rxrpc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. /* Maintain an RxRPC server socket to do AFS communications through
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <net/sock.h>
  12. #include <net/af_rxrpc.h>
  13. #include <rxrpc/packet.h>
  14. #include "internal.h"
  15. #include "afs_cm.h"
  16. static struct socket *afs_socket; /* my RxRPC socket */
  17. static struct workqueue_struct *afs_async_calls;
  18. static atomic_t afs_outstanding_calls;
  19. static atomic_t afs_outstanding_skbs;
  20. static void afs_wake_up_call_waiter(struct afs_call *);
  21. static int afs_wait_for_call_to_complete(struct afs_call *);
  22. static void afs_wake_up_async_call(struct afs_call *);
  23. static int afs_dont_wait_for_call_to_complete(struct afs_call *);
  24. static void afs_process_async_call(struct work_struct *);
  25. static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *);
  26. static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool);
  27. /* synchronous call management */
  28. const struct afs_wait_mode afs_sync_call = {
  29. .rx_wakeup = afs_wake_up_call_waiter,
  30. .wait = afs_wait_for_call_to_complete,
  31. };
  32. /* asynchronous call management */
  33. const struct afs_wait_mode afs_async_call = {
  34. .rx_wakeup = afs_wake_up_async_call,
  35. .wait = afs_dont_wait_for_call_to_complete,
  36. };
  37. /* asynchronous incoming call management */
  38. static const struct afs_wait_mode afs_async_incoming_call = {
  39. .rx_wakeup = afs_wake_up_async_call,
  40. };
  41. /* asynchronous incoming call initial processing */
  42. static const struct afs_call_type afs_RXCMxxxx = {
  43. .name = "CB.xxxx",
  44. .deliver = afs_deliver_cm_op_id,
  45. .abort_to_error = afs_abort_to_error,
  46. };
  47. static void afs_collect_incoming_call(struct work_struct *);
  48. static struct sk_buff_head afs_incoming_calls;
  49. static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call);
  50. /*
  51. * open an RxRPC socket and bind it to be a server for callback notifications
  52. * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
  53. */
  54. int afs_open_socket(void)
  55. {
  56. struct sockaddr_rxrpc srx;
  57. struct socket *socket;
  58. int ret;
  59. _enter("");
  60. skb_queue_head_init(&afs_incoming_calls);
  61. afs_async_calls = create_singlethread_workqueue("kafsd");
  62. if (!afs_async_calls) {
  63. _leave(" = -ENOMEM [wq]");
  64. return -ENOMEM;
  65. }
  66. ret = sock_create_kern(AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
  67. if (ret < 0) {
  68. destroy_workqueue(afs_async_calls);
  69. _leave(" = %d [socket]", ret);
  70. return ret;
  71. }
  72. socket->sk->sk_allocation = GFP_NOFS;
  73. /* bind the callback manager's address to make this a server socket */
  74. srx.srx_family = AF_RXRPC;
  75. srx.srx_service = CM_SERVICE;
  76. srx.transport_type = SOCK_DGRAM;
  77. srx.transport_len = sizeof(srx.transport.sin);
  78. srx.transport.sin.sin_family = AF_INET;
  79. srx.transport.sin.sin_port = htons(AFS_CM_PORT);
  80. memset(&srx.transport.sin.sin_addr, 0,
  81. sizeof(srx.transport.sin.sin_addr));
  82. ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
  83. if (ret < 0) {
  84. sock_release(socket);
  85. _leave(" = %d [bind]", ret);
  86. return ret;
  87. }
  88. rxrpc_kernel_intercept_rx_messages(socket, afs_rx_interceptor);
  89. afs_socket = socket;
  90. _leave(" = 0");
  91. return 0;
  92. }
  93. /*
  94. * close the RxRPC socket AFS was using
  95. */
  96. void afs_close_socket(void)
  97. {
  98. _enter("");
  99. sock_release(afs_socket);
