120. if (extent_op && must_insert_reserved) {
  2121. btrfs_free_delayed_extent_op(extent_op);
  2122. extent_op = NULL;
  2123. }
  2124. if (extent_op) {
  2125. spin_unlock(&delayed_refs->lock);
  2126. ret = run_delayed_extent_op(trans, root,
  2127. ref, extent_op);
  2128. btrfs_free_delayed_extent_op(extent_op);
  2129. if (ret) {
  2130. btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
  2131. spin_lock(&delayed_refs->lock);
  2132. btrfs_delayed_ref_unlock(locked_ref);
  2133. return ret;
  2134. }
  2135. goto next;
  2136. }
  2137. }
  2138. ref->in_tree = 0;
  2139. rb_erase(&ref->rb_node, &delayed_refs->root);
  2140. delayed_refs->num_entries--;
  2141. if (!btrfs_delayed_ref_is_head(ref)) {
  2142. /*
  2143. * when we play the delayed ref, also correct the
  2144. * ref_mod on head
  2145. */
  2146. switch (ref->action) {
  2147. case BTRFS_ADD_DELAYED_REF:
  2148. case BTRFS_ADD_DELAYED_EXTENT:
  2149. locked_ref->node.ref_mod -= ref->ref_mod;
  2150. break;
  2151. case BTRFS_DROP_DELAYED_REF:
  2152. locked_ref->node.ref_mod += ref->ref_mod;
  2153. break;
  2154. default:
  2155. WARN_ON(1);
  2156. }
  2157. }
  2158. spin_unlock(&delayed_refs->lock);
  2159. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2160. must_insert_reserved);
  2161. btrfs_free_delayed_extent_op(extent_op);
  2162. if (ret) {
  2163. btrfs_delayed_ref_unlock(locked_ref);
  2164. btrfs_put_delayed_ref(ref);
  2165. btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
  2166. spin_lock(&delayed_refs->lock);
  2167. return ret;
  2168. }
  2169. /*
  2170. * If this node is a head, that means all the refs in this head
  2171. * have been dealt with, and we will pick the next head to deal
  2172. * with, so we must unlock the head and drop it from the cluster
  2173. * list before we release it.
  2174. */
  2175. if (btrfs_delayed_ref_is_head(ref)) {
  2176. list_del_init(&locked_ref->cluster);
  2177. btrfs_delayed_ref_unlock(locked_ref);
  2178. locked_ref = NULL;
  2179. }
  2180. btrfs_put_delayed_ref(ref);
  2181. count++;
  2182. next:
  2183. cond_resched();
  2184. spin_lock(&delayed_refs->lock);
  2185. }
  2186. return count;
  2187. }
  2188. #ifdef SCRAMBLE_DELAYED_REFS
  2189. /*
  2190. * Normally delayed refs get processed in ascending bytenr order. This
  2191. * correlates in most cases to the order added. To expose dependencies on this
  2192. * order, we start to process the tree in the middle instead of the beginning
  2193. */
  2194. static u64 find_middle(struct rb_root *root)
  2195. {
  2196. struct rb_node *n = root->rb_node;
  2197. struct btrfs_delayed_ref_node *entry;
  2198. int alt = 1;
  2199. u64 middle;
  2200. u64 first = 0, last = 0;
  2201. n = rb_first(root);
  2202. if (n) {
  2203. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2204. first = entry->bytenr;
  2205. }
  2206. n = rb_last(root);
  2207. if (n) {
  2208. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2209. last = entry->bytenr;
  2210. }
  2211. n = root->rb_node;
  2212. while (n) {
  2213. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2214. WARN_ON(!entry->in_tree);
  2215. middle = entry->bytenr;
  2216. if (alt)
  2217. n = n->rb_left;
  2218. else
  2219. n = n->rb_right;
  2220. alt = 1 - alt;
  2221. }
  2222. return middle;
  2223. }
  2224. #endif
  2225. int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
  2226. struct btrfs_fs_info *fs_info)
  2227. {
  2228. struct qgroup_update *qgroup_update;
  2229. int ret = 0;
  2230. if (list_empty(&trans->qgroup_ref_list) !=
  2231. !trans->delayed_ref_elem.seq) {
  2232. /* list without seq or seq without list */
  2233. btrfs_err(fs_info,
  2234. "qgroup accounting update error, list is%s empty, seq is %#x.%x",
  2235. list_empty(&trans->qgroup_ref_list) ? "" : " not",
  2236. (u32)(trans->delayed_ref_elem.seq >> 32),
  2237. (u32)trans->delayed_ref_elem.seq);
  2238. BUG();
  2239. }
  2240. if (!trans->delayed_ref_elem.seq)
  2241. return 0;
  2242. while (!list_empty(&trans->qgroup_ref_list)) {
  2243. qgroup_update = list_first_entry(&trans->qgroup_ref_list,
  2244. struct qgroup_update, list);
  2245. list_del(&qgroup_update->list);
  2246. if (!ret)
  2247. ret = btrfs_qgroup_account_ref(
  2248. trans, fs_info, qgroup_update->node,
  2249. qgroup_update->extent_op);
  2250. kfree(qgroup_update);
  2251. }
  2252. btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
  2253. return ret;
  2254. }
  2255. static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
  2256. int count)
  2257. {
  2258. int val = atomic_read(&delayed_refs->ref_seq);
  2259. if (val < seq || val >= seq + count)
  2260. return 1;
  2261. return 0;
  2262. }
  2263. /*
  2264. * this starts processing the delayed reference count updates and
  2265. * extent insertions we have queued up so far. count can be
  2266. * 0, which means to process everything in the tree at the start
  2267. * of the run (but not newly added entries), or it can be some target
  2268. * number you'd like to process.
  2269. *
  2270. * Returns 0 on success or if called with an aborted transaction
  2271. * Returns <0 on error and aborts the transaction
  2272. */
  2273. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2274. struct btrfs_root *root, unsigned long count)
  2275. {
  2276. struct rb_node *node;
  2277. struct btrfs_delayed_ref_root *delayed_refs;
  2278. struct btrfs_delayed_ref_node *ref;
  2279. struct list_head cluster;
  2280. int ret;
  2281. u64 delayed_start;
  2282. int run_all = count == (unsigned long)-1;
  2283. int run_most = 0;
  2284. int loops;
  2285. /* We'll clean this up in btrfs_cleanup_transaction */
  2286. if (trans->aborted)
  2287. return 0;
  2288. if (root == root->fs_info->extent_root)
  2289. root = root->fs_info->tree_root;
  2290. btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
  2291. delayed_refs = &trans->transaction->delayed_refs;
  2292. INIT_LIST_HEAD(&cluster);
  2293. if (count == 0) {
  2294. count = delayed_refs->num_entries * 2;
  2295. run_most = 1;
  2296. }
  2297. if (!run_all && !run_most) {
  2298. int old;
  2299. int seq = atomic_read(&delayed_refs->ref_seq);
  2300. progress:
  2301. old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
  2302. if (old) {
  2303. DEFINE_WAIT(__wait);
  2304. if (delayed_refs->num_entries < 16348)
  2305. return 0;
  2306. prepare_to_wait(&delayed_refs->wait, &__wait,
  2307. TASK_UNINTERRUPTIBLE);
  2308. old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
  2309. if (old) {
  2310. schedule();
  2311. finish_wait(&delayed_refs->wait, &__wait);
  2312. if (!refs_newer(delayed_refs, seq, 256))
  2313. goto progress;
  2314. else
  2315. return 0;
  2316. } else {
  2317. finish_wait(&delayed_refs->wait, &__wait);
  2318. goto again;
  2319. }
  2320. }
  2321. } else {
  2322. atomic_inc(&delayed_refs->procs_running_refs);
  2323. }
  2324. again:
  2325. loops = 0;
  2326. spin_lock(&delayed_refs->lock);
  2327. #ifdef SCRAMBLE_DELAYED_REFS
  2328. delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
  2329. #endif
  2330. while (1) {
  2331. if (!(run_all || run_most) &&
  2332. delayed_refs->num_heads_ready < 64)
  2333. break;
  2334. /*
  2335. * go find something we can process in the rbtree. We start at
  2336. * the beginning of the tree, and then build a cluster
  2337. * of refs to process starting at the first one we are able to
  2338. * lock
  2339. */
  2340. delayed_start = delayed_refs->run_delayed_start;
  2341. ret = btrfs_find_ref_cluster(trans, &cluster,
  2342. delayed_refs->run_delayed_start);
  2343. if (ret)
  2344. break;
  2345. ret = run_clustered_refs(trans, root, &cluster);
  2346. if (ret < 0) {
  2347. btrfs_release_ref_cluster(&cluster);
  2348. spin_unlock(&delayed_refs->lock);
  2349. btrfs_abort_transaction(trans, root, ret);
  2350. atomic_dec(&delayed_refs->procs_running_refs);
  2351. return ret;
  2352. }
  2353. atomic_add(ret, &delayed_refs->ref_seq);
  2354. count -= min_t(unsigned long, ret, count);
  2355. if (count == 0)
  2356. break;
  2357. if (delayed_start >= delayed_refs->run_delayed_start) {
  2358. if (loops == 0) {
  2359. /*
  2360. * btrfs_find_ref_cluster looped. let's do one
  2361. * more cycle. if we don't run any delayed ref
  2362. * during that cycle (because we can't because
  2363. * all of them are blocked), bail out.
  2364. */
  2365. loops = 1;
  2366. } else {
  2367. /*
  2368. * no runnable refs left, stop trying
  2369. */
  2370. BUG_ON(run_all);
  2371. break;
  2372. }
  2373. }
  2374. if (ret) {
  2375. /* refs were run, let's reset staleness detection */
  2376. loops = 0;
  2377. }
  2378. }
  2379. if (run_all) {
  2380. if (!list_empty(&trans->new_bgs)) {
  2381. spin_unlock(&delayed_refs->lock);
  2382. btrfs_create_pending_block_groups(trans, root);
  2383. spin_lock(&delayed_refs->lock);
  2384. }
  2385. node = rb_first(&delayed_refs->root);
  2386. if (!node)
  2387. goto out;
  2388. count = (unsigned long)-1;
  2389. while (node) {
  2390. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2391. rb_node);
  2392. if (btrfs_delayed_ref_is_head(ref)) {
  2393. struct btrfs_delayed_ref_head *head;
  2394. head = btrfs_delayed_node_to_head(ref);
  2395. atomic_inc(&ref->refs);
  2396. spin_unlock(&delayed_refs->lock);
  2397. /*
  2398. * Mutex was contended, block until it's
  2399. * released and try again
  2400. */
  2401. mutex_lock(&head->mutex);
  2402. mutex_unlock(&head->mutex);
  2403. btrfs_put_delayed_ref(ref);
  2404. cond_resched();
  2405. goto again;
  2406. }
  2407. node = rb_next(node);
  2408. }
  2409. spin_unlock(&delayed_refs->lock);
  2410. schedule_timeout(1);
  2411. goto again;
  2412. }
  2413. out:
  2414. atomic_dec(&delayed_refs->procs_running_refs);
  2415. smp_mb();
  2416. if (waitqueue_active(&delayed_refs->wait))
  2417. wake_up(&delayed_refs->wait);
  2418. spin_unlock(&delayed_refs->lock);
  2419. assert_qgroups_uptodate(trans);
  2420. return 0;
  2421. }
  2422. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2423. struct btrfs_root *root,
  2424. u64 bytenr, u64 num_bytes, u64 flags,
  2425. int level, int is_data)
  2426. {
  2427. struct btrfs_delayed_extent_op *extent_op;
  2428. int ret;
  2429. extent_op = btrfs_alloc_delayed_extent_op();
  2430. if (!extent_op)
  2431. return -ENOMEM;
  2432. extent_op->flags_to_set = flags;
  2433. extent_op->update_flags = 1;
  2434. extent_op->update_key = 0;
  2435. extent_op->is_data = is_data ? 1 : 0;
  2436. extent_op->level = level;
  2437. ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
  2438. num_bytes, extent_op);
  2439. if (ret)
  2440. btrfs_free_delayed_extent_op(extent_op);
  2441. return ret;
  2442. }
  2443. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2444. struct btrfs_root *root,
  2445. struct btrfs_path *path,
  2446. u64 objectid, u64 offset, u64 bytenr)
  2447. {
  2448. struct btrfs_delayed_ref_head *head;
  2449. struct btrfs_delayed_ref_node *ref;
  2450. struct btrfs_delayed_data_ref *data_ref;
  2451. struct btrfs_delayed_ref_root *delayed_refs;
  2452. struct rb_node *node;
  2453. int ret = 0;
  2454. ret = -ENOENT;
  2455. delayed_refs = &trans->transaction->delayed_refs;
  2456. spin_lock(&delayed_refs->lock);
  2457. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2458. if (!head)
  2459. goto out;
  2460. if (!mutex_trylock(&head->mutex)) {
  2461. atomic_inc(&head->node.refs);
  2462. spin_unlock(&delayed_refs->lock);
  2463. btrfs_release_path(path);
  2464. /*
  2465. * Mutex was contended, block until it's released and let
  2466. * caller try again
  2467. */
  2468. mutex_lock(&head->mutex);
  2469. mutex_unlock(&head->mutex);
  2470. btrfs_put_delayed_ref(&head->node);
  2471. return -EAGAIN;
  2472. }
  2473. node = rb_prev(&head->node.rb_node);
  2474. if (!node)
  2475. goto out_unlock;
  2476. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2477. if (ref->bytenr != bytenr)
  2478. goto out_unlock;
  2479. ret = 1;
  2480. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
  2481. goto out_unlock;
  2482. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2483. node = rb_prev(node);
  2484. if (node) {
  2485. int seq = ref->seq;
  2486. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2487. if (ref->bytenr == bytenr && ref->seq == seq)
  2488. goto out_unlock;
  2489. }
  2490. if (data_ref->root != root->root_key.objectid ||
  2491. data_ref->objectid != objectid || data_ref->offset != offset)
  2492. goto out_unlock;
  2493. ret = 0;
  2494. out_unlock:
  2495. mutex_unlock(&head->mutex);
  2496. out:
  2497. spin_unlock(&delayed_refs->lock);
  2498. return ret;
  2499. }
  2500. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2501. struct btrfs_root *root,
  2502. struct btrfs_path *path,
  2503. u64 objectid, u64 offset, u64 bytenr)
  2504. {
  2505. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2506. struct extent_buffer *leaf;
  2507. struct btrfs_extent_data_ref *ref;
  2508. struct btrfs_extent_inline_ref *iref;
  2509. struct btrfs_extent_item *ei;
  2510. struct btrfs_key key;
  2511. u32 item_size;
  2512. int ret;
  2513. key.objectid = bytenr;
  2514. key.offset = (u64)-1;
  2515. key.type = BTRFS_EXTENT_ITEM_KEY;
  2516. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2517. if (ret < 0)
  2518. goto out;
  2519. BUG_ON(ret == 0); /* Corruption */
  2520. ret = -ENOENT;
  2521. if (path->slots[0] == 0)
  2522. goto out;
  2523. path->slots[0]--;
  2524. leaf = path->nodes[0];
  2525. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2526. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2527. goto out;
  2528. ret = 1;
  2529. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2530. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2531. if (item_size < sizeof(*ei)) {
  2532. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2533. goto out;
  2534. }
  2535. #endif
  2536. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2537. if (item_size != sizeof(*ei) +
  2538. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2539. goto out;
  2540. if (btrfs_extent_generation(leaf, ei) <=
  2541. btrfs_root_last_snapshot(&root->root_item))
  2542. goto out;
  2543. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2544. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2545. BTRFS_EXTENT_DATA_REF_KEY)
  2546. goto out;
  2547. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2548. if (btrfs_extent_refs(leaf, ei) !=
  2549. btrfs_extent_data_ref_count(leaf, ref) ||
  2550. btrfs_extent_data_ref_root(leaf, ref) !=
  2551. root->root_key.objectid ||
  2552. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2553. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2554. goto out;
  2555. ret = 0;
  2556. out:
  2557. return ret;
  2558. }
  2559. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2560. struct btrfs_root *root,
  2561. u64 objectid, u64 offset, u64 bytenr)
  2562. {
  2563. struct btrfs_path *path;
  2564. int ret;
  2565. int ret2;
  2566. path = btrfs_alloc_path();
  2567. if (!path)
  2568. return -ENOENT;
  2569. do {
  2570. ret = check_committed_ref(trans, root, path, objectid,
  2571. offset, bytenr);
  2572. if (ret && ret != -ENOENT)
  2573. goto out;
  2574. ret2 = check_delayed_ref(trans, root, path, objectid,
  2575. offset, bytenr);
  2576. } while (ret2 == -EAGAIN);
  2577. if (ret2 && ret2 != -ENOENT) {
  2578. ret = ret2;
  2579. goto out;
  2580. }
  2581. if (ret != -ENOENT || ret2 != -ENOENT)
  2582. ret = 0;
  2583. out:
  2584. btrfs_free_path(path);
  2585. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2586. WARN_ON(ret > 0);
  2587. return ret;
  2588. }
  2589. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2590. struct btrfs_root *root,
  2591. struct extent_buffer *buf,
  2592. int full_backref, int inc, int for_cow)
  2593. {
  2594. u64 bytenr;
  2595. u64 num_bytes;
  2596. u64 parent;
  2597. u64 ref_root;
  2598. u32 nritems;
  2599. struct btrfs_key key;
  2600. struct btrfs_file_extent_item *fi;
  2601. int i;
  2602. int level;
  2603. int ret = 0;
  2604. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2605. u64, u64, u64, u64, u64, u64, int);
  2606. ref_root = btrfs_header_owner(buf);
  2607. nritems = btrfs_header_nritems(buf);
  2608. level = btrfs_header_level(buf);
  2609. if (!root->ref_cows && level == 0)
  2610. return 0;
  2611. if (inc)
  2612. process_func = btrfs_inc_extent_ref;
  2613. else
  2614. process_func = btrfs_free_extent;
  2615. if (full_backref)
  2616. parent = buf->start;
  2617. else
  2618. parent = 0;
  2619. for (i = 0; i < nritems; i++) {
  2620. if (level == 0) {
  2621. btrfs_item_key_to_cpu(buf, &key, i);
  2622. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2623. continue;
  2624. fi = btrfs_item_ptr(buf, i,
  2625. struct btrfs_file_extent_item);
  2626. if (btrfs_file_extent_type(buf, fi) ==
  2627. BTRFS_FILE_EXTENT_INLINE)
  2628. continue;
  2629. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2630. if (bytenr == 0)
  2631. continue;
  2632. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2633. key.offset -= btrfs_file_extent_offset(buf, fi);
  2634. ret = process_func(trans, root, bytenr, num_bytes,
  2635. parent, ref_root, key.objectid,
  2636. key.offset, for_cow);
  2637. if (ret)
  2638. goto fail;
  2639. } else {
  2640. bytenr = btrfs_node_blockptr(buf, i);
  2641. num_bytes = btrfs_level_size(root, level - 1);
  2642. ret = process_func(trans, root, bytenr, num_bytes,
  2643. parent, ref_root, level - 1, 0,
  2644. for_cow);
  2645. if (ret)
  2646. goto fail;
  2647. }
  2648. }
  2649. return 0;
  2650. fail:
  2651. return ret;
  2652. }
  2653. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2654. struct extent_buffer *buf, int full_backref, int for_cow)
  2655. {
  2656. return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
  2657. }
  2658. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2659. struct extent_buffer *buf, int full_backref, int for_cow)
  2660. {
  2661. return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
  2662. }
  2663. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2664. struct btrfs_root *root,
  2665. struct btrfs_path *path,
  2666. struct btrfs_block_group_cache *cache)
  2667. {
  2668. int ret;
  2669. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2670. unsigned long bi;
  2671. struct extent_buffer *leaf;
  2672. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2673. if (ret < 0)
  2674. goto fail;
  2675. BUG_ON(ret); /* Corruption */
  2676. leaf = path->nodes[0];
  2677. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2678. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2679. btrfs_mark_buffer_dirty(leaf);
  2680. btrfs_release_path(path);
  2681. fail:
  2682. if (ret) {
  2683. btrfs_abort_transaction(trans, root, ret);
  2684. return ret;
  2685. }
  2686. return 0;
  2687. }
  2688. static struct btrfs_block_group_cache *
  2689. next_block_group(struct btrfs_root *root,
  2690. struct btrfs_block_group_cache *cache)
  2691. {
  2692. struct rb_node *node;
  2693. spin_lock(&root->fs_info->block_group_cache_lock);
  2694. node = rb_next(&cache->cache_node);
  2695. btrfs_put_block_group(cache);
  2696. if (node) {
  2697. cache = rb_entry(node, struct btrfs_block_group_cache,
  2698. cache_node);
  2699. btrfs_get_block_group(cache);
  2700. } else
  2701. cache = NULL;
  2702. spin_unlock(&root->fs_info->block_group_cache_lock);
  2703. return cache;
  2704. }
  2705. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2706. struct btrfs_trans_handle *trans,
  2707. struct btrfs_path *path)
  2708. {
  2709. struct btrfs_root *root = block_group->fs_info->tree_root;
  2710. struct inode *inode = NULL;
  2711. u64 alloc_hint = 0;
  2712. int dcs = BTRFS_DC_ERROR;
  2713. int num_pages = 0;
  2714. int retries = 0;
  2715. int ret = 0;
  2716. /*
  2717. * If this block group is smaller than 100 megs don't bother caching the
  2718. * block group.
  2719. */
  2720. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2721. spin_lock(&block_group->lock);
  2722. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2723. spin_unlock(&block_group->lock);
  2724. return 0;
  2725. }
  2726. again:
  2727. inode = lookup_free_space_inode(root, block_group, path);
  2728. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2729. ret = PTR_ERR(inode);
  2730. btrfs_release_path(path);
  2731. goto out;
  2732. }
  2733. if (IS_ERR(inode)) {
  2734. BUG_ON(retries);
  2735. retries++;
  2736. if (block_group->ro)
  2737. goto out_free;
  2738. ret = create_free_space_inode(root, trans, block_group, path);
  2739. if (ret)
  2740. goto out_free;
  2741. goto again;
  2742. }
  2743. /* We've already setup this transaction, go ahead and exit */
  2744. if (block_group->cache_generation == trans->transid &&
  2745. i_size_read(inode)) {
  2746. dcs = BTRFS_DC_SETUP;
  2747. goto out_put;
  2748. }
  2749. /*
  2750. * We want to set the generation to 0, that way if anything goes wrong
  2751. * from here on out we know not to trust this cache when we load up next
  2752. * time.
  2753. */
  2754. BTRFS_I(inode)->generation = 0;
  2755. ret = btrfs_update_inode(trans, root, inode);
  2756. WARN_ON(ret);
  2757. if (i_size_read(inode) > 0) {
  2758. ret = btrfs_truncate_free_space_cache(root, trans, path,
  2759. inode);
  2760. if (ret)
  2761. goto out_put;
  2762. }
  2763. spin_lock(&block_group->lock);
  2764. if (block_group->cached != BTRFS_CACHE_FINISHED ||
  2765. !btrfs_test_opt(root, SPACE_CACHE)) {
  2766. /*
  2767. * don't bother trying to write stuff out _if_
  2768. * a) we're not cached,
  2769. * b) we're with nospace_cache mount option.
  2770. */
  2771. dcs = BTRFS_DC_WRITTEN;
  2772. spin_unlock(&block_group->lock);
  2773. goto out_put;
  2774. }
  2775. spin_unlock(&block_group->lock);
  2776. /*
  2777. * Try to preallocate enough space based on how big the block group is.
  2778. * Keep in mind this has to include any pinned space which could end up
  2779. * taking up quite a bit since it's not folded into the other space
  2780. * cache.
  2781. */
  2782. num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
  2783. if (!num_pages)
  2784. num_pages = 1;
  2785. num_pages *= 16;
  2786. num_pages *= PAGE_CACHE_SIZE;
  2787. ret = btrfs_check_data_free_space(inode, num_pages);
  2788. if (ret)
  2789. goto out_put;
  2790. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2791. num_pages, num_pages,
  2792. &alloc_hint);
  2793. if (!ret)
  2794. dcs = BTRFS_DC_SETUP;
  2795. btrfs_free_reserved_data_space(inode, num_pages);
  2796. out_put:
  2797. iput(inode);
  2798. out_free:
  2799. btrfs_release_path(path);
  2800. out:
  2801. spin_lock(&block_group->lock);
  2802. if (!ret && dcs == BTRFS_DC_SETUP)
  2803. block_group->cache_generation = trans->transid;
  2804. block_group->disk_cache_state = dcs;
  2805. spin_unlock(&block_group->lock);
  2806. return ret;
  2807. }
  2808. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2809. struct btrfs_root *root)
  2810. {
  2811. struct btrfs_block_group_cache *cache;
  2812. int err = 0;
  2813. struct btrfs_path *path;
  2814. u64 last = 0;
  2815. path = btrfs_alloc_path();
  2816. if (!path)
  2817. return -ENOMEM;
  2818. again:
  2819. while (1) {
  2820. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2821. while (cache) {
  2822. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2823. break;
  2824. cache = next_block_group(root, cache);
  2825. }
  2826. if (!cache) {
  2827. if (last == 0)
  2828. break;
  2829. last = 0;
  2830. continue;
  2831. }
  2832. err = cache_save_setup(cache, trans, path);
  2833. last = cache->key.objectid + cache->key.offset;
  2834. btrfs_put_block_group(cache);
  2835. }
  2836. while (1) {
  2837. if (last == 0) {
  2838. err = btrfs_run_delayed_refs(trans, root,
  2839. (unsigned long)-1);
  2840. if (err) /* File system offline */
  2841. goto out;
  2842. }
  2843. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2844. while (cache) {
  2845. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2846. btrfs_put_block_group(cache);
  2847. goto again;
  2848. }
  2849. if (cache->dirty)
  2850. break;
  2851. cache = next_block_group(root, cache);
  2852. }
  2853. if (!cache) {
  2854. if (last == 0)
  2855. break;
  2856. last = 0;
  2857. continue;
  2858. }
  2859. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2860. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2861. cache->dirty = 0;
  2862. last = cache->key.objectid + cache->key.offset;
  2863. err = write_one_cache_group(trans, root, path, cache);
  2864. if (err) /* File system offline */
  2865. goto out;
  2866. btrfs_put_block_group(cache);
  2867. }
  2868. while (1) {
  2869. /*
  2870. * I don't think this is needed since we're just marking our
  2871. * preallocated extent as written, but just in case it can't
  2872. * hurt.
