phy_lp.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  24. {
  25. struct b43_phy_lp *lpphy;
  26. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  27. if (!lpphy)
  28. return -ENOMEM;
  29. dev->phy.lp = lpphy;
  30. return 0;
  31. }
  32. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  33. {
  34. struct b43_phy *phy = &dev->phy;
  35. struct b43_phy_lp *lpphy = phy->lp;
  36. memset(lpphy, 0, sizeof(*lpphy));
  37. //TODO
  38. }
  39. static void b43_lpphy_op_free(struct b43_wldev *dev)
  40. {
  41. struct b43_phy_lp *lpphy = dev->phy.lp;
  42. kfree(lpphy);
  43. dev->phy.lp = NULL;
  44. }
  45. static void lpphy_table_init(struct b43_wldev *dev)
  46. {
  47. //TODO
  48. }
  49. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  50. {
  51. struct ssb_bus *bus = dev->dev->bus;
  52. u16 tmp, tmp2;
  53. if (dev->phy.rev == 1 &&
  54. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  55. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  56. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  57. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  58. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  59. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  60. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  61. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  62. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  63. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  64. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  65. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  66. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  67. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  68. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  69. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  70. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  71. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  72. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  73. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  74. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  75. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  76. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  77. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  78. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  79. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  80. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  81. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  82. } else if (dev->phy.rev == 1 ||
  83. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  84. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  85. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  86. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  87. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  88. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  89. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  90. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  91. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  92. } else {
  93. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  94. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  95. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  96. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  97. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  98. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  99. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  100. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  101. }
  102. if (dev->phy.rev == 1) {
  103. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  104. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  105. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  106. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  107. }
  108. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  109. (bus->chip_id == 0x5354) &&
  110. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  111. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  112. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  113. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  114. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  115. }
  116. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  117. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  118. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  119. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  120. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  121. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  122. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  123. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  124. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  125. } else { /* 5GHz */
  126. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  127. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  128. }
  129. if (dev->phy.rev == 1) {
  130. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  131. tmp2 = (tmp & 0x03E0) >> 5;
  132. tmp2 |= tmp << 5;
  133. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  134. tmp = b43_phy_read(dev, B43_LPPHY_OFDMSYNCTHRESH0);
  135. tmp2 = (tmp & 0x1F00) >> 8;
  136. tmp2 |= tmp << 5;
  137. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  138. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  139. tmp2 = tmp & 0x00FF;
  140. tmp2 |= tmp << 8;
  141. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  142. }
  143. }
  144. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  145. {
  146. struct ssb_bus *bus = dev->dev->bus;
  147. struct b43_phy_lp *lpphy = dev->phy.lp;
  148. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  149. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  150. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  151. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  152. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  153. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  154. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  155. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  156. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  157. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0x78);
  158. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  159. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  160. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  161. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  162. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  163. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  164. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  165. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  166. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  167. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  168. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  169. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  170. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  171. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  172. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  173. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  174. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xF81F, 0xA0);
  175. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  176. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  177. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  178. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  179. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  180. } else {