  100. _debug("dework");
  101. destroy_workqueue(afs_async_calls);
  102. ASSERTCMP(atomic_read(&afs_outstanding_skbs), ==, 0);
  103. ASSERTCMP(atomic_read(&afs_outstanding_calls), ==, 0);
  104. _leave("");
  105. }
  106. /*
  107. * note that the data in a socket buffer is now delivered and that the buffer
  108. * should be freed
  109. */
  110. static void afs_data_delivered(struct sk_buff *skb)
  111. {
  112. if (!skb) {
  113. _debug("DLVR NULL [%d]", atomic_read(&afs_outstanding_skbs));
  114. dump_stack();
  115. } else {
  116. _debug("DLVR %p{%u} [%d]",
  117. skb, skb->mark, atomic_read(&afs_outstanding_skbs));
  118. if (atomic_dec_return(&afs_outstanding_skbs) == -1)
  119. BUG();
  120. rxrpc_kernel_data_delivered(skb);
  121. }
  122. }
  123. /*
  124. * free a socket buffer
  125. */
  126. static void afs_free_skb(struct sk_buff *skb)
  127. {
  128. if (!skb) {
  129. _debug("FREE NULL [%d]", atomic_read(&afs_outstanding_skbs));
  130. dump_stack();
  131. } else {
  132. _debug("FREE %p{%u} [%d]",
  133. skb, skb->mark, atomic_read(&afs_outstanding_skbs));
  134. if (atomic_dec_return(&afs_outstanding_skbs) == -1)
  135. BUG();
  136. rxrpc_kernel_free_skb(skb);
  137. }
  138. }
  139. /*
  140. * free a call
  141. */
  142. static void afs_free_call(struct afs_call *call)
  143. {
  144. _debug("DONE %p{%s} [%d]",
  145. call, call->type->name, atomic_read(&afs_outstanding_calls));
  146. if (atomic_dec_return(&afs_outstanding_calls) == -1)
  147. BUG();
  148. ASSERTCMP(call->rxcall, ==, NULL);
  149. ASSERT(!work_pending(&call->async_work));
  150. ASSERT(skb_queue_empty(&call->rx_queue));
  151. ASSERT(call->type->name != NULL);
  152. kfree(call->request);
  153. kfree(call);
  154. }
  155. /*
  156. * allocate a call with flat request and reply buffers
  157. */
  158. struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
  159. size_t request_size, size_t reply_size)
  160. {
  161. struct afs_call *call;
  162. call = kzalloc(sizeof(*call), GFP_NOFS);
  163. if (!call)
  164. goto nomem_call;
  165. _debug("CALL %p{%s} [%d]",
  166. call, type->name, atomic_read(&afs_outstanding_calls));
  167. atomic_inc(&afs_outstanding_calls);
  168. call->type = type;
  169. call->request_size = request_size;
  170. call->reply_max = reply_size;
  171. if (request_size) {
  172. call->request = kmalloc(request_size, GFP_NOFS);
  173. if (!call->request)
  174. goto nomem_free;
  175. }
  176. if (reply_size) {
  177. call->buffer = kmalloc(reply_size, GFP_NOFS);
  178. if (!call->buffer)
  179. goto nomem_free;
  180. }
  181. init_waitqueue_head(&call->waitq);
  182. skb_queue_head_init(&call->rx_queue);
  183. return call;
  184. nomem_free:
  185. afs_free_call(call);
  186. nomem_call:
  187. return NULL;
  188. }
  189. /*
  190. * clean up a call with flat buffer
  191. */
  192. void afs_flat_call_destructor(struct afs_call *call)
  193. {
  194. _enter("");
  195. kfree(call->request);
  196. call->request = NULL;
  197. kfree(call->buffer);
  198. call->buffer = NULL;
  199. }
  200. /*
  201. * initiate a call
  202. */
  203. int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
  204. const struct afs_wait_mode *wait_mode)
  205. {
  206. struct sockaddr_rxrpc srx;
  207. struct rxrpc_call *rxcall;
  208. struct msghdr msg;
  209. struct kvec iov[1];
  210. int ret;
  211. _enter("%x,{%d},", addr->s_addr, ntohs(call->port));
  212. ASSERT(call->type != NULL);
  213. ASSERT(call->type->name != NULL);
  214. _debug("MAKE %p{%s} [%d]",
  215. call, call->type->name, atomic_read(&afs_outstanding_calls));
  216. call->wait_mode = wait_mode;