  2873. */
  2874. if (last == 0) {
  2875. err = btrfs_run_delayed_refs(trans, root,
  2876. (unsigned long)-1);
  2877. if (err) /* File system offline */
  2878. goto out;
  2879. }
  2880. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2881. while (cache) {
  2882. /*
  2883. * Really this shouldn't happen, but it could if we
  2884. * couldn't write the entire preallocated extent and
  2885. * splitting the extent resulted in a new block.
  2886. */
  2887. if (cache->dirty) {
  2888. btrfs_put_block_group(cache);
  2889. goto again;
  2890. }
  2891. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2892. break;
  2893. cache = next_block_group(root, cache);
  2894. }
  2895. if (!cache) {
  2896. if (last == 0)
  2897. break;
  2898. last = 0;
  2899. continue;
  2900. }
  2901. err = btrfs_write_out_cache(root, trans, cache, path);
  2902. /*
  2903. * If we didn't have an error then the cache state is still
  2904. * NEED_WRITE, so we can set it to WRITTEN.
  2905. */
  2906. if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2907. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2908. last = cache->key.objectid + cache->key.offset;
  2909. btrfs_put_block_group(cache);
  2910. }
  2911. out:
  2912. btrfs_free_path(path);
  2913. return err;
  2914. }
  2915. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2916. {
  2917. struct btrfs_block_group_cache *block_group;
  2918. int readonly = 0;
  2919. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2920. if (!block_group || block_group->ro)
  2921. readonly = 1;
  2922. if (block_group)
  2923. btrfs_put_block_group(block_group);
  2924. return readonly;
  2925. }
  2926. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2927. u64 total_bytes, u64 bytes_used,
  2928. struct btrfs_space_info **space_info)
  2929. {
  2930. struct btrfs_space_info *found;
  2931. int i;
  2932. int factor;
  2933. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  2934. BTRFS_BLOCK_GROUP_RAID10))
  2935. factor = 2;
  2936. else
  2937. factor = 1;
  2938. found = __find_space_info(info, flags);
  2939. if (found) {
  2940. spin_lock(&found->lock);
  2941. found->total_bytes += total_bytes;
  2942. found->disk_total += total_bytes * factor;
  2943. found->bytes_used += bytes_used;
  2944. found->disk_used += bytes_used * factor;
  2945. found->full = 0;
  2946. spin_unlock(&found->lock);
  2947. *space_info = found;
  2948. return 0;
  2949. }
  2950. found = kzalloc(sizeof(*found), GFP_NOFS);
  2951. if (!found)
  2952. return -ENOMEM;
  2953. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  2954. INIT_LIST_HEAD(&found->block_groups[i]);
  2955. init_rwsem(&found->groups_sem);
  2956. spin_lock_init(&found->lock);
  2957. found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  2958. found->total_bytes = total_bytes;
  2959. found->disk_total = total_bytes * factor;
  2960. found->bytes_used = bytes_used;
  2961. found->disk_used = bytes_used * factor;
  2962. found->bytes_pinned = 0;
  2963. found->bytes_reserved = 0;
  2964. found->bytes_readonly = 0;
  2965. found->bytes_may_use = 0;
  2966. found->full = 0;
  2967. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2968. found->chunk_alloc = 0;
  2969. found->flush = 0;
  2970. init_waitqueue_head(&found->wait);
  2971. *space_info = found;
  2972. list_add_rcu(&found->list, &info->space_info);
  2973. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2974. info->data_sinfo = found;
  2975. return 0;
  2976. }
  2977. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  2978. {
  2979. u64 extra_flags = chunk_to_extended(flags) &
  2980. BTRFS_EXTENDED_PROFILE_MASK;
  2981. write_seqlock(&fs_info->profiles_lock);
  2982. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2983. fs_info->avail_data_alloc_bits |= extra_flags;
  2984. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2985. fs_info->avail_metadata_alloc_bits |= extra_flags;
  2986. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2987. fs_info->avail_system_alloc_bits |= extra_flags;
  2988. write_sequnlock(&fs_info->profiles_lock);
  2989. }
  2990. /*
  2991. * returns target flags in extended format or 0 if restripe for this
  2992. * chunk_type is not in progress
  2993. *
  2994. * should be called with either volume_mutex or balance_lock held
  2995. */
  2996. static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  2997. {
  2998. struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  2999. u64 target = 0;
  3000. if (!bctl)
  3001. return 0;
  3002. if (flags & BTRFS_BLOCK_GROUP_DATA &&
  3003. bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3004. target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  3005. } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  3006. bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3007. target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  3008. } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  3009. bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3010. target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  3011. }
  3012. return target;
  3013. }
  3014. /*
  3015. * @flags: available profiles in extended format (see ctree.h)
  3016. *
  3017. * Returns reduced profile in chunk format. If profile changing is in
  3018. * progress (either running or paused) picks the target profile (if it's
  3019. * already available), otherwise falls back to plain reducing.
  3020. */
  3021. static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  3022. {
  3023. /*
  3024. * we add in the count of missing devices because we want
  3025. * to make sure that any RAID levels on a degraded FS
  3026. * continue to be honored.
  3027. */
  3028. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  3029. root->fs_info->fs_devices->missing_devices;
  3030. u64 target;
  3031. u64 tmp;
  3032. /*
  3033. * see if restripe for this chunk_type is in progress, if so
  3034. * try to reduce to the target profile
  3035. */
  3036. spin_lock(&root->fs_info->balance_lock);
  3037. target = get_restripe_target(root->fs_info, flags);
  3038. if (target) {
  3039. /* pick target profile only if it's already available */
  3040. if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
  3041. spin_unlock(&root->fs_info->balance_lock);
  3042. return extended_to_chunk(target);
  3043. }
  3044. }
  3045. spin_unlock(&root->fs_info->balance_lock);
  3046. /* First, mask out the RAID levels which aren't possible */
  3047. if (num_devices == 1)
  3048. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
  3049. BTRFS_BLOCK_GROUP_RAID5);
  3050. if (num_devices < 3)
  3051. flags &= ~BTRFS_BLOCK_GROUP_RAID6;
  3052. if (num_devices < 4)
  3053. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  3054. tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
  3055. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
  3056. BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
  3057. flags &= ~tmp;
  3058. if (tmp & BTRFS_BLOCK_GROUP_RAID6)
  3059. tmp = BTRFS_BLOCK_GROUP_RAID6;
  3060. else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
  3061. tmp = BTRFS_BLOCK_GROUP_RAID5;
  3062. else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
  3063. tmp = BTRFS_BLOCK_GROUP_RAID10;
  3064. else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
  3065. tmp = BTRFS_BLOCK_GROUP_RAID1;
  3066. else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
  3067. tmp = BTRFS_BLOCK_GROUP_RAID0;
  3068. return extended_to_chunk(flags | tmp);
  3069. }
  3070. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  3071. {
  3072. unsigned seq;
  3073. do {
  3074. seq = read_seqbegin(&root->fs_info->profiles_lock);
  3075. if (flags & BTRFS_BLOCK_GROUP_DATA)
  3076. flags |= root->fs_info->avail_data_alloc_bits;
  3077. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  3078. flags |= root->fs_info->avail_system_alloc_bits;
  3079. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  3080. flags |= root->fs_info->avail_metadata_alloc_bits;
  3081. } while (read_seqretry(&root->fs_info->profiles_lock, seq));
  3082. return btrfs_reduce_alloc_profile(root, flags);
  3083. }
  3084. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  3085. {
  3086. u64 flags;
  3087. u64 ret;
  3088. if (data)
  3089. flags = BTRFS_BLOCK_GROUP_DATA;
  3090. else if (root == root->fs_info->chunk_root)
  3091. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  3092. else
  3093. flags = BTRFS_BLOCK_GROUP_METADATA;
  3094. ret = get_alloc_profile(root, flags);
  3095. return ret;
  3096. }
  3097. /*
  3098. * This will check the space that the inode allocates from to make sure we have
  3099. * enough space for bytes.
  3100. */
  3101. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  3102. {
  3103. struct btrfs_space_info *data_sinfo;
  3104. struct btrfs_root *root = BTRFS_I(inode)->root;
  3105. struct btrfs_fs_info *fs_info = root->fs_info;
  3106. u64 used;
  3107. int ret = 0, committed = 0, alloc_chunk = 1;
  3108. /* make sure bytes are sectorsize aligned */
  3109. bytes = ALIGN(bytes, root->sectorsize);
  3110. if (root == root->fs_info->tree_root ||
  3111. BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
  3112. alloc_chunk = 0;
  3113. committed = 1;
  3114. }
  3115. data_sinfo = fs_info->data_sinfo;
  3116. if (!data_sinfo)
  3117. goto alloc;
  3118. again:
  3119. /* make sure we have enough space to handle the data first */
  3120. spin_lock(&data_sinfo->lock);
  3121. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  3122. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  3123. data_sinfo->bytes_may_use;
  3124. if (used + bytes > data_sinfo->total_bytes) {
  3125. struct btrfs_trans_handle *trans;
  3126. /*
  3127. * if we don't have enough free bytes in this space then we need
  3128. * to alloc a new chunk.
  3129. */
  3130. if (!data_sinfo->full && alloc_chunk) {
  3131. u64 alloc_target;
  3132. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  3133. spin_unlock(&data_sinfo->lock);
  3134. alloc:
  3135. alloc_target = btrfs_get_alloc_profile(root, 1);
  3136. trans = btrfs_join_transaction(root);
  3137. if (IS_ERR(trans))
  3138. return PTR_ERR(trans);
  3139. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3140. alloc_target,
  3141. CHUNK_ALLOC_NO_FORCE);
  3142. btrfs_end_transaction(trans, root);
  3143. if (ret < 0) {
  3144. if (ret != -ENOSPC)
  3145. return ret;
  3146. else
  3147. goto commit_trans;
  3148. }
  3149. if (!data_sinfo)
  3150. data_sinfo = fs_info->data_sinfo;
  3151. goto again;
  3152. }
  3153. /*
  3154. * If we have less pinned bytes than we want to allocate then
  3155. * don't bother committing the transaction, it won't help us.
  3156. */
  3157. if (data_sinfo->bytes_pinned < bytes)
  3158. committed = 1;
  3159. spin_unlock(&data_sinfo->lock);
  3160. /* commit the current transaction and try again */
  3161. commit_trans:
  3162. if (!committed &&
  3163. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  3164. committed = 1;
  3165. trans = btrfs_join_transaction(root);
  3166. if (IS_ERR(trans))
  3167. return PTR_ERR(trans);
  3168. ret = btrfs_commit_transaction(trans, root);
  3169. if (ret)
  3170. return ret;
  3171. goto again;
  3172. }
  3173. return -ENOSPC;
  3174. }
  3175. data_sinfo->bytes_may_use += bytes;
  3176. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3177. data_sinfo->flags, bytes, 1);
  3178. spin_unlock(&data_sinfo->lock);
  3179. return 0;
  3180. }
  3181. /*
  3182. * Called if we need to clear a data reservation for this inode.
  3183. */
  3184. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  3185. {
  3186. struct btrfs_root *root = BTRFS_I(inode)->root;
  3187. struct btrfs_space_info *data_sinfo;
  3188. /* make sure bytes are sectorsize aligned */
  3189. bytes = ALIGN(bytes, root->sectorsize);
  3190. data_sinfo = root->fs_info->data_sinfo;
  3191. spin_lock(&data_sinfo->lock);
  3192. data_sinfo->bytes_may_use -= bytes;
  3193. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3194. data_sinfo->flags, bytes, 0);
  3195. spin_unlock(&data_sinfo->lock);
  3196. }
  3197. static void force_metadata_allocation(struct btrfs_fs_info *info)
  3198. {
  3199. struct list_head *head = &info->space_info;
  3200. struct btrfs_space_info *found;
  3201. rcu_read_lock();
  3202. list_for_each_entry_rcu(found, head, list) {
  3203. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  3204. found->force_alloc = CHUNK_ALLOC_FORCE;
  3205. }
  3206. rcu_read_unlock();
  3207. }
  3208. static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
  3209. {
  3210. return (global->size << 1);
  3211. }
  3212. static int should_alloc_chunk(struct btrfs_root *root,
  3213. struct btrfs_space_info *sinfo, int force)
  3214. {
  3215. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3216. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  3217. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  3218. u64 thresh;
  3219. if (force == CHUNK_ALLOC_FORCE)
  3220. return 1;
  3221. /*
  3222. * We need to take into account the global rsv because for all intents
  3223. * and purposes it's used space. Don't worry about locking the
  3224. * global_rsv, it doesn't change except when the transaction commits.
  3225. */
  3226. if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
  3227. num_allocated += calc_global_rsv_need_space(global_rsv);
  3228. /*
  3229. * in limited mode, we want to have some free space up to
  3230. * about 1% of the FS size.
  3231. */
  3232. if (force == CHUNK_ALLOC_LIMITED) {
  3233. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  3234. thresh = max_t(u64, 64 * 1024 * 1024,
  3235. div_factor_fine(thresh, 1));
  3236. if (num_bytes - num_allocated < thresh)
  3237. return 1;
  3238. }
  3239. if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
  3240. return 0;
  3241. return 1;
  3242. }
  3243. static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
  3244. {
  3245. u64 num_dev;
  3246. if (type & (BTRFS_BLOCK_GROUP_RAID10 |
  3247. BTRFS_BLOCK_GROUP_RAID0 |
  3248. BTRFS_BLOCK_GROUP_RAID5 |
  3249. BTRFS_BLOCK_GROUP_RAID6))
  3250. num_dev = root->fs_info->fs_devices->rw_devices;
  3251. else if (type & BTRFS_BLOCK_GROUP_RAID1)
  3252. num_dev = 2;
  3253. else
  3254. num_dev = 1; /* DUP or single */
  3255. /* metadata for updaing devices and chunk tree */
  3256. return btrfs_calc_trans_metadata_size(root, num_dev + 1);
  3257. }
  3258. static void check_system_chunk(struct btrfs_trans_handle *trans,
  3259. struct btrfs_root *root, u64 type)
  3260. {
  3261. struct btrfs_space_info *info;
  3262. u64 left;
  3263. u64 thresh;
  3264. info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3265. spin_lock(&info->lock);
  3266. left = info->total_bytes - info->bytes_used - info->bytes_pinned -
  3267. info->bytes_reserved - info->bytes_readonly;
  3268. spin_unlock(&info->lock);
  3269. thresh = get_system_chunk_thresh(root, type);
  3270. if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  3271. btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
  3272. left, thresh, type);
  3273. dump_space_info(info, 0, 0);
  3274. }
  3275. if (left < thresh) {
  3276. u64 flags;
  3277. flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
  3278. btrfs_alloc_chunk(trans, root, flags);
  3279. }
  3280. }
  3281. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  3282. struct btrfs_root *extent_root, u64 flags, int force)
  3283. {
  3284. struct btrfs_space_info *space_info;
  3285. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3286. int wait_for_alloc = 0;
  3287. int ret = 0;
  3288. /* Don't re-enter if we're already allocating a chunk */
  3289. if (trans->allocating_chunk)
  3290. return -ENOSPC;
  3291. space_info = __find_space_info(extent_root->fs_info, flags);
  3292. if (!space_info) {
  3293. ret = update_space_info(extent_root->fs_info, flags,
  3294. 0, 0, &space_info);
  3295. BUG_ON(ret); /* -ENOMEM */
  3296. }
  3297. BUG_ON(!space_info); /* Logic error */
  3298. again:
  3299. spin_lock(&space_info->lock);
  3300. if (force < space_info->force_alloc)
  3301. force = space_info->force_alloc;
  3302. if (space_info->full) {
  3303. spin_unlock(&space_info->lock);
  3304. return 0;
  3305. }
  3306. if (!should_alloc_chunk(extent_root, space_info, force)) {
  3307. spin_unlock(&space_info->lock);
  3308. return 0;
  3309. } else if (space_info->chunk_alloc) {
  3310. wait_for_alloc = 1;
  3311. } else {
  3312. space_info->chunk_alloc = 1;
  3313. }
  3314. spin_unlock(&space_info->lock);
  3315. mutex_lock(&fs_info->chunk_mutex);
  3316. /*
  3317. * The chunk_mutex is held throughout the entirety of a chunk
  3318. * allocation, so once we've acquired the chunk_mutex we know that the
  3319. * other guy is done and we need to recheck and see if we should
  3320. * allocate.
  3321. */
  3322. if (wait_for_alloc) {
  3323. mutex_unlock(&fs_info->chunk_mutex);
  3324. wait_for_alloc = 0;
  3325. goto again;
  3326. }
  3327. trans->allocating_chunk = true;
  3328. /*
  3329. * If we have mixed data/metadata chunks we want to make sure we keep
  3330. * allocating mixed chunks instead of individual chunks.
  3331. */
  3332. if (btrfs_mixed_space_info(space_info))
  3333. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  3334. /*
  3335. * if we're doing a data chunk, go ahead and make sure that
  3336. * we keep a reasonable number of metadata chunks allocated in the
  3337. * FS as well.
  3338. */
  3339. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  3340. fs_info->data_chunk_allocations++;
  3341. if (!(fs_info->data_chunk_allocations %
  3342. fs_info->metadata_ratio))
  3343. force_metadata_allocation(fs_info);
  3344. }
  3345. /*
  3346. * Check if we have enough space in SYSTEM chunk because we may need
  3347. * to update devices.
  3348. */
  3349. check_system_chunk(trans, extent_root, flags);
  3350. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  3351. trans->allocating_chunk = false;
  3352. spin_lock(&space_info->lock);
  3353. if (ret < 0 && ret != -ENOSPC)
  3354. goto out;
  3355. if (ret)
  3356. space_info->full = 1;
  3357. else
  3358. ret = 1;
  3359. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3360. out:
  3361. space_info->chunk_alloc = 0;
  3362. spin_unlock(&space_info->lock);
  3363. mutex_unlock(&fs_info->chunk_mutex);
  3364. return ret;
  3365. }
  3366. static int can_overcommit(struct btrfs_root *root,
  3367. struct btrfs_space_info *space_info, u64 bytes,
  3368. enum btrfs_reserve_flush_enum flush)
  3369. {
  3370. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3371. u64 profile = btrfs_get_alloc_profile(root, 0);
  3372. u64 space_size;
  3373. u64 avail;
  3374. u64 used;
  3375. u64 to_add;
  3376. used = space_info->bytes_used + space_info->bytes_reserved +
  3377. space_info->bytes_pinned + space_info->bytes_readonly;
  3378. /*
  3379. * We only want to allow over committing if we have lots of actual space
  3380. * free, but if we don't have enough space to handle the global reserve
  3381. * space then we could end up having a real enospc problem when trying
  3382. * to allocate a chunk or some other such important allocation.
  3383. */
  3384. spin_lock(&global_rsv->lock);
  3385. space_size = calc_global_rsv_need_space(global_rsv);
  3386. spin_unlock(&global_rsv->lock);
  3387. if (used + space_size >= space_info->total_bytes)
  3388. return 0;
  3389. used += space_info->bytes_may_use;
  3390. spin_lock(&root->fs_info->free_chunk_lock);
  3391. avail = root->fs_info->free_chunk_space;
  3392. spin_unlock(&root->fs_info->free_chunk_lock);
  3393. /*
  3394. * If we have dup, raid1 or raid10 then only half of the free
  3395. * space is actually useable. For raid56, the space info used
  3396. * doesn't include the parity drive, so we don't have to
  3397. * change the math
  3398. */
  3399. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  3400. BTRFS_BLOCK_GROUP_RAID1 |
  3401. BTRFS_BLOCK_GROUP_RAID10))
  3402. avail >>= 1;
  3403. to_add = space_info->total_bytes;
  3404. /*
  3405. * If we aren't flushing all things, let us overcommit up to
  3406. * 1/2th of the space. If we can flush, don't let us overcommit
  3407. * too much, let it overcommit up to 1/8 of the space.
  3408. */
  3409. if (flush == BTRFS_RESERVE_FLUSH_ALL)
  3410. to_add >>= 3;
  3411. else
  3412. to_add >>= 1;
  3413. /*
  3414. * Limit the overcommit to the amount of free space we could possibly
  3415. * allocate for chunks.
  3416. */
  3417. to_add = min(avail, to_add);
  3418. if (used + bytes < space_info->total_bytes + to_add)
  3419. return 1;
  3420. return 0;
  3421. }
  3422. static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
  3423. unsigned long nr_pages)
  3424. {
  3425. struct super_block *sb = root->fs_info->sb;
  3426. int started;
  3427. /* If we can not start writeback, just sync all the delalloc file. */
  3428. started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
  3429. WB_REASON_FS_FREE_SPACE);
  3430. if (!started) {
  3431. /*
  3432. * We needn't worry the filesystem going from r/w to r/o though
  3433. * we don't acquire ->s_umount mutex, because the filesystem
  3434. * should guarantee the delalloc inodes list be empty after
  3435. * the filesystem is readonly(all dirty pages are written to
  3436. * the disk).
  3437. */
  3438. btrfs_start_delalloc_inodes(root, 0);
  3439. if (!current->journal_info)
  3440. btrfs_wait_ordered_extents(root, 0);
  3441. }
  3442. }
  3443. /*
  3444. * shrink metadata reservation for delalloc
  3445. */
  3446. static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
  3447. bool wait_ordered)
  3448. {
  3449. struct btrfs_block_rsv *block_rsv;
  3450. struct btrfs_space_info *space_info;
  3451. struct btrfs_trans_handle *trans;
  3452. u64 delalloc_bytes;
  3453. u64 max_reclaim;
  3454. long time_left;
  3455. unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
  3456. int loops = 0;
  3457. enum btrfs_reserve_flush_enum flush;
  3458. trans = (struct btrfs_trans_handle *)current->journal_info;
  3459. block_rsv = &root->fs_info->delalloc_block_rsv;
  3460. space_info = block_rsv->space_info;
  3461. smp_mb();
  3462. delalloc_bytes = percpu_counter_sum_positive(
  3463. &root->fs_info->delalloc_bytes);
  3464. if (delalloc_bytes == 0) {
  3465. if (trans)
  3466. return;
  3467. btrfs_wait_ordered_extents(root, 0);
  3468. return;
  3469. }
  3470. while (delalloc_bytes && loops < 3) {
  3471. max_reclaim = min(delalloc_bytes, to_reclaim);
  3472. nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
  3473. btrfs_writeback_inodes_sb_nr(root, nr_pages);
  3474. /*
  3475. * We need to wait for the async pages to actually start before
  3476. * we do anything.
  3477. */
  3478. wait_event(root->fs_info->async_submit_wait,
  3479. !atomic_read(&root->fs_info->async_delalloc_pages));
  3480. if (!trans)
  3481. flush = BTRFS_RESERVE_FLUSH_ALL;
  3482. else
  3483. flush = BTRFS_RESERVE_NO_FLUSH;
  3484. spin_lock(&space_info->lock);
  3485. if (can_overcommit(root, space_info, orig, flush)) {
  3486. spin_unlock(&space_info->lock);
  3487. break;
  3488. }
  3489. spin_unlock(&space_info->lock);
  3490. loops++;
  3491. if (wait_ordered && !trans) {
  3492. btrfs_wait_ordered_extents(root, 0);
  3493. } else {
  3494. time_left = schedule_timeout_killable(1);
  3495. if (time_left)
  3496. break;
  3497. }
  3498. smp_mb();
  3499. delalloc_bytes = percpu_counter_sum_positive(
  3500. &root->fs_info->delalloc_bytes);
  3501. }
  3502. }
  3503. /**
  3504. * maybe_commit_transaction - possibly commit the transaction if its ok to
  3505. * @root - the root we're allocating for
  3506. * @bytes - the number of bytes we want to reserve
  3507. * @force - force the commit
  3508. *
  3509. * This will check to make sure that committing the transaction will actually
  3510. * get us somewhere and then commit the transaction if it does. Otherwise it
  3511. * will return -ENOSPC.