  181. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  182. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  183. }
  184. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  185. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  186. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  187. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  188. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  189. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  190. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  191. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  192. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  193. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  194. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  195. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  196. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  197. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  198. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  199. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  200. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  201. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  202. } else /* 5GHz */
  203. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  204. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  205. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  206. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  207. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  208. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  209. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  210. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  211. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  212. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  213. }
  214. static void lpphy_baseband_init(struct b43_wldev *dev)
  215. {
  216. lpphy_table_init(dev);
  217. if (dev->phy.rev >= 2)
  218. lpphy_baseband_rev2plus_init(dev);
  219. else
  220. lpphy_baseband_rev0_1_init(dev);
  221. }
  222. struct b2062_freqdata {
  223. u16 freq;
  224. u8 data[6];
  225. };
  226. /* Initialize the 2062 radio. */
  227. static void lpphy_2062_init(struct b43_wldev *dev)
  228. {
  229. struct ssb_bus *bus = dev->dev->bus;
  230. u32 crystalfreq, pdiv, tmp, ref;
  231. unsigned int i;
  232. const struct b2062_freqdata *fd = NULL;
  233. static const struct b2062_freqdata freqdata_tab[] = {
  234. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  235. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  236. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  237. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  238. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  239. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  240. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  241. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  242. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  243. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  244. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  245. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  246. };
  247. b2062_upload_init_table(dev);
  248. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  249. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  250. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  251. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  252. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  253. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  254. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  255. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  256. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  257. else
  258. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  259. /* Get the crystal freq, in Hz. */
  260. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  261. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  262. B43_WARN_ON(crystalfreq == 0);
  263. if (crystalfreq >= 30000000) {
  264. pdiv = 1;
  265. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  266. } else {
  267. pdiv = 2;
  268. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  269. }
  270. tmp = (800000000 * pdiv + crystalfreq) / (32000000 * pdiv);
  271. tmp = (tmp - 1) & 0xFF;
  272. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  273. tmp = (2 * crystalfreq + 1000000 * pdiv) / (2000000 * pdiv);
  274. tmp = ((tmp & 0xFF) - 1) & 0xFFFF;
  275. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  276. ref = (1000 * pdiv + 2 * crystalfreq) / (2000 * pdiv);
  277. ref &= 0xFFFF;
  278. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  279. if (ref < freqdata_tab[i].freq) {
  280. fd = &freqdata_tab[i];
  281. break;
  282. }
  283. }
  284. if (!fd)
  285. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  286. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  287. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  288. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  289. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  290. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  291. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  292. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  293. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  294. }
  295. /* Initialize the 2063 radio. */
  296. static void lpphy_2063_init(struct b43_wldev *dev)
  297. {
  298. b2063_upload_init_table(dev);
  299. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  300. b43_radio_set(dev, B2063_COMM8, 0x38);
  301. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  302. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  303. b43_radio_write(dev, B2063_PA_SP7, 0);
  304. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  305. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  306. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  307. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  308. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  309. }
  310. static void lpphy_sync_stx(struct b43_wldev *dev)
  311. {
  312. //TODO
  313. }
  314. static void lpphy_radio_init(struct b43_wldev *dev)
  315. {
  316. /* The radio is attached through the 4wire bus. */
  317. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  318. udelay(1);
  319. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  320. udelay(1);
  321. if (dev->phy.rev < 2) {
  322. lpphy_2062_init(dev);
  323. } else {
  324. lpphy_2063_init(dev);
  325. lpphy_sync_stx(dev);
  326. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  327. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  328. //TODO Do something on the backplane
  329. }
  330. }
  331. /* Read the TX power control mode from hardware. */
  332. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  333. {
  334. struct b43_phy_lp *lpphy = dev->phy.lp;
  335. u16 ctl;
  336. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  337. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  338. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  339. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  340. break;
  341. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  342. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  343. break;
  344. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  345. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  346. break;
  347. default:
  348. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  349. B43_WARN_ON(1);
  350. break;
  351. }
  352. }
  353. /* Set the TX power control mode in hardware. */