  217. INIT_WORK(&call->async_work, afs_process_async_call);
  218. memset(&srx, 0, sizeof(srx));
  219. srx.srx_family = AF_RXRPC;
  220. srx.srx_service = call->service_id;
  221. srx.transport_type = SOCK_DGRAM;
  222. srx.transport_len = sizeof(srx.transport.sin);
  223. srx.transport.sin.sin_family = AF_INET;
  224. srx.transport.sin.sin_port = call->port;
  225. memcpy(&srx.transport.sin.sin_addr, addr, 4);
  226. /* create a call */
  227. rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
  228. (unsigned long) call, gfp);
  229. call->key = NULL;
  230. if (IS_ERR(rxcall)) {
  231. ret = PTR_ERR(rxcall);
  232. goto error_kill_call;
  233. }
  234. call->rxcall = rxcall;
  235. /* send the request */
  236. iov[0].iov_base = call->request;
  237. iov[0].iov_len = call->request_size;
  238. msg.msg_name = NULL;
  239. msg.msg_namelen = 0;
  240. msg.msg_iov = (struct iovec *) iov;
  241. msg.msg_iovlen = 1;
  242. msg.msg_control = NULL;
  243. msg.msg_controllen = 0;
  244. msg.msg_flags = 0;
  245. /* have to change the state *before* sending the last packet as RxRPC
  246. * might give us the reply before it returns from sending the
  247. * request */
  248. call->state = AFS_CALL_AWAIT_REPLY;
  249. ret = rxrpc_kernel_send_data(rxcall, &msg, call->request_size);
  250. if (ret < 0)
  251. goto error_do_abort;
  252. /* at this point, an async call may no longer exist as it may have
  253. * already completed */
  254. return wait_mode->wait(call);
  255. error_do_abort:
  256. rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT);
  257. rxrpc_kernel_end_call(rxcall);
  258. call->rxcall = NULL;
  259. error_kill_call:
  260. call->type->destructor(call);
  261. afs_free_call(call);
  262. _leave(" = %d", ret);
  263. return ret;
  264. }
  265. /*
  266. * handles intercepted messages that were arriving in the socket's Rx queue
  267. * - called with the socket receive queue lock held to ensure message ordering
  268. * - called with softirqs disabled
  269. */
  270. static void afs_rx_interceptor(struct sock *sk, unsigned long user_call_ID,
  271. struct sk_buff *skb)
  272. {
  273. struct afs_call *call = (struct afs_call *) user_call_ID;
  274. _enter("%p,,%u", call, skb->mark);
  275. _debug("ICPT %p{%u} [%d]",
  276. skb, skb->mark, atomic_read(&afs_outstanding_skbs));
  277. ASSERTCMP(sk, ==, afs_socket->sk);
  278. atomic_inc(&afs_outstanding_skbs);
  279. if (!call) {
  280. /* its an incoming call for our callback service */
  281. skb_queue_tail(&afs_incoming_calls, skb);
  282. schedule_work(&afs_collect_incoming_call_work);
  283. } else {
  284. /* route the messages directly to the appropriate call */
  285. skb_queue_tail(&call->rx_queue, skb);
  286. call->wait_mode->rx_wakeup(call);
  287. }
  288. _leave("");
  289. }
  290. /*
  291. * deliver messages to a call
  292. */
  293. static void afs_deliver_to_call(struct afs_call *call)
  294. {
  295. struct sk_buff *skb;
  296. bool last;
  297. u32 abort_code;
  298. int ret;
  299. _enter("");
  300. while ((call->state == AFS_CALL_AWAIT_REPLY ||
  301. call->state == AFS_CALL_AWAIT_OP_ID ||
  302. call->state == AFS_CALL_AWAIT_REQUEST ||
  303. call->state == AFS_CALL_AWAIT_ACK) &&
  304. (skb = skb_dequeue(&call->rx_queue))) {
  305. switch (skb->mark) {
  306. case RXRPC_SKB_MARK_DATA:
  307. _debug("Rcv DATA");
  308. last = rxrpc_kernel_is_data_last(skb);
  309. ret = call->type->deliver(call, skb, last);
  310. switch (ret) {
  311. case 0:
  312. if (last &&
  313. call->state == AFS_CALL_AWAIT_REPLY)
  314. call->state = AFS_CALL_COMPLETE;
  315. break;