  3512. */
  3513. static int may_commit_transaction(struct btrfs_root *root,
  3514. struct btrfs_space_info *space_info,
  3515. u64 bytes, int force)
  3516. {
  3517. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  3518. struct btrfs_trans_handle *trans;
  3519. trans = (struct btrfs_trans_handle *)current->journal_info;
  3520. if (trans)
  3521. return -EAGAIN;
  3522. if (force)
  3523. goto commit;
  3524. /* See if there is enough pinned space to make this reservation */
  3525. spin_lock(&space_info->lock);
  3526. if (space_info->bytes_pinned >= bytes) {
  3527. spin_unlock(&space_info->lock);
  3528. goto commit;
  3529. }
  3530. spin_unlock(&space_info->lock);
  3531. /*
  3532. * See if there is some space in the delayed insertion reservation for
  3533. * this reservation.
  3534. */
  3535. if (space_info != delayed_rsv->space_info)
  3536. return -ENOSPC;
  3537. spin_lock(&space_info->lock);
  3538. spin_lock(&delayed_rsv->lock);
  3539. if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
  3540. spin_unlock(&delayed_rsv->lock);
  3541. spin_unlock(&space_info->lock);
  3542. return -ENOSPC;
  3543. }
  3544. spin_unlock(&delayed_rsv->lock);
  3545. spin_unlock(&space_info->lock);
  3546. commit:
  3547. trans = btrfs_join_transaction(root);
  3548. if (IS_ERR(trans))
  3549. return -ENOSPC;
  3550. return btrfs_commit_transaction(trans, root);
  3551. }
  3552. enum flush_state {
  3553. FLUSH_DELAYED_ITEMS_NR = 1,
  3554. FLUSH_DELAYED_ITEMS = 2,
  3555. FLUSH_DELALLOC = 3,
  3556. FLUSH_DELALLOC_WAIT = 4,
  3557. ALLOC_CHUNK = 5,
  3558. COMMIT_TRANS = 6,
  3559. };
  3560. static int flush_space(struct btrfs_root *root,
  3561. struct btrfs_space_info *space_info, u64 num_bytes,
  3562. u64 orig_bytes, int state)
  3563. {
  3564. struct btrfs_trans_handle *trans;
  3565. int nr;
  3566. int ret = 0;
  3567. switch (state) {
  3568. case FLUSH_DELAYED_ITEMS_NR:
  3569. case FLUSH_DELAYED_ITEMS:
  3570. if (state == FLUSH_DELAYED_ITEMS_NR) {
  3571. u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
  3572. nr = (int)div64_u64(num_bytes, bytes);
  3573. if (!nr)
  3574. nr = 1;
  3575. nr *= 2;
  3576. } else {
  3577. nr = -1;
  3578. }
  3579. trans = btrfs_join_transaction(root);
  3580. if (IS_ERR(trans)) {
  3581. ret = PTR_ERR(trans);
  3582. break;
  3583. }
  3584. ret = btrfs_run_delayed_items_nr(trans, root, nr);
  3585. btrfs_end_transaction(trans, root);
  3586. break;
  3587. case FLUSH_DELALLOC:
  3588. case FLUSH_DELALLOC_WAIT:
  3589. shrink_delalloc(root, num_bytes, orig_bytes,
  3590. state == FLUSH_DELALLOC_WAIT);
  3591. break;
  3592. case ALLOC_CHUNK:
  3593. trans = btrfs_join_transaction(root);
  3594. if (IS_ERR(trans)) {
  3595. ret = PTR_ERR(trans);
  3596. break;
  3597. }
  3598. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3599. btrfs_get_alloc_profile(root, 0),
  3600. CHUNK_ALLOC_NO_FORCE);
  3601. btrfs_end_transaction(trans, root);
  3602. if (ret == -ENOSPC)
  3603. ret = 0;
  3604. break;
  3605. case COMMIT_TRANS:
  3606. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  3607. break;
  3608. default:
  3609. ret = -ENOSPC;
  3610. break;
  3611. }
  3612. return ret;
  3613. }
  3614. /**
  3615. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  3616. * @root - the root we're allocating for
  3617. * @block_rsv - the block_rsv we're allocating for
  3618. * @orig_bytes - the number of bytes we want
  3619. * @flush - whether or not we can flush to make our reservation
  3620. *
  3621. * This will reserve orgi_bytes number of bytes from the space info associated
  3622. * with the block_rsv. If there is not enough space it will make an attempt to
  3623. * flush out space to make room. It will do this by flushing delalloc if
  3624. * possible or committing the transaction. If flush is 0 then no attempts to
  3625. * regain reservations will be made and this will fail if there is not enough
  3626. * space already.
  3627. */
  3628. static int reserve_metadata_bytes(struct btrfs_root *root,
  3629. struct btrfs_block_rsv *block_rsv,
  3630. u64 orig_bytes,
  3631. enum btrfs_reserve_flush_enum flush)
  3632. {
  3633. struct btrfs_space_info *space_info = block_rsv->space_info;
  3634. u64 used;
  3635. u64 num_bytes = orig_bytes;
  3636. int flush_state = FLUSH_DELAYED_ITEMS_NR;
  3637. int ret = 0;
  3638. bool flushing = false;
  3639. again:
  3640. ret = 0;
  3641. spin_lock(&space_info->lock);
  3642. /*
  3643. * We only want to wait if somebody other than us is flushing and we
  3644. * are actually allowed to flush all things.
  3645. */
  3646. while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
  3647. space_info->flush) {
  3648. spin_unlock(&space_info->lock);
  3649. /*
  3650. * If we have a trans handle we can't wait because the flusher
  3651. * may have to commit the transaction, which would mean we would
  3652. * deadlock since we are waiting for the flusher to finish, but
  3653. * hold the current transaction open.
  3654. */
  3655. if (current->journal_info)
  3656. return -EAGAIN;
  3657. ret = wait_event_killable(space_info->wait, !space_info->flush);
  3658. /* Must have been killed, return */
  3659. if (ret)
  3660. return -EINTR;
  3661. spin_lock(&space_info->lock);
  3662. }
  3663. ret = -ENOSPC;
  3664. used = space_info->bytes_used + space_info->bytes_reserved +
  3665. space_info->bytes_pinned + space_info->bytes_readonly +
  3666. space_info->bytes_may_use;
  3667. /*
  3668. * The idea here is that we've not already over-reserved the block group
  3669. * then we can go ahead and save our reservation first and then start
  3670. * flushing if we need to. Otherwise if we've already overcommitted
  3671. * lets start flushing stuff first and then come back and try to make
  3672. * our reservation.
  3673. */
  3674. if (used <= space_info->total_bytes) {
  3675. if (used + orig_bytes <= space_info->total_bytes) {
  3676. space_info->bytes_may_use += orig_bytes;
  3677. trace_btrfs_space_reservation(root->fs_info,
  3678. "space_info", space_info->flags, orig_bytes, 1);
  3679. ret = 0;
  3680. } else {
  3681. /*
  3682. * Ok set num_bytes to orig_bytes since we aren't
  3683. * overocmmitted, this way we only try and reclaim what
  3684. * we need.
  3685. */
  3686. num_bytes = orig_bytes;
  3687. }
  3688. } else {
  3689. /*
  3690. * Ok we're over committed, set num_bytes to the overcommitted
  3691. * amount plus the amount of bytes that we need for this
  3692. * reservation.
  3693. */
  3694. num_bytes = used - space_info->total_bytes +
  3695. (orig_bytes * 2);
  3696. }
  3697. if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
  3698. space_info->bytes_may_use += orig_bytes;
  3699. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3700. space_info->flags, orig_bytes,
  3701. 1);
  3702. ret = 0;
  3703. }
  3704. /*
  3705. * Couldn't make our reservation, save our place so while we're trying
  3706. * to reclaim space we can actually use it instead of somebody else
  3707. * stealing it from us.
  3708. *
  3709. * We make the other tasks wait for the flush only when we can flush
  3710. * all things.
  3711. */
  3712. if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
  3713. flushing = true;
  3714. space_info->flush = 1;
  3715. }
  3716. spin_unlock(&space_info->lock);
  3717. if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
  3718. goto out;
  3719. ret = flush_space(root, space_info, num_bytes, orig_bytes,
  3720. flush_state);
  3721. flush_state++;
  3722. /*
  3723. * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
  3724. * would happen. So skip delalloc flush.
  3725. */
  3726. if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  3727. (flush_state == FLUSH_DELALLOC ||
  3728. flush_state == FLUSH_DELALLOC_WAIT))
  3729. flush_state = ALLOC_CHUNK;
  3730. if (!ret)
  3731. goto again;
  3732. else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  3733. flush_state < COMMIT_TRANS)
  3734. goto again;
  3735. else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
  3736. flush_state <= COMMIT_TRANS)
  3737. goto again;
  3738. out:
  3739. if (ret == -ENOSPC &&
  3740. unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
  3741. struct btrfs_block_rsv *global_rsv =
  3742. &root->fs_info->global_block_rsv;
  3743. if (block_rsv != global_rsv &&
  3744. !block_rsv_use_bytes(global_rsv, orig_bytes))
  3745. ret = 0;
  3746. }
  3747. if (flushing) {
  3748. spin_lock(&space_info->lock);
  3749. space_info->flush = 0;
  3750. wake_up_all(&space_info->wait);
  3751. spin_unlock(&space_info->lock);
  3752. }
  3753. return ret;
  3754. }
  3755. static struct btrfs_block_rsv *get_block_rsv(
  3756. const struct btrfs_trans_handle *trans,
  3757. const struct btrfs_root *root)
  3758. {
  3759. struct btrfs_block_rsv *block_rsv = NULL;
  3760. if (root->ref_cows)
  3761. block_rsv = trans->block_rsv;
  3762. if (root == root->fs_info->csum_root && trans->adding_csums)
  3763. block_rsv = trans->block_rsv;
  3764. if (!block_rsv)
  3765. block_rsv = root->block_rsv;
  3766. if (!block_rsv)
  3767. block_rsv = &root->fs_info->empty_block_rsv;
  3768. return block_rsv;
  3769. }
  3770. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3771. u64 num_bytes)
  3772. {
  3773. int ret = -ENOSPC;
  3774. spin_lock(&block_rsv->lock);
  3775. if (block_rsv->reserved >= num_bytes) {
  3776. block_rsv->reserved -= num_bytes;
  3777. if (block_rsv->reserved < block_rsv->size)
  3778. block_rsv->full = 0;
  3779. ret = 0;
  3780. }
  3781. spin_unlock(&block_rsv->lock);
  3782. return ret;
  3783. }
  3784. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3785. u64 num_bytes, int update_size)
  3786. {
  3787. spin_lock(&block_rsv->lock);
  3788. block_rsv->reserved += num_bytes;
  3789. if (update_size)
  3790. block_rsv->size += num_bytes;
  3791. else if (block_rsv->reserved >= block_rsv->size)
  3792. block_rsv->full = 1;
  3793. spin_unlock(&block_rsv->lock);
  3794. }
  3795. static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
  3796. struct btrfs_block_rsv *block_rsv,
  3797. struct btrfs_block_rsv *dest, u64 num_bytes)
  3798. {
  3799. struct btrfs_space_info *space_info = block_rsv->space_info;
  3800. spin_lock(&block_rsv->lock);
  3801. if (num_bytes == (u64)-1)
  3802. num_bytes = block_rsv->size;
  3803. block_rsv->size -= num_bytes;
  3804. if (block_rsv->reserved >= block_rsv->size) {
  3805. num_bytes = block_rsv->reserved - block_rsv->size;
  3806. block_rsv->reserved = block_rsv->size;
  3807. block_rsv->full = 1;
  3808. } else {
  3809. num_bytes = 0;
  3810. }
  3811. spin_unlock(&block_rsv->lock);
  3812. if (num_bytes > 0) {
  3813. if (dest) {
  3814. spin_lock(&dest->lock);
  3815. if (!dest->full) {
  3816. u64 bytes_to_add;
  3817. bytes_to_add = dest->size - dest->reserved;
  3818. bytes_to_add = min(num_bytes, bytes_to_add);
  3819. dest->reserved += bytes_to_add;
  3820. if (dest->reserved >= dest->size)
  3821. dest->full = 1;
  3822. num_bytes -= bytes_to_add;
  3823. }
  3824. spin_unlock(&dest->lock);
  3825. }
  3826. if (num_bytes) {
  3827. spin_lock(&space_info->lock);
  3828. space_info->bytes_may_use -= num_bytes;
  3829. trace_btrfs_space_reservation(fs_info, "space_info",
  3830. space_info->flags, num_bytes, 0);
  3831. space_info->reservation_progress++;
  3832. spin_unlock(&space_info->lock);
  3833. }
  3834. }
  3835. }
  3836. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3837. struct btrfs_block_rsv *dst, u64 num_bytes)
  3838. {
  3839. int ret;
  3840. ret = block_rsv_use_bytes(src, num_bytes);
  3841. if (ret)
  3842. return ret;
  3843. block_rsv_add_bytes(dst, num_bytes, 1);
  3844. return 0;
  3845. }
  3846. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
  3847. {
  3848. memset(rsv, 0, sizeof(*rsv));
  3849. spin_lock_init(&rsv->lock);
  3850. rsv->type = type;
  3851. }
  3852. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
  3853. unsigned short type)
  3854. {
  3855. struct btrfs_block_rsv *block_rsv;
  3856. struct btrfs_fs_info *fs_info = root->fs_info;
  3857. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3858. if (!block_rsv)
  3859. return NULL;
  3860. btrfs_init_block_rsv(block_rsv, type);
  3861. block_rsv->space_info = __find_space_info(fs_info,
  3862. BTRFS_BLOCK_GROUP_METADATA);
  3863. return block_rsv;
  3864. }
  3865. void btrfs_free_block_rsv(struct btrfs_root *root,
  3866. struct btrfs_block_rsv *rsv)
  3867. {
  3868. if (!rsv)
  3869. return;
  3870. btrfs_block_rsv_release(root, rsv, (u64)-1);
  3871. kfree(rsv);
  3872. }
  3873. int btrfs_block_rsv_add(struct btrfs_root *root,
  3874. struct btrfs_block_rsv *block_rsv, u64 num_bytes,
  3875. enum btrfs_reserve_flush_enum flush)
  3876. {
  3877. int ret;
  3878. if (num_bytes == 0)
  3879. return 0;
  3880. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3881. if (!ret) {
  3882. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  3883. return 0;
  3884. }
  3885. return ret;
  3886. }
  3887. int btrfs_block_rsv_check(struct btrfs_root *root,
  3888. struct btrfs_block_rsv *block_rsv, int min_factor)
  3889. {
  3890. u64 num_bytes = 0;
  3891. int ret = -ENOSPC;
  3892. if (!block_rsv)
  3893. return 0;
  3894. spin_lock(&block_rsv->lock);
  3895. num_bytes = div_factor(block_rsv->size, min_factor);
  3896. if (block_rsv->reserved >= num_bytes)
  3897. ret = 0;
  3898. spin_unlock(&block_rsv->lock);
  3899. return ret;
  3900. }
  3901. int btrfs_block_rsv_refill(struct btrfs_root *root,
  3902. struct btrfs_block_rsv *block_rsv, u64 min_reserved,
  3903. enum btrfs_reserve_flush_enum flush)
  3904. {
  3905. u64 num_bytes = 0;
  3906. int ret = -ENOSPC;
  3907. if (!block_rsv)
  3908. return 0;
  3909. spin_lock(&block_rsv->lock);
  3910. num_bytes = min_reserved;
  3911. if (block_rsv->reserved >= num_bytes)
  3912. ret = 0;
  3913. else
  3914. num_bytes -= block_rsv->reserved;
  3915. spin_unlock(&block_rsv->lock);
  3916. if (!ret)
  3917. return 0;
  3918. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3919. if (!ret) {
  3920. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  3921. return 0;
  3922. }
  3923. return ret;
  3924. }
  3925. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  3926. struct btrfs_block_rsv *dst_rsv,
  3927. u64 num_bytes)
  3928. {
  3929. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3930. }
  3931. void btrfs_block_rsv_release(struct btrfs_root *root,
  3932. struct btrfs_block_rsv *block_rsv,
  3933. u64 num_bytes)
  3934. {
  3935. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3936. if (global_rsv->full || global_rsv == block_rsv ||
  3937. block_rsv->space_info != global_rsv->space_info)
  3938. global_rsv = NULL;
  3939. block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
  3940. num_bytes);
  3941. }
  3942. /*
  3943. * helper to calculate size of global block reservation.
  3944. * the desired value is sum of space used by extent tree,
  3945. * checksum tree and root tree
  3946. */
  3947. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  3948. {
  3949. struct btrfs_space_info *sinfo;
  3950. u64 num_bytes;
  3951. u64 meta_used;
  3952. u64 data_used;
  3953. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  3954. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  3955. spin_lock(&sinfo->lock);
  3956. data_used = sinfo->bytes_used;
  3957. spin_unlock(&sinfo->lock);
  3958. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3959. spin_lock(&sinfo->lock);
  3960. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  3961. data_used = 0;
  3962. meta_used = sinfo->bytes_used;
  3963. spin_unlock(&sinfo->lock);
  3964. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  3965. csum_size * 2;
  3966. num_bytes += div64_u64(data_used + meta_used, 50);
  3967. if (num_bytes * 3 > meta_used)
  3968. num_bytes = div64_u64(meta_used, 3);
  3969. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  3970. }
  3971. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  3972. {
  3973. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  3974. struct btrfs_space_info *sinfo = block_rsv->space_info;
  3975. u64 num_bytes;
  3976. num_bytes = calc_global_metadata_size(fs_info);
  3977. spin_lock(&sinfo->lock);
  3978. spin_lock(&block_rsv->lock);
  3979. block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
  3980. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  3981. sinfo->bytes_reserved + sinfo->bytes_readonly +
  3982. sinfo->bytes_may_use;
  3983. if (sinfo->total_bytes > num_bytes) {
  3984. num_bytes = sinfo->total_bytes - num_bytes;
  3985. block_rsv->reserved += num_bytes;
  3986. sinfo->bytes_may_use += num_bytes;
  3987. trace_btrfs_space_reservation(fs_info, "space_info",
  3988. sinfo->flags, num_bytes, 1);
  3989. }
  3990. if (block_rsv->reserved >= block_rsv->size) {
  3991. num_bytes = block_rsv->reserved - block_rsv->size;
  3992. sinfo->bytes_may_use -= num_bytes;
  3993. trace_btrfs_space_reservation(fs_info, "space_info",
  3994. sinfo->flags, num_bytes, 0);
  3995. sinfo->reservation_progress++;
  3996. block_rsv->reserved = block_rsv->size;
  3997. block_rsv->full = 1;
  3998. }
  3999. spin_unlock(&block_rsv->lock);
  4000. spin_unlock(&sinfo->lock);
  4001. }
  4002. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  4003. {
  4004. struct btrfs_space_info *space_info;
  4005. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  4006. fs_info->chunk_block_rsv.space_info = space_info;
  4007. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  4008. fs_info->global_block_rsv.space_info = space_info;
  4009. fs_info->delalloc_block_rsv.space_info = space_info;
  4010. fs_info->trans_block_rsv.space_info = space_info;
  4011. fs_info->empty_block_rsv.space_info = space_info;
  4012. fs_info->delayed_block_rsv.space_info = space_info;
  4013. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  4014. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  4015. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  4016. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  4017. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  4018. update_global_block_rsv(fs_info);
  4019. }
  4020. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  4021. {
  4022. block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
  4023. (u64)-1);
  4024. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  4025. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  4026. WARN_ON(fs_info->trans_block_rsv.size > 0);
  4027. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  4028. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  4029. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  4030. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  4031. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  4032. }
  4033. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  4034. struct btrfs_root *root)
  4035. {
  4036. if (!trans->block_rsv)
  4037. return;
  4038. if (!trans->bytes_reserved)
  4039. return;
  4040. trace_btrfs_space_reservation(root->fs_info, "transaction",
  4041. trans->transid, trans->bytes_reserved, 0);
  4042. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  4043. trans->bytes_reserved = 0;
  4044. }
  4045. /* Can only return 0 or -ENOSPC */
  4046. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  4047. struct inode *inode)
  4048. {
  4049. struct btrfs_root *root = BTRFS_I(inode)->root;
  4050. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  4051. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  4052. /*
  4053. * We need to hold space in order to delete our orphan item once we've
  4054. * added it, so this takes the reservation so we can release it later
  4055. * when we are truly done with the orphan item.
  4056. */
  4057. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  4058. trace_btrfs_space_reservation(root->fs_info, "orphan",
  4059. btrfs_ino(inode), num_bytes, 1);
  4060. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  4061. }
  4062. void btrfs_orphan_release_metadata(struct inode *inode)
  4063. {
  4064. struct btrfs_root *root = BTRFS_I(inode)->root;
  4065. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  4066. trace_btrfs_space_reservation(root->fs_info, "orphan",
  4067. btrfs_ino(inode), num_bytes, 0);
  4068. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  4069. }
  4070. /*
  4071. * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
  4072. * root: the root of the parent directory
  4073. * rsv: block reservation
  4074. * items: the number of items that we need do reservation
  4075. * qgroup_reserved: used to return the reserved size in qgroup
  4076. *
  4077. * This function is used to reserve the space for snapshot/subvolume
  4078. * creation and deletion. Those operations are different with the
  4079. * common file/directory operations, they change two fs/file trees
  4080. * and root tree, the number of items that the qgroup reserves is
  4081. * different with the free space reservation. So we can not use
  4082. * the space reseravtion mechanism in start_transaction().
  4083. */
  4084. int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
  4085. struct btrfs_block_rsv *rsv,
  4086. int items,
  4087. u64 *qgroup_reserved)
  4088. {
  4089. u64 num_bytes;
  4090. int ret;
  4091. if (root->fs_info->quota_enabled) {
  4092. /* One for parent inode, two for dir entries */
  4093. num_bytes = 3 * root->leafsize;
  4094. ret = btrfs_qgroup_reserve(root, num_bytes);
  4095. if (ret)
  4096. return ret;
  4097. } else {
  4098. num_bytes = 0;
  4099. }
  4100. *qgroup_reserved = num_bytes;
  4101. num_bytes = btrfs_calc_trans_metadata_size(root, items);
  4102. rsv->space_info = __find_space_info(root->fs_info,
  4103. BTRFS_BLOCK_GROUP_METADATA);
  4104. ret = btrfs_block_rsv_add(root, rsv, num_bytes,
  4105. BTRFS_RESERVE_FLUSH_ALL);
  4106. if (ret) {
  4107. if (*qgroup_reserved)
  4108. btrfs_qgroup_free(root, *qgroup_reserved);
  4109. }
  4110. return ret;
  4111. }
  4112. void btrfs_subvolume_release_metadata(struct btrfs_root *root,
  4113. struct btrfs_block_rsv *rsv,
  4114. u64 qgroup_reserved)
  4115. {
  4116. btrfs_block_rsv_release(root, rsv, (u64)-1);
  4117. if (qgroup_reserved)
  4118. btrfs_qgroup_free(root, qgroup_reserved);
  4119. }
  4120. /**
  4121. * drop_outstanding_extent - drop an outstanding extent
  4122. * @inode: the inode we're dropping the extent for
  4123. *
  4124. * This is called when we are freeing up an outstanding extent, either called
  4125. * after an error or after an extent is written. This will return the number of
  4126. * reserved extents that need to be freed. This must be called with
  4127. * BTRFS_I(inode)->lock held.
  4128. */
  4129. static unsigned drop_outstanding_extent(struct inode *inode)
  4130. {
  4131. unsigned drop_inode_space = 0;
  4132. unsigned dropped_extents = 0;
  4133. BUG_ON(!BTRFS_I(inode)->outstanding_extents);
  4134. BTRFS_I(inode)->outstanding_extents--;
  4135. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  4136. test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4137. &BTRFS_I(inode)->runtime_flags))
  4138. drop_inode_space = 1;
  4139. /*
  4140. * If we have more or the same amount of outsanding extents than we have
  4141. * reserved then we need to leave the reserved extents count alone.
  4142. */
  4143. if (BTRFS_I(inode)->outstanding_extents >=
  4144. BTRFS_I(inode)->reserved_extents)
  4145. return drop_inode_space;
  4146. dropped_extents = BTRFS_I(inode)->reserved_extents -
  4147. BTRFS_I(inode)->outstanding_extents;
  4148. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  4149. return dropped_extents + drop_inode_space;
  4150. }
  4151. /**
  4152. * calc_csum_metadata_size - return the amount of metada space that must be
  4153. * reserved/free'd for the given bytes.
  4154. * @inode: the inode we're manipulating
  4155. * @num_bytes: the number of bytes in question
  4156. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  4157. *
  4158. * This adjusts the number of csum_bytes in the inode and then returns the
  4159. * correct amount of metadata that must either be reserved or freed. We
  4160. * calculate how many checksums we can fit into one leaf and then divide the
  4161. * number of bytes that will need to be checksumed by this value to figure out
  4162. * how many checksums will be required. If we are adding bytes then the number
  4163. * may go up and we will return the number of additional bytes that must be
  4164. * reserved. If it is going down we will return the number of bytes that must
  4165. * be freed.
  4166. *
  4167. * This must be called with BTRFS_I(inode)->lock held.