  354. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  355. {
  356. struct b43_phy_lp *lpphy = dev->phy.lp;
  357. u16 ctl;
  358. switch (lpphy->txpctl_mode) {
  359. case B43_LPPHY_TXPCTL_OFF:
  360. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  361. break;
  362. case B43_LPPHY_TXPCTL_HW:
  363. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  364. break;
  365. case B43_LPPHY_TXPCTL_SW:
  366. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  367. break;
  368. default:
  369. ctl = 0;
  370. B43_WARN_ON(1);
  371. }
  372. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  373. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  374. }
  375. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  376. enum b43_lpphy_txpctl_mode mode)
  377. {
  378. struct b43_phy_lp *lpphy = dev->phy.lp;
  379. enum b43_lpphy_txpctl_mode oldmode;
  380. oldmode = lpphy->txpctl_mode;
  381. lpphy_read_tx_pctl_mode_from_hardware(dev);
  382. if (lpphy->txpctl_mode == mode)
  383. return;
  384. lpphy->txpctl_mode = mode;
  385. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  386. //TODO Update TX Power NPT
  387. //TODO Clear all TX Power offsets
  388. } else {
  389. if (mode == B43_LPPHY_TXPCTL_HW) {
  390. //TODO Recalculate target TX power
  391. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  392. 0xFF80, lpphy->tssi_idx);
  393. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  394. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  395. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  396. //TODO Disable TX gain override
  397. lpphy->tx_pwr_idx_over = -1;
  398. }
  399. }
  400. if (dev->phy.rev >= 2) {
  401. if (mode == B43_LPPHY_TXPCTL_HW)
  402. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  403. else
  404. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  405. }
  406. lpphy_write_tx_pctl_mode_to_hardware(dev);
  407. }
  408. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  409. {
  410. struct b43_phy_lp *lpphy = dev->phy.lp;
  411. lpphy->tx_pwr_idx_over = index;
  412. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  413. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  414. //TODO
  415. }
  416. static void lpphy_btcoex_override(struct b43_wldev *dev)
  417. {
  418. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  419. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  420. }
  421. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  422. {
  423. struct b43_phy_lp *lpphy = dev->phy.lp;
  424. u32 *saved_tab;
  425. const unsigned int saved_tab_size = 256;
  426. enum b43_lpphy_txpctl_mode txpctl_mode;
  427. s8 tx_pwr_idx_over;
  428. u16 tssi_npt, tssi_idx;
  429. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  430. if (!saved_tab) {
  431. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  432. return;
  433. }
  434. lpphy_read_tx_pctl_mode_from_hardware(dev);
  435. txpctl_mode = lpphy->txpctl_mode;
  436. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  437. tssi_npt = lpphy->tssi_npt;
  438. tssi_idx = lpphy->tssi_idx;
  439. if (dev->phy.rev < 2) {
  440. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  441. saved_tab_size, saved_tab);
  442. } else {
  443. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  444. saved_tab_size, saved_tab);
  445. }
  446. //TODO
  447. kfree(saved_tab);
  448. }
  449. static void lpphy_calibration(struct b43_wldev *dev)
  450. {
  451. struct b43_phy_lp *lpphy = dev->phy.lp;
  452. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  453. b43_mac_suspend(dev);
  454. lpphy_btcoex_override(dev);
  455. lpphy_read_tx_pctl_mode_from_hardware(dev);
  456. saved_pctl_mode = lpphy->txpctl_mode;
  457. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  458. //TODO Perform transmit power table I/Q LO calibration
  459. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  460. lpphy_pr41573_workaround(dev);
  461. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  462. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  463. //TODO Perform I/Q calibration with a single control value set
  464. b43_mac_enable(dev);
  465. }
  466. /* Initialize TX power control */
  467. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  468. {
  469. if (0/*FIXME HWPCTL capable */) {
  470. //TODO
  471. } else { /* This device is only software TX power control capable. */
  472. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  473. //TODO
  474. } else {
  475. //TODO
  476. }
  477. //TODO set BB multiplier to 0x0096
  478. }
  479. }
  480. static int b43_lpphy_op_init(struct b43_wldev *dev)
  481. {
  482. /* TODO: band SPROM */
  483. /* TODO: tables init */
  484. lpphy_baseband_init(dev);
  485. lpphy_radio_init(dev);
  486. //TODO calibrate RC
  487. //TODO set channel
  488. lpphy_tx_pctl_init(dev);
  489. //TODO full calib
  490. return 0;
  491. }
  492. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  493. {
  494. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  495. return b43_read16(dev, B43_MMIO_PHY_DATA);
  496. }
  497. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  498. {
  499. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  500. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  501. }
  502. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  503. {
  504. /* Register 1 is a 32-bit register. */
  505. B43_WARN_ON(reg == 1);
  506. /* LP-PHY needs a special bit set for read access */
  507. if (dev->phy.rev < 2) {
  508. if (reg != 0x4001)
  509. reg |= 0x100;
  510. } else
  511. reg |= 0x200;
  512. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  513. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  514. }
  515. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  516. {
  517. /* Register 1 is a 32-bit register. */
  518. B43_WARN_ON(reg == 1);
  519. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  520. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  521. }
  522. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  523. bool blocked)
  524. {
  525. //TODO
  526. }
  527. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  528. unsigned int new_channel)
  529. {
  530. //TODO
  531. return 0;
  532. }
  533. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  534. {
  535. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  536. return 1;
  537. return 36;
  538. }
  539. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  540. {
  541. //TODO
  542. }
  543. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  544. {
  545. //TODO
  546. }
  547. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  548. bool ignore_tssi)
  549. {
  550. //TODO
  551. return B43_TXPWR_RES_DONE;
  552. }
  553. const struct b43_phy_operations b43_phyops_lp = {
  554. .allocate = b43_lpphy_op_allocate,
  555. .free = b43_lpphy_op_free,
  556. .prepare_structs = b43_lpphy_op_prepare_structs,
  557. .init = b43_lpphy_op_init,
  558. .phy_read = b43_lpphy_op_read,
  559. .phy_write = b43_lpphy_op_write,
  560. .radio_read = b43_lpphy_op_radio_read,
  561. .radio_write = b43_lpphy_op_radio_write,
  562. .software_rfkill = b43_lpphy_op_software_rfkill,
  563. .switch_analog = b43_phyop_switch_analog_generic,
  564. .switch_channel = b43_lpphy_op_switch_channel,
  565. .get_default_chan = b43_lpphy_op_get_default_chan,
  566. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  567. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  568. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  569. };