  316. case -ENOTCONN:
  317. abort_code = RX_CALL_DEAD;
  318. goto do_abort;
  319. case -ENOTSUPP:
  320. abort_code = RX_INVALID_OPERATION;
  321. goto do_abort;
  322. default:
  323. abort_code = RXGEN_CC_UNMARSHAL;
  324. if (call->state != AFS_CALL_AWAIT_REPLY)
  325. abort_code = RXGEN_SS_UNMARSHAL;
  326. do_abort:
  327. rxrpc_kernel_abort_call(call->rxcall,
  328. abort_code);
  329. call->error = ret;
  330. call->state = AFS_CALL_ERROR;
  331. break;
  332. }
  333. afs_data_delivered(skb);
  334. skb = NULL;
  335. continue;
  336. case RXRPC_SKB_MARK_FINAL_ACK:
  337. _debug("Rcv ACK");
  338. call->state = AFS_CALL_COMPLETE;
  339. break;
  340. case RXRPC_SKB_MARK_BUSY:
  341. _debug("Rcv BUSY");
  342. call->error = -EBUSY;
  343. call->state = AFS_CALL_BUSY;
  344. break;
  345. case RXRPC_SKB_MARK_REMOTE_ABORT:
  346. abort_code = rxrpc_kernel_get_abort_code(skb);
  347. call->error = call->type->abort_to_error(abort_code);
  348. call->state = AFS_CALL_ABORTED;
  349. _debug("Rcv ABORT %u -> %d", abort_code, call->error);
  350. break;
  351. case RXRPC_SKB_MARK_NET_ERROR:
  352. call->error = -rxrpc_kernel_get_error_number(skb);
  353. call->state = AFS_CALL_ERROR;
  354. _debug("Rcv NET ERROR %d", call->error);
  355. break;
  356. case RXRPC_SKB_MARK_LOCAL_ERROR:
  357. call->error = -rxrpc_kernel_get_error_number(skb);
  358. call->state = AFS_CALL_ERROR;
  359. _debug("Rcv LOCAL ERROR %d", call->error);
  360. break;
  361. default:
  362. BUG();
  363. break;
  364. }
  365. afs_free_skb(skb);
  366. }
  367. /* make sure the queue is empty if the call is done with (we might have
  368. * aborted the call early because of an unmarshalling error) */
  369. if (call->state >= AFS_CALL_COMPLETE) {
  370. while ((skb = skb_dequeue(&call->rx_queue)))
  371. afs_free_skb(skb);
  372. if (call->incoming) {
  373. rxrpc_kernel_end_call(call->rxcall);
  374. call->rxcall = NULL;
  375. call->type->destructor(call);
  376. afs_free_call(call);
  377. }
  378. }
  379. _leave("");
  380. }
  381. /*
  382. * wait synchronously for a call to complete
  383. */
  384. static int afs_wait_for_call_to_complete(struct afs_call *call)
  385. {
  386. struct sk_buff *skb;
  387. int ret;
  388. DECLARE_WAITQUEUE(myself, current);
  389. _enter("");
  390. add_wait_queue(&call->waitq, &myself);
  391. for (;;) {
  392. set_current_state(TASK_INTERRUPTIBLE);
  393. /* deliver any messages that are in the queue */
  394. if (!skb_queue_empty(&call->rx_queue)) {
  395. __set_current_state(TASK_RUNNING);
  396. afs_deliver_to_call(call);
  397. continue;
  398. }
  399. ret = call->error;
  400. if (call->state >= AFS_CALL_COMPLETE)
  401. break;
  402. ret = -EINTR;
  403. if (signal_pending(current))
  404. break;
  405. schedule();
  406. }
  407. remove_wait_queue(&call->waitq, &myself);
  408. __set_current_state(TASK_RUNNING);
  409. /* kill the call */
  410. if (call->state < AFS_CALL_COMPLETE) {
  411. _debug("call incomplete");
  412. rxrpc_kernel_abort_call(call->rxcall, RX_CALL_DEAD);
  413. while ((skb = skb_dequeue(&call->rx_queue)))
  414. afs_free_skb(skb);
  415. }
  416. _debug("call complete");
  417. rxrpc_kernel_end_call(call->rxcall);
  418. call->rxcall = NULL;
  419. call->type->destructor(call);
  420. afs_free_call(call);
  421. _leave(" = %d", ret);
  422. return ret;
  423. }
  424. /*
  425. * wake up a waiting call
  426. */
  427. static void afs_wake_up_call_waiter(struct afs_call *call)
  428. {
  429. wake_up(&call->waitq);
  430. }
  431. /*
  432. * wake up an asynchronous call
  433. */