  4168. */
  4169. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  4170. int reserve)
  4171. {
  4172. struct btrfs_root *root = BTRFS_I(inode)->root;
  4173. u64 csum_size;
  4174. int num_csums_per_leaf;
  4175. int num_csums;
  4176. int old_csums;
  4177. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  4178. BTRFS_I(inode)->csum_bytes == 0)
  4179. return 0;
  4180. old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  4181. if (reserve)
  4182. BTRFS_I(inode)->csum_bytes += num_bytes;
  4183. else
  4184. BTRFS_I(inode)->csum_bytes -= num_bytes;
  4185. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  4186. num_csums_per_leaf = (int)div64_u64(csum_size,
  4187. sizeof(struct btrfs_csum_item) +
  4188. sizeof(struct btrfs_disk_key));
  4189. num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  4190. num_csums = num_csums + num_csums_per_leaf - 1;
  4191. num_csums = num_csums / num_csums_per_leaf;
  4192. old_csums = old_csums + num_csums_per_leaf - 1;
  4193. old_csums = old_csums / num_csums_per_leaf;
  4194. /* No change, no need to reserve more */
  4195. if (old_csums == num_csums)
  4196. return 0;
  4197. if (reserve)
  4198. return btrfs_calc_trans_metadata_size(root,
  4199. num_csums - old_csums);
  4200. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  4201. }
  4202. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  4203. {
  4204. struct btrfs_root *root = BTRFS_I(inode)->root;
  4205. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  4206. u64 to_reserve = 0;
  4207. u64 csum_bytes;
  4208. unsigned nr_extents = 0;
  4209. int extra_reserve = 0;
  4210. enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
  4211. int ret = 0;
  4212. bool delalloc_lock = true;
  4213. u64 to_free = 0;
  4214. unsigned dropped;
  4215. /* If we are a free space inode we need to not flush since we will be in
  4216. * the middle of a transaction commit. We also don't need the delalloc
  4217. * mutex since we won't race with anybody. We need this mostly to make
  4218. * lockdep shut its filthy mouth.
  4219. */
  4220. if (btrfs_is_free_space_inode(inode)) {
  4221. flush = BTRFS_RESERVE_NO_FLUSH;
  4222. delalloc_lock = false;
  4223. }
  4224. if (flush != BTRFS_RESERVE_NO_FLUSH &&
  4225. btrfs_transaction_in_commit(root->fs_info))
  4226. schedule_timeout(1);
  4227. if (delalloc_lock)
  4228. mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
  4229. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4230. spin_lock(&BTRFS_I(inode)->lock);
  4231. BTRFS_I(inode)->outstanding_extents++;
  4232. if (BTRFS_I(inode)->outstanding_extents >
  4233. BTRFS_I(inode)->reserved_extents)
  4234. nr_extents = BTRFS_I(inode)->outstanding_extents -
  4235. BTRFS_I(inode)->reserved_extents;
  4236. /*
  4237. * Add an item to reserve for updating the inode when we complete the
  4238. * delalloc io.
  4239. */
  4240. if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4241. &BTRFS_I(inode)->runtime_flags)) {
  4242. nr_extents++;
  4243. extra_reserve = 1;
  4244. }
  4245. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  4246. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  4247. csum_bytes = BTRFS_I(inode)->csum_bytes;
  4248. spin_unlock(&BTRFS_I(inode)->lock);
  4249. if (root->fs_info->quota_enabled) {
  4250. ret = btrfs_qgroup_reserve(root, num_bytes +
  4251. nr_extents * root->leafsize);
  4252. if (ret)
  4253. goto out_fail;
  4254. }
  4255. ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
  4256. if (unlikely(ret)) {
  4257. if (root->fs_info->quota_enabled)
  4258. btrfs_qgroup_free(root, num_bytes +
  4259. nr_extents * root->leafsize);
  4260. goto out_fail;
  4261. }
  4262. spin_lock(&BTRFS_I(inode)->lock);
  4263. if (extra_reserve) {
  4264. set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4265. &BTRFS_I(inode)->runtime_flags);
  4266. nr_extents--;
  4267. }
  4268. BTRFS_I(inode)->reserved_extents += nr_extents;
  4269. spin_unlock(&BTRFS_I(inode)->lock);
  4270. if (delalloc_lock)
  4271. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4272. if (to_reserve)
  4273. trace_btrfs_space_reservation(root->fs_info,"delalloc",
  4274. btrfs_ino(inode), to_reserve, 1);
  4275. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  4276. return 0;
  4277. out_fail:
  4278. spin_lock(&BTRFS_I(inode)->lock);
  4279. dropped = drop_outstanding_extent(inode);
  4280. /*
  4281. * If the inodes csum_bytes is the same as the original
  4282. * csum_bytes then we know we haven't raced with any free()ers
  4283. * so we can just reduce our inodes csum bytes and carry on.
  4284. */
  4285. if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
  4286. calc_csum_metadata_size(inode, num_bytes, 0);
  4287. } else {
  4288. u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
  4289. u64 bytes;
  4290. /*
  4291. * This is tricky, but first we need to figure out how much we
  4292. * free'd from any free-ers that occured during this
  4293. * reservation, so we reset ->csum_bytes to the csum_bytes
  4294. * before we dropped our lock, and then call the free for the
  4295. * number of bytes that were freed while we were trying our
  4296. * reservation.
  4297. */
  4298. bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
  4299. BTRFS_I(inode)->csum_bytes = csum_bytes;
  4300. to_free = calc_csum_metadata_size(inode, bytes, 0);
  4301. /*
  4302. * Now we need to see how much we would have freed had we not
  4303. * been making this reservation and our ->csum_bytes were not
  4304. * artificially inflated.
  4305. */
  4306. BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
  4307. bytes = csum_bytes - orig_csum_bytes;
  4308. bytes = calc_csum_metadata_size(inode, bytes, 0);
  4309. /*
  4310. * Now reset ->csum_bytes to what it should be. If bytes is
  4311. * more than to_free then we would have free'd more space had we
  4312. * not had an artificially high ->csum_bytes, so we need to free
  4313. * the remainder. If bytes is the same or less then we don't
  4314. * need to do anything, the other free-ers did the correct
  4315. * thing.
  4316. */
  4317. BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
  4318. if (bytes > to_free)
  4319. to_free = bytes - to_free;
  4320. else
  4321. to_free = 0;
  4322. }
  4323. spin_unlock(&BTRFS_I(inode)->lock);
  4324. if (dropped)
  4325. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4326. if (to_free) {
  4327. btrfs_block_rsv_release(root, block_rsv, to_free);
  4328. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4329. btrfs_ino(inode), to_free, 0);
  4330. }
  4331. if (delalloc_lock)
  4332. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4333. return ret;
  4334. }
  4335. /**
  4336. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  4337. * @inode: the inode to release the reservation for
  4338. * @num_bytes: the number of bytes we're releasing
  4339. *
  4340. * This will release the metadata reservation for an inode. This can be called
  4341. * once we complete IO for a given set of bytes to release their metadata
  4342. * reservations.
  4343. */
  4344. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  4345. {
  4346. struct btrfs_root *root = BTRFS_I(inode)->root;
  4347. u64 to_free = 0;
  4348. unsigned dropped;
  4349. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4350. spin_lock(&BTRFS_I(inode)->lock);
  4351. dropped = drop_outstanding_extent(inode);
  4352. if (num_bytes)
  4353. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4354. spin_unlock(&BTRFS_I(inode)->lock);
  4355. if (dropped > 0)
  4356. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4357. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4358. btrfs_ino(inode), to_free, 0);
  4359. if (root->fs_info->quota_enabled) {
  4360. btrfs_qgroup_free(root, num_bytes +
  4361. dropped * root->leafsize);
  4362. }
  4363. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  4364. to_free);
  4365. }
  4366. /**
  4367. * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
  4368. * @inode: inode we're writing to
  4369. * @num_bytes: the number of bytes we want to allocate
  4370. *
  4371. * This will do the following things
  4372. *
  4373. * o reserve space in the data space info for num_bytes
  4374. * o reserve space in the metadata space info based on number of outstanding
  4375. * extents and how much csums will be needed
  4376. * o add to the inodes ->delalloc_bytes
  4377. * o add it to the fs_info's delalloc inodes list.
  4378. *
  4379. * This will return 0 for success and -ENOSPC if there is no space left.
  4380. */
  4381. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  4382. {
  4383. int ret;
  4384. ret = btrfs_check_data_free_space(inode, num_bytes);
  4385. if (ret)
  4386. return ret;
  4387. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  4388. if (ret) {
  4389. btrfs_free_reserved_data_space(inode, num_bytes);
  4390. return ret;
  4391. }
  4392. return 0;
  4393. }
  4394. /**
  4395. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  4396. * @inode: inode we're releasing space for
  4397. * @num_bytes: the number of bytes we want to free up
  4398. *
  4399. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  4400. * called in the case that we don't need the metadata AND data reservations
  4401. * anymore. So if there is an error or we insert an inline extent.
  4402. *
  4403. * This function will release the metadata space that was not used and will
  4404. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  4405. * list if there are no delalloc bytes left.
  4406. */
  4407. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  4408. {
  4409. btrfs_delalloc_release_metadata(inode, num_bytes);
  4410. btrfs_free_reserved_data_space(inode, num_bytes);
  4411. }
  4412. static int update_block_group(struct btrfs_root *root,
  4413. u64 bytenr, u64 num_bytes, int alloc)
  4414. {
  4415. struct btrfs_block_group_cache *cache = NULL;
  4416. struct btrfs_fs_info *info = root->fs_info;
  4417. u64 total = num_bytes;
  4418. u64 old_val;
  4419. u64 byte_in_group;
  4420. int factor;
  4421. /* block accounting for super block */
  4422. spin_lock(&info->delalloc_lock);
  4423. old_val = btrfs_super_bytes_used(info->super_copy);
  4424. if (alloc)
  4425. old_val += num_bytes;
  4426. else
  4427. old_val -= num_bytes;
  4428. btrfs_set_super_bytes_used(info->super_copy, old_val);
  4429. spin_unlock(&info->delalloc_lock);
  4430. while (total) {
  4431. cache = btrfs_lookup_block_group(info, bytenr);
  4432. if (!cache)
  4433. return -ENOENT;
  4434. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  4435. BTRFS_BLOCK_GROUP_RAID1 |
  4436. BTRFS_BLOCK_GROUP_RAID10))
  4437. factor = 2;
  4438. else
  4439. factor = 1;
  4440. /*
  4441. * If this block group has free space cache written out, we
  4442. * need to make sure to load it if we are removing space. This
  4443. * is because we need the unpinning stage to actually add the
  4444. * space back to the block group, otherwise we will leak space.
  4445. */
  4446. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  4447. cache_block_group(cache, 1);
  4448. byte_in_group = bytenr - cache->key.objectid;
  4449. WARN_ON(byte_in_group > cache->key.offset);
  4450. spin_lock(&cache->space_info->lock);
  4451. spin_lock(&cache->lock);
  4452. if (btrfs_test_opt(root, SPACE_CACHE) &&
  4453. cache->disk_cache_state < BTRFS_DC_CLEAR)
  4454. cache->disk_cache_state = BTRFS_DC_CLEAR;
  4455. cache->dirty = 1;
  4456. old_val = btrfs_block_group_used(&cache->item);
  4457. num_bytes = min(total, cache->key.offset - byte_in_group);
  4458. if (alloc) {
  4459. old_val += num_bytes;
  4460. btrfs_set_block_group_used(&cache->item, old_val);
  4461. cache->reserved -= num_bytes;
  4462. cache->space_info->bytes_reserved -= num_bytes;
  4463. cache->space_info->bytes_used += num_bytes;
  4464. cache->space_info->disk_used += num_bytes * factor;
  4465. spin_unlock(&cache->lock);
  4466. spin_unlock(&cache->space_info->lock);
  4467. } else {
  4468. old_val -= num_bytes;
  4469. btrfs_set_block_group_used(&cache->item, old_val);
  4470. cache->pinned += num_bytes;
  4471. cache->space_info->bytes_pinned += num_bytes;
  4472. cache->space_info->bytes_used -= num_bytes;
  4473. cache->space_info->disk_used -= num_bytes * factor;
  4474. spin_unlock(&cache->lock);
  4475. spin_unlock(&cache->space_info->lock);
  4476. set_extent_dirty(info->pinned_extents,
  4477. bytenr, bytenr + num_bytes - 1,
  4478. GFP_NOFS | __GFP_NOFAIL);
  4479. }
  4480. btrfs_put_block_group(cache);
  4481. total -= num_bytes;
  4482. bytenr += num_bytes;
  4483. }
  4484. return 0;
  4485. }
  4486. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  4487. {
  4488. struct btrfs_block_group_cache *cache;
  4489. u64 bytenr;
  4490. spin_lock(&root->fs_info->block_group_cache_lock);
  4491. bytenr = root->fs_info->first_logical_byte;
  4492. spin_unlock(&root->fs_info->block_group_cache_lock);
  4493. if (bytenr < (u64)-1)
  4494. return bytenr;
  4495. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  4496. if (!cache)
  4497. return 0;
  4498. bytenr = cache->key.objectid;
  4499. btrfs_put_block_group(cache);
  4500. return bytenr;
  4501. }
  4502. static int pin_down_extent(struct btrfs_root *root,
  4503. struct btrfs_block_group_cache *cache,
  4504. u64 bytenr, u64 num_bytes, int reserved)
  4505. {
  4506. spin_lock(&cache->space_info->lock);
  4507. spin_lock(&cache->lock);
  4508. cache->pinned += num_bytes;
  4509. cache->space_info->bytes_pinned += num_bytes;
  4510. if (reserved) {
  4511. cache->reserved -= num_bytes;
  4512. cache->space_info->bytes_reserved -= num_bytes;
  4513. }
  4514. spin_unlock(&cache->lock);
  4515. spin_unlock(&cache->space_info->lock);
  4516. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  4517. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  4518. return 0;
  4519. }
  4520. /*
  4521. * this function must be called within transaction
  4522. */
  4523. int btrfs_pin_extent(struct btrfs_root *root,
  4524. u64 bytenr, u64 num_bytes, int reserved)
  4525. {
  4526. struct btrfs_block_group_cache *cache;
  4527. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4528. BUG_ON(!cache); /* Logic error */
  4529. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  4530. btrfs_put_block_group(cache);
  4531. return 0;
  4532. }
  4533. /*
  4534. * this function must be called within transaction
  4535. */
  4536. int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
  4537. u64 bytenr, u64 num_bytes)
  4538. {
  4539. struct btrfs_block_group_cache *cache;
  4540. int ret;
  4541. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4542. if (!cache)
  4543. return -EINVAL;
  4544. /*
  4545. * pull in the free space cache (if any) so that our pin
  4546. * removes the free space from the cache. We have load_only set
  4547. * to one because the slow code to read in the free extents does check
  4548. * the pinned extents.
  4549. */
  4550. cache_block_group(cache, 1);
  4551. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  4552. /* remove us from the free space cache (if we're there at all) */
  4553. ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
  4554. btrfs_put_block_group(cache);
  4555. return ret;
  4556. }
  4557. /**
  4558. * btrfs_update_reserved_bytes - update the block_group and space info counters
  4559. * @cache: The cache we are manipulating
  4560. * @num_bytes: The number of bytes in question
  4561. * @reserve: One of the reservation enums
  4562. *
  4563. * This is called by the allocator when it reserves space, or by somebody who is
  4564. * freeing space that was never actually used on disk. For example if you
  4565. * reserve some space for a new leaf in transaction A and before transaction A
  4566. * commits you free that leaf, you call this with reserve set to 0 in order to
  4567. * clear the reservation.
  4568. *
  4569. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  4570. * ENOSPC accounting. For data we handle the reservation through clearing the
  4571. * delalloc bits in the io_tree. We have to do this since we could end up
  4572. * allocating less disk space for the amount of data we have reserved in the
  4573. * case of compression.
  4574. *
  4575. * If this is a reservation and the block group has become read only we cannot
  4576. * make the reservation and return -EAGAIN, otherwise this function always
  4577. * succeeds.
  4578. */
  4579. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  4580. u64 num_bytes, int reserve)
  4581. {
  4582. struct btrfs_space_info *space_info = cache->space_info;
  4583. int ret = 0;
  4584. spin_lock(&space_info->lock);
  4585. spin_lock(&cache->lock);
  4586. if (reserve != RESERVE_FREE) {
  4587. if (cache->ro) {
  4588. ret = -EAGAIN;
  4589. } else {
  4590. cache->reserved += num_bytes;
  4591. space_info->bytes_reserved += num_bytes;
  4592. if (reserve == RESERVE_ALLOC) {
  4593. trace_btrfs_space_reservation(cache->fs_info,
  4594. "space_info", space_info->flags,
  4595. num_bytes, 0);
  4596. space_info->bytes_may_use -= num_bytes;
  4597. }
  4598. }
  4599. } else {
  4600. if (cache->ro)
  4601. space_info->bytes_readonly += num_bytes;
  4602. cache->reserved -= num_bytes;
  4603. space_info->bytes_reserved -= num_bytes;
  4604. space_info->reservation_progress++;
  4605. }
  4606. spin_unlock(&cache->lock);
  4607. spin_unlock(&space_info->lock);
  4608. return ret;
  4609. }
  4610. void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  4611. struct btrfs_root *root)
  4612. {
  4613. struct btrfs_fs_info *fs_info = root->fs_info;
  4614. struct btrfs_caching_control *next;
  4615. struct btrfs_caching_control *caching_ctl;
  4616. struct btrfs_block_group_cache *cache;
  4617. down_write(&fs_info->extent_commit_sem);
  4618. list_for_each_entry_safe(caching_ctl, next,
  4619. &fs_info->caching_block_groups, list) {
  4620. cache = caching_ctl->block_group;
  4621. if (block_group_cache_done(cache)) {
  4622. cache->last_byte_to_unpin = (u64)-1;
  4623. list_del_init(&caching_ctl->list);
  4624. put_caching_control(caching_ctl);
  4625. } else {
  4626. cache->last_byte_to_unpin = caching_ctl->progress;
  4627. }
  4628. }
  4629. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4630. fs_info->pinned_extents = &fs_info->freed_extents[1];
  4631. else
  4632. fs_info->pinned_extents = &fs_info->freed_extents[0];
  4633. up_write(&fs_info->extent_commit_sem);
  4634. update_global_block_rsv(fs_info);
  4635. }
  4636. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  4637. {
  4638. struct btrfs_fs_info *fs_info = root->fs_info;
  4639. struct btrfs_block_group_cache *cache = NULL;
  4640. struct btrfs_space_info *space_info;
  4641. struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  4642. u64 len;
  4643. bool readonly;
  4644. while (start <= end) {
  4645. readonly = false;
  4646. if (!cache ||
  4647. start >= cache->key.objectid + cache->key.offset) {
  4648. if (cache)
  4649. btrfs_put_block_group(cache);
  4650. cache = btrfs_lookup_block_group(fs_info, start);
  4651. BUG_ON(!cache); /* Logic error */
  4652. }
  4653. len = cache->key.objectid + cache->key.offset - start;
  4654. len = min(len, end + 1 - start);
  4655. if (start < cache->last_byte_to_unpin) {
  4656. len = min(len, cache->last_byte_to_unpin - start);
  4657. btrfs_add_free_space(cache, start, len);
  4658. }
  4659. start += len;
  4660. space_info = cache->space_info;
  4661. spin_lock(&space_info->lock);
  4662. spin_lock(&cache->lock);
  4663. cache->pinned -= len;
  4664. space_info->bytes_pinned -= len;
  4665. if (cache->ro) {
  4666. space_info->bytes_readonly += len;
  4667. readonly = true;
  4668. }
  4669. spin_unlock(&cache->lock);
  4670. if (!readonly && global_rsv->space_info == space_info) {
  4671. spin_lock(&global_rsv->lock);
  4672. if (!global_rsv->full) {
  4673. len = min(len, global_rsv->size -
  4674. global_rsv->reserved);
  4675. global_rsv->reserved += len;
  4676. space_info->bytes_may_use += len;
  4677. if (global_rsv->reserved >= global_rsv->size)
  4678. global_rsv->full = 1;
  4679. }
  4680. spin_unlock(&global_rsv->lock);
  4681. }
  4682. spin_unlock(&space_info->lock);
  4683. }
  4684. if (cache)
  4685. btrfs_put_block_group(cache);
  4686. return 0;
  4687. }
  4688. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  4689. struct btrfs_root *root)
  4690. {
  4691. struct btrfs_fs_info *fs_info = root->fs_info;
  4692. struct extent_io_tree *unpin;
  4693. u64 start;
  4694. u64 end;
  4695. int ret;
  4696. if (trans->aborted)
  4697. return 0;
  4698. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4699. unpin = &fs_info->freed_extents[1];
  4700. else
  4701. unpin = &fs_info->freed_extents[0];
  4702. while (1) {
  4703. ret = find_first_extent_bit(unpin, 0, &start, &end,
  4704. EXTENT_DIRTY, NULL);
  4705. if (ret)
  4706. break;
  4707. if (btrfs_test_opt(root, DISCARD))
  4708. ret = btrfs_discard_extent(root, start,
  4709. end + 1 - start, NULL);
  4710. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  4711. unpin_extent_range(root, start, end);
  4712. cond_resched();
  4713. }
  4714. return 0;
  4715. }
  4716. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  4717. struct btrfs_root *root,
  4718. u64 bytenr, u64 num_bytes, u64 parent,
  4719. u64 root_objectid, u64 owner_objectid,
  4720. u64 owner_offset, int refs_to_drop,
  4721. struct btrfs_delayed_extent_op *extent_op)
  4722. {
  4723. struct btrfs_key key;
  4724. struct btrfs_path *path;
  4725. struct btrfs_fs_info *info = root->fs_info;
  4726. struct btrfs_root *extent_root = info->extent_root;
  4727. struct extent_buffer *leaf;
  4728. struct btrfs_extent_item *ei;
  4729. struct btrfs_extent_inline_ref *iref;
  4730. int ret;
  4731. int is_data;
  4732. int extent_slot = 0;
  4733. int found_extent = 0;
  4734. int num_to_del = 1;
  4735. u32 item_size;
  4736. u64 refs;
  4737. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  4738. SKINNY_METADATA);
  4739. path = btrfs_alloc_path();
  4740. if (!path)
  4741. return -ENOMEM;
  4742. path->reada = 1;
  4743. path->leave_spinning = 1;
  4744. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  4745. BUG_ON(!is_data && refs_to_drop != 1);
  4746. if (is_data)
  4747. skinny_metadata = 0;
  4748. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  4749. bytenr, num_bytes, parent,
  4750. root_objectid, owner_objectid,
  4751. owner_offset);
  4752. if (ret == 0) {
  4753. extent_slot = path->slots[0];
  4754. while (extent_slot >= 0) {
  4755. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4756. extent_slot);
  4757. if (key.objectid != bytenr)
  4758. break;
  4759. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  4760. key.offset == num_bytes) {
  4761. found_extent = 1;
  4762. break;
  4763. }
  4764. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  4765. key.offset == owner_objectid) {
  4766. found_extent = 1;
  4767. break;
  4768. }
  4769. if (path->slots[0] - extent_slot > 5)
  4770. break;
  4771. extent_slot--;
  4772. }
  4773. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4774. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  4775. if (found_extent && item_size < sizeof(*ei))
  4776. found_extent = 0;
  4777. #endif
  4778. if (!found_extent) {
  4779. BUG_ON(iref);
  4780. ret = remove_extent_backref(trans, extent_root, path,
  4781. NULL, refs_to_drop,
  4782. is_data);
  4783. if (ret) {
  4784. btrfs_abort_transaction(trans, extent_root, ret);
  4785. goto out;
  4786. }
  4787. btrfs_release_path(path);
  4788. path->leave_spinning = 1;
  4789. key.objectid = bytenr;
  4790. key.type = BTRFS_EXTENT_ITEM_KEY;
  4791. key.offset = num_bytes;
  4792. if (!is_data && skinny_metadata) {
  4793. key.type = BTRFS_METADATA_ITEM_KEY;
  4794. key.offset = owner_objectid;
  4795. }
  4796. ret = btrfs_search_slot(trans, extent_root,
  4797. &key, path, -1, 1);
  4798. if (ret > 0 && skinny_metadata && path->slots[0]) {
  4799. /*
  4800. * Couldn't find our skinny metadata item,
  4801. * see if we have ye olde extent item.
  4802. */
  4803. path->slots[0]--;
  4804. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4805. path->slots[0]);
  4806. if (key.objectid == bytenr &&
  4807. key.type == BTRFS_EXTENT_ITEM_KEY &&
  4808. key.offset == num_bytes)
  4809. ret = 0;
  4810. }
  4811. if (ret > 0 && skinny_metadata) {
  4812. skinny_metadata = false;
  4813. key.type = BTRFS_EXTENT_ITEM_KEY;
  4814. key.offset = num_bytes;
  4815. btrfs_release_path(path);
  4816. ret = btrfs_search_slot(trans, extent_root,
  4817. &key, path, -1, 1);
  4818. }
  4819. if (ret) {
  4820. btrfs_err(info, "umm, got %d back from search, was looking for %llu",
  4821. ret, (unsigned long long)bytenr);
  4822. if (ret > 0)
  4823. btrfs_print_leaf(extent_root,
  4824. path->nodes[0]);
  4825. }
  4826. if (ret < 0) {
  4827. btrfs_abort_transaction(trans, extent_root, ret);
  4828. goto out;
  4829. }
  4830. extent_slot = path->slots[0];
  4831. }
  4832. } else if (ret == -ENOENT) {
  4833. btrfs_print_leaf(extent_root, path->nodes[0]);
  4834. WARN_ON(1);
  4835. btrfs_err(info,
  4836. "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
  4837. (unsigned long long)bytenr,
  4838. (unsigned long long)parent,
  4839. (unsigned long long)root_objectid,
  4840. (unsigned long long)owner_objectid,
  4841. (unsigned long long)owner_offset);
  4842. } else {
  4843. btrfs_abort_transaction(trans, extent_root, ret);
  4844. goto out;
  4845. }
  4846. leaf = path->nodes[0];
  4847. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4848. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4849. if (item_size < sizeof(*ei)) {
  4850. BUG_ON(found_extent || extent_slot != path->slots[0]);
  4851. ret = convert_extent_item_v0(trans, extent_root, path,
  4852. owner_objectid, 0);
  4853. if (ret < 0) {
  4854. btrfs_abort_transaction(trans, extent_root, ret);
  4855. goto out;
  4856. }
  4857. btrfs_release_path(path);
  4858. path->leave_spinning = 1;
  4859. key.objectid = bytenr;
  4860. key.type = BTRFS_EXTENT_ITEM_KEY;
  4861. key.offset = num_bytes;
  4862. ret = btrfs_search_slot(trans, extent_root, &key, path,
  4863. -1, 1);
  4864. if (ret) {
  4865. btrfs_err(info, "umm, got %d back from search, was looking for %llu",
  4866. ret, (unsigned long long)bytenr);
  4867. btrfs_print_leaf(extent_root, path->nodes[0]);
  4868. }
  4869. if (ret < 0) {
  4870. btrfs_abort_transaction(trans, extent_root, ret);
  4871. goto out;
  4872. }
  4873. extent_slot = path->slots[0];
  4874. leaf = path->nodes[0];
  4875. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4876. }
  4877. #endif
  4878. BUG_ON(item_size < sizeof(*ei));
  4879. ei = btrfs_item_ptr(leaf, extent_slot,
  4880. struct btrfs_extent_item);
  4881. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
  4882. key.type == BTRFS_EXTENT_ITEM_KEY) {
  4883. struct btrfs_tree_block_info *bi;
  4884. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  4885. bi = (struct btrfs_tree_block_info *)(ei + 1);
  4886. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  4887. }
  4888. refs = btrfs_extent_refs(leaf, ei);
  4889. if (refs < refs_to_drop) {
  4890. btrfs_err(info, "trying to drop %d refs but we only have %Lu "
  4891. "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
  4892. ret = -EINVAL;
  4893. btrfs_abort_transaction(trans, extent_root, ret);
  4894. goto out;
  4895. }
  4896. refs -= refs_to_drop;
  4897. if (refs > 0) {
  4898. if (extent_op)
  4899. __run_delayed_extent_op(extent_op, leaf, ei);
  4900. /*
  4901. * In the case of inline back ref, reference count will
  4902. * be updated by remove_extent_backref
  4903. */
  4904. if (iref) {
  4905. BUG_ON(!found_extent);
  4906. } else {
  4907. btrfs_set_extent_refs(leaf, ei, refs);
  4908. btrfs_mark_buffer_dirty(leaf);
  4909. }
  4910. if (found_extent) {
  4911. ret = remove_extent_backref(trans, extent_root, path,
  4912. iref, refs_to_drop,
  4913. is_data);
  4914. if (ret) {
  4915. btrfs_abort_transaction(trans, extent_root, ret);
  4916. goto out;
  4917. }
  4918. }
  4919. } else {
  4920. if (found_extent) {
  4921. BUG_ON(is_data && refs_to_drop !=
  4922. extent_data_ref_count(root, path, iref));
  4923. if (iref) {
  4924. BUG_ON(path->slots[0] != extent_slot);
  4925. } else {
  4926. BUG_ON(path->slots[0] != extent_slot + 1);
  4927. path->slots[0] = extent_slot;
  4928. num_to_del = 2;
  4929. }
  4930. }
  4931. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  4932. num_to_del);
  4933. if (ret) {
  4934. btrfs_abort_transaction(trans, extent_root, ret);
  4935. goto out;
  4936. }
  4937. btrfs_release_path(path);
  4938. if (is_data) {
  4939. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  4940. if (ret) {
  4941. btrfs_abort_transaction(trans, extent_root, ret);
  4942. goto out;
  4943. }
  4944. }
  4945. ret = update_block_group(root, bytenr, num_bytes, 0);
  4946. if (ret) {
  4947. btrfs_abort_transaction(trans, extent_root, ret);
  4948. goto out;
  4949. }
  4950. }
  4951. out:
  4952. btrfs_free_path(path);
  4953. return ret;
  4954. }
  4955. /*
  4956. * when we free an block, it is possible (and likely) that we free the last
  4957. * delayed ref for that extent as well. This searches the delayed ref tree for
  4958. * a given extent, and if there are no other delayed refs to be processed, it
  4959. * removes it from the tree.
  4960. */
  4961. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  4962. struct btrfs_root *root, u64 bytenr)
  4963. {
  4964. struct btrfs_delayed_ref_head *head;
  4965. struct btrfs_delayed_ref_root *delayed_refs;
  4966. struct btrfs_delayed_ref_node *ref;
  4967. struct rb_node *node;
  4968. int ret = 0;
  4969. delayed_refs = &trans->transaction->delayed_refs;
  4970. spin_lock(&delayed_refs->lock);
  4971. head = btrfs_find_delayed_ref_head(trans, bytenr);
  4972. if (!head)
  4973. goto out;
  4974. node = rb_prev(&head->node.rb_node);
  4975. if (!node)
  4976. goto out;
  4977. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  4978. /* there are still entries for this ref, we can't drop it */
  4979. if (ref->bytenr == bytenr)
  4980. goto out;
  4981. if (head->extent_op) {
  4982. if (!head->must_insert_reserved)
  4983. goto out;
  4984. btrfs_free_delayed_extent_op(head->extent_op);
  4985. head->extent_op = NULL;
  4986. }
  4987. /*
  4988. * waiting for the lock here would deadlock. If someone else has it
  4989. * locked they are already in the process of dropping it anyway
  4990. */
  4991. if (!mutex_trylock(&head->mutex))
  4992. goto out;
  4993. /*
  4994. * at this point we have a head with no other entries. Go
  4995. * ahead and process it.
  4996. */
  4997. head->node.in_tree = 0;
  4998. rb_erase(&head->node.rb_node, &delayed_refs->root);
  4999. delayed_refs->num_entries--;
  5000. /*
  5001. * we don't take a ref on the node because we're removing it from the
  5002. * tree, so we just steal the ref the tree was holding.
  5003. */
  5004. delayed_refs->num_heads--;
  5005. if (list_empty(&head->cluster))
  5006. delayed_refs->num_heads_ready--;
  5007. list_del_init(&head->cluster);
  5008. spin_unlock(&delayed_refs->lock);
  5009. BUG_ON(head->extent_op);
  5010. if (head->must_insert_reserved)
  5011. ret = 1;
  5012. mutex_unlock(&head->mutex);
  5013. btrfs_put_delayed_ref(&head->node);
  5014. return ret;
  5015. out:
  5016. spin_unlock(&delayed_refs->lock);
  5017. return 0;
  5018. }
  5019. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  5020. struct btrfs_root *root,
  5021. struct extent_buffer *buf,
  5022. u64 parent, int last_ref)
  5023. {
  5024. struct btrfs_block_group_cache *cache = NULL;
  5025. int ret;
  5026. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  5027. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  5028. buf->start, buf->len,
  5029. parent, root->root_key.objectid,
  5030. btrfs_header_level(buf),
  5031. BTRFS_DROP_DELAYED_REF, NULL, 0);
  5032. BUG_ON(ret); /* -ENOMEM */
  5033. }
  5034. if (!last_ref)
  5035. return;
  5036. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  5037. if (btrfs_header_generation(buf) == trans->transid) {
  5038. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  5039. ret = check_ref_cleanup(trans, root, buf->start);
  5040. if (!ret)
  5041. goto out;
  5042. }
  5043. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  5044. pin_down_extent(root, cache, buf->start, buf->len, 1);
  5045. goto out;
  5046. }
  5047. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  5048. btrfs_add_free_space(cache, buf->start, buf->len);
  5049. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
  5050. }
  5051. out:
  5052. /*
  5053. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  5054. * anymore.
  5055. */
  5056. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  5057. btrfs_put_block_group(cache);
  5058. }
  5059. /* Can return -ENOMEM */
  5060. int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  5061. u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
  5062. u64 owner, u64 offset, int for_cow)
  5063. {
  5064. int ret;
  5065. struct btrfs_fs_info *fs_info = root->fs_info;
  5066. /*
  5067. * tree log blocks never actually go into the extent allocation
  5068. * tree, just update pinning info and exit early.
  5069. */
  5070. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  5071. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  5072. /* unlocks the pinned mutex */
  5073. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  5074. ret = 0;
  5075. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  5076. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  5077. num_bytes,
  5078. parent, root_objectid, (int)owner,
  5079. BTRFS_DROP_DELAYED_REF, NULL, for_cow);
  5080. } else {
  5081. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  5082. num_bytes,
  5083. parent, root_objectid, owner,
  5084. offset, BTRFS_DROP_DELAYED_REF,
  5085. NULL, for_cow);
  5086. }
  5087. return ret;
  5088. }
  5089. static u64 stripe_align(struct btrfs_root *root,
  5090. struct btrfs_block_group_cache *cache,
  5091. u64 val, u64 num_bytes)
  5092. {
  5093. u64 ret = ALIGN(val, root->stripesize);
  5094. return ret;
  5095. }
  5096. /*
  5097. * when we wait for progress in the block group caching, its because
  5098. * our allocation attempt failed at least once. So, we must sleep
  5099. * and let some progress happen before we try again.
  5100. *
  5101. * This function will sleep at least once waiting for new free space to
  5102. * show up, and then it will check the block group free space numbers
  5103. * for our min num_bytes. Another option is to have it go ahead
  5104. * and look in the rbtree for a free extent of a given size, but this
  5105. * is a good start.
  5106. */
  5107. static noinline int
  5108. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  5109. u64 num_bytes)
  5110. {
  5111. struct btrfs_caching_control *caching_ctl;
  5112. caching_ctl = get_caching_control(cache);
  5113. if (!caching_ctl)
  5114. return 0;
  5115. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  5116. (cache->free_space_ctl->free_space >= num_bytes));
  5117. put_caching_control(caching_ctl);
  5118. return 0;
  5119. }
  5120. static noinline int
  5121. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  5122. {
  5123. struct btrfs_caching_control *caching_ctl;
  5124. caching_ctl = get_caching_control(cache);
  5125. if (!caching_ctl)
  5126. return 0;
  5127. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  5128. put_caching_control(caching_ctl);
  5129. return 0;
  5130. }
  5131. int __get_raid_index(u64 flags)
  5132. {
  5133. if (flags & BTRFS_BLOCK_GROUP_RAID10)
  5134. return BTRFS_RAID_RAID10;
  5135. else if (flags & BTRFS_BLOCK_GROUP_RAID1)
  5136. return BTRFS_RAID_RAID1;
  5137. else if (flags & BTRFS_BLOCK_GROUP_DUP)
  5138. return BTRFS_RAID_DUP;
  5139. else if (flags & BTRFS_BLOCK_GROUP_RAID0)
  5140. return BTRFS_RAID_RAID0;
  5141. else if (flags & BTRFS_BLOCK_GROUP_RAID5)
  5142. return BTRFS_RAID_RAID5;
  5143. else if (flags & BTRFS_BLOCK_GROUP_RAID6)
  5144. return BTRFS_RAID_RAID6;
  5145. return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
  5146. }
  5147. static int get_block_group_index(struct btrfs_block_group_cache *cache)
  5148. {
  5149. return __get_raid_index(cache->flags);
  5150. }
  5151. enum btrfs_loop_type {
  5152. LOOP_CACHING_NOWAIT = 0,
  5153. LOOP_CACHING_WAIT = 1,
  5154. LOOP_ALLOC_CHUNK = 2,
  5155. LOOP_NO_EMPTY_SIZE = 3,
  5156. };
  5157. /*
  5158. * walks the btree of allocated extents and find a hole of a given size.
  5159. * The key ins is changed to record the hole:
  5160. * ins->objectid == block start
  5161. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  5162. * ins->offset == number of blocks
  5163. * Any available blocks before search_start are skipped.
  5164. */
  5165. static noinline int find_free_extent(struct btrfs_trans_handle *trans,
  5166. struct btrfs_root *orig_root,
  5167. u64 num_bytes, u64 empty_size,
  5168. u64 hint_byte, struct btrfs_key *ins,
  5169. u64 flags)
  5170. {
  5171. int ret = 0;
  5172. struct btrfs_root *root = orig_root->fs_info->extent_root;
  5173. struct btrfs_free_cluster *last_ptr = NULL;
  5174. struct btrfs_block_group_cache *block_group = NULL;
  5175. struct btrfs_block_group_cache *used_block_group;
  5176. u64 search_start = 0;
  5177. int empty_cluster = 2 * 1024 * 1024;
  5178. struct btrfs_space_info *space_info;
  5179. int loop = 0;
  5180. int index = __get_raid_index(flags);
  5181. int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
  5182. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  5183. bool found_uncached_bg = false;
  5184. bool failed_cluster_refill = false;
  5185. bool failed_alloc = false;
  5186. bool use_cluster = true;
  5187. bool have_caching_bg = false;
  5188. WARN_ON(num_bytes < root->sectorsize);
  5189. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  5190. ins->objectid = 0;
  5191. ins->offset = 0;
  5192. trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
  5193. space_info = __find_space_info(root->fs_info, flags);
  5194. if (!space_info) {
  5195. btrfs_err(root->fs_info, "No space info for %llu", flags);
  5196. return -ENOSPC;
  5197. }
  5198. /*
  5199. * If the space info is for both data and metadata it means we have a
  5200. * small filesystem and we can't use the clustering stuff.
  5201. */
  5202. if (btrfs_mixed_space_info(space_info))
  5203. use_cluster = false;
  5204. if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  5205. last_ptr = &root->fs_info->meta_alloc_cluster;
  5206. if (!btrfs_test_opt(root, SSD))
  5207. empty_cluster = 64 * 1024;
  5208. }
  5209. if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  5210. btrfs_test_opt(root, SSD)) {
  5211. last_ptr = &root->fs_info->data_alloc_cluster;
  5212. }
  5213. if (last_ptr) {
  5214. spin_lock(&last_ptr->lock);
  5215. if (last_ptr->block_group)
  5216. hint_byte = last_ptr->window_start;
  5217. spin_unlock(&last_ptr->lock);
  5218. }
  5219. search_start = max(search_start, first_logical_byte(root, 0));
  5220. search_start = max(search_start, hint_byte);
  5221. if (!last_ptr)
  5222. empty_cluster = 0;
  5223. if (search_start == hint_byte) {
  5224. block_group = btrfs_lookup_block_group(root->fs_info,
  5225. search_start);
  5226. used_block_group = block_group;
  5227. /*
  5228. * we don't want to use the block group if it doesn't match our
  5229. * allocation bits, or if its not cached.
  5230. *
  5231. * However if we are re-searching with an ideal block group
  5232. * picked out then we don't care that the block group is cached.
  5233. */
  5234. if (block_group && block_group_bits(block_group, flags) &&
  5235. block_group->cached != BTRFS_CACHE_NO) {
  5236. down_read(&space_info->groups_sem);
  5237. if (list_empty(&block_group->list) ||
  5238. block_group->ro) {
  5239. /*
  5240. * someone is removing this block group,
  5241. * we can't jump into the have_block_group
  5242. * target because our list pointers are not
  5243. * valid
  5244. */
  5245. btrfs_put_block_group(block_group);
  5246. up_read(&space_info->groups_sem);
  5247. } else {
  5248. index = get_block_group_index(block_group);
  5249. goto have_block_group;
  5250. }
  5251. } else if (block_group) {
  5252. btrfs_put_block_group(block_group);
  5253. }
  5254. }
  5255. search:
  5256. have_caching_bg = false;
  5257. down_read(&space_info->groups_sem);
  5258. list_for_each_entry(block_group, &space_info->block_groups[index],
  5259. list) {
  5260. u64 offset;
  5261. int cached;
  5262. used_block_group = block_group;
  5263. btrfs_get_block_group(block_group);
  5264. search_start = block_group->key.objectid;
  5265. /*
  5266. * this can happen if we end up cycling through all the
  5267. * raid types, but we want to make sure we only allocate
  5268. * for the proper type.
  5269. */
  5270. if (!block_group_bits(block_group, flags)) {
  5271. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  5272. BTRFS_BLOCK_GROUP_RAID1 |
  5273. BTRFS_BLOCK_GROUP_RAID5 |
  5274. BTRFS_BLOCK_GROUP_RAID6 |
  5275. BTRFS_BLOCK_GROUP_RAID10;
  5276. /*
  5277. * if they asked for extra copies and this block group
  5278. * doesn't provide them, bail. This does allow us to
  5279. * fill raid0 from raid1.
  5280. */
  5281. if ((flags & extra) && !(block_group->flags & extra))
  5282. goto loop;
  5283. }
  5284. have_block_group:
  5285. cached = block_group_cache_done(block_group);
  5286. if (unlikely(!cached)) {
  5287. found_uncached_bg = true;
  5288. ret = cache_block_group(block_group, 0);
  5289. BUG_ON(ret < 0);
  5290. ret = 0;
  5291. }
  5292. if (unlikely(block_group->ro))
  5293. goto loop;
  5294. /*
  5295. * Ok we want to try and use the cluster allocator, so
  5296. * lets look there
  5297. */
  5298. if (last_ptr) {
  5299. unsigned long aligned_cluster;
  5300. /*
  5301. * the refill lock keeps out other
  5302. * people trying to start a new cluster
  5303. */
  5304. spin_lock(&last_ptr->refill_lock);
  5305. used_block_group = last_ptr->block_group;
  5306. if (used_block_group != block_group &&
  5307. (!used_block_group ||
  5308. used_block_group->ro ||
  5309. !block_group_bits(used_block_group, flags))) {
  5310. used_block_group = block_group;
  5311. goto refill_cluster;
  5312. }
  5313. if (used_block_group != block_group)
  5314. btrfs_get_block_group(used_block_group);
  5315. offset = btrfs_alloc_from_cluster(used_block_group,
  5316. last_ptr, num_bytes, used_block_group->key.objectid);
  5317. if (offset) {
  5318. /* we have a block, we're done */
  5319. spin_unlock(&last_ptr->refill_lock);
  5320. trace_btrfs_reserve_extent_cluster(root,
  5321. block_group, search_start, num_bytes);
  5322. goto checks;
  5323. }
  5324. WARN_ON(last_ptr->block_group != used_block_group);
  5325. if (used_block_group != block_group) {
  5326. btrfs_put_block_group(used_block_group);
  5327. used_block_group = block_group;
  5328. }
  5329. refill_cluster:
  5330. BUG_ON(used_block_group != block_group);
  5331. /* If we are on LOOP_NO_EMPTY_SIZE, we can't
  5332. * set up a new clusters, so lets just skip it
  5333. * and let the allocator find whatever block
  5334. * it can find. If we reach this point, we
  5335. * will have tried the cluster allocator
  5336. * plenty of times and not have found
  5337. * anything, so we are likely way too
  5338. * fragmented for the clustering stuff to find
  5339. * anything.
  5340. *
  5341. * However, if the cluster is taken from the
  5342. * current block group, release the cluster
  5343. * first, so that we stand a better chance of
  5344. * succeeding in the unclustered
  5345. * allocation. */
  5346. if (loop >= LOOP_NO_EMPTY_SIZE &&
  5347. last_ptr->block_group != block_group) {
  5348. spin_unlock(&last_ptr->refill_lock);
  5349. goto unclustered_alloc;
  5350. }
  5351. /*
  5352. * this cluster didn't work out, free it and
  5353. * start over
  5354. */
  5355. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5356. if (loop >= LOOP_NO_EMPTY_SIZE) {
  5357. spin_unlock(&last_ptr->refill_lock);
  5358. goto unclustered_alloc;
  5359. }
  5360. aligned_cluster = max_t(unsigned long,
  5361. empty_cluster + empty_size,
  5362. block_group->full_stripe_len);
  5363. /* allocate a cluster in this block group */
  5364. ret = btrfs_find_space_cluster(trans, root,
  5365. block_group, last_ptr,
  5366. search_start, num_bytes,
  5367. aligned_cluster);
  5368. if (ret == 0) {
  5369. /*
  5370. * now pull our allocation out of this
  5371. * cluster
  5372. */
  5373. offset = btrfs_alloc_from_cluster(block_group,
  5374. last_ptr, num_bytes,
  5375. search_start);
  5376. if (offset) {
  5377. /* we found one, proceed */
  5378. spin_unlock(&last_ptr->refill_lock);
  5379. trace_btrfs_reserve_extent_cluster(root,
  5380. block_group, search_start,
  5381. num_bytes);
  5382. goto checks;
  5383. }
  5384. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  5385. && !failed_cluster_refill) {
  5386. spin_unlock(&last_ptr->refill_lock);
  5387. failed_cluster_refill = true;
  5388. wait_block_group_cache_progress(block_group,
  5389. num_bytes + empty_cluster + empty_size);
  5390. goto have_block_group;
  5391. }
  5392. /*
  5393. * at this point we either didn't find a cluster
  5394. * or we weren't able to allocate a block from our
  5395. * cluster. Free the cluster we've been trying
  5396. * to use, and go to the next block group
  5397. */
  5398. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5399. spin_unlock(&last_ptr->refill_lock);
  5400. goto loop;
  5401. }
  5402. unclustered_alloc:
  5403. spin_lock(&block_group->free_space_ctl->tree_lock);
  5404. if (cached &&
  5405. block_group->free_space_ctl->free_space <
  5406. num_bytes + empty_cluster + empty_size) {
  5407. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5408. goto loop;
  5409. }
  5410. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5411. offset = btrfs_find_space_for_alloc(block_group, search_start,
  5412. num_bytes, empty_size);
  5413. /*
  5414. * If we didn't find a chunk, and we haven't failed on this
  5415. * block group before, and this block group is in the middle of
  5416. * caching and we are ok with waiting, then go ahead and wait
  5417. * for progress to be made, and set failed_alloc to true.
  5418. *
  5419. * If failed_alloc is true then we've already waited on this
  5420. * block group once and should move on to the next block group.
  5421. */
  5422. if (!offset && !failed_alloc && !cached &&
  5423. loop > LOOP_CACHING_NOWAIT) {
  5424. wait_block_group_cache_progress(block_group,
  5425. num_bytes + empty_size);
  5426. failed_alloc = true;
  5427. goto have_block_group;
  5428. } else if (!offset) {
  5429. if (!cached)
  5430. have_caching_bg = true;
  5431. goto loop;
  5432. }
  5433. checks:
  5434. search_start = stripe_align(root, used_block_group,
  5435. offset, num_bytes);
  5436. /* move on to the next group */
  5437. if (search_start + num_bytes >
  5438. used_block_group->key.objectid + used_block_group->key.offset) {
  5439. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5440. goto loop;
  5441. }
  5442. if (offset < search_start)
  5443. btrfs_add_free_space(used_block_group, offset,
  5444. search_start - offset);
  5445. BUG_ON(offset > search_start);
  5446. ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
  5447. alloc_type);
  5448. if (ret == -EAGAIN) {
  5449. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5450. goto loop;
  5451. }
  5452. /* we are all good, lets return */
  5453. ins->objectid = search_start;
  5454. ins->offset = num_bytes;
  5455. trace_btrfs_reserve_extent(orig_root, block_group,
  5456. search_start, num_bytes);
  5457. if (used_block_group != block_group)
  5458. btrfs_put_block_group(used_block_group);
  5459. btrfs_put_block_group(block_group);
  5460. break;
  5461. loop:
  5462. failed_cluster_refill = false;
  5463. failed_alloc = false;
  5464. BUG_ON(index != get_block_group_index(block_group));
  5465. if (used_block_group != block_group)
  5466. btrfs_put_block_group(used_block_group);
  5467. btrfs_put_block_group(block_group);
  5468. }
  5469. up_read(&space_info->groups_sem);
  5470. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  5471. goto search;
  5472. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  5473. goto search;
  5474. /*
  5475. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  5476. * caching kthreads as we move along
  5477. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  5478. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  5479. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  5480. * again
  5481. */
  5482. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  5483. index = 0;
  5484. loop++;
  5485. if (loop == LOOP_ALLOC_CHUNK) {
  5486. ret = do_chunk_alloc(trans, root, flags,
  5487. CHUNK_ALLOC_FORCE);
  5488. /*
  5489. * Do not bail out on ENOSPC since we
  5490. * can do more things.