  434. static void afs_wake_up_async_call(struct afs_call *call)
  435. {
  436. _enter("");
  437. queue_work(afs_async_calls, &call->async_work);
  438. }
  439. /*
  440. * put a call into asynchronous mode
  441. * - mustn't touch the call descriptor as the call my have completed by the
  442. * time we get here
  443. */
  444. static int afs_dont_wait_for_call_to_complete(struct afs_call *call)
  445. {
  446. _enter("");
  447. return -EINPROGRESS;
  448. }
  449. /*
  450. * delete an asynchronous call
  451. */
  452. static void afs_delete_async_call(struct work_struct *work)
  453. {
  454. struct afs_call *call =
  455. container_of(work, struct afs_call, async_work);
  456. _enter("");
  457. afs_free_call(call);
  458. _leave("");
  459. }
  460. /*
  461. * perform processing on an asynchronous call
  462. * - on a multiple-thread workqueue this work item may try to run on several
  463. * CPUs at the same time
  464. */
  465. static void afs_process_async_call(struct work_struct *work)
  466. {
  467. struct afs_call *call =
  468. container_of(work, struct afs_call, async_work);
  469. _enter("");
  470. if (!skb_queue_empty(&call->rx_queue))
  471. afs_deliver_to_call(call);
  472. if (call->state >= AFS_CALL_COMPLETE && call->wait_mode) {
  473. if (call->wait_mode->async_complete)
  474. call->wait_mode->async_complete(call->reply,
  475. call->error);
  476. call->reply = NULL;
  477. /* kill the call */
  478. rxrpc_kernel_end_call(call->rxcall);
  479. call->rxcall = NULL;
  480. if (call->type->destructor)
  481. call->type->destructor(call);
  482. /* we can't just delete the call because the work item may be
  483. * queued */
  484. PREPARE_WORK(&call->async_work, afs_delete_async_call);
  485. queue_work(afs_async_calls, &call->async_work);
  486. }
  487. _leave("");
  488. }
  489. /*
  490. * empty a socket buffer into a flat reply buffer
  491. */
  492. void afs_transfer_reply(struct afs_call *call, struct sk_buff *skb)
  493. {
  494. size_t len = skb->len;
  495. if (skb_copy_bits(skb, 0, call->buffer + call->reply_size, len) < 0)
  496. BUG();
  497. call->reply_size += len;
  498. }
  499. /*
  500. * accept the backlog of incoming calls
  501. */
  502. static void afs_collect_incoming_call(struct work_struct *work)
  503. {
  504. struct rxrpc_call *rxcall;
  505. struct afs_call *call = NULL;
  506. struct sk_buff *skb;
  507. while ((skb = skb_dequeue(&afs_incoming_calls))) {
  508. _debug("new call");
  509. /* don't need the notification */
  510. afs_free_skb(skb);
  511. if (!call) {
  512. call = kzalloc(sizeof(struct afs_call), GFP_KERNEL);
  513. if (!call) {
  514. rxrpc_kernel_reject_call(afs_socket);
  515. return;
  516. }
  517. INIT_WORK(&call->async_work, afs_process_async_call);
  518. call->wait_mode = &afs_async_incoming_call;
  519. call->type = &afs_RXCMxxxx;
  520. init_waitqueue_head(&call->waitq);
  521. skb_queue_head_init(&call->rx_queue);
  522. call->state = AFS_CALL_AWAIT_OP_ID;
  523. _debug("CALL %p{%s} [%d]",
  524. call, call->type->name,
  525. atomic_read(&afs_outstanding_calls));
  526. atomic_inc(&afs_outstanding_calls);
  527. }
  528. rxcall = rxrpc_kernel_accept_call(afs_socket,
  529. (unsigned long) call);
  530. if (!IS_ERR(rxcall)) {
  531. call->rxcall = rxcall;
  532. call = NULL;
  533. }
  534. }
  535. if (call)
  536. afs_free_call(call);
  537. }
  538. /*
  539. * grab the operation ID from an incoming cache manager call
  540. */
  541. static int afs_deliver_cm_op_id(struct afs_call *call, struct sk_buff *skb,
  542. bool last)
  543. {
  544. size_t len = skb->len;