  5491. */
  5492. if (ret < 0 && ret != -ENOSPC) {
  5493. btrfs_abort_transaction(trans,
  5494. root, ret);
  5495. goto out;
  5496. }
  5497. }
  5498. if (loop == LOOP_NO_EMPTY_SIZE) {
  5499. empty_size = 0;
  5500. empty_cluster = 0;
  5501. }
  5502. goto search;
  5503. } else if (!ins->objectid) {
  5504. ret = -ENOSPC;
  5505. } else if (ins->objectid) {
  5506. ret = 0;
  5507. }
  5508. out:
  5509. return ret;
  5510. }
  5511. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  5512. int dump_block_groups)
  5513. {
  5514. struct btrfs_block_group_cache *cache;
  5515. int index = 0;
  5516. spin_lock(&info->lock);
  5517. printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
  5518. (unsigned long long)info->flags,
  5519. (unsigned long long)(info->total_bytes - info->bytes_used -
  5520. info->bytes_pinned - info->bytes_reserved -
  5521. info->bytes_readonly),
  5522. (info->full) ? "" : "not ");
  5523. printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
  5524. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  5525. (unsigned long long)info->total_bytes,
  5526. (unsigned long long)info->bytes_used,
  5527. (unsigned long long)info->bytes_pinned,
  5528. (unsigned long long)info->bytes_reserved,
  5529. (unsigned long long)info->bytes_may_use,
  5530. (unsigned long long)info->bytes_readonly);
  5531. spin_unlock(&info->lock);
  5532. if (!dump_block_groups)
  5533. return;
  5534. down_read(&info->groups_sem);
  5535. again:
  5536. list_for_each_entry(cache, &info->block_groups[index], list) {
  5537. spin_lock(&cache->lock);
  5538. printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
  5539. (unsigned long long)cache->key.objectid,
  5540. (unsigned long long)cache->key.offset,
  5541. (unsigned long long)btrfs_block_group_used(&cache->item),
  5542. (unsigned long long)cache->pinned,
  5543. (unsigned long long)cache->reserved,
  5544. cache->ro ? "[readonly]" : "");
  5545. btrfs_dump_free_space(cache, bytes);
  5546. spin_unlock(&cache->lock);
  5547. }
  5548. if (++index < BTRFS_NR_RAID_TYPES)
  5549. goto again;
  5550. up_read(&info->groups_sem);
  5551. }
  5552. int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
  5553. struct btrfs_root *root,
  5554. u64 num_bytes, u64 min_alloc_size,
  5555. u64 empty_size, u64 hint_byte,
  5556. struct btrfs_key *ins, int is_data)
  5557. {
  5558. bool final_tried = false;
  5559. u64 flags;
  5560. int ret;
  5561. flags = btrfs_get_alloc_profile(root, is_data);
  5562. again:
  5563. WARN_ON(num_bytes < root->sectorsize);
  5564. ret = find_free_extent(trans, root, num_bytes, empty_size,
  5565. hint_byte, ins, flags);
  5566. if (ret == -ENOSPC) {
  5567. if (!final_tried) {
  5568. num_bytes = num_bytes >> 1;
  5569. num_bytes = round_down(num_bytes, root->sectorsize);
  5570. num_bytes = max(num_bytes, min_alloc_size);
  5571. if (num_bytes == min_alloc_size)
  5572. final_tried = true;
  5573. goto again;
  5574. } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  5575. struct btrfs_space_info *sinfo;
  5576. sinfo = __find_space_info(root->fs_info, flags);
  5577. btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
  5578. (unsigned long long)flags,
  5579. (unsigned long long)num_bytes);
  5580. if (sinfo)
  5581. dump_space_info(sinfo, num_bytes, 1);
  5582. }
  5583. }
  5584. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  5585. return ret;
  5586. }
  5587. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  5588. u64 start, u64 len, int pin)
  5589. {
  5590. struct btrfs_block_group_cache *cache;
  5591. int ret = 0;
  5592. cache = btrfs_lookup_block_group(root->fs_info, start);
  5593. if (!cache) {
  5594. btrfs_err(root->fs_info, "Unable to find block group for %llu",
  5595. (unsigned long long)start);
  5596. return -ENOSPC;
  5597. }
  5598. if (btrfs_test_opt(root, DISCARD))
  5599. ret = btrfs_discard_extent(root, start, len, NULL);
  5600. if (pin)
  5601. pin_down_extent(root, cache, start, len, 1);
  5602. else {
  5603. btrfs_add_free_space(cache, start, len);
  5604. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
  5605. }
  5606. btrfs_put_block_group(cache);
  5607. trace_btrfs_reserved_extent_free(root, start, len);
  5608. return ret;
  5609. }
  5610. int btrfs_free_reserved_extent(struct btrfs_root *root,
  5611. u64 start, u64 len)
  5612. {
  5613. return __btrfs_free_reserved_extent(root, start, len, 0);
  5614. }
  5615. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  5616. u64 start, u64 len)
  5617. {
  5618. return __btrfs_free_reserved_extent(root, start, len, 1);
  5619. }
  5620. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5621. struct btrfs_root *root,
  5622. u64 parent, u64 root_objectid,
  5623. u64 flags, u64 owner, u64 offset,
  5624. struct btrfs_key *ins, int ref_mod)
  5625. {
  5626. int ret;
  5627. struct btrfs_fs_info *fs_info = root->fs_info;
  5628. struct btrfs_extent_item *extent_item;
  5629. struct btrfs_extent_inline_ref *iref;
  5630. struct btrfs_path *path;
  5631. struct extent_buffer *leaf;
  5632. int type;
  5633. u32 size;
  5634. if (parent > 0)
  5635. type = BTRFS_SHARED_DATA_REF_KEY;
  5636. else
  5637. type = BTRFS_EXTENT_DATA_REF_KEY;
  5638. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  5639. path = btrfs_alloc_path();
  5640. if (!path)
  5641. return -ENOMEM;
  5642. path->leave_spinning = 1;
  5643. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5644. ins, size);
  5645. if (ret) {
  5646. btrfs_free_path(path);
  5647. return ret;
  5648. }
  5649. leaf = path->nodes[0];
  5650. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5651. struct btrfs_extent_item);
  5652. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  5653. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5654. btrfs_set_extent_flags(leaf, extent_item,
  5655. flags | BTRFS_EXTENT_FLAG_DATA);
  5656. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5657. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  5658. if (parent > 0) {
  5659. struct btrfs_shared_data_ref *ref;
  5660. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  5661. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5662. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  5663. } else {
  5664. struct btrfs_extent_data_ref *ref;
  5665. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  5666. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  5667. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  5668. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  5669. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  5670. }
  5671. btrfs_mark_buffer_dirty(path->nodes[0]);
  5672. btrfs_free_path(path);
  5673. ret = update_block_group(root, ins->objectid, ins->offset, 1);
  5674. if (ret) { /* -ENOENT, logic error */
  5675. btrfs_err(fs_info, "update block group failed for %llu %llu",
  5676. (unsigned long long)ins->objectid,
  5677. (unsigned long long)ins->offset);
  5678. BUG();
  5679. }
  5680. return ret;
  5681. }
  5682. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  5683. struct btrfs_root *root,
  5684. u64 parent, u64 root_objectid,
  5685. u64 flags, struct btrfs_disk_key *key,
  5686. int level, struct btrfs_key *ins)
  5687. {
  5688. int ret;
  5689. struct btrfs_fs_info *fs_info = root->fs_info;
  5690. struct btrfs_extent_item *extent_item;
  5691. struct btrfs_tree_block_info *block_info;
  5692. struct btrfs_extent_inline_ref *iref;
  5693. struct btrfs_path *path;
  5694. struct extent_buffer *leaf;
  5695. u32 size = sizeof(*extent_item) + sizeof(*iref);
  5696. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  5697. SKINNY_METADATA);
  5698. if (!skinny_metadata)
  5699. size += sizeof(*block_info);
  5700. path = btrfs_alloc_path();
  5701. if (!path)
  5702. return -ENOMEM;
  5703. path->leave_spinning = 1;
  5704. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5705. ins, size);
  5706. if (ret) {
  5707. btrfs_free_path(path);
  5708. return ret;
  5709. }
  5710. leaf = path->nodes[0];
  5711. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5712. struct btrfs_extent_item);
  5713. btrfs_set_extent_refs(leaf, extent_item, 1);
  5714. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5715. btrfs_set_extent_flags(leaf, extent_item,
  5716. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  5717. if (skinny_metadata) {
  5718. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5719. } else {
  5720. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  5721. btrfs_set_tree_block_key(leaf, block_info, key);
  5722. btrfs_set_tree_block_level(leaf, block_info, level);
  5723. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  5724. }
  5725. if (parent > 0) {
  5726. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  5727. btrfs_set_extent_inline_ref_type(leaf, iref,
  5728. BTRFS_SHARED_BLOCK_REF_KEY);
  5729. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5730. } else {
  5731. btrfs_set_extent_inline_ref_type(leaf, iref,
  5732. BTRFS_TREE_BLOCK_REF_KEY);
  5733. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  5734. }
  5735. btrfs_mark_buffer_dirty(leaf);
  5736. btrfs_free_path(path);
  5737. ret = update_block_group(root, ins->objectid, root->leafsize, 1);
  5738. if (ret) { /* -ENOENT, logic error */
  5739. btrfs_err(fs_info, "update block group failed for %llu %llu",
  5740. (unsigned long long)ins->objectid,
  5741. (unsigned long long)ins->offset);
  5742. BUG();
  5743. }
  5744. return ret;
  5745. }
  5746. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5747. struct btrfs_root *root,
  5748. u64 root_objectid, u64 owner,
  5749. u64 offset, struct btrfs_key *ins)
  5750. {
  5751. int ret;
  5752. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  5753. ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
  5754. ins->offset, 0,
  5755. root_objectid, owner, offset,
  5756. BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
  5757. return ret;
  5758. }
  5759. /*
  5760. * this is used by the tree logging recovery code. It records that
  5761. * an extent has been allocated and makes sure to clear the free
  5762. * space cache bits as well
  5763. */
  5764. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  5765. struct btrfs_root *root,
  5766. u64 root_objectid, u64 owner, u64 offset,
  5767. struct btrfs_key *ins)
  5768. {
  5769. int ret;
  5770. struct btrfs_block_group_cache *block_group;
  5771. struct btrfs_caching_control *caching_ctl;
  5772. u64 start = ins->objectid;
  5773. u64 num_bytes = ins->offset;
  5774. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  5775. cache_block_group(block_group, 0);
  5776. caching_ctl = get_caching_control(block_group);
  5777. if (!caching_ctl) {
  5778. BUG_ON(!block_group_cache_done(block_group));
  5779. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  5780. if (ret)
  5781. goto out;
  5782. } else {
  5783. mutex_lock(&caching_ctl->mutex);
  5784. if (start >= caching_ctl->progress) {
  5785. ret = add_excluded_extent(root, start, num_bytes);
  5786. } else if (start + num_bytes <= caching_ctl->progress) {
  5787. ret = btrfs_remove_free_space(block_group,
  5788. start, num_bytes);
  5789. } else {
  5790. num_bytes = caching_ctl->progress - start;
  5791. ret = btrfs_remove_free_space(block_group,
  5792. start, num_bytes);
  5793. if (ret)
  5794. goto out_lock;
  5795. start = caching_ctl->progress;
  5796. num_bytes = ins->objectid + ins->offset -
  5797. caching_ctl->progress;
  5798. ret = add_excluded_extent(root, start, num_bytes);
  5799. }
  5800. out_lock:
  5801. mutex_unlock(&caching_ctl->mutex);
  5802. put_caching_control(caching_ctl);
  5803. if (ret)
  5804. goto out;
  5805. }
  5806. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  5807. RESERVE_ALLOC_NO_ACCOUNT);
  5808. BUG_ON(ret); /* logic error */
  5809. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  5810. 0, owner, offset, ins, 1);
  5811. out:
  5812. btrfs_put_block_group(block_group);
  5813. return ret;
  5814. }
  5815. static struct extent_buffer *
  5816. btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  5817. u64 bytenr, u32 blocksize, int level)
  5818. {
  5819. struct extent_buffer *buf;
  5820. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5821. if (!buf)
  5822. return ERR_PTR(-ENOMEM);
  5823. btrfs_set_header_generation(buf, trans->transid);
  5824. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  5825. btrfs_tree_lock(buf);
  5826. clean_tree_block(trans, root, buf);
  5827. clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
  5828. btrfs_set_lock_blocking(buf);
  5829. btrfs_set_buffer_uptodate(buf);
  5830. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  5831. /*
  5832. * we allow two log transactions at a time, use different
  5833. * EXENT bit to differentiate dirty pages.
  5834. */
  5835. if (root->log_transid % 2 == 0)
  5836. set_extent_dirty(&root->dirty_log_pages, buf->start,
  5837. buf->start + buf->len - 1, GFP_NOFS);
  5838. else
  5839. set_extent_new(&root->dirty_log_pages, buf->start,
  5840. buf->start + buf->len - 1, GFP_NOFS);
  5841. } else {
  5842. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  5843. buf->start + buf->len - 1, GFP_NOFS);
  5844. }
  5845. trans->blocks_used++;
  5846. /* this returns a buffer locked for blocking */
  5847. return buf;
  5848. }
  5849. static struct btrfs_block_rsv *
  5850. use_block_rsv(struct btrfs_trans_handle *trans,
  5851. struct btrfs_root *root, u32 blocksize)
  5852. {
  5853. struct btrfs_block_rsv *block_rsv;
  5854. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  5855. int ret;
  5856. block_rsv = get_block_rsv(trans, root);
  5857. if (block_rsv->size == 0) {
  5858. ret = reserve_metadata_bytes(root, block_rsv, blocksize,
  5859. BTRFS_RESERVE_NO_FLUSH);
  5860. /*
  5861. * If we couldn't reserve metadata bytes try and use some from
  5862. * the global reserve.
  5863. */
  5864. if (ret && block_rsv != global_rsv) {
  5865. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5866. if (!ret)
  5867. return global_rsv;
  5868. return ERR_PTR(ret);
  5869. } else if (ret) {
  5870. return ERR_PTR(ret);
  5871. }
  5872. return block_rsv;
  5873. }
  5874. ret = block_rsv_use_bytes(block_rsv, blocksize);
  5875. if (!ret)
  5876. return block_rsv;
  5877. if (ret && !block_rsv->failfast) {
  5878. if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  5879. static DEFINE_RATELIMIT_STATE(_rs,
  5880. DEFAULT_RATELIMIT_INTERVAL * 10,
  5881. /*DEFAULT_RATELIMIT_BURST*/ 1);
  5882. if (__ratelimit(&_rs))
  5883. WARN(1, KERN_DEBUG
  5884. "btrfs: block rsv returned %d\n", ret);
  5885. }
  5886. ret = reserve_metadata_bytes(root, block_rsv, blocksize,
  5887. BTRFS_RESERVE_NO_FLUSH);
  5888. if (!ret) {
  5889. return block_rsv;
  5890. } else if (ret && block_rsv != global_rsv) {
  5891. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5892. if (!ret)
  5893. return global_rsv;
  5894. }
  5895. }
  5896. return ERR_PTR(-ENOSPC);
  5897. }
  5898. static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
  5899. struct btrfs_block_rsv *block_rsv, u32 blocksize)
  5900. {
  5901. block_rsv_add_bytes(block_rsv, blocksize, 0);
  5902. block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
  5903. }
  5904. /*
  5905. * finds a free extent and does all the dirty work required for allocation
  5906. * returns the key for the extent through ins, and a tree buffer for
  5907. * the first block of the extent through buf.
  5908. *
  5909. * returns the tree buffer or NULL.
  5910. */
  5911. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  5912. struct btrfs_root *root, u32 blocksize,
  5913. u64 parent, u64 root_objectid,
  5914. struct btrfs_disk_key *key, int level,
  5915. u64 hint, u64 empty_size)
  5916. {
  5917. struct btrfs_key ins;
  5918. struct btrfs_block_rsv *block_rsv;
  5919. struct extent_buffer *buf;
  5920. u64 flags = 0;
  5921. int ret;
  5922. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  5923. SKINNY_METADATA);
  5924. block_rsv = use_block_rsv(trans, root, blocksize);
  5925. if (IS_ERR(block_rsv))
  5926. return ERR_CAST(block_rsv);
  5927. ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
  5928. empty_size, hint, &ins, 0);
  5929. if (ret) {
  5930. unuse_block_rsv(root->fs_info, block_rsv, blocksize);
  5931. return ERR_PTR(ret);
  5932. }
  5933. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  5934. blocksize, level);
  5935. BUG_ON(IS_ERR(buf)); /* -ENOMEM */
  5936. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  5937. if (parent == 0)
  5938. parent = ins.objectid;
  5939. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5940. } else
  5941. BUG_ON(parent > 0);
  5942. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  5943. struct btrfs_delayed_extent_op *extent_op;
  5944. extent_op = btrfs_alloc_delayed_extent_op();
  5945. BUG_ON(!extent_op); /* -ENOMEM */
  5946. if (key)
  5947. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  5948. else
  5949. memset(&extent_op->key, 0, sizeof(extent_op->key));
  5950. extent_op->flags_to_set = flags;
  5951. if (skinny_metadata)
  5952. extent_op->update_key = 0;
  5953. else
  5954. extent_op->update_key = 1;
  5955. extent_op->update_flags = 1;
  5956. extent_op->is_data = 0;
  5957. extent_op->level = level;
  5958. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  5959. ins.objectid,
  5960. ins.offset, parent, root_objectid,
  5961. level, BTRFS_ADD_DELAYED_EXTENT,
  5962. extent_op, 0);
  5963. BUG_ON(ret); /* -ENOMEM */
  5964. }
  5965. return buf;
  5966. }
  5967. struct walk_control {
  5968. u64 refs[BTRFS_MAX_LEVEL];
  5969. u64 flags[BTRFS_MAX_LEVEL];
  5970. struct btrfs_key update_progress;
  5971. int stage;
  5972. int level;
  5973. int shared_level;
  5974. int update_ref;
  5975. int keep_locks;
  5976. int reada_slot;
  5977. int reada_count;
  5978. int for_reloc;
  5979. };
  5980. #define DROP_REFERENCE 1
  5981. #define UPDATE_BACKREF 2
  5982. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  5983. struct btrfs_root *root,
  5984. struct walk_control *wc,
  5985. struct btrfs_path *path)
  5986. {
  5987. u64 bytenr;
  5988. u64 generation;
  5989. u64 refs;
  5990. u64 flags;
  5991. u32 nritems;
  5992. u32 blocksize;
  5993. struct btrfs_key key;
  5994. struct extent_buffer *eb;
  5995. int ret;
  5996. int slot;
  5997. int nread = 0;
  5998. if (path->slots[wc->level] < wc->reada_slot) {
  5999. wc->reada_count = wc->reada_count * 2 / 3;
  6000. wc->reada_count = max(wc->reada_count, 2);
  6001. } else {
  6002. wc->reada_count = wc->reada_count * 3 / 2;
  6003. wc->reada_count = min_t(int, wc->reada_count,
  6004. BTRFS_NODEPTRS_PER_BLOCK(root));
  6005. }
  6006. eb = path->nodes[wc->level];
  6007. nritems = btrfs_header_nritems(eb);
  6008. blocksize = btrfs_level_size(root, wc->level - 1);
  6009. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  6010. if (nread >= wc->reada_count)
  6011. break;
  6012. cond_resched();
  6013. bytenr = btrfs_node_blockptr(eb, slot);
  6014. generation = btrfs_node_ptr_generation(eb, slot);
  6015. if (slot == path->slots[wc->level])
  6016. goto reada;
  6017. if (wc->stage == UPDATE_BACKREF &&
  6018. generation <= root->root_key.offset)
  6019. continue;
  6020. /* We don't lock the tree block, it's OK to be racy here */
  6021. ret = btrfs_lookup_extent_info(trans, root, bytenr,
  6022. wc->level - 1, 1, &refs,
  6023. &flags);
  6024. /* We don't care about errors in readahead. */
  6025. if (ret < 0)
  6026. continue;
  6027. BUG_ON(refs == 0);
  6028. if (wc->stage == DROP_REFERENCE) {
  6029. if (refs == 1)
  6030. goto reada;
  6031. if (wc->level == 1 &&
  6032. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6033. continue;
  6034. if (!wc->update_ref ||
  6035. generation <= root->root_key.offset)
  6036. continue;
  6037. btrfs_node_key_to_cpu(eb, &key, slot);
  6038. ret = btrfs_comp_cpu_keys(&key,
  6039. &wc->update_progress);
  6040. if (ret < 0)
  6041. continue;
  6042. } else {
  6043. if (wc->level == 1 &&
  6044. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6045. continue;
  6046. }
  6047. reada:
  6048. ret = readahead_tree_block(root, bytenr, blocksize,
  6049. generation);
  6050. if (ret)
  6051. break;
  6052. nread++;
  6053. }
  6054. wc->reada_slot = slot;
  6055. }
  6056. /*
  6057. * helper to process tree block while walking down the tree.
  6058. *
  6059. * when wc->stage == UPDATE_BACKREF, this function updates
  6060. * back refs for pointers in the block.
  6061. *
  6062. * NOTE: return value 1 means we should stop walking down.
  6063. */
  6064. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  6065. struct btrfs_root *root,
  6066. struct btrfs_path *path,
  6067. struct walk_control *wc, int lookup_info)
  6068. {
  6069. int level = wc->level;
  6070. struct extent_buffer *eb = path->nodes[level];
  6071. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6072. int ret;
  6073. if (wc->stage == UPDATE_BACKREF &&
  6074. btrfs_header_owner(eb) != root->root_key.objectid)
  6075. return 1;
  6076. /*
  6077. * when reference count of tree block is 1, it won't increase
  6078. * again. once full backref flag is set, we never clear it.
  6079. */
  6080. if (lookup_info &&
  6081. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  6082. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  6083. BUG_ON(!path->locks[level]);
  6084. ret = btrfs_lookup_extent_info(trans, root,
  6085. eb->start, level, 1,
  6086. &wc->refs[level],
  6087. &wc->flags[level]);
  6088. BUG_ON(ret == -ENOMEM);
  6089. if (ret)
  6090. return ret;
  6091. BUG_ON(wc->refs[level] == 0);
  6092. }
  6093. if (wc->stage == DROP_REFERENCE) {
  6094. if (wc->refs[level] > 1)
  6095. return 1;
  6096. if (path->locks[level] && !wc->keep_locks) {
  6097. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6098. path->locks[level] = 0;
  6099. }
  6100. return 0;
  6101. }
  6102. /* wc->stage == UPDATE_BACKREF */
  6103. if (!(wc->flags[level] & flag)) {
  6104. BUG_ON(!path->locks[level]);
  6105. ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
  6106. BUG_ON(ret); /* -ENOMEM */
  6107. ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
  6108. BUG_ON(ret); /* -ENOMEM */
  6109. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  6110. eb->len, flag,
  6111. btrfs_header_level(eb), 0);
  6112. BUG_ON(ret); /* -ENOMEM */
  6113. wc->flags[level] |= flag;
  6114. }
  6115. /*
  6116. * the block is shared by multiple trees, so it's not good to
  6117. * keep the tree lock
  6118. */
  6119. if (path->locks[level] && level > 0) {
  6120. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6121. path->locks[level] = 0;
  6122. }
  6123. return 0;
  6124. }
  6125. /*
  6126. * helper to process tree block pointer.
  6127. *
  6128. * when wc->stage == DROP_REFERENCE, this function checks
  6129. * reference count of the block pointed to. if the block
  6130. * is shared and we need update back refs for the subtree
  6131. * rooted at the block, this function changes wc->stage to
  6132. * UPDATE_BACKREF. if the block is shared and there is no
  6133. * need to update back, this function drops the reference
  6134. * to the block.
  6135. *
  6136. * NOTE: return value 1 means we should stop walking down.
  6137. */
  6138. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  6139. struct btrfs_root *root,
  6140. struct btrfs_path *path,
  6141. struct walk_control *wc, int *lookup_info)
  6142. {
  6143. u64 bytenr;
  6144. u64 generation;
  6145. u64 parent;
  6146. u32 blocksize;
  6147. struct btrfs_key key;
  6148. struct extent_buffer *next;
  6149. int level = wc->level;
  6150. int reada = 0;
  6151. int ret = 0;
  6152. generation = btrfs_node_ptr_generation(path->nodes[level],
  6153. path->slots[level]);
  6154. /*
  6155. * if the lower level block was created before the snapshot
  6156. * was created, we know there is no need to update back refs
  6157. * for the subtree
  6158. */
  6159. if (wc->stage == UPDATE_BACKREF &&
  6160. generation <= root->root_key.offset) {
  6161. *lookup_info = 1;
  6162. return 1;
  6163. }
  6164. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  6165. blocksize = btrfs_level_size(root, level - 1);
  6166. next = btrfs_find_tree_block(root, bytenr, blocksize);
  6167. if (!next) {
  6168. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  6169. if (!next)
  6170. return -ENOMEM;
  6171. reada = 1;
  6172. }
  6173. btrfs_tree_lock(next);
  6174. btrfs_set_lock_blocking(next);
  6175. ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
  6176. &wc->refs[level - 1],
  6177. &wc->flags[level - 1]);
  6178. if (ret < 0) {
  6179. btrfs_tree_unlock(next);
  6180. return ret;
  6181. }
  6182. if (unlikely(wc->refs[level - 1] == 0)) {
  6183. btrfs_err(root->fs_info, "Missing references.");
  6184. BUG();
  6185. }
  6186. *lookup_info = 0;
  6187. if (wc->stage == DROP_REFERENCE) {
  6188. if (wc->refs[level - 1] > 1) {
  6189. if (level == 1 &&
  6190. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6191. goto skip;
  6192. if (!wc->update_ref ||
  6193. generation <= root->root_key.offset)
  6194. goto skip;
  6195. btrfs_node_key_to_cpu(path->nodes[level], &key,
  6196. path->slots[level]);
  6197. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  6198. if (ret < 0)
  6199. goto skip;
  6200. wc->stage = UPDATE_BACKREF;
  6201. wc->shared_level = level - 1;
  6202. }
  6203. } else {
  6204. if (level == 1 &&
  6205. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6206. goto skip;
  6207. }
  6208. if (!btrfs_buffer_uptodate(next, generation, 0)) {
  6209. btrfs_tree_unlock(next);
  6210. free_extent_buffer(next);
  6211. next = NULL;
  6212. *lookup_info = 1;
  6213. }
  6214. if (!next) {
  6215. if (reada && level == 1)
  6216. reada_walk_down(trans, root, wc, path);
  6217. next = read_tree_block(root, bytenr, blocksize, generation);
  6218. if (!next || !extent_buffer_uptodate(next)) {
  6219. free_extent_buffer(next);
  6220. return -EIO;
  6221. }
  6222. btrfs_tree_lock(next);
  6223. btrfs_set_lock_blocking(next);
  6224. }
  6225. level--;
  6226. BUG_ON(level != btrfs_header_level(next));
  6227. path->nodes[level] = next;
  6228. path->slots[level] = 0;
  6229. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6230. wc->level = level;
  6231. if (wc->level == 1)
  6232. wc->reada_slot = 0;
  6233. return 0;
  6234. skip:
  6235. wc->refs[level - 1] = 0;
  6236. wc->flags[level - 1] = 0;
  6237. if (wc->stage == DROP_REFERENCE) {
  6238. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  6239. parent = path->nodes[level]->start;
  6240. } else {
  6241. BUG_ON(root->root_key.objectid !=
  6242. btrfs_header_owner(path->nodes[level]));
  6243. parent = 0;
  6244. }
  6245. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  6246. root->root_key.objectid, level - 1, 0, 0);
  6247. BUG_ON(ret); /* -ENOMEM */
  6248. }
  6249. btrfs_tree_unlock(next);
  6250. free_extent_buffer(next);
  6251. *lookup_info = 1;
  6252. return 1;
  6253. }
  6254. /*
  6255. * helper to process tree block while walking up the tree.
  6256. *
  6257. * when wc->stage == DROP_REFERENCE, this function drops
  6258. * reference count on the block.
  6259. *
  6260. * when wc->stage == UPDATE_BACKREF, this function changes
  6261. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  6262. * to UPDATE_BACKREF previously while processing the block.
  6263. *
  6264. * NOTE: return value 1 means we should stop walking up.
  6265. */
  6266. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  6267. struct btrfs_root *root,
  6268. struct btrfs_path *path,
  6269. struct walk_control *wc)
  6270. {
  6271. int ret;
  6272. int level = wc->level;
  6273. struct extent_buffer *eb = path->nodes[level];
  6274. u64 parent = 0;
  6275. if (wc->stage == UPDATE_BACKREF) {
  6276. BUG_ON(wc->shared_level < level);
  6277. if (level < wc->shared_level)
  6278. goto out;
  6279. ret = find_next_key(path, level + 1, &wc->update_progress);
  6280. if (ret > 0)
  6281. wc->update_ref = 0;
  6282. wc->stage = DROP_REFERENCE;
  6283. wc->shared_level = -1;
  6284. path->slots[level] = 0;
  6285. /*
  6286. * check reference count again if the block isn't locked.
  6287. * we should start walking down the tree again if reference
  6288. * count is one.
  6289. */
  6290. if (!path->locks[level]) {
  6291. BUG_ON(level == 0);
  6292. btrfs_tree_lock(eb);
  6293. btrfs_set_lock_blocking(eb);
  6294. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6295. ret = btrfs_lookup_extent_info(trans, root,
  6296. eb->start, level, 1,
  6297. &wc->refs[level],
  6298. &wc->flags[level]);
  6299. if (ret < 0) {
  6300. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6301. path->locks[level] = 0;
  6302. return ret;
  6303. }
  6304. BUG_ON(wc->refs[level] == 0);
  6305. if (wc->refs[level] == 1) {
  6306. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6307. path->locks[level] = 0;
  6308. return 1;
  6309. }
  6310. }
  6311. }
  6312. /* wc->stage == DROP_REFERENCE */
  6313. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  6314. if (wc->refs[level] == 1) {
  6315. if (level == 0) {
  6316. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6317. ret = btrfs_dec_ref(trans, root, eb, 1,
  6318. wc->for_reloc);
  6319. else
  6320. ret = btrfs_dec_ref(trans, root, eb, 0,
  6321. wc->for_reloc);
  6322. BUG_ON(ret); /* -ENOMEM */
  6323. }
  6324. /* make block locked assertion in clean_tree_block happy */
  6325. if (!path->locks[level] &&
  6326. btrfs_header_generation(eb) == trans->transid) {
  6327. btrfs_tree_lock(eb);
  6328. btrfs_set_lock_blocking(eb);
  6329. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6330. }
  6331. clean_tree_block(trans, root, eb);
  6332. }
  6333. if (eb == root->node) {
  6334. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6335. parent = eb->start;
  6336. else
  6337. BUG_ON(root->root_key.objectid !=
  6338. btrfs_header_owner(eb));
  6339. } else {
  6340. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6341. parent = path->nodes[level + 1]->start;
  6342. else
  6343. BUG_ON(root->root_key.objectid !=
  6344. btrfs_header_owner(path->nodes[level + 1]));
  6345. }
  6346. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  6347. out:
  6348. wc->refs[level] = 0;
  6349. wc->flags[level] = 0;
  6350. return 0;
  6351. }
  6352. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  6353. struct btrfs_root *root,
  6354. struct btrfs_path *path,
  6355. struct walk_control *wc)
  6356. {
  6357. int level = wc->level;
  6358. int lookup_info = 1;
  6359. int ret;
  6360. while (level >= 0) {
  6361. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  6362. if (ret > 0)
  6363. break;
  6364. if (level == 0)
  6365. break;
  6366. if (path->slots[level] >=
  6367. btrfs_header_nritems(path->nodes[level]))
  6368. break;
  6369. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  6370. if (ret > 0) {
  6371. path->slots[level]++;
  6372. continue;
  6373. } else if (ret < 0)
  6374. return ret;
  6375. level = wc->level;
  6376. }
  6377. return 0;
  6378. }
  6379. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  6380. struct btrfs_root *root,
  6381. struct btrfs_path *path,
  6382. struct walk_control *wc, int max_level)
  6383. {
  6384. int level = wc->level;
  6385. int ret;
  6386. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  6387. while (level < max_level && path->nodes[level]) {
  6388. wc->level = level;
  6389. if (path->slots[level] + 1 <
  6390. btrfs_header_nritems(path->nodes[level])) {
  6391. path->slots[level]++;
  6392. return 0;
  6393. } else {
  6394. ret = walk_up_proc(trans, root, path, wc);
  6395. if (ret > 0)
  6396. return 0;
  6397. if (path->locks[level]) {
  6398. btrfs_tree_unlock_rw(path->nodes[level],
  6399. path->locks[level]);
  6400. path->locks[level] = 0;
  6401. }
  6402. free_extent_buffer(path->nodes[level]);
  6403. path->nodes[level] = NULL;
  6404. level++;
  6405. }
  6406. }
  6407. return 1;
  6408. }
  6409. /*
  6410. * drop a subvolume tree.
  6411. *
  6412. * this function traverses the tree freeing any blocks that only
  6413. * referenced by the tree.
  6414. *
  6415. * when a shared tree block is found. this function decreases its
  6416. * reference count by one. if update_ref is true, this function
  6417. * also make sure backrefs for the shared block and all lower level
  6418. * blocks are properly updated.
  6419. *
  6420. * If called with for_reloc == 0, may exit early with -EAGAIN
  6421. */
  6422. int btrfs_drop_snapshot(struct btrfs_root *root,
  6423. struct btrfs_block_rsv *block_rsv, int update_ref,
  6424. int for_reloc)
  6425. {
  6426. struct btrfs_path *path;
  6427. struct btrfs_trans_handle *trans;
  6428. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6429. struct btrfs_root_item *root_item = &root->root_item;
  6430. struct walk_control *wc;
  6431. struct btrfs_key key;
  6432. int err = 0;
  6433. int ret;
  6434. int level;
  6435. path = btrfs_alloc_path();
  6436. if (!path) {
  6437. err = -ENOMEM;
  6438. goto out;
  6439. }
  6440. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6441. if (!wc) {
  6442. btrfs_free_path(path);
  6443. err = -ENOMEM;
  6444. goto out;
  6445. }
  6446. trans = btrfs_start_transaction(tree_root, 0);
  6447. if (IS_ERR(trans)) {
  6448. err = PTR_ERR(trans);
  6449. goto out_free;
  6450. }
  6451. if (block_rsv)
  6452. trans->block_rsv = block_rsv;
  6453. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  6454. level = btrfs_header_level(root->node);
  6455. path->nodes[level] = btrfs_lock_root_node(root);
  6456. btrfs_set_lock_blocking(path->nodes[level]);
  6457. path->slots[level] = 0;
  6458. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6459. memset(&wc->update_progress, 0,
  6460. sizeof(wc->update_progress));
  6461. } else {
  6462. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  6463. memcpy(&wc->update_progress, &key,
  6464. sizeof(wc->update_progress));
  6465. level = root_item->drop_level;
  6466. BUG_ON(level == 0);
  6467. path->lowest_level = level;
  6468. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  6469. path->lowest_level = 0;
  6470. if (ret < 0) {
  6471. err = ret;
  6472. goto out_end_trans;
  6473. }
  6474. WARN_ON(ret > 0);
  6475. /*
  6476. * unlock our path, this is safe because only this
  6477. * function is allowed to delete this snapshot
  6478. */
  6479. btrfs_unlock_up_safe(path, 0);
  6480. level = btrfs_header_level(root->node);
  6481. while (1) {
  6482. btrfs_tree_lock(path->nodes[level]);
  6483. btrfs_set_lock_blocking(path->nodes[level]);
  6484. ret = btrfs_lookup_extent_info(trans, root,
  6485. path->nodes[level]->start,
  6486. level, 1, &wc->refs[level],
  6487. &wc->flags[level]);
  6488. if (ret < 0) {
  6489. err = ret;
  6490. goto out_end_trans;
  6491. }
  6492. BUG_ON(wc->refs[level] == 0);
  6493. if (level == root_item->drop_level)
  6494. break;
  6495. btrfs_tree_unlock(path->nodes[level]);
  6496. WARN_ON(wc->refs[level] != 1);
  6497. level--;
  6498. }
  6499. }
  6500. wc->level = level;
  6501. wc->shared_level = -1;
  6502. wc->stage = DROP_REFERENCE;
  6503. wc->update_ref = update_ref;
  6504. wc->keep_locks = 0;
  6505. wc->for_reloc = for_reloc;
  6506. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6507. while (1) {
  6508. if (!for_reloc && btrfs_fs_closing(root->fs_info)) {
  6509. pr_debug("btrfs: drop snapshot early exit\n");
  6510. err = -EAGAIN;
  6511. goto out_end_trans;
  6512. }
  6513. ret = walk_down_tree(trans, root, path, wc);
  6514. if (ret < 0) {
  6515. err = ret;
  6516. break;
  6517. }
  6518. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  6519. if (ret < 0) {
  6520. err = ret;
  6521. break;
  6522. }
  6523. if (ret > 0) {
  6524. BUG_ON(wc->stage != DROP_REFERENCE);
  6525. break;
  6526. }
  6527. if (wc->stage == DROP_REFERENCE) {
  6528. level = wc->level;
  6529. btrfs_node_key(path->nodes[level],
  6530. &root_item->drop_progress,
  6531. path->slots[level]);
  6532. root_item->drop_level = level;
  6533. }
  6534. BUG_ON(wc->level == 0);
  6535. if (btrfs_should_end_transaction(trans, tree_root)) {
  6536. ret = btrfs_update_root(trans, tree_root,
  6537. &root->root_key,
  6538. root_item);
  6539. if (ret) {
  6540. btrfs_abort_transaction(trans, tree_root, ret);
  6541. err = ret;
  6542. goto out_end_trans;
  6543. }
  6544. btrfs_end_transaction_throttle(trans, tree_root);
  6545. trans = btrfs_start_transaction(tree_root, 0);
  6546. if (IS_ERR(trans)) {
  6547. err = PTR_ERR(trans);
  6548. goto out_free;
  6549. }
  6550. if (block_rsv)
  6551. trans->block_rsv = block_rsv;
  6552. }
  6553. }
  6554. btrfs_release_path(path);
  6555. if (err)
  6556. goto out_end_trans;
  6557. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  6558. if (ret) {
  6559. btrfs_abort_transaction(trans, tree_root, ret);
  6560. goto out_end_trans;
  6561. }
  6562. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  6563. ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
  6564. NULL, NULL);
  6565. if (ret < 0) {
  6566. btrfs_abort_transaction(trans, tree_root, ret);
  6567. err = ret;
  6568. goto out_end_trans;
  6569. } else if (ret > 0) {
  6570. /* if we fail to delete the orphan item this time
  6571. * around, it'll get picked up the next time.
  6572. *
  6573. * The most common failure here is just -ENOENT.
  6574. */
  6575. btrfs_del_orphan_item(trans, tree_root,
  6576. root->root_key.objectid);
  6577. }
  6578. }
  6579. if (root->in_radix) {
  6580. btrfs_free_fs_root(tree_root->fs_info, root);
  6581. } else {
  6582. free_extent_buffer(root->node);
  6583. free_extent_buffer(root->commit_root);
  6584. kfree(root);
  6585. }
  6586. out_end_trans:
  6587. btrfs_end_transaction_throttle(trans, tree_root);
  6588. out_free:
  6589. kfree(wc);
  6590. btrfs_free_path(path);
  6591. out:
  6592. if (err)
  6593. btrfs_std_error(root->fs_info, err);
  6594. return err;
  6595. }
  6596. /*
  6597. * drop subtree rooted at tree block 'node'.
  6598. *
  6599. * NOTE: this function will unlock and release tree block 'node'
  6600. * only used by relocation code
  6601. */
  6602. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  6603. struct btrfs_root *root,
  6604. struct extent_buffer *node,
  6605. struct extent_buffer *parent)
  6606. {
  6607. struct btrfs_path *path;
  6608. struct walk_control *wc;
  6609. int level;
  6610. int parent_level;
  6611. int ret = 0;
  6612. int wret;
  6613. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  6614. path = btrfs_alloc_path();
  6615. if (!path)
  6616. return -ENOMEM;
  6617. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6618. if (!wc) {
  6619. btrfs_free_path(path);
  6620. return -ENOMEM;
  6621. }
  6622. btrfs_assert_tree_locked(parent);
  6623. parent_level = btrfs_header_level(parent);
  6624. extent_buffer_get(parent);
  6625. path->nodes[parent_level] = parent;
  6626. path->slots[parent_level] = btrfs_header_nritems(parent);
  6627. btrfs_assert_tree_locked(node);
  6628. level = btrfs_header_level(node);
  6629. path->nodes[level] = node;
  6630. path->slots[level] = 0;
  6631. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6632. wc->refs[parent_level] = 1;
  6633. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6634. wc->level = level;
  6635. wc->shared_level = -1;
  6636. wc->stage = DROP_REFERENCE;
  6637. wc->update_ref = 0;
  6638. wc->keep_locks = 1;
  6639. wc->for_reloc = 1;
  6640. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6641. while (1) {
  6642. wret = walk_down_tree(trans, root, path, wc);
  6643. if (wret < 0) {
  6644. ret = wret;
  6645. break;
  6646. }
  6647. wret = walk_up_tree(trans, root, path, wc, parent_level);
  6648. if (wret < 0)
  6649. ret = wret;
  6650. if (wret != 0)
  6651. break;
  6652. }
  6653. kfree(wc);
  6654. btrfs_free_path(path);
  6655. return ret;
  6656. }
  6657. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  6658. {
  6659. u64 num_devices;
  6660. u64 stripped;
  6661. /*
  6662. * if restripe for this chunk_type is on pick target profile and
  6663. * return, otherwise do the usual balance
  6664. */
  6665. stripped = get_restripe_target(root->fs_info, flags);
  6666. if (stripped)
  6667. return extended_to_chunk(stripped);
  6668. /*
  6669. * we add in the count of missing devices because we want
  6670. * to make sure that any RAID levels on a degraded FS
  6671. * continue to be honored.
  6672. */
  6673. num_devices = root->fs_info->fs_devices->rw_devices +
  6674. root->fs_info->fs_devices->missing_devices;
  6675. stripped = BTRFS_BLOCK_GROUP_RAID0 |
  6676. BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
  6677. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  6678. if (num_devices == 1) {
  6679. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6680. stripped = flags & ~stripped;
  6681. /* turn raid0 into single device chunks */
  6682. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  6683. return stripped;
  6684. /* turn mirroring into duplication */
  6685. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6686. BTRFS_BLOCK_GROUP_RAID10))
  6687. return stripped | BTRFS_BLOCK_GROUP_DUP;
  6688. } else {
  6689. /* they already had raid on here, just return */
  6690. if (flags & stripped)
  6691. return flags;
  6692. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6693. stripped = flags & ~stripped;
  6694. /* switch duplicated blocks with raid1 */
  6695. if (flags & BTRFS_BLOCK_GROUP_DUP)
  6696. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  6697. /* this is drive concat, leave it alone */
  6698. }
  6699. return flags;
  6700. }
  6701. static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  6702. {
  6703. struct btrfs_space_info *sinfo = cache->space_info;
  6704. u64 num_bytes;
  6705. u64 min_allocable_bytes;
  6706. int ret = -ENOSPC;
  6707. /*
  6708. * We need some metadata space and system metadata space for
  6709. * allocating chunks in some corner cases until we force to set
  6710. * it to be readonly.
  6711. */
  6712. if ((sinfo->flags &
  6713. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  6714. !force)
  6715. min_allocable_bytes = 1 * 1024 * 1024;
  6716. else
  6717. min_allocable_bytes = 0;
  6718. spin_lock(&sinfo->lock);
  6719. spin_lock(&cache->lock);
  6720. if (cache->ro) {
  6721. ret = 0;
  6722. goto out;
  6723. }
  6724. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6725. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6726. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  6727. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  6728. min_allocable_bytes <= sinfo->total_bytes) {
  6729. sinfo->bytes_readonly += num_bytes;
  6730. cache->ro = 1;
  6731. ret = 0;
  6732. }
  6733. out:
  6734. spin_unlock(&cache->lock);
  6735. spin_unlock(&sinfo->lock);
  6736. return ret;
  6737. }
  6738. int btrfs_set_block_group_ro(struct btrfs_root *root,
  6739. struct btrfs_block_group_cache *cache)
  6740. {
  6741. struct btrfs_trans_handle *trans;
  6742. u64 alloc_flags;
  6743. int ret;
  6744. BUG_ON(cache->ro);
  6745. trans = btrfs_join_transaction(root);
  6746. if (IS_ERR(trans))
  6747. return PTR_ERR(trans);
  6748. alloc_flags = update_block_group_flags(root, cache->flags);
  6749. if (alloc_flags != cache->flags) {
  6750. ret = do_chunk_alloc(trans, root, alloc_flags,
  6751. CHUNK_ALLOC_FORCE);
  6752. if (ret < 0)
  6753. goto out;
  6754. }
  6755. ret = set_block_group_ro(cache, 0);
  6756. if (!ret)
  6757. goto out;
  6758. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  6759. ret = do_chunk_alloc(trans, root, alloc_flags,
  6760. CHUNK_ALLOC_FORCE);
  6761. if (ret < 0)
  6762. goto out;
  6763. ret = set_block_group_ro(cache, 0);
  6764. out:
  6765. btrfs_end_transaction(trans, root);
  6766. return ret;
  6767. }
  6768. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  6769. struct btrfs_root *root, u64 type)
  6770. {
  6771. u64 alloc_flags = get_alloc_profile(root, type);
  6772. return do_chunk_alloc(trans, root, alloc_flags,
  6773. CHUNK_ALLOC_FORCE);
  6774. }
  6775. /*
  6776. * helper to account the unused space of all the readonly block group in the
  6777. * list. takes mirrors into account.
  6778. */
  6779. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  6780. {
  6781. struct btrfs_block_group_cache *block_group;
  6782. u64 free_bytes = 0;
  6783. int factor;
  6784. list_for_each_entry(block_group, groups_list, list) {
  6785. spin_lock(&block_group->lock);
  6786. if (!block_group->ro) {
  6787. spin_unlock(&block_group->lock);
  6788. continue;
  6789. }
  6790. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6791. BTRFS_BLOCK_GROUP_RAID10 |
  6792. BTRFS_BLOCK_GROUP_DUP))
  6793. factor = 2;
  6794. else
  6795. factor = 1;
  6796. free_bytes += (block_group->key.offset -
  6797. btrfs_block_group_used(&block_group->item)) *
  6798. factor;
  6799. spin_unlock(&block_group->lock);
  6800. }
  6801. return free_bytes;
  6802. }
  6803. /*
  6804. * helper to account the unused space of all the readonly block group in the
  6805. * space_info. takes mirrors into account.
  6806. */
  6807. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  6808. {
  6809. int i;
  6810. u64 free_bytes = 0;
  6811. spin_lock(&sinfo->lock);
  6812. for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  6813. if (!list_empty(&sinfo->block_groups[i]))
  6814. free_bytes += __btrfs_get_ro_block_group_free_space(
  6815. &sinfo->block_groups[i]);
  6816. spin_unlock(&sinfo->lock);
  6817. return free_bytes;
  6818. }
  6819. void btrfs_set_block_group_rw(struct btrfs_root *root,
  6820. struct btrfs_block_group_cache *cache)
  6821. {
  6822. struct btrfs_space_info *sinfo = cache->space_info;
  6823. u64 num_bytes;
  6824. BUG_ON(!cache->ro);
  6825. spin_lock(&sinfo->lock);
  6826. spin_lock(&cache->lock);
  6827. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6828. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6829. sinfo->bytes_readonly -= num_bytes;
  6830. cache->ro = 0;
  6831. spin_unlock(&cache->lock);
  6832. spin_unlock(&sinfo->lock);
  6833. }
  6834. /*
  6835. * checks to see if its even possible to relocate this block group.
  6836. *
  6837. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  6838. * ok to go ahead and try.
  6839. */
  6840. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  6841. {
  6842. struct btrfs_block_group_cache *block_group;
  6843. struct btrfs_space_info *space_info;
  6844. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  6845. struct btrfs_device *device;
  6846. u64 min_free;
  6847. u64 dev_min = 1;
  6848. u64 dev_nr = 0;
  6849. u64 target;
  6850. int index;
  6851. int full = 0;
  6852. int ret = 0;
  6853. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  6854. /* odd, couldn't find the block group, leave it alone */
  6855. if (!block_group)
  6856. return -1;
  6857. min_free = btrfs_block_group_used(&block_group->item);
  6858. /* no bytes used, we're good */
  6859. if (!min_free)
  6860. goto out;
  6861. space_info = block_group->space_info;
  6862. spin_lock(&space_info->lock);
  6863. full = space_info->full;
  6864. /*
  6865. * if this is the last block group we have in this space, we can't
  6866. * relocate it unless we're able to allocate a new chunk below.
  6867. *
  6868. * Otherwise, we need to make sure we have room in the space to handle
  6869. * all of the extents from this block group. If we can, we're good
  6870. */
  6871. if ((space_info->total_bytes != block_group->key.offset) &&
  6872. (space_info->bytes_used + space_info->bytes_reserved +
  6873. space_info->bytes_pinned + space_info->bytes_readonly +
  6874. min_free < space_info->total_bytes)) {
  6875. spin_unlock(&space_info->lock);
  6876. goto out;
  6877. }
  6878. spin_unlock(&space_info->lock);
  6879. /*
  6880. * ok we don't have enough space, but maybe we have free space on our
  6881. * devices to allocate new chunks for relocation, so loop through our
  6882. * alloc devices and guess if we have enough space. if this block
  6883. * group is going to be restriped, run checks against the target
  6884. * profile instead of the current one.
  6885. */
  6886. ret = -1;
  6887. /*
  6888. * index:
  6889. * 0: raid10
  6890. * 1: raid1
  6891. * 2: dup
  6892. * 3: raid0
  6893. * 4: single
  6894. */
  6895. target = get_restripe_target(root->fs_info, block_group->flags);
  6896. if (target) {
  6897. index = __get_raid_index(extended_to_chunk(target));
  6898. } else {
  6899. /*
  6900. * this is just a balance, so if we were marked as full
  6901. * we know there is no space for a new chunk
  6902. */
  6903. if (full)
  6904. goto out;
  6905. index = get_block_group_index(block_group);
  6906. }
  6907. if (index == BTRFS_RAID_RAID10) {
  6908. dev_min = 4;
  6909. /* Divide by 2 */
  6910. min_free >>= 1;
  6911. } else if (index == BTRFS_RAID_RAID1) {
  6912. dev_min = 2;
  6913. } else if (index == BTRFS_RAID_DUP) {
  6914. /* Multiply by 2 */
  6915. min_free <<= 1;
  6916. } else if (index == BTRFS_RAID_RAID0) {
  6917. dev_min = fs_devices->rw_devices;
  6918. do_div(min_free, dev_min);
  6919. }
  6920. mutex_lock(&root->fs_info->chunk_mutex);
  6921. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  6922. u64 dev_offset;
  6923. /*
  6924. * check to make sure we can actually find a chunk with enough
  6925. * space to fit our block group in.