  545. void *oibuf = (void *) &call->operation_ID;
  546. _enter("{%u},{%zu},%d", call->offset, len, last);
  547. ASSERTCMP(call->offset, <, 4);
  548. /* the operation ID forms the first four bytes of the request data */
  549. len = min_t(size_t, len, 4 - call->offset);
  550. if (skb_copy_bits(skb, 0, oibuf + call->offset, len) < 0)
  551. BUG();
  552. if (!pskb_pull(skb, len))
  553. BUG();
  554. call->offset += len;
  555. if (call->offset < 4) {
  556. if (last) {
  557. _leave(" = -EBADMSG [op ID short]");
  558. return -EBADMSG;
  559. }
  560. _leave(" = 0 [incomplete]");
  561. return 0;
  562. }
  563. call->state = AFS_CALL_AWAIT_REQUEST;
  564. /* ask the cache manager to route the call (it'll change the call type
  565. * if successful) */
  566. if (!afs_cm_incoming_call(call))
  567. return -ENOTSUPP;
  568. /* pass responsibility for the remainer of this message off to the
  569. * cache manager op */
  570. return call->type->deliver(call, skb, last);
  571. }
  572. /*
  573. * send an empty reply
  574. */
  575. void afs_send_empty_reply(struct afs_call *call)
  576. {
  577. struct msghdr msg;
  578. struct iovec iov[1];
  579. _enter("");
  580. iov[0].iov_base = NULL;
  581. iov[0].iov_len = 0;
  582. msg.msg_name = NULL;
  583. msg.msg_namelen = 0;
  584. msg.msg_iov = iov;
  585. msg.msg_iovlen = 0;
  586. msg.msg_control = NULL;
  587. msg.msg_controllen = 0;
  588. msg.msg_flags = 0;
  589. call->state = AFS_CALL_AWAIT_ACK;
  590. switch (rxrpc_kernel_send_data(call->rxcall, &msg, 0)) {
  591. case 0:
  592. _leave(" [replied]");
  593. return;
  594. case -ENOMEM:
  595. _debug("oom");
  596. rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
  597. default:
  598. rxrpc_kernel_end_call(call->rxcall);
  599. call->rxcall = NULL;
  600. call->type->destructor(call);
  601. afs_free_call(call);
  602. _leave(" [error]");
  603. return;
  604. }
  605. }
  606. /*
  607. * send a simple reply
  608. */
  609. void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
  610. {
  611. struct msghdr msg;
  612. struct iovec iov[1];
  613. _enter("");
  614. iov[0].iov_base = (void *) buf;
  615. iov[0].iov_len = len;
  616. msg.msg_name = NULL;
  617. msg.msg_namelen = 0;
  618. msg.msg_iov = iov;
  619. msg.msg_iovlen = 1;
  620. msg.msg_control = NULL;
  621. msg.msg_controllen = 0;
  622. msg.msg_flags = 0;
  623. call->state = AFS_CALL_AWAIT_ACK;
  624. switch (rxrpc_kernel_send_data(call->rxcall, &msg, len)) {
  625. case 0:
  626. _leave(" [replied]");
  627. return;
  628. case -ENOMEM:
  629. _debug("oom");
  630. rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
  631. default:
  632. rxrpc_kernel_end_call(call->rxcall);
  633. call->rxcall = NULL;
  634. call->type->destructor(call);
  635. afs_free_call(call);
  636. _leave(" [error]");
  637. return;
  638. }
  639. }
  640. /*
  641. * extract a piece of data from the received data socket buffers
  642. */
  643. int afs_extract_data(struct afs_call *call, struct sk_buff *skb,
  644. bool last, void *buf, size_t count)
  645. {
  646. size_t len = skb->len;
  647. _enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count);
  648. ASSERTCMP(call->offset, <, count);
  649. len = min_t(size_t, len, count - call->offset);
  650. if (skb_copy_bits(skb, 0, buf + call->offset, len) < 0 ||
  651. !pskb_pull(skb, len))
  652. BUG();
  653. call->offset += len;
  654. if (call->offset < count) {
  655. if (last) {
  656. _leave(" = -EBADMSG [%d < %zu]", call->offset, count);
  657. return -EBADMSG;
  658. }
  659. _leave(" = -EAGAIN");
  660. return -EAGAIN;
  661. }
  662. return 0;
  663. }