  6926. */
  6927. if (device->total_bytes > device->bytes_used + min_free &&
  6928. !device->is_tgtdev_for_dev_replace) {
  6929. ret = find_free_dev_extent(device, min_free,
  6930. &dev_offset, NULL);
  6931. if (!ret)
  6932. dev_nr++;
  6933. if (dev_nr >= dev_min)
  6934. break;
  6935. ret = -1;
  6936. }
  6937. }
  6938. mutex_unlock(&root->fs_info->chunk_mutex);
  6939. out:
  6940. btrfs_put_block_group(block_group);
  6941. return ret;
  6942. }
  6943. static int find_first_block_group(struct btrfs_root *root,
  6944. struct btrfs_path *path, struct btrfs_key *key)
  6945. {
  6946. int ret = 0;
  6947. struct btrfs_key found_key;
  6948. struct extent_buffer *leaf;
  6949. int slot;
  6950. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  6951. if (ret < 0)
  6952. goto out;
  6953. while (1) {
  6954. slot = path->slots[0];
  6955. leaf = path->nodes[0];
  6956. if (slot >= btrfs_header_nritems(leaf)) {
  6957. ret = btrfs_next_leaf(root, path);
  6958. if (ret == 0)
  6959. continue;
  6960. if (ret < 0)
  6961. goto out;
  6962. break;
  6963. }
  6964. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  6965. if (found_key.objectid >= key->objectid &&
  6966. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  6967. ret = 0;
  6968. goto out;
  6969. }
  6970. path->slots[0]++;
  6971. }
  6972. out:
  6973. return ret;
  6974. }
  6975. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  6976. {
  6977. struct btrfs_block_group_cache *block_group;
  6978. u64 last = 0;
  6979. while (1) {
  6980. struct inode *inode;
  6981. block_group = btrfs_lookup_first_block_group(info, last);
  6982. while (block_group) {
  6983. spin_lock(&block_group->lock);
  6984. if (block_group->iref)
  6985. break;
  6986. spin_unlock(&block_group->lock);
  6987. block_group = next_block_group(info->tree_root,
  6988. block_group);
  6989. }
  6990. if (!block_group) {
  6991. if (last == 0)
  6992. break;
  6993. last = 0;
  6994. continue;
  6995. }
  6996. inode = block_group->inode;
  6997. block_group->iref = 0;
  6998. block_group->inode = NULL;
  6999. spin_unlock(&block_group->lock);
  7000. iput(inode);
  7001. last = block_group->key.objectid + block_group->key.offset;
  7002. btrfs_put_block_group(block_group);
  7003. }
  7004. }
  7005. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  7006. {
  7007. struct btrfs_block_group_cache *block_group;
  7008. struct btrfs_space_info *space_info;
  7009. struct btrfs_caching_control *caching_ctl;
  7010. struct rb_node *n;
  7011. down_write(&info->extent_commit_sem);
  7012. while (!list_empty(&info->caching_block_groups)) {
  7013. caching_ctl = list_entry(info->caching_block_groups.next,
  7014. struct btrfs_caching_control, list);
  7015. list_del(&caching_ctl->list);
  7016. put_caching_control(caching_ctl);
  7017. }
  7018. up_write(&info->extent_commit_sem);
  7019. spin_lock(&info->block_group_cache_lock);
  7020. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  7021. block_group = rb_entry(n, struct btrfs_block_group_cache,
  7022. cache_node);
  7023. rb_erase(&block_group->cache_node,
  7024. &info->block_group_cache_tree);
  7025. spin_unlock(&info->block_group_cache_lock);
  7026. down_write(&block_group->space_info->groups_sem);
  7027. list_del(&block_group->list);
  7028. up_write(&block_group->space_info->groups_sem);
  7029. if (block_group->cached == BTRFS_CACHE_STARTED)
  7030. wait_block_group_cache_done(block_group);
  7031. /*
  7032. * We haven't cached this block group, which means we could
  7033. * possibly have excluded extents on this block group.
  7034. */
  7035. if (block_group->cached == BTRFS_CACHE_NO)
  7036. free_excluded_extents(info->extent_root, block_group);
  7037. btrfs_remove_free_space_cache(block_group);
  7038. btrfs_put_block_group(block_group);
  7039. spin_lock(&info->block_group_cache_lock);
  7040. }
  7041. spin_unlock(&info->block_group_cache_lock);
  7042. /* now that all the block groups are freed, go through and
  7043. * free all the space_info structs. This is only called during
  7044. * the final stages of unmount, and so we know nobody is
  7045. * using them. We call synchronize_rcu() once before we start,
  7046. * just to be on the safe side.
  7047. */
  7048. synchronize_rcu();
  7049. release_global_block_rsv(info);
  7050. while(!list_empty(&info->space_info)) {
  7051. space_info = list_entry(info->space_info.next,
  7052. struct btrfs_space_info,
  7053. list);
  7054. if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
  7055. if (space_info->bytes_pinned > 0 ||
  7056. space_info->bytes_reserved > 0 ||
  7057. space_info->bytes_may_use > 0) {
  7058. WARN_ON(1);
  7059. dump_space_info(space_info, 0, 0);
  7060. }
  7061. }
  7062. list_del(&space_info->list);
  7063. kfree(space_info);
  7064. }
  7065. return 0;
  7066. }
  7067. static void __link_block_group(struct btrfs_space_info *space_info,
  7068. struct btrfs_block_group_cache *cache)
  7069. {
  7070. int index = get_block_group_index(cache);
  7071. down_write(&space_info->groups_sem);
  7072. list_add_tail(&cache->list, &space_info->block_groups[index]);
  7073. up_write(&space_info->groups_sem);
  7074. }
  7075. int btrfs_read_block_groups(struct btrfs_root *root)
  7076. {
  7077. struct btrfs_path *path;
  7078. int ret;
  7079. struct btrfs_block_group_cache *cache;
  7080. struct btrfs_fs_info *info = root->fs_info;
  7081. struct btrfs_space_info *space_info;
  7082. struct btrfs_key key;
  7083. struct btrfs_key found_key;
  7084. struct extent_buffer *leaf;
  7085. int need_clear = 0;
  7086. u64 cache_gen;
  7087. root = info->extent_root;
  7088. key.objectid = 0;
  7089. key.offset = 0;
  7090. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  7091. path = btrfs_alloc_path();
  7092. if (!path)
  7093. return -ENOMEM;
  7094. path->reada = 1;
  7095. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  7096. if (btrfs_test_opt(root, SPACE_CACHE) &&
  7097. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  7098. need_clear = 1;
  7099. if (btrfs_test_opt(root, CLEAR_CACHE))
  7100. need_clear = 1;
  7101. while (1) {
  7102. ret = find_first_block_group(root, path, &key);
  7103. if (ret > 0)
  7104. break;
  7105. if (ret != 0)
  7106. goto error;
  7107. leaf = path->nodes[0];
  7108. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  7109. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  7110. if (!cache) {
  7111. ret = -ENOMEM;
  7112. goto error;
  7113. }
  7114. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  7115. GFP_NOFS);
  7116. if (!cache->free_space_ctl) {
  7117. kfree(cache);
  7118. ret = -ENOMEM;
  7119. goto error;
  7120. }
  7121. atomic_set(&cache->count, 1);
  7122. spin_lock_init(&cache->lock);
  7123. cache->fs_info = info;
  7124. INIT_LIST_HEAD(&cache->list);
  7125. INIT_LIST_HEAD(&cache->cluster_list);
  7126. if (need_clear) {
  7127. /*
  7128. * When we mount with old space cache, we need to
  7129. * set BTRFS_DC_CLEAR and set dirty flag.
  7130. *
  7131. * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
  7132. * truncate the old free space cache inode and
  7133. * setup a new one.
  7134. * b) Setting 'dirty flag' makes sure that we flush
  7135. * the new space cache info onto disk.
  7136. */
  7137. cache->disk_cache_state = BTRFS_DC_CLEAR;
  7138. if (btrfs_test_opt(root, SPACE_CACHE))
  7139. cache->dirty = 1;
  7140. }
  7141. read_extent_buffer(leaf, &cache->item,
  7142. btrfs_item_ptr_offset(leaf, path->slots[0]),
  7143. sizeof(cache->item));
  7144. memcpy(&cache->key, &found_key, sizeof(found_key));
  7145. key.objectid = found_key.objectid + found_key.offset;
  7146. btrfs_release_path(path);
  7147. cache->flags = btrfs_block_group_flags(&cache->item);
  7148. cache->sectorsize = root->sectorsize;
  7149. cache->full_stripe_len = btrfs_full_stripe_len(root,
  7150. &root->fs_info->mapping_tree,
  7151. found_key.objectid);
  7152. btrfs_init_free_space_ctl(cache);
  7153. /*
  7154. * We need to exclude the super stripes now so that the space
  7155. * info has super bytes accounted for, otherwise we'll think
  7156. * we have more space than we actually do.
  7157. */
  7158. ret = exclude_super_stripes(root, cache);
  7159. if (ret) {
  7160. /*
  7161. * We may have excluded something, so call this just in
  7162. * case.
  7163. */
  7164. free_excluded_extents(root, cache);
  7165. kfree(cache->free_space_ctl);
  7166. kfree(cache);
  7167. goto error;
  7168. }
  7169. /*
  7170. * check for two cases, either we are full, and therefore
  7171. * don't need to bother with the caching work since we won't
  7172. * find any space, or we are empty, and we can just add all
  7173. * the space in and be done with it. This saves us _alot_ of
  7174. * time, particularly in the full case.
  7175. */
  7176. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  7177. cache->last_byte_to_unpin = (u64)-1;
  7178. cache->cached = BTRFS_CACHE_FINISHED;
  7179. free_excluded_extents(root, cache);
  7180. } else if (btrfs_block_group_used(&cache->item) == 0) {
  7181. cache->last_byte_to_unpin = (u64)-1;
  7182. cache->cached = BTRFS_CACHE_FINISHED;
  7183. add_new_free_space(cache, root->fs_info,
  7184. found_key.objectid,
  7185. found_key.objectid +
  7186. found_key.offset);
  7187. free_excluded_extents(root, cache);
  7188. }
  7189. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  7190. if (ret) {
  7191. btrfs_remove_free_space_cache(cache);
  7192. btrfs_put_block_group(cache);
  7193. goto error;
  7194. }
  7195. ret = update_space_info(info, cache->flags, found_key.offset,
  7196. btrfs_block_group_used(&cache->item),
  7197. &space_info);
  7198. if (ret) {
  7199. btrfs_remove_free_space_cache(cache);
  7200. spin_lock(&info->block_group_cache_lock);
  7201. rb_erase(&cache->cache_node,
  7202. &info->block_group_cache_tree);
  7203. spin_unlock(&info->block_group_cache_lock);
  7204. btrfs_put_block_group(cache);
  7205. goto error;
  7206. }
  7207. cache->space_info = space_info;
  7208. spin_lock(&cache->space_info->lock);
  7209. cache->space_info->bytes_readonly += cache->bytes_super;
  7210. spin_unlock(&cache->space_info->lock);
  7211. __link_block_group(space_info, cache);
  7212. set_avail_alloc_bits(root->fs_info, cache->flags);
  7213. if (btrfs_chunk_readonly(root, cache->key.objectid))
  7214. set_block_group_ro(cache, 1);
  7215. }
  7216. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  7217. if (!(get_alloc_profile(root, space_info->flags) &
  7218. (BTRFS_BLOCK_GROUP_RAID10 |
  7219. BTRFS_BLOCK_GROUP_RAID1 |
  7220. BTRFS_BLOCK_GROUP_RAID5 |
  7221. BTRFS_BLOCK_GROUP_RAID6 |
  7222. BTRFS_BLOCK_GROUP_DUP)))
  7223. continue;
  7224. /*
  7225. * avoid allocating from un-mirrored block group if there are
  7226. * mirrored block groups.
  7227. */
  7228. list_for_each_entry(cache, &space_info->block_groups[3], list)
  7229. set_block_group_ro(cache, 1);
  7230. list_for_each_entry(cache, &space_info->block_groups[4], list)
  7231. set_block_group_ro(cache, 1);
  7232. }
  7233. init_global_block_rsv(info);
  7234. ret = 0;
  7235. error:
  7236. btrfs_free_path(path);
  7237. return ret;
  7238. }
  7239. void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
  7240. struct btrfs_root *root)
  7241. {
  7242. struct btrfs_block_group_cache *block_group, *tmp;
  7243. struct btrfs_root *extent_root = root->fs_info->extent_root;
  7244. struct btrfs_block_group_item item;
  7245. struct btrfs_key key;
  7246. int ret = 0;
  7247. list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
  7248. new_bg_list) {
  7249. list_del_init(&block_group->new_bg_list);
  7250. if (ret)
  7251. continue;
  7252. spin_lock(&block_group->lock);
  7253. memcpy(&item, &block_group->item, sizeof(item));
  7254. memcpy(&key, &block_group->key, sizeof(key));
  7255. spin_unlock(&block_group->lock);
  7256. ret = btrfs_insert_item(trans, extent_root, &key, &item,
  7257. sizeof(item));
  7258. if (ret)
  7259. btrfs_abort_transaction(trans, extent_root, ret);
  7260. }
  7261. }
  7262. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  7263. struct btrfs_root *root, u64 bytes_used,
  7264. u64 type, u64 chunk_objectid, u64 chunk_offset,
  7265. u64 size)
  7266. {
  7267. int ret;
  7268. struct btrfs_root *extent_root;
  7269. struct btrfs_block_group_cache *cache;
  7270. extent_root = root->fs_info->extent_root;
  7271. root->fs_info->last_trans_log_full_commit = trans->transid;
  7272. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  7273. if (!cache)
  7274. return -ENOMEM;
  7275. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  7276. GFP_NOFS);
  7277. if (!cache->free_space_ctl) {
  7278. kfree(cache);
  7279. return -ENOMEM;
  7280. }
  7281. cache->key.objectid = chunk_offset;
  7282. cache->key.offset = size;
  7283. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  7284. cache->sectorsize = root->sectorsize;
  7285. cache->fs_info = root->fs_info;
  7286. cache->full_stripe_len = btrfs_full_stripe_len(root,
  7287. &root->fs_info->mapping_tree,
  7288. chunk_offset);
  7289. atomic_set(&cache->count, 1);
  7290. spin_lock_init(&cache->lock);
  7291. INIT_LIST_HEAD(&cache->list);
  7292. INIT_LIST_HEAD(&cache->cluster_list);
  7293. INIT_LIST_HEAD(&cache->new_bg_list);
  7294. btrfs_init_free_space_ctl(cache);
  7295. btrfs_set_block_group_used(&cache->item, bytes_used);
  7296. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  7297. cache->flags = type;
  7298. btrfs_set_block_group_flags(&cache->item, type);
  7299. cache->last_byte_to_unpin = (u64)-1;
  7300. cache->cached = BTRFS_CACHE_FINISHED;
  7301. ret = exclude_super_stripes(root, cache);
  7302. if (ret) {
  7303. /*
  7304. * We may have excluded something, so call this just in
  7305. * case.
  7306. */
  7307. free_excluded_extents(root, cache);
  7308. kfree(cache->free_space_ctl);
  7309. kfree(cache);
  7310. return ret;
  7311. }
  7312. add_new_free_space(cache, root->fs_info, chunk_offset,
  7313. chunk_offset + size);
  7314. free_excluded_extents(root, cache);
  7315. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  7316. if (ret) {
  7317. btrfs_remove_free_space_cache(cache);
  7318. btrfs_put_block_group(cache);
  7319. return ret;
  7320. }
  7321. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  7322. &cache->space_info);
  7323. if (ret) {
  7324. btrfs_remove_free_space_cache(cache);
  7325. spin_lock(&root->fs_info->block_group_cache_lock);
  7326. rb_erase(&cache->cache_node,
  7327. &root->fs_info->block_group_cache_tree);
  7328. spin_unlock(&root->fs_info->block_group_cache_lock);
  7329. btrfs_put_block_group(cache);
  7330. return ret;
  7331. }
  7332. update_global_block_rsv(root->fs_info);
  7333. spin_lock(&cache->space_info->lock);
  7334. cache->space_info->bytes_readonly += cache->bytes_super;
  7335. spin_unlock(&cache->space_info->lock);
  7336. __link_block_group(cache->space_info, cache);
  7337. list_add_tail(&cache->new_bg_list, &trans->new_bgs);
  7338. set_avail_alloc_bits(extent_root->fs_info, type);
  7339. return 0;
  7340. }
  7341. static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  7342. {
  7343. u64 extra_flags = chunk_to_extended(flags) &
  7344. BTRFS_EXTENDED_PROFILE_MASK;
  7345. write_seqlock(&fs_info->profiles_lock);
  7346. if (flags & BTRFS_BLOCK_GROUP_DATA)
  7347. fs_info->avail_data_alloc_bits &= ~extra_flags;
  7348. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  7349. fs_info->avail_metadata_alloc_bits &= ~extra_flags;
  7350. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  7351. fs_info->avail_system_alloc_bits &= ~extra_flags;
  7352. write_sequnlock(&fs_info->profiles_lock);
  7353. }
  7354. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  7355. struct btrfs_root *root, u64 group_start)
  7356. {
  7357. struct btrfs_path *path;
  7358. struct btrfs_block_group_cache *block_group;
  7359. struct btrfs_free_cluster *cluster;
  7360. struct btrfs_root *tree_root = root->fs_info->tree_root;
  7361. struct btrfs_key key;
  7362. struct inode *inode;
  7363. int ret;
  7364. int index;
  7365. int factor;
  7366. root = root->fs_info->extent_root;
  7367. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  7368. BUG_ON(!block_group);
  7369. BUG_ON(!block_group->ro);
  7370. /*
  7371. * Free the reserved super bytes from this block group before
  7372. * remove it.
  7373. */
  7374. free_excluded_extents(root, block_group);
  7375. memcpy(&key, &block_group->key, sizeof(key));
  7376. index = get_block_group_index(block_group);
  7377. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  7378. BTRFS_BLOCK_GROUP_RAID1 |
  7379. BTRFS_BLOCK_GROUP_RAID10))
  7380. factor = 2;
  7381. else
  7382. factor = 1;
  7383. /* make sure this block group isn't part of an allocation cluster */
  7384. cluster = &root->fs_info->data_alloc_cluster;
  7385. spin_lock(&cluster->refill_lock);
  7386. btrfs_return_cluster_to_free_space(block_group, cluster);
  7387. spin_unlock(&cluster->refill_lock);
  7388. /*
  7389. * make sure this block group isn't part of a metadata
  7390. * allocation cluster
  7391. */
  7392. cluster = &root->fs_info->meta_alloc_cluster;
  7393. spin_lock(&cluster->refill_lock);
  7394. btrfs_return_cluster_to_free_space(block_group, cluster);
  7395. spin_unlock(&cluster->refill_lock);
  7396. path = btrfs_alloc_path();
  7397. if (!path) {
  7398. ret = -ENOMEM;
  7399. goto out;
  7400. }
  7401. inode = lookup_free_space_inode(tree_root, block_group, path);
  7402. if (!IS_ERR(inode)) {
  7403. ret = btrfs_orphan_add(trans, inode);
  7404. if (ret) {
  7405. btrfs_add_delayed_iput(inode);
  7406. goto out;
  7407. }
  7408. clear_nlink(inode);
  7409. /* One for the block groups ref */
  7410. spin_lock(&block_group->lock);
  7411. if (block_group->iref) {
  7412. block_group->iref = 0;
  7413. block_group->inode = NULL;
  7414. spin_unlock(&block_group->lock);
  7415. iput(inode);
  7416. } else {
  7417. spin_unlock(&block_group->lock);
  7418. }
  7419. /* One for our lookup ref */
  7420. btrfs_add_delayed_iput(inode);
  7421. }
  7422. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  7423. key.offset = block_group->key.objectid;
  7424. key.type = 0;
  7425. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  7426. if (ret < 0)
  7427. goto out;
  7428. if (ret > 0)
  7429. btrfs_release_path(path);
  7430. if (ret == 0) {
  7431. ret = btrfs_del_item(trans, tree_root, path);
  7432. if (ret)
  7433. goto out;
  7434. btrfs_release_path(path);
  7435. }
  7436. spin_lock(&root->fs_info->block_group_cache_lock);
  7437. rb_erase(&block_group->cache_node,
  7438. &root->fs_info->block_group_cache_tree);
  7439. if (root->fs_info->first_logical_byte == block_group->key.objectid)
  7440. root->fs_info->first_logical_byte = (u64)-1;
  7441. spin_unlock(&root->fs_info->block_group_cache_lock);
  7442. down_write(&block_group->space_info->groups_sem);
  7443. /*
  7444. * we must use list_del_init so people can check to see if they
  7445. * are still on the list after taking the semaphore
  7446. */
  7447. list_del_init(&block_group->list);
  7448. if (list_empty(&block_group->space_info->block_groups[index]))
  7449. clear_avail_alloc_bits(root->fs_info, block_group->flags);
  7450. up_write(&block_group->space_info->groups_sem);
  7451. if (block_group->cached == BTRFS_CACHE_STARTED)
  7452. wait_block_group_cache_done(block_group);
  7453. btrfs_remove_free_space_cache(block_group);
  7454. spin_lock(&block_group->space_info->lock);
  7455. block_group->space_info->total_bytes -= block_group->key.offset;
  7456. block_group->space_info->bytes_readonly -= block_group->key.offset;
  7457. block_group->space_info->disk_total -= block_group->key.offset * factor;
  7458. spin_unlock(&block_group->space_info->lock);
  7459. memcpy(&key, &block_group->key, sizeof(key));
  7460. btrfs_clear_space_info_full(root->fs_info);
  7461. btrfs_put_block_group(block_group);
  7462. btrfs_put_block_group(block_group);
  7463. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  7464. if (ret > 0)
  7465. ret = -EIO;
  7466. if (ret < 0)
  7467. goto out;
  7468. ret = btrfs_del_item(trans, root, path);
  7469. out:
  7470. btrfs_free_path(path);
  7471. return ret;
  7472. }
  7473. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  7474. {
  7475. struct btrfs_space_info *space_info;
  7476. struct btrfs_super_block *disk_super;
  7477. u64 features;
  7478. u64 flags;
  7479. int mixed = 0;
  7480. int ret;
  7481. disk_super = fs_info->super_copy;
  7482. if (!btrfs_super_root(disk_super))
  7483. return 1;
  7484. features = btrfs_super_incompat_flags(disk_super);
  7485. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  7486. mixed = 1;
  7487. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  7488. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7489. if (ret)
  7490. goto out;
  7491. if (mixed) {
  7492. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  7493. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7494. } else {
  7495. flags = BTRFS_BLOCK_GROUP_METADATA;
  7496. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7497. if (ret)
  7498. goto out;
  7499. flags = BTRFS_BLOCK_GROUP_DATA;
  7500. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7501. }
  7502. out:
  7503. return ret;
  7504. }
  7505. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  7506. {
  7507. return unpin_extent_range(root, start, end);
  7508. }
  7509. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  7510. u64 num_bytes, u64 *actual_bytes)
  7511. {
  7512. return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
  7513. }
  7514. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  7515. {
  7516. struct btrfs_fs_info *fs_info = root->fs_info;
  7517. struct btrfs_block_group_cache *cache = NULL;
  7518. u64 group_trimmed;
  7519. u64 start;
  7520. u64 end;
  7521. u64 trimmed = 0;
  7522. u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
  7523. int ret = 0;
  7524. /*
  7525. * try to trim all FS space, our block group may start from non-zero.
  7526. */
  7527. if (range->len == total_bytes)
  7528. cache = btrfs_lookup_first_block_group(fs_info, range->start);
  7529. else
  7530. cache = btrfs_lookup_block_group(fs_info, range->start);
  7531. while (cache) {
  7532. if (cache->key.objectid >= (range->start + range->len)) {
  7533. btrfs_put_block_group(cache);
  7534. break;
  7535. }
  7536. start = max(range->start, cache->key.objectid);
  7537. end = min(range->start + range->len,
  7538. cache->key.objectid + cache->key.offset);
  7539. if (end - start >= range->minlen) {
  7540. if (!block_group_cache_done(cache)) {
  7541. ret = cache_block_group(cache, 0);
  7542. if (!ret)
  7543. wait_block_group_cache_done(cache);
  7544. }
  7545. ret = btrfs_trim_block_group(cache,
  7546. &group_trimmed,
  7547. start,
  7548. end,
  7549. range->minlen);
  7550. trimmed += group_trimmed;
  7551. if (ret) {
  7552. btrfs_put_block_group(cache);
  7553. break;
  7554. }
  7555. }
  7556. cache = next_block_group(fs_info->tree_root, cache);
  7557. }
  7558. range->len = trimmed;
  7559. return ret;
  7560. }